WO2021142886A1 - 一种显示面板、其制备方法及显示装置 - Google Patents

一种显示面板、其制备方法及显示装置 Download PDF

Info

Publication number
WO2021142886A1
WO2021142886A1 PCT/CN2020/076535 CN2020076535W WO2021142886A1 WO 2021142886 A1 WO2021142886 A1 WO 2021142886A1 CN 2020076535 W CN2020076535 W CN 2020076535W WO 2021142886 A1 WO2021142886 A1 WO 2021142886A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
color
micro led
black matrix
Prior art date
Application number
PCT/CN2020/076535
Other languages
English (en)
French (fr)
Inventor
耿敬
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/645,797 priority Critical patent/US20210398959A1/en
Publication of WO2021142886A1 publication Critical patent/WO2021142886A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials

Definitions

  • This application relates to the field of display technology, and in particular to a display panel, a manufacturing method thereof, and a display device.
  • Micro LED refers to thin, miniaturized, and arrayed LED structure design.
  • the size of each micro LED is only about 1 to 100 microns.
  • Micro LEDs like OLEDs, can achieve self-luminescence without a backlight, and the efficiency of micro LEDs is higher, so it is more energy-saving than OLEDs, and the light-emitting life of micro LEDs is longer, the brightness is higher, and it can achieve ultra-high pixels. There are many advantages such as digital number, ultra-high resolution, seamless splicing and so on.
  • the color film layer is fabricated on it, and the color film layer needs to be made with a yellow light process to make black banks or black matrixes to prevent sub-pixels.
  • the high temperature in the yellow light process and the alkaline developer will affect the micro LED chip, make it invalid, and affect the overall display effect. Therefore, it is necessary to improve this defect.
  • the black matrix is made on the micro LED, the high temperature in the yellow light manufacturing process and the alkaline developer affect the micro LED, causing the micro LED to fail, thereby affecting the overall display effect of the display panel.
  • An embodiment of the application provides a display panel, including: a first glass substrate, a thin film transistor layer, a black matrix, a first color micro LED, a pixel layer, and a second glass substrate; wherein the thin film transistor layer is located on the first glass substrate.
  • the black matrix is located on the thin film transistor layer and arranged in an array; the first color micro LED is located on the thin film transistor layer and between the black matrix, the first color The height of the micro LED is smaller than the height of the black matrix;
  • the pixel layer is located on the first color micro LED and includes a second color sub-pixel and a third color sub-pixel; the second glass substrate is located in the black matrix And on the pixel layer.
  • the first color micro LED is a blue micro LED
  • the second color sub pixel and the third color sub pixel are red sub pixels and green sub pixels, respectively.
  • the red sub-pixel and the green sub-pixel form a repeating unit, and the repeating unit is cyclically arranged with a width of one sub-pixel as a pitch.
  • the red sub-pixel and the green sub-pixel are made of a red quantum dot material and a green quantum dot material, respectively.
  • the thickness of the black matrix ranges from 10 ⁇ m to 12 ⁇ m.
  • the thickness of the pixel layer ranges from 5 ⁇ m to 7 ⁇ m.
  • the embodiment of the application provides a method for manufacturing a display panel, which includes the steps of: preparing a thin film transistor layer on a first glass substrate; preparing a black matrix on the thin film transistor layer, and the black matrix is arranged in an array;
  • the first color micro LED is prepared on the transistor layer, the first color micro LED is located between the black matrixes, and the height of the first color micro LED is smaller than the height of the black matrix;
  • a pixel layer is prepared on the LED, and the pixel layer includes a second color sub-pixel and a third color sub-pixel; and a second glass substrate is packaged on the black matrix and the pixel layer.
  • the first color micro LED is a blue micro LED
  • the second color sub pixel and the third color sub pixel are red sub pixels and green sub pixels, respectively. Sub-pixels.
  • the red sub-pixel and the green sub-pixel are respectively made of red quantum dot material and green quantum dot material.
  • the thickness of the black matrix ranges from 10 ⁇ m to 12 ⁇ m.
  • the thickness of the pixel layer ranges from 5 ⁇ m to 7 ⁇ m.
  • the embodiment of the present application provides a display device, including a driving chip and a display panel.
  • the display panel includes: a first glass substrate, a thin film transistor layer, a black matrix, a first color micro LED, a pixel layer, and a second glass substrate; wherein , The thin film transistor layer is located on the first glass substrate; the black matrix is located on the thin film transistor layer and arranged in an array; the first color micro LED is located on the thin film transistor layer and is located on the Between the black matrices, the height of the first color micro LED is less than the height of the black matrix; the pixel layer is located on the first color micro LED and includes a second color sub-pixel and a third color sub-pixel; The second glass substrate is located on the black matrix and the pixel layer.
  • the first color micro LED is a blue micro LED
  • the second color sub pixel and the third color sub pixel are red sub pixels and green sub pixels, respectively.
  • the red sub-pixel and the green sub-pixel form a repeating unit, and the repeating unit is cyclically arranged with a width of one sub-pixel as a pitch.
  • the red sub-pixel and the green sub-pixel are made of a red quantum dot material and a green quantum dot material, respectively.
  • the thickness of the black matrix ranges from 10 ⁇ m to 12 ⁇ m.
  • the thickness of the pixel layer ranges from 5 ⁇ m to 7 ⁇ m.
  • the display panel provided by the embodiment of the present application is provided with a black matrix as a barrier between adjacent micro LEDs and adjacent sub-pixels, and a black matrix with a high film thickness is adopted. It can not only act as the black matrix on both sides of the micro LED, block the light from the side of the micro LED, prevent crosstalk of light between different micro LEDs, but also act as the pixel defining layer of the pixel layer to limit the sub-pixel printing area while forming the sub-pixel The shape can also prevent crosstalk between different sub-pixels, which not only simplifies the manufacturing process, but also greatly improves the contrast of the display panel.
  • FIG. 1 is a schematic structural diagram of a display panel provided by an embodiment of the application.
