WO2019056548A1 - 一种用于环保电镀的脂肪族聚酰胺复合物及其制备方法 - Google Patents

一种用于环保电镀的脂肪族聚酰胺复合物及其制备方法 Download PDF

Info

Publication number
WO2019056548A1
WO2019056548A1 PCT/CN2017/112366 CN2017112366W WO2019056548A1 WO 2019056548 A1 WO2019056548 A1 WO 2019056548A1 CN 2017112366 W CN2017112366 W CN 2017112366W WO 2019056548 A1 WO2019056548 A1 WO 2019056548A1
Authority
WO
WIPO (PCT)
Prior art keywords
aliphatic polyamide
coupling agent
environmentally friendly
polyamide composite
aliphatic
Prior art date
Application number
PCT/CN2017/112366
Other languages
English (en)
French (fr)
Inventor
金良文
梁永华
郑红专
Original Assignee
江门市德众泰工程塑胶科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江门市德众泰工程塑胶科技有限公司 filed Critical 江门市德众泰工程塑胶科技有限公司
Publication of WO2019056548A1 publication Critical patent/WO2019056548A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer

Definitions

  • the present invention relates to a polyamide composite, and more particularly to an aliphatic polyamide composite for environmentally friendly plating and a process for the preparation thereof.
  • Plastic plating can make the surface of plastic products have metallic luster, beautiful appearance, play a decorative role, improve the mechanical strength of the surface of the product, and prolong the service life; make the plastic products have high stability to external factors such as light and atmosphere, and are not easy to aging; Plastics are electrically conductive, magnetically conductive and weldable. Plastic electroplated products can be used in aerospace, shipbuilding, automotive, electronic appliances, architectural decoration, toys and household goods industries, and are widely used.
  • Vacuum plating mainly includes several types of vacuum evaporation, sputtering plating and ion plating. They are all used to deposit various metal and non-metal films on the surface of plastic parts by distillation or sputtering under vacuum conditions. In this way, very thin surface coatings can be obtained, and the protrusions with fast adhesion are good.
  • the main process of water electroplating is to put the products to be electroplated into an electroplating bath for electroplating.
  • the water electroplating process is relatively simple, and the requirements from the equipment to the environment are not as severe as vacuum ion plating, and thus it is widely used. It can be used for water plating plastics including: ABS, nylon, polycarbonate and polystyrene. Among them, ABS is the largest, electroplating effect is the best, and the process is the most mature.
  • Polyamide commonly known as nylon (Nylon), is a general term for heterochain polymers containing repeating structural unit amide groups (NHCO-) in macromolecular chains of polymers, mainly composed of dibasic acids and binary Amine or amino acid lactam is obtained by polycondensation and self-polymerization. It is the earliest and most used thermoplastic engineering plastic.
  • PA varieties which can be divided into aliphatic polyamide, semi-aromatic polyamide, wholly aromatic polyamide, heterocyclic aromatic polyamide and alicyclic polyamide according to the main chain structure, and the amine or acid of nylon raw material. When there is a benzene ring, it is a semi-aromatic nylon.
  • Semi-aromatic or wholly aromatic polyamides can significantly improve the heat resistance and rigidity of nylon. Similar to aliphatic polyamides, aromatic polyamides can be polycondensed from dibasic acids and diamines, or can be self-condensed from amino acids. Semi-aromatic polyamides can be derived from aromatic dibasic acids (such as p-benzoic acid). Formic acid) is polycondensed with an aliphatic dibasic acid such as decanediamine, such as nylon 9T.
  • Thermoplastic elastomer is a block copolymer composed of a glassy or semi-crystalline thermoplastic resin and a soft elastomer. It combines the high elasticity of rubber with the thermoplastic processability of thermoplastic resins.
  • the third generation of synthetic rubber The structural feature is that the chemical bond constitutes different resin segments and rubber segments, and the resin segment forms a physical "crosslinking" by the force between the segments.
  • the rubber segment is a high elastic segment with a large free rotation capability, and the plastic and rubber segments are Arrange and join in the proper order.
  • thermoplastic elastomer Due to the structural characteristics of the polymer chain and the reversibility of the crosslinked state, the thermoplastic elastomer exhibits physical and mechanical properties such as elasticity, strength and deformation characteristics of the vulcanized rubber at normal temperature, and the physical cross-linking of the plastic segment changes with temperature at a high temperature. Invertible It shows the processing characteristics of thermoplastics.
  • industrially produced TPE mainly includes: styrenes, olefins, polyurethanes, polyesters, polyvinyl chlorides, decylamines, dienes and organic fluorines.
  • a styrenic thermoplastic elastomer refers to a triblock copolymer (SDS) or a multi-block composed of a polystyrene segment as a hard segment (S) and a polybutadiene chain as a soft segment (D). Copolymer.
  • the main products are block copolymer (SBS) with polybutadiene (B) as soft segment, block copolymer (SIS) with polyisoprene as soft segment and SBS hydrogenation product (SEBS). )Wait.
  • SBS thermoplastic elastomer, a block copolymer of styrene and butadiene is known as the third generation of synthetic rubber.
  • the SIS production process is basically the same as that of SBS, so many SBS devices in the world have the ability to produce SIS at the same time. However, from the production process, the production SIS is more difficult than SBS, so not all SBS devices can produce SIS at the same time, and the variety number is significantly less than SBS.
  • the polyolefin-based thermoplastic elastomer is composed of rubber and polyolefin, and the rubber components are usually ethylene propylene diene monomer (EPDM), nitrile rubber (NBR), and butyl rubber.
  • the polyolefin component is mainly polypropylene (PP) and polyethylene (PE).
  • TPO exhibits rubber elasticity at room temperature, low density, high flexural modulus, good fluidity, excellent weather resistance, ozone resistance, UV resistance, good high temperature resistance, low temperature impact resistance, etc. Easy processing and cost Low, reusable, is a combination of good performance materials.
  • TPU thermoplastic elastomers
  • TPU Polyurethane-based thermoplastic elastomers
  • the structure of its macromolecular chain is composed of alternating polar polyurethane or polyurea segments (hard segments) and aliphatic polyester or polyether segments (soft segments).
  • the hydrogen bond cross-linking formed between the molecules and the light cross-linking structure between the macromolecular chains make the polymer material plasticity with changes in temperature. High hardness, good wear resistance and good elasticity are the most prominent features of this type of elastomer.
  • Polyester thermoplastic elastomers are a class of block copolymers containing an aromatic polyester hard segment and an aliphatic polyester or polyether soft segment. The ratio of hard and soft segments determines the hardness and physical and mechanical properties of the thermoplastic polyester elastomer.
  • the hard segment forms a physical cross-linking point, which is subjected to stress, and the soft segment is a freely distributed high-elastic segment that contributes elasticity.
  • TPEE has good elasticity, wear resistance, excellent flex resistance, excellent heat resistance, good low temperature flexibility and high low temperature impact strength.
  • Plastic plating refers to a process of applying a metal plating layer on a plastic surface by electroless plating and electroplating. After the electroplated metal layer, the plastic products retain the characteristics of light plastic parts, high production efficiency and large design flexibility; at the same time, they are provided with protection, decoration, wear resistance and thermal conductivity, so the plastic plating process is widely used in electronics. , optical instruments, machine buttons and light industrial products. Replacing metals with plastic-plated metal layers is of great significance in engineering applications, not only achieving weight reduction, but also reducing costs.
  • ABS is an amorphous polymer material with an ivory appearance, opaque, odorless, tasteless, non-toxic, and excellent in electroplating. Performance is an excellent non-metal plating material.
  • the content of butadiene in ABS plastic has a great influence on the electroplating effect.
  • the ABS of electroplating should not exceed 10% of butadiene, and should generally be 18% to 24%.
  • the elastomer phase also known as the rubber phase
  • This bottleneck-shaped hole can greatly enhance the coating. The combination of strength.
  • the electroplating process of ABS plastic includes the following steps: the first step of stress removal, the purpose is to reduce the deformation of the object after electroplating due to the internal stress generated by injection molding; the second step is degreasing, most of which are removed by alkaline or acidic degreaser. Oil stains, mold release agents and some debris that may affect subsequent operations during processing or transportation.
  • the main purpose of degreasing is to degrease and degrease while reducing the surface tension and imparting hydrophilicity to the surface.
  • the third step is to roughen and roughen the surface roughness and increase the surface area to increase the metal coating and plastic.
  • the bonding force makes the plastic surface change from hydrophobic to hydrophilic, and each part is evenly wetted by water to uniformly adsorb metal ions.
  • the reducing divalent tin ion prepares for activation; the fifth step is activation and reduction, first adsorbing a layer of catalytically active precious metal such as Ag on the surface of the material, and then reducing it, thereby improving surface activity and accelerating
  • the deposition rate should be noted that the activation liquid on the surface of the material should be cleaned to prevent the subsequent process from being stained.
  • the sixth step is electroless plating, which is to form a uniform coating with good continuity on the surface of the material to provide electroplating. Protection; the seventh step is electroplating. Usually, copper, nickel and chromium are compositely plated on the surface of the material to form the final surface decoration layer.
  • the conventional electroplated grade nylon material is mainly made of an aliphatic polyamide (PA6-based) resin, and is filled with a certain proportion of inorganic ore powder to be electroplated and modified.
  • PA6-based aliphatic polyamide
  • the electroplating solution first swells the aliphatic polyamide resin, and then infiltrates into the interior to corrode the inorganic ore powder in the material to form a surface roughening effect, which is used to increase the surface bonding force between the electroplated metal layer and the nylon substrate.
  • the surface treatment of the polyamide is usually carried out using a sulfuric acid solution and chromic acid, as in U.S. Patent No. 5,324,766.
  • the use of heavy metal chromic acid is extremely hazardous to workers and can also cause significant pollution to the environment.
  • the organic components contained in the expansion system and other chemicals added will remove some of the filler in the nylon plastic, and because not all of the filler can be removed, some nylon plastics are difficult or impossible to plate.
  • the roughening and expansion process is the key factor affecting the appearance quality and bonding force of the coating.
  • the uniform roughening effect on the surface of the workpiece can lay a solid foundation for obtaining the decorative coating with good adhesion. Whether the surface roughening is uniform or not directly determines the plating quality of the surface of the nylon workpiece.
  • the existing electroplated grade nylon materials have major defects: 1. Need to use special nylon electroplating syrup; 2.
  • the substrate plating adhesion is not high, can not meet the requirements of metal plating products adhesion; 3. Production is not flexible, The cost is high, the cost of the traditional nylon plating process is about 2.4 yuan / DM, and the cost of the ABS plating process is about 1.2 yuan / dm. Therefore, the market application does not have a wide ABS.
  • an object of the present invention to provide an aliphatic polyamide for environmentally friendly plating.
  • the composite is composed of an aliphatic polyamide resin as a main resin, and a special thermoplastic elastomer is added to uniformly distribute the elastomer on the surface of the resin during the mixing and modification process.
  • the polyamide composite of the present invention can also be used for electroplating treatment without adding mineral powder, and is subjected to surface metallization coating by electroplating to obtain a product with high strength, high temperature resistance, low water absorption and dimensional stability, in particular, Excellent substrate plating adhesion.
  • Another object of the present invention is to provide a process for the preparation of an aliphatic polyamide composite for environmentally friendly plating. It is still another object of the present invention to provide a polyamide composite which can be electroplated by an ABS plating process.
  • An aliphatic polyamide composite for environmentally friendly plating comprising the following raw materials by weight:
  • thermoplastic elastomer has a melt index higher than that of the aliphatic polyamide resin.
  • the number of the aliphatic polyamide resin means that the polyamide is derived from one or more aliphatic diamines such as an aliphatic C 6 -C 20 alkylenediamine, an alicyclic diamine, preferably two Amines include bis(p-aminocyclohexyl)methane, 1,6-hexanediamine, 2-methylpentanediamine, 2-methyloctanediamine, trimethyl 1,6-hexanediamine, 1,8- Octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,12-dodecanediamine, and m-xylylenediamine) and one or more dicarboxylic acids (eg , adipic acid, sebacic acid, sebacic acid, dodecanedioic acid or derivatives thereof, and/or one or more aliphatic lactams, amino acids (such as 11-aminododecanoic acid, caprolactam) And la
  • the aliphatic polyamide is selected from the group consisting of PA6, PA46, PA56, PA66, PA610, PA612, PA613, PA614, PA615, PA616, PA11, PA12, PA910, PA912, PA913, PA914, PA915, PA936, PA1010, At least one of PA1012, PA1013, PA1014, PA1210, PA1212, PA1213, PA1214.
  • the aliphatic polyamide is selected from at least one of PA6, PA56, PA66, PA610, PA612, PA11, PA12, PA1010, PA1212.
  • the thermoplastic elastomer is at least one of a polyolefin elastomer, a polyester elastomer, and a polystyrene elastomer.
  • thermoplastic elastomer may be used by chemical modification of maleic anhydride, silicone (silane), chlorine, amine, acrylic acid, epoxy compound or the like.
  • the polyolefin elastomer is a material obtained by homopolymerizing or copolymerizing an olefin such as ethylene, propylene or butadiene or a diene monomer.
  • the polyolefin elastomer is selected from the group consisting of ethylene-propylene-diene rubber (EPDM), ethylene-propylene rubber (EPM), or a blend of EPDM and EPM, ethylene- ⁇ -olefin copolymer, modification Ethylene- ⁇ -olefin
  • EPDM ethylene-propylene-diene rubber
  • EPM ethylene-propylene rubber
  • the polymer, reactor directly prepares one or more of thermoplastic polyolefins (reactor TPO).
  • Examples of the ethylene- ⁇ -olefin copolymer include ethylene and propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, and 1- a copolymer of an ⁇ -olefin such as a terpene.
  • examples of the modified ethylene- ⁇ -olefin copolymer include maleic anhydride, silicone (silane), chlorine, and amine in the polymer side chain or polymer terminal of the ethylene- ⁇ -olefin copolymer.
  • a substance obtained by chemical modification such as acrylic acid or epoxy compound.
  • the polystyrene elastomer is selected from the group consisting of styrene-butadiene-styrene block copolymer (SBS), styrene-ethylene butylene-styrene block copolymer (SEBS), styrene- One or more of isobutylene block copolymer (SIB), styrene-isobutylene-styrene block copolymer (SIBS), styrene-ethylene propylene-styrene block copolymer (SEPS).
  • SBS styrene-butadiene-styrene block copolymer
  • SEBS styrene-ethylene butylene-styrene block copolymer
  • SIB isobutylene block copolymer
  • SIBS styrene-isobutylene-styrene block copolymer
  • SEPS styren
  • the polyester elastomer is a polyether-ester block copolymer or a polyester-ester block copolymer.
  • the polyester elastomer is selected from the group consisting of dimethyl terephthalate, 1,4-butanediol, and polytetramethylene ether glycol (PTMG), which are obtained by transesterification and polycondensation. Wait.
  • the polyester elastomer is a polybutylene naphthalate (PBN)-based elastomer, a polybutylene terephthalate (PBT)-based elastomer, or the like.
  • the thermoplastic elastomer has a melt index of >2 g/10 min 220 ° C, 2.16 kg; the thermoplastic elastomer has a melt index higher than that of the aliphatic polyamide resin, which is advantageous for mixing modification and injection molding.
  • the thermoplastic elastomer migrates outward and is distributed over the surface of the polyamide material.
  • the inorganic ore powder is at least one of alumina, silica, talc, titanium oxide, demontbromite and kaolin. Further preferably, the inorganic ore powder is at least one selected from the group consisting of talc, alumina, silica, zinc oxide, and demineralized soil. Particularly preferably, the inorganic ore fine powder has an average particle diameter of 0.1 to 1 ⁇ m, and the particle diameter herein refers to a median diameter (D50) measured by a laser particle size analyzer, and the inorganic oxide ore powder The particle size distribution is normally distributed.
  • D50 median diameter
  • the particle size of the above-mentioned inorganic ore fine powder cannot satisfy the distribution requirement, it needs to be depolymerized, and the depolymerization treatment should ensure the depolymerization between the ore particles while avoiding causing the fracture thereof, because after the crushing
  • the specific surface area will be further increased, resulting in an increase in agglomeration between the inorganic mineral powders, which is not conducive to its uniform dispersion in the polyamide composite.
  • the inorganic mineral powder mainly serves as a mechanical mechanism for increasing the material. The effect of strength and temperature resistance.
  • the inorganic ore powder is an inorganic ore powder modified by a coupling agent, wherein a weight ratio of the coupling agent to the inorganic ore powder is 1:20 to 1:100.
  • the coupling agent contains a reactive group, one end of which can form a covalent bond or a hydrogen bond with the hydroxyl group of the inorganic material, and the other end forms a hydrogen bond with the organic material or generates a covalent bond.
  • the interface between the inorganic material and the organic material is organically connected to improve various properties of the composite material.
  • the coupling agent is selected from the group consisting of an epoxy silane coupling agent, an amino silane coupling agent, a fluorenyl silane coupling agent, a ureido silane coupling agent, an isocyanate silane coupling agent, and a titanate.
  • a coupling agent a borate coupling agent, an aluminum-titanium composite coupling agent, and an aluminate coupling agent, which modifies the inorganic ore fine powder.
  • the coupling agent-modified inorganic ore fine powder is carried out by a usual dipping method, a spray method, a spray method, or the like, and is used in the present invention.
  • the modification method is not particularly limited. According to the process design, a method in which the inorganic ore fine powder and the solution containing the coupling agent are more uniformly contacted and adsorbed can be used.
  • the impregnation method is to put the mineral powder into the solution containing the coupling agent, and the capillary pressure is generated due to the surface tension, so that the liquid penetrates into the inside of the capillary, and the coupling agent gradually diffuses and adsorbs on the surface of the ore powder and the micropores. After the impregnation is equilibrated, the remaining solution is removed by drying or baking.
  • the spray method and the spray method directly spray the liquid with the coupling agent on the surface of the ore powder. Due to the different nozzle outlets, the droplets of the spray method are larger, generally suitable for bulk materials and granular materials, and the spray method is more Suitable for powder materials.
  • the advantage of the impregnation method is that the active component has high utilization rate, low cost and simple production method, but the drying process may lead to migration of the active component, while the spray method and the spray method are more efficient and easier to treat the ore powder. Dry, but need to add extra equipment.
  • epoxy silane coupling agent examples include vinyltrimethoxysilane, vinylphenyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, and ⁇ -glycidoxy Propyltrimethoxysilane, 4-glycidylbutyltrimethoxysilane, ⁇ -(2,3-epoxypropoxy)propyltrimethoxysilane.
  • the amino-based silane coupling agent includes ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N- 3-(4-(3-Aminopropoxy)butoxy)propyl-3-aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N-3-(4-(3-aminopropoxy)butoxy)propyl-3-aminopropyltrimethoxysilane.
  • the isocyanate-based silane coupling agent includes ⁇ -isocyanatepropyltriethoxysilane, isocyanatepropyltrimethoxysilane.
  • the ureido-based silane coupling agent includes ⁇ -ureidopropyltriethoxysilane, ⁇ -ureidopropyltrimethoxysilane.
  • the titanate coupling agent comprises a compound of isopropyl triisostearate isopropyl titanate, isopropyl tristearate bis, di(dioctyloxy pyrophosphate) ethylene titanate Ester, isopropyl tris(dioctylpyrophosphate) titanate, isopropyl tris(dodecylbenzenesulfonyl) titanate, isopropyl trioleate acyl titanate, Isopropyl tris(dioctylphosphoryloxy) titanate, isopropyl dioleic acid acyloxy (dioctylphosphoryloxy) titanate.
  • the aliphatic polyamide composite further comprises one or more of a fiber reinforcing material, a flame retardant, a nucleating agent, and an antioxidant.
  • the fiber reinforcing material includes one or more of glass fiber, carbon fiber, aramid fiber, and wollastonite.
  • the fiber reinforcing material is added in an amount of not more than 40% by weight based on the total weight of the aliphatic polyamide composite.
  • the glass fiber has a non-circular cross section, and refers to a glass fiber whose long axis is in a state perpendicular to the longitudinal direction of the fiber and which corresponds to the longest straight line in the cross section.
  • the non-circular cross section has a short axis with the longest linear distance in the corresponding cross section in a direction perpendicular to the long axis.
  • the non-circular cross section of the fibers can have a variety of shapes including a dome (number eight) shape, a rectangular shape, an elliptical shape, a semi-elliptical shape, a rough triangular shape, a polygonal shape, and a rectangular shape. Those skilled in the art will appreciate that the cross section can have other shapes.
  • the ratio of the major axis length to the minor axis length is preferably between about 1.5:1 and about 6:1.
  • the ratio is more preferably between 2:1 and 5:1, but more preferably between 3:1 and about 4:1.
  • the glass fiber can be long glass fiber, chopped fiber, and pulverized shortness The form of the glass fibers, or other suitable form known to those skilled in the art.
  • the carbon fiber is one or more of acrylonitrile-based carbon fiber, pitch-based carbon fiber, viscose-based carbon fiber, or phenolic carbon fiber.
  • the atomic structure of the carbon fiber is similar to that of graphite, and the carbon atom layers are arranged in a regular hexagonal pattern, and the interlayer spacing between the layers is 0.344 nm due to the presence of sp3 bonds.
  • the carbon fiber has a tensile strength of 2 to 7 GPa, an elastic modulus of 200 to 900 GPa, and a density of 1.78 g/cm 3 .
  • the carbon fiber may be T300, T700, T800, T1000 of Toray Corporation, or P-1002K, P-100S2K, P-1202K, P-120S2K, etc. of CytecThronel series.
  • the aramid fiber is polyphthaloylbenzenediamine, which is a novel synthetic fiber mainly classified into para-aramid fiber (PPTA) and meta-aramid fiber (PMIA).
  • PPTA para-aramid fiber
  • PMIA meta-aramid fiber
  • the wollastonite is a non-toxic natural mineral, and the wollastonite produced in nature is generally a fibrous, needle-like or radial aggregate, and the single crystal has a plate shape or a plate column extending along the b-axis.
  • Wollastonite has low solubility in neutral water, low oil absorption, no crystallization water, low hygroscopicity, no dehydration during heating, high melting point, low thermal expansion coefficient, good heat resistance, corrosion resistance and weathering resistance. Good mechanical and electrical properties. After filling the resin, it has good dimensional stability, abrasion resistance and smoothness. Compared with flaky fillers such as talc and mica, it has surface scratch resistance.
  • Wollastonite has good dispersibility in the resin, a small degree of strength reduction, and a low melt strength after filling the material.
  • the molding processability of the material is also improved due to the decrease in hygroscopicity and viscosity.
  • the wollastonite has a particle size of from 200 to 800 mesh; more preferably from 400 to 600 mesh.
  • the wollastonite of the present invention is a silane coupling agent-modified wollastonite.
  • the flame retardant comprises one or more of a halogen-based flame retardant, a halogen-free flame retardant, and a flame retardant synergist.
  • the flame retardant is added in an amount not exceeding 20% by weight based on the total weight of the aliphatic polyamide composite.
  • Halogenated flame retardants are effective for both unreinforced and reinforced nylons and can be used in conjunction with synergistic metal oxides, metal salts, phosphorus containing compounds or char formers. However, halogenated flame retardants can also cause the nylon chain to crack into combustible monomers or similar things initiated or catalyzed by hydrogen halide (HX).
  • Halogenated flame retardants usually use chlorinated flame retardants and desertified flame retardants; chlorinated flame retardants are mainly produced by Diels-Alder reaction of hexachlorocyclopentadiene and cyclooctadiene. A meta-addition product, bis(hexachlorocyclopentadienyl)cyclooctane, which is most commonly used in nylon. The brominated flame retardant is commonly used as decabromodiphenylethane. The effect is not obvious when used alone, but the effect is very obvious after the synergistic action of antimony trioxide.
  • the halogen-free flame retardant additive is mainly composed of a phosphorus compound and a metal hydroxide.
