WO2019059178A1 - 有機電界発光素子 - Google Patents

有機電界発光素子 Download PDF

Info

Publication number
WO2019059178A1
WO2019059178A1 PCT/JP2018/034468 JP2018034468W WO2019059178A1 WO 2019059178 A1 WO2019059178 A1 WO 2019059178A1 JP 2018034468 W JP2018034468 W JP 2018034468W WO 2019059178 A1 WO2019059178 A1 WO 2019059178A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
layer
organic electroluminescent
film
electroluminescent device
Prior art date
Application number
PCT/JP2018/034468
Other languages
English (en)
French (fr)
Inventor
森井 克行
果歩 前田
明子 栗山
弘彦 深川
清水 貴央
Original Assignee
株式会社日本触媒
日本放送協会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒, 日本放送協会 filed Critical 株式会社日本触媒
Priority to EP18859366.9A priority Critical patent/EP3686945A4/en
Priority to US16/647,717 priority patent/US11183639B2/en
Priority to JP2019543639A priority patent/JP6852172B2/ja
Priority to CN201880059619.6A priority patent/CN111095589B/zh
Publication of WO2019059178A1 publication Critical patent/WO2019059178A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers

Definitions

  • the present invention relates to an organic electroluminescent device. More specifically, the present invention relates to an organic electroluminescent device that can be used as a display device such as a display unit of an electronic device or a lighting device.
  • Organic electroluminescent elements are expected as new light emitting elements applicable to display devices and illumination.
  • the organic EL element has a structure in which one or more layers including a light emitting layer formed by including a light emitting organic compound between an anode and a cathode are sandwiched, and holes injected from the anode and holes injected from the cathode The energy when the recombined electrons recombine is used to excite the light emitting organic compound to obtain light emission.
  • the organic EL element is a current drive type element, and the element structure is variously improved in order to utilize the flowing current more efficiently, and various studies have been made on the material of the layer constituting the element.
  • the organic electroluminescent device which emits light by using the energy at the time of recombination between the hole injected from the anode and the electron injected from the cathode, the hole injection from the anode, the hole injection from the cathode Since it is important that both electron injections be performed smoothly, materials of the hole injection layer and the electron injection layer have been variously studied so that smoother hole injection and electron injection can be performed, and electron injection which can be applied recently is possible. There has been reported an organic electroluminescent device having a forward structure using polyethyleneimine or a compound modified with polyethyleneimine as a material of the layer (see Non-patent documents 1 to 3).
  • the organic electroluminescent element in which the layers between the cathode and the anode are all formed of an organic compound is, as a result, easily deteriorated by oxygen and water, and strict sealing is essential in order to prevent these intrusions. This causes the manufacturing process of the organic electroluminescent device to be complicated.
  • an organic-inorganic hybrid type electroluminescent device (HOI LED device) in which a part of the layer between the cathode and the anode is formed of an inorganic oxide has been proposed (see Patent Document 1).
  • HOILED device is expected to be developed as a candidate for a reverse structure organic EL device. Further, such an HOI LED element has been also proposed which has a layer formed of a nitrogen-containing film such as polyethyleneimine having an average thickness of 3 to 150 nm (see Patent Document 2 and Non-patent Document 4).
  • the present invention is made in view of the above-mentioned present situation, and an object of the present invention is to provide an organic electroluminescent element excellent in luminous efficiency and luminance.
  • the present invention relates to an organic electroluminescent device having a structure in which a plurality of layers are laminated between an anode and a cathode formed on a substrate, and the organic electroluminescent device comprises an anode and a cathode.
  • An organic electroluminescent device comprising a metal oxide layer, and a layer containing a nitrogen-containing film on the anode side adjacent to the metal oxide layer and having an average thickness of 0.1 nm or more and less than 3 nm. It is an element.
  • the organic electroluminescent device of the present invention is an organic electroluminescent device having the reverse structure of the organic-inorganic hybrid type which does not require strict sealing, and is excellent in luminous efficiency and luminance, and thus, a display device and a lighting device It can be suitably used as a material of
  • FIG. 2 is a view showing (a) voltage-luminance characteristics, (b) time-lapse changes of luminance and voltage under constant current density (equivalent to 1000 cd / m 2 ) of the organic electroluminescent element 1 manufactured in Example 1.
  • FIG. 7 is a diagram showing (a) voltage-luminance characteristics, (b) temporal changes in luminance and voltage under constant current density (equivalent to 1000 cd / m 2 ) of the organic electroluminescent element 2 manufactured in Example 2.
  • FIG. 2 is a view showing (a) voltage-luminance characteristics, (b) time-lapse changes of luminance and voltage under constant current density (equivalent to 1000 cd / m 2 ) of the organic electroluminescent element 1 manufactured in Example 1.
  • FIG. 7 is a diagram showing (a) voltage-luminance characteristics, (b) temporal changes in luminance and voltage under constant current density (equivalent to 1000 cd / m 2 ) of the organic electroluminescent element 2 manufactured in Example 2.
  • FIG. 7 is a diagram showing (a) voltage-luminance characteristics, (b) temporal changes in luminance and voltage under constant current density (equivalent to 1000 cd / m 2 ) of the organic electroluminescent element 3 manufactured in Example 3.
  • FIG. 6 is a graph showing voltage-luminance characteristics of the comparative organic electroluminescent device 1 produced in Comparative Example 1.
  • FIG. 16 is a diagram showing (a) voltage-luminance characteristics, (b) temporal changes in luminance and voltage under constant current density (equivalent to 1000 cd / m 2 ) of the organic electroluminescent element 4 fabricated in Example 4.
  • FIG. 16 is a diagram showing (a) voltage-luminance characteristics of the organic electroluminescent element 5 manufactured in Example 5, (b) temporal change in luminance under constant current density (equivalent to 1000 cd / m 2 ).
  • FIG. 16 is a diagram showing voltage-luminance characteristics of the organic electroluminescent element 6 manufactured in Example 6.
  • FIG. 7 is a diagram showing voltage-luminance characteristics of organic electroluminescent devices 7 and 8 and comparative organic electroluminescent devices 2 and 3 manufactured in Examples 7 and 8 and Comparative Examples 2 and 3.
  • FIG. 16 is a diagram showing voltage-luminance characteristics of the organic electroluminescent element 9 manufactured in Example 9.
  • the organic electroluminescent device of the present invention is a so-called reverse structure organic-inorganic hybrid electroluminescent device (HOI LED device) having a cathode formed on a substrate and having a metal oxide layer between the anode and the cathode And on the anode side adjacent to the metal oxide layer, it has a layer containing a nitrogen-containing film and having an average thickness of 0.1 nm or more and less than 3 nm.
  • the point of the organic electroluminescent device of the present invention is the reduction of the electron injection barrier due to the dipole between the metal of the metal oxide and the nitrogen in the nitrogen-containing film and the dipole in the nitrogen-containing film.
  • the substance and the nitrogen-containing film material are arranged (for example, laminated) in a desired direction (in order of the metal oxide and the nitrogen-containing film material with respect to the direction of electron injection).
  • the thin layer having an average thickness of 0.1 nm or more and less than 3 nm according to the present invention may be suitable for the latter dipole.
  • the reason is that in the case of an extremely thin film, the direction of molecules generated at the interface is substantially inherited in the nitrogen-containing film, but in the case of a thick film, it is also predicted that the dipole is directed in the opposite direction due to the steric structure of the molecule As the dipolar may be offset. Because of this principle, the element structure (configuration) can be freely selected.
  • the organic electroluminescent device of the present invention has the above characteristics, the number of other layers, materials constituting the other layers, and the order of stacking are not particularly limited.
  • the metal oxide layer and the nitrogen-containing compound layer Is preferably between the cathode and the light emitting layer.
  • the nitrogen-containing compound is excellent in electron injection characteristics, and the organic electroluminescent device having such a layer configuration has high electron injection characteristics and becomes an device excellent in light emission efficiency.
  • the nitrogen-containing film used in the organic electroluminescent device of the present invention includes (1) a nitrogen-containing film formed of a nitrogen-containing compound on a metal oxide layer, and (2) a nitrogen-containing compound on a metal oxide layer.
  • There are a total of four types of high nitrogen content films. The reason why the performance of the organic electroluminescent device is improved by forming such a film is presumed as follows. First of all, when the nitrogen atom is contained, the lone electron pair tends to form a bond with the metal atom in the substrate.
  • the polarization between the metal and nitrogen bonds will exhibit strong electron injection characteristics.
  • the above nitrogen-containing films (1) to (4) it is satisfied. More preferably, the above (2) having a high ratio of nitrogen atoms having a lone electron pair is suitable.
  • the film will be a film in which nitrogen atoms are present on the substrate at high density due to the decomposition phenomenon associated with film formation, and as a result, various metal-nitrogen bonds appear It is expected. And, among them, metal-nitrogen bond stronger than before is considered to be present.
  • the elimination of unnecessary carbon and other components relatively increases the nitrogen atomic fraction, and as a result, a more favorable environment may be realized (4). .
  • the main nitrogen source is metal-nitrogen bond
  • nitrogen atoms are accumulated at a higher density than physical adsorption of ordinary molecules. Due to these factors, it is considered that the presence of such a nitrogen-containing film makes the organic electroluminescent device excellent in light emission efficiency and excellent in device driving stability and device life.
  • the phenomenon resulting from the decomposition of the nitrogen-containing compound can be proved by X-ray photoelectron spectroscopy which is one of surface analysis techniques. Specific results are shown in the examples, but using a compound containing nitrogen and carbon as constituent elements as the nitrogen-containing compound, the carbon: nitrogen ratio (CN ratio) is 2: 2 by performing processing to decompose this compound.
  • the high nitrogen ratio is from 1 to 1: 1.
  • an increase in the half-width of the nitrogen spectrum was observed by the above treatment, which indicates the spread of the chemical environment, and the appearance of a stronger metal-nitrogen bond is also suggested. Therefore, it is considered that the fact that the base of the layer made of the nitrogen-containing film is a film containing a metal element also greatly contributes to the realization of the effects exerted by the organic electroluminescent device of the present invention as described above.
  • the nitrogen-containing film of (1) or (2) is a film formed of a nitrogen-containing compound formed adjacent to the metal oxide layer, that is, a film formed without decomposition of the nitrogen-containing compound.
  • the nitrogen-containing film of (2) above is formed using, as the nitrogen-containing compound, one having a high ratio of the number of nitrogen atoms to the total number of atoms constituting the nitrogen-containing compound.
  • the method for forming the nitrogen-containing film described in (1) and (2) is not particularly limited, but a method of volatilizing the solvent after applying a solution of nitrogen-containing compound adjacent to the metal oxide layer is preferably used. .
  • the nitrogen-containing films (3) and (4) are films formed by decomposing the nitrogen-containing compound on the metal oxide layer, but some of the nitrogen-containing compound is not decomposed. It is also good. Preferably, all of the nitrogen-containing compounds are degraded.
  • the method for forming the nitrogen-containing film described in (3) and (4) is not particularly limited, but after applying a solution of nitrogen-containing compound to the metal oxide layer, a method of decomposing and forming the nitrogen-containing compound is preferably used Be
  • Non-Patent Document 4 discloses that the use of polyethyleneimine as a material for forming the electron injection layer of the reverse structure HOI LED element lowers the work function and lowers the barrier for electron injection.
  • the change in work function due to polyethyleneimine increases as the thickness of the polyethyleneimine layer decreases, the effect is the same when the thickness of the polyethyleneimine layer is 8 nm and 4 nm. Even if the thickness of the layer is smaller than about 8 nm, it is suggested that no improvement in the effect can be expected.
  • the present invention in the HOI LED element of reverse structure, nitrogen containing 0.1 nm or more and less than 3 nm in average thickness thinner than that disclosed in Non-Patent Document 4 adjacent to the metal oxide layer.
  • nitrogen containing 0.1 nm or more and less than 3 nm in average thickness thinner than that disclosed in Non-Patent Document 4 adjacent to the metal oxide layer By forming a film, it has been found that an element which is excellent in light emission efficiency and luminance can be obtained, which has an effect which can not be predicted from the prior art.
  • the average thickness of the layer comprising the nitrogen-containing film may be 0.1 nm or more and less than 3 nm, but is preferably 0.5 nm or more and 2.9 nm or less. More preferably, it is 1.0 nm or more and 2.7 nm or less, and still more preferably 1.5 nm or more and 2.5 nm or less.
  • the average thickness of the layer comprising the nitrogen-containing film can be measured by the method described in the examples.
  • the nitrogen-containing film contains a nitrogen element and a carbon element as elements constituting the film, and the abundance ratio of nitrogen atoms to carbon atoms constituting the film is the number of nitrogen atoms / (number of nitrogen atoms + number of carbon atoms)> 1/8 It is preferable to satisfy the following relationship. As described above, when the ratio of the number of nitrogen atoms in the nitrogen-containing film is high, the total number of metal-nitrogen bonds increases, and as a result, stronger electron injection results in higher electron injection characteristics.
  • the number of nitrogen atoms in the nitrogen-containing film / (number of nitrogen atoms + number of carbon atoms) is more preferably greater than 1 ⁇ 5.
  • the abundance ratio of the nitrogen element and the carbon element in the nitrogen-containing film can be measured by photoelectron spectroscopy (XPS).
  • nitrogen-containing compound for example, pyrrolidones such as polyvinyl pyrrolidone, pyrroles such as polypyrrole, anilines such as polyaniline, or pyridines such as polyvinyl pyridine, similarly pyrrolidines, imidazoles, piperidine And compounds having a nitrogen-containing heterocyclic ring such as pyrimidines and triazines, and amine compounds.
  • nitrogen-containing compounds having a primary amine structure are preferable. That is, it is one of the preferred embodiments of the present invention that the nitrogen-containing film is a film derived from a nitrogen-containing compound having a primary amine structure.
  • the nitrogen-containing compound is also preferably a compound having a high nitrogen content, and polyamines are preferable.
  • Polyamines are suitable in that the organic electroluminescent device has high electron injection property and driving stability because the ratio of the number of nitrogen atoms to the total number of atoms constituting the compound is high.
  • polyamines what can form a layer by application
  • polyalkyleneamines such as diethylenetriamine and pentamethyldiethylenetriamine are preferably used, and as the polymer compound, a polymer having a polyalkyleneimine structure is suitably used. Particularly preferred is polyethyleneimine.
  • the nitrogen-containing compound is polyethylene imine or diethylene triamine.
  • a low molecular weight compound means the compound which is not a high molecular compound (polymer) here, and does not necessarily mean the compound with low molecular weight.
  • polyamines it is one of the preferred embodiments of the present invention to use a polymer of a branched structure having a polyalkyleneimine structure in the main chain skeleton. Moreover, it is also one of the suitable embodiment of this invention to use the polymer of the linear structure which has a polyalkylene imine structure in a principal chain frame among said polyamines.
  • the use of a polymer having a branched or linear structure as the above-mentioned main chain skeleton makes the device more excellent in the device driving stability and the device life. It is presumed that this is because the polymer having such a polyalkyleneimine structure in the main chain skeleton is stably present in the device.
  • a nitrogen-containing film formed adjacent to a metal oxide layer by a polymer of a branched or linear structure having such a polyalkyleneimine structure in its main chain skeleton is a nitrogen-containing film of the above (1) Obviously.
  • the polymer of a linear structure having the above-described polyalkyleneimine structure in the main chain may be a branched structure in which the majority of the polyalkyleneimine structure forming the main chain is linearly connected. And 90% or more of the polyalkyleneimine structure forming the main chain skeleton are linked in a linear manner. Preferably, 95% or more are linked in a linear manner, and most preferably, 100% of the polyalkyleneimine structure forming the main chain skeleton is linked in a linear manner.
  • skeleton is what has a branched structure more than 10%, and is a branched polyalkyleneimine.
  • the polyalkyleneimine structure of the polymer having a polyalkyleneimine structure is preferably a structure formed of an alkyleneimine having 2 to 4 carbon atoms. More preferably, it is a structure formed by a C 2 or C 3 alkyleneimine.
  • the polymer having a polyalkyleneimine structure may be a polymer having a polyalkyleneimine structure in the main chain skeleton, and may be a copolymer having a structure other than the polyalkyleneimine structure.
  • examples of monomers to be a raw material of a structure other than a polyalkyleneimine structure include ethylene, propylene, butene, acetylene and acrylic acid. Styrene, or vinyl carbazole and the like, and one or more of these can be used.
  • bonded with the carbon atom of these monomers was substituted by the other organic group can also be used suitably.
  • organic group substituted with a hydrogen atom for example, a hydrocarbon group having 1 to 10 carbon atoms, which may contain at least one atom selected from the group consisting of an oxygen atom, a nitrogen atom, and a sulfur atom, etc. Can be mentioned.
  • the monomer forming the polyalkyleneimine structure is 50% by mass or more in 100% by mass of the monomer components forming the main chain skeleton of the polymer . More preferably, it is 66 mass% or more, More preferably, it is 80 mass% or more. Most preferably, the monomer forming the polyalkyleneimine structure is 100% by mass, that is, the polymer having the polyalkyleneimine structure is a homopolymer of the polyalkyleneimine.
  • the polymer having a polyalkyleneimine structure preferably has a weight average molecular weight of 100,000 or less.
  • the organic electroluminescent device can be made more excellent in drive stability.
  • the polymer having a polyalkyleneimine structure such as polyethyleneimine is a polymer having a branched structure as described above, the weight average molecular weight of the polymer is more preferably 10000 or less, still more preferably 100 to It is 1000.
  • the weight average molecular weight of the polymer is more preferably 250,000 or less, still more preferably more than 10,000, It is 50000 or less, particularly preferably more than 10000 and less than 25000.
  • the weight average molecular weight can be determined by GPC (gel permeation chromatography) measurement under the following conditions.
  • Measuring instrument Waters Alliance (2695) (trade name, manufactured by Waters)
  • Molecular weight column TSKguard column ⁇ , TSKgel ⁇ -3000, TSKgel ⁇ -4000, TSKgel ⁇ -5000 (all are manufactured by Tosoh Corporation) and used in series
  • Eluent 96m of 50mM aqueous sodium hydroxide solution with 14304g of 100mM boric acid aqueous solution Standard material for solution calibration curve which mixed 3600 g of acetonitrile and acetonitrile: Polyethylene glycol (made by Tosoh Corporation)
  • Measurement method The measurement object is dissolved in an eluent so that the solid content is about 0.2% by mass, and the molecular weight is measured with the product filtered by a filter as a measurement sample.
  • the nitrogen-containing film of (3) or the high nitrogen-containing film of (4) is obtained. It is thought that the decomposition product of the nitrogen-containing compound can be deposited more finely on the metal oxide layer by using a compound having a high nitrogen content such as polyamines as the nitrogen-containing compound. Such a nitrogen-containing thin film on metal oxide is also one of the inventions of this patent.
  • the method of forming the nitrogen-containing film is not particularly limited, but a method including a step of depositing a nitrogen-containing compound or a method including a step of applying a solution containing a nitrogen-containing compound on the metal oxide layer is preferable, among them More preferably, the method includes the step of applying a solution containing a nitrogen-containing compound on the metal oxide layer.