  • FIG. 2 is a flow chart of a manufacturing method of a display panel provided by an embodiment of the application
  • 3a to 3e are the process flow diagrams of the manufacturing method of the display panel provided by the embodiments of the application.
  • the present application provides a display panel, a manufacturing method thereof, and a display device.
  • a display panel a manufacturing method thereof, and a display device.
  • the present application will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the application, and are not used to limit the application.
  • the display panel includes : A first glass substrate 101, a thin film transistor layer 102, a black matrix 103, a first color micro LED 104, a pixel layer 105, and a second glass substrate 106; wherein the thin film transistor layer 102 is located on the first glass substrate 101;
  • the black matrix 103 is located on the thin film transistor layer 102 and arranged in an array;
  • the first color micro LED 104 is located on the thin film transistor layer 102 and between the black matrix 103, the first color
  • the height of the micro LED 104 is smaller than the height of the black matrix 103;
  • the pixel layer 105 is located on the first color micro LED 104 and includes a second color sub-pixel 1051 and a third color sub-pixel 1052; the second glass substrate 106 Located on the black matrix 103 and the pixel layer 105.
  • the first color micro LED 104 is used as a backlight
  • the pixel layer 105 is used as a color filter layer
  • the first color micro LED 104 and the second color sub-pixel 1051 are combined with each other.
  • the combination of the third color sub-pixels 1052 can realize full-color display.
  • the black matrix 103 on the thin film transistor layer 102 and disposing the first color micro LED 104 between the black matrix 103, it can avoid the prior art that the micro LED is formed first and then the black matrix is formed. , Resulting in the high temperature in the yellow light manufacturing process and the alkaline developer affecting the micro LED, causing the micro LED to fail, thereby affecting the overall display effect of the display panel; and in this embodiment, the height of the black matrix 103 is set to be greater than the height of the first color micro LED.
  • the height of the LED 104 is such that the pixel layer 105 is arranged on the first color micro LED 104, that is, the black matrix 103 can act as a black matrix on both sides of the first color micro LED 104, blocking the side light of the first color micro LED 104 and preventing different micro LEDs 104 from emitting light.
  • the light between the LEDs generates crosstalk, which can also serve as a pixel defining layer of the pixel layer 105 to limit the sub-pixel printing area while forming the shape of the sub-pixel, and also prevent cross-talk between different sub-pixels, which can simplify the manufacturing process.
  • the first color micro LED 104 is a blue micro LED
  • the second color sub pixel 1051 and the third color sub pixel 1052 are red sub pixels and green sub pixels, respectively.
  • a blue micro LED excites red and green sub-pixels to obtain a color display effect.
  • the first color micro LED 104 can also be a red micro LED or a green micro LED.
  • the second color sub-pixel 1051 and the third color sub-pixel 1052 are respectively a green sub-pixel and a blue sub-pixel, or the second-color sub-pixel 1051 and the third-color sub-pixel 1052 are respectively a red sub-pixel And blue sub-pixels.
  • the red sub-pixels and the green sub-pixels form a repeating unit, and the repeating units are cyclically arranged with a width of one sub-pixel as a pitch, that is, the space area 107 is a blank area or filled There are transparent materials, in which the missing blue sub-pixels (ie, the interval area 107 in the figure) are provided by blue micro LEDs.
  • the red sub-pixel and the green sub-pixel are made of red quantum dot material and green quantum dot material, respectively.
  • Quantum dot technology is considered to be the core of next-generation display technology that can compete with OLED.
  • Quantum dot materials have the advantages of high luminous efficiency, high color purity, and wide color gamut.
  • Using quantum dot materials as a color filter layer can provide a more realistic color display for the display panel.
  • the embodiments of the application combine the advantages of micro LEDs and quantum dots, which can enable the display panel to have the advantages of low power consumption, high performance, and long life.
  • the thickness of the black matrix 103 ranges from 10 micrometers to 12 micrometers.
  • a black matrix with a high film thickness is used to simultaneously serve as a barrier layer for micro LEDs and a defining layer for the pixel layer to simplify the manufacturing process.
  • the micro-LED is formed first and then the black matrix is formed, which causes the high temperature in the yellow light manufacturing process and the alkaline developer to affect the micro-LED, causing the micro-LED to fail, thereby affecting the overall display effect of the display panel. .
  • the thickness of the pixel layer 105 ranges from 5 ⁇ m to 7 ⁇ m.
  • the height range of a general micro LED chip is about 5 microns to 6 microns, and the height of the black matrix provided by the embodiment of the present application can reach 10 microns to 12 microns. Therefore, the height range of the pixel layer 105 of the embodiment of the present application It can reach 5 ⁇ m to 7 ⁇ m. If the pixel layer 105 is printed with quantum dot material, the color purity and color saturation of the quantum dot material in this height range can meet normal display requirements.
  • the flow chart of the manufacturing method of the display panel provided by the embodiment of the application includes the steps:
  • the thin film transistor layer prepared on the clean and dry first glass substrate is used as the driver of the first color micro LED chip; in S202, the yellow light process is used to prepare the black matrix, and the black matrix is prepared.
  • the steps include: photoresist coating, pre-baking, exposure, development and post-baking; in S203, the first color micro-LED chip prepared on the substrate on which the black matrix is finished is used as the excitation light source for the pixel layer;
  • the second-color sub-pixels and the third-color sub-pixels printed using inkjet printing technology are used as the second-color sub-pixels and the third-color sub-pixels in the color filter layer (wherein the first-color sub-pixels are composed of the first-color sub-pixels).
  • Color micro LED chips provided
  • the uppermost layer is packaged with a second glass substrate to obtain the final display panel.
  • the first color micro LED is a blue micro LED