  • the halogen-free flame retardant of the present invention is a phosphorus-nitrogen flame retardant, preferably one or more of melamine cyanurate, hypophosphite or ammonium polyphosphate, further preferably ammonium polyphosphate, wherein phosphorus The content is not less than 19%.
  • the flame retardant synergist includes siloxane, metal oxide (such as silica, boehmite, alumina, iron oxide, titanium oxide, manganese oxide, magnesium oxide, zirconium oxide, zinc oxide, molybdenum oxide, Cobalt oxide, cerium oxide, chromium oxide, tin oxide, cerium oxide, nickel oxide, copper oxide, tungsten oxide, antimony trioxide, ferric oxide, metal powder (such as aluminum, iron, titanium, manganese, zinc, Molybdenum, cobalt, cerium, chromium, tin, antimony, nickel, copper and tungsten), and metal salts (such as barium metaborate, zinc carbonate, zinc borate, magnesium carbonate, calcium carbonate and barium carbonate).
  • metal oxide such as silica, boehmite, alumina, iron oxide, titanium oxide, manganese oxide, magnesium oxide, zirconium oxide, zinc oxide, molybdenum oxide, Cobalt oxide, cerium oxide, chrom
  • the antioxidant is added in an amount of not more than 2% by weight based on the total weight of the aliphatic polyamide composite.
  • the antioxidant can be divided into a primary antioxidant and a secondary antioxidant.
  • the primary antioxidant refers to a compound such as an aromatic amine and a hindered phenol capable of eliminating free radicals, and a derivative thereof
  • the auxiliary antioxidant refers to decomposition of hydrogen peroxide.
  • the primary antioxidant is selected from the group consisting of tetrakis[methyl- ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]pentaerythritol ester, ⁇ -(3,5-di-tert-butyl) -4-hydroxyphenyl)propionic acid n-octadecyl alcohol ester, N,N'-bis-(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionyl) hexamethylenediamine Or a variety.
  • the auxiliary antioxidant is selected from one or both of tris[2.4-di-tert-butylphenyl]phosphite, pentaerythritol distearyl diphosphate.
  • the nucleating agent is added in an amount of not more than 1% by weight based on the total weight of the aliphatic polyamide composite.
  • the nucleating agent is an ethylene acrylic acid copolymer, preferably a sodium ion derivative of an ethylene-methacrylic acid copolymer.
  • the main role of the nucleating agent is to increase the crystallization rate of the nylon material, increase the tensile strength and flexural modulus of the material, and enhance the strength.
  • the above preparation method of the aliphatic polyamide composite for environmental protection plating comprises the following steps:
  • thermoplastic elastomer (1) mixing an aliphatic polyamide resin with a thermoplastic elastomer, and performing a reaction in an autoclave, an internal mixer, or an extruder to obtain a blend, which is ready for use;
  • step (3) The blend obtained in the step (1) is added to a twin-screw extruder, and at the same time, the inorganic ore powder treated by the step (2) is added, and after mixing, the pellets are extruded and obtained.
  • the aliphatic polyamide composite of the invention can be treated by the existing ABS plastic electroplating process, and the equipment investment is small, the electroplating cost is low, and the product competitiveness is greatly improved;
  • the aliphatic polyamide composite of the present invention has a small amount of thermoplastic elastomer added, and is distributed on the surface layer of the polyamide resin to maintain the basic characteristics of the polyamide resin substrate. Further, the thermoplastic elastomer is easily corroded by the plating solution. A hole similar to the "bait" effect of ABS, thereby improving the adhesion of the coating;
  • the aliphatic polyamide composite of the present invention can be electroplated by using the existing ABS electroplating hexavalent chromium roughening solution, and can also be treated with an environmentally-friendly potassium permanganate roughening liquid, which is suitable for the development of environmentally friendly electroplating;
  • the electroplating bonding force with the surface of the electroplated coating layer can reach 10 N or more, thereby ensuring the safety of use;
  • This product has excellent low temperature resistance and can withstand low temperature of -50 °C, which can broaden the scope of use of electroplating products.
  • the tensile strength was measured according to "ISO 527-2012 Plastic Tensile Properties Test Method", and a dumbbell-shaped sample was prepared at a stretching speed of 2 mm/min and a longitudinal axis stretching. The tensile strength at break of the specimen and the corresponding elongation at break were recorded. The sample should be placed under conditions of 23 ⁇ 2 ° C (73.4 ⁇ 3.6 ° F) and 50 ⁇ 5% relative humidity before the test, and adjusted for not less than 40 hours. During the tensile test, the sample is stretched until it breaks, and the percentage of the distance from which the gauge length is recorded is the elongation at break.
  • the impact strength test was carried out in accordance with the "Standard Test Method for Ion Beam Impact Test of ISO 180 Plastics".
  • the standard sample was broken by the swing of the standard pendulum, and the energy absorbed by the recorded sample fracture was its impact strength.
  • All stamper specimens shall be notched in a plane parallel to the direction in which the stamp is applied. The parallelism of one side of the notch to the other is within 0.025 mm (0.001 in) by removing a small amount of material during processing to maintain the tolerance of the depth of the sample.
  • the test shall be carried out under conditions of 23 ⁇ 2 ° C (73.4 ⁇ 3.6 ° F) and 50 ⁇ 5% relative humidity.
  • the plating bonding force refers to the bonding strength of the plating layer to the base resin or the intermediate plating layer, that is, the force required to peel the plating layer per unit surface area from the base resin or the intermediate plating layer.
  • the material was injection molded into a square product of 120*60*2 mm, then electroplated, and a 10*80 mm strip was cut on the plate with a knife. Applying 3M adhesive tape to the width of the strip coating, and then using the universal testing machine to test the maximum force required to separate the coating from the resin is the bonding strength of the coating. .
  • the bending performance test was carried out in accordance with "ISO 178-2010 Determination of Plastic Bending Properties".
  • the bending strength is the maximum stress that the material bears when it breaks under the bending load or reaches the specified deflection.
  • the bending modulus is the ability of the material to resist bending deformation within the elastic limit, and the bending strength and the flexural modulus are both MPa.
  • the material is injection molded into a square product of 120*60*2mm, then electroplated, kept at -50 ° C for 24 hours, then heated at 2 ° C / min to 50 ° C for 24 hours, then 2 ° C / min to -50 ° C. This is a cycle. After the completion of one cycle, observe whether the plating layer and the resin are loosened. If not, continue to the next cycle. The more the number of cycles of the hot and cold cycle performed by the product, the better the resistance to cold and heat shock.
  • PA66 EPR27 of Pingdingshan Shenma Engineering Plastics Co., Ltd.;
  • PA6 M2500I of Xinhui Meida Nylon Co., Ltd.;
  • PA12 TR55 of EMS Swiss Chemical (China) Co., Ltd.;
  • Glass fiber 301HP of Chongqing International Composites
  • Carbon fiber Type-45 of Toray, Japan
  • Silane coupling agent KH550 A-1100 of American United Carbon Corporation
  • Titanate coupling agent KR-238S of Kenrich Petroleum Company of the United States;
  • TPE G4774 of DuPont Co., Ltd.
  • TPU WHT-2195 of Yantai Wanhua Polyurethane Co., Ltd.;
  • TPO ExxonMobil Chemical's CMV241;
  • Talc powder Hangzhou Fuyang Xintianlong Mine Powder Co., Ltd., 2000 mesh;
  • Alumina ALuna-100 of Guangzhou Ji Bi Sheng Technology Industrial Co., Ltd.;
  • Antioxidant SEED of Clariant Chemicals (China) Co., Ltd.
  • An aliphatic polyamide composite for environmentally friendly plating comprising the following raw materials by weight (total weight of raw materials: 10KG):
  • the above preparation method of the aliphatic polyamide composite for environmental protection plating comprises the following steps:
  • PA6 and TPE are added to a twin-screw extruder through a main feeder for melt polymerization, and the pellets are granulated to obtain a blend, which is ready for use;
  • An aliphatic polyamide composite for environmentally friendly plating comprising the following raw materials by weight (total weight of raw materials: 10KG):
  • the above preparation method of the aliphatic polyamide composite for environmental protection plating comprises the following steps:
  • PA6 and TPE are added to a twin-screw extruder through a main feeder for melt polymerization, and the pellets are granulated to obtain a blend, which is ready for use;
  • step (3) adding the blend obtained in the step (1) and the SEED to the twin-screw extruder through the main feeder, and adding the inorganic mineral powder alumina treated in the step (2) to the side feeder.
  • the temperature was controlled to melt extrusion at 240 ° C, pelletizing, and the twin screw rotation speed was 300 RPM to obtain the polyamide composite of the present invention.
  • An aliphatic polyamide composite for environmentally friendly plating comprising the following raw materials by weight (total weight of raw materials: 10KG):
  • the above preparation method of the aliphatic polyamide composite for environmental protection plating comprises the following steps:
  • PA66 and TPO are added to a twin-screw extruder through a main feeder for melt polymerization, and the pellets are granulated to obtain a blend, which is ready for use;
  • the glass fiber 301HP after mixing, was melt-extruded under the condition of temperature control at 280 ° C, pelletized, and the twin-screw rotation speed was 350 RMP, thereby obtaining the polyamide composite of the present invention.
  • An aliphatic polyamide composite for environmentally friendly plating comprising the following raw materials by weight (total weight of raw materials: 10KG):
  • the above preparation method of the aliphatic polyamide composite for environmental protection plating comprises the following steps:
  • PA6, PA66 and TPU are melt-polymerized in an internal mixer to obtain a blend, which is ready for use;
  • step (3) adding the blend obtained in the step (1) and the SEED to the twin-screw extruder through the main feeder, and adding the inorganic ore powder talc treated by the step (2) to the side feeder.
  • the temperature was controlled to melt extrusion at 270 ° C, and the pellets were milled at a twin screw speed of 250 RMP to obtain the polyamide composite of the present invention.
  • An aliphatic polyamide composite for environmentally friendly plating comprising the following raw materials by weight (total weight of raw materials: 10KG):
  • the above preparation method of the aliphatic polyamide composite for environmental protection plating comprises the following steps:
  • PA6, PA66, PA12 and TPU are melt-polymerized in an autoclave to obtain a blend, which is ready for use;
  • step (3) adding the blend obtained in the step (1) and the SEED to the twin-screw extruder through the main feeder, and adding the inorganic ore powder talc treated by the step (2) to the side feeder.
  • An aliphatic polyamide composite for environmentally friendly plating comprising the following raw materials by weight (total weight of raw materials: 10KG):
  • the above preparation method of the aliphatic polyamide composite for environmental protection plating comprises the following steps:
  • PA12 is mixed with TPU and TPO by melt polymerization in an autoclave to obtain a blend, which is ready for use;
  • step (3) adding the blend obtained in the step (1) and the SEED to the twin-screw extruder through the main feeder, and adding the inorganic ore powder talc treated by the step (2) to the side feeder.
  • Alumina the temperature was controlled to melt extrusion at 230 ° C, pelletizing, and the twin screw rotation speed was 300 RMP, thereby obtaining the polyamide composite of the present invention.
  • a polyamide composite comprising the following raw materials by weight (total weight of raw materials: 10KG):
  • the preparation method of the above polyamide composite comprises the following steps:
  • step (2) Adding PA6 and SEED to the twin-screw extruder through the main feeder, and adding the inorganic mineral powder alumina treated in step (1) to the side feeder, and the temperature is controlled to melt at 230 °C.
  • a polyamide composite comprising the following raw materials by weight (total weight of raw materials: 10KG):
  • the preparation method of the above polyamide composite comprises the following steps:
  • the polyamide composites obtained in Examples 1-3 and Comparative Example 1 were subjected to electroplating after treatment with a potassium permanganate roughening liquid, and the plating layer formed after electroplating was subjected to a plating adhesion test.
  • the polyamide composites obtained in Examples 4 to 6 and Comparative Example 2 were subjected to electroplating after treatment with a chromic acid roughening liquid, and the plating layer formed after electroplating was subjected to a plating adhesion test. The test results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种用于电镀的脂肪族聚酰胺复合物及其制备方法,包括以下按重量百分比计的原料:脂肪族聚酰胺树脂40%-90%,热塑性弹性体3%-20%,偶联剂0%-2%,无机矿粉0%-40%;其中,所述热塑性弹性体的熔融指数比脂肪族聚酰胺树脂的熔融指数高。所述的脂肪族聚酰胺复合物可以用高锰酸钾粗化液处理,经过电镀后,其与电镀被覆层表面的电镀结合力可达到10N以上。