  • a nitrogen-containing film is formed by a method including the step of applying a solution containing a nitrogen-containing compound on the metal oxide layer, the following effects can also be obtained.
  • the metal oxide layer of the organic electroluminescent element is formed by a method such as a spray pyrolysis method, a sol-gel method, a sputtering method or the like as described later, and the surface is not smooth but has unevenness.
  • a method such as a spray pyrolysis method, a sol-gel method, a sputtering method or the like as described later, and the surface is not smooth but has unevenness.
  • the unevenness of the surface of the metal oxide layer becomes a crystal nucleus depending on the kind of the component to be the raw material of the light emitting layer.
  • the crystallization of the material forming the light emitting layer in contact with the object layer is promoted.
  • the organic electroluminescent device Even if the organic electroluminescent device is completed, a large leak current may flow, the light emitting surface may become nonuniform, and a device that can withstand practical use may not be obtained.
  • a solution is applied to form a layer, a smooth layer can be formed on the surface, so when a nitrogen-containing compound layer is formed by application between the metal oxide layer and the light emitting layer, the light emitting layer is formed. The crystallization of the material to be formed is suppressed, whereby the organic electroluminescent device having the metal oxide layer can suppress leakage current and obtain uniform surface light emission.
  • water or lower alcohol can be used as a solvent of a solution containing the nitrogen-containing compound.
  • the lower alcohol an alcohol having 1 to 4 carbon atoms is preferably used, and methanol, ethanol, propanol, ethoxyethanol, methoxyethanol and the like can be used alone or in combination.
  • the concentration of the solution containing the nitrogen-containing compound is not particularly limited, but it is 0.01 to 1% by mass preferable. More preferably, it is 0.05 to 0.5% by mass, and still more preferably 0.1 to 0.3% by mass.
  • a film can be formed using various coating methods such as a coating method, a slit coating method, a dip coating method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, and an inkjet printing method.
  • spin coating and slit coating are preferred in that the film thickness can be more easily controlled.
  • the step of applying the solution containing the nitrogen-containing compound, the step of rinsing with a solvent, and the step of cleaning with ultrasonic waves may be performed under the atmosphere or under an inert gas atmosphere, but the inert gas atmosphere It is preferable to carry out below.
  • the obtained device becomes an excellent device due to the luminance and the device life.
  • Helium, nitrogen, argon or the like can be used as the inert gas.
  • the method for decomposing the nitrogen-containing compound is not particularly limited as long as the nitrogen-containing film of the above (3) and (4) is formed by decomposing the nitrogen-containing compound on the metal oxide layer. It is preferable that it is formed by decomposing the contained compound by heating. When the nitrogen-containing compound is decomposed by heating, the bond between the metal atom and the nitrogen atom in the metal oxide layer is strengthened, whereby the organic electroluminescent device exhibits high driving stability over a longer period of time. . Thus, it is one of the preferred embodiments of the present invention that the nitrogen-containing film is formed by decomposing the nitrogen-containing compound by heating.
  • the nitrogen-containing film is most preferably formed by a method in which a nitrogen-containing compound is decomposed by heating after applying a solution containing a nitrogen-containing compound on the metal oxide layer, and such a method is most preferable.
  • a method of manufacturing such an HOI LED device that is, a method of manufacturing an organic electroluminescent device having a structure in which a plurality of layers are stacked between an anode and a cathode formed on a substrate, the method being A step of applying a solution containing a nitrogen-containing compound on the metal oxide layer, a step of removing a solvent from the coating of the nitrogen-containing compound, and a heat treatment at a temperature at which the nitrogen-containing compound decomposes.
  • Another aspect of the present invention is a method of producing an organic electroluminescent device, which comprises the step of producing a layer comprising the nitrogen-containing film of the present invention.
  • a preferable mode of the step of applying a solution containing a nitrogen-containing compound is as described above. Further, the step of rinsing with the above-described solvent or the step of ultrasonic cleaning may be performed.
  • the removal of the solvent in the process of removing a solvent from the coating film of the said nitrogen-containing compound is performed by heat processing.
  • the temperature of the heat treatment for removing the solvent is preferably 80 to 180 ° C. More preferably, it is 100 to 150 ° C.
  • the temperature of the heat treatment (annealing) for decomposing the nitrogen-containing compound or for removing a solvent or the like from the film to obtain a more stable film structure is preferably 80 to 200 ° C.
  • the heat treatment time is preferably 1 to 60 minutes, more preferably 5 to 20 minutes.
  • the temperature and time of the heat treatment may be appropriately set according to the type of the nitrogen-containing compound within the above range. For example, in the case of using a polymer having the following polyalkyleneimine structure in the main chain skeleton as the nitrogen-containing compound, the higher the molecular weight of the polymer, the higher the decomposition temperature. Therefore, in consideration of the molecular weight of the polymer, The temperature and time of the heat treatment can be set as appropriate with reference to the heat treatment conditions of (1).
  • the heat treatment for decomposing the nitrogen-containing compound may be performed under the atmosphere or under an inert gas atmosphere. Whether or not the nitrogen-containing compound is decomposed can be confirmed by X-ray photoelectron spectroscopy (X
  • the organic electroluminescent device of the present invention comprises an anode and a cathode, and one or more organic compound layers sandwiched between the anode and the cathode, and between the cathode and the organic compound layer, It is preferable to have a metal oxide layer, and further to have a layer comprising the nitrogen-containing film of the present invention between the metal oxide layer and the organic compound layer.
  • the organic compound layer is a layer that includes a light emitting layer and, if necessary, additionally includes an electron transport layer and a hole transport layer.
  • the organic electroluminescent device of the present invention is an organic-inorganic hybrid organic electroluminescent device having a metal oxide layer formed between the anode and the cathode, with the cathode being formed adjacent to the substrate.
  • the element is preferably configured to have a hole injection layer.
  • the organic electroluminescent device of the present invention may have another layer between these layers, but is preferably a device composed of only these layers.
  • the cathode, the electron injection layer, and the electron transport layer, the light emitting layer, the hole transport layer, and / or the hole injection layer, and the anode be laminated as necessary in this order.
  • Each of these layers may be composed of one layer or two or more layers.
  • the nitrogen-containing film is excellent in electron injection characteristics, it is preferable to be used on the electron injection side, that is, on the cathode side.
  • the metal oxide layer is preferably laminated as a part of a cathode or a layer of an electron injection layer, and / or a part of an anode or a layer of a hole injection layer, as described later.
  • the organic electric field element of the above-mentioned composition when an element does not have an electron transport layer, an electron injection layer and a light emitting layer will adjoin.
  • the device has only one of the hole transport layer and the hole injection layer, the one layer is stacked adjacent to the light emitting layer and the anode, and the device is subjected to the hole transport. In the case where both the layer and the hole injection layer are provided, these layers are adjacently stacked in the order of the light emitting layer, the hole transport layer, the hole injection layer, and the anode.
  • any compound that can usually be used as the material of the light emitting layer can be used as a material for forming the light emitting layer, and even a low molecular weight compound is a polymer compound These may also be mixed and used.
  • the low molecular weight material means a material which is not a polymer material (polymer), and does not necessarily mean an organic compound having a low molecular weight.
  • polymer material for forming the light emitting layer examples include polyacetylene-based compounds such as trans-type polyacetylene, cis-type polyacetylene, poly (di-phenylacetylene) (PDPA), poly (alkyl, phenylacetylene) (PAPA); Poly (para-phenvinylene) (PPV), poly (2,5-dialkoxy-para-phenylenevinylene) (RO-PPV), cyano-substituted-poly (para-phenvinylene) (CN-PPV), poly ( Polyparaphenylene vinylene systems such as 2-dimethyloctylsilyl-para-phenylenevinylene) (DMOS-PPV), poly (2-methoxy, 5- (2'-ethylhexoxy) -para-phenylenevinylene) (MEH-PPV) Compounds; poly (3-alkylthiophenes) (PAT), poly (o Polythiophene-based compounds such as propy
  • tricoordinate iridium complex having 2,2′-bipyridine-4,4′-dicarboxylic acid as a ligand, factory (2-phenylpyridine) Iridium (Ir (ppy) 3 ), 8-hydroxyquinoline aluminum (Alq 3 ), tris (4-methyl-8 quinolinolate) aluminum (III) (Almq 3 ), 8-hydroxyquinoline zinc (Znq 2 ), (1,1) 10-phenanthroline) -tris- (4,4,4-trifluoro-1- (2-thienyl) -butane-1,3-dionate) europium (III) (Eu (TTA) 3 (phen)), 2, 3,7,8,12,13,17,18-octaethyl-21H, 23H-porphine various metal complexes such as platinum (II); distyrylbe Benzene compounds such as Zen (DSB), diaminod
  • the average thickness of the light emitting layer is not particularly limited, but is preferably 10 to 150 nm. More preferably, it is 20 to 100 nm, still more preferably 40 to 100 nm.
  • the average thickness of the light emitting layer can be measured by a quartz oscillator film thickness meter in the case of a low molecular weight compound and by a contact step meter in the case of a high molecular weight compound.
  • any compound which can usually be used as a material of the electron transport layer can be used as the material, and these compounds may be used in combination.
  • compounds that can be used as the material of the electron transport layer include pyridine derivatives such as tris-1,3,5- (3 ′-(pyridine-3 ′ ′-yl) phenyl) benzene (TmPyPhB), Quinoline derivatives such as 2- (3- (9-carbazolyl) phenyl) quinoline (mCQ)), pyrimidine derivatives such as 2-phenyl-4,6-bis (3,5-dipyridylphenyl) pyrimidine (BPyPPM), Pyrazine derivatives, phenanthroline derivatives such as bathophenanthroline (BPhen), 2,4-bis (4-biphenyl) -6- (4 '-(2-pyridinyl) -4-biphenyl)-[1,3,5]
  • pyridine derivatives such as tris-1,3,5- (3 ′
  • Silo such as bis (6 '-(2', 2 ''-bipyridyl))-1,1-dimethyl-3,4-diphenylsilole (PyPySPyPy)
  • the organic silane derivative represented by the yl derivative etc. are mentioned, These 1 type (s) or 2 or more types can be used.
  • metal complexes such as Alq 3 and pyridine derivatives such as TmPyPhB are preferable.
  • various p-type polymer materials and various p-type low-molecular materials may be used alone as the hole transportable organic material used as the hole transport layer. Or it can be used in combination.
  • p-type polymer materials include polyarylamines, fluorene-arylamine copolymers, fluorene-bithiophene copolymers, poly (N-vinylcarbazole), polyvinylpyrene, polyvinylanthracene, polythiophenes, and the like.
  • polyalkylthiophenes examples thereof include polyalkylthiophenes, polyhexylthiophenes, poly (p-phenylenevinylenes), poly (vinylenevinylenes), pyrene formaldehyde resins, ethylcarbazole formaldehyde resins or derivatives thereof. These compounds can also be used as a mixture with other compounds.
  • poly (3,4-ethylenedioxythiophene / styrenesulfonic acid) (PEDOT / PSS) etc. can be mentioned as a mixture containing polythiophene.
  • Examples of the p-type low molecular weight material include 1,1-bis (4-di-para-triaminophenyl) cyclohexane and 1,1′-bis (4-di-para-tolylaminophenyl)- Arylcycloalkane compounds such as 4-phenyl-cyclohexane, 4,4 ′, 4 ′ ′-trimethyltriphenylamine, N, N, N ′, N′-tetraphenyl-1,1′-biphenyl-4, 4'-diamine, N, N'-diphenyl-N, N'-bis (3-methylphenyl) -1,1'-biphenyl-4,4'-diamine (TPD1), N, N'-diphenyl-N N'-bis (4-methoxyphenyl) -1,1'-biphenyl-4,4'-diamine (TPD2), N, N, N ', N'-tetrakis (4-me
  • the average thickness of these layers is not particularly limited, but is preferably 10 to 150 nm. More preferably, it is 20 to 100 nm, still more preferably 40 to 100 nm.
  • the average thickness of the electron transport layer or the hole transport layer can be measured by a quartz crystal oscillator film thickness meter in the case of a low molecular weight compound and by a contact-type step meter in the case of a polymer compound.
  • the organic electroluminescent device of the present invention has a metal oxide layer on either or both of the cathode and the light emitting layer, the anode and the light emitting layer, but the metal electroluminescent device has a metal oxide layer between the cathode and the light emitting layer. It is preferred to have a metal oxide layer both from the light emitting layer to the anode.
  • the metal oxide layer between the cathode and the light emitting layer is a first metal oxide layer, and the metal oxide layer between the anode and the light emitting layer is a second metal oxide layer.
  • the cathode, the first metal oxide layer, the layer comprising the nitrogen-containing film, the light emitting layer, the hole transport layer, the second metal oxide layer, and the anode are adjacent in this order. And the laminated structure. In addition, you may have an electron carrying layer as needed between the layer which consists of nitrogen-containing films
  • the importance of the metal oxide layer is higher in the first metal oxide layer, and the second metal oxide layer can also be replaced by an organic material extremely deep in the lowest unoccupied molecular orbitals, eg HATCN .
  • the first metal oxide layer is a layer formed of a single layer of a single metal oxide film, or a layer obtained by laminating and / or mixing single or two or more kinds of metal oxides. It is a layer.
  • the metal elements constituting the metal oxide include magnesium, calcium, strontium, barium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, indium, gallium, iron, cobalt, nickel, copper And zinc, cadmium, aluminum and silicon.
  • At least one of the metal elements constituting the laminated or mixed metal oxide layer is a layer consisting of magnesium, aluminum, calcium, zirconium, hafnium, silicon, titanium, zinc, and among them, a single metal If it is an oxide, it is preferable to include a metal oxide selected from the group consisting of magnesium oxide, aluminum oxide, zirconium oxide, hafnium oxide, silicon oxide, titanium oxide and zinc oxide.
  • Examples of layers obtained by laminating and / or mixing one or more metal oxides described above include titanium oxide / zinc oxide, titanium oxide / magnesium oxide, titanium oxide / zirconium oxide, titanium oxide / aluminum oxide, titanium oxide / Lamination and / or combination of metal oxides such as hafnium oxide, titanium oxide / silicon oxide, zinc oxide / magnesium oxide, zinc oxide / zirconium oxide, zinc oxide / hafnium oxide, zinc oxide / silicon oxide, calcium oxide / aluminum oxide Mixtures, titanium oxide / zinc oxide / magnesium oxide, titanium oxide / zinc oxide / zirconium oxide, titanium oxide / zinc oxide / aluminum oxide, titanium oxide / zinc oxide / hafnium oxide, titanium oxide / zinc oxide / silicon oxide, Such as indium oxide / gallium oxide / zinc oxide Like those laminating and / or mixing a combination of species of metal oxides.
  • IGZO which is an oxide semiconductor exhibiting good characteristics as a special composition
  • 12CaO ⁇ 7Al 2 O 3 which is an electride are also included.
  • These first metal oxide layers can also be referred to as electron injection layers and also as electrodes (cathodes).
  • a material having a sheet resistance of less than 100 ⁇ / ⁇ is classified as a conductor, and a material having a sheet resistance of more than 100 ⁇ / ⁇ is classified as a semiconductor or an insulator.
  • ITO in-doped indium oxide
  • ATO antimony-doped indium oxide
  • IZO indium-doped zinc oxide
  • AZO aluminum-doped zinc oxide
  • FTO fluorine-doped indium oxide
  • the metal oxide for forming the second metal oxide layer is not particularly limited, but vanadium oxide (V 2 O 5 ), molybdenum oxide (MoO 3 ), tungsten oxide (WO 3 ), ruthenium oxide (RuO 2) Etc. can be used alone or in combination of two or more. Among these, those containing vanadium oxide or molybdenum oxide as the main component are preferable.
  • the second metal oxide layer is composed of vanadium oxide or molybdenum oxide as a main component, the second metal oxide layer injects holes from the anode and transports it to the light emitting layer or the hole transport layer The function as a hole injection layer is better.
  • vanadium oxide or molybdenum oxide has an advantage that it can suitably prevent the injection efficiency of holes from the anode to the light emitting layer or the hole transport layer from being lowered because the hole transportability of itself is high.
  • it is composed of vanadium oxide and / or molybdenum oxide.
  • the average thickness of the first metal oxide layer can be from 1 nm to several ⁇ m or so, but is preferably 1 to 1000 nm in order to obtain an organic electroluminescent device which can be driven at a low voltage. More preferably, it is 2 to 100 nm.
  • the average thickness of the second metal oxide layer is not particularly limited, but is preferably 1 to 1000 nm. More preferably, it is 5 to 50 nm.
  • the average thickness of the first metal oxide layer can be measured by a stylus profilometer, spectroscopic ellipsometry.
  • the average thickness of the second metal oxide layer can be measured at the time of film formation by a quartz oscillator film thickness meter.
  • known conductive materials can be appropriately used, but at least one of them is preferably transparent for light extraction.
  • known transparent conductive materials include ITO (tin-doped indium oxide), ATO (antimony-doped indium oxide), IZO (indium-doped zinc oxide), AZO (aluminum-doped zinc oxide), FTO (fluorine-doped indium oxide), etc. Is raised.
  • opaque conductive materials include calcium, magnesium, aluminum, tin, indium, copper, silver, gold, platinum and alloys thereof. Among these, ITO, IZO and FTO are preferable as the cathode.
  • Au, Ag and Al are preferable as the anode.
  • metals generally used for the anode can be used for the cathode and the anode, the case where light extraction from the upper electrode is assumed (in the case of the top emission structure) can be easily realized, and Various types can be selected and used for each electrode.
  • Al is used as the lower electrode, and ITO or the like is used for the upper electrode.
  • the average thickness of the cathode is not particularly limited, but is preferably 10 to 500 nm. More preferably, it is 100 to 200 nm.
  • the average thickness of the cathode can be measured by a stylus profilometer, spectroscopic ellipsometry.
  • the average thickness of the anode is not particularly limited, but is preferably 10 to 1000 nm. More preferably, it is 30 to 150 nm. Further, even in the case of using an opaque material, for example, by setting the average thickness to about 10 to 30 nm, it can be used as a top emission type and transparent type anode.
  • the average thickness of the anode can be measured at the time of film formation by a quartz oscillator film thickness meter.
  • the method for forming the layer formed of the organic compound is not particularly limited, and various methods can be appropriately used according to the characteristics of the material, but when it can be applied as a solution Spin coating method, casting method, microgravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, slit coating method, dip coating method, spray coating method, screen printing method, flexographic printing method, offset
  • a film can be formed using various coating methods such as a printing method and an inkjet printing method. Among these, spin coating and slit coating are preferred in that the film thickness can be more easily controlled.
  • a vacuum evaporation method or an ESDUS (Evaporative Spray Deposition from Ultra-dilute Solution) method may be mentioned as a suitable example.
  • examples of the solvent used to dissolve the organic compound include nitric acid, sulfuric acid, ammonia, hydrogen peroxide, water, carbon disulfide Inorganic solvents such as carbon tetrachloride and ethylene carbonate, methyl ethyl ketone (MEK), acetone, diethyl ketone, methyl isobutyl ketone (MIBK), methyl isopropyl ketone (MIPK), ketone solvents such as cyclohexanone, methanol, ethanol, isopropanol, Alcohol solvents such as ethylene glycol, diethylene glycol (DEG) and glycerin, diethyl ether, diisopropyl ether, 1,2-dimethoxyethane (DME), 1,4-dioxane, tetrahydrofuran (THF), tetrahydropyran (T P) Ether solvents such as ani
  • tellurium solvents such as tellurium solvents, sulfur compound solvents such as dimethylsulfoxide (DMSO) and sulfolane, nitrile solvents such as acetonitrile, propionitrile and acrylonitrile, organic acid solvents such as formic acid, acetic acid, trichloroacetic acid and trifluoroacetic acid Various organic solvents or mixed solvents containing these, etc. may be mentioned.
  • sulfur compound solvents such as dimethylsulfoxide (DMSO) and sulfolane
  • nitrile solvents such as acetonitrile, propionitrile and acrylonitrile
  • organic acid solvents such as formic acid, acetic acid, trichloroacetic acid and trifluoroacetic acid
  • organic solvents or mixed solvents containing these, etc. may be mentioned.
  • nonpolar solvents are preferable as the solvent, and examples thereof include aromatic hydrocarbon solvents such as xylene, toluene, cyclohexylbenzene, dihydrobenzofuran, trimethylbenzene, tetramethylbenzene, pyridine, pyrazine, furan, and the like.
  • aromatic heterocyclic compound solvents such as pyrrole, thiophene and methyl pyrrolidone
  • aliphatic hydrocarbon solvents such as hexane, pentane, heptane and cyclohexane.
