WO2019058892A1 - 二酸化塩素ガスの発生方法、液性組成物、ゲル状組成物、及び二酸化塩素ガス発生キット - Google Patents

二酸化塩素ガスの発生方法、液性組成物、ゲル状組成物、及び二酸化塩素ガス発生キット Download PDF

Info

Publication number
WO2019058892A1
WO2019058892A1 PCT/JP2018/031726 JP2018031726W WO2019058892A1 WO 2019058892 A1 WO2019058892 A1 WO 2019058892A1 JP 2018031726 W JP2018031726 W JP 2018031726W WO 2019058892 A1 WO2019058892 A1 WO 2019058892A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorine dioxide
dioxide gas
mass
chlorite
activation inhibitor
Prior art date
Application number
PCT/JP2018/031726
Other languages
English (en)
French (fr)
Inventor
安部幸治
安部都兼
Original Assignee
株式会社CLO2 Lab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017180688A external-priority patent/JP6366802B1/ja
Priority claimed from JP2018126230A external-priority patent/JP6433007B1/ja
Application filed by 株式会社CLO2 Lab filed Critical 株式会社CLO2 Lab
Priority to CN201880061121.3A priority Critical patent/CN111108062A/zh
Priority to AU2018334597A priority patent/AU2018334597A1/en
Priority to EP18858647.3A priority patent/EP3686155A4/en
Priority to CA3075422A priority patent/CA3075422C/en
Priority to US16/645,478 priority patent/US20200231436A1/en
Priority to KR1020207010503A priority patent/KR102470703B1/ko
Publication of WO2019058892A1 publication Critical patent/WO2019058892A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/02Oxides of chlorine
    • C01B11/022Chlorine dioxide (ClO2)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/02Oxides of chlorine
    • C01B11/022Chlorine dioxide (ClO2)
    • C01B11/023Preparation from chlorites or chlorates
    • C01B11/024Preparation from chlorites or chlorates from chlorites
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/20Gaseous substances, e.g. vapours
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/26Accessories or devices or components used for biocidal treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • A61L9/04Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air without heating
    • A61L9/046Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air without heating with the help of a non-organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • A61L9/04Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air without heating
    • A61L9/12Apparatus, e.g. holders, therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/32Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging two or more different materials which must be maintained separate prior to use in admixture
    • B65D81/3261Flexible containers having several compartments
    • B65D81/3266Flexible containers having several compartments separated by a common rupturable seal, a clip or other removable fastening device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/11Apparatus for generating biocidal substances, e.g. vaporisers, UV lamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/20Method-related aspects
    • A61L2209/21Use of chemical compounds for treating air or the like