Description

一种用于环保电镀的脂肪族聚酰胺复合物及其制备方法 技术领域
本发明涉及聚酰胺复合物,尤其是一种用于环保电镀的脂肪族聚酰胺复合物及其制备方法。
背景技术
塑料电镀可以使塑料制品表面具有金属光泽,美观,起到装饰作用,提高制品表面的机械强度,延长使用寿命;使塑料制品对光和大气等外界因素具有较高的稳定性,不易老化;使塑料具有导电、导磁和可焊接性。塑料电镀制品可用于航空航天、造船、汽车、电子电器、建筑装饰、玩具和生活用品等行业,用途十分广泛。
常见的塑胶产品电镀工艺有两种:水电镀和真空离子镀。
真空电镀主要包括:真空蒸镀、溅射镀和离子镀几种类型。它们都是采用在真空条件下,通过蒸馏或溅射等方式在塑件表面沉积各种金属和非金属薄膜,通过这样的方式可以得到非常薄的表面镀层,同时具有速度快附着力好的突出优点,但是价格也较高,可以进行操作的金属类型较少,一般用来作较高档产品的功能性镀层。
水电镀主要工艺是将需电镀的产品放入化学电镀液中进行电镀。水电镀因工艺较简单,从设备到环境的要求均没有真空离子镀苛刻,从而被广泛应用。可用于水电镀塑料包括:ABS、尼龙、聚碳酸酯和聚苯乙烯等,其中以ABS用量最大,电镀效果最好,工艺最成熟。
聚酰胺(polyamide,PA)通常称为尼龙(Nylon),它是在聚合物大分子链中含有重复结构单元酰胺基团(NHCO-)的杂链聚合物总称,主要由二元酸与二元胺或氨基酸内酰胺经缩聚、自聚而得,是开发最早、使用量最大的热塑性工程塑料。PA品种较多,按主链结构可分为脂肪族聚酰胺、半芳香族聚酰胺、全芳香族聚酰胺、含杂环芳香族聚酰胺和脂环族聚酰胺,其中尼龙原料的胺或者酸中有一样含有苯环时为半芳香尼龙,两种原料都含有苯环时为全芳香聚酰胺。半芳香族或全芳香族聚酰胺,可显著提高尼龙的耐热性和刚性。与脂肪族聚酰胺相似,芳香族聚酰胺可以由二元酸与二元胺缩聚,也可以由胺基酸自缩聚而成,半芳香族聚酰胺可以由芳香族二元酸(如对苯二甲酸)与脂族二元酸(如壬二胺)缩聚而成,如尼龙9T。
热塑性弹性体(TPE)是一种由玻璃态或半结晶态热塑性树脂和柔软的弹性体所组成的嵌段共聚物,兼备了橡胶的高弹性和热塑性树脂的热塑加工性,被誉为“第三代合成橡胶”。其结构特点是由化学键组成不同的树脂段和橡胶段,树脂段凭借链段间作用力形成物理“交联”,橡胶段是具有较大自由旋转能力的高弹性链段,塑料和橡胶段以适当的次序排列、联接起来。由于这种聚合物链结构特点和交联状态的可逆性,热塑性弹性体在常温下显示硫化橡胶的弹性、强度和形变特性等物理机械性能,在高温下塑料段的物理交联随温度的变化而呈可逆变 化,显示了热塑性塑料的加工特性。目前工业化生产的TPE主要有:苯乙烯类、烯烃类、聚氨酯类、聚酯类、聚氯乙烯类、酞胺类、双烯类和有机氟类等。
苯乙烯类热塑性弹性体(TPS或SBC)是指由聚苯乙烯链段为硬段(S)、聚丁二烯烃链为软段(D)的三嵌段共聚物(SDS)或多嵌段共聚物。其中的主要产品为以软段为聚丁二烯(B)的嵌段共聚物(SBS)、以聚异戊二烯为软段的嵌段共聚物(SIS)及SBS加氢化产物(SEBS)等。SBS热塑性弹性体,是苯乙烯和丁二烯的嵌段共聚物,有第三代合成橡胶之称,它具有良好的拉伸强度和弹性、耐摩擦、耐疲劳、易染色及物美价廉的特点,可直接注塑或挤压成型。主要用途:①生产橡胶制品,②作合成树脂改性剂,③作粘合剂,④作沥青改性剂。SBS作为树脂改性剂方面的研究有很多,谭能超等用少量SBS分别与聚丙烯、聚乙烯共混,可明显改善制品的低温性能和抗冲击强度。添加SBS可使聚苯乙烯耐冲击性大为增加,且使透明性也有改善,谭能超等人用碳酸钙与SBS协同改性PS,降低了成本。SIS生产工艺与SBS基本相同,因此世界上许多SBS装置同时具备生产SIS的能力。但从生产过程讲,生产SIS难度高于SBS,因而并非所有SBS装置都可同时生产SIS,其品种牌号明显少于SBS。
聚烯烃类热塑性弹性体(TPO)由橡胶和聚烯烃构成,通常橡胶组份为三元乙丙橡胶(EPDM)、丁腈橡胶(NBR)和丁基橡胶。聚烯烃组份主要为聚丙烯(PP)和聚乙烯(PE)。TPO在常温下呈现橡胶弹性,密度小、弯曲弹性模量高、流动性好,具有优异的耐候性、耐臭氧、耐紫外线及良好的耐高温、耐低温冲击性能好等特点,易加工、成本低、可重复使用,是一种综合性能良好的材料。
聚氨酯类热塑性弹性体(TPU)是聚氨酯橡胶的一类,分为聚酯型和聚醚型。其大分子链的结构是由极性聚氨酯或聚脲链段(硬段)和脂肪族聚酯或聚醚链段(软段)交替构成。分子间形成的氢键交联和大分子链间的轻度交联的结构,使得这种高分子材料随着温度的变化具有可塑性。硬度高、耐磨性好、弹性好是这类弹性体最突出的特点。
聚酯类热塑性弹性体(TPEE)是一类含有芳香族聚酯硬段和脂肪族聚酯或聚醚软段的嵌段共聚物。硬段和软段的比例决定了热塑性聚酯弹性体的硬度和物理机械性能。硬段形成物理交联点,承受应力,软段是自由分布的高弹性链段,贡献弹性。TPEE弹性好,耐磨,抗屈挠性能优异,具有优异的耐热性能,且低温柔顺性好,低温冲击强度高。
塑料电镀是指用化学镀和电镀的方法在塑料表面涂覆金属镀层的加工工艺。塑料制品经过电镀金属层后,保留了塑件质轻、生产效率高、设计灵活性大的特点;同时赋予其防护性、装饰性、耐磨性和导热性,因此塑料电镀工艺广泛应用于电子、光学仪器、机床按钮和轻工产品等各方面。以塑料电镀金属层代替金属,在工程应用方面意义重大,不仅实现了轻量化,更大大降低了成本。
ABS是无定形高分子材料,外观呈象牙色,不透明,无臭无味,无毒,具有极好的电镀 性能,是极好的非金属电镀材料。ABS塑料中丁二烯的含量对电镀效果有很大影响,一般用于电镀的ABS,其丁二烯质量分数不能低于10%,一般应在18%~24%。电镀过程中,ABS中丁二烯形成的弹性体相(也称橡胶相)被浸蚀而形成许多在电镀时能产生“投饵”作用的孔洞,这种瓶颈锁扣形孔洞可大大增强镀层的结合力。
ABS塑料的电镀工艺包括以下步骤:第一步去应力,目的是减少电镀后物件因为注塑产生的内应力而可能发生的形变;第二步是除油,多数使用碱性或酸性去油剂除掉制件在加工或者运输过程中,沾染到的油污、脱模剂和一些影响后续操作的杂物。除油的主要目的是脱脂去油,同时降低其表面张力,赋予其表面亲水性;第三步粗化,粗化的目的是提高表面粗糙度,增大表面积,以增大金属镀层和塑料的结合力,使塑料表面由憎水变为亲水,各部分被水均匀润湿,以便均匀吸附金属离子。ABS制件广泛采用的化学粗化配方有两种:一种是Cr03-H2S04-H2O浸蚀体系;一种是Cr03–H2S04-H3P04浸蚀体系,其中都含有六价铬成分。六价铬为吞入性毒物/吸入性极毒物,皮肤接触可能导致过敏;更可能造成遗传性基因缺陷,吸入可能致癌,对环境有持久危险性;第四步敏化,即在材料表面吸附还原性的二价锡离子,为活化做准备;第五步即是活化还原,先在材料表面吸附一层有催化活性的贵金属层,如Ag等,然后将其还原,可以提高表面活性,加快沉积速度,要注意的是需将材料表面的活化液清洗干净,防止后序工艺被染污;第六步是化学镀,即在材料表面形成镀层均一、连续性好的金属镀层,为电镀提供保障;第七步即是电镀,通常采用铜、镍和铬三种金属在材料表面复合电镀,形成最终的表面装饰层。
目前,传统的电镀级尼龙材料,主要以脂肪族聚酰胺(PA6为主)树脂为基材,通过添加一定比例的无机矿粉填充,对其进行电镀被覆改性。在进行电镀过程中,电镀液先把脂肪族聚酰胺树脂溶胀,再渗入内部把材料中的无机矿粉腐蚀,形成表面粗糙的效果,用于增加电镀金属层与尼龙基材的表面结合力。在聚酰胺的表面处理通常是利用硫酸溶液和铬酸进行,如美国专利US5,324,766。但,使用重金属铬酸对于工人而言极具危害性,并且也会对环境产生较大污染。膨胀体系中含有的有机组份和所添加的其它化学物质,会将尼龙塑料中的某些填充料除去,由于不是所有的填充料均可去除,因此造成某些尼龙塑料较难或不能电镀。在尼龙的电镀中,粗化与膨胀工艺是影响镀层外观质量与结合力的关键因素,工件表面均匀的粗化效果,可以为获得具有良好结合力的后序装饰性镀层打下坚实的基础。表面粗化是否均匀,直接决定了尼龙工件表面的电镀质量。现有电镀级尼龙材料存在较大的缺陷是:1.需要使用专用的尼龙电镀药水;2.基材电镀结合力不高,无法满足金属电镀制品粘合性的要求;3.生产不灵活,成本高,传统尼龙电镀工艺成本约为2.4元/DM,而ABS电镀工艺成本约为1.2元/dm。因此市场应用没有ABS宽广。