  • the cathode, anode, and oxide layer can be formed by sputtering, vacuum evaporation, sol-gel, spray pyrolysis (SPD), atomic layer deposition (ALD), vapor deposition, liquid phase deposition, etc. It can be formed by Bonding of metal foils can also be used to form the anode and the cathode. It is preferable to select these methods according to the characteristics of the material of each layer, and the manufacturing method may be different for each layer.
  • the second metal oxide layer is more preferably formed using a vapor phase film forming method. According to the vapor phase film forming method, the organic compound layer can be formed cleanly and in good contact with the anode without breaking the surface, and as a result, the effect by having the second metal oxide layer as described above become more prominent.
  • the organic electroluminescent device of the present invention may have, for example, a hole blocking layer, an electron blocking layer and the like as required.
  • a hole blocking layer As materials for forming these layers, materials usually used for forming these layers can be used, and layers can be formed by methods commonly used for forming these layers.
  • the organic electroluminescent device of the present invention does not require strict sealing as compared to an organic electroluminescent device in which all the layers constituting the device are made of an organic compound, but sealing may be performed if necessary.
  • a usual method can be used suitably as a sealing process.
  • the method of adhering a sealing container in inert gas, the method of forming a sealing film directly on an organic EL element, etc. are mentioned.
  • a method of enclosing a moisture absorbent may be used in combination.
  • the organic electroluminescent device of the present invention is an organic electroluminescent device of a reverse structure in which a cathode is formed adjacent to a substrate.
  • the organic electroluminescent device of the present invention may be a top emission type that extracts light to the side opposite to the side on which the substrate is present, or may be a bottom emission type that outputs light to the side where the substrate is side .
  • the material of the substrate is a resin material such as polyethylene terephthalate, polyethylene naphthalate, polypropylene, cycloolefin polymer, polyamide, polyether sulfone, polymethyl methacrylate, polycarbonate, polyarylate, quartz glass, soda glass, etc. A glass material etc.
  • an opaque substrate can also be used.
  • a substrate made of a ceramic material such as alumina, or an oxide film (insulating film) is formed on the surface of a metal substrate such as stainless steel.
  • substrates made of resin materials can be used.
  • the average thickness of the substrate is preferably 0.1 to 30 mm. More preferably, it is 0.1 to 10 mm.
  • the average thickness of the substrate can be measured with a digital multimeter, vernier calipers.
  • the organic electroluminescent device of the present invention can emit light by applying a voltage (usually 15 volts or less) between the anode and the cathode. Although a DC voltage is usually applied, an AC component may be included.
  • the luminescent color of the organic electroluminescent device of the present invention can be changed by appropriately selecting the material of the organic compound layer, and a desired luminescent color can be obtained by using a color filter or the like in combination. Therefore, it can be suitably used as a light emitting portion of a display device or a lighting device.
  • a display device combined with an oxide TFT is preferable because of the characteristic of reverse structure.
  • Such a display comprising the organic electroluminescent device of the present invention and a lighting device comprising the organic electroluminescent device of the present invention are also one of the present invention.
  • the organic electroluminescent device of the present invention has a layer composed of a nitrogen-containing film on the metal oxide layer, so that the electron injection characteristics are improved and the light emission efficiency is excellent. It will be excellent in life.
  • Such an effect of the electron injection characteristic improvement is beneficial not only to the organic electroluminescent device but also to other optoelectronic devices such as a solar cell and an organic semiconductor, which contributes to the performance improvement.
  • the film thickness of the nitrogen-containing film was measured by the following method. Since the film thickness of the nitrogen-containing film is an extremely thin film, it is difficult to measure by a measuring method such as a normal contact-type step gauge, and a calculation method using X-ray photoelectron spectroscopy was used. This calculation method is an established method, which is also used by Ketul C Popat et al., “Journal of Physical Chemistry B”, Volume 108, pp 5185, 2004. Here, the following equation (1) was used to calculate the film thickness of the nitrogen-containing film. (Maruzen Co., Ltd. "X-ray photoelectron spectroscopy")
  • I i is the nitrogen 1 s orbital strength of the unknown sample
  • I i 0 is the nitrogen 1 s orbital strength of the standard sample consisting of the nitrogen-containing material used for film formation
  • X i is the molar fraction
  • Z ′ is the depth from the sample surface
  • ⁇ i is the escape depth of the photoelectron of interest of the element i
  • ⁇ i, i is the inelastic mean free process
  • Z 1 -Z is the film thickness.
  • the X-ray photoelectric spectrometry was performed under the following conditions using a photoelectron spectrometer measured by Shimadzu Kraitos (AXIS-NOVA).
  • X-ray source AlK ⁇ Beam output: 100 W Pass Energy: 40 eV Step: 0.1 eV
  • Example 1 A commercially available transparent glass substrate 1 having an average thickness of 0.7 mm was prepared. At this time, the ITO electrode 2 of the substrate used was patterned to a width of 2 mm. The substrate was rinsed with ultrapure water, and then ultrasonically cleaned twice for 5 minutes in a diluted solution of Clean Ace. Thereafter, ultrasonic cleaning was carried out for 5 minutes x 2 times in ultrapure water, and ultrasonic cleaning was carried out for 10 minutes each in acetone and isopropanol, and then boiled for 5 minutes in isopropanol. The substrate was removed from isopropanol, dried by nitrogen blow, and subjected to UV ozone cleaning for 20 minutes.
  • This substrate was fixed again to the substrate holder of the Miratron sputtering apparatus having a zinc metal target. After reducing the pressure to about 5 ⁇ 10 ⁇ 5 Pa, sputtering was performed in a state where argon and oxygen were introduced, and a zinc oxide layer with a film thickness of about 2 nm was formed as the first metal oxide layer 3. At this time, a metal mask was used in combination so that zinc oxide was not formed on a part of the ITO electrode for taking out the electrode. [3] The substrate was subjected to ultrasonic cleaning for 15 minutes in ultrapure water, then ultrasonic cleaning for 5 minutes each in acetone and isopropanol, and boiled for 5 minutes in isopropanol.
  • the substrate was removed from isopropanol, dried by nitrogen blow, and subjected to UV ozone cleaning for 20 minutes.
  • the substrate after UV ozone cleaning was removed by nitrogen blow to remove dust, and spin coated with 1% by mass magnesium acetate solution at 1300 rpm for 60 seconds. Thereafter, annealing was performed for 1 hour on a 150 ° C. hot plate.
  • the annealed substrate was rinsed with ultrapure water and annealed on a hot plate at 150 ° C. for 30 minutes.
  • spin coating is performed by diluting polyethyleneimine (registered trademark: epomin) manufactured by Nippon Shokuhin Co., Ltd.
  • Epomin used here was P1000 (branched structure) having a weight average molecular weight of 70,000.
  • the thin film (substrate) produced in [6] was annealed at 150 ° C. for 10 minutes on a hot plate in the atmosphere.
  • the substrate subjected to the process of [7] is introduced into a vacuum apparatus, and the pressure is reduced to 5 ⁇ 10 ⁇ 5 Pa or less. After laminating KHLHS-01 as an electron transport layer by 15 nm vacuum evaporation, it was annealed at 125 ° C. for 20 minutes.
  • the substrate is again introduced into a vacuum apparatus and the pressure is reduced to 5 ⁇ 10 ⁇ 5 Pa or less, and then ⁇ -NPD: KHLHS-04: KHLDR-03 as a light emitting layer and ⁇ -NPD as a hole transport layer in order of 30 nm. , And laminated by a 24 nm vacuum evaporation method.
  • the second metal oxide layer 6 was formed on the organic compound layer 5.
  • molybdenum oxide was formed by a vacuum evaporation method which is a 10 nm vapor deposition method.
  • the anode 7 was formed on the second metal oxide layer 6 as a final step.
  • aluminum was deposited by a 100 nm vacuum evaporation method.
  • the organic electroluminescent element 1 was produced by the above steps [1] to [10]. [11] The characteristics (voltage-brightness characteristics under constant current density (equivalent to 1000 cd / m 2 ) of the organic electroluminescent device 1 according to the following ⁇ Measurement of luminescence characteristics of organic electroluminescent device> and ⁇ Measurement of lifetime characteristics of organic electroluminescent device> Change in luminance and voltage)). The results are shown in FIG. ⁇ Measurement of luminescence characteristics of organic electroluminescent device> Voltage application to the device and current measurement were performed using a Keithley "2400 source meter". The light emission luminance was measured by "BM-7" manufactured by Topcon Corporation.
  • the measurement was performed under an argon atmosphere.
  • Voltage application to the device and relative luminance measurement were performed by “organic EL lifetime measurement device” manufactured by System Giken Co., Ltd.
  • the relative brightness can be measured by the photodiode while automatically adjusting the voltage so that a constant current flows in the element.
  • the current value was set for each element so that the luminance at the start of the measurement was 1000 cd / m 2 .
  • Example 2 An organic electroluminescent element 2 was similarly produced except that the step [7] in Example 1 was changed to the following [7-2], and the characteristics were evaluated. The results are shown in FIG. [7-2] The thin film (substrate) produced in [6] was annealed at 150 ° C. for 10 minutes on a hot plate under nitrogen.
  • Example 3 The organic electroluminescent element 3 was similarly produced except having abbreviate
  • Comparative organic electroluminescent element 1 is produced in the same manner except that step [6] of Example 1 is changed to the following [6-2] and step [11] to the following [11-2], and the characteristics are evaluated. Did. The results are shown in FIG. [6-2]
  • step [6] of Example 1 is changed to the following [6-2] and step [11] to the following [11-2], and the characteristics are evaluated. Did. The results are shown in FIG. [6-2]
  • step [6-2] Comparative organic electroluminescent element 1 is produced in the same manner except that step [6] of Example 1 is changed to the following [6-2] and step [11] to the following [11-2], and the characteristics are evaluated. Did. The results are shown in FIG. [6-2]
  • one obtained by diluting polyethyleneimine (registered trademark: epomin) manufactured by Nippon Shokuhin Co., Ltd. to 0.4% by mass with ethanol is subjected to conditions of 2000 rpm for 30 seconds. It was spin-coated. Epomin used here was P1000 with a
  • the characteristics of the organic electroluminescent device were measured by the following ⁇ Measurement of luminescence characteristics of organic electroluminescent device>.
  • ⁇ Measurement of luminescence characteristics of organic electroluminescent device> Voltage application to the device and current measurement were performed using a Keithley "2400 source meter”. The light emission luminance was measured by "BM-7" manufactured by Topcon Corporation. The measurement was performed under an argon atmosphere.
  • Example 4 An organic electroluminescent element 4 was similarly produced except that the step [6] in Example 1 was changed to the following [6-3], and the characteristics were evaluated. The results are shown in FIG. [6-3] Next, in order to form the layer 4 of the nitrogen-containing film, a product obtained by diluting polyethyleneimine (registered trademark: epomin) manufactured by Nippon Shokuhin Co., Ltd. to 0.1% by mass with ethanol under the conditions of 2000 rpm for 30 seconds. It was spin-coated. Epomin used here was P1000 with a molecular weight of 70000. The substrate after spin coating was rinsed with ethanol.
  • polyethyleneimine registered trademark: epomin
  • Example 5 An organic electroluminescent element 5 was similarly produced except that the step [6] in Example 1 was changed to the following [6-4], and the characteristics were evaluated. The results are shown in FIG. [6-4]
  • Epomin used here was SP006 (branched structure) having a weight average molecular weight of 600. The substrate after spin coating was rinsed with ethanol.
  • Example 6 An organic electroluminescent element 6 was similarly produced except that the step [6] in Example 1 was changed to the following [6-5], and the characteristics were evaluated. The results are shown in FIG. [6-5]
  • spin coating is performed by diluting linear polyethylenimine having a weight average molecular weight of 11,000 with ethanol to 0.1% by mass under conditions of 3000 rpm and 30 seconds. did. The substrate after spin coating was rinsed with ethanol.
  • Example 7 Step [6] of Example 1 is changed to the following [6-6], step [11] is changed to the above [11-2], and the same procedure is repeated except that the step [7] is omitted.
  • step [6] is omitted.
  • FIG. [6-6] Next, the substrate was exposed to a vapor of diethylenetriamine for 0.5 hours to form a layer 4 of a nitrogen-containing film.
  • Example 8 Step [6] of Example 1 is changed to the following [6-7], step [11] is changed to the above [11-2], and the same procedure is repeated except that the step [7] is omitted.
  • step [6-7] The results are shown in FIG. [6-7] Next, the substrate was exposed to a vapor of diethylenetriamine for 4 hours to form a layer 4 of a nitrogen-containing film.
  • Comparative example 2 A comparative organic electroluminescent device 2 was similarly produced and evaluated for characteristics except that the steps [6] and [7] in Example 1 were omitted and the step [11] was changed to the above [11-2]. The results are shown in FIG.
  • Comparative example 3 Comparative Example 6 is the same as Example 1 except that step [6] is changed to the following [6-8], step [7] is omitted, and step [11] is changed to the above [11-2].
  • the light emitting element 3 was produced, and the characteristics were evaluated. The results are shown in FIG. [6-8] Next, the substrate was exposed to a vapor of diethylenetriamine for 24 hours to form a layer 4 of a nitrogen-containing film.
  • Example 9 Step [6] of Example 1 is changed to the following [6-9], step [7] is omitted, and similarly, except that step [11] is changed to the above [11-2], organic electroluminescence is performed. The element 9 was produced and the characteristics were evaluated. The results are shown in FIG. [6-9] Next, in order to form the layer 4 of the nitrogen-containing film, spin coating was performed by diluting pentamethyldiethylene triamine to 1.0% by mass with ethanol under the conditions of 2000 rpm for 30 seconds.
  • Example 10 An organic electroluminescent device 10 was similarly manufactured except that the step [7] in Example 1 was changed to the following [7-3], and the characteristics were evaluated. The results are shown in FIG. [7-3] The thin film (substrate) produced in [6] was annealed at 150 ° C. for 2 hours on a hot plate in the atmosphere.
  • Example 11 An organic electroluminescent device 11 was similarly produced except that the step [7] in Example 1 was changed to the following [7-4], and the characteristics were evaluated. The results are shown in FIG. [7-4] The thin film (substrate) produced in [6] was annealed at 150 ° C. for 2 hours on a hot plate under nitrogen.
  • FIGS. 2 to 4 The results of FIGS. 2 to 4 will be described below. These are the characteristic evaluation results of the devices under different annealing conditions after forming the nitrogen-containing film, and FIG. 2 (Device 1) is under the atmosphere, FIG. 3 (Device 2) is under nitrogen, and FIG. 4 (Device 3) is the annealing step. It is the result of the element without. Each of them starts to emit light from a low voltage, achieving sufficient brightness. At the same time, it became clear that a corresponding life was realized.
  • each nitrogen-containing film is a thin film of less than 3 nm in each of 1.77, 2.13, and 2.28 nm, and the thin film of less than 3 nm is a high performance organic electroluminescent device Can be realized.
  • These differences in film thickness are considered to be due to the film thickness phenomenon due to annealing.
  • the large decrease in film thickness under the atmosphere is presumed to be due to the reaction with oxygen in the atmosphere.
  • film thickness reduction due to annealing under nitrogen is imagined to be removal of residual solvent as well as volume reduction caused by rearrangement of polyethyleneimine by heating. Therefore, it is considered that the film thickness was in the order of thin film, under air, under nitrogen, and without annealing.
  • the slight variation in film thickness under the atmosphere is presumed to be due to the reaction.
  • the elements 1 to 3 each have more than a certain property, but among them, the property is superior or inferior.
  • Annealing under nitrogen and non-annealing are in the same order with high characteristics.
  • FIG. 5 shows the results of an element (comparative element 1) not corresponding to the organic electroluminescent element of the present invention, in which only the film thickness is increased to 4.50 nm under the same optimum conditions for producing the nitrogen-containing film as FIG. 3 (element 2). is there. It can be seen that the light emission threshold voltage is increased by 0.5 V and the light emission luminance at 6 V is decreased by 3000 cd / m 2 .
  • FIG. 6 is the result of examining the thinner portion of the nitrogen-containing film under the optimum conditions.
  • the film thickness can be made as thin as 1.76 nm, which is equivalent to annealing under the atmosphere, it can be seen that the characteristics such as luminance and life are superior to any of the examples shown in FIGS. From these results, it was shown that although an organic electroluminescent device having sufficiently high properties can be obtained if the thickness is 3 nm or less, annealing within a thin film region and under nitrogen is more suitable.
  • FIG. 9 shows the measurement results of the elements 7 and 8 on which diethylenetriamine was formed, the comparison element 3 and the comparison element 2 on which the nitrogen-containing film was not formed as model materials obtained by cutting out a partial unit of polyethyleneimine.
  • a method of exposing to steam was used as a film forming method.
  • the present invention is not limited to this, and a general film formation method such as spin coating used in the preparation of a coated film can be used. When exposed to steam, the film thickness can be controlled by the time.
  • the one exposed to vapor for 0.5 hours is 1.60 nm
  • the one exposed to vapor for 4 hours is 1.82 nm and exposed to vapor for 24 hours (comparative element 3) was 7.17 nm.
  • the thing (comparative element 2) which was not processed is observed with 0.04 nm, and it is shown that it has measured accurately.
  • Even in the spin coat film formation of polyethylenimine the 1 nm level showed good characteristics even with this material.
  • the emission threshold voltage was better at 0.5 hours exposure, but the luminance under 6 V was better at 4 hours exposure. It is speculated that this difference comes from the difference in membrane structure.
  • the device exposed for 24 hours is inferior in both the light emission threshold voltage and the luminance under 6 V as compared with the device without treatment. Also in this case, it was shown that the film thickness of 3 nm or less is good.
  • FIG. 10 is a characteristic evaluation result of an element 9 manufactured by spin-coating film formation by changing a model material forming a nitrogen-containing film to pentamethyldiethylene triamine constituted only by a tertiary amine.
  • the film thickness is extremely thin at 0.16 nm, it has been proved that the characteristic improvement can be realized as compared with the device without processing (comparative device 2). From this, it is clear that the characteristic improvement can be expected even in an extremely thin region of less than 1 nm.
  • FIG. 11 shows the device 2 and the device 3 of Examples 2 and 3 respectively manufactured three by three, the luminance under 5 V was measured, and the variation in characteristics was compared. It can be seen that the results of annealing under nitrogen have similar values compared to the results without annealing. This is considered to indicate that the annealing has the effect of reducing the variation. That is, it is understood that the process stability is improved by the annealing. This is presumed to be the effect of rearrangement due to annealing.
  • FIG. 12 shows the result of examining the environment dependency of annealing with high process stability.
  • the device 1 was annealed for 10 minutes under the atmosphere and under nitrogen, and the device 10 and device 11 were annealed for 2 hours and 2 hours, respectively. It compares the brightness of. It can be seen that long time annealing is not good in any environment. However, the annealing in the atmosphere is significantly degraded, and is degraded to the extent that light is almost not emitted. In that respect, in the case of annealing under nitrogen, although there is a decrease in brightness, sufficient brightness can still be developed. It can be said from FIG. 11 and FIG. 12 that the annealing under nitrogen is excellent in process stability.
  • low-molecular to high-molecular materials having a polyethyleneimine skeleton exhibit good properties in the thin film region of 0.1 nm to less than 3 nm. Further, among them, the thin film is better, and it is possible to obtain good characteristics even by a method of exposing to vapor, which is a vapor phase film forming process, as well as a general coating process as well as a film forming process. It became clear. As a subsequent process, it was found that annealing under nitrogen was also good in process stability.
  • Substrate 2 Cathode 3: First metal oxide layer 4: Nitrogen-containing film layer 5: Organic compound layer 6: Second metal oxide layer 7: Anode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本発明は、発光効率及び輝度に優れた有機電界発光素子を提供する。 本発明は、陽極と、基板上に形成された陰極との間に複数の層が積層された構造を有する有機電界発光素子であって、該有機電界発光素子は、陽極と陰極との間に金属酸化物層を有し、該金属酸化物層に隣接して陽極側に、窒素含有膜からなり、平均厚さが0.1nm以上、3nm未満の層を有する有機電界発光素子に関する。