Definitions

  • the present invention relates to a technology for generating chlorine dioxide gas in an effective and stable concentration.
  • Chlorine dioxide has strong oxidizing power, and it is known that its oxidizing action kills bacteria and decomposes malodorous components. For this reason, chlorine dioxide is widely used as a disinfectant, a deodorizing agent, an antifungal agent, or a bleaching agent. In these applications, chlorine dioxide is often used in the form of chlorine dioxide gas.
  • Patent Document 1 As an example of a method of generating chlorine dioxide gas, a method of adding an activator such as an organic acid or an inorganic acid to a chlorite aqueous solution is disclosed, for example, in Japanese Patent Application Laid-Open No. 2005-29430 (Patent Document 1). .
  • the generation amount of chlorine dioxide gas is adjusted using a gas generation regulator such as theopirite or zeolite.
  • a gas generation regulator such as theopirite or zeolite.
  • the first chlorine dioxide gas generation method is An aqueous chlorite solution, an activating agent for rapidly adjusting the pH of the aqueous chlorite solution to generate chlorine dioxide gas, and an activation inhibitor for reducing the action of the activating agent in a delayed manner Obtained by mixing the metal iodide with 0.4% by mass or less of the metal iodide and 1% by mass or less of the activation inhibitor per liter of the 1% by mass aqueous solution of the chlorite It is characterized in that chlorine dioxide gas is generated from the liquid composition quickly and at a stable concentration.
  • the second chlorine dioxide gas generation method is An aqueous chlorite solution, an activating agent for rapidly adjusting the pH of the aqueous chlorite solution to generate chlorine dioxide gas, and an activation inhibitor for reducing the action of the activating agent in a delayed manner Metal iodide and a water-absorbent resin in a proportion of 0.4% by mass or less of the metal iodide and 1% by mass or less of the activation inhibitor per liter of the 1% by mass aqueous solution of the chlorite It is characterized in that chlorine dioxide gas is rapidly and stably generated from the gel composition obtained.
  • the liquid composition according to the present invention is An aqueous chlorite solution, an activating agent for rapidly adjusting the pH of the aqueous chlorite solution to generate chlorine dioxide gas, and an activation inhibitor for reducing the action of the activating agent in a delayed manner
  • chlorine iodide gas containing 0.4% by mass or less of the metal iodide and 1% by mass or less of the activation inhibitor per liter of the 1% by mass aqueous solution of the chlorite; It is characterized in that it is generated promptly and stably.
  • the gel composition according to the present invention is An aqueous chlorite solution, an activating agent for rapidly adjusting the pH of the aqueous chlorite solution to generate chlorine dioxide gas, and an activation inhibitor for reducing the action of the activating agent in a delayed manner
  • Metal iodide and a water absorbing resin containing 0.4% by mass or less of the metal iodide and 1% by mass or less of the activation inhibitor per liter of the 1% by mass aqueous solution of the chlorite And chlorine dioxide gas is generated at an effective and stable concentration.
  • the first chlorine dioxide gas generation kit is A first drug containing an aqueous chlorite solution; And a second agent containing an activator that rapidly adjusts the pH of the chlorite aqueous solution to generate chlorine dioxide gas,
  • An activation inhibitor capable of reducing the action of the activating agent in a delayed manner, and a metal iodide are contained in either of the first agent and the second agent, respectively.
  • the metal iodide is at most 0.4% by mass, and the activation inhibitor is at most 1% by mass, per liter of the 1% by mass chlorite aqueous solution, It is characterized in that chlorine dioxide gas is generated quickly and stably at a stable concentration from a liquid composition obtained by mixing the first drug and the second drug.
  • the second chlorine dioxide gas generation kit is A first drug containing an aqueous chlorite solution; And a second agent containing a water-absorbent resin and an activator which rapidly adjusts the pH of the chlorite aqueous solution to generate chlorine dioxide gas, An activation inhibitor capable of reducing the action of the activating agent in a delayed manner, and a metal iodide are contained in either of the first agent and the second agent, respectively.
  • the metal iodide is at most 0.4% by mass, and the activation inhibitor is at most 1% by mass, per liter of the 1% by mass chlorite aqueous solution, It is characterized in that chlorine dioxide gas is generated quickly and stably at a stable concentration from a gel composition obtained by mixing the first drug and the second drug.
  • the said activation inhibitor is 0.03 mass% or more and 0.3 mass% or less per 1 L of 1 mass% said chlorite aqueous solution.
  • the said metal iodide is 0.01 mass% or more and 0.4 mass% or less per 1 L of 1 mass% said chlorite aqueous solution.
  • the mass ratio of the activation inhibitor to the metal iodide is preferably 3: 1 to 1: 3.
  • the concentration of the generated chlorine dioxide gas can be freely controlled particularly well, and the chlorine dioxide gas can be generated promptly and stably for a long period of time.
  • the activation inhibitor is preferably an alkali metal silicate or an alkaline earth metal silicate.
  • hydroxide ions can be generated by hydrolysis. Therefore, in general, the action of the activator, which often uses an acid, can be delayed by neutralization reaction, and the concentration of chlorine dioxide gas can be freely controlled.
  • the activation inhibitor is sodium silicate.
  • the concentration of chlorine dioxide gas can be freely controlled at low cost using easily available and relatively inexpensive sodium silicate.
  • the metal iodide is preferably potassium iodide.
  • the activating agent is preferably an inorganic acid or an organic acid, or a salt thereof.
  • chlorine dioxide gas can be generated quickly and appropriately at an early stage after mixing the respective components.
  • the first medicine is enclosed in a sealable first container, and the second medicine is enclosed in a sealable second container different from the first container.
  • the first drug and the second drug can be stably stored for a long time before their use.
  • the first medicine and the second medicine are enclosed in a common sealable container in a state of being separated from each other by an artificially releasable separating part.
  • the first drug and the second drug can be stably stored for a long time before their use.
  • the first drug and the second drug can be handled collectively in a common sealable container, and portability is excellent. In use, the first drug and the second drug can be easily mixed in a common sealable container simply by artificially releasing the isolation part.
  • the said isolation part is comprised by the labyrinth structure part.
  • the first medicine is enclosed in a sealable and easily breakable first container, and the second medicine is enclosed in a sealable second container together with the first container.
  • the first drug and the second drug can be stably stored for a long time before their use.
  • the first medicine enclosed in the first container can be handled collectively in the second container together with the second medicine, and the portability is excellent. In use, the first drug and the second drug can be easily mixed in the second container simply by applying an external force to break the first container.
  • the external appearance schematic diagram of the chlorine dioxide gas generation kit of 1st Embodiment A schematic diagram showing one aspect of a method of generating chlorine dioxide gas A schematic view showing an example of usage of the gel composition
  • the external appearance schematic diagram of the chlorine dioxide gas generation kit of 2nd Embodiment Enlarged cross section near the isolation area
  • a schematic diagram showing one aspect of a method of generating chlorine dioxide gas A schematic view showing an example of usage of the gel composition
  • a method of generating chlorine dioxide gas, a liquid composition, a gel composition, and a first embodiment of a chlorine dioxide gas generation kit will be described.
  • a chlorite aqueous solution, a quick-acting activator, a metal iodide, a slow-acting activation inhibitor, and optionally a water-absorbent resin are mixed. It is a method of generating chlorine dioxide gas at an effective and stable concentration.
  • This method in this embodiment, comprises a first drug 1 comprising an aqueous chlorite solution, a metal iodide, and a delayed activation inhibitor, a rapid acting activator and optionally a water absorbent resin.
  • chlorine dioxide gas generation kit K (refer FIG. 3) provided with the 2nd chemical
  • the chlorite aqueous solution is an aqueous solution containing chlorite.
  • the chlorite contained in the chlorite aqueous solution is not particularly limited as long as it is stable per se and activated by mixing with an activating agent to generate chlorine dioxide gas.
  • As the chlorite for example, alkali metal chlorite or alkali earth metal chlorite can be exemplified. Examples of the alkali metal chlorite include sodium chlorite (NaClO 2 ), potassium chlorite (KClO 2 ), or lithium chlorite (LiClO 2 ).
  • alkaline earth metal chlorite salts examples include calcium chlorite (Ca (ClO 2 ) 2 ), magnesium chlorite (Mg (ClO 2 ) 2 ), and barium chlorite (Ba (ClO 2 ) 2 ). Is illustrated. Among these, sodium chlorite can be suitably used.
  • the pH of the aqueous chlorite solution before mixing is not particularly limited, but is preferably 9 or more and 13 or less.
  • the pH of the chlorite aqueous solution is more preferably 10 or more and 12.5 or less, and still more preferably 11 or more and 12 or less. By setting it as such pH, the chlorite in a chlorite aqueous solution can be stabilized, and can be stored stably over a long period of time.
  • the pH of the chlorite aqueous solution can be adjusted by an alkaline agent.
  • an alkaline agent sodium hydroxide (NaOH) or potassium hydroxide (KOH) etc. are illustrated, for example.
  • the chlorite concentration of the chlorite aqueous solution is preferably 0.01% by mass or more and 25% by mass or less, and more preferably 0.1% by mass or more and 15% by mass or less.
  • the activating agent is one that activates chlorite in the solution to generate chlorine dioxide gas when mixed with the aqueous chlorite solution.
  • an inorganic acid or an organic acid, or those salts can be illustrated, for example.
  • inorganic acids include hydrochloric acid (HCl), carbonic acid (H 2 CO 3 ), sulfuric acid (H 2 SO 4 ), phosphoric acid (H 3 PO 4 ), or boric acid (H 3 BO 3 ).
  • Examples of salts of inorganic acids include sodium hydrogencarbonate (NaHCO 3 ), sodium dihydrogenphosphate (NaH 2 PO 4 ), and disodium hydrogenphosphate (Na 2 HPO 4 ).
  • an anhydride for example, sulfuric anhydride, pyrophosphoric acid etc.
  • sodium dihydrogen pyrophosphate etc. can be used suitably.
  • organic acid examples include acetic acid (CH 3 COOH), citric acid (H 3 (C 3 H 5 O (COO) 3 )), malic acid (COOH (CHOH) CH 2 COOH) and the like.
  • salts of organic acids include sodium acetate (CH 3 COONa), disodium citrate (Na 2 H (C 3 H 5 O (COO) 3 )), trisodium citrate (Na 3 (C 3 H 5 O) (COO) 3)), malic acid disodium (COONa (CHOH) CH 2 COONa ) , and the like.
  • the activator quickly adjusts the pH of the aqueous chlorite solution when mixed with the aqueous chlorite solution. More specifically, the activating agent rapidly lowers the pH of the aqueous chlorite solution to an acidic atmosphere. In this sense, the activating agent can be said to be "a pH adjuster that exhibits acidity rapidly.” It is preferable to set the pH of the chlorite aqueous solution to 2.5 or more and 6.8 or less.
  • the pH of the chlorite aqueous solution is more preferably 3.5 or more and 6.5 or less, and still more preferably 4.5 or more and 6.0 or less.
  • sodium metaphosphate which shows pH of 1.7 or more and 2.4 or less of 1% aqueous solution is mentioned.
  • the activating agent for rapidly adjusting the pH of the chlorite aqueous solution (here, this is referred to as "first activating agent") is separately used.
  • a second activator that adjusts the pH of the chlorite aqueous solution in a delayed manner may be combined and mixed.
  • the second activator can be said to be a "pH-regulating agent that exhibits a delayed acidity".
  • the second activator may be an inorganic or organic acid or a salt thereof that is less acidic than the first activator.
  • sodium pyrophosphate which shows pH of 3.8 or more and 4.5 or less 1% aqueous solution is mentioned.
  • the metal iodide acts as a catalyst by forming iodide ions in solution when mixed with the aqueous chlorite solution.
  • the metal iodide promotes the generation of chlorine dioxide gas at the initial mixing of the chlorite aqueous solution and the activator.
  • a metal iodide the iodide of an alkali metal and the iodide of an alkaline-earth metal can be illustrated, for example. Specifically, sodium iodide (NaI), potassium iodide (KI), magnesium iodide (Mgl 2 ), calcium iodide (CaI 2 ) and the like are exemplified. Among these, potassium iodide can be suitably used.
  • the amount of metal iodide added to the chlorite aqueous solution is 0.4 mass% or less per 1 L of 1 mass% chlorite aqueous solution (that is, per 10000 ppm chlorite).
  • the lower limit of the amount of metal iodide added is not particularly limited, but it is an amount such that the effect of promoting the generation of chlorine dioxide gas at the initial stage of mixing can be obtained ( ⁇ zero is not included). It is preferable that the addition amount of metal iodide is 0.01 mass% or more and 0.4 mass% or less per 1 L of 1 mass% chlorite aqueous solution.
  • the addition amount of a more preferable metal iodide per liter of a 1% by mass aqueous chlorite solution is 0.1% by mass or more and 0.25% by mass or less.
  • An activation inhibitor is one that slows down the action of the activating agent when mixed with the aqueous chlorite solution with the activating agent.
  • the activation inhibitor slows down the action of the activator to rapidly lower the pH of the aqueous chlorite solution.
  • the activation inhibitor may itself be capable of slowly raising the pH of the aqueous chlorite solution. In this sense, the activation inhibitor can be said to be "a pH adjuster that exhibits alkalinity in a delayed manner".
  • alkali metal silicates or alkaline earth metal silicates can be exemplified.
  • alkali metal silicate examples include lithium silicate (mLi 2 O ⁇ nSiO 2 ), sodium silicate (mNa 2 O ⁇ nSiO 2 ), or potassium silicate (mK 2 O ⁇ nSiO 2 ).
  • alkaline earth metal silicate examples include magnesium silicate (mMgO ⁇ nSiO 2 ), calcium silicate (mCaO ⁇ nSiO 2 ), and strontium silicate (mSrO ⁇ nSiO 2 ).
  • sodium silicate in particular, sodium metasilicate
  • alkali metal silicate and "alkaline earth metal silicate” include hydrates.
  • the molar ratio of the oxide of the alkali metal or alkaline earth metal to the silicon dioxide is not particularly limited, but is preferably 0.9 or more and 1.2 or less. .
  • the activation inhibitor is sodium metasilicate
  • the sodium metasilicate dissociates (hydrolyzes) in an aqueous solution as in the following formula (4).
  • sodium hydroxide (NaOH) which is formed after some time after mixing with the aqueous chlorite solution, partially neutralizes the fast-acting activator (in this example, the acid)
  • the effect of the activating agent is reduced late.
  • the rapid increase in concentration of chlorine dioxide gas in the initial stage after mixing can be suppressed, and chlorine dioxide gas can be released slowly from the initial stage.
  • metasilicic acid H 2 SiO 3
  • Meta-silicic acid is formed after some time after mixing with the chlorite aqueous solution and acts as an acid, and in this sense, the silicon dioxide (SiO 2 ) from which it is derived is It is an example of "a pH adjuster showing acidity".
  • the delayed sodium hydroxide and metasilicic acid further react as shown in the following formula (5). 2NaOH + H 2 SiO 3 ⁇ Na 2 O ⁇ SiO 2 + 2H 2 O ⁇ ⁇ ⁇ (5)
  • sodium metasilicate as an activation inhibitor transforms between the dissociated state of sodium hydroxide and metasilicic acid in aqueous solution and the recombined state (see FIG. 1). Then, in the state of being dissociated into sodium hydroxide and metasilicic acid, the pH of the chlorite aqueous solution is adjusted slowly. That is, in a state of being dissociated into sodium hydroxide and metasilicate, together metasilicate acts as a source of hydrogen ion (H +), sodium hydroxide hydroxide ions - act as a source of (OH) The pH of the aqueous chlorite solution is adjusted slowly. As a result, chlorine dioxide gas can be generated slowly, and chlorine dioxide gas can be generated at a stable concentration for a long time. In addition, chlorine dioxide gas can be generated promptly and stably at a stable concentration by using in combination with metal iodide.
  • “generated at a stable concentration” means that in a closed system, the concentration of chlorine dioxide gas generated rises slowly without a peak at the initial stage after mixing and becomes constant (see FIG. 2). Or having a peak means that the ratio of peak concentration to final concentration can be kept sufficiently low. In the latter case, the ratio of peak concentration to final concentration is, for example, preferably 1.3 or less, more preferably 1.2 or less, and still more preferably 1.1 or less. Also, “generated at a rapid effect and stable concentration” means that the concentration of chlorine dioxide gas generated rises rapidly after mixing the chlorite aqueous solution with the activator and does not have a noticeable peak. Mean to converge to the final concentration.
  • FIG. 2 in a closed system, the concentration change of chlorine dioxide gas at the time of mixing a metal iodide and an activation inhibitor with an activator in a chlorite aqueous solution is shown by a solid line. Also, for comparison, the change in concentration when only the activator is mixed without mixing the metal iodide and the activation inhibitor is shown by an alternate long and short dashed line, and the activator and the activity are not mixed with the metal iodide. The change in concentration when only the formation inhibitor is mixed is shown by a broken line.
  • the concentration of the generated chlorine dioxide gas can be freely controlled.
  • the concentration of chlorine dioxide gas generated was dependent on the concentration of chlorite, and the maximum concentration could not be controlled, but in this method, the amount of carbon dioxide is adjusted by adjusting the addition amount of the activation inhibitor.
  • the maximum concentration (preferably the final concentration) of chlorine gas can be freely controlled. Therefore, it is possible to easily generate chlorine dioxide gas having a concentration according to the purpose of use.
  • the addition amount of the activation inhibitor to the chlorite aqueous solution is 1 mass% or less per 1 L of 1 mass% chlorite aqueous solution (that is, per 10000 ppm chlorite).
  • the lower limit value of the addition amount of the activation inhibitor is not particularly limited, but is an amount such that the concentration stable gas generation effect of chlorine dioxide gas can be obtained ( ⁇ zero is not included).
  • the addition amount of the activation inhibitor is preferably 0.03% by mass or more and 0.3% by mass or less per 1 L of a 1% by mass chlorite aqueous solution.
  • the addition amount of a more preferable activation inhibitor per liter of a 1% by mass aqueous chlorite solution is 0.1% by mass or more and 0.25% by mass or less.
  • the ratio of the addition amount of metal iodide to activation inhibitor is preferably 2: 1 to 1: 2, more preferably 1.5: 1 to 1: 1.5, and 1.25 It is further more preferable that it is 1: 1 to 1: 1.25.
  • the water absorbing resin absorbs water to form a gel-like composition.
  • a water absorbing resin for example, a starch based water absorbing resin, a cellulose based water absorbing resin, or a synthetic polymer based water absorbing resin can be exemplified.
  • starch-based water-absorbing resins include starch-acrylonitrile graft copolymers and starch-acrylic acid graft copolymers.
  • the cellulose-based water absorbent resin include cellulose-acrylonitrile graft copolymer, crosslinked carboxymethyl cellulose and the like.
  • the synthetic polymer-based water-absorbing resin include polyvinyl alcohol-based water-absorbing resins and acrylic water-absorbing resins.
  • the activator, the metal iodide, the activation inhibitor, and the water absorbing resin may be solid (for example, in the form of powder or granules) before mixing with the chlorite aqueous solution. Also, the activator, metal iodide, and activation inhibitor may be soluble when mixed with the chlorite aqueous solution.
  • the chlorine dioxide gas generation method of this embodiment can be implemented using a chlorine dioxide gas generation kit K shown in FIG.
  • the chlorine dioxide gas generation kit K includes a first drug 1 containing a chlorite aqueous solution, a metal iodide, and a delayed activation inhibitor, and a second drug 2 including a rapid acting activator and a water absorbing resin.
  • the first medicine 1 and the second medicine 2 are each enclosed in a sealable container.
  • the first medicine 1 (a liquid solution of chlorite dissolved with metal iodide and an activation inhibitor) composed of liquid is contained in the first container 10 mainly made of the container body 11 made of plastic. It is done.
  • the first container 10 has a sealing lid 12, and the first medicine 1 is enclosed in the sealing first container 10 by liquid-tightly attaching the sealing lid 12 to the container body 11. There is.
  • medical agent 2 an activator and a water absorbing resin
  • the second container 20 may be one obtained by laminating two plastic films and welding the entire peripheral part, or one plastic film may be folded in half and the peripheral parts other than the folded portion may be It may be welded.
  • the second medicine 2 is enclosed in the sealable second container 20 separate from the first container 10.
  • the 1st container 10 and the 2nd container 20 are airtight containers, the material, a shape, etc. will not be restrict
  • the first container 10 and the second container 20 are not limited to plastic but may be metal, for example.
  • the first container 10 is not limited to the one having the fixed shape, but may have flexibility
