WO2019233357A1 - 一种具有高斜坡容量的碳基负极材料及其制备方法和用途 - Google Patents

一种具有高斜坡容量的碳基负极材料及其制备方法和用途 Download PDF

Info

Publication number
WO2019233357A1
WO2019233357A1 PCT/CN2019/089753 CN2019089753W WO2019233357A1 WO 2019233357 A1 WO2019233357 A1 WO 2019233357A1 CN 2019089753 W CN2019089753 W CN 2019089753W WO 2019233357 A1 WO2019233357 A1 WO 2019233357A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
negative electrode
capacity
source precursor
carbon source
Prior art date
Application number
PCT/CN2019/089753
Other languages
English (en)
French (fr)
Inventor
胡勇胜
戚钰若
陆雅翔
陈立泉
Original Assignee
中国科学院物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院物理研究所 filed Critical 中国科学院物理研究所
Priority to US16/973,358 priority Critical patent/US20210253427A1/en
Publication of WO2019233357A1 publication Critical patent/WO2019233357A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of materials, in particular to a carbon-based negative electrode material having a high slope capacity, and a preparation method and application thereof.
  • Energy is the foundation on which human society depends, and with the development of human society, people's demand for energy is increasing.
  • Human energy is mainly derived from fossil fuels such as oil, coal and natural gas, but these energy reserves are limited, it is difficult to maintain human sustainable development, and it will bring serious greenhouse effect and environmental pollution problems.
  • clean energy represented by solar energy, wind energy, tidal energy, etc. has attracted widespread attention, but the output of these energy sources has time discontinuity and uneven spatial distribution. Therefore, research and development of efficient and cheap large-scale energy storage technologies have become a key link in sustainable energy development and an important part of the country's future energy strategy.
  • Energy storage technologies mainly include physical energy storage and chemical energy storage.
  • Physical energy storage includes compressed air energy storage, pumped energy storage, flywheel energy storage, and superconducting energy storage.
  • Chemical energy storage mainly refers to electrochemical energy storage, including lithium-ion batteries, lead-acid batteries, all-vanadium flow batteries, high-temperature sodium-sulfur batteries, and supercapacitors.
  • An electrochemical energy storage system with an efficiency higher than 80% can meet the needs of the large-scale energy storage market.
  • lithium-ion batteries have shown great advantages in the field of energy storage applications and have become the first choice for new energy power batteries that have recently emerged.
  • the production of lithium-ion batteries has reached an unprecedented scale, which will inevitably lead Large consumption of lithium resources and rising prices. In fact, the content of lithium resources in the earth's crust is not abundant, and the distribution of resources is very uneven. It is mainly concentrated in South America. The rising prices of lithium resources gradually require people to pay attention to other similar battery systems.
  • Sodium and lithium belong to the same main group, have similar chemical properties, and have abundant resources on the earth's crust. Compared with lithium-ion batteries, sodium-ion batteries have once again become a research hotspot for scientific researchers due to their great resource advantages.
  • the anode material is an important factor restricting the large-scale development of sodium ion batteries. Because metallic sodium is relatively active, metallic sodium cannot be used as a negative electrode in actual sodium ion batteries.
  • the graphite anode widely used in lithium ion batteries has almost no sodium storage performance due to thermodynamic reasons, so the research and development of sodium ion battery anode materials is facing great difficulties and challenges.
  • anode materials for sodium ion batteries are mainly carbon-based anode materials, transition metal oxides, alloy-based anode materials, and organic compounds.
  • carbon-based anode materials have become the most promising sodium ion battery anode materials due to their relatively high sodium storage capacity, low sodium storage potential, and excellent cycle stability.
  • the electrochemical curves of most of the carbon-based anode materials reported in the current research include a platform section (the platform section refers to a section where the slope of the curve in the electrochemical curve is almost 0) and a slope section (the slope section refers to a curve where the slope of the curve in the electrochemical curve is non-zero)
  • a slope section refers to a curve where the slope of the curve in the electrochemical curve is non-zero
  • the dynamics of the charging and discharging process of the platform section is very slow, which will result in poor rate performance.
  • the power characteristics of the battery system depend significantly on the rate performance of the anode material, and further improvement of the rate performance of carbon-based anode materials is the focus of researchers and a fundamental driving force for the commercialization of sodium ion batteries. Therefore, the development of a high-rate carbon-based anode material has become a research focus.
  • the slope section has a better magnification. Therefore, the development of a carbon-based anode material that has only a slope section or most of its capacity comes from the slope section is an important means to solve the poor rate performance of the carbon-based anode material.
  • the reversible specific capacity of such carbon-based anode materials reported in current research is low or the Coulomb efficiency is low in the first week (generally less than 50%).
  • the lower reversible specific capacity cannot meet the energy density requirements of battery systems.
  • the lower first-week Coulomb efficiency will consume a large amount of limited sodium ions from the positive electrode, thereby reducing the energy density and cycle life of the battery system. Therefore, the development of a high-capacity, high-rate, high-first-effect carbon-based anode material preparation method is the key to the industrial application of sodium ion batteries, and has a very large application prospect.
  • the current pyrolysis of carbon-based anode materials is performed at relatively high temperatures, often greater than 1000 ° C.
  • the first-cycle efficiency of the organic polymer-derived carbon-based anode material obtained by carbonization at a lower temperature is relatively low (generally less than 50%), which is not conducive to the performance of the full battery.
  • Carbon source precursors are pyrolyzed at relatively low temperatures, and high-capacity, high first-effect, high-rate carbon-based anode materials have been obtained, and no report has been reported in this regard. Therefore, it is of great research significance and industrial application prospects to find some special carbon source precursors that pyrolyze at relatively low temperatures and prepare carbon-based anode materials with high capacity, high first-effect, and high-rate. .
  • the object of the present invention is to provide a carbon-based negative electrode material with high slope capacity and a preparation method and use thereof.
  • the preparation process is simple and easy, the carbonization temperature is low, and a voltage curve with high slope capacity is obtained, while taking into account the reversible specific capacity of the material , First week efficiency, cycle performance and rate performance.
  • the present invention provides a method for preparing a carbon-based anode material having a high slope capacity, including:
  • the carbon source precursor is placed in a crucible, placed in a heating device, and heated to a temperature of 400 ° C to 1000 ° C at a heating rate of 0.2 ° C / min-30 ° C / min in an inert atmosphere; wherein, the carbon source precursor Including: any one or a combination of at least two of fossil fuels, biomass, resins, and organic chemicals;
  • the fossil fuel includes one or more of anthracite, bituminous coal, asphalt, coal tar, and paraffin; the biomass includes one or more of corn stalk, cotton, lignin, cellulose, and glucose;
  • the resin includes one or more of a phenol resin, an epoxy resin, a polyamide resin, a polyester resin, and a rosin; and the organic chemical includes: sodium carboxymethyl cellulose, sodium alginate, and sodium citrate One or more of calcium hydroxyphosphate and calcium gluconate; performing low-temperature heat treatment on the carbon source precursor at 400 ° C-1000 ° C for 0.5-48 hours to carbonize the carbon source precursor, That is, the carbon-based anode material with high slope capacity is obtained; wherein the specific surface area of the carbon-based anode material obtained by the low temperature heat treatment is less than 10 m 2 / g, the slope capacity is above 180 mAh / g, and the coulomb efficiency is 75% in the first week. the above.
  • the temperature of the low-temperature heat treatment is 600 ° C-900 ° C; the time is 0.5-10 hours; and the heating rate is 1 ° C / min-10 ° C / min.
  • the inert gas forming the inert atmosphere specifically includes any of N 2 , Ar, Ar-5% H 2 , Ar-10% H 2 , and Ar-40% H 2 .
  • the low-temperature heat treatment of the carbon source precursor further includes: passing in the inert gas and the hydrocarbon-containing gas during the low-temperature heat treatment, so that the surface of the carbon source precursor is also carbonized at the same time.
  • the hydrocarbon-containing gas includes one or more of methane, ethane, toluene, ethylene, acetylene, and propyne, and the flow rate is 0.5-200 mL / min.