Description

有機電界発光素子
本発明は、有機電界発光素子に関する。より詳しくは、電子機器の表示部等の表示装置や照明装置等としての利用可能な有機電界発光素子に関する。
表示用デバイスや照明に適用できる新しい発光素子として有機電界発光素子(有機EL素子)が期待されている。
有機EL素子は、陽極と陰極との間に発光性有機化合物を含んで形成される発光層を含む1種または複数種の層を挟んだ構造を持ち、陽極から注入されたホールと陰極から注入された電子が再結合する時のエネルギーを利用して発光性有機化合物を励起させ、発光を得るものである。有機EL素子は電流駆動型の素子であり、流れる電流をより効率的に活用するため、素子構造が種々改良され、また、素子を構成する層の材料についても種々検討されている。
陽極から注入されたホールと陰極から注入された電子との再結合時のエネルギーを利用して発光性有機化合物を励起させ、発光を得る有機電界発光素子では、陽極からのホール注入、陰極からの電子注入がともにスムーズに行われることが重要であるため、よりスムーズなホール注入、電子注入が行われるよう、正孔注入層、電子注入層の材料についても種々検討され、最近では塗布できる電子注入層の材料として、ポリエチレンイミンやポリエチレンイミンを修飾した化合物を用いた順構造の有機電界発光素子が報告されている(非特許文献1~3参照。)。
ところで、陰極と陽極との間の層が全て有機化合物で形成された有機電界発光素子は、結果として酸素や水によって劣化しやすく、これらの侵入を防ぐために厳密な封止が不可欠である。このことは、有機電界発光素子の製造工程を煩雑なものとする原因となっている。これに対し、陰極と陽極との間の層の一部が無機酸化物で形成された有機無機ハイブリッド型の電界発光素子(HOILED素子)が提案されている(特許文献1参照。)。この素子では、正孔輸送層、電子輸送層を無機酸化物に変えることで、陰極として導電性酸化物電極であるFTOやITO、陽極として金を使用することが可能になった。このことは素子駆動の観点からは電極に対する制約がなくなったことを意味する。結果、アルカリ金属やアルカリ金属化合物等、仕事関数の小さな金属を用いる必要がなくなり、厳密な封止無しで発光させることが可能となっている。加えてこのHOILED素子は、陰極が基板直上にあることが標準であり、上部電極に陽極がくる逆構造という特徴を有している。酸化物TFTの発展に伴い、大型有機ELディスプレイへの適用が検討される中、n型である酸化物TFTの特徴から逆構造の有機ELが注目されて来ている。本HOILED素子は逆構造有機EL素子の候補として発展が期待されている。また、このようなHOILED素子であって、平均厚さが3~150nmのポリエチレンイミン等の窒素含有膜からなる層を有する素子も提案されている(特許文献2、非特許文献4参照。)。
特開2009-70954号公報 特開2014-168014号公報
タオ シオン(Tao Xiong)外3名「アプライド フィジクス レターズ(Applied Physics Letters)」93巻、2008年、pp123310-1 インファ ジョウ(Yinhua Zhou)外21名「サイエンス(Science)」336号、2012年、pp327 ジャンシャン チェン(Jianshan Chen)外6名「ジャーナル オブ マテリアルズ ケミストリー(Journal of Materials Chemistry)」2012年、22巻、pp5164 ユン-ウン キム(Young-Hoon Kim)外5名「アドバンスト ファンクショナル マテリアルズ(Advanced Functional Materials)」24号、2014年、pp3808
上記のとおり、有機電界発光素子について、素子の構成や材料について種々検討されているが、表示用デバイスや照明への適用のために、発光効率や輝度の更なる向上が求められており、これらの特性により優れた有機電界発光素子の開発が求められている。
本発明は、上記現状に鑑みてなされたものであり、発光効率及び輝度に優れた有機電界発光素子を提供することを目的とする。
本発明者は、発光効率及び輝度に優れる有機電界発光素子について種々検討したところ、陽極と陰極との間に有する金属酸化物層に隣接して陽極側に窒素含有膜からなり、平均厚さが0.1nm以上、3nm未満の厚みの薄い層を形成すると、有機電界発光素子の発光効率及び輝度が向上することを見出し、本発明に到達したものである。
本発明は、陽極と、基板上に形成された陰極との間に複数の層が積層された構造を有する有機電界発光素子であって、該有機電界発光素子は、陽極と陰極との間に金属酸化物層を有し、上記金属酸化物層に隣接して陽極側に、窒素含有膜からなり、平均厚さが0.1nm以上、3nm未満の層を有することを特徴とする有機電界発光素子である。
本発明の有機電界発光素子は、厳密な封止を必要としない有機無機ハイブリッド型の逆構造を有した有機電界発光素子であって、発光効率及び輝度に優れることから、表示用デバイスや照明装置の材料として好適に用いることができる。
本発明で示される有機電界発光素子の積層構造の一例を示した概略図である。 実施例1で作製した有機電界発光素子1の(a)電圧-輝度特性、(b)定電流密度下(1000cd/m相当)での輝度および電圧の経時変化を示した図である。 実施例2で作製した有機電界発光素子2の(a)電圧-輝度特性、(b)定電流密度下(1000cd/m相当)での輝度および電圧の経時変化を示した図である。 実施例3で作製した有機電界発光素子3の(a)電圧-輝度特性、(b)定電流密度下(1000cd/m相当)での輝度および電圧の経時変化を示した図である。 比較例1で作製した比較有機電界発光素子1の電圧-輝度特性を示した図である。 実施例4で作製した有機電界発光素子4の(a)電圧-輝度特性、(b)定電流密度下(1000cd/m相当)での輝度および電圧の経時変化を示した図である。 実施例5で作製した有機電界発光素子5の(a)電圧-輝度特性、(b)定電流密度下(1000cd/m相当)での輝度の経時変化を示した図である。 実施例6で作製した有機電界発光素子6の電圧-輝度特性を示した図である。 実施例7、8及び比較例2、3で作製した有機電界発光素子7、8及び比較有機電界発光素子2、3の電圧-輝度特性を示した図である。 実施例9で作製した有機電界発光素子9の電圧-輝度特性を示した図である。 実施例2、3で作製した有機電界発光素子2、3のアニールの有無による素子特性のばらつきを評価した結果を示した図である。 実施例1、2、10、11で作製した有機電界発光素子1、2、10、11の大気下と窒素雰囲気下でのアニールによる素子特性のばらつきを評価した結果を示した図である。
以下に本発明を詳述する。
なお、以下において記載する本発明の個々の好ましい形態を2つ以上組み合わせたものもまた、本発明の好ましい形態である。
本発明の有機電界発光素子は、基板上に陰極が形成され、陽極と陰極との間に金属酸化物層を有する、いわゆる逆構造の有機無機ハイブリッド型の電界発光素子(HOILED素子)であって、金属酸化物層に隣接して陽極側に、窒素含有膜からなり、平均厚さが0.1nm以上、3nm未満の層を有することを特徴とする。本発明の有機電界発光素子のポイントは、金属酸化物の金属と窒素含有膜中の窒素との間の双極子、そして窒素含有膜中の双極子による電子注入障壁の低減であるため、金属酸化物と窒素含有膜材料が所望の方向(電子注入する方向に対して金属酸化物そして窒素含有膜材料の順)に配置(例えば積層)されることである。本発明の平均厚さが0.1nm以上、3nm未満の厚みの薄い層は、後者の双極子について好適であるといえる。その理由は、極薄膜であれば、界面で生じる分子の向きを窒素含有膜中でほぼ受け継げるが、厚膜になると分子の立体構造により逆方向に双極子が向くことも予想され、結果として双極子が相殺される可能性があるためである。このような原理であるため、その素子構造(構成)は自由に選ぶことができる。
本発明の有機電界発光素子は、上記特徴を有するものである限り、他の層の数、他の層を構成する材料や積層する順番は特に制限されないが、金属酸化物層と窒素含有化合物層とが、陰極と発光層との間にあることが好ましい。窒素含有化合物は、電子注入特性に優れたものであり、このような層構成を有する有機電界発光素子は、高い電子注入特性を有することになり、発光効率に優れた素子となる。
本発明の有機電界発光素子に用いられる窒素含有膜には、(1)金属酸化物層上で窒素含有化合物により形成された窒素含有膜、(2)金属酸化物層上で窒素含有化合物により形成された高窒素含有膜、(3)金属酸化物層上で窒素含有化合物を分解させることで形成された窒素含有膜、(4)金属酸化物層上で窒素含有化合物を分解させることで形成された高窒素含有膜の合計4種類が存在する。
このような膜を形成することで有機電界発光素子の性能が向上する理由については以下のように推定される。
まず第一に窒素原子を含む場合、その孤立電子対は基材中の金属原子と結合を作る傾向にある。その金属-窒素結合間の分極が、強い電子注入特性を発現することになる。上記(1)~(4)全ての窒素含有膜において、それは満たされる。より好適には、孤立電子対を有する窒素原子比率が高い上記(2)が適している。
上記(3)、(4)では、膜生成に関わる分解の現象により高密度に窒素原子が基材上に存在する膜となる事が期待され、結果として、多彩な金属-窒素結合が出現することが期待される。そしてその中には、従来よりも強固な金属-窒素結合も存在すると考えられる。さらに、分解の状況によっては、不要な炭素等の他の成分が消失する事により、相対的に窒素原子分率が上昇し、結果として、より好適な環境が実現される場合もある(4)。これらの窒素含有膜では、主たる窒素の起源が金属-窒素結合になることから、通常の分子の物理吸着よりも高密度に窒素原子が集積されていると期待される。これらの要因により、このような窒素含有膜を有することで、有機電界発光素子が、発光効率に優れ、素子駆動安定性と素子寿命に優れたものとなると考えられる。実際、上記窒素含有化合物の分解に起因する現象は、表面分析手法の一つであるX線光電子分光法により立証できる。具体的な結果は実施例で示すが、窒素含有化合物として窒素と炭素とを構成元素として含む化合物を用い、この化合物を分解させる処理をすることにより、炭素:窒素比(CN比)が2:1から1:1にまで高窒素比率になっている事が観測されている。また同時に、上記処理により、窒素のスペクトルの半値幅の増加が観測されており、この事は、化学環境の広がりを示しており、より強固な金属-窒素結合の出現も示唆されている。
したがって、窒素含有膜からなる層の下地が金属元素を含む膜であることも上記のような本発明の有機電界発光素子が奏する効果の発現に大きく寄与していると考えられる。
上記(1)、(2)の窒素含有膜は、金属酸化物層に隣接して形成された窒素含有化合物からなる膜、すなわち、窒素含有化合物が分解することなく膜を形成したものである。上記(2)の窒素含有膜は、窒素含有化合物として、窒素含有化合物を構成する全原子数に対する窒素原子数の割合が高いものを用いて形成されるものである。
上記(1)、(2)の窒素含有膜の形成方法は特に制限されないが、窒素含有化合物の溶液を金属酸化物層に隣接するように塗布した後、溶媒を揮発させる方法が好適に用いられる。
上記(3)、(4)の窒素含有膜は、金属酸化物層上で窒素含有化合物を分解させることで形成される膜であるが、窒素含有化合物の一部に分解されないものが残っていてもよい。好ましくは、窒素含有化合物の全てが分解されることである。
上記(3)、(4)の窒素含有膜の形成方法は特に制限されないが、窒素含有化合物の溶液を金属酸化物層に塗布した後、窒素含有化合物を分解して形成する方法が好適に用いられる。
上記窒素含有膜からなる層の平均厚さが0.1nm以上、3nm未満である点は本発明の有機電界発光素子の大きな特徴である。
上記非特許文献4では、逆構造のHOILED素子の電子注入層を形成する材料としてポリエチレンイミンを用いることで仕事関数が低下し、電子注入の障壁が低くなることが開示されている。非特許文献4では、ポリエチレンイミンによる仕事関数の変化はポリエチレンイミン層の厚みが薄くなるほど大きくなるものの、その効果はポリエチレンイミン層の厚みが8nmの場合と4nmの場合とで差がない結果となっており、8nm程度よりも層の厚みを薄くしてもそれ以上は効果の向上が期待できないことが示唆される結果となっている。これに対し本発明は、逆構造のHOILED素子において、金属酸化物層に隣接するように非特許文献4に開示されたものよりも更に薄い平均厚さが0.1nm以上、3nm未満の窒素含有膜を形成することで、発光効率及び輝度に優れた素子が得られるという、従来の技術からは予測のできない効果が得られることを見出したものである。
上記窒素含有膜からなる層の平均厚さは0.1nm以上、3nm未満であればよいが、0.5nm以上、2.9nm以下であることが好ましい。より好ましくは、1.0nm以上、2.7nm以下であり、更に好ましくは、1.5nm以上、2.5nm以下である。
窒素含有膜からなる層の平均厚さは、実施例に記載の方法により測定することができる。
上記窒素含有膜は、膜を構成する元素として窒素元素と炭素元素とを含み、該膜を構成する窒素原子と炭素原子との存在比率が
窒素原子数/(窒素原子数+炭素原子数)>1/8
の関係を満たすことが好ましい。
このように窒素含有膜中における窒素原子数の割合が高いと、金属-窒素結合の総数が増加し、結果としてより強い分極により電子注入特性が更に高いものとなる。窒素含有膜における窒素原子数/(窒素原子数+炭素原子数)は、1/5より大きいことがより好ましい。
窒素含有膜中における窒素元素、炭素元素の存在比率は、光電子分光法(XPS)により測定することができる。
上記窒素含有化合物としては、例えば、ポリビニルピロリドンのようなピロリドン類、ポリピロールのようなピロール類又はポリアニリンのようなアニリン類、又はポリビニルピリジンのようなピリジン類、同様に、ピロリジン類、イミダゾール類、ピペリジン類、ピリミジン類、トリアジン類などの含窒素複素環を有する化合物や、アミン化合物が挙げられる。その中でも、1級アミン構造を有する窒素含有化合物が好ましい。すなわち、窒素含有膜は、1級アミン構造を有する窒素含有化合物由来の膜であることは本発明の好適な実施形態の1つである。
上記窒素含有化合物としてはまた、窒素含有率の高い化合物が好ましく、ポリアミン類が好ましい。ポリアミン類は、化合物を構成する全原子数に対する窒素原子数の比率が高いため、有機電界発光素子を高い電子注入性と駆動安定性を有するものとする点から適している。
ポリアミン類としては、塗布により層を形成することができるものが好ましく、低分子化合物であっても高分子化合物であってもよい。低分子化合物としては、ジエチレントリアミン、ペンタメチルジエチレントリアミンのようなポリアルキレンアミンが好適に用いられ、高分子化合物では、ポリアルキレンイミン構造を有する重合体が好適に用いられる。特にポリエチレンイミンが好ましい。中でも、窒素含有化合物が、ポリエチレンイミン又はジエチレントリアミンであることは本発明の好適な実施形態の1つである。
なお、ここで低分子化合物とは、高分子化合物(重合体)ではない化合物を意味し、分子量の低い化合物を必ずしも意味するものではない。
上記ポリアミン類の中でも、ポリアルキレンイミン構造を主鎖骨格に有する分岐状構造の重合体を用いることは、本発明の好適な実施形態の1つである。
また、上記ポリアミン類の中でも、ポリアルキレンイミン構造を主鎖骨格に有する直鎖状構造の重合体を用いることも、本発明の好適な実施形態の1つである。
ポリアミン類の中でも、上記の主鎖骨格が分岐状構造あるいは直鎖状構造の重合体を用いることで、素子駆動安定性と素子寿命により優れたものとなる。これは、このようなポリアルキレンイミン構造を主鎖骨格に有する重合体は、デバイス中で安定に存在することによるものと推定される。
このようなポリアルキレンイミン構造を主鎖骨格に有する分岐状構造あるいは直鎖状構造の重合体によって金属酸化物層に隣接して形成された窒素含有膜は、上記(1)の窒素含有膜となる。
上記ポリアルキレンイミン構造を主鎖骨格に有する直鎖状構造の重合体は、主鎖骨格を形成するポリアルキレンイミン構造の大半が直鎖状に連結したものであればよく、一部に分岐構造を有するものであってもよいが、主鎖骨格を形成するポリアルキレンイミン構造の90%以上が直鎖状に連結したものである。好ましくは、95%以上が直鎖状に連結したものであり、最も好ましくは、主鎖骨格を形成するポリアルキレンイミン構造の100%が直鎖状に連結したものである。
上記ポリアルキレンイミン構造を主鎖骨格に有する分岐状構造の重合体とは、分岐構造を10%より多く有するものが分岐状ポリアルキレンイミンである。
上記ポリアルキレンイミン構造を有する重合体のポリアルキレンイミン構造は、炭素数2~4のアルキレンイミンにより形成された構造であることが好ましい。より好ましくは、炭素数2又は3のアルキレンイミンにより形成された構造である。
上記ポリアルキレンイミン構造を有する重合体は、主鎖骨格にポリアルキレンイミン構造を有するものであればよく、ポリアルキレンイミン構造以外の構造を有する共重合体であってもよい。
上記ポリアルキレンイミン構造を有する重合体がポリアルキレンイミン構造以外の構造を有する場合、ポリアルキレンイミン構造以外の構造の原料となる単量体としては、例えば、エチレン、プロピレン、ブテン、アセチレン、アクリル酸、スチレン、又は、ビニルカルバゾール等が挙げられ、これらの1種又は2種以上を用いることができる。また、これらの単量体の炭素原子に結合した水素原子が他の有機基に置換された構造のものも好適に用いることができる。水素原子と置換する他の有機基としては、例えば、酸素原子、窒素原子、硫黄原子からなる群より選択される少なくとも1種の原子を含んでいてもよい炭素数1~10の炭化水素基等が挙げられる。