  • the second container 20 is not limited to the one having the flexibility, but has the fixed shape.
  • the first medicine 1 and the second medicine 2 may be stored in an integrated container having two storage chambers, and may be configured to be able to be mixed by communicating the two storage chambers at the time of use.
  • the first medicine 1 is distributed in the state of a chlorite aqueous solution, so that the storage safety is excellent. For example, compared with the case where the chlorite aqueous solution in which chlorine dioxide gas is dissolved is circulated while maintaining the pH of the acid, the storage safety is high.
  • the following procedure may be performed. That is, as shown in FIG. 4, in the first container 10 containing the first medicine 1, the sealing lid 12 is removed from the container main body 11. In the second container 20 containing the second medicine 2, the plastic film is cut and opened. Then, by mixing the second medicine 2 in the second container 20 into the first container 10 (container body 11), the first medicine 1 and the second medicine 2 are mixed. Thus, in the first container 10 (container main body 11), the chlorite aqueous solution in which the metal iodide and the delayed activation inhibitor are dissolved, the rapid acting activator, and the water absorbing resin are mixed. . That is, in the first container 10 (container main body 11), as a whole, the chlorite aqueous solution, the quick acting activator, the metal iodide, the slow acting activation inhibitor, and the water absorbing resin Mix.
  • the content is gelled in the first container 10 (container main body 11), and chlorine dioxide gas is generated at an effective and stable concentration from the gel composition 3 (see FIG. 5) obtained.
  • an open lid 14 having a plurality of openings 15 is attached to the container body 11, the generated chlorine dioxide gas passes through the openings 15 and is released into the room. Therefore, the strong oxidizing power of chlorine dioxide gas released quickly and efficiently can bring about a bactericidal effect, a deodorizing effect, etc. at the time of use, and chlorine dioxide gas released at a stable concentration for a long time It is possible to bring about a sterilizing effect, a deodorizing effect, etc. stably over the whole.
  • the second drug 2 may be mixed with only the chlorite aqueous solution, the quick acting activator, the metal iodide, and the slow acting activation inhibitor, without including the water absorbing resin.
  • chlorine dioxide gas can be rapidly and stably generated from the resulting liquid composition.
  • the strong oxidizing power of chlorine dioxide gas released slowly and stably at a stable concentration enables the bactericidal effect, the deodorizing effect, etc., quickly and at the time of use and stably for a long time. Can bring
  • Second Embodiment A second embodiment of a chlorine dioxide gas generation method, a liquid composition, a gel composition, and a chlorine dioxide gas generation kit will be described.
  • a chlorite aqueous solution, a fast acting activator, a metal iodide, a slow acting activation inhibitor, and a first drug 1 and a second drug 2 of the chlorine dioxide gas generation kit K, and Allocation of the water absorbing resin is different from that of the first embodiment.
  • the specific configuration of the container of the chlorine dioxide gas generation kit K is different from that of the first embodiment.
  • differences from the first embodiment will be mainly described for the chlorine dioxide gas generation kit K of the present embodiment.
  • the chlorine dioxide gas generation kit K of the present embodiment contains the first drug 1 containing a chlorite aqueous solution, a rapid-acting activator, a metal iodide, a slow-acting activation inhibitor, and a water absorbing resin. And the second medicine 2. As shown in FIG. 6, they are enclosed in a common sealable container 30.
  • the container 30 is configured using a gas permeable film.
  • the container 30 may be a stack of two gas permeable films and the entire peripheral edge may be welded, or one gas permeable film may be folded in half and the peripheral edge other than the folded portion The part may be welded.
  • the isolation portion 31 is configured by a labyrinth structure portion in which the gas permeable films constituting the container 30 are folded back in multiple layers.
  • the inner surface of the gas-permeable film in the labyrinth structure having a labyrinth shape may be easily releasably bonded by, for example, an easy peel seal or the like.
  • the separation part 31 (labyrinth structure part) is held by a holding member 35 made of, for example, a clip.
  • the separation portion 31 is crimped from the outside, and the first storage chamber 32 and the second storage chamber 33 are maintained in a separated state. Therefore, the first drug 1 and the second drug 2 can be stably stored for a long time before their use.
  • the following procedure may be performed. That is, as shown in FIG. 8, first, the holding member 35 holding the separation unit 31 is removed from the container 30 by artificial operation. Thereafter, the folded back portion is extended to release the labyrinth structure of the separation portion 31. Then, an external force is applied from the outside of the container 30, and the first medicine 1 stored in the first storage chamber 32 and the second medicine 2 stored in the second storage chamber 33 are mixed inside the container 30. Do. Then, the contents are gelled in the container 30, and chlorine dioxide gas is generated at an effective and stable concentration from the resulting gel composition 3 (see FIG. 9).
  • the container 30 is made of a gas permeable film, the generated chlorine dioxide gas permeates the container 30 and is released into the room. Therefore, the strong oxidizing power of chlorine dioxide gas released slowly and stably at a stable concentration can provide a bactericidal effect, a deodorizing effect, etc. quickly and at the time of use and stably over a long period of time .
  • the second drug 2 may be mixed with only the chlorite aqueous solution, the quick acting activator, the metal iodide, and the slow acting activation inhibitor, without including the water absorbing resin.
  • chlorine dioxide gas can be rapidly and stably generated from the resulting liquid composition.
  • the strong oxidizing power of chlorine dioxide gas released slowly and stably at a stable concentration enables the bactericidal effect, the deodorizing effect, etc., quickly and at the time of use and stably for a long time. Can bring
  • a third embodiment of a chlorine dioxide gas generation method, a liquid composition, a gel composition, and a chlorine dioxide gas generation kit will be described.
  • a chlorite aqueous solution, a fast acting activator, a metal iodide, a slow acting activation inhibitor, and a first drug 1 and a second drug 2 of the chlorine dioxide gas generation kit K, and Allocation of the water absorbent resin is different from the first embodiment and the second embodiment.
  • the specific configuration of the container of the chlorine dioxide gas generation kit K is different from the first embodiment and the second embodiment.
  • differences from the first embodiment will be mainly described for the chlorine dioxide gas generation kit K of the present embodiment.
  • the chlorine dioxide gas generation kit K of the present embodiment contains the first drug 1 containing a chlorite aqueous solution and a metal iodide, a rapid-acting activator, a slow-acting activation inhibitor, and a water-absorbent resin. And the second medicine 2. As shown in FIG. 10, the first medicine 1 is enclosed in the first container 10, and the second medicine 2 is enclosed in the second container 20 together with the first container 10.
  • the first container 10 is configured by, for example, bonding a plastic film.
  • the first container 10 may be a stack of two plastic films and easy-peel-sealed on the entire peripheral edge, or a single plastic film may be folded in half and the peripheral edge other than the folded portion It may be an easy peel seal.
  • the first medicine 1 is enclosed in the sealable and easily breakable first container 10.
  • the second container 20 is configured using a gas permeable film.
  • the second container 20 may be a stack of two sheets of gas permeable films and the entire peripheral edge may be welded, or one sheet of the gas permeable film may be folded in half and not folded back. The peripheral edge portion of may be welded.
  • the second medicine 2 is enclosed in the sealable and gas-permeable second container 20 together with the first container 10.
  • the following procedure may be performed. That is, an external force is applied to the area where the first container 10 exists from the outside of the second container 20, and the first container 10 is broken inside the second container 20.
  • the easy peel portion in the first container 10 is exfoliated by external pressure, and the first medicine 1 (a chlorite aqueous solution in which metal iodide is dissolved) composed of a liquid is released from the first container 10.
  • chlorine dioxide gas is generated from the gel-like composition obtained by mixing the first drug 1 and the second drug 2 in a rapid and stable concentration.
  • the second container 20 is made of a gas permeable film, the generated chlorine dioxide gas permeates the second container 20 and is released into the room. Therefore, the strong oxidizing power of chlorine dioxide gas released slowly and stably at a stable concentration can provide a bactericidal effect, a deodorizing effect, etc. quickly and at the time of use and stably over a long period of time .
  • the second drug 2 may be mixed with only the chlorite aqueous solution, the quick acting activator, the metal iodide, and the slow acting activation inhibitor, without including the water absorbing resin.
  • chlorine dioxide gas can be rapidly and stably generated from the resulting liquid composition.
  • the strong oxidizing power of chlorine dioxide gas released slowly and stably at a stable concentration enables the bactericidal effect, the deodorizing effect, etc., quickly and at the time of use and stably for a long time. Can bring
  • Example 1 Sodium chlorite was dissolved in pure water to prepare 100 g of a 4000 ppm aqueous solution of sodium chlorite.
  • aqueous solution of sodium chlorite 1.71 g of 7.3% hydrochloric acid as an activator, 0.15 g of potassium iodide and 0.11 g of sodium silicate pentahydrate as an activation inhibitor were mixed. .
  • the mass% of potassium iodide and sodium silicate pentahydrate in the mixed solution is 0.37% each in terms of 1 L by mass of the aqueous solution of chlorite (that is, 10000 ppm of chlorite). It was 0.27%.
  • the mixture was stored in a sealed state at normal temperature, and the pH of the mixture and the concentration of generated chlorine dioxide gas were measured in a closed system.
  • Example 2 Sodium chlorite was dissolved in pure water to prepare 100 g of a 4000 ppm aqueous solution of sodium chlorite.
  • aqueous solution of sodium chlorite 1.71 g of 7.3% hydrochloric acid as an activator, 0.08 g of potassium iodide and 0.2 g of sodium silicate pentahydrate as an activation inhibitor were mixed. .
  • The% by mass of potassium iodide and sodium silicate pentahydrate in the mixed solution is 0.2% each when converted to 1% by mass of 1% by mass chlorite aqueous solution (that is, per 10000 ppm chlorite). It was 0.5%.
  • the mixture was stored in a sealed state at normal temperature, and the pH of the mixture and the concentration of generated chlorine dioxide gas were measured in a closed system.
  • Example 3 Sodium chlorite was dissolved in pure water to prepare 100 g of a 4000 ppm aqueous solution of sodium chlorite.
  • aqueous sodium chlorite solution 2 g of phosphoric acid as an activator, 0.1 g of potassium iodide and 0.11 g of sodium silicate pentahydrate as an activation inhibitor were mixed.
  • The% by mass of potassium iodide and sodium silicate pentahydrate in the mixture solution is 0.25%, respectively, per 1 L of 1% by mass aqueous chlorite solution (that is, per 10000 ppm of chlorite). It was 0.27%.
  • the mixture was stored in a sealed state at normal temperature, and the pH of the mixture and the concentration of generated chlorine dioxide gas were measured in a closed system.
  • Example 4 Sodium chlorite was dissolved in pure water to prepare 100 g of an 11250 ppm aqueous solution of sodium chlorite. To this aqueous solution of sodium chlorite, 1.16 g of phosphoric acid as an activator, 0.1 g of potassium iodide and 0.05 g of sodium silicate pentahydrate as an activation inhibitor were mixed. The mass% of potassium iodide and sodium silicate pentahydrate in the mixture is 0.09%, respectively, per liter of 1% by mass of the chlorite aqueous solution (that is, per 10000 ppm of chlorite). It was 0.04%. Thereafter, the mixture was stored in a sealed state at normal temperature, and the pH of the mixture and the concentration of generated chlorine dioxide gas were measured in a closed system.
  • Example 5 Sodium chlorite was dissolved in pure water to prepare 100 g of a 120000 ppm aqueous solution of sodium chlorite.
  • aqueous solution of sodium chlorite 6.3 g of phosphoric acid as an activator, 0.1 g of potassium iodide and 1.19 g of sodium silicate pentahydrate as an activation inhibitor were mixed.
  • The% by mass of potassium iodide and sodium silicate pentahydrate in the mixed solution is 0.01% respectively when converted to 1% by mass of a 1% by mass aqueous chlorite solution (that is, per 10000 ppm of chlorite). It was 0.1%.
  • the mixed solution was stored in a sealed state at normal temperature, and the pH of the mixed solution and the concentration of generated chlorine dioxide gas were measured in an open system.
  • Example 6 Sodium chlorite was dissolved in pure water to prepare 100 g of a 120000 ppm aqueous solution of sodium chlorite.
  • aqueous solution of sodium chlorite 6.3 g of phosphoric acid as an activator, 0.25 g of potassium iodide and 1.19 g of sodium silicate pentahydrate as an activation inhibitor were mixed.
  • The% by mass of potassium iodide and sodium silicate pentahydrate in the mixture solution is 0.02% respectively when converted to 1% by mass of a 1% by mass aqueous solution of chlorite (that is, per 10000 ppm of chlorite). It was 0.1%.
  • the mixed solution was stored in a sealed state at normal temperature, and the pH of the mixed solution and the concentration of generated chlorine dioxide gas were measured in an open system.
  • Example 7 Sodium chlorite was dissolved in pure water to prepare 100 g of a 120000 ppm aqueous solution of sodium chlorite.
  • aqueous solution of sodium chlorite 6.3 g of phosphoric acid as an activator, 0.5 g of potassium iodide and 1.19 g of sodium silicate pentahydrate as an activation inhibitor were mixed.
  • the mass% of potassium iodide and sodium silicate pentahydrate in the mixed solution is 0.04% each when converted to 1 mass% of an aqueous solution of chlorite (that is, 10000 ppm of chlorite). It was 0.1%.
  • the mixed solution was stored in a sealed state at normal temperature, and the pH of the mixed solution and the concentration of generated chlorine dioxide gas were measured in an open system.
  • Example 8 Sodium chlorite was dissolved in pure water to prepare 100 g of a 120000 ppm aqueous solution of sodium chlorite.
  • aqueous solution of sodium chlorite 6.3 g of phosphoric acid as an activator, 1 g of potassium iodide and 1.19 g of sodium silicate pentahydrate as an activation inhibitor were mixed.
  • the percentages by mass of potassium iodide and sodium silicate pentahydrate in the mixture solution are respectively 0.08% when converted to 1% by mass of 1% by mass chlorite aqueous solution (that is, per 10000 ppm chlorite). It was 0.1%.
  • the mixed solution was stored in a sealed state at normal temperature, and the pH of the mixed solution and the concentration of generated chlorine dioxide gas were measured in an open system.
  • Comparative Example 1 Sodium chlorite was dissolved in pure water to prepare 100 g of a 4000 ppm aqueous solution of sodium chlorite. To this aqueous solution of sodium chlorite, 1.71 g of 7.3% hydrochloric acid as an activator and 0.11 g of sodium silicate pentahydrate as an activation inhibitor were mixed. The mass% of sodium silicate pentahydrate in the mixed solution was 0.27% when converted to 1 mass% of an aqueous solution of chlorite in 1 mass% (that is, per 10000 ppm of chlorite). Thereafter, the mixture was stored in a sealed state at normal temperature, and the pH of the mixture and the concentration of generated chlorine dioxide gas were measured in a closed system.
  • Comparative Example 2 Sodium chlorite was dissolved in pure water to prepare 100 g of a 4000 ppm aqueous solution of sodium chlorite. To this aqueous solution of sodium chlorite, 1.71 g of 7.3% hydrochloric acid as an activator and 0.15 g of potassium iodide were mixed. The mass% of potassium iodide in the liquid mixture was 0.37% when converted to 1 L of 1 mass% aqueous chlorite solution (that is, per 10000 ppm of chlorite). Thereafter, the mixture was stored in a sealed state at normal temperature, and the pH of the mixture and the concentration of generated chlorine dioxide gas were measured in a closed system.
  • Comparative Example 3 Sodium chlorite was dissolved in pure water to prepare 100 g of a 4000 ppm aqueous solution of sodium chlorite. In this aqueous solution of sodium chlorite, 2 g of phosphoric acid as an activator and 0.11 g of sodium silicate pentahydrate as an activation inhibitor were mixed. The mass% of sodium silicate pentahydrate in the mixed solution was 0.27% when converted to 1 mass% of an aqueous solution of chlorite in 1 mass% (that is, per 10000 ppm of chlorite). Thereafter, the mixture was stored in a sealed state at normal temperature, and the pH of the mixture and the concentration of generated chlorine dioxide gas were measured in a closed system.
  • Comparative Example 4 Sodium chlorite was dissolved in pure water to prepare 100 g of a 4000 ppm aqueous solution of sodium chlorite. To this aqueous solution of sodium chlorite, 2 g of phosphoric acid as an activator and 0.1 g of potassium iodide were mixed. The mass% of potassium iodide in the liquid mixture was 0.25% when converted to 1 L of 1 mass% aqueous chlorite solution (that is, per 10000 ppm of chlorite). Thereafter, the mixture was stored in a sealed state at normal temperature, and the pH of the mixture and the concentration of generated chlorine dioxide gas were measured in a closed system.
  • Comparative Example 5 Sodium chlorite was dissolved in pure water to prepare 100 g of an 11250 ppm aqueous solution of sodium chlorite. To this aqueous solution of sodium chlorite, 1.16 g of phosphoric acid as an activator and 0.05 g of sodium silicate pentahydrate as an activation inhibitor were mixed. The mass% of sodium silicate pentahydrate in the mixed solution was 0.04% when converted to 1 mass% of an aqueous solution of chlorite (that is, 10000 ppm of chlorite). Thereafter, the mixture was stored in a sealed state at normal temperature, and the pH of the mixture and the concentration of generated chlorine dioxide gas were measured in a closed system.
  • Comparative Example 6 Sodium chlorite was dissolved in pure water to prepare 100 g of an 11250 ppm aqueous solution of sodium chlorite. To this aqueous solution of sodium chlorite, 1.16 g of phosphoric acid as an activating agent and 0.1 g of potassium iodide were mixed. The mass% of potassium iodide in the mixed solution was 0.09% when converted to 1 L of 1 mass% aqueous chlorite solution (that is, per 10000 ppm of chlorite). Thereafter, the mixture was stored in a sealed state at normal temperature, and the pH of the mixture and the concentration of generated chlorine dioxide gas were measured in a closed system.
  • Comparative Example 7 Sodium chlorite was dissolved in pure water to prepare 100 g of an 11250 ppm aqueous solution of sodium chlorite. To this aqueous solution of sodium chlorite, 3.01 g of 7.3% hydrochloric acid as an activator, 0.5 g of potassium iodide and 2 g of sodium silicate pentahydrate as an activation inhibitor were mixed. The mass% of potassium iodide and sodium silicate pentahydrate in the mixed solution is 0.44% each in terms of 1 L by mass of the aqueous solution of chlorite (that is, 10000 ppm of chlorite). It was 1.78%. Thereafter, the mixture was stored in a sealed state at normal temperature, and the pH of the mixture and the concentration of generated chlorine dioxide gas were measured in a closed system.
  • Comparative Example 1 In Comparative Example 1 in which potassium iodide is not mixed, the generation of chlorine dioxide gas in the initial stage (particularly within 30 minutes) after mixing is slow, and in Comparative Example 2 in which sodium silicate pentahydrate is not mixed, After a long time (especially after 7 days), the concentration of chlorine dioxide gas was unstable. On the other hand, in Examples 1 and 2 in which both potassium iodide and sodium silicate pentahydrate were mixed, chlorine dioxide gas was released at a stable concentration over a long period from the initial stage after mixing. Was confirmed.
  • Example 3 In Comparative Example 3 in which potassium iodide is not mixed, the generation of chlorine dioxide gas is slow, and in Comparative Example 4 in which sodium silicate pentahydrate is not mixed, chlorine dioxide after a long time (especially after 7 days) The concentration of gas was unstable.
  • Example 3 in which both potassium iodide and sodium silicate pentahydrate were mixed, although using a weak acid as an activating agent, it was rapid from the initial stage (approximately within 10 minutes) after mixing It was confirmed that chlorine dioxide gas was released. In addition, it was confirmed that chlorine dioxide gas was released at a stable concentration over a long period of time thereafter.
  • Example 5 In Comparative Example 5 in which potassium iodide is not mixed, generation of chlorine dioxide gas is slow, and in Comparative Example 6 in which sodium silicate pentahydrate is not mixed, after a predetermined time has elapsed (after 24 hours has elapsed) The concentration of chlorine dioxide gas was unstable.
  • Example 4 in which both potassium iodide and sodium silicate pentahydrate were mixed, although using a weak acid as an activator, it was rapid from the very early stage after mixing (within 1 minute) It was confirmed that chlorine dioxide gas was released. In addition, it was confirmed that chlorine dioxide gas was released at a stable concentration over a long period of time thereafter.
  • the first drug 1 comprises a chlorite aqueous solution and a delayed activation inhibitor
  • the second drug 2 comprises a rapid-acting activator, a metal iodide, and a water absorbing resin. Also good.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