发明内容
针对现有技术存在的问题,本发明的一个目的是提供一种用于环保电镀的脂肪族聚酰胺 复合物,以脂肪族聚酰胺树脂为主体树脂,通过添加特殊的热塑性弹性体,在混合改性过程中使弹性体均匀分布在树脂表面。本发明的聚酰胺复合物在不添加矿粉的情况下,也可用于电镀处理,在经过电镀工艺进行表面金属化被覆,得到高强度、耐高温、低吸水、尺寸稳定的产品,特别是具有极好的基材电镀结合力。本发明的另一个目的是提供一种用于环保电镀的脂肪族聚酰胺复合物的制备方法。本发明的又一个目的是提供一种聚酰胺复合物可以用ABS电镀工艺进行电镀。
为了实现上述目的,本发明采用以下技术方案:
一种用于环保电镀的脂肪族聚酰胺复合物,包括以下按重量百分比计的原料:
Figure PCTCN2017112366-appb-000001
其中,热塑性弹性体的熔融指数高于脂肪族聚酰胺树脂的熔融指数。
优选地,所述脂肪族聚酰胺树脂数是指聚酰胺衍生自一种或多种脂肪族二胺(如脂族C6-C20亚烷基二胺、脂环族二胺,优选地二胺包括双(对氨基环己基)甲烷、1,6-己二胺、2-甲基戊二胺、2-甲基辛二胺、三甲基1,6-己二胺、1,8-辛二胺、1,9-壬二胺、1,10-癸二胺、1,12-十二烷二胺、和间二甲苯基二胺)和一种或多种二元羧酸(如,己二酸、癸二酸、壬二酸、十二烷二酸或它们的衍生物),和/或一种或多种脂肪族内酰胺、氨基酸(如11-氨基十二烷酸、己内酰胺和月桂内酰胺)。
进一步优选地,所述脂肪族聚酰胺选自PA6,PA46,PA56,PA66,PA610,PA612,PA613,PA614,PA615,PA616,PA11,PA12,PA910,PA912,PA913,PA914,PA915,PA936,PA1010,PA1012,PA1013,PA1014,PA1210,PA1212,PA1213,PA1214中的至少一种。
更优选地,所述脂肪族聚酰胺选自PA6,PA56,PA66,PA610,PA612,PA11,PA12,PA1010,PA1212中的至少一种。
优选地,所述热塑性弹性体为聚烯烃弹性体、聚酯弹性体和聚苯乙烯弹性体中的至少一种。
进一步优选地,所述热塑性弹性体可以进行马来酸酐、硅酮(硅烷)、氯、胺、丙烯酸、环氧化合物等化学改性而使用。
进一步优选地,所述聚烯烃弹性体是将乙烯、丙烯、丁二烯等烯烃、二烯烃单体均聚或共聚而得到的物质等。进一步优选地,所述聚烯烃弹性体选自乙烯-丙烯-二烯烃橡胶(EPDM)、乙烯-丙烯橡胶(EPM)、或EPDM与EPM的共混物、乙烯-α-烯烃共聚物、改性乙烯-α-烯烃共 聚物、反应器直接制备热塑性聚烯烃(reactor TPO)中的一种或多种。作为上述乙烯-α-烯烃共聚物,例如可列举出乙烯与丙烯、1-丁烯、1-戊烯、1-己烯、1-庚烯、1-辛烯、1-壬烯、1-癸烯等α-烯烃的共聚物。另外,作为上述改性乙烯-α-烯烃共聚物,可列举出将上述乙烯-α-烯烃共聚物的聚合物侧链或聚合物末端用马来酸酐、硅酮(硅烷)、氯、胺、丙烯酸、环氧化合物等化学修饰而得到的物质。
进一步优选地,所述聚苯乙烯弹性体选自苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)、苯乙烯-乙烯丁烯-苯乙烯嵌段共聚物(SEBS)、苯乙烯-异丁烯嵌段共聚物(SIB)、苯乙烯-异丁烯-苯乙烯嵌段共聚物(SIBS)、苯乙烯-乙烯丙烯-苯乙烯嵌段共聚物(SEPS)中的一种或多种。
进一步优选地,所述聚酯弹性体是聚醚-酯嵌段共聚物或聚酯-酯嵌段共聚物。具体的所述聚酯弹性体选自由对苯二甲酸二甲酯、1,4-丁二醇、聚四亚甲基醚二醇(PTMG)为原料,通过酯交换、缩聚反应而得到的物质等。更优选地,所述聚酯弹性体为聚萘二甲酸丁二醇酯(PBN)系弹性体、聚对苯二甲酸丁二醇酯(PBT)系弹性体等。
优选地,所述热塑性弹性体的熔融指数为>2g/10min 220℃,2.16kg;所述热塑性弹性体的熔融指数高于脂肪族聚酰胺树脂的熔融指数,有利于在混合改性及注塑时,热塑性弹性体向外迁移,分布在聚酰胺材料的表层。
优选的,所述无机矿粉是氧化铝、氧化硅、滑石粉、氧化钛、脱蒙土和高岭土中的至少一种。进一步优选地,所述无机矿粉选自滑石粉、氧化铝、氧化硅、氧化锌、脱蒙土中的至少一种。特别优选的,所述无机矿粉的平均粒径为0.1~1μm,这里所说的粒径是指采用激光粒度测试仪测定法测定的中值粒径(D50),并且该无机氧化物矿粉的粒度分布呈正态分布。
在本发明中,如上述无机矿粉的粒度不能满足分布要求,则需要对其进行解聚处理,解聚处理时应保证矿粉颗粒间解聚的同时,尽量避免造成其破碎,因为破碎后无机矿粉的中由于存在大量的细小颗粒,比表面积将进一步增加,导致无机矿粉间的团聚增加,不利于其在聚酰胺复合物中的均匀分散,无机矿粉主要起到增加材料的机械强度和耐温性的作用。
进一步优选地,所述无机矿粉为经偶联剂改性后的无机矿粉,其中偶联剂与无机矿粉的重量比为1:20-1:100。
偶联剂含有反应性基团,它的一端能与无机材料的羟基形成共价键或氢键,另一端与有机材料形成氢键或生成共价键。从而将无机材料和有机材料的界面有机地连接起来,提高复合材料的各项性能。
优选地,所述偶联剂选自环氧基硅烷偶联剂、氨基类硅烷偶联剂、巯基类硅烷偶联剂、脲基类硅烷偶联剂、异氰酸酯类硅烷偶联剂、钛酸酯偶联剂、硼酸酯偶联剂、铝钛复合偶联剂、铝酸酯偶联剂中的至少一种,其对无机矿粉进行改性。
偶联剂改性的无机矿粉采用通常的浸渍法、喷淋法、喷雾法等方法进行,本发明中对其 改性方法未作特别限定。根据工序设计,可任意采用使无机矿粉与含有偶联剂的溶液更加均匀地接触、吸附的方法。
浸渍法是将矿粉放进含有偶联剂的溶液中,由于表面张力的作用而产生毛细管压力,使液体渗透到毛细管内部从而偶联剂逐渐在矿粉表面和微孔内扩散并吸附,当浸渍平衡后,将剩下的溶液通过干燥或焙烧等方法除去。喷淋法和喷雾法则是将还有偶联剂的液体直接喷洒在矿粉表面,由于喷嘴出口的不同,喷淋法液滴较大,一般适用于块状材料和粒状材料,而喷雾法多适用于粉末物料。浸渍法的优点是活性组份利用率高,成本低,生产方法简单,但是干燥的过程可能会导致活性组分的迁移,而喷淋法和喷雾法处理矿粉效率更高,也更易于于燥,但需要增加额外的设备。
具体的所述环氧基硅烷偶联剂包括乙烯基三甲氧基硅烷、乙烯基苯基三甲氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、γ-环氧丙氧基丙基三甲氧基硅烷、4-缩水甘油基丁基三甲氧基硅烷、γ―(2,3-环氧丙氧)丙基三甲氧基硅烷。所述氨基类硅烷偶联剂包括γ-氨基丙基三甲氧基硅烷、γ-氨基丙基三乙氧基硅烷、N-β(氨基乙基)γ-氨基丙基三甲氧基硅烷、N-3-(4-(3-氨基丙氧基)丁氧基)丙基-3-氨基丙基三甲氧基硅烷,γ-氨基丙基三乙氧基硅烷、N-β(氨基乙基)γ-氨基丙基三甲氧基硅烷、N-3-(4-(3-氨基丙氧基)丁氧基)丙基-3-氨基丙基三甲氧基硅烷。所述异氰酸酯类硅烷偶联剂包括γ-异氰酸酯丙基三乙氧基硅烷,异氰酸酯丙基三甲氧基硅烷。所述脲基类硅烷偶联剂包括γ-脲基丙基三乙氧基硅烷,γ-脲基丙基三甲氧基硅烷。所述钛酸酯类偶联剂包括三异硬酯酸钛酸异丙酯的复配物,三硬酯酸钛酸异丙酯,双(二辛氧基焦磷酸酯基)乙撑钛酸酯,异丙基三(二辛基焦磷酸酰氧基)钛酸酯,异丙基三(十二烷基苯磺酰基)钛酸酯,异丙基三油酸酰氧基钛酸酯,异丙基三(二辛基磷酸酰氧基)钛酸酯,异丙基二油酸酰氧基(二辛基磷酸酰氧基)钛酸酯。
优选地,所述脂肪族聚酰胺复合物还包括纤维增强材料、阻燃剂、成核剂和抗氧化剂中的一种或多种。