上記ポリアルキレンイミン構造を有する重合体は、重合体の主鎖骨格を形成する単量体成分100質量%のうち、ポリアルキレンイミン構造を形成する単量体が50質量%以上であることが好ましい。より好ましくは、66質量%以上であり、更に好ましくは、80質量%以上である。最も好ましくは、ポリアルキレンイミン構造を形成する単量体が100質量%であること、すなわち、ポリアルキレンイミン構造を有する重合体がポリアルキレンイミンのホモポリマーであることである。
上記ポリアルキレンイミン構造を有する重合体は、重量平均分子量が100000以下であることが好ましい。このような重量平均分子量のものを用い、重合体が分解する温度での加熱処理を行って層を形成することで、有機電界発光素子をより駆動安定性に優れたものとすることができる。ポリエチレンイミン等のポリアルキレンイミン構造を有する重合体が上述した分岐状構造の重合体である場合には、重合体の重量平均分子量は、より好ましくは、10000以下であり、更に好ましくは、100~1000である。
また、ポリアルキレンイミン構造を有する重合体が上述した直鎖状構造の重合体である場合には、重合体の重量平均分子量は、より好ましくは、250000以下であり、更に好ましくは、10000超過、50000以下であり、特に好ましくは、10000超過、25000未満である。
重量平均分子量は、以下の条件でGPC(ゲルパーミエーションクロマトグラフィー)測定により求めることができる。
測定機器:Waters Alliance(2695)(商品名、Waters社製)
分子量カラム:TSKguard column α、TSKgel α-3000、TSKgel α-4000、TSKgel α-5000(いずれも東ソー社製)を直列に接続して使用
溶離液:100mMホウ酸水溶液14304gに50mM水酸化ナトリウム水溶液96gとアセトニトリル3600gを混合した溶液
検量線用標準物質:ポリエチレングリコール(東ソー社製)
測定方法:測定対象物を固形分が約0.2質量%となるように溶離液に溶解し、フィルターにてろ過した物を測定サンプルとして分子量を測定する。
また、金属酸化物層上でこれら窒素含有化合物を分解させると、上記(3)の窒素含有膜や(4)の高窒素含有膜となる。窒素含有化合物として、ポリアミン類等のような窒素含有割合の高い化合物を用いることで金属酸化物層上に窒素含有化合物の分解物をより緻密に堆積させることができると考えられる。このような金属酸化物上の窒素含有薄膜も本特許の発明の一つである。
上記窒素含有膜を形成する方法は特に制限されないが、窒素含有化合物を蒸着させる工程を含む方法や、金属酸化物層上に窒素含有化合物を含む溶液を塗布する工程を含む方法が好ましく、中でも、金属酸化物層上に窒素含有化合物を含む溶液を塗布する工程を含む方法がより好ましい。金属酸化物層上に窒素含有化合物を含む溶液を塗布する工程を含む方法で窒素含有膜を形成すると、以下のような効果も得られる。
有機電界発光素子の金属酸化物層は、後述するようにスプレー熱分解法、ゾルゲル法、スパッタ法等の方法で成膜され、表面は平滑ではなく凹凸を持つ。この金属酸化物層の上に、真空蒸着等の方法で発光層を成膜した場合、発光層の原料となる成分の種類によっては、金属酸化物層の表面の凹凸が結晶核となり、金属酸化物層に接する発光層を形成する材料の結晶化が促進される。このため、有機電界発光素子を完成させたとしても、大きなリーク電流が流れ、発光面が不均一化して、実用に耐える素子が得られない場合がある。
しかし、溶液を塗布して層を形成すると、表面の平滑な層を形成することができるため、金属酸化物層と発光層との間に塗布により窒素含有化合物層を形成すると、発光層を形成する材料の結晶化が抑制され、これによって、金属酸化物層を有する有機電界発光素子がリーク電流の抑制と、均一な面発光を得ることができることになる。
上記窒素含有化合物として、ポリアミン類を用いる場合、窒素含有化合物を含む溶液の溶媒として水又は低級アルコールを用いることができる。低級アルコールとしては、炭素数1~4のアルコールを用いることが好ましく、メタノール、エタノール、プロパノール、エトキシエタノール、メトキシエタノール等を単独または混合して用いることができる。
上記窒素含有膜を、窒素含有化合物を含む溶液を塗布する工程を含む方法により形成する場合、窒素含有化合物を含む溶液の濃度は、特に制限されないが、0.01~1質量%であることが好ましい。より好ましくは、0.05~0.5質量%であり、更に好ましくは、0.1~0.3質量%である。
上記窒素含有膜を、窒素含有化合物を含む溶液を塗布する工程を含む方法により形成する場合、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、スリットコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法等の各種塗布法を用いて成膜することができる。このうち、膜厚をより制御しやすいという点でスピンコート法やスリットコート法が好ましい。
また上記窒素含有化合物を含む溶液を塗布する工程を行った後、溶媒でリンスする工程や超音波で洗浄する工程を行ってもよい。
溶媒でリンスする工程を行う場合、水、エタノール、メトキシエタノール等の溶媒の1種又は2種以上を用いることができる。
上記窒素含有化合物を含む溶液を塗布する工程、溶媒でリンスする工程や超音波で洗浄する工程は、大気下で行ってもよく、不活性ガス雰囲気下で行ってもよいが、不活性ガス雰囲気下で行うことが好ましい。不活性ガス雰囲気下で行うことで、得られる素子が輝度や素子寿命により優れた素子となる。
不活性ガスとしては、ヘリウム、窒素、アルゴン等を用いることができる。
上記(3)、(4)の窒素含有膜は、金属酸化物層上で窒素含有化合物を分解させることで形成されるものである限り、窒素含有化合物を分解させる方法は特に制限されないが、窒素含有化合物を加熱により分解させることで形成されるものであることが好ましい。
窒素含有化合物を加熱により分解させると、金属酸化物層中の金属原子と窒素原子との結合が強化され、これにより、有機電界発光素子が、より長期にわたって高い駆動安定性を発揮するものとなる。
このように窒素含有膜が、窒素含有化合物を加熱により分解させることで形成されるものであることは本発明の好適な実施形態の1つである。
したがって、上記窒素含有膜は、金属酸化物層上に窒素含有化合物を含む溶液を塗布した後、窒素含有化合物を加熱により分解させることで形成する方法により形成されるものが最も好ましく、このような方法で形成することで、リーク電流の抑制と、均一な面発光を得る効果、及び、有機電界発光素子が、より長期にわたって高い駆動安定性を発揮するものとする効果が得られることになる。
このようなHOILED素子の製造方法、すなわち、陽極と、基板上に形成された陰極との間に複数の層が積層された構造を有する有機電界発光素子の製造方法であって、上記製造方法は、金属酸化物層上に、窒素含有化合物を含む溶液を塗布する工程と、該窒素含有化合物の塗膜から溶媒を除去する工程と、該窒素含有化合物が分解する温度で加熱処理をして本発明の窒素含有膜からなる層を製造する工程とを含む有機電界発光素子の製造方法もまた、本発明の1つである。
本発明の有機電界発光素子の製造方法において、窒素含有化合物を含む溶液を塗布する工程の好ましい形態は上述したとおりである。また、上述した溶媒でリンスする工程や超音波で洗浄する工程を行ってもよい。
上記窒素含有化合物の塗膜から溶媒を除去する工程における溶媒の除去は加熱処理により行われることが好ましい。加熱処理して溶媒等を膜中から排除することで、より安定な膜構造にすることができる。
溶媒を除去するための加熱処理の温度は、80~180℃であることが好ましい。より好ましくは、100~150℃である。
上記窒素含有化合物を分解させるため、もしくは溶媒等を膜中から排除しより安定な膜構造にするための加熱処理(アニール)の温度は、80~200℃であることが好ましい。また加熱処理の時間は、1~60分であることが好ましく、より好ましくは、5~20分である。
加熱処理の温度や時間は、上記範囲の中で、窒素含有化合物の種類により適宜設定すればよい。例えば、窒素含有化合物として下記ポリアルキレンイミン構造を主鎖骨格に有する重合体を用いる場合、重合体の分子量が大きくなるほど分解温度は高くなるため、重合体の分子量を考慮し、後述する実施例での加熱処理条件を参考にして加熱処理の温度、及び、時間を適宜設定することができる。
上記窒素含有化合物を分解させるための加熱処理は、大気下で行ってもよく、不活性ガス雰囲気下で行ってもよい。
窒素含有化合物が分解しているか否かはX線光電子分光法(XPS)測定により確認することができる。
本発明の有機電界発光素子は、陽極および陰極と、前記陽極と前記陰極とに挟まれた1層または複数層の有機化合物層とを有し、前記陰極と前記有機化合物層との間に、金属酸化物層を有し、更に、前記金属酸化物層と前記有機化合物層との間に本発明の窒素含有膜からなる層を有することが好ましい。ここで有機化合物層は、発光層を含み、必要に応じてその他に電子輸送層や正孔輸送層を含む層である。
その中でも、本発明の有機電界発光素子は、基板上に隣接して陰極が形成され、陽極と陰極との間に金属酸化物層を有する有機無機ハイブリッド型の有機電界発光素子であって、発光層と陽極とを有し、陰極と発光層との間に、電子注入層と、必要に応じて電子輸送層とを有し、陽極と発光層との間に正孔輸送層及び/又は正孔注入層を有する構成の素子であることが好ましい。本発明の有機電界発光素子は、これらの各層の間に他の層を有していてもよいが、これらの各層のみから構成される素子であることが好ましい。すなわち、陰極、電子注入層、必要に応じて電子輸送層、発光層、正孔輸送層及び/又は正孔注入層、陽極の各層がこの順に隣接して積層された素子であることが好ましい。なお、これらの各層は、1層からなるものであってもよく、2層以上からなるものであってもよい。
上述したように、窒素含有膜は、電子注入特性に優れたものであるから、電子注入側、つまり陰極側に用いられることが好ましい。また金属酸化物層は、後述するように、陰極の一部若しくは電子注入層の一層、及び/又は、陽極の一部若しくは正孔注入層の一層として積層されることが好ましい。
上記構成の有機電界素子において、素子が電子輸送層を有さない場合は、電子注入層と発光層とが隣接することになる。また、素子が正孔輸送層、正孔注入層のいずれか一方のみを有する場合には、当該一方の層が発光層と陽極とに隣接して積層されることになり、素子が正孔輸送層と正孔注入層の両方を有する場合には、発光層、正孔輸送層、正孔注入層、陽極の順にこれらの層が隣接して積層されることになる。
本発明の有機電界発光素子において、発光層を形成する材料としては、発光層の材料として通常用いることができるいずれの化合物も用いることができ、低分子化合物であっても高分子化合物であってもよく、これらを混合して用いてもよい。
なお、本発明において低分子材料とは、高分子材料(重合体)ではない材料を意味し、分子量が低い有機化合物を必ずしも意味するものではない。
上記発光層を形成する高分子材料としては、例えば、トランス型ポリアセチレン、シス型ポリアセチレン、ポリ(ジ-フェニルアセチレン)(PDPA)、ポリ(アルキル,フェニルアセチレン)(PAPA)のようなポリアセチレン系化合物;ポリ(パラ-フェンビニレン)(PPV)、ポリ(2,5-ジアルコキシ-パラ-フェニレンビニレン)(RO-PPV)、シアノ-置換-ポリ(パラ-フェンビニレン)(CN-PPV)、ポリ(2-ジメチルオクチルシリル-パラ-フェニレンビニレン)(DMOS-PPV)、ポリ(2-メトキシ,5-(2’-エチルヘキソキシ)-パラ-フェニレンビニレン)(MEH-PPV)のようなポリパラフェニレンビニレン系化合物;ポリ(3-アルキルチオフェン)(PAT)、ポリ(オキシプロピレン)トリオール(POPT)のようなポリチオフェン系化合物;ポリ(9,9-ジアルキルフルオレン)(PDAF)、ポリ(ジオクチルフルオレン-アルト-ベンゾチアジアゾール)(F8BT)、α,ω-ビス[N,N’-ジ(メチルフェニル)アミノフェニル]-ポリ[9,9-ビス(2-エチルヘキシル)フルオレン-2,7-ジル](PF2/6am4)、ポリ(9,9-ジオクチル-2,7-ジビニレンフルオレニル)-オルト-コ(アントラセン-9,10-ジイル)のようなポリフルオレン系化合物;ポリ(パラ-フェニレン)(PPP)、ポリ(1,5-ジアルコキシ-パラ-フェニレン)(RO-PPP)のようなポリパラフェニレン系化合物;ポリ(N-ビニルカルバゾール)(PVK)のようなポリカルバゾール系化合物;ポリ(メチルフェニルシラン)(PMPS)、ポリ(ナフチルフェニルシラン)(PNPS)、ポリ(ビフェニリルフェニルシラン)(PBPS)のようなポリシラン系化合物;更には特願2010-230995号、特願2011-6457号に記載のホウ素化合物系高分子材料等が挙げられる。
上記発光層を形成する低分子材料としては、例えば、配位子に2,2’-ビピリジン-4,4’-ジカルボン酸を持つ、3配位のイリジウム錯体、ファクトリス(2-フェニルピリジン)イリジウム(Ir(ppy))、8-ヒドロキシキノリン アルミニウム(Alq)、トリス(4-メチル-8キノリノレート) アルミニウム(III)(Almq)、8-ヒドロキシキノリン 亜鉛(Znq)、(1,10-フェナントロリン)-トリス-(4,4,4-トリフルオロ-1-(2-チエニル)-ブタン-1,3-ジオネート)ユーロピウム(III)(Eu(TTA)(phen))、2,3,7,8,12,13,17,18-オクタエチル-21H,23H-ポルフィン プラチナム(II)のような各種金属錯体;ジスチリルベンゼン(DSB)、ジアミノジスチリルベンゼン(DADSB)のようなベンゼン系化合物;ナフタレン、ナイルレッドのようなナフタレン系化合物;フェナントレンのようなフェナントレン系化合物;クリセン、6-ニトロクリセンのようなクリセン系化合物;ペリレン、N,N’-ビス(2,5-ジ-t-ブチルフェニル)-3,4,9,10-ペリレン-ジ-カルボキシイミド(BPPC)のようなペリレン系化合物;コロネンのようなコロネン系化合物;アントラセン、ビススチリルアントラセンのようなアントラセン系化合物;ピレンのようなピレン系化合物;4-(ジ-シアノメチレン)-2-メチル-6-(パラ-ジメチルアミノスチリル)-4H-ピラン(DCM)のようなピラン系化合物;アクリジンのようなアクリジン系化合物;スチルベンのようなスチルベン系化合物;2,5-ジベンゾオキサゾールチオフェンのようなチオフェン系化合物;ベンゾオキサゾールのようなベンゾオキサゾール系化合物;ベンゾイミダゾールのようなベンゾイミダゾール系化合物;2,2’-(パラ-フェニレンジビニレン)-ビスベンゾチアゾールのようなベンゾチアゾール系化合物;ビスチリル(1,4-ジフェニル-1,3-ブタジエン)、テトラフェニルブタジエンのようなブタジエン系化合物;ナフタルイミドのようなナフタルイミド系化合物;クマリンのようなクマリン系化合物;ペリノンのようなペリノン系化合物;オキサジアゾールのようなオキサジアゾール系化合物;アルダジン系化合物;1,2,3,4,5-ペンタフェニル-1,3-シクロペンタジエン(PPCP)のようなシクロペンタジエン系化合物;キナクリドン、キナクリドンレッドのようなキナクリドン系化合物;ピロロピリジン、チアジアゾロピリジンのようなピリジン系化合物;2,2’,7,7’-テトラフェニル-9,9’-スピロビフルオレンのようなスピロ化合物;フタロシアニン(HPc)、銅フタロシアニンのような金属または無金属のフタロシアニン系化合物;更には特開2009-155325号公報および特願2010-230995号、特願2011-6458号に記載のホウ素化合物材料等が挙げられる。
上記発光層の平均厚さは、特に限定されないが、10~150nmであることが好ましい。より好ましくは、20~100nmであり、更に好ましくは、40~100nmである。
発光層の平均厚さは、低分子化合物の場合は水晶振動子膜厚計により、高分子化合物の場合は接触式段差計により測定することができる。
本発明の有機電界発光素子が、電子輸送層を有する場合、その材料としては、電子輸送層の材料として通常用いることができるいずれの化合物も用いることができ、これらを混合して用いてもよい。
電子輸送層の材料として用いることができる化合物の例としては、トリス-1,3,5-(3’-(ピリジン-3’’-イル)フェニル)ベンゼン(TmPyPhB)のようなピリジン誘導体、(2-(3-(9-カルバゾリル)フェニル)キノリン(mCQ))のようなキノリン誘導体、2-フェニル-4,6-ビス(3,5-ジピリジルフェニル)ピリミジン(BPyPPM)のようなピリミジン誘導体、ピラジン誘導体、バソフェナントロリン(BPhen)のようなフェナントロリン誘導体、2,4-ビス(4-ビフェニル)-6-(4’-(2-ピリジニル)-4-ビフェニル)-[1,3,5]トリアジン(MPT)のようなトリアジン誘導体、3-フェニル-4-(1’-ナフチル)-5-フェニル-1,2,4-トリアゾール(TAZ)のようなトリアゾール誘導体、オキサゾール誘導体、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル-1,3,4-オキサジアゾール)(PBD)のようなオキサジアゾール誘導体、2,2’,2’’-(1,3,5-ベントリイル)-トリス(1-フェニル-1-H-ベンズイミダゾール)(TPBI)のようなイミダゾール誘導体、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、ビス[2-(2-ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(Zn(BTZ))、トリス(8-ヒドロキシキノリナト)アルミニウム(Alq3)などに代表される各種金属錯体、2,5-ビス(6’-(2’,2’’-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロール(PyPySPyPy)等のシロール誘導体に代表される有機シラン誘導体等が挙げられ、これらの1種又は2種以上を用いることができる。
