WO2017012316A1 - 显示基板及其制备方法以及显示装置 - Google Patents

显示基板及其制备方法以及显示装置 Download PDF

Info

Publication number
WO2017012316A1
WO2017012316A1 PCT/CN2016/071333 CN2016071333W WO2017012316A1 WO 2017012316 A1 WO2017012316 A1 WO 2017012316A1 CN 2016071333 W CN2016071333 W CN 2016071333W WO 2017012316 A1 WO2017012316 A1 WO 2017012316A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
pixels
color sub
layer
Prior art date
Application number
PCT/CN2016/071333
Other languages
English (en)
French (fr)
Inventor
辛龙宝
林俊杰
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP16793726.7A priority Critical patent/EP3327782B1/en
Priority to US15/113,340 priority patent/US10062311B2/en
Publication of WO2017012316A1 publication Critical patent/WO2017012316A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2074Display of intermediate tones using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels

Definitions

  • Embodiments of the present invention relate to the field of display technologies, and in particular, to a display substrate, a method for fabricating the same, and a display device.
  • the AMOLED (Active-matrix organic light emitting diode) display has the characteristics of faster response, higher contrast, and wider viewing angle than conventional liquid crystal panels. Due to the current-driven characteristics of an OLED (Organic Light Emitting Diode), there are a plurality of TFTs (Thin Film Transistors) and a plurality of capacitors on a pixel circuit, for example, a circuit structure as shown in FIG. A corresponding pixel arrangement diagram.
  • TFTs Thin Film Transistors
  • the number of pixels per unit area can be increased, but this in turn causes a problem of too small capacitance.
  • the capacitance is increased by providing another Metal 3 (a metal not belonging to the gate metal layer and the source/drain metal layer) in the display substrate.
  • the structure of the display substrate shown in FIG. 5 is added as shown in FIG. 6.
  • Metal3 is shown to increase capacitance, but there is still a problem of low aperture ratio.
  • the aperture ratio of the display panel is bound to decrease, as is the case for white OLEDs (WOLEDs).
  • Embodiments of the present invention provide a display substrate, a method of fabricating the same, and a display device capable of effectively utilizing a missing region of a light-emitting layer in a pixel in a case where a missing area of a light-emitting layer in a pixel of a display panel necessarily loses an opening area.
  • a display substrate comprising a plurality of pixel groups
  • Each of the pixel groups includes a plurality of color sub-pixels and a plurality of white sub-pixels, and each color sub-pixel corresponds to a white sub-pixel.
  • Each color sub-pixel includes a light-emitting area and a light-emitting layer missing area, and a first driving transistor is disposed in the light-emitting layer missing area for driving the color sub-pixel,
  • a second driving transistor and a white sub-pixel corresponding to the color sub-pixel are disposed on the first driving transistor, and the second driving transistor is configured to drive the white sub-pixel.
  • the thickness of the first driving transistor is equal to the thickness of the micro-cavity of the white sub-pixel.
  • each of the sets of pixels includes 4 color sub-pixels and 4 white sub-pixels.
  • the four color sub-pixels in the pixel group are arranged in a 2 ⁇ 2 matrix, and the light-emitting layer missing region of each color sub-pixel is located at one corner of the color sub-pixel, and is in the same pixel group.
  • the luminescent layer missing regions of the different color sub-pixels are respectively located at the corners of different orientations of the different color sub-pixels.
  • the color sub-pixels and the white sub-pixels are driven by sub-pixel rendering.
  • two color sub-pixels on one diagonal of the 2x2 matrix are green sub-pixels, two on the other diagonal
  • the color sub-pixels are a blue sub-pixel and a red sub-pixel, respectively.
  • the display substrate further includes a flat layer disposed over the first driving transistor, a sum of thicknesses of the first driving transistor and the flat layer being equal to a microcavity of the white sub-pixel thickness of.
  • the second driving transistor comprises:
  • a gate insulating layer disposed on the gate
  • An active layer disposed on the gate insulating layer
  • a source and a drain disposed above the active layer.
  • a passivation layer is further disposed over the source and the drain, and an anode of the white sub-pixel, an anode of the white sub-pixel is disposed over the passivation layer
  • a pixel defining layer is disposed over the anode of the white sub-pixel by electrically connecting the via in the passivation layer to the drain.
  • the display substrate further includes an anode of the color sub-pixel disposed in the light emitting region, wherein a gate of the second driving transistor is in a same layer as an anode of the color sub-pixel Formed in the middle.
  • the display substrate further includes:
  • a color organic light emitting layer disposed over an anode of the color sub-pixel of the light emitting region
  • the cathode of the color sub-pixel is formed in the same layer as the anode of the white sub-pixel.
  • a display device comprising the display substrate according to any of the above.
  • a method for preparing a display substrate including:
  • each of the pixel groups includes a plurality of color sub-pixels and a plurality of white sub-pixels, each color sub-pixel corresponding to one white sub-pixel, each color sub-pixel including a light-emitting region and a light-emitting layer missing a region, in the missing region of the luminescent layer, a first driving transistor is disposed for driving the color sub-pixel;
  • a white sub-pixel corresponding to the color sub-pixel is formed over the second driving transistor, wherein the second driving transistor is configured to drive the white sub-pixel.
  • the thickness of the first drive transistor is equal to the thickness of the microcavity of the white sub-pixel.
  • each of the groups of pixels includes 4 color sub-pixels and 4 white sub-pixels a pixel, forming the pixel group includes:
  • the method before forming the second driving transistor, the method further includes:
  • a flat layer is formed over the first driving transistor, and a sum of thicknesses of the first driving transistor and the flat layer is equal to a thickness of a microcavity of the white sub-pixel.
  • forming the second transistor comprises:
  • a source and a drain are formed over the active layer.
  • the method for preparing a display substrate further includes:
  • a pixel defining layer is formed over the anode of the white sub-pixel.
  • the display substrate preparation method further includes forming an anode of the color sub-pixel in the light-emitting region, wherein an anode of a color sub-pixel is formed when a gate of the second driving transistor is formed .