本发明中,所述纤维增强材料包括玻璃纤维、碳纤维、芳纶纤维、硅灰石中的一种或多种。所述纤维增强材料的添加量不超过脂肪族聚酰胺复合物总重量的40%。
其中,所述玻璃纤维具有非圆形横截面,是指长轴处于与纤维纵向垂直状态、并且对应横截面中最长直线距离的玻璃纤维。所述非圆形横截面在与长轴垂直的方向上的具有对应横截面中最长的直线距离的短轴。所述纤维的非圆形横截面可具有多种形状,包括茧形(数字八)形状、矩形形状、椭圆形形状、半椭圆形形状、粗略三角形形状、多边形形状和长方形形状。本领域的技术人员均能理解,横截面可具有其他形状。所述长轴长度与所述短轴长度的比率优选介于约1.5∶1和约6∶1之间。所述比率更优选介于2:1和5:1之间,但是更优选介于3:1至约4:1之间。所述玻璃纤维可为长玻璃纤维、短切纤维、粉碎的短性 玻璃纤维的形式,或其它本领域的技术人员已知的适宜形式。
所述碳纤维为丙烯腈基碳纤维、沥青基碳纤维、黏胶基碳纤维或酚醛碳纤维中的一种或多种。碳纤维的原子结构类似于石墨,碳原子层以规整的六边形图案排列,层与层之间由于sp3键的存在使层间间距达到0.344nm。碳纤维的拉伸强度为2-7GPa,弹性模量为200-900GPa,密度为1.78g/cm3。碳纤维可以是东丽公司的T300、T700、T800、T1000,也可以是CytecThronel系列的P-1002K,P-100S2K,P-1202K,P-120S2K等。
所述芳纶纤维为聚苯二甲酰苯二胺,其是一种新型合成纤维,主要分为对位芳酰胺纤维(PPTA)和间位芳酰胺纤维(PMIA)。
所述硅灰石是无毒性的天然矿物,自然界产出的硅灰石一般是纤维状、针状或放射状集合体,单晶体沿b轴延伸的板状或板柱状。硅灰石在中性水中的溶解度低,吸油量低,不含结晶水,吸湿性小,加热时无脱水问题,熔点高,热膨胀系数小,耐热稳定性好,耐腐蚀,耐气候老化,机械性能和电性能良好。填充树脂后,尺寸稳定性好,耐摩擦性、平滑性;与滑石粉、云母等片状填料相比,具有表面耐划擦的特点。硅灰石在树脂中的分散性好,强度下降程度小,填充材料后熔体强度低。由于吸湿性和粘度的降低,也改进了材料的成型加工性能。优选地,硅灰石粒径为200-800目;更优选400-600目。本发明的硅灰石为硅烷偶联剂改性的硅灰石。
进一步优选地,所述阻燃剂包括卤系阻燃剂、无卤阻燃剂及阻燃协效剂中的一种或多种。所述阻燃剂的添加量不超过脂肪族聚酰胺复合物总重量的20%。卤系阻燃剂对未增强和增强尼龙均很有效,它可以与协效金属氧化物、金属盐、含磷化合物或成炭剂共同使用。但是卤系阻燃剂也会造成尼龙链裂解成可燃单体或由卤化氢(HX)引发或催化的类似的东西。卤系阻燃剂通常使用的是氯化阻燃剂和漠化阻燃剂;氯化阻燃剂主要为六氯环戊二烯与环辛二烯发生狄尔斯-阿尔德反应生成的二元加成产物,双(六氯环戊二烯)环辛烷,它在尼龙中最常用。溴化阻燃剂常用的为十溴二苯乙烷,单独使用时效果不是很明显,但通过三氧化二锑的协同作用后,效果非常明显。
无卤阻燃剂添加剂主要以磷系化合物和金属氢氧化物为主。本发明优选所述的无卤阻燃剂为磷氮系阻燃剂,优选三聚氰胺氰尿酸盐、次磷酸盐或聚磷酸铵中的一种或一种以上,进一步优选聚磷酸铵,其中磷含量不低于19%。
所述阻燃剂增效剂包括硅氧烷、金属氧化物(诸如二氧化硅、勃姆石、氧化铝、氧化铁、氧化钛、氧化锰、氧化镁、氧化锆、氧化锌、氧化钼、氧化钴、氧化铋、氧化铬、氧化锡、氧化锑、氧化镍、氧化铜和、氧化钨、三氧化二锑、三氧化二铁)、金属粉末(诸如铝、铁、钛、锰、锌、钼、钴、铋、铬、锡、锑、镍、铜和钨)、以及金属盐(诸如偏硼酸钡、碳酸锌、硼酸锌、碳酸镁、碳酸钙和碳酸钡)。
进一步优选地,所述抗氧剂的添加量不超过脂肪族聚酰胺复合物总重量的2%。所述抗氧剂可分为主抗氧剂和辅助抗氧剂,主抗氧剂指能消除自由基的芳香胺和受阻酚等化合物及其衍生物,辅助抗氧剂指能分解氢过氧化物的含有磷和硫的有机化合物。所述的主抗氧剂选自四[甲基-β-(3,5-二叔丁基-4-羟基苯基)丙酸酯]季戊四醇酯、β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯、N,N′-双-(3-(3,5-二叔丁基-4-羟基苯基)丙酰基)己二胺一种或多种。所述辅助抗氧剂选自三[2.4-二叔丁基苯基]亚磷酸酯、二亚磷酸季戊四醇二硬脂醇酯中的一种或两种。
进一步优选地,所述成核剂的添加量不超过脂肪族聚酰胺复合物总重量的1%。所述成核剂为乙烯丙烯酸共聚物,优选乙烯-甲基丙烯酸共聚物的钠离子衍生物。成核剂的主要作用是提高尼龙材料的结晶速度,提高材料的拉伸强度和弯曲模量,增强强度。
上述用于环保电镀的脂肪族聚酰胺复合物的制备方法,包括以下步骤:
(1)将脂肪族聚酰胺树脂与热塑性弹性体混合,在高压反应釜、密炼机或挤出机内,进行反应,得到共混物,备用;
(2)将无机矿粉加入高混机中,待无机矿粉温度升高至105℃以上,再加入偶联剂反应,反应时间为10-30分钟,取出待用;
(3)将步骤(1)得到的共混物加入到双螺杆挤出机中,同时加入经过步骤(2)处理的无机矿粉,混合后,挤出切粒,即得。
本发明的有益效果:
1.本发明的脂肪族聚酰胺复合物可以采用现有的ABS塑胶电镀工艺处理,从企业生产来说,设备投入少,电镀成本低,大大提高了产品竞争力;
2.本发明的脂肪族聚酰胺复合物中热塑性弹性体添加量少,分布在聚酰胺树脂的表层,可以保持聚酰胺树脂基材的基本特性,此外,热塑性弹性体容易被电镀药水腐蚀,产生类似ABS的“投饵”作用的孔洞,进而提高镀层结合力;
3.本发明的脂肪族聚酰胺复合物不但可以用现有的ABS电镀六价铬粗化液进行电镀处理,还可以用环保的高锰酸钾粗化液处理,适合环保电镀的发展;
4.本发明的脂肪族聚酰胺复合物经过电镀后,其与电镀被覆层表面的电镀结合力可达到10N以上,保障了使用安全;
5、本产品耐低温性能优异,最低可耐-50℃低温,可拓宽电镀产品使用范围。
具体实施方式
为了更好的理解本发明,下面结合具体实施例对发明作详细的说明。
拉伸强度的测试方法
拉伸强度根据《ISO 527-2012塑料拉伸性能测试方法》进行,制备哑铃状试样,拉伸速度为2mm/min,纵轴拉伸。记录试样破坏时的拉伸强度和相应的断裂伸长率。所述试样在试验前应该放置于23±2℃(73.4±3.6℉)、50±5%相对湿度条件下,进行不低于40小时的调节。在拉伸试验过程中,试样拉伸直至断裂为止,记录标距伸长的距离百分比即为断裂伸长率。
冲击强度的测试方法
冲击强度的测试根据《ISO 180塑料的悬臂梁冲击性能检测的标准试验方法》进行。试验中,通过标准摆锤的摆动使标准试样断裂,所记录的试样断裂吸收的能量就是它的冲击强度。所有压模试样都应在平行于模压施加方向的面上开缺口。通过在加工过程中去除少量材料来使缺口一面与另一面的平行度在0.025mm(0.001in)以内,以维持在试样深度的容许偏差以内。所述标准试样在开缺口后,试验前需置于23±2℃(73.4±3.6℉)、50±5%相对湿度条件下,调节不低于40小时。试验时,需要在23±2℃(73.4±3.6℉)、50±5%相对湿度条件下进行试验。
镀层结合力的测试方法
镀层结合力是指镀层与基体树脂或中间镀层的结合强度,即单位表面积的镀层从基体树脂或中间镀层上剥离所需要的力。将材料注塑成120*60*2mm的方形产品,然后电镀,用小刀在版面上割出一个10*80mm的条形。用3M胶纸黏贴在条形镀层的宽上,然后用万能试验机测试镀层与树脂分离时所需的最大力即为镀层结合力。。
弯曲性能的测试方法
弯曲性能测试根据《ISO 178-2010塑料弯曲性能的测定》进行。其中弯曲强度是材料在弯曲负荷作用下破裂或达到规定挠度时所承受的最大应力,弯曲模量是材料在弹性极限内抵抗弯曲变形的能力,所述弯曲强度和弯曲模量单位均为MPa。
冷热循环测试