  • the method before the carbonizing the carbon source precursor, the method further includes:
  • the pretreatment includes one or more of pre-oxidation, acid washing, alkaline washing, water washing, organic solvent washing, and carbon coating treatment.
  • the method further includes:
  • the carbonized product is subjected to acid washing, alkali washing, water washing, organic solvent washing and / or carbon coating treatment.
  • an embodiment of the present invention provides a carbon-based negative electrode material prepared by the preparation method described in the first aspect, wherein the specific surface area of the carbon-based negative electrode material is less than 10 m 2 / g, and D in the Raman spectrum
  • the intensity ratio ID / IG value of the -peak and G-peak is between 1.5-5.
  • the carbon-based negative electrode material is used as a negative electrode material for a secondary battery.
  • an embodiment of the present invention provides a secondary battery including the carbon-based negative electrode material described in the second aspect.
  • the method for preparing a carbon-based negative electrode material with a high slope capacity provided by the embodiment of the present invention has a low carbonization temperature, is easy to implement, and can be prepared on a large scale; the specific surface area of the prepared carbon-based material is less than 10 m 2 / g, and the Raman spectrum is calculated
  • the obtained ID / IG value is large (between 1.5-5), which is used for the negative electrode material of the secondary battery to obtain a voltage curve with a high slope capacity, while having a high first-cycle Coulombic efficiency and reversible specific capacity, at 0 Charge and discharge between -2.5V, almost all of the reversible specific capacity obtained comes from the slope section, the reversible specific capacity can be as high as 231.4mAh / g, and the coulomb efficiency in the first week is as high as 80%.
  • Example 1 is an X-ray diffraction (XRD) spectrum of the carbon-based anode material prepared in Example 1;
  • Example 2 is a scanning electron microscope (SEM) spectrum of the carbon-based anode material prepared in Example 1;
  • Example 3 is a charge-discharge curve diagram of the carbon-based anode material prepared in Example 1;
  • Example 4 is a Raman spectrum chart of the carbon-based anode material prepared in Example 2;
  • Example 5 is a charge-discharge curve diagram of the carbon-based anode material prepared in Example 3.
  • Example 6 is a transmission electron microscope (TEM) spectrum of the carbon-based anode material prepared in Example 4.
  • Example 7 is a cycle performance diagram of the carbon-based anode material prepared in Example 5.
  • Example 8 is a charge-discharge curve diagram of the carbon-based anode material prepared in Example 7;
  • Example 9 is a charge-discharge curve diagram of the carbon-based anode material prepared in Example 8.
  • Example 10 is a rate performance chart of the carbon-based anode material prepared in Example 9;
  • Example 11 is a scanning electron microscope (SEM) spectrum of the carbon-based anode material prepared in Example 11;
  • Example 12 is a scanning electron microscope (SEM) spectrum of the carbon-based anode material prepared in Example 12;
  • Example 13 is an X-ray diffraction (XRD) spectrum of the carbon-based anode material prepared in Example 13;
  • SEM 14 is a scanning electron microscope (SEM) spectrum of the carbon-based anode material prepared in Example 13;
  • Example 15 is a charge-discharge curve diagram of the carbon-based anode material prepared in Example 13;
  • Example 16 is a charge-discharge curve diagram of the carbon-based anode material prepared in Example 14;
  • TEM 19 is a transmission electron microscope (TEM) spectrum of a carbon-based anode material prepared in Comparative Example 1;
  • 21 is a charge-discharge curve diagram of the carbon-based anode material prepared in Comparative Example 2;
  • FIG. 22 is a comparison chart of charge and discharge curves of the carbon-based negative electrode material of Example 1, Comparative Example 1, and Comparative Example 2.
  • FIG. 22 is a comparison chart of charge and discharge curves of the carbon-based negative electrode material of Example 1, Comparative Example 1, and Comparative Example 2.
  • An embodiment of the present invention provides a method for preparing a carbon-based anode material having a high slope capacity, as follows:
  • Carbon source precursor Place the required amount of carbon source precursor in a crucible, put it into a heating device, and raise the temperature to 400 ° C-1000 ° C at a heating rate of 0.2 ° C / min-30 ° C / min in an inert atmosphere, and then at 400 ° C
  • the carbon source precursor is subjected to low-temperature heat treatment at -1000 ° C for 0.5-48 hours, and the carbon source precursor is carbonized to obtain a carbon-based anode material.
  • the carbon source precursor compound is any one or a combination of at least two of fossil fuels, biomass, resins, and organic chemicals, such as a combination of fossil fuels and biomass, a combination of fossil fuels and resins, Combination of fossil fuels and organic chemicals, combination of biomass and resins, combination of biomass and organic chemicals, combination of resins and organic chemicals, combination of fossil fuels, biomass, and resins, fossil fuels, biomass, organic A combination of chemicals, a combination of biomass, resins, and organic chemicals, a combination of fossil fuels, biomass, resins, and organic chemicals.
  • the fossil fuel includes one or more of anthracite, bituminous coal, asphalt, coal tar, and paraffin; the biomass includes one or more of corn stalk, cotton, lignin, cellulose, and glucose;
  • the resin includes one or more of a phenol resin, an epoxy resin, a polyamide resin, a polyester resin, and a rosin; and the organic chemical includes: sodium carboxymethyl cellulose, sodium alginate, and sodium citrate Or more of calcium hydroxyphosphate and calcium gluconate.
  • the temperature of the low-temperature heat treatment is 600 ° C. to 900 ° C., for example, specifically, 600 ° C., 700 ° C., 800 ° C., or 900 ° C .;
  • the time is 0.5 to 10 hours, and for example, it may be preferably 40 min, 1 hour, 2 Hours, 4 hours, 6 hours, and 8 hours;
  • the heating rate is 1 ° C / min-10 ° C / min, and for example, 1 ° C / min, 3 ° C / min, 5 ° C / min, and 10 ° C / min may be preferred.
  • the inert gas that forms the inert atmosphere may specifically include any of N 2 , Ar, Ar-5% H 2 , Ar-10% H 2 , and Ar-40% H 2 .
  • the carbon source precursor is heat-treated at low temperature to form a carbon-based anode material with a special microstructure, which is slightly ordered on the surface and disordered on the inside, and there are no obvious graphitized microcrystalline regions.
  • the process of performing low-temperature heat treatment on the carbon source precursor may further include simultaneously introducing an inert gas and a hydrocarbon-containing gas in the process of carbonizing the carbon source precursor, and the carbon source precursor may be simultaneously carbonized.
  • the hydrocarbon-containing gas may specifically include one or more of methane, ethane, toluene, ethylene, acetylene, and propyne, and its flow rate is 0.5-200 mL / min.
  • the carbon source precursor can also be pretreated before carbonization of the carbon source precursor at a low temperature heat treatment, which specifically includes pre-oxidation, acid washing, alkaline washing, water washing, organic solvent washing, and carbon coating treatment. One or more of them.
  • carbon-based anode material after carbonizing the carbon source precursor, it can also be taken out of the heating equipment and crucible, and after pickling, alkaline washing, water washing, organic solvent washing and / or carbon coating treatment, the high slope capacity shown can be obtained. Carbon-based anode material.
  • the carbon-based negative electrode material with high slope capacity prepared by applying the present invention can be used as a negative electrode material for a secondary battery, such as a negative electrode material for a sodium ion battery, and has excellent performance.
  • the preparation method and the prepared material of the present invention have the following beneficial effects:
  • the carbonization temperature in the preparation process of the present invention is significantly reduced, which is simple and easy, the processing time is short, and it can be prepared on a large scale;
  • the intensity of D-peak and G-peak calculated by Raman spectrum of carbon-based materials prepared by the method provided by the present invention The ratio (ID / IG) is large, between 1.5-5, and the disorder is high.
  • charge and discharge between 0-2.5V to obtain a voltage curve with high slope capacity, where the slope The capacity is above 180mAh / g, and the coulomb efficiency is above 75% in the first week.
  • the reversible specific capacity can be as high as 231.4 mAh / g
  • the Coulomb efficiency can be as high as 80% in the first week.
  • the The microstructure of the material can obtain a high reversible specific capacity, and the specific surface area of the material obtained is less than 10 m 2 / g. While obtaining a high reversible specific capacity, it also obtains a high first-cycle Coulombic efficiency; When the capacity can be as high as 231.4mAh / g, the coulomb efficiency can be as high as 80% in the first week.
  • inert gas and hydrocarbon-containing gas are simultaneously introduced for surface coating, which can further reduce the specific surface area, improve the first-cycle efficiency and reversible specific capacity.