  • the method for preparing a display substrate further includes:
  • a cathode of a color sub-pixel is formed over the color organic light-emitting layer.
  • the cathode of the color sub-pixel is formed while forming the anode of the white sub-pixel.
  • a white sub-pixel and a white sub-pixel driving transistor are formed on a driving transistor (ie, a first driving transistor) of a color sub-pixel, and a white OLED can be realized. That is, WOLED) shows that this is sufficient
  • the space in the color sub-pixel thickness dimension is used, and the space on the plane dimension of the display panel is not required, so that the missing area of the luminescent layer in the color sub-pixel is fully utilized.
  • FIGS. 1 and 2 are schematic diagrams showing a pixel circuit and a pixel array in the prior art
  • 3 to 6 are partial cross-sectional schematic views showing several pixel structures in the prior art
  • FIG. 7 is a top plan view showing a display substrate according to an embodiment of the present invention.
  • Figure 8 is a partial cross-sectional view showing a display substrate in accordance with one embodiment of the present invention.
  • FIG. 9 is a schematic view showing a pixel arrangement according to an embodiment of the present invention.
  • Figure 10 is a partial cross-sectional view showing a specific structure of a display substrate in accordance with one embodiment of the present invention.
  • FIG. 11 is a schematic flow chart showing a method of preparing a display substrate according to an embodiment of the present invention.
  • FIG. 12 through 18 illustrate specific schematic diagrams of forming a second driving transistor and corresponding structures in accordance with one embodiment of the present invention.
  • a display substrate includes a plurality of pixel groups, wherein each pixel group 100 includes four color sub-pixels (101, 102, 103, 104) and four white sub-pixels (1010, 1020). , 1030, 1040), each color sub-pixel corresponds to one white sub-pixel, each color sub-pixel includes a light-emitting area and a light-emitting layer missing area, and the first driving transistor 1 is disposed in the missing area of the light-emitting layer as shown in FIG.
  • the driving transistor 1 for driving color subpixels, in the Above the driving transistor 1, a second driving transistor 2 and a white sub-pixel corresponding to the color sub-pixel are provided, and the second driving transistor 2 is for driving the white sub-pixel, as shown in FIG.
  • each pixel group includes four color sub-pixels and four white sub-pixels as an example for description.
  • the thickness of the first driving transistor 1 may be equal to the thickness of the microcavity of the white sub-pixel to make the first driving transistor 1 a microcavity of a white sub-pixel.
  • the light emitting area of the color sub-pixel is the area where the light emitting layer is located, in which light of a color corresponding to the sub-pixel located in the area may be emitted, in some embodiments.
  • the light-emitting region is also referred to as an open region; the light-emitting layer-deficient region of the color sub-pixel is, for example, a region where the first driving transistor 1 and/or other leads or electronic components that drive the color sub-pixels are generally not illuminated.
  • a white sub-pixel and a second driving transistor for driving the white sub-pixel are disposed over the missing region of the light-emitting layer, so that the missing region of the light-emitting layer can be fully utilized, thereby improving the opening. rate.
  • the pixel group 100 may include white sub-pixels 1010 corresponding to the first color sub-pixels 101, and the second color sub-pixels 102 correspond to
  • the white sub-pixel 1020 has a white sub-pixel 1030 corresponding to the third color sub-pixel 103 and a white sub-pixel 1040 corresponding to the fourth color sub-pixel.
  • the white sub-pixel in the embodiment of the present invention includes an organic light-emitting material, and the organic light-emitting material may be disposed on the anode of the white sub-pixel, and a cathode of the white sub-pixel is further disposed on the organic light-emitting material.
  • a white sub-pixel and a white sub-pixel driving transistor are formed on the driving transistor (ie, the first driving transistor 1) of the color sub-pixel, and the process is set by a certain process.
  • the thickness of the first driving transistor 1 (including, for example, the gate of the first driving transistor 1, the gate insulating layer, the active layer, the source and drain, the passivation layer, the flat layer, etc.) may be equal to the white sub-pixel microcavity.
  • the thickness, that is, when the white sub-pixel is operated, the first driving transistor 1 can be used as its microcavity.
  • the white sub-pixel When the display substrate in the present invention emits light in the form of a top emission, the white sub-pixel can be utilized.
  • the microcavity structure adjusts the light path, and the microcavity effect generated by the microcavity structure can improve the light extraction rate of the corresponding structure, thereby improving the luminous efficiency and brightness of the OLED, and thus can realize the WOLED display by combining the white sub-pixels.
  • the white sub-pixel and its driving transistor are disposed in the space in the thickness sub-pixel thickness dimension, which does not need to occupy extra space in the plane dimension of the display panel, so that the missing area of the luminescent layer in the color sub-pixel is fully obtained. use.
  • each pixel group four color sub-pixels in each pixel group are arranged in a 2 ⁇ 2 matrix, and the light-emitting layer missing region of each color sub-pixel (the white sub-pixel and the first and second driving transistors are located) The region is located at one corner of the color sub-pixel, and the luminescent layer missing regions of different color sub-pixels in the same pixel group are respectively located at corners of different orientations of the different color sub-pixels.
  • the pixel group includes: a first color sub-pixel 101 located at the upper left, wherein the luminescent layer missing region of the first color sub-pixel 101 is located at the upper left of the first sub-pixel 101; at the upper right a second color sub-pixel 102, wherein the luminescent layer missing region of the second color sub-pixel 102 is located at the upper right of the second sub-pixel 102; the third color sub-pixel 103 at the lower left, wherein the third color sub-pixel 103
  • the luminescent layer missing region is located at the lower right of the third sub-pixel 103; the fourth color sub-pixel 104 is located at the lower right, wherein the luminescent layer missing region of the fourth color sub-pixel 104 is located at the lower left of the fourth sub-pixel 104.
  • the first color sub-pixel 101, the second color sub-pixel 102, the third color sub-pixel 103, the fourth color sub-pixel 104, and the white sub-pixels 1010, 1020, 1030, 1040 may pass through Pixel rendering method driven.