将材料注塑成120*60*2mm的方形产品,然后电镀,在-50℃保温24小时,然后2℃/min升温至50℃恒温24小时,再2℃/min降温到-50℃此为一个周期。一个周期完成后观察电镀层与树脂结合是否有松动,如果没有,继续进行下一个周期。产品进行的冷热循环周期次数越多,代表其耐冷热冲击性能越优。
实施例中所用原料:
PA66:平顶山神马工程塑料有限责任公司的EPR27;
PA6:新会美达锦纶股份有限公司的M2500I;
PA12:EMS瑞士化学(中国)有限公司的TR55;
玻璃纤维:重庆国际复合材料的301HP;
碳纤维:日本东丽的Type-45;
硅烷偶联剂KH550:美国联碳公司的A-1100;
钛酸酯偶联剂:美国Kenrich石油公司的KR-238S;
TPE:美国杜邦有限公司的G4774;
TPU:烟台万华聚氨酯股份有限公司的WHT-2195;
TPO:埃克森美孚化工的CMV241;
滑石粉:杭州富阳新天龙矿粉有限公司,2000目;
二氧化硅:天津鸿鑫化学试剂厂的ST-O-001-2;
氧化铝:广州吉必盛科技实业有限公司的ALuna-100;
抗氧剂:科莱恩化工(中国)有限公司的SEED。
实施例1
一种用于环保电镀的脂肪族聚酰胺复合物,包括以下按重量百分比计的原料(原料总重10KG):
PA6       89.5%,
TPE       10%,
SEED      0.5%。
上述用于环保电镀的脂肪族聚酰胺复合物的制备方法,包括以下步骤:
(1)将PA6与TPE通过主喂料机加入到双螺杆挤出机中进行熔融聚合,拉条切粒得到共混物,备用;
(2)将步骤(1)得到的共混物与SEED通过主喂料机加入到双螺杆挤出机中,混合后,温度控制在235℃条件下熔融挤出,切粒,双螺杆转速为300RPM,即得本发明的聚酰胺复合物。
实施例2
一种用于环保电镀的脂肪族聚酰胺复合物,包括以下按重量百分比计的原料(原料总重10KG):
Figure PCTCN2017112366-appb-000002
上述用于环保电镀的脂肪族聚酰胺复合物的制备方法,包括以下步骤:
(1)将PA6与TPE通过主喂料机加入到双螺杆挤出机中进行熔融聚合,拉条切粒得到共混物,备用;
(2)将无机矿粉氧化铝加入高混机中,使无机矿粉氧化铝温度升高110℃,再加入硅烷偶联剂KH550反应,反应时间为15分钟,取出待用;
(3)将步骤(1)得到的共混物与SEED通过主喂料机加入到双螺杆挤出机中,同时在侧喂料机中加入经过步骤(2)处理的无机矿粉氧化铝,混合后,温度控制在240℃条件下熔融挤出,切粒,双螺杆转速为300RPM,即得本发明的聚酰胺复合物。
实施例3
一种用于环保电镀的脂肪族聚酰胺复合物,包括以下按重量百分比计的原料(原料总重10KG):
Figure PCTCN2017112366-appb-000003
上述用于环保电镀的脂肪族聚酰胺复合物的制备方法,包括以下步骤:
(1)将PA66与TPO通过主喂料机加入到双螺杆挤出机中进行熔融聚合,拉条切粒得到共混物,备用;
(2)将无机矿粉氧化硅加入高混机中,使无机矿粉氧化硅温度升高105℃,再加入硅烷偶联剂KH550反应,反应时间为10分钟,取出待用;
(3)将步骤(1)得到的共混物与SEED通过主喂料机加入到双螺杆挤出机中,同时在侧喂料机中加入经过步骤(2)处理的无机矿粉氧化硅与玻璃纤维301HP,混合后,温度控制在280℃条件下熔融挤出,切粒,双螺杆转速为350RMP,即得本发明的聚酰胺复合物。
实施例4
一种用于环保电镀的脂肪族聚酰胺复合物,包括以下按重量百分比计的原料(原料总重10KG):
Figure PCTCN2017112366-appb-000004
Figure PCTCN2017112366-appb-000005
上述用于环保电镀的脂肪族聚酰胺复合物的制备方法,包括以下步骤:
(1)将PA6、PA66与TPU通过在密炼机中进行熔融聚合,得到共混物,备用;
(2)将无机矿粉滑石粉加入高混机中,使无机矿粉滑石粉温度升高120℃,再加入钛酸酯偶联剂反应,反应时间为10分钟,取出待用;
(3)将步骤(1)得到的共混物与SEED通过主喂料机加入到双螺杆挤出机中,同时在侧喂料机中加入经过步骤(2)处理的无机矿粉滑石粉与碳纤维,混合后,温度控制在270℃条件下熔融挤出,切粒,双螺杆转速为250RMP,即得本发明的聚酰胺复合物。
实施例5
一种用于环保电镀的脂肪族聚酰胺复合物,包括以下按重量百分比计的原料(原料总重10KG):
Figure PCTCN2017112366-appb-000006
上述用于环保电镀的脂肪族聚酰胺复合物的制备方法,包括以下步骤:
(1)将PA6、PA66、PA12与TPU通过在高压釜中进行熔融聚合,得到共混物,备用;
(2)将无机矿粉滑石粉与氧化铝加入高混机中,使无机矿粉滑石粉与氧化铝温度升高120℃,再加入钛酸酯偶联剂反应,反应时间为10分钟,取出待用;
(3)将步骤(1)得到的共混物与SEED通过主喂料机加入到双螺杆挤出机中,同时在侧喂料机中加入经过步骤(2)处理的无机矿粉滑石粉与氧化铝,温度控制在250℃条件下熔融挤出,切粒,双螺杆转速为300RMP,即得本发明的聚酰胺复合物。
实施例6
一种用于环保电镀的脂肪族聚酰胺复合物,包括以下按重量百分比计的原料(原料总重10KG):
Figure PCTCN2017112366-appb-000007
上述用于环保电镀的脂肪族聚酰胺复合物的制备方法,包括以下步骤:
(1)将PA12与TPU、TPO通过在高压釜中进行熔融聚合,得到共混物,备用;
(2)将无机矿粉滑石粉与氧化铝加入高混机中,使无机矿粉滑石粉与氧化铝温度升高120℃,再加入钛酸酯偶联剂反应,反应时间为30分钟,取出待用;
(3)将步骤(1)得到的共混物与SEED通过主喂料机加入到双螺杆挤出机中,同时在侧喂料机中加入经过步骤(2)处理的无机矿粉滑石粉与氧化铝,温度控制在230℃条件下熔融挤出,切粒,双螺杆转速为300RMP,即得本发明的聚酰胺复合物。
对比例1
一种聚酰胺复合物,包括以下按重量比计的原料(原料总重10KG):
Figure PCTCN2017112366-appb-000008
上述聚酰胺复合物的制备方法,包括以下步骤:
(1)将无机矿粉氧化铝加入高混机中,使无机矿粉氧化铝温度升高120℃,再加入硅烷偶联剂KH550反应,反应时间为10分钟,取出待用;
(2)将PA6与SEED通过主喂料机加入到双螺杆挤出机中,同时在侧喂料机中加入经过步骤(1)处理的无机矿粉氧化铝,温度控制在230℃条件下熔融挤出,切粒,双螺杆转速为300RMP,即得聚酰胺复合物。
对比例2
一种聚酰胺复合物,包括以下按重量比计的原料(原料总重10KG):
Figure PCTCN2017112366-appb-000009
上述聚酰胺复合物的制备方法,包括以下步骤:
(1)将无机矿粉滑石粉加入高混机中,使无机矿粉滑石粉温度升高105℃,再加入硅烷偶联剂KH550反应,反应时间为30分钟,取出待用;
(2)将PA66与SEED通过主喂料机加入到双螺杆挤出机中,同时在侧喂料机中加入经过步骤(1)处理的无机矿粉滑石粉与玻璃纤维301HP,温度控制在280℃条件下熔融挤出,切粒,双螺杆转速为300RMP,即得聚酰胺复合物。
对实施例1-6和对比例1-2得到的聚酰胺复合物的耐低温性能进行测试,结果如表1所示。
将实施例1-3和对比例1得到的聚酰胺复合物,在高锰酸钾粗化液处理后进行电镀,对电镀后形成的镀层进行电镀结合力测试。实施例4-6和对比例2得到的聚酰胺复合物,在铬酸粗化液处理后进行电镀,对电镀后形成的镀层进行电镀结合力测试。测试结果如表1所示。
对实施例1-6和对比例1-2得到的聚酰胺复合物的物理机械性能进行测试,结果如表2所示。
表1实施例1-6和对比例1-2得到的聚酰胺复合物电镀结合力与冷热循环测试结果
Figure PCTCN2017112366-appb-000010
表2实施例1-6和对比例1-2得到的聚酰胺复合物机械性能测试结果
Figure PCTCN2017112366-appb-000011