亜塩素酸塩水溶液と、亜塩素酸塩水溶液のpHを速効的に調整する活性化剤と、活性化剤の作用を遅効的に低減させる活性化抑制剤と、金属ヨウ化物とを、1質量%の亜塩素酸塩水溶液1L当たり金属ヨウ化物を0.4質量%以下かつ活性化抑制剤を1質量%以下の割合で混合して、得られる液性組成物から二酸化塩素ガスを即効的にかつ安定的濃度で発生させる。

Description

二酸化塩素ガスの発生方法、液性組成物、ゲル状組成物、及び二酸化塩素ガス発生キット
 本発明は、二酸化塩素ガスを即効的にかつ安定的濃度で発生させる技術に関する。
 二酸化塩素は強い酸化力を有しており、その酸化作用によって除菌したり悪臭成分を分解したりすることが知られている。このため、二酸化塩素は、除菌剤、脱臭剤、防カビ剤、又は漂白剤等として広く使用されている。これらの用途では、二酸化塩素は二酸化塩素ガスの形態で用いられる場合が多い。
 二酸化塩素ガスの発生方法の一例として、亜塩素酸塩水溶液に有機酸又は無機酸等の活性化剤を添加する方法が、例えば特開2005-29430号公報(特許文献1)に開示されている。この特許文献1の方法では、セオピライトやゼオライト等のガス発生調節剤を用いて、二酸化塩素ガスの発生量を調整している。特許文献1には具体的な記載はないが、セオピライトやゼオライトは多孔質であるため、ガス発生量が多い場合に過剰なガスをガス発生調節剤の内部に保持し、ガス発生量が少ない場合に保持していたガスを放出することによってガス発生量を調整していると推察される。
 しかしながら、物理的吸着作用によってだけではガス発生量を十分に調整することができず、亜塩素酸塩水溶液への活性化剤の添加後の二酸化塩素ガス濃度の急激な上昇を十分に抑えることができない。このため、特許文献1では二酸化塩素ガスを持続的に発生させることを謳っているものの、その効果は限定的であると言わざるを得なかった。活性化剤として弱酸を用いれば、二酸化塩素ガスの急激な濃度上昇は抑えられるものの、最大濃度に到達するまでに時間を要し即効性に欠けるという欠点があった。また、発生する二酸化塩素ガスの濃度は亜塩素酸塩の濃度のみに依存し、最大濃度を制御することはできなかった。
特開2005-29430号公報
 発生する二酸化塩素ガスの濃度を自在に制御可能とするとともに、二酸化塩素ガスを即効的にかつ長期に亘って安定的に発生させることができるようにすることが望まれている。
 本発明に係る第1の二酸化塩素ガスの発生方法は、
 亜塩素酸塩水溶液と、前記亜塩素酸塩水溶液のpHを速効的に調整して二酸化塩素ガスを発生させる活性化剤と、前記活性化剤の作用を遅効的に低減させる活性化抑制剤と、金属ヨウ化物とを、1質量%の前記亜塩素酸塩水溶液1L当たり前記金属ヨウ化物を0.4質量%以下かつ前記活性化抑制剤を1質量%以下の割合で混合して、得られる液性組成物から二酸化塩素ガスを即効的にかつ安定的濃度で発生させることを特徴とする。
 本発明に係る第2の二酸化塩素ガスの発生方法は、
 亜塩素酸塩水溶液と、前記亜塩素酸塩水溶液のpHを速効的に調整して二酸化塩素ガスを発生させる活性化剤と、前記活性化剤の作用を遅効的に低減させる活性化抑制剤と、金属ヨウ化物と、吸水性樹脂とを、1質量%の前記亜塩素酸塩水溶液1L当たり前記金属ヨウ化物を0.4質量%以下かつ前記活性化抑制剤を1質量%以下の割合で混合して、得られるゲル状組成物から二酸化塩素ガスを即効的にかつ安定的濃度で発生させることを特徴とする。
 本発明に係る液性組成物は、
 亜塩素酸塩水溶液と、前記亜塩素酸塩水溶液のpHを速効的に調整して二酸化塩素ガスを発生させる活性化剤と、前記活性化剤の作用を遅効的に低減させる活性化抑制剤と、金属ヨウ化物とを、1質量%の前記亜塩素酸塩水溶液1L当たり前記金属ヨウ化物を0.4質量%以下かつ前記活性化抑制剤を1質量%以下の割合で含み、二酸化塩素ガスを即効的にかつ安定的濃度で発生させることを特徴とする。
 本発明に係るゲル状組成物は、
 亜塩素酸塩水溶液と、前記亜塩素酸塩水溶液のpHを速効的に調整して二酸化塩素ガスを発生させる活性化剤と、前記活性化剤の作用を遅効的に低減させる活性化抑制剤と、金属ヨウ化物と、吸水性樹脂とを、1質量%の前記亜塩素酸塩水溶液1L当たり前記金属ヨウ化物を0.4質量%以下かつ前記活性化抑制剤を1質量%以下の割合で含み、二酸化塩素ガスを即効的にかつ安定的濃度で発生させることを特徴とする。
 本発明に係る第1の二酸化塩素ガス発生キットは、
 亜塩素酸塩水溶液を含む第一薬剤と、
 前記亜塩素酸塩水溶液のpHを速効的に調整して二酸化塩素ガスを発生させる活性化剤含む第二薬剤と、を備え、
 前記活性化剤の作用を遅効的に低減させる活性化抑制剤と、金属ヨウ化物とが、それぞれ、前記第一薬剤及び前記第二薬剤のいずれかに含まれており、
 1質量%の前記亜塩素酸塩水溶液1L当たり、前記金属ヨウ化物は0.4質量%以下であり、前記活性化抑制剤は1質量%以下であり、
 前記第一薬剤と前記第二薬剤とを混合して得られる液性組成物から二酸化塩素ガスを即効的にかつ安定的濃度で発生させることを特徴とする。
 本発明に係る第2の二酸化塩素ガス発生キットは、
 亜塩素酸塩水溶液を含む第一薬剤と、
 前記亜塩素酸塩水溶液のpHを速効的に調整して二酸化塩素ガスを発生させる活性化剤及び吸水性樹脂を含む第二薬剤と、を備え、
 前記活性化剤の作用を遅効的に低減させる活性化抑制剤と、金属ヨウ化物とが、それぞれ、前記第一薬剤及び前記第二薬剤のいずれかに含まれており、
 1質量%の前記亜塩素酸塩水溶液1L当たり、前記金属ヨウ化物は0.4質量%以下であり、前記活性化抑制剤は1質量%以下であり、
 前記第一薬剤と前記第二薬剤とを混合して得られるゲル状組成物から二酸化塩素ガスを即効的にかつ安定的濃度で発生させることを特徴とする。
 これらの構成によれば、各成分を混合させたとき、活性化剤が速効的に働くことによって二酸化塩素ガスが速やかに発生する。このとき、0.4質量%以下の金属ヨウ化物が触媒として働き、混合初期における二酸化塩素ガスの発生が促進される。よって、活性化剤として例えば弱酸を用いる場合であっても、二酸化塩素ガスが最大濃度に到達するまでの時間を短縮することができる。その後、1質量%以下の活性化抑制剤が遅効的に働くことによって活性化剤の作用を低減させることで、二酸化塩素ガスの発生が緩慢となる。これにより、混合後初期段階で二酸化塩素ガスを即効的に発生させつつ、その急激な濃度上昇が抑制され、二酸化塩素ガスが徐放されるようになる。従って、二酸化塩素ガスを即効的にかつ長期に亘って安定的に発生させることができる。また、活性化抑制剤の添加量を調整することで、発生する二酸化塩素ガスの濃度を自在に制御することができる。
 以下、本発明の好適な態様について説明する。但し、以下に記載する好適な態様例によって、本発明の範囲が限定される訳ではない。
 一態様として、
 1質量%の前記亜塩素酸塩水溶液1L当たり、前記活性化抑制剤が0.03質量%以上0.3質量%以下であることが好ましい。
 一態様として、
 1質量%の前記亜塩素酸塩水溶液1L当たり、前記金属ヨウ化物が0.01質量%以上0.4質量%以下であることが好ましい。
 一態様として、
 前記活性化抑制剤と前記金属ヨウ化物との質量比が3:1~1:3であることが好ましい。
 これらの構成によれば、特に良好に、発生する二酸化塩素ガスの濃度を自在に制御できるとともに、二酸化塩素ガスを即効的にかつ長期に亘って安定的に発生させることができる。
 一態様として、
 前記活性化抑制剤が、ケイ酸アルカリ金属塩又はケイ酸アルカリ土類金属塩であることが好ましい。
 この構成によれば、ケイ酸アルカリ金属塩又はケイ酸アルカリ土類金属塩が水溶液に溶解したときに、加水分解によって水酸化物イオンを生成することができる。よって、一般に酸が用いられる場合が多い活性化剤の作用を中和反応によって遅効的に低減することができ、二酸化塩素ガスの濃度を自在に制御することができる。
 一態様として、
 前記活性化抑制剤が、ケイ酸ナトリウムであることが好ましい。
 この構成によれば、入手容易でかつ比較的安価なケイ酸ナトリウムを用いて、低コストに、二酸化塩素ガスの濃度を自在に制御することができる。
 一態様として、
 前記金属ヨウ化物が、ヨウ化カリウムであることが好ましい。
 この構成によれば、入手容易でかつ比較的安価なヨウ化カリウムを用いて、低コストに、混合初期における二酸化塩素ガスの発生を促進することができる。
 一態様として、
 前記活性化剤が、無機酸若しくは有機酸、又はそれらの塩であることが好ましい。
 この構成によれば、各成分を混合した後の初期段階で、迅速かつ適切に二酸化塩素ガスを発生させることができる。
 一態様として、
 前記第一薬剤が密封性の第一容器に封入されているとともに、前記第二薬剤が前記第一容器とは別の密封性の第二容器に封入されていることが好ましい。
 この構成によれば、大気中からの酸素や水分の混入を防止することができ、第一薬剤や第二薬剤の劣化を防止することができる。よって、第一薬剤や第二薬剤を、その使用前において長期に亘って安定的に保存することができる。
 一態様として、
 前記第一薬剤及び前記第二薬剤が、人為操作で解除可能な隔離部によって互いに隔離された状態で、共通の密封性容器に封入されていることが好ましい。
 この構成によれば、大気中からの酸素や水分の混入を防止することができ、第一薬剤や第二薬剤の劣化を防止することができる。よって、第一薬剤や第二薬剤を、その使用前において長期に亘って安定的に保存することができる。また、この構成では、第一薬剤と第二薬剤とを共通の密封性容器で一括的に取り扱うことができ、可搬性に優れる。使用時には、人為操作で隔離部を解除するだけで、共通の密封性容器の中で第一薬剤と第二薬剤とを容易に混合することができる。
 一態様として、
 前記隔離部が、ラビリンス構造部で構成されていることが好ましい。
 この構成によれば、保存中に第一薬剤に含まれる亜塩素酸塩水溶液が隔離部を浸透して第二薬剤側に到達するのをより確実に防止することができる。よって、保存中に意図せず二酸化塩素ガスが発生し始めることをより確実に防止することができる。
 一態様として、
 前記第一薬剤が密封性かつ易破断性の第一容器に封入されているとともに、前記第二薬剤が前記第一容器と共に密封性の第二容器に封入されていることが好ましい。
 この構成によれば、大気中からの酸素や水分の混入を防止することができ、第一薬剤や第二薬剤の劣化を防止することができる。よって、第一薬剤や第二薬剤を、その使用前において長期に亘って安定的に保存することができる。また、この構成では、第一容器に封入された第一薬剤を第二薬剤と共に第二容器で一括的に取り扱うことができ、可搬性に優れる。使用時には、外力を加えて第一容器を破断させるだけで、第二容器の中で第一薬剤と第二薬剤とを容易に混合することができる。
 本発明のさらなる特徴と利点は、図面を参照して記述する以下の例示的かつ非限定的な実施形態の説明によってより明確になるであろう。
二酸化塩素ガスを徐放させる発生方法の原理説明図 二酸化塩素ガス濃度の時間推移を示すグラフ 第1実施形態の二酸化塩素ガス発生キットの外観模式図 二酸化塩素ガスの発生方法の一局面を示す模式図 ゲル状組成物の使用態様の一例を示す模式図 第2実施形態の二酸化塩素ガス発生キットの外観模式図 隔離部の近傍の拡大断面図 二酸化塩素ガスの発生方法の一局面を示す模式図 ゲル状組成物の使用態様の一例を示す模式図 第3実施形態の二酸化塩素ガス発生キットの外観模式図
〔第1実施形態〕
 二酸化塩素ガスの発生方法、液性組成物、ゲル状組成物、及び二酸化塩素ガス発生キットの第1実施形態について説明する。本実施形態の二酸化塩素ガスの発生方法は、亜塩素酸塩水溶液と、速効性の活性化剤と、金属ヨウ化物と、遅効性の活性化抑制剤と、任意的に吸水性樹脂とを混合して、二酸化塩素ガスを即効的にかつ安定的濃度で発生させる方法である。この方法を、本実施形態では、亜塩素酸塩水溶液、金属ヨウ化物、及び遅効性の活性化抑制剤を含む第一薬剤1と、速効性の活性化剤及び任意的に吸水性樹脂を含む第二薬剤2とを備える二酸化塩素ガス発生キットK(図3を参照)を用いて実行する。二酸化塩素ガス発生キットKの第一薬剤1と第二薬剤2とを混合して得られる液状組成物又はゲル状組成物3(図5を参照)から、二酸化塩素ガスを即効的にかつ安定的濃度で発生させることができる。
 なお、以下では、任意的成分である吸水性樹脂をも混合して、ゲル状組成物3から二酸化塩素ガスを即効的にかつ安定的濃度で発生させる場合を例として説明する。
 亜塩素酸塩水溶液は、亜塩素酸塩を含む水溶液である。亜塩素酸塩水溶液に含まれる亜塩素酸塩は、それ自体は安定であり、かつ、活性化剤との混合によって活性化されて二酸化塩素ガスを生成するものであれば特に制限されない。亜塩素酸塩としては、例えば亜塩素酸アルカリ金属塩又は亜塩素酸アルカリ土類金属塩を例示することができる。亜塩素酸アルカリ金属塩としては、例えば亜塩素酸ナトリウム(NaClO)、亜塩素酸カリウム(KClO)、又は亜塩素酸リチウム(LiClO)が例示される。亜塩素酸アルカリ土類金属塩としては、例えば亜塩素酸カルシウム(Ca(ClO)、亜塩素酸マグネシウム(Mg(ClO)、亜塩素酸バリウム(Ba(ClO)が例示される。これらの中では、亜塩素酸ナトリウムを好適に使用することができる。
 混合前における亜塩素酸塩水溶液のpHは、特に制限されるものではないが、9以上13以下であることが好ましい。亜塩素酸塩水溶液のpHは、10以上12.5以下であることがより好ましく、11以上12以下であることがさらに好ましい。このようなpHとすることで、亜塩素酸塩水溶液中の亜塩素酸塩を安定化させて長期に亘って安定的に保存することができる。亜塩素酸塩水溶液のpHは、アルカリ剤によって調整することができる。アルカリ剤としては、例えば水酸化ナトリウム(NaOH)又は水酸化カリウム(KOH)等が例示される。
 亜塩素酸塩水溶液の亜塩素酸塩濃度は、0.01質量%以上25質量%以下であることが好ましく、0.1質量%以上15質量%以下であることがより好ましい。
 活性化剤は、亜塩素酸塩水溶液と混合された際に溶液中の亜塩素酸塩を活性化して二酸化塩素ガスを発生させるものである。活性化剤としては、例えば無機酸若しくは有機酸、又はそれらの塩を例示することができる。無機酸としては、例えば塩酸(HCl)、炭酸(HCO)、硫酸(HSO)、リン酸(HPO)、又はホウ酸(HBO)等が例示される。無機酸の塩としては、例えば炭酸水素ナトリウム(NaHCO)、リン酸二水素ナトリウム(NaHPO)、又はリン酸水素二ナトリウム(NaHPO)等が例示される。無機酸及びその塩としては、無水物(例えば、無水硫酸やピロリン酸等)を用いることもでき、例えばピロリン酸二水素ナトリウム等を好適に用いることができる。
 有機酸としては、例えば酢酸(CHCOOH)、クエン酸(H(CO(COO)))、又はリンゴ酸(COOH(CHOH)CHCOOH)等が例示される。有機酸の塩としては、例えば酢酸ナトリウム(CHCOONa)、クエン酸二ナトリウム(NaH(CO(COO)))、クエン酸三ナトリウム(Na(CO(COO)))、リンゴ酸二ナトリウム(COONa(CHOH)CHCOONa)等が例示される。
 活性化剤は、亜塩素酸塩水溶液と混合された際に、亜塩素酸塩水溶液のpHを速効的に調整する。より具体的には、活性化剤は、亜塩素酸塩水溶液のpHを速効的に低下させて酸性雰囲気とする。この意味で、活性化剤は、“速効的に酸性を示すpH調整剤”と言うことができる。亜塩素酸塩水溶液のpHを、2.5以上6.8以下とすることが好ましい。活性化剤は、亜塩素酸塩水溶液のpHを、3.5以上6.5以下とすることがより好ましく、4.5以上6.0以下とすることがさらに好ましい。好ましい活性化剤の一例としては、1%水溶液のpHが1.7以上2.4以下を示すメタリン酸ナトリウムが挙げられる。
 例えば亜塩素酸塩水溶液に含まれる亜塩素酸塩が亜塩素酸ナトリウムである場合、水溶液のpHを上記のように調整して酸性雰囲気とすると、下記の式(1)に従い、亜塩素酸が生成する。
  NaClO + H → Na + HClO ・・(1)
 一方、二酸化塩素ガスを水に溶解させた場合の平衡反応は下記の式(2)で示される。
  2ClO + HO ⇔ HClO + HClO ・・(2)
 その際、以下の式(3)が成立する。
  [HClO][HClO]/[ClO]=1.2×10-7・・(3)
 亜塩素酸塩水溶液と活性化剤とを混合することによって亜塩素酸塩水溶液を酸性雰囲気とし、式(1)に従って亜塩素酸を生成させることで、式(3)の公理により、式(2)において平衡反応が左方向に進行するため、圧倒的な確率で水溶液中に二酸化塩素ガスを発生させることができる。