  • the second color sub pixel and the third color sub pixel are a red sub pixel and a green sub pixel, respectively.
  • a blue micro LED excites red and green sub-pixels to obtain a color display effect.
  • the first color micro LED can also be a red micro LED or a green micro LED.
  • the second color sub-pixel and the third color sub-pixel are green sub-pixels and blue sub-pixels, or the second color sub-pixel and the third color sub-pixels are red sub-pixels and blue sub-pixels, respectively Pixels.
  • the red sub-pixels and the green sub-pixels form a repeating unit, and the repeating units are cyclically arranged with a width of one sub-pixel as a pitch, that is, the space area is a blank area or is filled with Transparent material, in which the missing blue sub-pixels are provided by blue micro LEDs.
  • the red sub-pixel and the green sub-pixel are made of red quantum dot material and green quantum dot material, respectively.
  • the thickness of the black matrix ranges from 10 micrometers to 12 micrometers.
  • the thickness of the pixel layer 105 ranges from 5 ⁇ m to 7 ⁇ m.
  • the height range of a general micro LED chip is about 5 microns to 6 microns, and the height of the black matrix provided by the embodiment of the present application can reach 10 microns to 12 microns. Therefore, the height range of the pixel layer 105 of the embodiment of the present application It can reach 5 ⁇ m to 7 ⁇ m. If the pixel layer 105 is printed with quantum dot material, the color purity and color saturation of the quantum dot material in this height range can meet normal display requirements.
  • the process flow chart of the manufacturing method of the display panel provided by the embodiments of the present application is that a thin film transistor layer 302 is first prepared on a first glass substrate 301.
  • the thin film transistor layer 302 includes, for example, a buffer layer (in the figure).
  • a semiconductor layer (not shown in the figure) on the buffer layer, a gate insulating layer (not shown in the figure) on the semiconductor layer, a gate on the gate insulating layer (Not shown in the figure), an interlayer insulating layer (not shown in the figure) on the gate, and a source electrode (not shown in the figure) and drain (not shown in the figure) on the interlayer insulating layer (Not shown in the figure), the source and the drain are respectively connected to both ends of the semiconductor layer through a first hole and a second hole; then a black matrix 303 is prepared on the thin film transistor layer 302, so The height of the black matrix 303 can reach a range of 10 micrometers to 12 micrometers; next, a first color micro LED 304 is prepared on the thin film transistor layer 302, and the first color micro LED 304 is located between the black matrix 303, The height of the first color micro LED 304 is smaller than the height of the black matrix 303.
  • the black matrix 303 is prepared first and then the first color micro LED 304 is prepared, which can avoid high temperature and alkaline development in the yellow light process of preparing the black matrix 303 The influence of liquid on the micro LED; then a pixel layer 305 is prepared on the first color micro LED 304.
  • the pixel layer 305 includes a second color sub-pixel 3051 and a third color sub-pixel 3052.
  • the first color micro-LED The combination of LED304 and the second color sub-pixel 3051 and the third color sub-pixel 3052 can realize full-color display; finally, the second glass substrate 306 is packaged on the black matrix 303 and the pixel layer 305 to obtain the The display panel.
  • the steps of preparing the black matrix 303 include: photoresist coating, pre-baking, exposure, development and post-baking.
  • the black matrix 303 is prepared first and then the first color micro LED 304 is prepared, which can avoid the influence of high temperature and alkaline developer on the micro LED in the yellow light manufacturing process of preparing the black matrix 303.
  • the black matrix with high film thickness used in the embodiments of the present application can act as the black matrix on both sides of the micro LED, block the light from the side of the micro LED, prevent light crosstalk between different micro LEDs, and can also act as the pixel of the pixel layer.
  • the limiting layer limits the printing area of the sub-pixels while forming the shape of the sub-pixels, and can also prevent crosstalk between different sub-pixels.
  • the first color micro LED 304 is a blue micro LED
  • the second color sub-pixel 3051 and the third color sub-pixel 3052 are a red sub-pixel and a green sub-pixel, respectively.
  • a blue micro LED excites red and green sub-pixels to obtain a color display effect.
  • the first color micro LED 304 can also be a red micro LED or a green micro LED.
  • the second-color sub-pixel 3051 and the third-color sub-pixel 3052 are respectively a green sub-pixel and a blue sub-pixel, or the second-color sub-pixel 3051 and the third-color sub-pixel 3052 are respectively a red sub-pixel And blue sub-pixels.
  • the red sub-pixels and the green sub-pixels form a repeating unit, and the repeating units are cyclically arranged with a width of one sub-pixel as a pitch, that is, the space area 307 is a blank area or filled There are transparent materials, in which the missing blue sub-pixels (ie, the interval area 307 in the figure) are provided by blue micro LEDs.
  • the red sub-pixel and the green sub-pixel are made of red quantum dot material and green quantum dot material, respectively.
  • the embodiment of the present application provides a display device including a driving chip and the above-mentioned display panel.
  • the display device provided by the embodiment of the present application may be any product or component with a display function, such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital camera, a navigator, and the like.
  • a black matrix is provided as a barrier between adjacent micro LEDs and adjacent sub-pixels, and the black matrix with high film thickness is adopted. It can act as a black matrix on both sides of the micro LED to block the light from the side of the micro LED to prevent light crosstalk between different micro LEDs. It can also act as a pixel defining layer of the pixel layer to limit the print area of the sub pixel while forming the shape of the sub pixel. , It can also prevent crosstalk between different sub-pixels, simplify the manufacturing process, and greatly improve the contrast of the display panel, which solves the problem of the high temperature in the yellow light manufacturing process of the display panel of the prior art due to the black matrix made on the micro LED. And the technical problem that the alkaline developer affects the micro LEDs, causing the micro LEDs to fail, thereby affecting the overall display effect of the display panel.

