WO2019051974A1 - 彩膜基板的制作方法 - Google Patents

彩膜基板的制作方法 Download PDF

Info

Publication number
WO2019051974A1
WO2019051974A1 PCT/CN2017/110193 CN2017110193W WO2019051974A1 WO 2019051974 A1 WO2019051974 A1 WO 2019051974A1 CN 2017110193 W CN2017110193 W CN 2017110193W WO 2019051974 A1 WO2019051974 A1 WO 2019051974A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
black matrix
rgb
fabricating
photoresist
Prior art date
Application number
PCT/CN2017/110193
Other languages
English (en)
French (fr)
Inventor
李文杰
井口真介
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US15/576,711 priority Critical patent/US10503064B2/en
Publication of WO2019051974A1 publication Critical patent/WO2019051974A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13398Spacer materials; Spacer properties

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a method for fabricating a color filter substrate.
  • Organic Light-Emitting Diode (Organic Light-Emitting Diode, OLED) has been widely used due to its good self-luminous properties, superior contrast, fast response and flexible display.
  • OLEDs achieve all-roundness is as follows: a. Direct illumination with three organic light-emitting materials of red, green and blue; b, white organic light-emitting device (white Organic light-emitting diode , WOLED)+ color film ( Colour Filter, CF); c, light color conversion method + blue light emitting layer plus light color conversion layer.
  • color film in OLED needs to refer to a liquid crystal display (Liquid Crystal Display, LCD) color film design; LCD needs to use color film to achieve full color display, color film substrate 1 generally includes black matrix 12 (Black Matrix, BM), RGB color resistance 13 and protective layer 14, support column 15 (Photo spacer, PS), the specific structure is shown in Figure 1.
  • black matrix 12 Black Matrix, BM
  • RGB color resistance 13 Red Matrix, BM
  • protective layer 14 Support column 15 (Photo spacer, PS), the specific structure is shown in Figure 1.
  • the support pillars 15 are located on the protective layer 14, which easily increases the distance between the WOLED and the color filter substrate 1, thereby causing a risk of color mixing, and the support pillars 15 are generally organic photoresists, which are pale yellow and have certain Light transmission.
  • the invention provides a method for fabricating a color film substrate, which can reduce the thickness of the color film substrate and improve the color mixing problem of light passing through the color film substrate, thereby improving the display quality of the display device.
  • the present invention provides a method of fabricating a color filter substrate, the method of fabricating the color filter substrate comprising the following steps:
  • Step S10 providing a substrate
  • Step S20 forming RGB color resistance on the surface of the substrate, the RGB color resistance comprising at least four arrays of color resisting regions, each color resisting region comprising a first color blocking block, a second color blocking block and a third color block, the upper surface of the RGB color resist includes a light exiting region, the first color resist block is a red color block, the second color block is a green color block, and the third color resist The block is a blue color block;
  • Step S30 forming a black matrix on the RGB color resist surface, the black matrix covering a portion of the RGB photoresist surface other than the light exiting region;
  • Step S40 forming a support column on the surface of the black matrix of the blank area between the RGB color resists, and setting one of the support columns every other color resisting area;
  • Step S50 forming a protective layer over the substrate, the protective layer covering the black matrix, the support pillar and the RGB color resist.
  • the support column and the black matrix are combined to be complementary to prevent the RGB color resisting outgoing light from being mixed with each other.
  • the substrate is a rigid substrate or a flexible substrate.
  • the preparation material of the black matrix is one of an organic photoresist, an opaque metal, a metal oxide, and a nitride.
  • the black matrix is an organic photoresist
  • the black matrix is formed by disposing a material of the organic photoresist in the RGB photoresist surface by using a nozzle printing technique or an ink jet printing technique. A portion other than the light exiting region is formed.
  • the black matrix is an opaque metal or a metal oxide
  • the black matrix is the opaque metal or the metal by using a thermal evaporation technique or a magnetron sputtering technique.