 本実施形態の二酸化塩素ガスの発生方法においては、亜塩素酸塩水溶液のpHを速効的に調整する活性化剤(ここでは、これを「第1の活性化剤」と称する。)とは別に、亜塩素酸塩水溶液のpHを遅効的に調整する第2の活性化剤を合わせて混合しても良い。この意味で、第2の活性化剤は、“遅効的に酸性を示すpH調整剤”と言うことができる。第2の活性化剤は、第1の活性化剤よりも酸性度の低い無機酸若しくは有機酸、又はそれらの塩であって良い。好ましい第2の活性化剤の一例としては、1%水溶液のpHが3.8以上4.5以下を示すピロリン酸ナトリウムが挙げられる。
 金属ヨウ化物は、亜塩素酸塩水溶液と混合された際に溶液中でヨウ化物イオンを生成して触媒として働く。金属ヨウ化物は、亜塩素酸塩水溶液と活性化剤との混合初期における二酸化塩素ガスの発生を促進する。金属ヨウ化物としては、例えばアルカリ金属のヨウ化物や、アルカリ土類金属のヨウ化物を例示することができる。具体的には、例えばヨウ化ナトリウム(NaI)、ヨウ化カリウム(KI)、ヨウ化マグネシウム(MgI)、又はヨウ化カルシウム(CaI)等が例示される。これらの中では、ヨウ化カリウムを好適に使用することができる。
 亜塩素酸塩水溶液に対する金属ヨウ化物の添加量は、1質量%の亜塩素酸塩水溶液1L当たり(すなわち、亜塩素酸塩10000ppm当たり)、0.4質量%以下とする。金属ヨウ化物の添加量の下限値は、特に限定されないが、混合初期における二酸化塩素ガスの発生促進効果が得られる程度の量とする(※ゼロは含まない)。金属ヨウ化物の添加量は、1質量%の亜塩素酸塩水溶液1L当たり、0.01質量%以上0.4質量%以下であることが好ましい。1質量%の亜塩素酸塩水溶液1L当たりのより好ましい金属ヨウ化物の添加量は、0.1質量%以上0.25質量%以下である。
 活性化抑制剤は、活性化剤と共に亜塩素酸塩水溶液と混合された際に、活性化剤の作用を遅効的に低減させるものである。活性化抑制剤は、亜塩素酸塩水溶液のpHを速効的に低下させるとの活性化剤の作用を、遅効的に低減させる。活性化抑制剤は、それ自体は、亜塩素酸塩水溶液のpHを遅効的に上昇させるものであって良い。この意味で、活性化抑制剤は、“遅効的にアルカリ性を示すpH調整剤”と言うことができる。活性化抑制剤としては、例えばケイ酸アルカリ金属塩又はケイ酸アルカリ土類金属塩を例示することができる。ケイ酸アルカリ金属塩としては、例えばケイ酸リチウム(mLiO・nSiO)、ケイ酸ナトリウム(mNaO・nSiO)、又はケイ酸カリウム(mKO・nSiO)等が例示される。ケイ酸アルカリ土類金属塩としては、例えばケイ酸マグネシウム(mMgO・nSiO)、ケイ酸カルシウム(mCaO・nSiO)、又はケイ酸ストロンチウム(mSrO・nSiO)等が例示される。これらの中では、ケイ酸ナトリウム(特に、メタケイ酸ナトリウム)を好適に使用することができる。なお、「ケイ酸アルカリ金属塩」や「ケイ酸アルカリ土類金属塩」は、水和物を含むものとする。
 アルカリ金属又はケイ酸アルカリ土類金属の酸化物と二酸化ケイ素とのモル比(上記のn/m)は、特に制限されるものではないが、0.9以上1.2以下であることが好ましい。
 例えば活性化抑制剤がメタケイ酸ナトリウムである場合、当該メタケイ酸ナトリウムは水溶液中で以下の式(4)のように解離(加水分解)する。
  NaO・SiO + 2HO → 2NaOH + HSiO ・・(4)
 このようにして、亜塩素酸塩水溶液との混合後に少し時間が経ってから生成する水酸化ナトリウム(NaOH)が、速効性の活性化剤(本例では酸)を部分的に中和するように作用することにより、活性化剤の作用を遅効的に低減させる。その結果、混合後初期段階での二酸化塩素ガスの急激な濃度上昇が抑制され、初期段階から二酸化塩素ガスを徐放させることができる。
 一方、式(4)に示されるように、水酸化ナトリウムとは別にメタケイ酸(HSiO)も生成する。メタケイ酸は、亜塩素酸塩水溶液との混合後に少し時間が経ってから生成して酸として作用するものであり、この意味で、その元となる二酸化ケイ素(SiO)は、“遅効的に酸性を示すpH調整剤”の一例である。遅れて生成した水酸化ナトリウムとメタケイ酸とは、さらに、以下の式(5)のように反応する。
  2NaOH + HSiO → NaO・SiO + 2HO ・・(5)
 こうして、活性化抑制剤としてのメタケイ酸ナトリウムは、水溶液中で水酸化ナトリウムとメタケイ酸とに解離した状態と、再結合した状態との間で変態する(図1を参照)。
そして、水酸化ナトリウムとメタケイ酸とに解離した状態で、亜塩素酸塩水溶液のpHを遅効的に調整する。すなわち、水酸化ナトリウムとメタケイ酸とに解離した状態で、メタケイ酸が水素イオン(H)の供給源として作用するとともに、水酸化ナトリウムが水酸化物イオン(OH)の供給源として作用して、亜塩素酸塩水溶液のpHを遅効的に調整する。その結果、二酸化塩素ガスを緩慢に発生させることができ、長期に亘って二酸化塩素ガスを安定的濃度で発生させることができる。また、金属ヨウ化物との併用により、二酸化塩素ガスを即効的にかつ安定的濃度で発生させることができる。
 ここで、「安定的濃度で発生」とは、閉鎖系において、発生する二酸化塩素ガスの濃度が混合後初期段階でピークを有さずにゆっくりと上昇して一定となること(図2を参照)、又は、ピークを有する場合でも最終濃度に対するピーク濃度の比が十分に低く抑えられることを意味する。後者の場合には、最終濃度に対するピーク濃度の比は、例えば1.3以下であることが好ましく、1.2以下であることがより好ましく、1.1以下であることがさらに好ましい。また、「即効的にかつ安定的濃度で発生」とは、亜塩素酸塩水溶液と活性化剤との混合後に、発生する二酸化塩素ガスの濃度が急激に上昇しつつ顕著なピークを有さずに最終濃度に収束することを意味する。
 なお、図2では、閉鎖系において、亜塩素酸塩水溶液に活性化剤と共に金属ヨウ化物及び活性化抑制剤を混合させた場合の二酸化塩素ガスの濃度変化を実線で示している。また、比較のため、金属ヨウ化物及び活性化抑制剤を混合せずに活性化剤だけを混合させた場合の濃度変化を一点鎖線で示し、金属ヨウ化物を混合せずに活性化剤及び活性化抑制剤だけを混合させた場合の濃度変化を破線で示している。
 また、本実施形態の方法によれば、発生する二酸化塩素ガスの濃度を自在に制御することができる。従来は、発生する二酸化塩素ガスの濃度は亜塩素酸塩の濃度に依存し、最大濃度を制御することはできなかったが、本方法では活性化抑制剤の添加量を調整することで、二酸化塩素ガスの最大濃度(好適には最終濃度)を自在に制御することができる。よって、使用目的に応じた濃度の二酸化塩素ガスを容易に発生させることができる。
 亜塩素酸塩水溶液に対する活性化抑制剤の添加量は、1質量%の亜塩素酸塩水溶液1L当たり(すなわち、亜塩素酸塩10000ppm当たり)、1質量%以下とする。活性化抑制剤の添加量の下限値は、特に限定されないが、二酸化塩素ガスの濃度安定的ガス発生効果が得られる程度の量とする(※ゼロは含まない)。活性化抑制剤の添加量は、1質量%の亜塩素酸塩水溶液1L当たり、0.03質量%以上0.3質量%以下であることが好ましい。1質量%の亜塩素酸塩水溶液1L当たりのより好ましい活性化抑制剤の添加量は、0.1質量%以上0.25質量%以下である。
 金属ヨウ化物と活性化抑制剤との添加量の比は、特に限定されないが、金属ヨウ化物:活性化抑制剤=3:1~1:3とすることができる。金属ヨウ化物と活性化抑制剤との添加量の比は、2:1~1:2であることが好ましく、1.5:1~1:1.5であることがより好ましく、1.25:1~1:1.25であることがさらに好ましい。
 吸水性樹脂は、水分を吸収してゲル状組成物を形成するものである。吸水性樹脂としては、例えばデンプン系吸水性樹脂、セルロース系吸水性樹脂、又は合成ポリマー系吸水性樹脂等を例示することができる。デンプン系吸水性樹脂としては、例えばデンプン-アクリロニトリルグラフト共重合体又はデンプン-アクリル酸グラフト共重合体等が例示される。セルロース系吸水性樹脂としては、例えばセルロース-アクリロニトリルグラフト共重合体又は架橋カルボキシメチルセルロース等が例示される。合成ポリマー系吸水性樹脂としては、例えばポリビニルアルコール系吸水性樹脂又はアクリル系吸水性樹脂等が例示される。
 活性化剤、金属ヨウ化物、活性化抑制剤、及び吸水性樹脂は、亜塩素酸塩水溶液との混合前は、固体(例えば粉末状又は顆粒状)であって良い。また、活性化剤、金属ヨウ化物、及び活性化抑制剤は、亜塩素酸塩水溶液と混合された際に溶解するものであって良い。
 本実施形態の二酸化塩素ガスの発生方法は、図3に示す二酸化塩素ガス発生キットKを用いて実行することができる。二酸化塩素ガス発生キットKは、亜塩素酸塩水溶液、金属ヨウ化物、及び遅効性の活性化抑制剤を含む第一薬剤1と、速効性の活性化剤及び吸水性樹脂を含む第二薬剤2とを備える。二酸化塩素ガス発生キットKにおいて、第一薬剤1及び第二薬剤2は、それぞれ密封性容器に封入されている。本実施形態では、液体で構成される第一薬剤1(金属ヨウ化物及び活性化抑制剤が溶解した亜塩素酸塩水溶液)は、プラスチック製の容器本体11を主体とする第一容器10に収容されている。第一容器10は密封蓋12を有しており、この密封蓋12が容器本体11に対して液密に装着されることにより、第一薬剤1が密封性の第一容器10に封入されている。
 また、固体で構成される第二薬剤2(活性化剤及び吸水性樹脂)は、プラスチックフィルムを貼り合わせてなる第二容器20に収容されている。第二容器20は、2枚のプラスチックフィルムを重ね合わせてその周縁部全体を溶着させたものであっても良いし、1枚のプラスチックフィルムを半分に折り畳んだ上で折返部以外の周縁部を溶着させたものであっても良い。こうして、第二薬剤2が、第一容器10とは別の、密封性の第二容器20に封入されている。
 なお、第一容器10及び第二容器20は、密封性の容器であればその材質や形状等は制限されない。第一容器10及び第二容器20は、プラスチック製に限らず例えば金属製であっても良い。また、第一容器10は、定形性を有するものに限らず、可撓性を有するものであっても良く、第二容器20は、可撓性を有するものに限らず、定形性を有するものであっても良い。さらに、第一薬剤1と第二薬剤2とが、2つの収容室を有する一体化容器に収容され、使用時に2つの収容室が連通されることによって混合できるように構成されても良い。
 本実施形態の二酸化塩素ガス発生キットKでは、第一薬剤1が亜塩素酸塩水溶液の状態で流通するので、保存安全性に優れる。例えば二酸化塩素ガスが溶存する亜塩素酸塩水溶液をpHを酸性に保ちながら流通させる場合に比べて、保存安全性が高い。
 本実施形態の二酸化塩素ガス発生キットKを用いて二酸化塩素ガスを実際に発生させるには、以下のようにすれば良い。すなわち、図4に示すように、第一薬剤1を収容している第一容器10において、容器本体11から密封蓋12を取り外す。また、第二薬剤2を収容している第二容器20において、プラスチックフィルムを切断して開封する。そして、第二容器20内の第二薬剤2を第一容器10(容器本体11)内に混入させることで、第一薬剤1と第二薬剤2とを混合する。こうして、第一容器10(容器本体11)内で、金属ヨウ化物及び遅効性の活性化抑制剤が溶解した亜塩素酸塩水溶液と、速効性の活性化剤と、吸水性樹脂とを混合する。すなわち、第一容器10(容器本体11)内で、全体として、亜塩素酸塩水溶液と、速効性の活性化剤と、金属ヨウ化物と、遅効性の活性化抑制剤と、吸水性樹脂とを混合する。
 すると、第一容器10(容器本体11)内で内容物がゲル化し、得られるゲル状組成物3(図5を参照)から、二酸化塩素ガスが即効的にかつ安定的濃度で発生する。容器本体11には、複数の開口部15を有する開放蓋14を装着しておけば、発生した二酸化塩素ガスが開口部15を通過して室内に放出されることになる。よって、即効的に放出される二酸化塩素ガスの強い酸化力により、使用時に速やかに殺菌効果や消臭効果等をもたらすことができるとともに、安定的濃度で徐放される二酸化塩素ガスにより、長期に亘って安定的に殺菌効果や消臭効果等をもたらすことができる。
 上記の説明において、第二薬剤2に吸水性樹脂を含めず、亜塩素酸塩水溶液と速効性の活性化剤と金属ヨウ化物と遅効性の活性化抑制剤とだけを混合しても良く、この場合には、得られる液性組成物から二酸化塩素ガスを即効的にかつ安定的濃度で発生させることができる。この場合であっても、即効的にかつ安定的濃度で徐放される二酸化塩素ガスの強い酸化力により、使用時に速やかに、かつ、長期に亘って安定的に、殺菌効果や消臭効果等をもたらすことができる。
〔第2実施形態〕
 二酸化塩素ガスの発生方法、液性組成物、ゲル状組成物、及び二酸化塩素ガス発生キットの第2実施形態について説明する。本実施形態では、二酸化塩素ガス発生キットKの第一薬剤1と第二薬剤2への、亜塩素酸塩水溶液、速効性の活性化剤、金属ヨウ化物、遅効性の活性化抑制剤、及び吸水性樹脂の割り振りが、第1実施形態とは相違している。また、二酸化塩素ガス発生キットKの容器の具体的構成が、第1実施形態とは相違している。
以下、本実施形態の二酸化塩素ガス発生キットKについて、主に第1実施形態との相違点について説明する。なお、特に明記しない点に関しては、第1実施形態と同様であり、同一の符号を付して詳細な説明は省略する。
 本実施形態の二酸化塩素ガス発生キットKは、亜塩素酸塩水溶液を含む第一薬剤1と、速効性の活性化剤、金属ヨウ化物、遅効性の活性化抑制剤、及び吸水性樹脂を含む第二薬剤2とを備える。図6に示すように、これらは、共通の密封性の容器30に封入されている。容器30は、ガス透過性フィルムを用いて構成されている。容器30は、2枚のガス透過性フィルムを重ね合わせてその周縁部全体を溶着させたものであっても良いし、1枚のガス透過性フィルムを半分に折り畳んだ上で折返部以外の周縁部を溶着させたものであっても良い。
 容器30の内部は、人為操作で解除可能な隔離部31により、第一収容室32及び第二収容室33の2つの空間に隔離されている。図7に示すように、本実施形態では、隔離部31は、容器30を構成するガス透過性フィルムが多重に折り返されてなるラビリンス構造部で構成されている。この迷宮状をなすラビリンス構造部におけるガス透過性フィルムの内面は、例えばイージーピールシール等によって容易に剥離可能に接着されていても良い。隔離部31(ラビリンス構造部)は、例えばクリップ等からなる挟持部材35によって挟持されている。挟持部材35が容器30の隔離部31を挟持した状態では、隔離部31は外側から圧着されて、第一収容室32と第二収容室33とが互いに隔離された状態を維持する。よって、第一薬剤1や第二薬剤2を、その使用前において長期に亘って安定的に保存することができる。
 本実施形態の二酸化塩素ガス発生キットKを用いて二酸化塩素ガスを実際に発生させるには、以下のようにすれば良い。すなわち、図8に示すように、まず容器30から、隔離部31を挟持していた挟持部材35を人為操作によって取り外す。その後、折り返し部分を引き延ばして、隔離部31のラビリンス構造を解除する。そして、容器30の外側から外力を加えて、第一収容室32に収容されていた第一薬剤1と第二収容室33に収容されていた第二薬剤2とを、容器30の内部で混合する。すると、容器30内で内容物がゲル化し、得られるゲル状組成物3(図9を参照)から、二酸化塩素ガスが即効的にかつ安定的濃度で発生する。容器30はガス透過性フィルムで構成されているので、発生した二酸化塩素ガスが容器30を透過して室内に放出されることになる。よって、即効的にかつ安定的濃度で徐放される二酸化塩素ガスの強い酸化力により、使用時に速やかに、かつ、長期に亘って安定的に、殺菌効果や消臭効果等をもたらすことができる。
 上記の説明において、第二薬剤2に吸水性樹脂を含めず、亜塩素酸塩水溶液と速効性の活性化剤と金属ヨウ化物と遅効性の活性化抑制剤とだけを混合しても良く、この場合には、得られる液性組成物から二酸化塩素ガスを即効的にかつ安定的濃度で発生させることができる。この場合であっても、即効的にかつ安定的濃度で徐放される二酸化塩素ガスの強い酸化力により、使用時に速やかに、かつ、長期に亘って安定的に、殺菌効果や消臭効果等をもたらすことができる。
〔第3実施形態〕