Abstract

本申请提供一种显示面板、其制备方法及显示装置,显示面板包括:第一玻璃基板、位于第一玻璃基板上的薄膜晶体管层、位于薄膜晶体管层上且阵列排布的黑色矩阵、位于薄膜晶体管层上且位于黑色矩阵之间的第一颜色微型LED、位于第一颜色微型LED上的像素层以及位于黑色矩阵和像素层上的第二玻璃基板。

Description

一种显示面板、其制备方法及显示装置 技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板、其制备方法及显示装置。
背景技术
微型LED,是指将LED结构设计薄膜化、微小化、以及阵列化,每个微型LED的尺寸仅1至100微米左右。微型LED与OLED一样,能够实现自发光,无需背光源,而且微型LED的效率更高,因此比OLED更加节能,且微型LED的发光寿命更长、亮度更高,同时兼具可实现超高像素数、超高解析度、无缝拼接等诸多优势。
现有技术的显示面板,通过在TFT基板上转移完微型LED芯片后,再在其上制作彩膜层,而彩膜层需要先用黄光制程制作黑色堤部或者黑色矩阵防止子像素之间发生串扰,黄光制程中的高温以及碱性显影液都会对微型LED芯片造成影响,使其失效,从而影响整体显示效果。故,有必要改善这一缺陷。
技术问题
现有技术的显示面板,由于在微型LED上制作黑色矩阵,其黄光制程中的高温以及碱性显影液对微型LED造成影响,导致微型LED失效,从而影响显示面板整体显示效果的技术问题。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请实施例提供一种显示面板,包括:第一玻璃基板、薄膜晶体管层、黑色矩阵、第一颜色微型LED、像素层以及第二玻璃基板;其中,所述薄膜晶体管层位于所述第一玻璃基板上;所述黑色矩阵位于所述薄膜晶体管层上、且阵列排布;所述第一颜色微型LED位于所述薄膜晶体管层上、且位于所述黑色矩阵之间,所述第一颜色微型LED的高度小于所述黑色矩阵的高度;所述像素层位于所述第一颜色微型LED上,包括第二颜色子像素和第三颜色子像素;所述第二玻璃基板位于所述黑色矩阵和所述像素层上。
在本申请实施例所提供的显示面板中,所述第一颜色微型LED为蓝色微型LED,所述第二颜色子像素和所述第三颜色子像素分别为红色子像素和绿色子像素。
在本申请实施例所提供的显示面板中,所述红色子像素和所述绿色子像素组成一个重复单元,所述重复单元以一个子像素的宽度为间距循环排布。
在本申请实施例所提供的显示面板中,所述红色子像素和所述绿色子像素分别由红色量子点材料和绿色量子点材料制作而成。
在本申请实施例所提供的显示面板中,所述黑色矩阵的厚度范围为10微米至12微米。
在本申请实施例所提供的显示面板中,所述像素层的厚度范围为5微米至7微米。
本申请实施例提供一种显示面板的制备方法,包括步骤:在第一玻璃基板上制备薄膜晶体管层;在所述薄膜晶体管层上制备黑色矩阵,所述黑色矩阵阵列排布;在所述薄膜晶体管层上制备第一颜色微型LED,所述第一颜色微型LED位于所述黑色矩阵之间,且所述第一颜色微型LED的高度小于所述黑色矩阵的高度;在所述第一颜色微型LED上制备像素层,所述像素层包括第二颜色子像素和第三颜色子像素;在所述黑色矩阵和所述像素层上封装第二玻璃基板。
在本申请实施例所提供的显示面板的制备方法中,所述第一颜色微型LED为蓝色微型LED,所述第二颜色子像素和所述第三颜色子像素分别为红色子像素和绿色子像素。
在本申请实施例所提供的显示面板的制备方法中,所述红色子像素和所述绿色子像素分别由红色量子点材料和绿色量子点材料制作而成。
在本申请实施例所提供的显示面板的制备方法中,所述黑色矩阵的厚度范围为10微米至12微米。
在本申请实施例所提供的显示面板的制备方法中,所述像素层的厚度范围为5微米至7微米。
本申请实施例提供一种显示装置,包括驱动芯片和显示面板,所述显示面板包括:第一玻璃基板、薄膜晶体管层、黑色矩阵、第一颜色微型LED、像素层以及第二玻璃基板;其中,所述薄膜晶体管层位于所述第一玻璃基板上;所述黑色矩阵位于所述薄膜晶体管层上、且阵列排布;所述第一颜色微型LED位于所述薄膜晶体管层上、且位于所述黑色矩阵之间,所述第一颜色微型LED的高度小于所述黑色矩阵的高度;所述像素层位于所述第一颜色微型LED上,包括第二颜色子像素和第三颜色子像素;所述第二玻璃基板位于所述黑色矩阵和所述像素层上。
在本申请实施例所提供的显示装置中,所述第一颜色微型LED为蓝色微型LED,所述第二颜色子像素和所述第三颜色子像素分别为红色子像素和绿色子像素。
在本申请实施例所提供的显示装置中,所述红色子像素和所述绿色子像素组成一个重复单元,所述重复单元以一个子像素的宽度为间距循环排布。
在本申请实施例所提供的显示装置中,所述红色子像素和所述绿色子像素分别由红色量子点材料和绿色量子点材料制作而成。
在本申请实施例所提供的显示装置中,所述黑色矩阵的厚度范围为10微米至12微米。
在本申请实施例所提供的显示装置中,所述像素层的厚度范围为5微米至7微米。
有益效果
相较于现有技术,本申请实施例提供的一种显示面板,在相邻的微型LED以及相邻的子像素之间,均设置有黑色矩阵做阻隔,所采用的高膜厚的黑色矩阵既可充当微型LED两侧的黑色矩阵,阻挡微型LED的侧面出光,防止不同微型LED之间的光发生串扰,又可充当像素层的像素限定层,限制子像素打印区域的同时形成子像素的形状,还可防止不同子像素之间发生串扰,既简化制程,又大大提高了显示面板的对比度。
附图说明
图1为本申请实施例提供的显示面板的结构示意图;
图2为本申请实施例提供的显示面板的制备方法流程图;