  • the present invention forms a carbon-based anode material with a special microstructure by selecting a suitable precursor and a lower processing temperature.
  • a suitable precursor for example, between 600-900 ° C
  • carbonization to form a carbon-based negative electrode material with a special microstructure has a large ID / IG value calculated by Raman spectroscopy, a slightly ordered surface, and an internal Disordered, no obvious graphitized microcrystalline regions exist.
  • the slight order on the surface can improve the electronic conductivity of the carbon-based anode material, and is also conducive to the diffusion of alkali metal ions, thereby improving the reversible specific capacity and rate performance of the material, at the same time, it can increase the reversible specific capacity of the material in the first week, and increase the charge and discharge in the first week effectiveness.
  • the internal disordered structure can regulate the interaction between the alkali metal ion and the carbon layer, thereby adjusting the potential, and obtaining an electrochemical curve with a high slope capacity.
  • the prepared carbon-based negative electrode material has a small specific surface area, reduces side reactions between the electrode and the electrolyte, and improves first-cycle efficiency.
  • the efficiency of the prepared carbon-based anode material can be as high as 80% in the first week, and the charging capacity can be as high as 234mAh / g in the first week, and the capacity almost comes from the slope section.
  • This carbon-based negative electrode material with high slope capacity has a fast ion diffusion speed, small polarization, and good rate performance during the charge and discharge process, which is conducive to the large current charge and discharge of the full battery.
  • the test results show that the electrochemical curve basically includes only the slope section (see Figure 21 of Comparative Example 2).
  • the electrochemical curve includes both the platform section and the slope section.
  • the reversible specific capacity is 231.4mAh / g
  • the coulomb efficiency in the first week is 80%.
  • the obtained carbon-based negative electrode material was fabricated into a pole piece, using sodium metal as a counter electrode, and 1 mol / L NaPF 6 EC / DMC (1: 1) as an electrolyte, assembled into a button battery, and measuring its charge and discharge at 0.1C.
  • the curve, the charging capacity of the first week is 219.1mAh / g, the capacity almost comes from the slope section, and the Coulomb efficiency is as high as 79% in the first week.
  • the obtained carbon-based negative electrode material was fabricated into a pole piece, using sodium metal as a counter electrode, and 1 mol / L NaPF 6 EC / DMC (1: 1) as an electrolyte, assembled into a button battery, and measuring its charge and discharge at 0.1C.
  • the curve, the charging capacity in the first week was as high as 227.2mAh / g, and the capacity almost came from the slope section, and the Coulomb efficiency was as high as 78.8% in the first week.
  • the curve, the charging capacity in the first week is as high as 229.3mAh / g, and the capacity is almost all from the slope section.
  • the efficiency of the Coulomb in the first week is as high as 80.3%. Its cycling performance is shown in Fig. 7, and there is no significant capacity degradation after cycling for 100 weeks at 0.1C.
  • the obtained material was processed in an Ar-5% H 2 atmosphere at 750 ° C. for 40 minutes to obtain a final carbon-based anode material.
  • the obtained carbon-based negative electrode material was fabricated into a pole piece, using sodium metal as a counter electrode, and 1 mol / L NaPF 6 EC / DMC (1: 1) as an electrolyte, assembled into a button battery, and measuring its charge and discharge at 0.1C.
  • the curve, the charging capacity in the first week is as high as 217.2mAh / g, and the capacity is almost all from the slope section.
  • the first week's Coulomb efficiency is as high as 80.6%.
  • 1g glucose and 1g asphalt are mechanically mixed, placed in a 100mL graphite crucible, placed in a tube furnace, and treated at 800 ° C for 12 hours in an Ar-40% H 2 atmosphere.
  • the glucose is cracked to obtain a carbon core, and the asphalt is melt-coated
  • the obtained material is the final carbon negative electrode material.
  • the obtained carbon-based negative electrode material was fabricated into a pole piece, using sodium metal as a counter electrode, and 1 mol / L NaPF 6 EC / DMC (1: 1) as an electrolyte, assembled into a button battery, and measuring its charge and discharge at 0.1C.
  • the curve, the charging capacity in the first week was as high as 230.1mAh / g, and the capacity almost came from the slope section, and the Coulomb efficiency was as high as 76.8% in the first week. Its rate performance is shown in Figure 10.
  • the reversible specific capacity at 8C is 122mAh / g, which is 53% of the 0.1C capacity.
  • 1g of calcium hydroxyphosphate and 1.8g of asphalt are mechanically mixed and ground, placed in a 50mL alumina crucible, placed in a muffle furnace, and treated at 300 ° C for 24 hours, and the removed materials are treated at 850 ° C for 1 hour in an N 2 atmosphere.
  • the obtained material is the final carbon anode material.
  • the SEM is shown in FIG. 11.
  • the obtained carbon-based negative electrode material was fabricated into a pole piece, using sodium metal as a counter electrode, and 1 mol / L NaPF 6 EC / DMC (1: 1) as an electrolyte, assembled into a button battery, and measuring its charge and discharge at 0.1C.
  • the curve shows that the charging capacity in the first week is as high as 217mAh / g, and the capacity almost comes from the slope section.
  • the first week's Coulomb efficiency is as high as 79.8%.
  • the obtained carbon-based negative electrode material was fabricated into a pole piece, using sodium metal as a counter electrode, and 1 mol / L NaPF 6 EC / DMC (1: 1) as an electrolyte, assembled into a button battery, and measuring its charge and discharge at 0.1C.
  • the curve is shown in Figure 15.
  • the test results show that the capacity is as high as 198.3mAh / g, almost all of the capacity comes from the slope section, and the Coulomb efficiency is as high as 78% in the first week.
  • the carbon-based negative electrode material obtained in Example 7 was ground and mixed with asphalt at 1: 0.1, heat-treated in air at 350 ° C for 2 hours, and then carbonized at 800 ° C for 1 hour in a mixed atmosphere of Ar and acetylene to obtain the carbon-based negative electrode. material.
  • the obtained carbon-based negative electrode material was fabricated into a pole piece, using sodium metal as a counter electrode, and 1 mol / L NaPF 6 EC / DMC (1: 1) as an electrolyte, assembled into a button battery, and measuring its charge and discharge at 0.1C.
  • the curve is shown in Figure 16: the efficiency of the first week is increased to 85%, the reversible specific capacity is increased to 230mAh / g, and the capacity is almost entirely from the slope section.
  • the obtained carbon-based negative electrode material was fabricated into a pole piece, using sodium metal as a counter electrode, and 1 mol / L NaPF 6 EC / DMC (1: 1) as an electrolyte, assembled into a button battery, and measuring its charge and discharge at 0.1C.
  • the curve is shown in Figure 20.
  • the test results show that the electrochemical curve basically includes only the slope section, but the specific capacity of the first week of charging is only 89.7mAh / g, and the coulomb efficiency of the first week is 59.13%.
  • FIG. 22 is a comparison chart of charge and discharge curves of the carbon-based negative electrode material of Example 1, Comparative Example 1, and Comparative Example 2.
  • FIG. 22 It can be clearly seen from FIG. 22 that the curve of Example 1 obtained by applying the method for preparing a carbon-based negative electrode material with a high slope capacity of the present invention almost includes only a slope section, and the reversible specific capacity is greater than 231.4 mAh / g.
  • the curve obtained in Comparative Example 1 basically includes only the slope section, the charging specific capacity in the first week is only 89.7mAh / g; although the curve in Comparative Example 2 has 218.8mAh / g in the first week, the capacity of the slope section is only 34%.
  • the platform section has a large polarization, which results in poor rate performance.
  • the present invention only needs to perform a short low-temperature heat treatment process at a relatively low temperature to obtain a carbon-based anode material having both high capacity, high rate, and high first-effect.
  • Precursor choose a lower pyrolysis temperature, optimize the pyrolysis temperature, and cooperate with a certain pre-treatment or post-treatment process, and through further carbon coating process, to control the product microstructure, macro-morphology, crystallinity and reduce
  • the purpose of the specific surface area of the material so as to simultaneously take into account the reversible specific capacity, first-cycle efficiency, cycle and rate performance of the obtained carbon-based anode material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明实施例涉及一种具有高斜坡容量的碳基负极材料及其制备方法和用途,所述方法包括:将碳源前驱体置于坩埚中,放入加热设备内,在惰性气氛下以0.2℃/min-30℃/min的升温速率升温至400℃-1000℃;其中,碳源前驱体包括化石燃料、生物质、树脂、有机化学品中的任意一种或至少两种的组合;在400℃-1000℃下对碳源前驱体进行低温热处理,时间为0.5-48小时,使碳源前驱体碳化,即得到碳基负极材料;通过低温热处理得到的碳基负极材料比表面积小于10m 2/g。将所得的碳基负极材料组装为钠离子电池后在0-2.5V之间充放电,得到具有高斜坡容量的电压曲线,其中,斜坡容量在180mAh/g以上,首周库伦效率在75%以上。经过对其表面进行包覆,可以进一步减小比表面积,提高首周效率和可逆比容量。