 二酸化塩素ガスの発生方法、液性組成物、ゲル状組成物、及び二酸化塩素ガス発生キットの第3実施形態について説明する。本実施形態では、二酸化塩素ガス発生キットKの第一薬剤1と第二薬剤2への、亜塩素酸塩水溶液、速効性の活性化剤、金属ヨウ化物、遅効性の活性化抑制剤、及び吸水性樹脂の割り振りが、第1実施形態及び第2実施形態とは相違している。また、二酸化塩素ガス発生キットKの容器の具体的構成が、第1実施形態及び第2実施形態とは相違している。以下、本実施形態の二酸化塩素ガス発生キットKについて、主に第1実施形態との相違点について説明する。なお、特に明記しない点に関しては、第1実施形態と同様であり、同一の符号を付して詳細な説明は省略する。
 本実施形態の二酸化塩素ガス発生キットKは、亜塩素酸塩水溶液及び金属ヨウ化物を含む第一薬剤1と、速効性の活性化剤、遅効性の活性化抑制剤、及び吸水性樹脂を含む第二薬剤2とを備える。図10に示すように、第一薬剤1が第一容器10に封入されているとともに、第二薬剤2が第一容器10と共に第二容器20に封入されている。
 第一容器10は、例えばプラスチックフィルムを貼り合わせて構成されている。第一容器10は、2枚のプラスチックフィルムを重ね合わせてその周縁部全体をイージーピールシールしたものであっても良いし、1枚のプラスチックフィルムを半分に折り畳んだ上で折返部以外の周縁部をイージーピールシールしたものであっても良い。こうして、第一薬剤1が、密封性かつ易破断性の第一容器10に封入されている。
 第二容器20は、ガス透過性フィルムを用いて構成されている。第二容器20は、2枚のガス透過性フィルムを重ね合わせてその周縁部全体を溶着させたものであっても良いし、1枚のガス透過性フィルムを半分に折り畳んだ上で折返部以外の周縁部を溶着させたものであっても良い。こうして、第二薬剤2が、第一容器10と共に、密封性かつガス透過性の第二容器20に封入されている。
 本実施形態の二酸化塩素ガス発生キットKを用いて二酸化塩素ガスを実際に発生させるには、以下のようにすれば良い。すなわち、第二容器20の外側から第一容器10が存在している領域に外力を加えて、第二容器20の内部で第一容器10を破断させる。例えば第一容器10におけるイージーピール部を外圧によって剥離させ、液体で構成される第一薬剤1(金属ヨウ化物が溶解した亜塩素酸塩水溶液)を第一容器10から放出させる。すると、第一薬剤1と第二薬剤2との混合によって得られるゲル状組成物から、二酸化塩素ガスが即効的にかつ安定的濃度で発生する。第二容器20はガス透過性フィルムで構成されているので、発生した二酸化塩素ガスが第二容器20を透過して室内に放出されることになる。よって、即効的にかつ安定的濃度で徐放される二酸化塩素ガスの強い酸化力により、使用時に速やかに、かつ、長期に亘って安定的に、殺菌効果や消臭効果等をもたらすことができる。
 上記の説明において、第二薬剤2に吸水性樹脂を含めず、亜塩素酸塩水溶液と速効性の活性化剤と金属ヨウ化物と遅効性の活性化抑制剤とだけを混合しても良く、この場合には、得られる液性組成物から二酸化塩素ガスを即効的にかつ安定的濃度で発生させることができる。この場合であっても、即効的にかつ安定的濃度で徐放される二酸化塩素ガスの強い酸化力により、使用時に速やかに、かつ、長期に亘って安定的に、殺菌効果や消臭効果等をもたらすことができる。
 以下に実施例を示し、本発明についてより具体的に説明する。
[実施例1]
 亜塩素酸ナトリウムを純水に溶解し、4000ppmの亜塩素酸ナトリウム水溶液100gを調製した。この亜塩素酸ナトリウム水溶液に、活性化剤として7.3%の塩酸1.71gと、ヨウ化カリウム0.15gと、活性化抑制剤としてケイ酸ナトリウム5水和物0.11gとを混合した。混合液におけるヨウ化カリウム及びケイ酸ナトリウム5水和物の質量%は、1質量%の亜塩素酸塩水溶液1L当たり(すなわち、亜塩素酸塩10000ppm当たり)に換算すると、それぞれ0.37%、0.27%であった。その後、混合液を常温にて密栓状態で保管し、閉鎖系において、混合液のpH及び発生した二酸化塩素ガスの濃度を測定した。
[実施例2]
 亜塩素酸ナトリウムを純水に溶解し、4000ppmの亜塩素酸ナトリウム水溶液100gを調製した。この亜塩素酸ナトリウム水溶液に、活性化剤として7.3%の塩酸1.71gと、ヨウ化カリウム0.08gと、活性化抑制剤としてケイ酸ナトリウム5水和物0.2gとを混合した。混合液におけるヨウ化カリウム及びケイ酸ナトリウム5水和物の質量%は、1質量%の亜塩素酸塩水溶液1L当たり(すなわち、亜塩素酸塩10000ppm当たり)に換算すると、それぞれ0.2%、0.5%であった。その後、混合液を常温にて密栓状態で保管し、閉鎖系において、混合液のpH及び発生した二酸化塩素ガスの濃度を測定した。
[実施例3]
 亜塩素酸ナトリウムを純水に溶解し、4000ppmの亜塩素酸ナトリウム水溶液100gを調製した。この亜塩素酸ナトリウム水溶液に、活性化剤としてリン酸2gと、ヨウ化カリウム0.1gと、活性化抑制剤としてケイ酸ナトリウム5水和物0.11gとを混合した。混合液におけるヨウ化カリウム及びケイ酸ナトリウム5水和物の質量%は、1質量%の亜塩素酸塩水溶液1L当たり(すなわち、亜塩素酸塩10000ppm当たり)に換算すると、それぞれ0.25%、0.27%であった。その後、混合液を常温にて密栓状態で保管し、閉鎖系において、混合液のpH及び発生した二酸化塩素ガスの濃度を測定した。
[実施例4]
 亜塩素酸ナトリウムを純水に溶解し、11250ppmの亜塩素酸ナトリウム水溶液100gを調製した。この亜塩素酸ナトリウム水溶液に、活性化剤としてリン酸1.16gと、ヨウ化カリウム0.1gと、活性化抑制剤としてケイ酸ナトリウム5水和物0.05gとを混合した。混合液におけるヨウ化カリウム及びケイ酸ナトリウム5水和物の質量%は、1質量%の亜塩素酸塩水溶液1L当たり(すなわち、亜塩素酸塩10000ppm当たり)に換算すると、それぞれ0.09%、0.04%であった。その後、混合液を常温にて密栓状態で保管し、閉鎖系において、混合液のpH及び発生した二酸化塩素ガスの濃度を測定した。
[実施例5]
 亜塩素酸ナトリウムを純水に溶解し、120000ppmの亜塩素酸ナトリウム水溶液100gを調製した。この亜塩素酸ナトリウム水溶液に、活性化剤としてリン酸6.3gと、ヨウ化カリウム0.1gと、活性化抑制剤としてケイ酸ナトリウム5水和物1.19gとを混合した。混合液におけるヨウ化カリウム及びケイ酸ナトリウム5水和物の質量%は、1質量%の亜塩素酸塩水溶液1L当たり(すなわち、亜塩素酸塩10000ppm当たり)に換算すると、それぞれ0.01%、0.1%であった。その後、混合液を常温にて非密栓状態で保管し、開放系において、混合液のpH及び発生した二酸化塩素ガスの濃度を測定した。
[実施例6]
 亜塩素酸ナトリウムを純水に溶解し、120000ppmの亜塩素酸ナトリウム水溶液100gを調製した。この亜塩素酸ナトリウム水溶液に、活性化剤としてリン酸6.3gと、ヨウ化カリウム0.25gと、活性化抑制剤としてケイ酸ナトリウム5水和物1.19gとを混合した。混合液におけるヨウ化カリウム及びケイ酸ナトリウム5水和物の質量%は、1質量%の亜塩素酸塩水溶液1L当たり(すなわち、亜塩素酸塩10000ppm当たり)に換算すると、それぞれ0.02%、0.1%であった。その後、混合液を常温にて非密栓状態で保管し、開放系において、混合液のpH及び発生した二酸化塩素ガスの濃度を測定した。
[実施例7]
 亜塩素酸ナトリウムを純水に溶解し、120000ppmの亜塩素酸ナトリウム水溶液100gを調製した。この亜塩素酸ナトリウム水溶液に、活性化剤としてリン酸6.3gと、ヨウ化カリウム0.5gと、活性化抑制剤としてケイ酸ナトリウム5水和物1.19gとを混合した。混合液におけるヨウ化カリウム及びケイ酸ナトリウム5水和物の質量%は、1質量%の亜塩素酸塩水溶液1L当たり(すなわち、亜塩素酸塩10000ppm当たり)に換算すると、それぞれ0.04%、0.1%であった。その後、混合液を常温にて非密栓状態で保管し、開放系において、混合液のpH及び発生した二酸化塩素ガスの濃度を測定した。
[実施例8]
 亜塩素酸ナトリウムを純水に溶解し、120000ppmの亜塩素酸ナトリウム水溶液100gを調製した。この亜塩素酸ナトリウム水溶液に、活性化剤としてリン酸6.3gと、ヨウ化カリウム1gと、活性化抑制剤としてケイ酸ナトリウム5水和物1.19gとを混合した。混合液におけるヨウ化カリウム及びケイ酸ナトリウム5水和物の質量%は、1質量%の亜塩素酸塩水溶液1L当たり(すなわち、亜塩素酸塩10000ppm当たり)に換算すると、それぞれ0.08%、0.1%であった。その後、混合液を常温にて非密栓状態で保管し、開放系において、混合液のpH及び発生した二酸化塩素ガスの濃度を測定した。
[比較例1]
 亜塩素酸ナトリウムを純水に溶解し、4000ppmの亜塩素酸ナトリウム水溶液100gを調製した。この亜塩素酸ナトリウム水溶液に、活性化剤として7.3%の塩酸1.71gと、活性化抑制剤としてケイ酸ナトリウム5水和物0.11gとを混合した。混合液におけるケイ酸ナトリウム5水和物の質量%は、1質量%の亜塩素酸塩水溶液1L当たり(すなわち、亜塩素酸塩10000ppm当たり)に換算すると、0.27%であった。その後、混合液を常温にて密栓状態で保管し、閉鎖系において、混合液のpH及び発生した二酸化塩素ガスの濃度を測定した。
[比較例2]
 亜塩素酸ナトリウムを純水に溶解し、4000ppmの亜塩素酸ナトリウム水溶液100gを調製した。この亜塩素酸ナトリウム水溶液に、活性化剤として7.3%の塩酸1.71gと、ヨウ化カリウム0.15gとを混合した。混合液におけるヨウ化カリウムの質量%は、1質量%の亜塩素酸塩水溶液1L当たり(すなわち、亜塩素酸塩10000ppm当たり)に換算すると、0.37%であった。その後、混合液を常温にて密栓状態で保管し、閉鎖系において、混合液のpH及び発生した二酸化塩素ガスの濃度を測定した。
[比較例3]
 亜塩素酸ナトリウムを純水に溶解し、4000ppmの亜塩素酸ナトリウム水溶液100gを調製した。この亜塩素酸ナトリウム水溶液に、活性化剤としてリン酸2gと、活性化抑制剤としてケイ酸ナトリウム5水和物0.11gとを混合した。混合液におけるケイ酸ナトリウム5水和物の質量%は、1質量%の亜塩素酸塩水溶液1L当たり(すなわち、亜塩素酸塩10000ppm当たり)に換算すると、0.27%であった。その後、混合液を常温にて密栓状態で保管し、閉鎖系において、混合液のpH及び発生した二酸化塩素ガスの濃度を測定した。
[比較例4]
 亜塩素酸ナトリウムを純水に溶解し、4000ppmの亜塩素酸ナトリウム水溶液100gを調製した。この亜塩素酸ナトリウム水溶液に、活性化剤としてリン酸2gと、ヨウ化カリウム0.1gとを混合した。混合液におけるヨウ化カリウムの質量%は、1質量%の亜塩素酸塩水溶液1L当たり(すなわち、亜塩素酸塩10000ppm当たり)に換算すると、0.25%であった。その後、混合液を常温にて密栓状態で保管し、閉鎖系において、混合液のpH及び発生した二酸化塩素ガスの濃度を測定した。
[比較例5]
 亜塩素酸ナトリウムを純水に溶解し、11250ppmの亜塩素酸ナトリウム水溶液100gを調製した。この亜塩素酸ナトリウム水溶液に、活性化剤としてリン酸1.16gと、活性化抑制剤としてケイ酸ナトリウム5水和物0.05gとを混合した。混合液におけるケイ酸ナトリウム5水和物の質量%は、1質量%の亜塩素酸塩水溶液1L当たり(すなわち、亜塩素酸塩10000ppm当たり)に換算すると、0.04%であった。その後、混合液を常温にて密栓状態で保管し、閉鎖系において、混合液のpH及び発生した二酸化塩素ガスの濃度を測定した。
[比較例6]
 亜塩素酸ナトリウムを純水に溶解し、11250ppmの亜塩素酸ナトリウム水溶液100gを調製した。この亜塩素酸ナトリウム水溶液に、活性化剤としてリン酸1.16gと、ヨウ化カリウム0.1gとを混合した。混合液におけるヨウ化カリウムの質量%は、1質量%の亜塩素酸塩水溶液1L当たり(すなわち、亜塩素酸塩10000ppm当たり)に換算すると、0.09%であった。その後、混合液を常温にて密栓状態で保管し、閉鎖系において、混合液のpH及び発生した二酸化塩素ガスの濃度を測定した。
[比較例7]
 亜塩素酸ナトリウムを純水に溶解し、11250ppmの亜塩素酸ナトリウム水溶液100gを調製した。この亜塩素酸ナトリウム水溶液に、活性化剤として7.3%の塩酸3.01gと、ヨウ化カリウム0.5gと、活性化抑制剤としてケイ酸ナトリウム5水和物2gとを混合した。混合液におけるヨウ化カリウム及びケイ酸ナトリウム5水和物の質量%は、1質量%の亜塩素酸塩水溶液1L当たり(すなわち、亜塩素酸塩10000ppm当たり)に換算すると、それぞれ0.44%、1.78%であった。その後、混合液を常温にて密栓状態で保管し、閉鎖系において、混合液のpH及び発生した二酸化塩素ガスの濃度を測定した。
Figure JPOXMLDOC01-appb-T000001
 測定結果は以下のとおりとなった。
Figure JPOXMLDOC01-appb-T000002
 ヨウ化カリウムが混合されない比較例1では、混合後の初期段階(特に30分以内)における二酸化塩素ガスの発生が緩慢であり、また、ケイ酸ナトリウム5水和物が混合されない比較例2では、長時間経過後(特に7日後)における二酸化塩素ガスの濃度が不安定であった。これに対して、ヨウ化カリウム及びケイ酸ナトリウム5水和物の両方を混合させた実施例1,2では、混合後の初期段階から長期間に亘り、安定的濃度で二酸化塩素ガスが放出されることが確認された。
Figure JPOXMLDOC01-appb-T000003
 ヨウ化カリウムが混合されない比較例3では、二酸化塩素ガスの発生が緩慢であり、また、ケイ酸ナトリウム5水和物が混合されない比較例4では、長時間経過後(特に7日後)における二酸化塩素ガスの濃度が不安定であった。これに対して、ヨウ化カリウム及びケイ酸ナトリウム5水和物の両方を混合させた実施例3では、活性化剤として弱酸を用いながらも、混合後の初期段階(概ね10分以内)から迅速に二酸化塩素ガスが放出されることが確認された。また、その後も長期間に亘り、安定的濃度で二酸化塩素ガスが放出されることが確認された。
Figure JPOXMLDOC01-appb-T000004
 ヨウ化カリウムが混合されない比較例5では、二酸化塩素ガスの発生が緩慢であり、また、ケイ酸ナトリウム5水和物が混合されない比較例6では、所定時間経過後(24時間経過後後)における二酸化塩素ガスの濃度が不安定であった。これに対して、ヨウ化カリウム及びケイ酸ナトリウム5水和物の両方を混合させた実施例4では、活性化剤として弱酸を用いながらも、混合後の超初期段階(1分以内)から迅速に二酸化塩素ガスが放出されることが確認された。また、その後も長期間に亘り、安定的濃度で二酸化塩素ガスが放出されることが確認された。
 また、ヨウ化カリウム及びケイ酸ナトリウム5水和物の両方を混合させる場合であってもその添加量が過剰な比較例7では、二酸化塩素ガスの発生自体が確認されなかった。これに対して、実施例1~4を参照すると、1質量%の亜塩素酸塩水溶液1L当たり(すなわち、亜塩素酸塩10000ppm当たり)のヨウ化カリウム及びケイ酸ナトリウム5水和物の質量%が、それぞれ0.4%以下、1%以下である場合に、迅速にかつ安定的濃度で二酸化塩素ガスが放出されることが分かった。
Figure JPOXMLDOC01-appb-T000005
 実施例5~8より、開放系においても、概ね、迅速にかつ安定的濃度で二酸化塩素ガスが放出されることが確認された。
 以上、二酸化塩素ガスの発生方法、液性組成物、ゲル状組成物、及び二酸化塩素ガス発生キットKの実施形態(実施例を含む)について具体例を示して詳細に説明したが、本発明の範囲は、上述した具体的な実施例及び実施形態に限定される訳ではない。本明細書において開示された実施例及び実施形態は全ての点で例示であって、本発明の趣旨を逸脱しない範囲内で適宜改変することが可能である。
 例えば、第一薬剤1が亜塩素酸塩水溶液と遅効性の活性化抑制剤とを含み、第二薬剤2が速効性の活性化剤、金属ヨウ化物、及び吸水性樹脂を含んで構成されても良い。
1    第一薬剤
2    第二薬剤
3    ゲル状組成物
10   第一容器
11   容器本体
12   密封蓋
14   開放蓋
15   開口部
20   第二容器
30   容器
31   隔離部
32   第一収容室
33   第二収容室
35   挟持部材
K    二酸化塩素ガス発生キット
 