  • An oxide is formed in a portion of the RGB photoresist surface other than the light exiting region.
  • the length of the support post is the same as the length of the long side of the RGB color resist.
  • the support pillar is made of one of a black sealant, an opaque metal, a metal oxide, a nitride, and a transparent OLED package sealant.
  • the support pillar is an organic photoresist, and the support pillar is disposed between the RGB color resists by using a nozzle printing technique or an ink jet printing technique.
  • the black matrix surface of the blank area is formed.
  • the support column is formed by coating an organic solution formed by curing the organic solution while coating the organic solution.
  • the present invention provides a method of fabricating a color filter substrate, the method of fabricating the color filter substrate comprising the following steps:
  • Step S10 providing a substrate
  • Step S20 forming RGB color resistance on the surface of the substrate, the RGB color resistance comprising at least four arrays of color resisting regions, each color resisting region comprising a first color blocking block, a second color blocking block and a third color block, the upper surface of the RGB color resist comprising a light exiting region;
  • Step S30 forming a black matrix on the RGB color resist surface, the black matrix covering a portion of the RGB photoresist surface other than the light exiting region;
  • Step S40 forming a support column on the surface of the black matrix of the blank area between the RGB color resists, and setting one of the support columns every other color resisting area;
  • Step S50 forming a protective layer over the substrate, the protective layer covering the black matrix, the support pillar and the RGB color resist.
  • the support column and the black matrix are combined to be complementary to prevent the RGB color resisting outgoing light from being mixed with each other.
  • the substrate is a rigid substrate or a flexible substrate.
  • the preparation material of the black matrix is one of an organic photoresist, an opaque metal, a metal oxide, and a nitride.
  • the black matrix is an organic photoresist
  • the black matrix is formed by disposing a material of the organic photoresist in the RGB photoresist surface by using a nozzle printing technique or an ink jet printing technique. A portion other than the light exiting region is formed.
  • the black matrix is an opaque metal or a metal oxide
  • the black matrix is the opaque metal or the metal by using a thermal evaporation technique or a magnetron sputtering technique.
  • An oxide is formed in a portion of the RGB photoresist surface other than the light exiting region.
  • the length of the support post is the same as the length of the long side of the RGB color resist.
  • the support pillar is made of one of a black sealant, an opaque metal, a metal oxide, a nitride, and a transparent OLED package sealant.
  • the support pillar is an organic photoresist, and the support pillar is disposed between the RGB color resists by using a nozzle printing technique or an ink jet printing technique.
  • the black matrix surface of the blank area is formed.
  • the support column is formed by coating an organic solution formed by curing the organic solution while coating the organic solution.
  • the invention provides a method for manufacturing a color film substrate, which improves the thickness of the color film substrate by improving the design of the black matrix and the support column, and also improves the color mixing problem that occurs when the light passes through the color filter substrate, thereby improving the display.
  • the display quality of the device is improved.
  • FIG. 1 is a schematic structural view of a color filter substrate in the prior art
  • FIG. 2 is a flow chart of fabricating a color filter substrate according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a color filter substrate according to an embodiment of the present invention.
  • FIGS. 4a-4d are schematic structural views showing a manufacturing process of a color filter substrate according to an embodiment of the present invention.
  • FIG. 2 is a flow chart of fabricating a color filter substrate according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view of a color filter substrate according to an embodiment of the invention.
  • the present invention provides a method for fabricating a color filter substrate 2.
  • the method for fabricating the color filter substrate 2 includes the following steps:
  • step S10 providing a substrate 21
  • the substrate 21 provided in the step S10 may be a rigid substrate such as a glass substrate; or may be a flexible substrate such as a polyimide film.
  • Step S20 forming an RGB color resistance 23 on the surface of the substrate, the RGB color resistance comprising at least four arrays of color resisting regions, each color resisting region comprising a first color blocking block 231 and a second color resist Block 232 and third color block 233, the upper surface of the RGB color resist 23 includes a light exiting region.
  • the first color block 231 is a red color block
  • the second color block 232 is a green color block
  • the third color block 233 is a blue color block.
  • the step S20 is to form a patterned RGB color resist 23 by sequentially coating, pre-baking, exposing, developing, and re-baking on the surface of the substrate 21;
  • the RGB color resist 23 may be an RGB pigment dispersed in an organic Formed in a solvent, also can be RGB quantum dot material .
  • the RGB color resist 23 may be applied by slit coating or spin coating; and the shape of the RGB color resist 23 is the same as the shape of the pixel.
  • a black matrix 22 is formed on the surface of the RGB color resist 23, and the black matrix 22 covers a portion of the surface of the RGB photoresist 23 except the light exiting region;
  • the light-emitting region of the RGB color resist 23 is the upper surface region of the RGB color resist, and the black matrix 22 covers the surface of the RGB color resist 23, and includes a blank region covering the RGB color resist 23 .
  • the black matrix 22 is prepared from one of an organic photoresist, an opaque metal, a metal oxide, and a nitride to block light from passing through or to reflect light back.
  • the black matrix 22 is an organic photoresist
  • the black matrix 22 is formed by a technique such as a dispenser, screen printing, nozzle printing, ink jet printing, or the like.
  • the black matrix 22 is a metal or a metal oxide
  • the black matrix 22 is formed by a process such as thermal evaporation, magnetron sputtering, vapor deposition, or the like.
  • a support pillar 25 is formed on the surface of the black matrix 22 in the blank area between the RGB color resists 23, and the support pillar 25 is disposed in every other color resisting region;
  • step S40 the horizontal length of the support post 25 is the same as the length of the longest side of the RGB color resist 23, because the color mixture phenomenon of the color filter substrate 2 mainly occurs in the long side region of the pixel.
  • the preparation material of the support post 25 is one of a black photoresist, a black sealant, a glass paste, an opaque metal, a metal oxide, a nitride, and a transparent OLED package sealant.
  • the support post 25 is an organic photoresist
  • the support post 25 is formed by coating by a technique such as a dispenser, screen printing, nozzle printing, ink jet printing, etc.; the support post 25 is formed by coating with an organic solution, The organic solution is cured while coating the organic solution.
  • the support post 25 is a metal or a metal oxide
  • the support post 25 is formed by a process such as thermal evaporation, magnetron sputtering, vapor deposition, or the like.
  • a protective layer 24 is formed over the substrate 21, and the protective layer 24 covers the black matrix 22, the support pillar 2, and the RGB color resist 23 over the entire surface.
  • the support column 25 and the black matrix 22 are combined to complement each other to prevent the RGB color resist 23 from emitting color to each other.
  • the protective layer 25 has the function of insulating the high transmittance organic filler in contact with the RGB color resist 23; and also has the function of isolating the organic photoresist gas.
  • the protective layer 25 functions as a buffer layer at the same time, so it may also be referred to as a buffer layer; the protective layer 25 is a dense oxide film, preferably one of silicon oxide, silicon nitride and aluminum oxide. Or at least two.
  • the protective layer 25 can be formed by a sputtering coating, a vapor deposition technique, or an atomic layer deposition technique.
  • the invention improves the design of the black matrix and the support column, that is, reduces the thickness of the color filter substrate, and also improves the color mixing problem that occurs when the light passes through the color filter substrate, thereby improving the display quality of the display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optical Filters (AREA)