Description

一种具有高斜坡容量的碳基负极材料及其制备方法和用途
本申请要求于2018年06月08日提交中国专利局、申请号为201810584942.7、发明名称为“一种具有高斜坡容量的碳基负极材料及其制备方法和用途”的中国专利申请的优先权。
技术领域
本发明涉及材料技术领域,尤其涉及一种具有高斜坡容量的碳基负极材料及其制备方法和用途。
背景技术
能源是人类社会赖以生存的基础,并且随着人类社会的发展,人们对能源的需求越来越大。人类目前的能源主要来源于石油、煤和天然气等化石燃料,但是这些能源储量有限,难以维持人类的可持续发展,并且会带来严重的温室效应和环境污染问题。最近几年,以太阳能、风能、潮汐能等为代表的清洁能源受到人们的广泛关注,但是这些能源的输出具有时间间断性和空间分布不均匀性。因此,研究和开发高效、廉价的大规模储能技术,成为能源可持续发展的关键环节,也是国家未来能源战略的重要组成部分。储能技术主要包括物理储能和化学储能。物理储能包括压缩空气储能、抽水储能、飞轮储能和超导储能等。化学储能主要指电化学储能,包括锂离子电池、铅酸电池、全钒液流电池、高温钠硫电池和超级电容器等。效率高于80%的电化学储能体系才能满足大规模储能市场的需求。与其他几种储能技术相比,锂离子电池在储能应用领域展现出巨大优势,成为了最近兴起的新能源动力电池的首选,锂离子电池的生产制造达到了空 前规模,这必然会导致锂资源的大量消耗和价格上涨。事实上,锂资源在地壳中的含量并不丰富,且资源分布十分不均匀,主要集中在南美洲地区,不断上涨的锂资源价格逐渐要求人们关注其他类似的电池体系。
钠与锂处于同一主族,具有相似的化学性质,且钠在地壳上的资源丰富。与锂离子电池相比,钠离子电池因其具有非常大的资源优势而再次成为科研工作者的研究热点。负极材料是制约钠离子电池大规模发展的一个重要因素。由于金属钠比较活泼,在实际的钠离子电池中不能以金属钠作为负极。而被锂离子电池广泛应用的石墨负极由于热力学原因也几乎不具备储钠性能,所以钠离子电池负极材料的研发面临着很大的困难与挑战。目前被广泛研究的钠离子电池负极材料主要有碳基负极材料、过渡金属氧化物、合金类负极材料和有机化合物等。其中,碳基负极材料由于具有相对较高的储钠容量、较低的储钠电位和优异的循环稳定性而成为最有应用前景的钠离子电池负极材料。
目前研究报道的大部分碳基负极材料的电化学曲线都包含平台段(平台段指电化学曲线中曲线斜率几乎为0的一段区间)和斜坡段(斜坡段指电化学曲线中曲线斜率非零的一段区间。为定量描述斜坡段,不同文献中根据实际电化学曲线特点以及作者的偏好,有两种定义方式:大于0.2V以上为斜坡段,或者大于0.1V以上为斜坡段。但实际上0.1-0.2V之间容量贡献并不大,所以可以统一认为0.1V以上为斜坡段)。平台段充放电过程动力学速度很慢,因此会导致较差的倍率性能。然而电池体系的功率特性显著依赖于负极材料的倍率性能,进一步提高碳基负极材料的倍率性能是研究者的关注重点,也是促进钠离子电池商业化的一个根本动力。因此,开发一种高倍率的碳基负极材料成为了研究重点。相比于平台段较差的动力学速度,斜坡段具有较好的倍率。因此开发只具有斜坡段或者大部分容量来自于斜坡段的碳基负极材料是解决碳基负极材料倍率性能差的一个重要手段。但是,目前研究报道的这类碳基负极材料可逆比容量较低或是首 周库伦效率较低(一般低于50%)。当应用于全电池时,较低的可逆比容量不能满足电池体系的能量密度需求。较低的首周库伦效率会大量消耗来自于正极的有限的钠离子,从而降低电池体系的能量密度以及循环寿命。因此,开发高容量、高倍率、高首效碳基负极材料的制备方法是实现钠离子电池产业化应用的关键所在,具有非常大的应用前景。
另外,除一些有机聚合物外,目前碳基负极材料热解过程都是在相对较高的温度下进行,常大于1000℃。而在较低温度下碳化得到的有机聚合物衍生碳基负极材料的首周效率相对较低(一般低于50%),不利于全电池性能的发挥。在相对较低的温度下热解碳源前驱体,并且得到高容量、高首效、高倍率的碳基负极材料,目前尚无这方面的报道。因此,寻找一些特殊的碳源前驱体,在相对较低的温度下发生热解,制备兼具高容量、高首效、高倍率的碳基负极材料,具有很大的研究意义和工业化应用前景。
发明内容
本发明的目的是提供一种具有高斜坡容量的碳基负极材料及其制备方法和用途,制备过程简单易行,碳化温度低,得到具有高斜坡容量的电压曲线,同时兼顾材料的可逆比容量、首周效率、循环性能和倍率性能。
为实现上述目的,第一方面,本发明提供了一种具有高斜坡容量的碳基负极材料的制备方法,包括:
将碳源前驱体置于坩埚中,放入加热设备内,在惰性气氛下,以0.2℃/min-30℃/min的升温速率升温至400℃-1000℃;其中,所述碳源前驱体包括:化石燃料、生物质、树脂、有机化学品中的任意一种或至少两种的相互组合;
所述化石燃料包括:无烟煤、烟煤、沥青、煤焦油、石蜡中的一种或多种;所述生物质包括:玉米秸秆、棉花、木质素、纤维素、葡萄糖中的一种或多种;所述树脂包括:酚醛树脂、环氧树脂、聚酰胺树脂、聚酯树 脂、松香中的一种或多种;所述有机化学品包括:羧甲基纤维素钠、海藻酸钠、柠檬酸钠、羟基磷酸钙、葡萄糖酸钙中的一种或多种;在400℃-1000℃下对所述碳源前驱体进行低温热处理,时间为0.5-48小时,使所述碳源前驱体碳化,即得到所述具有高斜坡容量的碳基负极材料;其中,所述低温热处理得到的碳基负极材料的比表面积小于10m 2/g,斜坡容量在180mAh/g以上,首周库伦效率在75%以上。
优选的,所述低温热处理的温度为600℃-900℃;所述时间为0.5-10小时;所述升温速率为1℃/min-10℃/min。
优选的,所述形成所述惰性气氛的惰性气体具体包括:N 2、Ar、Ar-5%H 2、Ar-10%H 2、Ar-40%H 2中的任一种。
优选的,所述对所述碳源前驱体进行低温热处理还包括:在低温热处理过程中通入所述惰性气体和含碳氢化合物气体,使得在所述碳源前驱体碳化的同时也进行表面包覆;所述含碳氢化合物气体包括甲烷、乙烷、甲苯、乙烯、乙炔、丙炔中的一种或多种,流量为0.5-200mL/min。
优选的,在所述将碳源前驱体进行碳化之前,所述方法还包括:
对所述碳源前驱体进行预处理;
所述预处理包括预氧化、酸洗、碱洗、水洗、有机溶剂洗涤、包碳处理中的一种或几种。
优选的,在所述将碳源前驱体碳化之后,所述方法还包括:
对碳化后的产物进行酸洗、碱洗、水洗、有机溶剂洗涤和/或包碳处理。
第二方面,本发明实施例提供了一种上述第一方面所述的制备方法制备得到的碳基负极材料,所述碳基负极材料的比表面积小于10m 2/g,拉曼光谱中的D-峰和G-峰的强度比ID/IG值在1.5-5之间。
优选的,所述碳基负极材料用于二次电池的负极材料。
第三方面,本发明实施例提供了一种二次电池,包括上述第二方面所述的碳基负极材料。
本发明实施例提供的具有高斜坡容量的碳基负极材料的制备方法,其碳化温度低、简单易行、可规模化制备;制备所得碳基材料比表面积小于10m 2/g,拉曼光谱计算得到的ID/IG值大(在1.5-5之间),用于二次电池的负极材料,得到具有高斜坡容量的电压曲线,同时具有较高的首周库伦效率和可逆比容量,在0-2.5V之间充放电,所得可逆比容量几乎全部来自斜坡段,可逆比容量可高达231.4mAh/g,首周库伦效率高达80%。