Claims (17)

  1.  亜塩素酸塩水溶液と、前記亜塩素酸塩水溶液のpHを速効的に調整して二酸化塩素ガスを発生させる活性化剤と、前記活性化剤の作用を遅効的に低減させる活性化抑制剤と、金属ヨウ化物とを、1質量%の前記亜塩素酸塩水溶液1L当たり前記金属ヨウ化物を0.4質量%以下かつ前記活性化抑制剤を1質量%以下の割合で混合して、得られる液性組成物から二酸化塩素ガスを即効的にかつ安定的濃度で発生させる二酸化塩素ガスの発生方法。
  2.  亜塩素酸塩水溶液と、前記亜塩素酸塩水溶液のpHを速効的に調整して二酸化塩素ガスを発生させる活性化剤と、前記活性化剤の作用を遅効的に低減させる活性化抑制剤と、金属ヨウ化物と、吸水性樹脂とを、1質量%の前記亜塩素酸塩水溶液1L当たり前記金属ヨウ化物を0.4質量%以下かつ前記活性化抑制剤を1質量%以下の割合で混合して、得られるゲル状組成物から二酸化塩素ガスを即効的にかつ安定的濃度で発生させる二酸化塩素ガスの発生方法。
  3.  亜塩素酸塩水溶液と、前記亜塩素酸塩水溶液のpHを速効的に調整して二酸化塩素ガスを発生させる活性化剤と、前記活性化剤の作用を遅効的に低減させる活性化抑制剤と、金属ヨウ化物とを、1質量%の前記亜塩素酸塩水溶液1L当たり前記金属ヨウ化物を0.4質量%以下かつ前記活性化抑制剤を1質量%以下の割合で含み、二酸化塩素ガスを即効的にかつ安定的濃度で発生させる液性組成物。
  4.  亜塩素酸塩水溶液と、前記亜塩素酸塩水溶液のpHを速効的に調整して二酸化塩素ガスを発生させる活性化剤と、前記活性化剤の作用を遅効的に低減させる活性化抑制剤と、金属ヨウ化物と、吸水性樹脂とを、1質量%の前記亜塩素酸塩水溶液1L当たり前記金属ヨウ化物を0.4質量%以下かつ前記活性化抑制剤を1質量%以下の割合で含み、二酸化塩素ガスを即効的にかつ安定的濃度で発生させるゲル状組成物。
  5.  亜塩素酸塩水溶液を含む第一薬剤と、
     前記亜塩素酸塩水溶液のpHを速効的に調整して二酸化塩素ガスを発生させる活性化剤含む第二薬剤と、を備え、
     前記活性化剤の作用を遅効的に低減させる活性化抑制剤と、金属ヨウ化物とが、それぞれ、前記第一薬剤及び前記第二薬剤のいずれかに含まれており、
     1質量%の前記亜塩素酸塩水溶液1L当たり、前記金属ヨウ化物は0.4質量%以下であり、前記活性化抑制剤は1質量%以下であり、
     前記第一薬剤と前記第二薬剤とを混合して得られる液性組成物から二酸化塩素ガスを即効的にかつ安定的濃度で発生させる二酸化塩素ガス発生キット。
  6.  亜塩素酸塩水溶液を含む第一薬剤と、
     前記亜塩素酸塩水溶液のpHを速効的に調整して二酸化塩素ガスを発生させる活性化剤及び吸水性樹脂を含む第二薬剤と、を備え、
     前記活性化剤の作用を遅効的に低減させる活性化抑制剤と、金属ヨウ化物とが、それぞれ、前記第一薬剤及び前記第二薬剤のいずれかに含まれており、
     1質量%の前記亜塩素酸塩水溶液1L当たり、前記金属ヨウ化物は0.4質量%以下であり、前記活性化抑制剤は1質量%以下であり、
     前記第一薬剤と前記第二薬剤とを混合して得られるゲル状組成物から二酸化塩素ガスを即効的にかつ安定的濃度で発生させる二酸化塩素ガス発生キット。
  7.  1質量%の前記亜塩素酸塩水溶液1L当たり、前記活性化抑制剤が0.03質量%以上0.3質量%以下である請求項5又は6に記載の二酸化塩素ガス発生キット。
  8.  1質量%の前記亜塩素酸塩水溶液1L当たり、前記金属ヨウ化物が0.01質量%以上0.4質量%以下である請求項5から7のいずれか一項に記載の二酸化塩素ガス発生キット。
  9.  前記活性化抑制剤と前記金属ヨウ化物との質量比が3:1~1:3である請求項5から8のいずれか一項に記載の二酸化塩素ガス発生キット。
  10.  前記活性化抑制剤が、ケイ酸アルカリ金属塩又はケイ酸アルカリ土類金属塩である請求項5から9のいずれか一項に記載の二酸化塩素ガス発生キット。
  11.  前記活性化抑制剤が、ケイ酸ナトリウムである請求項10に記載の二酸化塩素ガス発生キット。
  12.  前記金属ヨウ化物が、ヨウ化カリウムである請求項5から11のいずれか一項に記載の二酸化塩素ガス発生キット。
  13.  前記活性化剤が、無機酸若しくは有機酸、又はそれらの塩である請求項5から12のいずれか一項に記載の二酸化塩素ガス発生キット。
  14.  前記第一薬剤が密封性の第一容器に封入されているとともに、前記第二薬剤が前記第一容器とは別の密封性の第二容器に封入されている請求項5から13のいずれか一項に記載の二酸化塩素ガス発生キット。
  15.  前記第一薬剤及び前記第二薬剤が、人為操作で解除可能な隔離部によって互いに隔離された状態で、共通の密封性容器に封入されている請求項5から13のいずれか一項に記載の二酸化塩素ガス発生キット。
  16.  前記隔離部が、ラビリンス構造部で構成されている請求項15に記載の二酸化塩素ガス発生キット。
  17.  前記第一薬剤が密封性かつ易破断性の第一容器に封入されているとともに、前記第二薬剤が前記第一容器と共に密封性の第二容器に封入されている請求項5から13のいずれか一項に記載の二酸化塩素ガス発生キット。
     