Abstract

一种彩膜基板的制作方法,包括步骤:提供一基板(21);在基板(21)表面形成RGB色阻(23),RGB色阻(23)的上表面为出光区域;在RGB色阻(23)表面形成黑色矩阵(22),黑色矩阵(22)覆盖于RGB光阻(23)表面且未完全覆盖RGB色阻(23)的出光区域;在RGB色阻(23)之间空白区域的黑色矩阵(22)表面形成支撑柱(25);在基板(21)的上方形成保护层(24)。

Description

彩膜基板的制作方法 技术领域
本发明涉及显示技术领域,具体涉及一种彩膜基板的制作方法。
背景技术
有机电致发光二极管(Organic Light-Emitting Diode, OLED)以其良好的自发光特性、优越的对比度、快速响应以及柔性显示等优势,得到了广泛的应用。
OLED实现全才的方式有以下集中:a、采用红绿蓝三种有机发光材料直接发光;b、白色有机发光器件(white organic light-emitting diode , WOLED)+彩膜( Colour filter,CF);c、光色转换法+蓝色发光层加光色转换层。
目前OLED中彩膜的涉及需要参照液晶显示器(Liquid Crystal Display, LCD)彩膜设计;LCD中需要采用彩膜实现全彩显示,彩膜基板1一般包括黑色矩阵12(Black Matrix,BM),RGB色阻13以及保护层14、支撑柱15(Photo spacer,PS),具体结构如图1所示。
现有OLED结构中支撑柱15位于保护层14之上,这样容易使得WOLED与彩膜基板1的间距增大,造成混色风险,并且支撑柱15一般为有机光阻,呈现淡黄色,有一定的透光性。
技术问题
本发明提供了一种彩膜基板的制作方法,能够减小彩膜基板的厚度,同时改善光线透过彩膜基板发生的混色问题,进而提高了显示器件的显示质量。
技术解决方案
根据本发明的一个方面,本发明提供了一种彩膜基板的制作方法,所述彩膜基板的制作方法包括如下步骤:
步骤S10、提供一基板;
步骤S20、在所述基板表面形成RGB色阻,所述RGB色阻包括至少四个阵列分布的色阻区,每个色阻区包括依次分布的第一色阻块、第二色阻块和第三色阻块,所述RGB色阻的上表面包括出光区域,所述第一色阻块为红色色阻块,所述第二色阻块为绿色色阻块,所述第三色阻块为蓝色色阻块;
步骤S30、在所述RGB色阻表面形成黑色矩阵,所述黑色矩阵覆盖所述RGB光阻表面中除所述出光区域以外的部分;
步骤S40、在所述RGB色阻之间空白区域的黑色矩阵表面形成支撑柱,所述支撑柱每隔一个色阻区设置一个;
步骤S50、在所述基板的上方形成保护层,所述保护层整面覆盖所述黑色矩阵、所述支撑柱和所述RGB色阻。
其中,采用所述支撑柱与黑色矩阵结合互补的设置用以防止所述RGB色阻出射光线相互混色。
根据本发明一优选实施例,所述基板为刚性衬底或柔性衬底。
根据本发明一优选实施例,所述黑色矩阵的制备材料为有机光阻、不透光金属、金属氧化物和氮化物中的其中一者。
根据本发明一优选实施例,所述黑色矩阵为有机物光阻,所述黑色矩阵是通过采用喷嘴印刷技术或墨水喷射印刷技术将所述有机物光阻的材料设置在所述RGB光阻表面中除所述出光区域以外的部分来形成的。
根据本发明一优选实施例,所述黑色矩阵为不透光金属或者金属氧化物,所述黑色矩阵是通过采用热蒸镀技术或磁控溅射技术将所述不透光金属或者所述金属氧化物设置在所述RGB光阻表面中除所述出光区域以外的部分来形成的。