附图说明
图1为实施例1制备的碳基负极材料的X射线衍射(XRD)图谱;
图2为实施例1制备的碳基负极材料的扫描电镜(SEM)图谱;
图3为实施例1制备的碳基负极材料的充放电曲线图;
图4为实施例2制备的碳基负极材料的拉曼光谱图;
图5为实施例3制备的碳基负极材料的充放电曲线图;
图6为实施例4制备的碳基负极材料的透射电镜(TEM)图谱;
图7为实施例5制备的碳基负极材料的循环性能图;
图8为实施例7制备的碳基负极材料的充放电曲线图;
图9为实施例8制备的碳基负极材料的充放电曲线图;
图10为实施例9制备的碳基负极材料的倍率性能图;
图11为实施例11制备的碳基负极材料的扫描电镜(SEM)图谱;
图12为实施例12制备的碳基负极材料的扫描电镜(SEM)图谱;
图13为实施例13制备的碳基负极材料的X射线衍射(XRD)图谱;
图14为实施例13制备的碳基负极材料的扫描电镜(SEM)图谱;
图15为实施例13制备的碳基负极材料的充放电曲线图;
图16为实施例14制备的碳基负极材料的充放电曲线图;
图17为对比例1制备的碳基负极材料的X射线衍射(XRD)图谱;
图18为对比例1制备的碳基负极材料的扫描电镜(SEM)图谱;
图19为对比例1制备的碳基负极材料的透射电镜(TEM)图谱;
图20为对比例1制备的碳基负极材料的充放电曲线图;
图21为对比例2制备的碳基负极材料的充放电曲线图;
图22为实施例1、对比例1、对比例2的碳基负极材料的充放电曲线对比图。
具体实施方式
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
本发明实施例提供了一种具有高斜坡容量的碳基负极材料的制备方法,具体如下:
将所需用量的碳源前驱体置于坩埚中,放入加热设备内,在惰性气氛下,以0.2℃/min-30℃/min的升温速率升温至400℃-1000℃,然后在400℃-1000℃下对碳源前驱体进行低温热处理,时间为0.5-48小时,使碳源前驱体碳化,即得到碳基负极材料。
其中,所述碳源前驱体化合物为化石燃料、生物质、树脂、有机化学品中的任意一种或至少两种的相互组合,例如化石燃料和生物质的组合,化石燃料和树脂的组合,化石燃料和有机化学品的组合,生物质和树脂的组合,生物质和有机化学品的组合,树脂和有机化学品的组合,化石燃料、生物质、树脂的组合,化石燃料、生物质、有机化学品的组合,生物质、树脂、有机化学品的组合,化石燃料、生物质、树脂、有机化学品的组合。
所述化石燃料包括:无烟煤、烟煤、沥青、煤焦油、石蜡中的一种或多种;所述生物质包括:玉米秸秆、棉花、木质素、纤维素、葡萄糖中的一种或多种;所述树脂包括:酚醛树脂、环氧树脂、聚酰胺树脂、聚酯树脂、松香中的一种或多种;所述有机化学品包括:羧甲基纤维素钠、海藻酸钠、柠檬酸钠、羟基磷酸钙、葡萄糖酸钙中的一种或多种。
在优选的方案中,低温热处理的温度为600℃-900℃,例如可以具体为 600℃、700℃、800℃、900℃;时间为0.5-10小时,例如可以优选为40min、1小时、2小时、4小时、6小时、8小时;升温速率为1℃/min-10℃/min,例如可以优选为1℃/min、3℃/min、5℃/min、10℃/min。
形成惰性气氛的惰性气体具体可以包括:N 2、Ar、Ar-5%H 2、Ar-10%H 2、Ar-40%H 2中的任一种。
碳源前驱体经过低温热处理,形成具有特殊微观结构的碳基负极材料,表面轻微有序,内部无序,没有明显的石墨化微晶区域存在。
优选的,对碳源前驱体进行低温热处理的过程还可以具体包括在使碳源前驱体碳化的过程中同时通入惰性气体和含碳氢化合物气体,对碳源前驱体在碳化的同时也进行表面包覆。含碳氢化合物气体具体可以包括甲烷、乙烷、甲苯、乙烯、乙炔、丙炔中的一种或多种,其流量为0.5-200mL/min。
在优选的方案中,还可以在将碳源前驱体进行低温热处理碳化之前先对碳源前驱体进行预处理,具体包括预氧化、酸洗、碱洗、水洗、有机溶剂洗涤、包碳处理中的一种或几种。
此外,也可以在使碳源前驱体碳化之后,从加热设备和坩埚中取出,在进行酸洗、碱洗、水洗、有机溶剂洗涤和/或包碳处理之后,再得到所示具有高斜坡容量的碳基负极材料。
应用本发明制备得到的具有高斜坡容量的碳基负极材料,能够用于二次电池的负极材料,如钠离子电池的负极材料,具有优异的性能。
与现有技术相比,本发明的制备方法及制得的材料具有以下有益效果:
(1)与传统的碳化过程相比,本发明的制备过程中碳化温度显著降低,简单易行、处理时间短,可规模化制备;
(2)相比于其他在更高温度(通常大于1000℃)下得到的材料,经过本发明所提供的方法制备的碳基材料,拉曼光谱计算得到的D-峰和G-峰的强度比(ID/IG)值大,在1.5-5之间,无序度高,用于钠离子电池时,在0-2.5V之间充放电,得到具有高斜坡容量的电压曲线,其中,斜坡容量在180mAh/g 以上,首周库伦效率在75%以上。在具体实施例中,可逆比容量可以高达231.4mAh/g,首周库伦效率高达80%。
(3)相比于其他已有的在低温(600-1000℃)下制备得到的材料,经过本发明提供的方法,通过优选前驱体、碳化温度、碳化时间,并配合前后处理过程,通过调节材料的微观结构,可以获得较高的可逆比容量,并且得到的材料比表面积小于10m 2/g,在获得较高可逆比容量的同时,得到较高的首周库伦效率;其中,在可逆比容量可高达231.4mAh/g的情况下,首周库伦效率可高达80%。在碳化过程中同时通入惰性气体和含碳氢化合物气体进行表面包覆,可以进一步减小比表面积,提高首周效率和可逆比容量。
(4)本发明通过选择合适的前驱体和较低的处理温度,形成具有特殊微观结构的碳基负极材料。以沥青作为碳源前驱体为例,在优选的600-900℃之间,碳化形成具有特殊微观结构的碳基负极材料,拉曼光谱计算得到的ID/IG值大,表面轻微有序,内部无序,没有明显的石墨化微晶区域存在。表面轻微有序可以提高碳基负极材料的电子电导,也有利于碱金属离子的扩散,从而提高材料的可逆比容量和倍率性能,同时可以提高材料的首周可逆比容量,提高首周充放电效率。而内部的无序结构可以调节碱金属离子的与碳层之间的相互作用,从而调节电位,得到具有高斜坡容量的电化学曲线。另外,所制备的碳基负极材料比表面积较小,减少了电极与电解液之间的副反应,提高首周效率。所制备的碳基负极材料,首周效率可以高达80%,首周充电容量可以高达234mAh/g,且容量几乎全部来自于斜坡段。这种具有高斜坡容量的碳基负极材料在充放电过程中离子扩散速度快,极化小,倍率性能好,有利于全电池的大电流充放电。
下面以一些具体实施例,对本发明的碳基负极材料的制备方法及材料性能进行进一步说明。以下实施例旨在说明本发明,而不是对本发明做进一步的限定。
实施例1