图3a~3e为本申请实施例提供的显示面板的制备方法工艺流程图。
本申请的实施方式
本申请提供一种显示面板、其制备方法及显示装置,为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
如图1所示,本申请实施例提供的显示面板的结构示意图,从图中可以很直观地看到本申请的各组成部分,以及各组成部分之间的相对位置关系,所述显示面板包括:第一玻璃基板101、薄膜晶体管层102、黑色矩阵103、第一颜色微型LED104、像素层105以及第二玻璃基板106;其中,所述薄膜晶体管层102位于所述第一玻璃基板101上;所述黑色矩阵103位于所述薄膜晶体管层102上、且阵列排布;所述第一颜色微型LED104位于所述薄膜晶体管层102上、且位于所述黑色矩阵103之间,所述第一颜色微型LED104的高度小于所述黑色矩阵103的高度;所述像素层105位于所述第一颜色微型LED104上,包括第二颜色子像素1051和第三颜色子像素1052;所述第二玻璃基板106位于所述黑色矩阵103和所述像素层105上。
需要说明的是,本实施例中,所述第一颜色微型LED104作为背光源,所述像素层105作为彩色滤光层,所述第一颜色微型LED104与所述第二颜色子像素1051和所述第三颜色子像素1052组合可以实现全彩显示。
需要说明的是,本实施例通过将黑色矩阵103设置在薄膜晶体管层102上,将第一颜色微型LED104设置在黑色矩阵103之间,可以避免现有技术中,先形成微型LED后形成黑色矩阵,导致黄光制程中的高温以及碱性显影液对微型LED造成影响,导致微型LED失效,从而影响显示面板整体显示效果;且本实施例通过将黑色矩阵103的高度设置为大于第一颜色微型LED104的高度,将像素层105设置于第一颜色微型LED104上,即所述黑色矩阵103既可充当第一颜色微型LED104两侧的黑色矩阵,阻挡第一颜色微型LED104的侧面出光,防止不同微型LED之间的光发生串扰,又可充当像素层105的像素限定层,限制子像素打印区域的同时形成子像素的形状,还可防止不同子像素之间发生串扰,可以简化制程。
在一种实施例中,所述第一颜色微型LED104为蓝色微型LED,所述第二颜色子像素1051和所述第三颜色子像素1052分别为红色子像素和绿色子像素。本实施例是以蓝色微型LED激发红、绿子像素来获得彩色显示效果,在其他实施例中,所述第一颜色微型LED104还可为红色微型LED或者绿色微型LED,相对应的,所述第二颜色子像素1051和所述第三颜色子像素1052分别为绿色子像素和蓝色子像素、或者所述第二颜色子像素1051和所述第三颜色子像素1052分别为红色子像素和蓝色子像素。
在一种实施例中,所述红色子像素和所述绿色子像素组成一个重复单元,所述重复单元以一个子像素的宽度为间距循环排布,即所述间隔区域107为空白区域或填充有透明材料,其中,缺失的蓝色子像素(即图中的间隔区域107)由蓝色微型LED提供。
在一种实施例中,所述红色子像素和所述绿色子像素分别由红色量子点材料和绿色量子点材料制作而成。量子点技术被认为是能够与OLED相抗衡的下一代显示技术的核心,量子点材料具有高发光效率、高色纯度、广色域等优点。将量子点材料用作彩色滤光层,能够为显示面板提供更加逼真的色彩显示。本申请实施例集合了微型LED与量子点的优势,可使得显示面板具有低功耗、高性能、长寿命等优点。
在一种实施例中,所述黑色矩阵103的厚度范围为10微米至12微米,本实施例通过采用高膜厚的黑色矩阵,同时充当微型LED的阻隔层以及像素层的界定层,简化制程的同时,还避免了现有技术中,先形成微型LED后形成黑色矩阵,导致黄光制程中的高温以及碱性显影液对微型LED造成影响,导致微型LED失效,从而影响显示面板整体显示效果。
在一种实施例中,所述像素层105的厚度范围为5微米至7微米。具体地,一般的微型LED芯片的高度范围为5微米至6微米左右,本申请实施例提供的黑色矩阵的高度可达到10微米至12微米,因此,本申请实施例的像素层105的高度范围可达到5微米至7微米,若像素层105为量子点材料打印而成,这个高度范围下的量子点材料的色纯度、色饱和度等指标均能够满足正常显示需求。
如图2所示,本申请实施例提供的显示面板的制备方法流程图,包括步骤:
S201、在第一玻璃基板上制备薄膜晶体管层;
S202、在所述薄膜晶体管层上制备黑色矩阵,所述黑色矩阵阵列排布;
S203、在所述薄膜晶体管层上制备第一颜色微型LED,所述第一颜色微型LED位于所述黑色矩阵之间,且所述第一颜色微型LED的高度小于所述黑色矩阵的高度;
S204、在所述第一颜色微型LED上制备像素层,所述像素层包括第二颜色子像素和第三颜色子像素;
S205、在所述黑色矩阵和所述像素层上封装第二玻璃基板。
具体地,在S201中,在洁净干燥的第一玻璃基板上制备的薄膜晶体管层,是作为第一颜色微型LED芯片的驱动;在S202中,使用黄光制程制备黑色矩阵,其中制备黑色矩阵的步骤包括:光阻的涂布、预烘烤、曝光、显影和后烘;在S203中,在制作完黑色矩阵的基板上制备的第一颜色微型LED芯片,是作为像素层的激发光源;在S204中,使用喷墨打印技术打印的第二颜色子像素和第三颜色子像素,是作为彩膜层中的第二颜色子像素和第三颜色子像素(其中第一颜色子像素由第一颜色微型LED芯片提供);在S205中,在最上层用第二玻璃基板进行封装,得到最终的显示面板。