根据本发明一优选实施例,所述支撑柱的长度与所述RGB色阻长边长度相同。
根据本发明一优选实施例,所述支撑柱的制备材料为黑色框胶、不透光金属、金属氧化物、氮化物和透明OLED封装框胶中的其中一者。
根据本发明一优选实施例,所述支撑柱为有机物光阻,所述支撑柱是通过采用喷嘴印刷技术或墨水喷射印刷技术将所述有机物光阻的材料设置在所述RGB色阻之间的空白区域的黑色矩阵表面来形成的。
根据本发明一优选实施例,所述支撑柱由有机物溶液涂布形成,所述支撑柱是通过在涂布有机物溶液的同时对所述有机物溶液进行固化来形成的。
根据本发明的另一个方面,本发明提供了一种彩膜基板的制作方法,所述彩膜基板的制作方法包括如下步骤:
步骤S10、提供一基板;
步骤S20、在所述基板表面形成RGB色阻,所述RGB色阻包括至少四个阵列分布的色阻区,每个色阻区包括依次分布的第一色阻块、第二色阻块和第三色阻块,所述RGB色阻的上表面包括出光区域;
步骤S30、在所述RGB色阻表面形成黑色矩阵,所述黑色矩阵覆盖所述RGB光阻表面中除所述出光区域以外的部分;
步骤S40、在所述RGB色阻之间空白区域的黑色矩阵表面形成支撑柱,所述支撑柱每隔一个色阻区设置一个;
步骤S50、在所述基板的上方形成保护层,所述保护层整面覆盖所述黑色矩阵、所述支撑柱和所述RGB色阻。
其中,采用所述支撑柱与黑色矩阵结合互补的设置用以防止所述RGB色阻出射光线相互混色。
根据本发明一优选实施例,所述基板为刚性衬底或柔性衬底。
根据本发明一优选实施例,所述黑色矩阵的制备材料为有机光阻、不透光金属、金属氧化物和氮化物中的其中一者。
根据本发明一优选实施例,所述黑色矩阵为有机物光阻,所述黑色矩阵是通过采用喷嘴印刷技术或墨水喷射印刷技术将所述有机物光阻的材料设置在所述RGB光阻表面中除所述出光区域以外的部分来形成的。
根据本发明一优选实施例,所述黑色矩阵为不透光金属或者金属氧化物,所述黑色矩阵是通过采用热蒸镀技术或磁控溅射技术将所述不透光金属或者所述金属氧化物设置在所述RGB光阻表面中除所述出光区域以外的部分来形成的。
根据本发明一优选实施例,所述支撑柱的长度与所述RGB色阻长边长度相同。
根据本发明一优选实施例,所述支撑柱的制备材料为黑色框胶、不透光金属、金属氧化物、氮化物和透明OLED封装框胶中的其中一者。
根据本发明一优选实施例,所述支撑柱为有机物光阻,所述支撑柱是通过采用喷嘴印刷技术或墨水喷射印刷技术将所述有机物光阻的材料设置在所述RGB色阻之间的空白区域的黑色矩阵表面来形成的。
根据本发明一优选实施例,所述支撑柱由有机物溶液涂布形成,所述支撑柱是通过在涂布有机物溶液的同时对所述有机物溶液进行固化来形成的。
有益效果
本发明提供一种彩膜基板的制作方法,通过改善对黑色矩阵和支撑柱的设计,即缩小了彩膜基板的厚度,也改善了光线透过彩膜基板发生的混色问题,进而提高了显示器件的显示质量。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中彩膜基板的结构示意图;
图2为本发明实施例的彩膜基板的制作流程图;
图3为本发明实施例的彩膜基板的结构示意图。
图4a-4d为本发明实施例的彩膜基板的制作流程结构示意图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是用以相同标号表示。
下面结合附图和具体实施例对本发明做进一步的说明:
下面结合附图和具体实施例对本发明做进一步的说明:
图2所示为本发明实施例中彩膜基板的制作流程图,图3为本本发明实施例中彩膜基板的结构示意图。
如图2所示,本发明提供了一种彩膜基板2的制作方法,所述彩膜基板2的制作方法包括如下步骤:
如图4a所示,步骤S10、提供一基板21;
其中在所述步骤S10中提供的基板21可以为刚性衬底,如玻璃基板;也可以为柔性衬底,如聚酰亚胺膜。
步骤S20、在所述基板表面形成RGB色阻23,所述RGB色阻包括至少四个阵列分布的色阻区,每个色阻区包括依次分布的第一色阻块231、第二色阻块232和第三色阻块233,所述RGB色阻23的上表面包括出光区域。
其中,第一色阻块231为红色色阻块,第二色阻块232为绿色色阻块,第三色阻块233为蓝色色阻块。
所述步骤S20为在基板21表面依次经过涂布、预烘烤、曝光、显影和再烘烤等制程形成图案化的RGB色阻23;所述RGB色阻23可以是将RGB颜料分散于有机溶剂中形成,也可以为RGB量子点材料 。
RGB色阻23的涂布方式可以是采用狭缝涂布或旋涂;且RGB色阻23的形状和像素的形状相同。
如图3b所示,步骤S30、在所述RGB色阻23表面形成黑色矩阵22,所述黑色矩阵22覆盖于所述RGB光阻23表面中除所述出光区域以外的部分;
其中,RGB色阻23的出光区域即RGB色阻的上表面区域,黑色矩阵22覆盖在RGB色阻23的表面,包括覆盖着RGB色阻23之间的空白区域。
黑色矩阵22的制备材料为有机光阻、不透光金属、金属氧化物和氮化物中的其中一者,可以阻挡光线通过或者将光线反射回去。
当黑色矩阵22为有机光阻时,所述黑色矩阵22是通过采用点胶机、丝网印刷术、喷嘴印刷、墨水喷射印刷等技术来形成。
当黑色矩阵22为金属或者金属氧化物时,所述黑色矩阵22是通过采用热蒸镀、磁控溅射、气相沉积技术等制程来形成的。
如图4c所示,步骤S40、在所述RGB色阻23之间空白区域的黑色矩阵22表面形成支撑柱25,所述支撑柱25每隔一个色阻区设置一个;
在步骤S40中,支撑柱25的水平长度与RGB色阻23最长边的长度相同,这是因为彩膜基板2的混色现象主要发生在像素的长边地区。
支撑柱25的制备材料为黑色光阻、黑色框胶、玻璃胶、不透光金属、金属氧化物、氮化物和透明OLED封装框胶中的其中一者。
当支撑柱25为有机光阻时,支撑柱25是通过采用点胶机、丝网印刷术、喷嘴印刷、墨水喷射印刷等技术涂布来形成的;支撑柱25由有机溶液涂布形成,在涂布有机物溶液的同时对所述有机物溶液进行固化。
当支撑柱25为金属或者金属氧化物时,支撑柱25是通过采用热蒸镀、磁控溅射、气相沉积技术等制程来形成的。
如图4所示,步骤S50、在所述基板21的上方形成保护层24,所述保护层24整面覆盖所述黑色矩阵22、所述支撑柱2和所述RGB色阻23。
其中,采用支撑柱25与黑色矩阵22结合互补的设置用以防止所述RGB色阻23出射光线相互混色问题。
保护层25具有隔绝封装高透过率有机填充材与RGB色阻23相接触的作用;同时还具有隔绝有机光阻气体的作用。
在本发明中,保护层25同时起到缓冲层的作用,所以又可称为缓冲层;保护层25为一层致密的氧化物薄膜,优选为氧化硅、氮化硅和氧化铝的一者或至少两者。
可以通过溅射镀膜、气相沉积技术或者原子层沉积技术等制程形成保护层25。
本发明通过改善对黑色矩阵和支撑柱的设计,即缩小了彩膜基板的厚度,也改善了光线透过彩膜基板发生的混色问题,进而提高了显示器件的显示质量。