将1g沥青装入20mL石墨坩埚中,放入管式炉中,在Ar气氛下于950℃碳化2小时后,即得到最终的碳基负极材料。其XRD、SEM分别如图1-图2所示。XRD无明显的衍射峰,表明所得到的碳基负极材料为无定型碳基负极材料。将所得碳基负极材料制作成极片,以金属钠为对电极,以1mol/L的NaPF 6 EC/DMC(1:1)为电解液,组装成扣式电池,在0.1C下测其充放电曲线,如图3所示,测试结果表明:电化学曲线基本只包含斜坡段(参见对比例2的图21,在对比例2中,其电化学曲线同时包括平台段和斜坡段,在本发明实施例中,几乎没有平台段,只包含斜坡段),可逆比容量为231.4mAh/g,首周库伦效率为80%。
实施例2
将1g无烟煤置于20mL石墨坩埚中,放入马弗炉中,350℃保温处理12小时。将取出的物料在Ar气氛下,650℃处理24小时,即得到最终的碳基负极材料。其拉曼光谱如图4所示,拉曼光谱计算得到ID/IG值为2.57,显示所制备的碳基负极材料无序度高,石墨化片层小。将所得碳基负极材料制作成极片,以金属钠为对电极,以1mol/L NaPF 6 EC/DMC(1:1)为电解液,组装成扣式电池,在0.1C下测其充放电曲线,首周充电容量为219.1mAh/g,容量几乎全部来自于斜坡段,首周库伦效率高达79%。
实施例3
将2g玉米秸秆粉碎后分散于50mL水中,置于100mL烧杯中,放入烘箱中加热至180℃保温处理24小时。然后将洗涤干燥后的粉末放于管式炉中,在N 2气氛下,700℃处理10小时,即得到最终的碳基负极材料。将所得碳基负极材料制作成极片,以金属钠为对电极,以1mol/L NaPF 6 EC/DMC(1:1)为电解液,组装成扣式电池,在0.1C下测其充放电曲线,如图5所示,测试结果表明:容量高达230.5mAh/g,容量几乎全来自于斜坡段,首周库伦效率高达75.9%。
实施例4
将2g酚醛树脂分散于50mL 3mol/L HCl中,密闭后放入烘箱中180℃保温12小时,然后将所得物料用去离子水洗涤至中性,60℃烘干。然后将其在N 2气氛下,750℃处理15小时,即得到最终的碳基负极材料。其TEM如图6所示。TEM表明所制备的碳基负极材料中无明显的石墨化微晶区域存在,表面存在弯曲状的碳层,表面呈轻微有序,而内部无序。将所得碳基负极材料制作成极片,以金属钠为对电极,以1mol/L NaPF 6 EC/DMC(1:1)为电解液,组装成扣式电池,在0.1C下测其充放电曲线,首周充电容量高达227.2mAh/g,容量几乎全来自于斜坡段,首周库伦效率高达78.8%。
实施例5
将2g纤维素分散于50mL 4mol/L NaOH中,密闭后放入烘箱中180℃保温2小时,然后将所得物料用去离子水洗涤至中性,60℃烘干。将获得的物料在Ar气氛下,850℃处理1小时,即得到最终的碳基负极材料。将所得碳基负极材料制作成极片,以金属钠为对电极,以1mol/L NaPF 6 EC/DMC(1:1)为电解液,组装成扣式电池,在0.1C下测其充放电曲线,首周充电容量高达229.3mAh/g,容量几乎全来自于斜坡段,首周库伦效率高达80.3%。其循环性能如图7所示,在0.1C下循环100周没有明显的容量衰减。
实施例6
将2g松香分散于40mL 6mol/L HCl中,密闭后放入烘箱中80℃保温24小时,然后将所得物料通过1mol/L NaOH溶液洗涤2次,用去离子水洗涤1次,60℃烘干。将获得的物料在Ar-5%H 2气氛下,750℃处理40分钟,即得到最终的碳基负极材料。将所得碳基负极材料制作成极片,以金属钠为对电极,以1mol/L NaPF 6 EC/DMC(1:1)为电解液,组装成扣式电池,在0.1C下测其充放电曲线,首周充电容量高达217.2mAh/g,容量几乎全部来自于斜坡段,首周库伦效率高达80.6%。
实施例7
将10g葡萄糖酸钙放于100mL石墨坩埚中,放入管式炉中,在Ar-10%H 2气氛下,650℃碳化1小时后。将所得含碳基负极材料用6mol/L HCl洗涤6次,再用去离子水洗涤至中性,即得到最终的碳基负极材料。将所得碳基负极材料制作成极片,以金属钠为对电极,以1mol/L NaPF 6 EC/DMC(1:1)为电解液,组装成扣式电池,在0.1C下测其充放电曲线,如图8所示,测试结果表明:容量高达181mAh/g,容量几乎全来自于斜坡段,首周库伦效率高达78.4%。
实施例8
将1g葡萄糖溶于50mL水中,置于100mL烧杯中,放入烘箱中加热至180℃保温处理24小时。然后将洗涤干燥后的粉末放于管式炉中,在Ar和甲苯的混合气氛下,700℃处理2小时,碳化过程同时完成表面碳包覆,所得粉末为最终的碳负极材料。将所得碳基负极材料制作成极片,以金属钠为对电极,以1mol/L NaPF 6 EC/DMC(1:1)为电解液,组装成扣式电池,在0.1C下测其充放电曲线,如图9所示,首周充电容量高达206.2mAh/g,大部分可逆比容量来自于斜坡段,首周库伦效率高达75.1%。
实施例9
将1g葡萄糖和1g沥青机械混合,置于100mL石墨坩埚中,放入管式炉中,在Ar-40%H 2气氛下,800℃处理12小时,葡萄糖经裂解得到碳核,沥青熔融包覆在葡萄糖碳基负极材料的表面,所得物料为最终的碳负极材料。将所得碳基负极材料制作成极片,以金属钠为对电极,以1mol/L NaPF 6 EC/DMC(1:1)为电解液,组装成扣式电池,在0.1C下测其充放电曲线,首周充电容量高达230.1mAh/g,容量几乎全来自于斜坡段,首周库伦效率高达76.8%。其倍率性能如图10所示,8C下可逆比容量为122mAh/g,为0.1C容量的53%。
实施例10
将1g煤焦油和1g酚醛树脂分散在100mL乙醇中,于60℃烘干,置于 20mL氧化铝坩埚中,放入管式炉中,在N 2气氛下,900℃处理5小时。所得物料为最终的碳负极材料。将所得碳基负极材料制作成极片,以金属钠为对电极,以1mol/L NaPF 6 EC/DMC(1:1)为电解液,组装成扣式电池,在0.1C下测其充放电曲线,首周充电容量高达198.2mAh/g,容量几乎全来自于斜坡段,首周库伦效率高达75%。
实施例11
将1g羟基磷酸钙和1.8g沥青机械混合研磨,置于50mL氧化铝坩埚中,放入马弗炉中,300℃保温处理24小时,将取出的物料在N 2气氛下,850℃处理1小时,所得物料为最终的碳负极材料。其SEM如图11所示。将所得碳基负极材料制作成极片,以金属钠为对电极,以1mol/L NaPF 6 EC/DMC(1:1)为电解液,组装成扣式电池,在0.1C下测其充放电曲线,首周充电容量高达217mAh/g,容量几乎全部来自于斜坡段,首周库伦效率高达79.8%。
实施例12
将1g烟煤、3g纤维素、0.5g柠檬酸钠溶于20mL乙醇溶液中,置于50mL烧杯中,放入烘箱中加热至220℃保温处理48小时。将取出的物料在Ar-10%H 2气氛下,1000℃处理5小时,所得物料为最终的碳负极材料。其SEM如图12所示。将所得碳基负极材料制作成极片,以金属钠为对电极,以1mol/L NaPF 6 EC/DMC(1:1)为电解液,组装成扣式电池,在0.1C下测其充放电曲线,首周充电容量高达221mAh/g,容量几乎全来自于斜坡段,首周库伦效率高达80%。
实施例13