Claims (10)

  1. 一种用于环保电镀的脂肪族聚酰胺复合物,其特征在于,包括以下按重量百分比计的原料:
    Figure PCTCN2017112366-appb-100001
    其中,所述热塑性弹性体的熔融指数比脂肪族聚酰胺树脂的熔融指数高。
  2. 根据权利要求1所述的用于环保电镀的脂肪族聚酰胺复合物,其特征在于,所述脂肪族聚酰胺树脂衍生自一种或多种脂肪族二胺和一种或多种二元羧酸,和一种或多种脂肪族内酰胺。
  3. 根据权利要求2所述的用于环保电镀的脂肪族聚酰胺复合物,其特征在于,所述脂肪族聚酰胺选自PA6,PA56,PA66,PA610,PA612,PA11,PA12,PA1010,PA1212中的至少一种。
  4. 根据权利要求1所述的用于环保电镀的脂肪族聚酰胺复合物,其特征在于,所述热塑性弹性体为聚烯烃弹性体、聚酯弹性体和聚苯乙烯弹性体中的至少一种。
  5. 根据权利要求1所述的用于环保电镀的脂肪族聚酰胺复合物,其特征在于,所述热塑性弹性体的熔融指数>2g/10min,测试条件:220℃,2.16kg。
  6. 根据权利要求1所述的用于环保电镀的脂肪族聚酰胺复合物,其特征在于,所述无机矿粉为滑石粉、氧化铝、氧化硅、氧化锌和脱蒙土中的至少一种。
  7. 根据权利要求6所述的用于环保电镀的脂肪族聚酰胺复合物,其特征在于,所述无机矿粉为经偶联剂改性后的无机矿粉。
  8. 根据权利要求1或7所述的用于环保电镀的脂肪族聚酰胺复合物,其特征在于,所述偶联剂选自环氧基硅烷偶联剂、氨基类硅烷偶联剂、巯基类硅烷偶联剂、脲基类硅烷偶联剂、异氰酸酯类硅烷偶联剂、钛酸酯偶联剂、硼酸酯偶联剂、铝钛复合偶联剂、铝酸酯偶联剂中的至少一种。
  9. 根据权利要求1所述的用于环保电镀的聚酰胺复合物,其特征在于,所述脂肪族聚酰胺复合物还包括纤维增强材料、阻燃剂、成核剂和抗氧化剂中的一种或多种。
  10. 根据权利要求1-9中任一项所述的用于环保电镀的脂肪族聚酰胺复合物的制备方法,其特征在于,包括以下步骤:
    (1)将脂肪族聚酰胺树脂与热塑性弹性体混合,在高压反应釜、密炼机或挤出机内,进行反应,得到共混物,备用;
    (2)将无机矿粉加入高混机中,待无机矿粉温度升高至105℃以上,再加入偶联剂反应,反应时间为10-30分钟,取出待用;
    (3)将步骤(1)得到的共混物加入到双螺杆挤出机中,同时加入经过步骤(2)处理的无机矿粉,混合后,挤出切粒,即得。
PCT/CN2017/112366 2017-09-19 2017-11-22 一种用于环保电镀的脂肪族聚酰胺复合物及其制备方法 WO2019056548A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710844109.7A CN107663371B (zh) 2017-09-19 2017-09-19 一种用于环保电镀的脂肪族聚酰胺复合物及其制备方法
CN201710844109.7 2017-09-19

Publications (1)

Publication Number Publication Date
WO2019056548A1 true WO2019056548A1 (zh) 2019-03-28

Family

ID=61097442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112366 WO2019056548A1 (zh) 2017-09-19 2017-11-22 一种用于环保电镀的脂肪族聚酰胺复合物及其制备方法

Country Status (2)

Country Link
CN (1) CN107663371B (zh)
WO (1) WO2019056548A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020169315A (ja) * 2019-04-04 2020-10-15 ヒュンダイ・モービス・カンパニー・リミテッド 耐久性および耐摩耗性に優れたウォームホイール用組成物およびこれを用いて製造されたウォームホイール

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108715657A (zh) * 2018-05-07 2018-10-30 大庆工大融达新型材料科技开发有限公司 一种用于发泡的聚丙烯复合材料及其制备方法和发泡聚丙烯珠粒的制备方法
CN110643173A (zh) * 2019-09-25 2020-01-03 广东格瑞新材料股份有限公司 一种高刚性的尼龙复合材料及其制备方法
CN111004497B (zh) * 2019-12-24 2022-03-29 上海中镭新材料科技有限公司 一种电镀尼龙材料及其制备方法
CN114316581A (zh) * 2021-12-07 2022-04-12 合肥科拜耳新材料有限公司 一种无卤阻燃尼龙66组合物及其制备方法
CN116218205B (zh) * 2023-03-03 2024-03-29 金旸(厦门)新材料科技有限公司 一种可电镀导热尼龙复合材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101081929A (zh) * 2007-06-08 2007-12-05 深圳市科聚新材料有限公司 易于包覆热塑性弹性体的复合材料及其制备方法
CN101298518A (zh) * 2008-06-13 2008-11-05 南京鸿瑞塑料制品有限公司 二氧化硅增强pa66及其制备方法
CN101418097A (zh) * 2007-10-23 2009-04-29 广州金发科技股份有限公司 一种可电镀的聚丙烯复合物及其制备方法
CN101921475A (zh) * 2010-09-07 2010-12-22 厦门建霖工业有限公司 一种仿金属工程塑胶复合材料及其制备方法
CN106046781A (zh) * 2016-07-12 2016-10-26 江门市德众泰工程塑胶科技有限公司 用于电镀处理的芳香族聚酰胺复合物及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292805A (ja) * 2001-03-30 2002-10-09 Daicel Polymer Ltd 導電性樹脂シート
CN100575419C (zh) * 2006-12-28 2009-12-30 深圳市科聚新材料有限公司 一种聚酰胺材料及其制备方法
CN103154150B (zh) * 2010-10-14 2015-11-25 Lg化学株式会社 用于熔融工艺的树脂共混物
CN102276897A (zh) * 2011-06-29 2011-12-14 广州市聚赛龙工程塑料有限公司 一种聚乙烯/尼龙合金复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101081929A (zh) * 2007-06-08 2007-12-05 深圳市科聚新材料有限公司 易于包覆热塑性弹性体的复合材料及其制备方法
CN101418097A (zh) * 2007-10-23 2009-04-29 广州金发科技股份有限公司 一种可电镀的聚丙烯复合物及其制备方法
CN101298518A (zh) * 2008-06-13 2008-11-05 南京鸿瑞塑料制品有限公司 二氧化硅增强pa66及其制备方法
CN101921475A (zh) * 2010-09-07 2010-12-22 厦门建霖工业有限公司 一种仿金属工程塑胶复合材料及其制备方法
CN106046781A (zh) * 2016-07-12 2016-10-26 江门市德众泰工程塑胶科技有限公司 用于电镀处理的芳香族聚酰胺复合物及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020169315A (ja) * 2019-04-04 2020-10-15 ヒュンダイ・モービス・カンパニー・リミテッド 耐久性および耐摩耗性に優れたウォームホイール用組成物およびこれを用いて製造されたウォームホイール

Also Published As

Publication number Publication date
CN107663371B (zh) 2019-11-19
CN107663371A (zh) 2018-02-06

Similar Documents

Publication Publication Date Title
WO2019056548A1 (zh) 一种用于环保电镀的脂肪族聚酰胺复合物及其制备方法
CN107674416B (zh) 用于环保电镀的液晶聚合物材料及其制备方法
WO2019056547A1 (zh) 一种用于环保电镀的聚酰胺复合物及其制备方法
CA2874759C (en) Thermoplastic polyamide moulding composition
WO2019056546A1 (zh) 一种用于环保电镀的聚苯硫醚复合物及其制备方法
TWI470027B (zh) 阻燃性聚醯胺組成物、成形體、聚醯胺組成物之成形體的製造方法以及電氣電子零件
KR101534539B1 (ko) 폴리아미드 성형 조성물 및 이의 용도
KR100910342B1 (ko) 폴리페닐렌술피드 수지 구조체
KR20170039197A (ko) 섬유 강화 열가소성 수지 성형 재료 및 섬유 강화 열가소성 수지 성형품
KR20160100935A (ko) 플라스틱 몰딩 컴파운드 및 이의 용도
JP6957859B2 (ja) 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料
JPWO2006112205A1 (ja) 難燃性ポリアミド組成物
WO2020184270A1 (ja) 難燃性ポリアミド樹脂組成物
JP2020157609A (ja) 立体造形装置用樹脂成形材料および立体造形装置用フィラメント
KR20060012608A (ko) 급속 결정화 폴리에스테르 조성물
JP2022020762A (ja) ポリマー金属ハイブリッド物品
JPH11106647A (ja) ポリアミド樹脂組成物
Verma et al. An introduction to high-performance advanced polymers composites, their types, processing, and applications in automotive industries
US6723400B1 (en) Laminates for making electroconductive fuel tubes
JP2015183140A (ja) 繊維強化ポリプロピレン系樹脂材料
JP2005248170A (ja) ポリフェニレンスルフィド樹脂組成物
KR101424324B1 (ko) 금속과 폴리머 복합재 부품, 특히 자동차 분야에 있어서의 용도
JP2024513073A (ja) 静電気防止ポリアミド組成物及びそれを含む物品
TW201510088A (zh) 聚芳硫醚樹脂組成物及其成形品
JP6495679B2 (ja) ポリアリーレンスルフィド樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17926192

Country of ref document: EP

Kind code of ref document: A1