  • each sub-pixel is driven by the sub-pixel rendering method, since the displayed sub-pixels borrow adjacent sub-pixels, the white sub-pixels in the adjacent sub-pixels are all in the same direction, and the white sub-pixels in the peripheral borrowed sub-pixels The pixels are located at the edge of the overall image, making it easy for the observer to observe the white border.
  • the white sub-pixels of the four color sub-pixels in one pixel group 100 are at the center of the pixel group 100, and when the entire pixel group 100 is displayed, the pixel is observed.
  • the white area of 100 hearts in the group is generally displayed as white spots.
  • the white sub-pixels can be evenly distributed in the displayed overall image, so that when the sub-pixels are driven by the sub-pixel rendering method for display, the WOLED display can be well realized.
  • two color sub-pixels on one diagonal of a 2x2 matrix of a pixel group may be set as green sub-pixels, two colors on another diagonal line.
  • the sub-pixels are respectively set to blue sub-pixels and red sub-pixels.
  • the first color sub-pixel 101 and the fourth color sub-pixel 104 are green sub-pixels, and one of the second color sub-pixel 102 and the third color sub-pixel 103 is a blue sub-pixel, and the other color sub-pixel Is a red subpixel.
  • the second color sub-pixel 102 and the third color sub-pixel 103 are green sub-pixels, and one of the first color sub-pixel 101 and the fourth color sub-pixel 104 is a blue sub-pixel, and the other color The sub-pixels are red sub-pixels.
  • each row and each column of the pixel group 100 includes one green sub-pixel, and further includes a red sub-pixel or a blue sub-pixel, so that the sub-pixel rendering method is driven.
  • the borrowed sub-pixel and the sub-pixel in the pixel group have the same ratio as the red, green, and blue sub-pixels in the pixel, thereby Achieve good subpixel rendering.
  • the first color sub-pixel 101 of the pixel group 100 is a blue sub-pixel
  • the second color sub-pixel 102 is a green sub-pixel
  • the third color sub-pixel 103 is a green sub-pixel.
  • the pixel, the fourth color sub-pixel 104 is a red sub-pixel.
  • the sub-pixels of the first row in the third column are borrowed to the right as blue sub-pixels, and the sub-pixels of the second row are
  • the green sub-pixels, the two sub-pixels and the second color sub-pixel 102 and the fourth color sub-pixel 104 in the pixel group 100 form a new pixel group (as indicated by the dotted line on the right side of the frame), and still retain two green sub-pixels.
  • the borrowed sub-pixel and the third sub-pixel 103 and the fourth sub-pixel 104 in the pixel group 100 form a new pixel group ( As shown by the dotted line in the side frame below, the composition ratio of two green sub-pixels, one red sub-pixel and one blue sub-pixel is also maintained.
  • the display substrate according to the embodiment of the present invention may further include a flat layer disposed on the first driving transistor 1.
  • the sum of the thicknesses of the first driving transistor 1 and the flat layer is equal to the micro cavity of the white sub-pixel.
  • the thickness is such that when the white sub-pixel is operated, the first driving transistor and the flat layer can be used together as a microcavity of the white sub-pixel.
  • the second driving transistor 2 includes:
  • a gate electrode 21 disposed over the planarization layer; a gate insulating layer 22 disposed over the gate electrode 21; an active layer 23 disposed over the gate insulating layer 22; and a source electrode 24 disposed over the active layer 23.
  • drain 25 a gate electrode 21 disposed over the planarization layer; a gate insulating layer 22 disposed over the gate electrode 21; an active layer 23 disposed over the gate insulating layer 22; and a source electrode 24 disposed over the active layer 23.
  • drain 25 disposed over the planarization layer.
  • the flat layer may provide a flat condition for the gate 21 of the second driving transistor 2.
  • the gate electrode 21 may be directly formed on the passivation layer above the first transistor as needed, thereby eliminating the formation of flatness. Layer process.
  • the first driving transistor 1 may include: a first gate 14 disposed on the substrate 10; and a first portion disposed on the first gate 14. a gate insulating layer 15; a first active layer 16 disposed on the first gate insulating layer 15; a first source 17 and a first drain 18 disposed on the first active layer 16. Further, an intermediate layer such as a passivation layer or a flat layer may be provided between the source and drain of the first driving transistor 1 and the gate 21 of the second driving transistor 2.
  • a passivation layer 26 is further disposed over the source 24 and the drain 25, and an anode 27 of a white sub-pixel is disposed over the passivation layer 26, wherein the anode 27 of the white sub-pixel passes through the blunt
  • the vias in the layer 26 are electrically connected to the drain 25, and a pixel defining layer 3 is disposed over the anode 27 of the white sub-pixel.
  • the display substrate further includes an anode of a color sub-pixel disposed in the light emitting region, and preferably, the gate 21 of the second driving transistor 2 is formed in the same layer as the anode 11 of the color sub-pixel in the light emitting region.
  • the gate electrode 21 of the second driving transistor 2 and the anode 11 of the color sub-pixel in the light-emitting region can be formed by depositing a metal layer over the planar layer above the first driving transistor 1, and then patterning the metal layer.
  • a display substrate further includes: a color organic light-emitting layer 12 disposed on the anode 11 of the color sub-pixel of the light-emitting area, and a color organic light-emitting layer The cathode 13 of the color sub-pixel above the light layer 12.
  • the anode 11 of the color sub-pixel and the cathode 13 of the color sub-pixel cooperate to drive the color organic light-emitting layer 12 to emit red light, green light, and/or blue light.
  • the cathode 13 of the color sub-pixel is formed in the same layer as the anode 27 of the white sub-pixel.
  • Embodiments of the present invention also provide a display device including the display substrate of any of the above.
  • the display device in this embodiment may be any product or component having a display function, such as an electronic paper, a mobile phone, a tablet computer, a television, a notebook computer, a digital photo frame, a navigator, and the like.
  • a method of preparing a display substrate is also proposed. It should be noted that the method for preparing the display substrate according to the embodiment of the present invention can be used to prepare any of the display substrates provided by the above embodiments. Therefore, the above explanation of the display substrate is also suitable for the embodiment of the present invention. A method of preparing a display substrate provided.