将2g无烟煤、2.4g棉花、1.2g环氧树脂、0.4g葡萄糖酸钙充分混合研磨均匀,置于40mL氧化铝坩埚中,放入管式炉中,在Ar气氛下,1000℃碳化48小时后。其XRD和SEM图13-14所示。XRD无明显的衍射峰,表明所得到的碳基负极材料为无定型碳基负极材料。将所得碳基负极材料制作 成极片,以金属钠为对电极,以1mol/L NaPF 6 EC/DMC(1:1)为电解液,组装成扣式电池,在0.1C下测其充放电曲线,如图15所示,测试结果表明:容量高达198.3mAh/g,容量几乎全部来自于斜坡段,首周库伦效率高达78%。
实施例14
将实施例7所得碳基负极材料与沥青按1:0.1混合研磨,于350℃空气中保温处理2小时,然后在Ar和乙炔的混合气氛下,800℃碳化1小时后得到所述碳基负极材料。将所得碳基负极材料制作成极片,以金属钠为对电极,以1mol/L NaPF 6 EC/DMC(1:1)为电解液,组装成扣式电池,在0.1C下测其充放电曲线,如图16所示:首周效率提高到85%,可逆比容量提高到230mAh/g,容量几乎全部来自于斜坡段。
对比例1
将1g沥青放于20mL石墨坩埚中,放入管式炉中,在N 2气氛下于1400℃碳化2小时后得到。其XRD、SEM和TEM分别如图17-图19所示。XRD具有明显的衍射峰,表明所得到的碳基负极材料为具有明显的石墨化结构。SEM显示得到的材料表面具有明显的石墨层状结构。从TEM也可以看出,对比例1制备的碳基负极材料具有明显的石墨化碳层,碳层间距较小,石墨化片层较大。将所得碳基负极材料制作成极片,以金属钠为对电极,以1mol/L NaPF 6 EC/DMC(1:1)为电解液,组装成扣式电池,在0.1C下测其充放电曲线,如图20所示,测试结果表明:电化学曲线基本只包含斜坡段,但是首周充电比容量仅为89.7mAh/g,首周库伦效率为59.13%。
对比例2
将2g无烟煤放于40mL氧化铝坩埚中,放入管式炉中,在Ar-10%H 2气氛下,1400℃碳化1小时后。将所得碳基负极材料制作成极片,以金属钠为对电极,以1mol/L NaPF 6 EC/DMC(1:1)为电解液,组装成扣式电池,在0.1C下测其充放电曲线,如图21所示,测试结果表明:首周充电容量 比容量为218.8mAh/g,斜坡段容量(大于0.2V)仅占34%。
图22为实施例1、对比例1、对比例2的碳基负极材料的充放电曲线对比图。通过图22可以清楚的看出,应用本发明具有高斜坡容量的碳基负极材料的制备方法得到的实施例1的曲线,几乎只包含斜坡段,且可逆比容量大于231.4mAh/g。而对比例1得到的曲线虽然基本只包含斜坡段,但是首周充电比容量仅为89.7mAh/g;对比例2的曲线首周充电比容量虽然有218.8mAh/g,但其斜坡段容量仅占34%。由于在大电流充放电过程中,平台段极化较大,从而导致较差的倍率性能。
综上所述,可以看出本发明仅需在相对较低的温度下进行简短的低温热处理工艺即可得到同时具有高容量、高倍率和高首效的碳基负极材料,是通过选择合适的前驱体、选择较低的热解温度、优化热解温度,并配合一定的前处理或者后处理过程,以及通过进一步的碳包覆过程,达到调控产物微观结构、宏观形貌、结晶性和降低材料比表面积的目的,从而同时兼顾所得碳基负极材料的可逆比容量、首周效率、循环和倍率性能。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种具有高斜坡容量的碳基负极材料的制备方法,其特征在于,所述方法包括:
    将碳源前驱体置于坩埚中,放入加热设备内,在惰性气氛下,以0.2℃/min-30℃/min的升温速率升温至400℃-1000℃;其中,所述碳源前驱体包括:化石燃料、生物质、树脂、有机化学品中的任意一种或至少两种的相互组合;
    其中,所述化石燃料包括:无烟煤、烟煤、沥青、煤焦油、石蜡中的一种或多种;所述生物质包括:玉米秸秆、木质素、纤维素、蔗糖、淀粉中的一种或多种;所述树脂包括:酚醛树脂、环氧树脂、聚酰胺树脂、聚酯树脂、松香中的一种或多种;所述有机化学品包括:羧甲基纤维素钠、柠檬酸钠中的一种或多种;
    在400℃-1000℃下对所述碳源前驱体进行低温热处理,时间为0.5-48小时,使所述碳源前驱体碳化,即得到所述具有高斜坡容量的碳基负极材料;其中,所述低温热处理得到的碳基负极材料的比表面积小于10m 2/g,斜坡容量在180mAh/g以上,首周库伦效率在75%以上。
  2. 根据权利要求1所述的制备方法,其特征在于,所述低温热处理的温度为600℃-900℃;所述时间为0.5-10小时;所述升温速率为1℃/min-10℃/min。
  3. 根据权利要求1所述的制备方法,其特征在于,所述形成所述惰性气氛的惰性气体具体包括:N 2、Ar、Ar-5%H 2、Ar-10%H 2、Ar-40%H 2中的任一种。
  4. 根据权利要求3所述的制备方法,其特征在于,所述对所述碳源前驱体进行低温热处理还包括:在低温热处理过程中通入所述惰性气体和含碳氢化合物气体,使得在所述碳源前驱体碳化的同时也进行表面包覆;所述含碳氢化合物气体包括甲烷、乙烷、甲苯、乙烯、乙炔、丙炔中的一种或多种,流量为0.5-200mL/min。
  5. 根据权利要求1所述的制备方法,其特征在于,在所述将碳源前驱体进行碳化之前,所述方法还包括:
    对所述碳源前驱体进行预处理;
    所述预处理包括预氧化、酸洗、碱洗、水洗、有机溶剂洗涤、包碳处理中的一种或几种。
  6. 根据权利要求1所述的制备方法,其特征在于,在所述将碳源前驱体碳化之后,所述方法还包括:
    对碳化后的产物进行酸洗、碱洗、水洗、有机溶剂洗涤和/或包碳处理。
  7. 一种根据上述权利要求1-6任一所述制备方法制备得到的碳基负极材料,其特征在于,所述碳基负极材料的比表面积小于10m 2/g,拉曼光谱中的D-峰和G-峰的强度比ID/IG值在1.5-5之间。
  8. 根据权利要求7所述的碳基负极材料,其特征在于,所述碳基负极材料用于二次电池的负极材料。
  9. 一种二次电池,其特征在于,包括上述权利要求8所述的碳基负极材料。
PCT/CN2019/089753 2018-06-08 2019-06-03 一种具有高斜坡容量的碳基负极材料及其制备方法和用途 WO2019233357A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/973,358 US20210253427A1 (en) 2018-06-08 2019-06-03 Carbon-based anode material with high slopecapacity and preparation method therefor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810584942.7 2018-06-08
CN201810584942.7A CN109148884B (zh) 2018-06-08 2018-06-08 一种具有高斜坡容量的碳基负极材料及其制备方法和用途