Claims (18)

  1. 一种彩膜基板的制作方法,其包括如下步骤:
    步骤S10、提供一基板;
    步骤S20、在所述基板表面形成RGB色阻,所述RGB色阻包括至少四个阵列分布的色阻区,每个色阻区包括依次分布的第一色阻块、第二色阻块和第三色阻块,所述RGB色阻的上表面包括出光区域,所述第一色阻块为红色色阻块,所述第二色阻块为绿色色阻块,所述第三色阻块为蓝色色阻块;
    步骤S30、在所述RGB色阻表面形成黑色矩阵,所述黑色矩阵覆盖于所述RGB光阻表面中除所述出光区域以外的部分;
    步骤S40、在所述RGB色阻之间空白区域的黑色矩阵表面形成支撑柱,所述支撑柱每隔一个色阻区设置一个;
    步骤S50、在所述基板的上方形成保护层,所述保护层整面覆盖所述黑色矩阵、所述支撑柱和所述RGB色阻;
    其中,采用所述支撑柱与所述黑色矩阵结合互补的设置用以防止所述RGB色阻出射光线相互混色。
  2. 根据权利要求1所述的彩膜基板的制作方法,其中,所述基板为刚性衬底或柔性衬底。
  3. 根据权利要求1所述的彩膜基板的制作方法,其中,所述黑色矩阵的制备材料为有机光阻、不透光金属、金属氧化物和氮化物中的其中一者。
  4. 根据权利要求3所述的彩膜基板的制作方法,其中,所述黑色矩阵为有机物光阻,所述黑色矩阵是通过采用喷嘴印刷技术或墨水喷射印刷技术将所述有机物光阻的材料设置在所述RGB光阻表面中除所述出光区域以外的部分来形成的。
  5. 根据权利要求3所述的彩膜基板的制作方法,其中,所述黑色矩阵为不透光金属或者金属氧化物,所述黑色光阻是通过采用热蒸镀技术或磁控溅射技术将所述不透光金属或者所述金属氧化物设置在所述RGB光阻表面中除所述出光区域以外的部分来形成的。
  6. 根据权利要求1所述的彩膜基板的制作方法,其中,所述支撑柱的长度所述RGB色阻长边长度相同。
  7. 根据权利要求1所述的彩膜基板的制作方法,其中,所述支撑柱的制备材料为黑色框胶、不透光金属、金属氧化物、氮化物和透明OLED封装框胶中的其中一者。
  8. 根据权利要求7所述的彩膜基板的制作方法,其中,所述支撑柱为有机物光阻,所述支撑柱是通过采用喷嘴印刷技术或墨水喷射印刷技术将所述有机物光阻的材料设置在所述RGB色阻之间的空白区域的黑色矩阵表面来形成的。
  9. 根据权利要求8所述的彩膜基板的制作方法,其中,所述支撑柱为有机物溶液涂布形成,所述支撑柱是通过在涂布有机物溶液的同时对所述有机物溶液进行固化来形成的。
  10. 一种彩膜基板的制作方法,其包括如下步骤:
    步骤S10、提供一基板;
    步骤S20、在所述基板表面形成RGB色阻,所述RGB色阻包括至少四个阵列分布的色阻区,每个色阻区包括依次分布的第一色阻块、第二色阻块和第三色阻块,所述RGB色阻的上表面包括出光区域;
    步骤S30、在所述RGB色阻表面形成黑色矩阵,所述黑色矩阵覆盖于所述RGB光阻表面中除所述出光区域以外的部分;
    步骤S40、在所述RGB色阻之间空白区域的黑色矩阵表面形成支撑柱,所述支撑柱每隔一个色阻区设置一个;
    步骤S50、在所述基板的上方形成保护层,所述保护层整面覆盖所述黑色矩阵、所述支撑柱和所述RGB色阻;
    其中,采用所述支撑柱与所述黑色矩阵结合互补的设置用以防止所述RGB色阻出射光线相互混色。
  11. 根据权利要求10所述的彩膜基板的制作方法,其中,所述基板为刚性衬底或柔性衬底。
  12. 根据权利要求10所述的彩膜基板的制作方法,其中,所述黑色矩阵的制备材料为有机光阻、不透光金属、金属氧化物和氮化物中的其中一者。
  13. 根据权利要求12所述的彩膜基板的制作方法,其中,所述黑色矩阵为有机物光阻,所述黑色矩阵是通过采用喷嘴印刷技术或墨水喷射印刷技术将所述有机物光阻的材料设置在所述RGB光阻表面中除所述出光区域以外的部分来形成的。
  14. 根据权利要求12所述的彩膜基板的制作方法,其中,所述黑色矩阵为不透光金属或者金属氧化物,所述黑色光阻是通过采用热蒸镀技术或磁控溅射技术将所述不透光金属或者所述金属氧化物设置在所述RGB光阻表面中除所述出光区域以外的部分来形成的。
  15. 根据权利要求10所述的彩膜基板的制作方法,其中,所述支撑柱的长度所述RGB色阻长边长度相同。
  16. 根据权利要求10所述的彩膜基板的制作方法,其中,所述支撑柱的制备材料为黑色框胶、不透光金属、金属氧化物、氮化物和透明OLED封装框胶中的其中一者。
  17. 根据权利要求16所述的彩膜基板的制作方法,其中,所述支撑柱为有机物光阻,所述支撑柱是通过采用喷嘴印刷技术或墨水喷射印刷技术将所述有机物光阻的材料设置在所述RGB色阻之间的空白区域的黑色矩阵表面来形成的。
  18. 根据权利要求17所述的彩膜基板的制作方法,其中,所述支撑柱为有机物溶液涂布形成,所述支撑柱是通过在涂布有机物溶液的同时对所述有机物溶液进行固化来形成的。
PCT/CN2017/110193 2017-09-15 2017-11-09 彩膜基板的制作方法 WO2019051974A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/576,711 US10503064B2 (en) 2017-09-15 2017-11-09 Method for manufacturing color filter substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710830822.6 2017-09-15
CN201710830822.6A CN107479246A (zh) 2017-09-15 2017-09-15 彩膜基板的制作方法

Publications (1)

Publication Number Publication Date
WO2019051974A1 true WO2019051974A1 (zh) 2019-03-21

Family

ID=60585008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110193 WO2019051974A1 (zh) 2017-09-15 2017-11-09 彩膜基板的制作方法

Country Status (2)