  • a method for preparing a substrate includes:
  • each color sub-pixel includes a plurality of color sub-pixels and a plurality of white sub-pixels, each color sub-pixel corresponding to one white sub-pixel, each color sub-pixel including a light-emitting region and a light-emitting region
  • the layer missing region is provided with a first driving transistor for driving the color sub-pixel in the missing region of the light-emitting layer.
  • a second driving transistor 2 is formed on the first driving transistor 1 of the color sub-pixel.
  • a white sub-pixel is formed on the second driving transistor 2, wherein the second driving transistor 2 is used to drive the white sub-pixel.
  • the thickness of the first drive transistor 1 is equal to the thickness of the microcavity of the white sub-pixel.
  • each pixel group includes 4 color sub-pixels and 4 white sub-pixels, wherein forming each sub-pixel in the pixel group 100 includes: forming each pixel group in a 2 ⁇ 2 matrix arrangement 4 color sub-pixels; a light-emitting layer missing region of each color sub-pixel is formed at one corner of the color sub-pixel, wherein the light-emitting layer missing regions of different color sub-pixels in the same pixel group are respectively located in different color sub-pixels The corners of different orientations.
  • the first color sub-pixel 101 may be formed on the upper left of the pixel group 100, in A second color sub-pixel 102 is formed on the upper right of the pixel group 100, a third color sub-pixel 103 is formed on the lower left of the pixel group 100, and a fourth color sub-pixel 104 is formed on the lower right of the pixel group 100, wherein the first color sub-pixel
  • the luminescent layer missing region of the pixel 101 is located at the upper left of the first color sub-pixel 101
  • the luminescent layer missing region of the second color sub-pixel 102 is located at the upper right of the second color sub-pixel 102
  • the luminescent layer of the third colored sub-pixel 103 is missing.
  • the area is located at the lower right of the third color sub-pixel 103
  • the luminescent layer missing area of the fourth color sub-pixel 104 is located at the lower left of the fourth color sub-pixel 104.
  • the method before forming the second driving transistor 2, the method further comprises: forming a flat layer over the first driving transistor 1, the sum of the thicknesses of the first driving transistor and the flat layer being equal to the thickness of the microcavity of the white sub-pixel.
  • forming the second transistor 2 includes: forming a gate 21 over the planar layer of the first driving transistor 1, as shown in FIG. 12; forming a gate insulating layer 22 over the gate 21, as shown in FIG. As shown, an active layer 23 is formed over the gate insulating layer 22 as shown in FIG. 14; a source electrode 24 and a drain electrode 25 are formed over the active layer 23 as shown in FIG.
  • the method of fabricating a display substrate further includes forming a passivation layer 26 over the source 24 and the drain 25; forming a via in the passivation layer 26, as shown in FIG. 17;
  • the anode 27 of the white sub-pixel is formed such that the anode 27 of the white sub-pixel is electrically connected to the drain 25 through the via, as shown in FIG. 18;
  • the pixel defining layer 3 is formed over the anode 27 of the white sub-pixel, and finally The structure shown in FIG.
  • the display substrate preparation method further includes forming an anode of the color sub-pixel in a light-emitting region, and optionally, forming a color sub-pixel in the light-emitting region when forming the gate electrode 21 of the second driving transistor 2
  • the anode 11 is as shown in FIG.
  • the display substrate preparation method further includes: forming a color organic light-emitting layer 12 over the anode 11 of the color sub-pixel (as shown in FIG. 16); forming a cathode of the color sub-pixel on the color organic light-emitting layer 12 13.
  • the color organic light emitting layer 12 may be formed after the gate insulating layer 22 is formed, may be formed after the active layer 23 is formed, or may be formed after the source electrode 24 and the drain electrode 25 are formed.
  • the cathode 13 of the color sub-pixel is formed when the anode 27 of the white sub-pixel is formed, as shown in FIG.
  • the forming process used in the above process may include, for example, deposition, sputtering, etc. Patterning process such as art and etching.
  • the opening area of the luminescent layer in the pixel of the display panel necessarily loses the opening area, and the present invention passes the driving transistor (ie, the first driving) in the color sub-pixel.
  • a white sub-pixel and a white sub-pixel driving transistor ie, a second driving transistor are formed on the transistor, and the WOLED display can be realized, and the space in the thickness sub-pixel thickness dimension is fully utilized, without occupying the space in the plane dimension of the display panel.
  • the light-emitting layer missing region in the color sub-pixel is fully utilized, so that the aperture ratio can be improved.
  • the terms “first”, “second”, and “third” are used for descriptive purposes only, and are not to be construed as indicating or implying relative importance.