これらの中でも、Alqのような金属錯体、TmPyPhBのようなピリジン誘導体が好ましい。
本発明の有機電界発光素子が、正孔輸送層を有する場合、正孔輸送層として用いる正孔輸送性有機材料には、各種p型の高分子材料や、各種p型の低分子材料を単独または組み合わせて用いることができる。
p型の高分子材料(有機ポリマー)としては、例えば、ポリアリールアミン、フルオレン-アリールアミン共重合体、フルオレン-ビチオフェン共重合体、ポリ(N-ビニルカルバゾール)、ポリビニルピレン、ポリビニルアントラセン、ポリチオフェン、ポリアルキルチオフェン、ポリヘキシルチオフェン、ポリ(p-フェニレンビニレン)、ポリチニレンビニレン、ピレンホルムアルデヒド樹脂、エチルカルバゾールホルムアルデヒド樹脂またはその誘導体等が挙げられる。
またこれらの化合物は、他の化合物との混合物として用いることもできる。一例として、ポリチオフェンを含有する混合物としては、ポリ(3,4-エチレンジオキシチオフェン/スチレンスルホン酸)(PEDOT/PSS)等が挙げられる。
上記p型の低分子材料としては、例えば、1,1-ビス(4-ジ-パラ-トリアミノフェニル)シクロへキサン、1,1’-ビス(4-ジ-パラ-トリルアミノフェニル)-4-フェニル-シクロヘキサンのようなアリールシクロアルカン系化合物、4,4’,4’’-トリメチルトリフェニルアミン、N,N,N’,N’-テトラフェニル-1,1’-ビフェニル-4,4’-ジアミン、N,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-1,1’-ビフェニル-4,4’-ジアミン(TPD1)、N,N’-ジフェニル-N,N’-ビス(4-メトキシフェニル)-1,1’-ビフェニル-4,4’-ジアミン(TPD2)、N,N,N’,N’-テトラキス(4-メトキシフェニル)-1,1’-ビフェニル-4,4’-ジアミン(TPD3)、N,N’-ジ(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン(α-NPD)、TPTEのようなアリールアミン系化合物、N,N,N’,N’-テトラフェニル-パラ-フェニレンジアミン、N,N,N’,N’-テトラ(パラ-トリル)-パラ-フェニレンジアミン、N,N,N’,N’-テトラ(メタ-トリル)-メタ-フェニレンジアミン(PDA)のようなフェニレンジアミン系化合物、カルバゾール、N-イソプロピルカルバゾール、N-フェニルカルバゾールのようなカルバゾール系化合物、スチルベン、4-ジ-パラ-トリルアミノスチルベンのようなスチルベン系化合物、OZのようなオキサゾール系化合物、トリフェニルメタン、m-MTDATAのようなトリフェニルメタン系化合物、1-フェニル-3-(パラ-ジメチルアミノフェニル)ピラゾリンのようなピラゾリン系化合物、ベンジン(シクロヘキサジエン)系化合物、トリアゾールのようなトリアゾール系化合物、イミダゾールのようなイミダゾール系化合物、1,3,4-オキサジアゾール、2,5-ジ(4-ジメチルアミノフェニル)-1,3,4-オキサジアゾールのようなオキサジアゾール系化合物、アントラセン、9-(4-ジエチルアミノスチリル)アントラセンのようなアントラセン系化合物、フルオレノン、2,4,7-トリニトロ-9-フルオレノン、2,7-ビス(2-ヒドロキシ-3-(2-クロロフェニルカルバモイル)-1-ナフチルアゾ)フルオレノンのようなフルオレノン系化合物、ポリアニリンのようなアニリン系化合物、シラン系化合物、1,4-ジチオケト-3,6-ジフェニル-ピロロ-(3,4-c)ピロロピロールのようなピロール系化合物、フローレンのようなフローレン系化合物、ポルフィリン、金属テトラフェニルポルフィリンのようなポルフィリン系化合物、キナクリドンのようなキナクリドン系化合物、フタロシアニン、銅フタロシアニン、テトラ(t-ブチル)銅フタロシアニン、鉄フタロシアニンのような金属または無金属のフタロシアニン系化合物、銅ナフタロシアニン、バナジルナフタロシアニン、モノクロロガリウムナフタロシアニンのような金属または無金属のナフタロシアニン系化合物、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン、N,N,N’,N’-テトラフェニルベンジジンのようなベンジジン系化合物等が挙げられる。
本発明の有機電界発光素子が、電子輸送層や正孔輸送層を有する場合、これらの層の平均厚さは、特に限定されないが、10~150nmであることが好ましい。より好ましくは、20~100nmであり、更に好ましくは、40~100nmである。
電子輸送層や正孔輸送層の平均厚さは、低分子化合物の場合は水晶振動子膜厚計により、高分子化合物の場合は接触式段差計により測定することができる。
本発明の有機電界発光素子は、陰極から発光層までの間、陽極から発光層までの間のいずれか又は両方に金属酸化物層を有することになるが、陰極から発光層までの間との発光層から陽極までの間の両方に金属酸化物層を有することが好ましい。陰極から発光層までの間の金属酸化物層を第1の金属酸化物層、陽極から発光層までの間の金属酸化物層を第2の金属酸化物層とし、本発明の有機電界発光素子の好ましい素子の構成の一例を表すと、陰極、第1の金属酸化物層、窒素含有膜からなる層、発光層、正孔輸送層、第2の金属酸化物層、陽極がこの順に隣接して積層された構成である。なお、窒素含有膜からなる層と、発光層との間に必要に応じて電子輸送層を有していてもよい。金属酸化物層の重要性は、第1の金属酸化物層の方が高く、第2の金属酸化物層は、最低非占有分子軌道の極端に深い有機材料、例えば、HATCNでも置き換える事ができる。
上記第1の金属酸化物層は、単体の金属酸化物膜の一層からなる層、もしくは、単体又は二種類以上の金属酸化物を積層及び/又は混合した層である半導体もしくは絶縁体積層薄膜の層である。金属酸化物を構成する金属元素としては、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、インジウム、ガリウム、鉄、コバルト、ニッケル、銅、亜鉛、カドミウム、アルミニウム、ケイ素からなる群から選ばれる。これらのうち、積層又は混合金属酸化物層を構成する金属元素の少なくとも一つが、マグネシウム、アルミニウム、カルシウム、ジルコニウム、ハフニウム、ケイ素、チタン、亜鉛からなる層であることが好ましく、その中でも単体の金属酸化物ならば、酸化マグネシウム、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム、酸化ケイ素、酸化チタン、酸化亜鉛からなる群から選ばれる金属酸化物を含むことが好ましい。
上記単体又は二種類以上の金属酸化物を積層及び/又は混合した層の例としては、酸化チタン/酸化亜鉛、酸化チタン/酸化マグネシウム、酸化チタン/酸化ジルコニウム、酸化チタン/酸化アルミニウム、酸化チタン/酸化ハフニウム、酸化チタン/酸化ケイ素、酸化亜鉛/酸化マグネシウム、酸化亜鉛/酸化ジルコニウム、酸化亜鉛/酸化ハフニウム、酸化亜鉛/酸化ケイ素、酸化カルシウム/酸化アルミニウムなどの金属酸化物の組合せを積層及び/又は混合したものや、酸化チタン/酸化亜鉛/酸化マグネシウム、酸化チタン/酸化亜鉛/酸化ジルコニウム、酸化チタン/酸化亜鉛/酸化アルミニウム、酸化チタン/酸化亜鉛/酸化ハフニウム、酸化チタン/酸化亜鉛/酸化ケイ素、酸化インジウム/酸化ガリウム/酸化亜鉛などの三種の金属酸化物の組合せを積層及び/又は混合したものなどが挙げられる。これらの中には、特殊な組成として良好な特性を示す酸化物半導体であるIGZOやエレクトライドである12CaO・7Alも含まれる。
これら第1の金属酸化物層は、電子注入層ともいえ、また、電極(陰極)ともいえる。
なお、本発明においては、シート抵抗が100Ω/□より低い物は導電体、シート抵抗が100Ω/□より高い物は半導体または絶縁体として分類される。従って、透明電極として知られているITO(錫ドープ酸化インジウム)、ATO(アンチモンドープ酸化インジウム)、IZO(インジウムドープ酸化亜鉛)、AZO(アルミニウムドープ酸化亜鉛)、FTO(フッ素ドープ酸化インジウム)等の薄膜は、導電性が高く半導体または絶縁体の範疇に含まれないことから本発明の第1の金属酸化物層を構成する一層に該当しない。
上記第2の金属酸化物層を形成する金属酸化物としては、特に制限されないが、酸化バナジウム(V)、酸化モリブテン(MoO)、酸化タングステン(WO)、酸化ルテニウム(RuO)等の1種又は2種以上を用いることができる。これらの中でも、酸化バナジウム又は酸化モリブテンを主成分とするものが好ましい。第2の金属酸化物層が酸化バナジウム又は酸化モリブテンを主成分とするものにより構成されると、第2の金属酸化物層が陽極から正孔を注入して発光層又は正孔輸送層へ輸送するという正孔注入層としての機能により優れたものとなる。また、酸化バナジウム又は酸化モリブテンは、それ自体の正孔輸送性が高いため、陽極から発光層又は正孔輸送層への正孔の注入効率が低下するのを好適に防止することもできるという利点がある。より好ましくは、酸化バナジウム及び/又は酸化モリブテンから構成されるものである。
上記第1の金属酸化物層の平均厚さは、1nmから数μm程度まで許容できるが、低電圧で駆動できる有機電界発光素子とする点から、1~1000nmであることが好ましい。より好ましくは、2~100nmである。
上記第2の金属酸化物層の平均厚さは、特に限定されないが、1~1000nmであることが好ましい。より好ましくは、5~50nmである。
第1の金属酸化物層の平均厚さは、触針式段差計、分光エリプソメトリーにより測定することができる。
第2の金属酸化物層の平均厚さは、水晶振動子膜厚計により成膜時に測定することができる。
本発明の有機電界発光素子において、陽極及び陰極としては、公知の導電性材料を適宜用いることができるが、光取り出しのために少なくともいずれか一方は透明であることが好ましい。公知の透明導電性材料の例としてはITO(錫ドープ酸化インジウム)、ATO(アンチモンドープ酸化インジウム)、IZO(インジウムドープ酸化亜鉛)、AZO(アルミニウムドープ酸化亜鉛)、FTO(フッ素ドープ酸化インジウム)などが上げられる。不透明な導電性材料の例としては、カルシウム、マグネシウム、アルミニウム、錫、インジウム、銅、銀、金、白金やこれらの合金などが挙げられる。
陰極としては、この中でも、ITO、IZO、FTOが好ましい。
陽極としては、これらの中でも、Au、Ag、Alが好ましい。
上記のように、一般に陽極に用いられる金属を陰極及び陽極に用いる事ができる事から、上部電極からの光の取り出しを想定する場合(トップエミッション構造の場合)も容易に実現でき、上記電極を種々選んでそれぞれの電極に用いる事ができる。例えば、下部電極としてAl、上部電極にITOなどである。
上記陰極の平均厚さは、特に制限されないが、10~500nmであることが好ましい。より好ましくは、100~200nmである。陰極の平均厚さは、触針式段差計、分光エリプソメトリーにより測定することができる。
上記陽極の平均厚さは、特に限定されないが、10~1000nmであることが好ましい。より好ましくは、30~150nmである。また、不透過な材料を用いる場合でも、例えば平均厚さを10~30nm程度にすることで、トップエミッション型及び透明型の陽極として使用することができる。
陽極の平均厚さは、水晶振動子膜厚計により成膜時に測定することができる。
本発明の有機電界発光素子において、有機化合物から形成される層の成膜方法は特に限定されず、材料の特性に合わせて種々の方法を適宜用いることができるが、溶液にして塗布できる場合はスピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、スリットコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法等の各種塗布法を用いて成膜することができる。このうち、膜厚をより制御しやすいという点でスピンコート法やスリットコート法が好ましい。塗布しない場合や溶媒溶解性が低い場合は真空蒸着法や、ESDUS(Evaporative Spray Deposition from Ultra-dilute Solution)法などが好適な例として挙げられる。
上記有機化合物から形成される層を、有機化合物溶液を塗布して形成する場合、有機化合物を溶解するために用いる溶媒としては、例えば、硝酸、硫酸、アンモニア、過酸化水素、水、二硫化炭素、四塩化炭素、エチレンカーボネイト等の無機溶媒や、メチルエチルケトン(MEK)、アセトン、ジエチルケトン、メチルイソブチルケトン(MIBK)、メチルイソプロピルケトン(MIPK)、シクロヘキサノン等のケトン系溶媒、メタノール、エタノール、イソプロパノール、エチレングリコール、ジエチレングリコール(DEG)、グリセリン等のアルコール系溶媒、ジエチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン(DME)、1,4-ジオキサン、テトラヒドロフラン(THF)、テトラヒドロピラン(THP)、アニソール、ジエチレングリコールジメチルエーテル(ジグリム)、ジエチレングリコールエチルエーテル(カルビトール)等のエーテル系溶媒、メチルセロソルブ、エチルセロソルブ、フェニルセロソルブ等のセロソルブ系溶媒、ヘキサン、ペンタン、ヘプタン、シクロヘキサン等の脂肪族炭化水素系溶媒、トルエン、キシレン、ベンゼン等の芳香族炭化水素系溶媒、ピリジン、ピラジン、フラン、ピロール、チオフェン、メチルピロリドン等の芳香族複素環化合物系溶媒、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMA)等のアミド系溶媒、クロロベンゼン、ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン化合物系溶媒、酢酸エチル、酢酸メチル、ギ酸エチル等のエステル系溶媒、ジメチルスルホキシド(DMSO)、スルホラン等の硫黄化合物系溶媒、アセトニトリル、プロピオニトリル、アクリロニトリル等のニトリル系溶媒、ギ酸、酢酸、トリクロロ酢酸、トリフルオロ酢酸等の有機酸系溶媒のような各種有機溶媒、または、これらを含む混合溶媒等が挙げられる。
これらの中でも、溶媒としては、非極性溶媒が好適であり、例えば、キシレン、トルエン、シクロヘキシルベンゼン、ジハイドロベンゾフラン、トリメチルベンゼン、テトラメチルベンゼン等の芳香族炭化水素系溶媒、ピリジン、ピラジン、フラン、ピロール、チオフェン、メチルピロリドン等の芳香族複素環化合物系溶媒、ヘキサン、ペンタン、ヘプタン、シクロヘキサン等の脂肪族炭化水素系溶媒等が挙げられ、これらを単独または混合して用いることができる。
上記陰極、陽極、及び、酸化物層は、スパッタ法、真空蒸着法、ゾルゲル法、スプレー熱分解(SPD)法、原子層堆積(ALD)法、気相成膜法、液相成膜法等により形成することができる。陽極、陰極の形成には、金属箔の接合も用いることができる。これらの方法は各層の材料の特性に応じて選択するのが好ましく、層ごとに作製方法が異なっていても良い。第2の金属酸化物層は、これらの中でも、気相製膜法を用いて形成するのがより好ましい。気相製膜法によれば、有機化合物層の表面を壊すことなく清浄にかつ陽極と接触よく形成することができ、その結果、上述したような第2の金属酸化物層を有することによる効果がより顕著なものとなる。
本発明の有機電界発光素子の特性をさらに向上させる等の理由から、必要に応じて例えば正孔阻止層、電子阻止層などを有していてもよい。これらの層を形成するための材料としては、これらの層を形成するために通常用いられる材料を用い、また、これらの層を形成するために通常用いられる方法により層を形成することができる。
本発明の有機電界発光素子は、素子を構成する全ての層が有機化合物で構成された有機電界発光素子に比べると厳密な封止は必要ないが、必要であれば封止を施しても良い。封止工程としては、通常の方法を適宜使用できる。例えば、不活性ガス中で封止容器を接着する方法や、有機EL素子の上に直接封止膜を形成する方法などが挙げられる。これらに加えて、水分吸収材を封入する方法を併用してもよい。
本発明の有機電界発光素子は、基板上に陰極が隣接して形成される逆構造の有機電界発光素子である。本発明の有機電界発光素子は、基板がある側とは反対側に光を取り出すトップエミッション型のものであってもよく、基板がある側に光を取り出すボトムエミッション型のものであってもよい。
上記基板の材料としては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、シクロオレフィンポリマー、ポリアミド、ポリエーテルサルフォン、ポリメチルメタクリレート、ポリカーボネート、ポリアリレートのような樹脂材料や、石英ガラス、ソーダガラスのようなガラス材料等が挙げられ、これらの1種又は2種以上を用いることができる。