PCT/JP2018/031726 2017-09-20 2018-08-28 二酸化塩素ガスの発生方法、液性組成物、ゲル状組成物、及び二酸化塩素ガス発生キット WO2019058892A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880061121.3A CN111108062A (zh) 2017-09-20 2018-08-28 二氧化氯气体的发生方法、液态组合物、凝胶状组合物、及二氧化氯气体发生试剂盒
AU2018334597A AU2018334597A1 (en) 2017-09-20 2018-08-28 Chlorine Dioxide Gas Generating Method, Liquid Composition, Gel Composition, and Chlorine Dioxide Gas Generating Kit
EP18858647.3A EP3686155A4 (en) 2017-09-20 2018-08-28 GAS CHLORINE DIOXIDE GENERATION METHOD, LIQUID COMPOSITION, GEL COMPOSITION AND GAS CHLORINE DIOXIDE GENERATION KIT
CA3075422A CA3075422C (en) 2017-09-20 2018-08-28 Chlorine dioxide gas generating method, liquid composition, gel composition, and chlorine dioxide gas generating kit
US16/645,478 US20200231436A1 (en) 2017-09-20 2018-08-28 Chlorine dioxide gas generating method, liquid composition, gel composition, and chlorine dioxide gas generating kit
KR1020207010503A KR102470703B1 (ko) 2017-09-20 2018-08-28 이산화염소 가스의 발생 방법, 액체 조성물, 겔상 조성물 및 이산화염소 가스 발생 키트

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017180688A JP6366802B1 (ja) 2017-09-20 2017-09-20 二酸化塩素ガスの発生方法、液性組成物、ゲル状組成物、及び二酸化塩素ガス発生キット
JP2017-180688 2017-09-20
JP2018126230A JP6433007B1 (ja) 2018-07-02 2018-07-02 二酸化塩素ガスの発生方法、液性組成物、ゲル状組成物、及び二酸化塩素ガス発生キット
JP2018-126230 2018-07-02

Publications (1)

Publication Number Publication Date
WO2019058892A1 true WO2019058892A1 (ja) 2019-03-28

Family

ID=65810199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031726 WO2019058892A1 (ja) 2017-09-20 2018-08-28 二酸化塩素ガスの発生方法、液性組成物、ゲル状組成物、及び二酸化塩素ガス発生キット

Country Status (8)

Country Link
US (1) US20200231436A1 (ja)
EP (1) EP3686155A4 (ja)
KR (1) KR102470703B1 (ja)
CN (1) CN111108062A (ja)
AU (1) AU2018334597A1 (ja)
CA (1) CA3075422C (ja)
TW (1) TWI677466B (ja)
WO (1) WO2019058892A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020203869A (ja) * 2019-06-19 2020-12-24 リジェンティス株式会社 歯の漂白用デバイス及びキット並びに歯の漂白方法
WO2021210482A1 (ja) * 2020-04-15 2021-10-21 大幸薬品株式会社 二酸化塩素発生装置および二酸化塩素発生方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7139558B2 (ja) * 2018-01-29 2022-09-21 東洋エアゾール工業株式会社 二酸化塩素発生エアゾール
CN111547683A (zh) * 2020-04-30 2020-08-18 白金制药(西安)有限公司 净化用试剂、装置和方法
CN114081064B (zh) * 2021-12-02 2023-04-28 福建农林大学 一种基于二氧化氯的果品保鲜方法
CN116019125B (zh) * 2023-03-29 2023-05-23 山东华实药业有限公司 一种二氧化氯缓释凝胶及其制备方法
CN116548467B (zh) * 2023-07-11 2023-09-19 山东华实药业有限公司 二氧化氯消毒剂及其生产工艺和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57168977A (en) * 1981-04-11 1982-10-18 Enkuraa Bijinesu:Kk Chlorine dioxide releasing compositon
JP2005029430A (ja) 2003-05-09 2005-02-03 Amatera:Kk 二酸化塩素ガスの発生方法
WO2008111357A1 (ja) * 2007-03-15 2008-09-18 Taiko Pharmaceutical Co., Ltd. 純粋二酸化塩素液剤、これを含有するゲル状組成物及び発泡性組成物
JP2015227320A (ja) * 2014-06-03 2015-12-17 有限会社クリーンケア 燻蒸剤
JP2016088797A (ja) * 2014-11-04 2016-05-23 株式会社アマテラ 二酸化塩素ガスの発生方法、二酸化塩素ガス発生用キットおよびゲル状組成物
WO2016201178A1 (en) * 2015-06-12 2016-12-15 Cryovac, Inc. Aqueous composition and method of producing chlorine dioxide using aqueous composition
WO2016208758A1 (ja) * 2015-06-26 2016-12-29 株式会社アイ・イー・ジェー 二酸化塩素発生具およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ310748A (en) * 1995-06-05 1998-04-27 Southwest Res Inst Preparation of biocidal sustained-release composites containing hydrophobic material and chlorite-containing hydrophilic material that react to release chlorine dioxide
JPH11157805A (ja) * 1997-12-01 1999-06-15 Chisso Corp 二酸化塩素水製造キット、二酸化塩素水前駆体組成物及び二酸化塩素水の製造方法
US6231830B1 (en) * 1999-03-04 2001-05-15 George Madray Method of making molecular chlorine dioxide
CN102626104B (zh) * 2012-03-22 2014-01-08 广东环凯微生物科技有限公司 一种稳定性二氧化氯消毒液及其制备方法
WO2014064782A1 (ja) * 2012-10-24 2014-05-01 株式会社アマテラ 二酸化塩素ガス発生剤パックならびにその製造方法および保存方法
JP2016124765A (ja) * 2015-01-06 2016-07-11 サンマテリアル株式会社 二酸化塩素剤、二酸化塩素剤封入製品および二酸化塩素剤キット

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57168977A (en) * 1981-04-11 1982-10-18 Enkuraa Bijinesu:Kk Chlorine dioxide releasing compositon
JP2005029430A (ja) 2003-05-09 2005-02-03 Amatera:Kk 二酸化塩素ガスの発生方法
WO2008111357A1 (ja) * 2007-03-15 2008-09-18 Taiko Pharmaceutical Co., Ltd. 純粋二酸化塩素液剤、これを含有するゲル状組成物及び発泡性組成物
JP2015227320A (ja) * 2014-06-03 2015-12-17 有限会社クリーンケア 燻蒸剤
JP2016088797A (ja) * 2014-11-04 2016-05-23 株式会社アマテラ 二酸化塩素ガスの発生方法、二酸化塩素ガス発生用キットおよびゲル状組成物
WO2016201178A1 (en) * 2015-06-12 2016-12-15 Cryovac, Inc. Aqueous composition and method of producing chlorine dioxide using aqueous composition
WO2016208758A1 (ja) * 2015-06-26 2016-12-29 株式会社アイ・イー・ジェー 二酸化塩素発生具およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3686155A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020203869A (ja) * 2019-06-19 2020-12-24 リジェンティス株式会社 歯の漂白用デバイス及びキット並びに歯の漂白方法
JP7302855B2 (ja) 2019-06-19 2023-07-04 リジェンティス株式会社 歯の漂白用デバイス及びキット並びに歯の漂白方法
WO2021210482A1 (ja) * 2020-04-15 2021-10-21 大幸薬品株式会社 二酸化塩素発生装置および二酸化塩素発生方法
CN115397769A (zh) * 2020-04-15 2022-11-25 大幸药品株式会社 二氧化氯产生装置及二氧化氯产生方法

Also Published As

Publication number Publication date
KR20200055023A (ko) 2020-05-20
EP3686155A1 (en) 2020-07-29
TW201919987A (zh) 2019-06-01
KR102470703B1 (ko) 2022-11-25
EP3686155A4 (en) 2021-06-16
AU2018334597A1 (en) 2020-03-19
CN111108062A (zh) 2020-05-05
US20200231436A1 (en) 2020-07-23
CA3075422C (en) 2022-11-08
CA3075422A1 (en) 2019-03-28
TWI677466B (zh) 2019-11-21

Similar Documents

Publication Publication Date Title
WO2019058892A1 (ja) 二酸化塩素ガスの発生方法、液性組成物、ゲル状組成物、及び二酸化塩素ガス発生キット
WO2014064782A1 (ja) 二酸化塩素ガス発生剤パックならびにその製造方法および保存方法
JP5662244B2 (ja) 二酸化塩素ガス発生剤パックならびにその製造方法および保存方法
JP6052508B2 (ja) 二酸化塩素発生装置
JP5605744B2 (ja) 安定化二酸化塩素剤および二酸化塩素の安定した発生方法
JP6212018B2 (ja) 二酸化塩素ガスの発生方法、二酸化塩素ガス発生用キットおよびゲル状組成物
CN109996761B (zh) 二氧化氯气体的发生方法、二氧化氯气体发生用套组及凝胶状组合物
KR20080097415A (ko) 이산화염소 발생 조성물
US20060039840A1 (en) Device and methods for the production of chlorine dioxide vapor
JP2018080062A (ja) 二酸化塩素発生具およびその製造方法
JP6433007B1 (ja) 二酸化塩素ガスの発生方法、液性組成物、ゲル状組成物、及び二酸化塩素ガス発生キット
WO2019058891A1 (ja) 二酸化塩素ガスの発生方法、液性組成物、ゲル状組成物、及び二酸化塩素ガス発生キット
JP2019059648A (ja) 二酸化塩素ガス発生剤
CN111547683A (zh) 净化用试剂、装置和方法
US11685652B2 (en) Chlorine dioxide generation device and chlorine dioxide generation system
US20100183785A1 (en) Method for doing business to retard bacterial, fungal, and viral contamination and mold growth in fruits
JP7072267B2 (ja) 二酸化塩素ガスの発生放出方法、二酸化塩素ガス発生放出用キット、およびゲル状組成物
JP2024089221A (ja) 二酸化塩素含有水の製造方法、二酸化塩素含有水の噴霧方法、および二酸化塩素含有水噴霧キット
JP2005204721A (ja) 殺菌及び脱臭用の二酸化塩素を内蔵する袋

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858647

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3075422

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2018334597

Country of ref document: AU

Date of ref document: 20180828

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207010503

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018858647

Country of ref document: EP

Effective date: 20200420