需要说明的是,制作这种以微型LED作为背光源、以像素层作为彩色滤光层的结构有对侧、同侧两种方案。对侧就是分别制作微型LED背光基板和像素层彩膜基板后将两者进行对位,此方案制程繁琐,且需要高精度对位设备的支持,资源有限。同侧方案即在微型LED上制作彩色滤光层,本申请实施例通过先制备黄光制程的黑色矩阵,再转移微型LED芯片,由此避免了黄光制程对微型LED芯片的伤害,并简化了制程,无需对位操作,降低了制作难度。
在一种实施例中,所述第一颜色微型LED为蓝色微型LED,所述第二颜色子像素和所述第三颜色子像素分别为红色子像素和绿色子像素。本实施例是以蓝色微型LED激发红、绿子像素来获得彩色显示效果,在其他实施例中,所述第一颜色微型LED还可为红色微型LED或者绿色微型LED,相对应的,所述第二颜色子像素和所述第三颜色子像素分别为绿色子像素和蓝色子像素、或者所述第二颜色子像素和所述第三颜色子像素分别为红色子像素和蓝色子像素。
在一种实施例中,所述红色子像素和所述绿色子像素组成一个重复单元,所述重复单元以一个子像素的宽度为间距循环排布,即所述间隔区域为空白区域或填充有透明材料,其中,缺失的蓝色子像素由蓝色微型LED提供。
在一种实施例中,所述红色子像素和所述绿色子像素分别由红色量子点材料和绿色量子点材料制作而成。
在一种实施例中,所述黑色矩阵的厚度范围为10微米至12微米。
在一种实施例中,所述像素层105的厚度范围为5微米至7微米。具体地,一般的微型LED芯片的高度范围为5微米至6微米左右,本申请实施例提供的黑色矩阵的高度可达到10微米至12微米,因此,本申请实施例的像素层105的高度范围可达到5微米至7微米,若像素层105为量子点材料打印而成,这个高度范围下的量子点材料的色纯度、色饱和度等指标均能够满足正常显示需求。
如图3a~3e所示,本申请实施例提供的显示面板的制备方法工艺流程图,首先在第一玻璃基板301上制备薄膜晶体管层302,所述薄膜晶体管层302例如包括缓冲层(图中未示出)、位于所述缓冲层上的半导体层(图中未示出)、位于所述半导体层上的栅绝缘层(图中未示出)、位于所述栅绝缘层上的栅极(图中未示出)、位于所述栅极上的层间绝缘层(图中未示出)、以及位于所述层间绝缘层上的源极(图中未示出)和漏极(图中未示出),所述源极和所述漏极分别通过第一孔和第二孔与所述半导体层的两端相连;然后在所述薄膜晶体管层302上制备黑色矩阵303,所述黑色矩阵303的高度可达到10微米至12微米的范围;接下来在所述薄膜晶体管层302上制备第一颜色微型LED304,且所述第一颜色微型LED304位于所述黑色矩阵303之间,所述第一颜色微型LED304的高度小于所述黑色矩阵303的高度,本实施例先制备黑色矩阵303再制备第一颜色微型LED304,可避免制备黑色矩阵303的黄光制程中高温以及碱性显影液对微型LED造成的影响;再然后在所述第一颜色微型LED304上制备像素层305,所述像素层305包括第二颜色子像素3051和第三颜色子像素3052,所述第一颜色微型LED304与所述第二颜色子像素3051和所述第三颜色子像素3052组合可实现全彩显示;最后在所述黑色矩阵303和所述像素层305上封装第二玻璃基板306,制得所述显示面板。
需要说明的是,制备黑色矩阵303的步骤包括:光阻的涂布、预烘烤、曝光、显影和后烘。本实施例先制备黑色矩阵303再制备第一颜色微型LED304,可避免制备黑色矩阵303的黄光制程中高温以及碱性显影液对微型LED造成的影响。且本申请实施例通过采用的高膜厚的黑色矩阵既可充当微型LED两侧的黑色矩阵,阻挡微型LED的侧面出光,防止不同微型LED之间的光发生串扰,又可充当像素层的像素限定层,限制子像素打印区域的同时形成子像素的形状,还可防止不同子像素之间发生串扰。
在一种实施例中,所述第一颜色微型LED304为蓝色微型LED,所述第二颜色子像素3051和所述第三颜色子像素3052分别为红色子像素和绿色子像素。本实施例是以蓝色微型LED激发红、绿子像素来获得彩色显示效果,在其他实施例中,所述第一颜色微型LED304还可为红色微型LED或者绿色微型LED,相对应的,所述第二颜色子像素3051和所述第三颜色子像素3052分别为绿色子像素和蓝色子像素、或者所述第二颜色子像素3051和所述第三颜色子像素3052分别为红色子像素和蓝色子像素。
在一种实施例中,所述红色子像素和所述绿色子像素组成一个重复单元,所述重复单元以一个子像素的宽度为间距循环排布,即所述间隔区域307为空白区域或填充有透明材料,其中,缺失的蓝色子像素(即图中的间隔区域307)由蓝色微型LED提供。
在一种实施例中,所述红色子像素和所述绿色子像素分别由红色量子点材料和绿色量子点材料制作而成。
本申请实施例提供一种显示装置,包括驱动芯片和上述的显示面板。本申请实施例提供的显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相机、导航仪等任何具有显示功能的产品或部件。
综上所述,本申请实施例提供的一种显示面板,通过在相邻的微型LED以及相邻的子像素之间,均设置有黑色矩阵做阻隔,所采用的高膜厚的黑色矩阵既可充当微型LED两侧的黑色矩阵,阻挡微型LED的侧面出光,防止不同微型LED之间的光发生串扰,又可充当像素层的像素限定层,限制子像素打印区域的同时形成子像素的形状,还可防止不同子像素之间发生串扰,既简化制程,又大大提高了显示面板的对比度,解决了现有技术的显示面板,由于在微型LED上制作黑色矩阵,其黄光制程中的高温以及碱性显影液对微型LED造成影响,导致微型LED失效,从而影响显示面板整体显示效果的技术问题。
可以理解的是,对本领域普通技术人员来说,可以根据本申请的技术方案及其申请构思加以等同替换或改变,而所有这些改变或替换都应属于本申请所附的权利要求的保护范围。