Country Link
CN (1) CN107479246A (zh)
WO (1) WO2019051974A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108364985A (zh) * 2018-02-08 2018-08-03 深圳市华星光电半导体显示技术有限公司 一种oled显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011039392A (ja) * 2009-08-17 2011-02-24 Toppan Printing Co Ltd カラーフィルター基板及びその製造方法
CN102707483A (zh) * 2012-02-29 2012-10-03 京东方科技集团股份有限公司 一种彩膜基板、制作方法及显示装置
CN103941466A (zh) * 2014-03-06 2014-07-23 京东方科技集团股份有限公司 彩膜基板及其制作方法、显示装置
CN104516156A (zh) * 2014-12-26 2015-04-15 南京中电熊猫液晶显示科技有限公司 一种液晶显示面板
CN104637980A (zh) * 2013-11-11 2015-05-20 财团法人工业技术研究院 彩色滤光基板与显示面板
CN105118928A (zh) * 2015-07-29 2015-12-02 京东方科技集团股份有限公司 彩膜基板、其制作方法、oled显示面板及显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100464224C (zh) * 2007-01-18 2009-02-25 友达光电股份有限公司 彩色滤光片及其制作方法
KR20140043198A (ko) * 2012-09-28 2014-04-08 삼성디스플레이 주식회사 휘어진 표시 장치
US9507222B2 (en) * 2014-03-14 2016-11-29 Innolux Corporation Display device
CN105044967A (zh) * 2015-08-11 2015-11-11 武汉华星光电技术有限公司 彩色滤光片基板及其制作方法、液晶面板
CN105739185A (zh) * 2016-05-10 2016-07-06 深圳市华星光电技术有限公司 液晶面板的制作方法和液晶面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011039392A (ja) * 2009-08-17 2011-02-24 Toppan Printing Co Ltd カラーフィルター基板及びその製造方法
CN102707483A (zh) * 2012-02-29 2012-10-03 京东方科技集团股份有限公司 一种彩膜基板、制作方法及显示装置
CN104637980A (zh) * 2013-11-11 2015-05-20 财团法人工业技术研究院 彩色滤光基板与显示面板
CN103941466A (zh) * 2014-03-06 2014-07-23 京东方科技集团股份有限公司 彩膜基板及其制作方法、显示装置
CN104516156A (zh) * 2014-12-26 2015-04-15 南京中电熊猫液晶显示科技有限公司 一种液晶显示面板
CN105118928A (zh) * 2015-07-29 2015-12-02 京东方科技集团股份有限公司 彩膜基板、其制作方法、oled显示面板及显示装置

Also Published As

Publication number Publication date
CN107479246A (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
WO2019051968A1 (zh) 彩膜基板的制作方法
WO2012100444A1 (zh) 彩色滤光片构造及其制造方法
WO2019071752A1 (zh) 彩膜基板及其制作方法以及oled显示器件
WO2014107890A1 (zh) 彩色滤光片基板及其制造方法和液晶面板
WO2021174615A1 (zh) 量子点显示面板及其制备方法
WO2019075814A1 (zh) 一种有机发光二极管显示器
CN108963100A (zh) 彩膜基板及其制作方法、显示面板
WO2018006479A1 (zh) 阵列基板及其制作方法、以及液晶显示面板
WO2016201729A1 (zh) 一种阵列基板及其制作方法、液晶显示器
WO2019218471A1 (zh) 一种显示面板及其制作方法、显示装置
WO2017181460A1 (zh) 一种液晶显示面板、显示装置
WO2019205425A1 (zh) Woled显示面板及其制作方法
US10249653B2 (en) Display panel and manufacturing method thereof
WO2016106797A1 (zh) 一种柔性有机发光显示器及其制作方法
WO2021142886A1 (zh) 一种显示面板、其制备方法及显示装置
WO2018160018A2 (ko) 양자점 하이브리드 유기 발광 디스플레이 소자 및 그 제조 방법
WO2019028959A1 (zh) 一种制造有机发光显示面板的基板及蒸镀装置
WO2020224010A1 (zh) Oled 显示面板及其制备方法
WO2019015146A1 (zh) 一种显示面板及其制程
WO2021196375A1 (zh) Oled 显示装置及制备方法
WO2018035894A1 (zh) 像素结构及制作方法
WO2021093028A1 (zh) 彩膜基板及其制备方法
WO2019019488A1 (zh) 柔性oled显示器件及制作方法
WO2017031771A1 (zh) 一种彩色滤光片及其制作方法
WO2020062491A1 (zh) 彩色滤光片和显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925086

Country of ref document: EP

Kind code of ref document: A1