  • the term “plurality” refers to two or more, unless specifically defined otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示基板及其制备方法以及显示装置,该显示基板包括多个像素组(100),其中,每个像素组包括多个彩色子像素(101,102,103,104)和多个白色子像素(1010,1020,1030,1040),彩色子像素的发光层缺失区域中设置有第一驱动晶体管(1),用于驱动彩色子像素,在第一驱动晶体管之上设置有第二驱动晶体管(2)以及白色子像素,第二驱动晶体管用于驱动白色子像素。根据上述技术方案,在彩色子像素的驱动晶体管之上形成白色子像素以及白色子像素的驱动晶体管,可以实现白光OLED显示,利用了彩色子像素厚度维度上的空间,无需占用显示面板平面维度上的空间,使得彩色子像素中的发光层缺失区域得到了充分利用。

Description

显示基板及其制备方法以及显示装置
相关申请的交叉引用
本申请要求于2015年07月23日递交的中国专利申请第201510437925.7号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本发明实施例涉及显示技术领域,具体而言,涉及一种显示基板及其制备方法、和一种显示装置。
背景技术
AMOLED(Active-matrix organic light emitting diode,有源矩阵有机发光二极管)显示屏相比传统的液晶面板,具有反应速度较快、对比度更高以及视角更广等特点。由于OLED(有机发光二极管)电流驱动的特性,在像素电路上具有多个TFT(Thin Film Transistor,薄膜晶体管)和多个电容,例如,如图1所示的电路结构,如图2所示的相应的像素排列示意图。
目前,由于对于显示性能要求的日益提高,技术人员在像素电路的设计上进行了各种改进的尝试来提高显示性能。例如,如图3所示,为了改善OLED中阴极和阳极通过过孔搭接而在过孔中由于金属爬坡所引发的短路风险,通常采用像素界定层来填补阴极搭接到阳极所用的过孔,如图4所示,但是,这会导致开口率降低。需要指出的是,在实际中,图3和图4的阴极及阳极之间还包括图中未示出的其他层,如发光层等。
又如,为了进一步改善显示的性能,可以提高单位面积像素数,但是这又会导致电容过小的问题。现有技术中通过在显示基板中设置另外的Metal3(不属于栅金属层和源漏金属层的金属)来提高电容,例如,在图5所示的显示基板的结构的基础上增加如图6中所示的Metal3,以提高电容,但是依然会存在开口率较低的问题。
综上所述,为了弥补像素结构中的种种缺陷,势必会导致显示面板的开口率降低,对于白光OLED(WOLED)也是如此。
发明内容
本发明实施例提供一种显示基板及其制备方法、和显示装置,其在显示面板像素中的发光层缺失区域必然失去开口面积的情况下,能够有效利用像素中的发光层缺失区域。
根据本发明的第一方面,提出了一种显示基板,包括多个像素组,
其中,每个所述像素组包括多个彩色子像素和多个白色子像素,每个彩色子像素对应一个白色子像素,
每个彩色子像素包括发光区域和发光层缺失区域,在所述发光层缺失区域中设置有第一驱动晶体管,用于驱动所述彩色子像素,
在所述第一驱动晶体管之上设置有第二驱动晶体管以及与所述彩色子像素对应的白色子像素,所述第二驱动晶体管用于驱动所述白色子像素。
在一个实施例中,所述第一驱动晶体管的厚度等于所述白色子像素的微腔(Micro-cavity)的厚度。
在一个实施例中,每个所述像素组包括4个彩色子像素和4个白色子像素。
在一个实施例中,所述像素组中的4个彩色子像素以2×2矩阵排列,每个彩色子像素的发光层缺失区域位于该彩色子像素的其中一个角部,并且同一像素组中不同彩色子像素的发光层缺失区域分别位于所述不同彩色子像素的不同方位的角部。
在一个实施例中,所述彩色子像素以及所述白色子像素通过子像素渲染法驱动。
在一个实施例中,在每个所述像素组中,位于所述2×2矩阵的一个对角线上的两个彩色子像素均为绿色子像素,位于另一个对角线上的两个彩色子像素分别为蓝色子像素和红色子像素。
在一个实施例中,所述显示基板还包括设置在所述第一驱动晶体管之上的平坦层,所述第一驱动晶体管和所述平坦层的厚度之和等于所述白色子像素的微腔的厚度。
在一个实施例中,所述第二驱动晶体管包括:
设置于所述平坦层之上的栅极;
设置于所述栅极之上的栅绝缘层;
设置于所述栅绝缘层之上的有源层;
设置于所述有源层之上的源极和漏极。
在一个实施例中,在所述源极和所述漏极之上还设置有钝化层,在所述钝化层之上设置有所述白色子像素的阳极,所述白色子像素的阳极通过所述钝化层中的过孔与所述漏极电连接,在所述白色子像素的阳极之上设置有像素界定层。
在一个实施例中,所述显示基板还包括设置在所述发光区域中的所述彩色子像素的阳极,其中,所述第二驱动晶体管的栅极与所述彩色子像素的阳极在同一层中形成。
在一个实施例中,所述显示基板还包括:
设置在所述发光区域的彩色子像素的阳极之上的彩色有机发光层;
设置在所述彩色有机发光层之上的彩色子像素的阴极。
在一个实施例中,所述彩色子像素的阴极与所述白色子像素的阳极在同一层中形成。
根据本发明实施例的第二方面,还提供一种显示装置,包括上述任一项所述的显示基板。
根据本发明实施例的第三方面,还提供一种显示基板制备方法,包括:
形成多个像素组,其中,每个所述像素组包括多个彩色子像素和多个白色子像素,每个彩色子像素对应一个白色子像素,每个彩色子像素包括发光区域和发光层缺失区域,在所述发光层缺失区域中设置有第一驱动晶体管,用于驱动所述彩色子像素;
在所述彩色子像素的所述第一驱动晶体管之上形成第二驱动晶体管;
在所述第二驱动晶体管之上形成与所述彩色子像素对应的白色子像素,其中,所述第二驱动晶体管用于驱动所述白色子像素。
在一个实施例中,所述第一驱动晶体管的厚度等于所述白色子像素的微腔的厚度。
在一个实施例中,每个所述像素组包括4个彩色子像素和4个白色子 像素,形成所述像素组包括:
以2×2矩阵排列的方式形成每个所述像素组中的4个彩色子像素;
将每个所述彩色子像素的发光层缺失区域形成在该彩色子像素的其中一个角部,其中同一像素组中不同彩色子像素的发光层缺失区域分别位于所述不同彩色子像素的不同方位的角部。
在一个实施例中,在形成所述第二驱动晶体管之前还包括:
在所述第一驱动晶体管之上形成平坦层,所述第一驱动晶体管和所述平坦层的厚度之和等于所述白色子像素的微腔的厚度。
在一个实施例中,形成所述第二晶体管包括:
在所述平坦层之上形成栅极;
在所述栅极之上形成栅绝缘层;
在所述栅绝缘层之上形成有源层;
在所述有源层之上形成源极和漏极。
在一个实施例中,所述显示基板制备方法还包括:
在所述源极和所述漏极之上形成钝化层;
在所述钝化层中形成过孔;
在所述钝化层之上形成所述白色子像素的阳极,使所述白色子像素的阳极通过所述过孔与所述漏极电连接;
在所述白色子像素的阳极之上形成像素界定层。
在一个实施例中,所述显示基板制备方法还包括在所述发光区域中形成所述彩色子像素的阳极,其中,在形成所述第二驱动晶体管的栅极时,形成彩色子像素的阳极。
在一个实施例中,所述显示基板制备方法还包括:
在所述彩色子像素的阳极之上形成彩色有机发光层;
在所述彩色有机发光层之上形成彩色子像素的阴极。
在一个实施例中,在形成所述白色子像素的阳极时,形成所述彩色子像素的阴极。
根据本发明实施例的上述技术方案,在彩色子像素的驱动晶体管(即第一驱动晶体管)之上形成白色子像素以及白色子像素的驱动晶体管(即第二驱动晶体管),可以实现白光OLED(即WOLED)显示,这充分利 用了彩色子像素厚度维度上的空间,无需占用显示面板平面维度上的空间,使得彩色子像素中的发光层缺失区域得到了充分利用。
附图说明
通过参考附图会更加清楚的理解本发明的特征和优点,附图是示意性的而不应理解为对本发明进行任何限制,在附图中:
图1和图2示出了现有技术中的一种像素电路及像素阵列的示意图;
图3至图6示出了现有技术中的几种像素结构的部分横截面示意图;
图7示出了根据本发明一个实施例的显示基板的俯视结构示意图;
图8示出了根据本发明一个实施例的显示基板的部分截面示意图;
图9示出了根据本发明一个实施例的像素排布示意图;
图10示出了根据本发明一个实施例的显示基板的具体结构的部分截面示意图;
图11示出了根据本发明一个实施例的显示基板制备方法的示意流程图;
图12至图18示出了根据本发明一个实施例的形成第二驱动晶体管以及相应结构的具体示意图。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
如图7和图8所示,根据本发明一个实施例的显示基板包括多个像素组,其中,每个像素组100包括4个彩色子像素(101,102,103,104)和4个白色子像素(1010,1020,1030,1040),每个彩色子像素分别对应一个白色子像素,每个彩色子像素包括发光区域和发光层缺失区域,如图8所示在发光层缺失区域中设置有第一驱动晶体管1,用于驱动彩色子像素,在第 一驱动晶体管1之上设置有第二驱动晶体管2以及与彩色子像素对应的白色子像素,第二驱动晶体管2用于驱动白色子像素,如图8中所示出的。
本领域技术人员可以理解的是,每个像素组中的彩色子像素和白色子像素的个数不限于4个,也可以是其他数量。为了方便起见,在本发明实施例的以上描述中以及下面对本发明实施例的进一步详细描述中,以每个像素组包括4个彩色子像素和4个白色子像素为例进行说明。
在本发明的一个实施例中,第一驱动晶体管1的厚度可以等于白色子像素的微腔的厚度,以将第一驱动晶体管1作为白色子像素的微腔。
需要说明的是,在本发明的实施例中,彩色子像素的发光区域是发光层所在的区域,在该区域中可以发出与位于该区域的子像素对应的颜色的光,在一些实施例中,发光区域也称为开口区域;彩色子像素的发光层缺失区域是例如驱动彩色子像素的第一驱动晶体管1和/或其他引线或电子元件所在区域,这些区域通常是不发光的。但是,根据本发明的实施例,将白色子像素和用于驱动白色子像素的第二驱动晶体管设置在该发光层缺失区域上方,使得该发光层缺失区域能够得到充分的利用,从而可以提高开口率。
作为示例,具体地,如图7所示,根据白色子像素所处的不同彩色子像素,像素组100可以包括第一彩色子像素101对应的白色子像素1010,第二彩色子像素102对应的白色子像素1020,第三彩色子像素103对应的白色子像素1030和第四彩色子像素对应的白色子像素1040。
需要说明的是,本发明实施例中的白色子像素包括有机发光材料,该有机发光材料可以设置在白色子像素的阳极之上,在该有机发光材料之上还设置有白色子像素的阴极。
在本发明的实施例中,在彩色子像素的驱动晶体管(即第一驱动晶体管1)之上形成白色子像素以及白色子像素的驱动晶体管(即第二驱动晶体管2),通过一定的工艺设定,可以使得第一驱动晶体管1的厚度(具体包括例如第一驱动晶体管1的栅极、栅绝缘层、有源层、源漏极、钝化层和平坦层等)等于白色子像素微腔的厚度,即在白色子像素工作时,可以将第一驱动晶体管1用作其微腔。
当本发明中的显示基板以顶发射的形式发光时,白色子像素可以利用 其微腔结构来调整出光光路,微腔结构产生的微腔效应可以提高相应结构的出光率,从而提高OLED的发光效率和亮度,进而可以结合白色子像素实现WOLED显示。本发明实施例中在彩色子像素厚度维度上的空间中设置白色子像素及其驱动晶体管,其无需占用显示面板平面维度上的额外空间,从而使得彩色子像素中的发光层缺失区域得到了充分利用。
在本发明的实施例中,每个像素组中的4个彩色子像素以2×2矩阵排列,每个彩色子像素的发光层缺失区域(白色子像素以及第一和第二驱动晶体管所在的区域)位于该彩色子像素的其中一个角部,并且同一像素组中不同彩色子像素的发光层缺失区域分别位于所述不同彩色子像素的不同方位的角部。
作为示例,如图7所示,像素组包括:位于左上方的第一彩色子像素101,其中,第一彩色子像素101的发光层缺失区域位于第一子像素101的左上方;位于右上方的第二彩色子像素102,其中,第二彩色子像素102的发光层缺失区域位于第二子像素102的右上方;位于左下方的第三彩色子像素103,其中,第三彩色子像素103的发光层缺失区域位于第三子像素103的右下方;位于右下方的第四彩色子像素104,其中,第四彩色子像素104的发光层缺失区域位于第四子像素104的左下方。