Claims (17)

  1. 一种显示面板,其包括:
    第一玻璃基板;
    薄膜晶体管层,位于所述第一玻璃基板上;
    黑色矩阵,位于所述薄膜晶体管层上,且阵列排布;
    第一颜色微型LED,位于所述薄膜晶体管层上,且位于所述黑色矩阵之间,所述第一颜色微型LED的高度小于所述黑色矩阵的高度;
    像素层,位于所述第一颜色微型LED上,包括第二颜色子像素和第三颜色子像素;
    第二玻璃基板,位于所述黑色矩阵和所述像素层上。
  2. 如权利要求1所述的显示面板,其中,所述第一颜色微型LED为蓝色微型LED,所述第二颜色子像素和所述第三颜色子像素分别为红色子像素和绿色子像素。
  3. 如权利要求2所述的显示面板,其中,所述红色子像素和所述绿色子像素组成一个重复单元,所述重复单元以一个子像素的宽度为间距循环排布。
  4. 如权利要求2所述的显示面板,其中,所述红色子像素和所述绿色子像素分别由红色量子点材料和绿色量子点材料制作而成。
  5. 如权利要求1所述的显示面板,其中,所述黑色矩阵的厚度范围为10微米至12微米。
  6. 如权利要求1所述的显示面板,其中,所述像素层的厚度范围为5微米至7微米。
  7. 一种显示面板的制备方法,其包括步骤:
    在第一玻璃基板上制备薄膜晶体管层;
    在所述薄膜晶体管层上制备黑色矩阵,所述黑色矩阵阵列排布;
    在所述薄膜晶体管层上制备第一颜色微型LED,所述第一颜色微型LED位于所述黑色矩阵之间,且所述第一颜色微型LED的高度小于所述黑色矩阵的高度;
    在所述第一颜色微型LED上制备像素层,所述像素层包括第二颜色子像素和第三颜色子像素;
    在所述黑色矩阵和所述像素层上封装第二玻璃基板。
  8. 如权利要求7所述的显示面板的制备方法,其中,所述第一颜色微型LED为蓝色微型LED,所述第二颜色子像素和所述第三颜色子像素分别为红色子像素和绿色子像素。
  9. 如权利要求8所述的显示面板的制备方法,其中,所述红色子像素和所述绿色子像素分别由红色量子点材料和绿色量子点材料制作而成。
  10. 如权利要求7所述的显示面板的制备方法,其中,所述黑色矩阵的厚度范围为10微米至12微米。
  11. 如权利要求7所述的显示面板的制备方法,其中,所述像素层的厚度范围为5微米至7微米。
  12. 一种显示装置,其包括驱动芯片和显示面板,所述显示面板包括:
    第一玻璃基板;
    薄膜晶体管层,位于所述第一玻璃基板上;
    黑色矩阵,位于所述薄膜晶体管层上,且阵列排布;
    第一颜色微型LED,位于所述薄膜晶体管层上,且位于所述黑色矩阵之间,所述第一颜色微型LED的高度小于所述黑色矩阵的高度;
    像素层,位于所述第一颜色微型LED上,包括第二颜色子像素和第三颜色子像素;
    第二玻璃基板,位于所述黑色矩阵和所述像素层上。
  13. 如权利要求12所述的显示装置,其中,所述第一颜色微型LED为蓝色微型LED,所述第二颜色子像素和所述第三颜色子像素分别为红色子像素和绿色子像素。
  14. 如权利要求13所述的显示装置,其中,所述红色子像素和所述绿色子像素组成一个重复单元,所述重复单元以一个子像素的宽度为间距循环排布。
  15. 如权利要求13所述的显示装置,其中,所述红色子像素和所述绿色子像素分别由红色量子点材料和绿色量子点材料制作而成。
  16. 如权利要求12所述的显示装置,其中,所述黑色矩阵的厚度范围为10微米至12微米。
  17. 如权利要求12所述的显示装置,其中,所述像素层的厚度范围为5微米至7微米。
PCT/CN2020/076535 2020-01-17 2020-02-25 一种显示面板、其制备方法及显示装置 WO2021142886A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/645,797 US20210398959A1 (en) 2020-01-17 2020-02-25 Display panel, manufacturing method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010052489.2 2020-01-17
CN202010052489.2A CN111261656A (zh) 2020-01-17 2020-01-17 一种显示面板及其制备方法