Publications (1)

Publication Number Publication Date
WO2019233357A1 true WO2019233357A1 (zh) 2019-12-12

Family

ID=64801990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089753 WO2019233357A1 (zh) 2018-06-08 2019-06-03 一种具有高斜坡容量的碳基负极材料及其制备方法和用途

Country Status (3)

Country Link
US (1) US20210253427A1 (zh)
CN (1) CN109148884B (zh)
WO (1) WO2019233357A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112408359A (zh) * 2020-11-18 2021-02-26 上海汉禾生物新材料科技有限公司 一种利用酶解木质素基环氧树脂制备电池负极材料的方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109148884B (zh) * 2018-06-08 2022-02-22 中国科学院物理研究所 一种具有高斜坡容量的碳基负极材料及其制备方法和用途
CN113206246B (zh) * 2021-04-27 2022-11-25 天津理工大学 钠离子电池生物质硬碳负极材料及其制备方法
CN114108024B (zh) * 2021-12-17 2023-03-28 内蒙古工业大学 煤基牺牲电极及其制备方法和应用
EP4279449A4 (en) * 2021-12-31 2024-05-15 Contemporary Amperex Technology Co., Limited HARD CARBON, PRODUCTION METHOD THEREOF, SECONDARY BATTERY THEREOF AND ELECTRICAL DEVICE
CN115417398B (zh) * 2022-08-30 2023-09-29 北京理工大学长三角研究院(嘉兴) 钠离子电池用高首效硬碳负极
CN118117147A (zh) * 2022-11-29 2024-05-31 深圳新宙邦科技股份有限公司 一种高安全长循环钠离子电池
CN116002659B (zh) * 2022-12-28 2024-09-10 宁波杉杉新材料科技有限公司 硬炭负极材料及其制备方法和应用、电池
CN116692858B (zh) * 2023-04-17 2024-03-15 湖北万润新能源科技股份有限公司 钠离子电池生物质硬碳负极材料的制备方法及其应用
CN116395668A (zh) * 2023-04-18 2023-07-07 四川兴储能源科技有限公司 一种硬碳材料、使用该硬碳材料制备的碳负极材料及其制备方法
CN116979064B (zh) * 2023-09-25 2024-02-06 宁德时代新能源科技股份有限公司 碳材料及其制备方法、负极极片、二次电池和用电装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104022271A (zh) * 2014-06-09 2014-09-03 萝北百吉瑞新能源有限公司 一种富氮型分级结构天然石墨复合电极材料的制备方法
CN109148884A (zh) * 2018-06-08 2019-01-04 中国科学院物理研究所 一种具有高斜坡容量的碳基负极材料及其制备方法和用途

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI565654B (zh) * 2014-08-08 2017-01-11 Kureha Corp Production method of carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery and carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery
CN105609778A (zh) * 2015-12-17 2016-05-25 天津大学 用黄腐酸基炭纳米纤维电极作为钠离子电池负极的方法
CN106384824A (zh) * 2016-09-28 2017-02-08 昆明理工大学 一种球形碳素电极材料的制备方法及应用
CN106654268A (zh) * 2016-12-09 2017-05-10 太原理工大学 一种用于锂/钠离子电池的多孔碳材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104022271A (zh) * 2014-06-09 2014-09-03 萝北百吉瑞新能源有限公司 一种富氮型分级结构天然石墨复合电极材料的制备方法
CN109148884A (zh) * 2018-06-08 2019-01-04 中国科学院物理研究所 一种具有高斜坡容量的碳基负极材料及其制备方法和用途

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112408359A (zh) * 2020-11-18 2021-02-26 上海汉禾生物新材料科技有限公司 一种利用酶解木质素基环氧树脂制备电池负极材料的方法
CN112408359B (zh) * 2020-11-18 2023-02-03 上海汉禾生物新材料科技有限公司 一种利用酶解木质素基环氧树脂制备电池负极材料的方法

Also Published As

Publication number Publication date
CN109148884B (zh) 2022-02-22
CN109148884A (zh) 2019-01-04
US20210253427A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
WO2019233357A1 (zh) 一种具有高斜坡容量的碳基负极材料及其制备方法和用途
CN108862235B (zh) 一种可用于钠离子电池负极的纤维状中空硬碳材料及其制备方法
CN109148883A (zh) 基于沥青的钠离子电池负极材料及其制备方法和应用
CN109616639B (zh) 一种硬碳包覆膨胀微晶石墨材料及其制备方法和在钠离子电池中的应用
CN108598394B (zh) 碳包覆磷酸钛锰钠微米球及其制备方法和应用
CN113526489B (zh) 一种钠离子电池碳基负极材料的性能改进方法和应用
CN115385323A (zh) 杂原子掺杂生物质衍生硬碳负极材料及其制备方法
CN108878774B (zh) 一种复合碳材料及其制备方法和应用
CN115246637A (zh) 一种基于湿法氧化软碳前驱体制备硬碳负极材料的方法及其应用
CN113363465A (zh) 锂/钾离子电池负极材料的制备方法
CN117658107A (zh) 一种竹基硬碳负极材料及其制备方法和钠离子电池负极
CN115947336A (zh) 钠离子电池及其改性硬碳负极
CN104377346A (zh) 一种钠离子电池改性石墨负极材料的制备方法
CN112125294A (zh) 一种煤基硅碳复合负极材料其制备方法
CN108281620B (zh) 一种钠离子电池负极材料二氧化钛的制备方法
CN116741972A (zh) 钠离子电池正极材料用碳复合的混合聚阴离子型化合物及其制备方法
CN115092962B (zh) 一种二氧化钼/碳复合电极材料及其制备方法与应用
CN114057180B (zh) 一种碳量子点改性ptcda基炭材料的制备方法及其应用
CN112520722B (zh) 二氧化钛包覆生物质炭复合阳极材料及其制备方法与应用
CN115148946A (zh) 锂硫电池正极极片的制备方法以及锂硫电池
CN114804039A (zh) 一种碳基体复合氮化钒纳米阵列及其制备方法与应用
Zuo et al. Formation of hard carbon derived from sulfonated pitch as advanced electrodes for lithium-ion batteries
CN111969190A (zh) 一种通过氮掺杂和富缺陷纳米壳提高钠储存性能方法
CN111261415A (zh) 聚酰亚胺衍生氮掺杂碳负极材料及其制备方法与应用
CN104852023A (zh) 一种碳复合材料的制备方法及其制备的碳复合材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19814182

Country of ref document: EP

Kind code of ref document: A1