在本发明的一个实施例中,第一彩色子像素101、第二彩色子像素102、第三彩色子像素103、第四彩色子像素104以及白色子像素1010、1020、1030、1040可以通过子像素渲染法驱动。
应当指出,在设置每个彩色子像素中的发光层缺失区域的位置时,若每个子像素的发光层缺失区域都朝向同一个方向,那么每个子像素的白色子像素也都设置在同一个方向,在通过子像素渲染法驱动每个子像素时,由于显示的子像素借用相邻子像素,而相邻子像素中的白色子像素都处于同一个方向,外围被借用的子像素中的白色子像素会位于整体图像的边缘,容易使观察者观察到白色边界。
而若每个子像素的发光层缺失区域都朝向中心,那么一个像素组100中四个彩色子像素的白色子像素都处于该像素组100的中心,当显示整个像素组100时,会观察到像素组中100心的白色区域,一般显示为白点。
根据本发明实施例设置白色子像素的位置,则可以在显示过程中避免 上述两种情况,使得白色子像素可以均匀分布在显示的整体图像中,从而在通过子像素渲染法驱动子像素进行显示时,能够良好地实现WOLED显示。
在一个实施例中,对于每个像素组,位于像素组的2×2矩阵的一个对角线上的两个彩色子像素可以设置为绿色子像素,位于另一个对角线上的两个彩色子像素分别设置为蓝色子像素和红色子像素。
作为示例,第一彩色子像素101和第四彩色子像素104为绿色子像素,第二彩色子像素102和第三彩色子像素103中的一个子像素为蓝色子像素,另一个彩色子像素为红色子像素。
可替代地,第二彩色子像素102和第三彩色子像素103为绿色子像素,第一彩色子像素101和第四彩色子像素104中的一个彩色子像素为蓝色子像素,另一个彩色子像素为红色子像素。
根据本实施例设置每个彩色子像素的颜色,可以保证像素组100的每行每列都包含一个绿色子像素,还包含一个红色子像素或蓝色子像素,使得在通过子像素渲染法驱动子像素时,显示的像素组在借用的相邻子像素时,借用到的子像素与该像素组中的子像素组成的像素,与该像素中红、绿、蓝子像素的比例相同,从而实现良好的子像素渲染显示效果。
在一个具体的实施例中,如图9所示,像素组100的第一彩色子像素101为蓝色子像素,第二彩色子像素102为绿色子像素,第三彩色子像素103为绿色子像素,第四彩色子像素104为红色子像素。在点亮四个像素中左上的像素组时(图中为表明每个子像素的颜色,将未点亮的子像素也示意了颜色,实际上只有点亮的像素组中的子像素以及被借用的子像素才会显示颜色),借用相邻像素组中的子像素时,例如,向右侧借用第三列中第一行的子像素为蓝色子像素,和第二行的子像素为绿色子像素,这两个子像素与像素组100中第二彩色子像素102和第四彩色子像素104组成新的像素组(如右侧框虚线所示)中,仍然保持两个绿色子像素,一个红色子像素和一个蓝色子像素的组成比例。同理,在向下侧借用第三行中第一列和第二列的子像素时,借用的子像素与像素组100中第三子像素103和第四子像素104组成新的像素组(如下侧框虚线所示)中,也保持两个绿色子像素,一个红色子像素和一个蓝色子像素的组成比例。
如图10所示,根据本发明实施例提供的显示基板还可包括设置在第一驱动晶体管1之上的平坦层,第一驱动晶体管1和平坦层的厚度之和等于白色子像素的微腔的厚度,使得当白色子像素工作时,第一驱动晶体管和平坦层可一起用作白色子像素的微腔。
在本发明的一个实施例中,如图10所示,第二驱动晶体管2包括:
设置于平坦层之上的栅极21;设置于栅极21之上的栅绝缘层22;设置于栅绝缘层22之上的有源层23;设置于有源层23之上的源极24和漏极25。
需要说明的是,平坦层可以为第二驱动晶体管2的栅极21提供平坦条件,当然,也可以根据需要,直接在第一晶体管之上的钝化层上形成栅极21,省去形成平坦层的工艺。
可以理解,在本发明的实施例中,如图10所示,第一驱动晶体管1可以包括:设置在衬底10之上的第一栅极14;设置于第一栅极14之上的第一栅绝缘层15;设置于第一栅绝缘层15之上的第一有源层16;设置于第一有源层16之上的第一源极17和第一漏极18。此外,在第一驱动晶体管1的源漏极和第二驱动晶体管2的栅极21之间还可以设置钝化层、平坦层等中间层。
在一个实施例中,在源极24和漏极25之上还设置有钝化层26,在钝化层26之上设置有白色子像素的阳极27,其中,白色子像素的阳极27通过钝化层26中的过孔与漏极25电连接,在白色子像素的阳极27之上设置有像素界定层3。
在一个实施例中,显示基板还包括设置在发光区域中的彩色子像素的阳极,优选地,第二驱动晶体管2的栅极21与发光区域中彩色子像素的阳极11在同一层中形成。具体地,可以通过在位于第一驱动晶体管1上方的平坦层之上沉积金属层,然后构图所述金属层而形成第二驱动晶体管2的栅极21和发光区域中彩色子像素的阳极11。通过在同一道工艺中形成第二驱动晶体管2的栅极21和彩色子像素的阳极11,可以减少工艺次数,简化工艺流程。
根据本发明的一个实施例提供的显示基板还包括:设置在发光区域的彩色子像素的阳极11之上的彩色有机发光层12,以及设置在彩色有机发 光层12之上的彩色子像素的阴极13。其中,彩色子像素的阳极11和彩色子像素的阴极13共同作用,以驱动彩色有机发光层12发出红光、绿光和/或蓝光。
在一个实施例中,彩色子像素的阴极13与白色子像素的阳极27在同一层中形成。通过在同一道工艺中形成白色子像素的阳极27和彩色子像素的阴极13,可以减少工艺次数,简化工艺流程。
本发明的实施例还提出了一种显示装置,包括上述任一项的显示基板。
需要说明的是,本实施例中的显示装置可以为:电子纸、手机、平板电脑、电视机、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