Publications (1)

Publication Number Publication Date
WO2021142886A1 true WO2021142886A1 (zh) 2021-07-22

Family

ID=70954184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076535 WO2021142886A1 (zh) 2020-01-17 2020-02-25 一种显示面板、其制备方法及显示装置

Country Status (3)

Country Link
US (1) US20210398959A1 (zh)
CN (1) CN111261656A (zh)
WO (1) WO2021142886A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113451217B (zh) * 2020-07-24 2022-04-29 重庆康佳光电技术研究院有限公司 显示装置的制造方法及显示装置
CN112578594A (zh) * 2020-11-27 2021-03-30 北海惠科光电技术有限公司 彩膜基板、显示面板及显示装置
CN112578597A (zh) * 2020-11-27 2021-03-30 北海惠科光电技术有限公司 彩膜基板、显示面板以及显示装置
CN112885885A (zh) * 2021-02-01 2021-06-01 武汉华星光电半导体显示技术有限公司 显示面板、显示装置及显示面板的制作方法
CN113013310A (zh) * 2021-02-20 2021-06-22 Tcl华星光电技术有限公司 显示面板和显示装置
CN117525249A (zh) * 2024-01-04 2024-02-06 南京国兆光电科技有限公司 一种单红色微型显示器结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160351539A1 (en) * 2015-06-01 2016-12-01 X-Celeprint Limited Inorganic-light-emitter display with integrated black matrix
CN109683390A (zh) * 2017-10-18 2019-04-26 优显科技股份有限公司 显示装置
CN110265531A (zh) * 2019-06-14 2019-09-20 深圳市华星光电半导体显示技术有限公司 微型发光二极管及显示面板
CN110364638A (zh) * 2019-07-12 2019-10-22 昆山梦显电子科技有限公司 高分辨率Micro-OLED的制备方法以及显示模组

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106019749B (zh) * 2016-08-03 2019-06-28 上海中航光电子有限公司 阵列基板及显示面板
CN107331680B (zh) * 2017-07-05 2020-04-24 上海天马微电子有限公司 一种显示面板及其制造方法、显示装置
CN110556394B (zh) * 2018-05-31 2022-02-25 海信视像科技股份有限公司 Micro LED显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160351539A1 (en) * 2015-06-01 2016-12-01 X-Celeprint Limited Inorganic-light-emitter display with integrated black matrix
CN109683390A (zh) * 2017-10-18 2019-04-26 优显科技股份有限公司 显示装置
CN110265531A (zh) * 2019-06-14 2019-09-20 深圳市华星光电半导体显示技术有限公司 微型发光二极管及显示面板
CN110364638A (zh) * 2019-07-12 2019-10-22 昆山梦显电子科技有限公司 高分辨率Micro-OLED的制备方法以及显示模组

Also Published As

Publication number Publication date
US20210398959A1 (en) 2021-12-23
CN111261656A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
WO2021142886A1 (zh) 一种显示面板、其制备方法及显示装置
US9768382B2 (en) Display substrate, its manufacturing method and display device
JP5153825B2 (ja) 有機電界発光表示素子及びその製造方法
JP6978739B2 (ja) Oled表示装置、マスク及びoled表示装置の製造方法
CN105118846B (zh) 一种印刷型发光二极管显示器件及其制作方法
US20210336096A1 (en) Display panel and manufacturing method thereof
WO2021057095A1 (zh) 透明显示基板、透明显示面板及显示装置
WO2021233002A1 (zh) 显示基板及其制作方法、显示装置
CN1722925A (zh) 有机el显示装置
WO2021189475A1 (zh) 显示基板及其制作方法、显示装置
TW201320326A (zh) 有機電激發光顯示裝置及其製造方法
CN107681040B (zh) 显示面板与结构装置
WO2019205425A1 (zh) Woled显示面板及其制作方法
WO2022179370A1 (zh) 发光器件、显示组件和发光器件的制造方法
WO2017012316A1 (zh) 显示基板及其制备方法以及显示装置
CN108288620A (zh) 像素结构基板及其显示面板
WO2021031302A1 (zh) 子像素结构、有机发光二极管显示屏及其制造方法
WO2023173473A1 (zh) 显示面板和电子装置
WO2020187177A1 (zh) 一种mini LED显示屏及制作方法
WO2024016600A1 (zh) 显示面板、显示装置和显示面板的制备方法
US10692937B2 (en) Manufacturing method of OLED display panel with stacks structure
US11961947B2 (en) Substrate for manufacturing display device, display device and manufacturing method thereof
US20240040885A1 (en) Display panel and display device
WO2022226754A1 (zh) 像素结构及其驱动方法、显示面板及显示装置
CN210092134U (zh) 硅基微显示屏

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913343

Country of ref document: EP

Kind code of ref document: A1