また、トップエミッション型の場合には、不透明基板も用いることができ、例えば、アルミナのようなセラミックス材料で構成された基板、ステンレス鋼のような金属基板の表面に酸化膜(絶縁膜)を形成したもの、樹脂材料で構成された基板等も用いることができる。
上記基板の平均厚さは、0.1~30mmであることが好ましい。より好ましくは、0.1~10mmである。
基板の平均厚さはデジタルマルチメーター、ノギスにより測定することができる。
本発明の有機電界発光素子は、陽極と陰極との間に電圧(通常は15ボルト以下)を印加することによって発光させることができる。通常は直流電圧を印加するが、交流成分が含まれていても良い。
本発明の有機電界発光素子は、有機化合物層の材料を適宜選択することによって発光色を変化させることができるし、カラーフィルター等を併用して所望の発光色を得ることもできる。そのため、表示装置の発光部位や照明装置として好適に用いることができる。特に、逆構造という特性から、酸化物TFTと組み合わせた表示装置が好適である。
このような、本発明の有機電界発光素子を備えることを特徴とする表示装置や、本発明の有機電界発光素子を備えることを特徴とする照明装置もまた、本発明の1つである。
本発明の有機電界発光素子は、上述したとおり、金属酸化物層上に窒素含有膜からなる層を有することで、電子注入特性が向上して発光効率に優れるとともに、素子の駆動安定性及び素子寿命にも優れたものとなる。このような電子注入特性向上の効果は、有機電界発光素子に限らず、太陽電池や有機半導体等の他の光電子デバイスにおいても、性能向上に寄与する有益なものである。
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「重量部」を、「%」は「質量%」を意味するものとする。
窒素含有膜の膜厚測定は、以下の方法により行った。
窒素含有膜の膜厚は極薄膜であることから、通常の接触式段差計などの測定方法では計測が難しく、X線光電子分光を用いた算出方法を用いた。本算出方法は、ケトゥル シー ポパット(Ketul C Popat)外2名「ジャーナルオブ フィジカル ケミストリー ビー(Journal of Physical Chemistry B)」108巻、2004年、pp5185でも用いられており、確立した方法である。ここでは、窒素含有膜の膜厚計算には以下の式(1)を用いた。(丸善株式会社「X線光電子分光」)
Figure JPOXMLDOC01-appb-M000001
なお、Iは未知試料の窒素1s軌道強度、I は製膜に用いた窒素含有物から成る標準試料の窒素1s軌道強度、Xはモル分率、Z’は試料表面からの深さ、λは元素iの着目する光電子の脱出深さ、λi,iは非弾性平均自由工程、Z-Zは膜厚とする。
X線光電分光測定に関しては、島津クレイトス社製(AXIS-NOVA)の光電子分光測定装置を用いて、次の条件にて行った。
X線源:AlKα
ビーム出力:100W
PassEnergy:40eV
Step:0.1eV
(有機電界発光素子の作製及び特性評価)
(実施例1)
[1]市販されている平均厚さ0.7mmのITO電極層付き透明ガラス基板1を用意した。この時、基板のITO電極2は幅2mmにパターニングされているものを用いた。この基板を超純水ですすいだ後、クリーンエースの希釈液中で5分間×2回超音波洗浄した。その後超純水中で5分間×2回超音波洗浄し、アセトン中、イソプロパノール中でそれぞれ10分間超音波洗浄後、イソプロパノール中 で5分間煮沸した。この基板をイソプロパノール中から取り出し、窒素ブローにより乾燥させ、UVオゾン洗浄を20分行った。
[2]この基板を、亜鉛金属ターゲットを持つミラトロンスパッタ装置の基板ホルダーに再度固定した。約5×10-5Paまで減圧した後、アルゴンと酸素を導入した状態でスパッタし、第1の金属酸化物層3として、膜厚約2nmの酸化亜鉛層を作成した。
この時にメタルマスクを併用して、電極取り出しのためITO電極の一部は酸化亜鉛が成膜されないようにした。
[3]この基板を超純水中で15分間超音波洗浄後、アセトン中、イソプロパノール中でそれぞれ5分間超音波洗浄し、イソプロパノール中で5分間煮沸した。この基板をイソプロパノール中から取り出し、窒素ブローにより乾燥させ、UVオゾン洗浄を20分行った。
[4]UVオゾン洗浄後の基板を窒素ブローにより除塵し、1質量%の酢酸マグネシウム溶液を1300rpm、60秒の条件でスピンコートした。その後、150℃のホットプレート上で1時間アニールを行った。
[5]アニール後の基板を超純水にてリンスし、150℃のホットプレート上で30分間アニールを行った。
[6]次に窒素含有膜の層4を形成するため、日本触媒社製ポリエチレンイミン(登録商標:エポミン)をエタノールにより0.1質量%に希釈したものを2000rpm、30秒の条件でスピンコートした。ここで用いたエポミンは重量平均分子量70000のP1000(分岐状構造)であった。
[7][6]で作製された薄膜(基板)を、大気下ホットプレート上で150℃、10分間のアニールを行った。
[8]次に、[7]の処理を行った基板を真空装置に導入し、5×10-5Pa以下まで減圧する。電子輸送層としてKHLHS-01を15nm真空蒸着法により積層した後、125℃で20分間アニールした。再度基板を真空装置に導入し、5×10-5Pa以下まで減圧した後、発光層としてα-NPD:KHLHS-04:KHLDR-03を、正孔輸送層としてα-NPDをそれぞれ順番に30nm、24nm真空蒸着法により積層した。
[9]次に、有機化合物層5の上に、第2の金属酸化物層6を形成した。ここでは、酸化モリブデンを10nm気相製膜法である真空蒸着法により形成した。
[10]次に、最終工程として第2の金属酸化物層6上に陽極7を形成した。ここでは、アルミニウムを100nm真空蒸着法により製膜した。
以上の工程[1]~[10]により、有機電界発光素子1を作製した。
[11]下記<有機電界発光素子の発光特性測定>および<有機電界発光素子の寿命特性測定>により、有機電界発光素子1の特性(電圧-輝度特性、定電流密度下(1000cd/m相当)での輝度および電圧の経時変化)を評価した。結果を図2に示した。
<有機電界発光素子の発光特性測定>
ケースレー社製の「2400型ソースメーター」により、素子への電圧印加と、電流測定を行った。トプコン社製の「BM-7」により、発光輝度を測定した。測定はアルゴン雰囲気下で行った。
<有機電界発光素子の寿命特性測定>
システム技研社製の「有機EL寿命測定装置」により、素子への電圧印加と、相対輝度測定を行った。この装置では素子に一定電流が流れるように電圧を自動的に調整しながら、フォトダイオードによる相対輝度測定が行える。測定開始時の輝度が1000cd/mになるように素子ごとに電流値を設定した。
(実施例2)
実施例1の工程[7]を以下の[7-2]に変更した以外は同様にして有機電界発光素子2を作製し、特性評価を行った。結果を図3に示した。
[7-2][6]で作製された薄膜(基板)を、窒素下ホットプレート上で150℃、10分間のアニールを行った。
(実施例3)
実施例1の工程[7]を省略した以外は同様にして有機電界発光素子3を作製し、特性評価を行った。結果を図4に示した。
(比較例1)
実施例1の工程[6]を以下の[6-2]に、工程[11]を以下の[11-2]に変更した以外は同様にして比較有機電界発光素子1を作製し、特性評価を行った。結果を図5に示した。
[6-2]次に窒素含有膜の層4を形成するため、日本触媒社製ポリエチレンイミン(登録商標:エポミン)をエタノールにより0.4質量%に希釈したものを2000rpm、30秒の条件でスピンコートした。ここで用いたエポミンは分子量70000のP1000であった。
[11-2]下記<有機電界発光素子の発光特性測定>により有機電界発光素子特性(電圧-輝度特性)を測定した。
<有機電界発光素子の発光特性測定>
ケースレー社製の「2400型ソースメーター」により、素子への電圧印加と、電流測定を行った。トプコン社製の「BM-7」により、発光輝度を測定した。測定はアルゴン雰囲気下で行った。
(実施例4)
実施例1の工程[6]を以下の[6-3]に変更した以外は同様にして有機電界発光素子4を作製し、特性評価を行った。結果を図6に示した。
[6-3]次に窒素含有膜の層4を形成するため、日本触媒社製ポリエチレンイミン(登録商標:エポミン)をエタノールにより0.1質量%に希釈したものを2000rpm、30秒の条件でスピンコートした。ここで用いたエポミンは分子量70000のP1000であった。スピンコート後の基板をエタノールでリンスした。
(実施例5)
実施例1の工程[6]を以下の[6-4]に変更した以外は同様にして有機電界発光素子5を作製し、特性評価を行った。結果を図7に示した。
[6-4]次に窒素含有膜の層4を形成するため、日本触媒社製ポリエチレンイミン(登録商標:エポミン)をエタノールにより0.1質量%に希釈したものを2000rpm、30秒の条件でスピンコートした。ここで用いたエポミンは重量平均分子量600のSP006(分岐状構造)であった。スピンコート後の基板をエタノールでリンスした。
(実施例6)
実施例1の工程[6]を以下の[6-5]に変更した以外は同様にして有機電界発光素子6を作製し、特性評価を行った。結果を図8に示した。
[6-5]次に窒素含有膜の層4を形成するため、重量平均分子量11000の直鎖状ポリエチレンイミンをエタノールにより0.1質量%に希釈したものを3000rpm、30秒の条件でスピンコートした。スピンコート後の基板をエタノールでリンスした。
(実施例7)
実施例1の工程[6]を以下の[6-6]に、工程[11]を上記[11-2]に変更し、工程[7]を省略した以外は同様にして有機電界発光素子7を作製し、特性評価を行った。結果を図9に示した。
[6-6]次に窒素含有膜の層4を形成するため、基板をジエチレントリアミンの蒸気に0.5時間さらした。
(実施例8)
実施例1の工程[6]を以下の[6-7]に、工程[11]を上記[11-2]に変更し、工程[7]を省略した以外は同様にして有機電界発光素子8を作製し、特性評価を行った。結果を図9に示した。
[6-7]次に窒素含有膜の層4を形成するため、基板をジエチレントリアミンの蒸気に4時間さらした。
(比較例2)
実施例1の工程[6][7]を省略し、工程[11]を上記[11-2]に変更した以外は同様にして比較有機電界発光素子2を作製し、特性評価を行った。結果を図9に示した。
(比較例3)
実施例1の工程[6]を以下の[6-8]に変更し、工程[7]を省略し、工程[11]を上記[11-2]に変更した以外は同様にして比較有機電界発光素子3を作製し、特性評価を行った。結果を図9に示した。
[6-8]次に窒素含有膜の層4を形成するため、基板をジエチレントリアミンの蒸気に24時間さらした。
(実施例9)
実施例1の工程[6]を以下の[6-9]に変更し、工程[7]を省略し、工程[11]を上記[11-2]に変更した以外は同様にして有機電界発光素子9を作製し、特性評価を行った。結果を図10に示した。
[6-9]次に窒素含有膜の層4を形成するため、ペンタメチルジエチレントリアミンをエタノールにより1.0質量%に希釈したものを2000rpm、30秒の条件でスピンコートした。
(実施例10)
実施例1の工程[7]を以下の[7-3]に変更した以外は同様にして有機電界発光素子10を作製し、特性評価を行った。結果を図12に示した。
[7-3][6]で作製された薄膜(基板)を、大気下ホットプレート上で150℃、2時間のアニールを行った。
(実施例11)
実施例1の工程[7]を以下の[7-4]に変更した以外は同様にして有機電界発光素子11を作製し、特性評価を行った。結果を図12に示した。
[7-4][6]で作製された薄膜(基板)を、窒素下ホットプレート上で150℃、2時間のアニールを行った。
図2~図4の結果について、以下に説明する。
これらは窒素含有膜製膜後のアニール条件が異なる素子の特性評価結果であり、図2(素子1)は大気下、図3(素子2)は窒素下、図4(素子3)はアニール工程無しの素子の結果である。それぞれ、低電圧から発光し始め、十分な輝度を実現できている。同時に、相応の寿命も実現できていることが明らかになった。また、それぞれの窒素含有膜の膜厚は、1.77、2.13、2.28nmといずれも3nm未満の薄膜であることがわかっており、3nm未満の薄膜で高性能な有機電界発光素子が実現できていることがわかる。
これらの膜厚の違いは、アニールによる膜厚現象によるものと考えられる。大気下での膜厚の大きな減少は、大気中の酸素と反応することによるものと推測される。また、窒素下でのアニールによる膜厚減少は、残留溶媒の除去ならびに加温によるポリエチレンイミンの再配列がもたらす容積減少が想像される。故に、膜厚は薄い方から、大気下、窒素下、アニール無しの順になったと考えられる。また、わずかながら、大気下の膜厚のバラツキが大きいのは、反応を伴うためと推察される。
素子1~3は、いずれもある一定の特性以上ではあるものの、その中でも特性に優劣はあり、例えば、ある電圧下での輝度、定電流駆動での素子寿命の観点からは、大気下、そして窒素下アニールとアニール無しが同等で高特性という順になっている。
次に、図5、6の結果を説明する。
図5は、図3(素子2)と同じ窒素含有膜作製の最適条件下で膜厚のみ4.50nmと厚くした、本発明の有機電界発光素子に該当しない素子(比較素子1)の結果である。発光閾値電圧が、0.5Vほど上昇し、6Vでの発光輝度は、3000cd/mほど減少していることがわかる。
図6は、逆に窒素含有膜のより薄いところを最適条件下で検討した結果である。膜厚は1.76nmと大気下でのアニールと同等程度に薄膜化できている一方、上記輝度、寿命といった特性は、図2~図5のどの例よりも高特性であることがわかる。
これらの結果から、3nm以下であれば十分に高特性の有機電界発光素子が得られるものの、その中でも、より薄膜の領域でかつ窒素下でのアニールが適していることが示された。
次に、図7と8の結果を説明する。
それぞれ重量平均分子量600の分岐上構造を持ったポリエチレンイミンと重量平均分子量11000の直鎖状構造を持ったポリエチレンイミンである。いずれも良好なEL特性を示すことがわかる。
次に、図9の結果を説明する。
図9は、ポリエチレンイミンの部分ユニットを切り出したモデル物質として、ジエチレントリアミンを製膜した素子7、8、比較素子3及び窒素含有膜を製膜しなかった比較素子2の測定結果である。製膜手法として、ここでは蒸気に晒す手法を用いた。もちろんこれに限定されることはなく、塗布膜作製で用いられるスピンコートなどの一般的な製膜手法を用いることができる。蒸気に晒す場合はその時間で膜厚を制御できる。0.5時間蒸気にさらしたもの(素子7)は、1.60nmであり、4時間蒸気にさらしたもの(素子8)は、1.82nmであり、24時間蒸気にさらしたもの(比較素子3)は、7.17nmであった。ちなみに、処理をしなかったもの(比較素子2)は0.04nmと観測されており、精度よく計測できていることが示されている。ポリエチレンイミンのスピンコート製膜でも良好であった1nm台が本材料でも良好な特性を示した。発光閾値電圧は、0.5時間の暴露がより良好なものの、6V下での輝度は、4時間の暴露の方が良好であった。この違いは膜構造の違いから来るものと推測している。一方、24時間暴露の素子は、処理なしの素子と比較しても発光閾値電圧および6V下での輝度の両面において劣っている。ここでも3nm以下の膜厚が良好であることが示された。
次に、図10の結果を説明する。
図10は、窒素含有膜を形成するモデル物資を3級アミンのみで構成したペンタメチルジエチレントリアミンに変更して、スピンコート製膜により作製した素子9の特性評価結果である。膜厚は、0.16nmと極端に薄いものの、処理なしの素子(比較素子2)と比較して、特性向上が実現できていることが証明されている。このことから、1nm未満の極端に薄い領域でも特性向上が期待できることが明らかとなった。
最後に、図11、12の結果を説明する。
図11は、実施例2および3の素子2および素子3をそれぞれ3つずつ作製して5V下での輝度を測定し、特性のばらつきを比較したものである。窒素下でのアニールの結果が、アニール無しの結果に比べて似通った値になっていることがわかる。このことは、アニールがバラツキを低減する効果があることを示唆していると考えられる。つまり、アニールによりプロセス安定性が向上していることがわかる。このことは、アニールによる再配列の効果と推察される。
図12は、プロセス安定性の高いアニールの環境依存について検討した結果である。大気下と窒素下それぞれの環境において、10分間のアニールを行った素子1、素子2と2時間のアニールを行った素子10、素子11をそれぞれ図12の欄外に記載の数作製し、5V下での輝度を比較したものである。長時間のアニールがどの環境においても良好でないことがわかる。しかしながら、大気下でのアニールのほうが大きく劣化しており、ほぼ発光しない程度にまで劣化している。その点、窒素下でのアニールでは、輝度減少はあるものの、まだ十分な輝度が発現できている。
図11および図12から窒素下でのアニールはプロセス安定性に優れているといえる。
以上のことから、ポリエチレンイミン骨格を有する低分子から高分子の材料において、0.1nmから3nm未満の薄膜領域で良好な特性を示すことが示された。
また、その中でもより薄膜が良好なこと、製膜プロセスは一般的な塗布プロセスはもちろん、それ以外の例えば気相製膜である蒸気に晒す方法などでも良好な特性を得ることが可能であることが明らかとなった。その後のプロセスとして窒素下でのアニールがプロセス安定性においても良好であることを見出した。
1:基板
2:陰極
3:第1の金属酸化物層
4:窒素含有膜の層
5:有機化合物層
6:第2の金属酸化物層
7:陽極
 
 

Claims (5)

  1. 陽極と、基板上に形成された陰極との間に複数の層が積層された構造を有する有機電界発光素子であって、
    該有機電界発光素子は、陽極と陰極との間に金属酸化物層を有し、
    該金属酸化物層に隣接して陽極側に、窒素含有膜からなり、平均厚さが0.1nm以上、3nm未満の層を有する
    ことを特徴とする有機電界発光素子。
  2. 前記窒素含有膜は、1級アミン構造を有する窒素含有化合物由来の膜であることを特徴とする請求項1に記載の有機電界発光素子。
  3. 前記窒素含有化合物は、ポリエチレンイミン又はジエチレントリアミンであることを特徴とする請求項1又は2に記載の有機電界発光素子。
  4. 前記窒素含有化合物は、分岐状構造のポリエチレンイミンであり、その重量平均分子量が100~1000であることを特徴とする請求項1又は2に記載の有機電界発光素子。
  5. 前記窒素含有膜は、窒素含有化合物を加熱により分解させることで形成されることを特徴とする請求項1~4のいずれかに記載の有機電界発光素子。
PCT/JP2018/034468 2017-09-19 2018-09-18 有機電界発光素子 WO2019059178A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18859366.9A EP3686945A4 (en) 2017-09-19 2018-09-18 ORGANIC ELECTROLUMINESCENT ELEMENT
US16/647,717 US11183639B2 (en) 2017-09-19 2018-09-18 Organic electroluminescent element
JP2019543639A JP6852172B2 (ja) 2017-09-19 2018-09-18 有機電界発光素子
CN201880059619.6A CN111095589B (zh) 2017-09-19 2018-09-18 有机电致发光元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-178914 2017-09-19
JP2017178914 2017-09-19

Publications (1)

Publication Number Publication Date
WO2019059178A1 true WO2019059178A1 (ja) 2019-03-28

Family

ID=65809784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034468 WO2019059178A1 (ja) 2017-09-19 2018-09-18 有機電界発光素子

Country Status (5)

Country Link
US (1) US11183639B2 (ja)
EP (1) EP3686945A4 (ja)
JP (1) JP6852172B2 (ja)
CN (1) CN111095589B (ja)
WO (1) WO2019059178A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029006A1 (ja) * 2019-08-13 2021-02-18 シャープ株式会社 発光素子及び発光装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210009459A1 (en) * 2019-07-12 2021-01-14 Corning Incorporated Methods for forming glass ceramic articles
CN110429202A (zh) * 2019-07-18 2019-11-08 武汉华星光电半导体显示技术有限公司 一种柔性oled显示面板、制作方法及智能穿戴设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070954A (ja) 2007-09-12 2009-04-02 Seiko Epson Corp 有機薄膜発光素子、表示装置、電子機器、及び有機薄膜発光素子の製造方法
JP2009155325A (ja) 2007-12-06 2009-07-16 Kyoto Univ 新規なホウ素化合物、それらの製造方法およびそれらを用いた機能性電子素子
JP2010230995A (ja) 2009-03-27 2010-10-14 Sumitomo Chemical Co Ltd 光消色性材料層用感光性組成物
JP2011006457A (ja) 2005-10-04 2011-01-13 Rohm & Haas Co 殺微生物組成物
JP2014168014A (ja) 2013-02-28 2014-09-11 Nippon Hoso Kyokai <Nhk> 有機電界発光素子
WO2015166562A1 (ja) * 2014-04-30 2015-11-05 国立大学法人山形大学 有機エレクトロルミネッセンス素子及びその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251639A (ja) * 2004-03-05 2005-09-15 Idemitsu Kosan Co Ltd 有機el素子及び有機el表示装置
US8698392B2 (en) * 2006-02-07 2014-04-15 Sumitomo Chemical Company, Limited Organic electroluminescent element
US20100307791A1 (en) * 2009-06-09 2010-12-09 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Electrically Conductive Polymers
JP2011119233A (ja) * 2009-11-04 2011-06-16 Canon Inc 有機el素子とそれを用いた表示装置
CN104247073B (zh) * 2012-04-16 2017-07-18 日本放送协会 有机电致发光元件及其制造方法
WO2013157451A1 (ja) * 2012-04-16 2013-10-24 日本放送協会 有機電界発光素子及びその製造方法
US9947889B2 (en) * 2012-04-23 2018-04-17 Konica Minolta Inc. Transparent electrode, electronic device, and organic electroluminescent element
JP6314838B2 (ja) * 2013-01-15 2018-04-25 コニカミノルタ株式会社 透明電極、電子デバイス、および有機電界発光素子
JP6037894B2 (ja) * 2013-02-28 2016-12-07 日本放送協会 有機エレクトロルミネッセンス素子およびその製造方法、表示装置
JP6364402B2 (ja) * 2013-02-28 2018-07-25 日本放送協会 有機電界発光素子
KR20140122655A (ko) * 2013-04-10 2014-10-20 포항공과대학교 산학협력단 역구조 유기 발광 다이오드 및 이의 제조방법
CN105723537A (zh) * 2013-08-29 2016-06-29 密歇根大学董事会 用于有机光伏器件中的缓冲层的激子阻挡处理
WO2015190550A1 (ja) * 2014-06-12 2015-12-17 シャープ株式会社 有機素子
US10464240B2 (en) * 2015-11-19 2019-11-05 The Boeing Company Induction heating cells including pressure bladders and methods of using thereof
US10256423B2 (en) * 2016-03-30 2019-04-09 Korea Institute Of Science And Technology Organic solar cell and method for fabricating the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006457A (ja) 2005-10-04 2011-01-13 Rohm & Haas Co 殺微生物組成物
JP2011006458A (ja) 2005-10-04 2011-01-13 Rohm & Haas Co 殺微生物組成物
JP2009070954A (ja) 2007-09-12 2009-04-02 Seiko Epson Corp 有機薄膜発光素子、表示装置、電子機器、及び有機薄膜発光素子の製造方法
JP2009155325A (ja) 2007-12-06 2009-07-16 Kyoto Univ 新規なホウ素化合物、それらの製造方法およびそれらを用いた機能性電子素子
JP2010230995A (ja) 2009-03-27 2010-10-14 Sumitomo Chemical Co Ltd 光消色性材料層用感光性組成物
JP2014168014A (ja) 2013-02-28 2014-09-11 Nippon Hoso Kyokai <Nhk> 有機電界発光素子
WO2015166562A1 (ja) * 2014-04-30 2015-11-05 国立大学法人山形大学 有機エレクトロルミネッセンス素子及びその製造方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
JIANSHAN CHEN, JOURNAL OF MATERIALS CHEMISTRY, vol. 22, 2012, pages 5164
KETUL C POPAT, JOURNAL OF PHYSICAL CHEMISTRY B, vol. 108, 2004, pages 5185
KIM, YOUNG-HOON ET AL.: "Polyethylene Imine as an Ideal Interlayer for Highly Efficient Inverted Polymer Light-Emitting Diodes", ADVANCED FUNCTIONAL MATERIALS, vol. 24, 10 March 2014 (2014-03-10), pages 3808 - 3814, XP001590302, DOI: doi:10.1002/adfm.201304163 *
See also references of EP3686945A4
TAKADA,MAKOTO ET AL.: "Electron injection in inverted organic light-emitting diodes with poly(ethyleneimine)electron injection layers", ORGANIC ELECTRONICS, vol. 50, 3 August 2017 (2017-08-03), pages 290 - 295, XP085198679, DOI: doi:10.1016/j.orgel.2017.07.049 *
TAO XIONG, APPLIED PHYSICS LETTERS, vol. 93, 2008, pages 123310 - 1
YINHUA ZHOU, SCIENCE, vol. 336, 2012, pages 327
YOUNG-HOON KIM, ADVANCED FUNCTIONAL MATERIALS, vol. 24, 2014, pages 3808
ZHOU, YINHUA ET AL.: "A Universal Method to Produce Low-Work Function Electrodes for Organic Electronics", SCIENCE, vol. 336, 20 April 2012 (2012-04-20), pages 327 - 332, XP055167781, DOI: doi:10.1126/science.1218829 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029006A1 (ja) * 2019-08-13 2021-02-18 シャープ株式会社 発光素子及び発光装置

Also Published As

Publication number Publication date
EP3686945A4 (en) 2021-06-23
EP3686945A1 (en) 2020-07-29
US11183639B2 (en) 2021-11-23
US20200220080A1 (en) 2020-07-09
CN111095589A (zh) 2020-05-01
JP6852172B2 (ja) 2021-03-31
CN111095589B (zh) 2022-08-09
JPWO2019059178A1 (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
JP6852172B2 (ja) 有機電界発光素子
Sworakowski et al. 4 Electrical properties of organic materials
JP6226533B2 (ja) 有機電界発光素子
WO2013157451A1 (ja) 有機電界発光素子及びその製造方法
KR102171425B1 (ko) 유기 전계 발광 소자 및 그 제조 방법
JP6037894B2 (ja) 有機エレクトロルミネッセンス素子およびその製造方法、表示装置
WO2013027735A1 (ja) 有機電界発光素子
JP2018113149A (ja) 導電膜、電極、有機エレクトロルミネッセンス素子、表示装置、照明装置および薄膜太陽電池
JP2014154715A (ja) 有機電界発光素子、表示装置および有機電界発光素子の製造方法
JP7231436B2 (ja) 有機電界発光素子
JP7251740B2 (ja) 有機電界発光素子
JP6105299B2 (ja) 有機電界発光素子用組成物、及び、有機電界発光素子
JP2020135985A (ja) 有機電界発光素子の製造方法
JP2015115405A (ja) 有機電界発光素子用重合体、及び、有機電界発光素子
JP2020027875A (ja) 有機光センサー
JP7424778B2 (ja) 発光素子
JP7475172B2 (ja) 有機電界発光素子パネル
JP2022123465A (ja) 光照射装置
JP7049888B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置
JP6212261B2 (ja) 有機電界発光素子
JP6496183B2 (ja) 有機電界発光素子、表示装置、照明装置および有機電界発光素子の製造方法
JP2014036052A (ja) 有機電界発光素子
JP2019153632A (ja) 有機電界発光素子
JP2022148843A (ja) 有機薄膜、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2014017419A (ja) 有機電界発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859366

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543639

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018859366

Country of ref document: EP

Effective date: 20200420