根据本发明的另一个实施例,还提出了一种显示基板的制备方法。需要说明的是,根据本发明实施例提供的显示基板的制备方法可以用于制备上述各个实施例提供的任一种显示基板,因此,对显示基板的上述的解释说明也适于本发明实施例提供的显示基板的制备方法。
如图11所示,显示基板制备方法,包括:
S1,形成多个像素组100,其中,每个彩色子像素包括多个彩色子像素和多个白色子像素,每个彩色子像素对应一个白色子像素,每个彩色子像素包括发光区域和发光层缺失区域,在发光层缺失区域中设置有第一驱动晶体管,用于驱动所述彩色子像素。
S2,在彩色子像素的第一驱动晶体管1之上形成第二驱动晶体管2。
S3,在第二驱动晶体管2之上形成白色子像素,其中第二驱动晶体管2用于驱动白色子像素。
在一个实施例中,第一驱动晶体管1的厚度等于白色子像素的微腔的厚度。
在一个实施例中,每个像素组包括4个彩色子像素和4个白色子像素,其中,形成像素组100中的每个子像素包括:以2×2矩阵排列的方式形成每个像素组中的4个彩色子像素;将每个彩色子像素的发光层缺失区域形成在该彩色子像素的其中一个角部,其中同一像素组中不同彩色子像素的发光层缺失区域分别位于不同彩色子像素的不同方位的角部。
作为示例,可以在像素组100的左上方形成第一彩色子像素101,在 像素组100的右上方形成第二彩色子像素102,在像素组100的左下方形成第三彩色子像素103,在像素组100的右下方形成第四彩色子像素104,其中,第一彩色子像素101的发光层缺失区域位于第一彩色子像素101的左上方,第二彩色子像素102的发光层缺失区域位于第二彩色子像素102的右上方,第三彩色子像素103的发光层缺失区域位于第三彩色子像素103的右下方,第四彩色子像素104的发光层缺失区域位于第四彩色子像素104的左下方。
在一个实施例中,在形成第二驱动晶体管2之前还包括:在第一驱动晶体管1之上形成平坦层,第一驱动晶体管和平坦层的厚度之和等于白色子像素的微腔的厚度。
在一个实施例中,形成第二晶体管2包括:在第一驱动晶体管1的平坦层之上形成栅极21,如图12所示;在栅极21之上形成栅绝缘层22,如图13所示;在栅绝缘层22之上形成有源层23,如图14所示;在有源层23之上形成源极24和漏极25,如图15所示。
在一个实施例中,显示基板制备方法还包括在源极24和漏极25之上形成钝化层26;在钝化层26中形成过孔,如图17所示;在钝化层26之上形成白色子像素的阳极27,使白色子像素的阳极27通过过孔与漏极25电连接,如图18所示;在白色子像素的阳极27之上形成像素界定层3,最终得到如图10所示的结构。
在一个实施例中,显示基板制备方法还包括在发光区域中形成所述彩色子像素的阳极,可选地,在形成第二驱动晶体管2的栅极21时,在发光区域形成彩色子像素的阳极11,如图12所示。
在一个实施例中,显示基板制备方法还包括:在彩色子像素的阳极11之上形成彩色有机发光层12(如图16所示);在彩色有机发光层12之上形成彩色子像素的阴极13。需要说明的是,彩色有机发光层12可以在形成栅绝缘层22之后形成,可以在形成有源层23之后形成,也可以在形成源极24和漏极25之后在形成。
在一个实施例中,在形成白色子像素的阳极27时,形成彩色子像素的阴极13,如图18所示。
其中,上述流程所采用的形成工艺例如可包括:沉积、溅射等成膜工 艺和刻蚀等构图工艺。
以上结合附图详细说明了本发明的技术方案,考虑到现有技术中,在显示面板像素中的发光层缺失区域必然失去开口面积,本发明通过在彩色子像素的驱动晶体管(即第一驱动晶体管)之上形成白色子像素以及白色子像素的驱动晶体管(即第二驱动晶体管),可以实现WOLED显示,同时充分利用了彩色子像素厚度维度上的空间,无需占用显示面板平面维度上的空间,使得彩色子像素中的发光层缺失区域得到了充分利用,从而可以提高开口率。
需要指出的是,在附图中,为了图示的清晰可能夸大了层和区域的尺寸。而且可以理解,当元件或层被称为在另一元件或层“上”时,它可以直接在其他元件上,或者可以存在中间的层。另外,可以理解,当元件或层被称为在另一元件或层“下”时,它可以直接在其他元件下,或者可以存在一个以上的中间的层或元件。另外,还可以理解,当层或元件被称为在两层或两个元件“之间”时,它可以为两层或两个元件之间惟一的层,或还可以存在一个以上的中间层或元件。通篇相似的参考标记指示相似的元件。
在本发明中,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“多个”指两个或两个以上,除非另有明确的限定。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (22)

  1. 一种显示基板,其特征在于,包括多个像素组,
    其中,每个所述像素组包括多个彩色子像素和多个白色子像素,每个彩色子像素对应一个白色子像素,
    每个彩色子像素包括发光区域和发光层缺失区域,在所述发光层缺失区域中设置有第一驱动晶体管,用于驱动所述彩色子像素,
    在所述第一驱动晶体管之上设置有第二驱动晶体管以及与所述彩色子像素对应的白色子像素,所述第二驱动晶体管用于驱动所述白色子像素。
  2. 根据权利要求1所述的显示基板,其特征在于,所述第一驱动晶体管的厚度等于所述白色子像素的微腔的厚度。
  3. 根据权利要求1或2所述的显示基板,其特征在于,每个所述像素组包括4个彩色子像素和4个白色子像素。
  4. 根据权利要求3所述的显示基板,其特征在于,所述像素组中的4个彩色子像素以2×2矩阵排列,每个彩色子像素的发光层缺失区域位于该彩色子像素的其中一个角部,并且同一像素组中不同彩色子像素的发光层缺失区域分别位于所述不同彩色子像素的不同方位的角部。
  5. 根据权利要求4所述的显示基板,其特征在于,所述彩色子像素以及所述白色子像素通过子像素渲染法驱动。
  6. 根据权利要5所述的显示基板,其特征在于,在每个所述像素组中,位于所述2×2矩阵的一个对角线上的两个彩色子像素均为绿色子像素,位于另一个对角线上的两个彩色子像素分别为蓝色子像素和红色子像素。
  7. 根据权利要1或2所述的显示基板,其特征在于,还包括:
    设置在所述第一驱动晶体管之上的平坦层,所述第一驱动晶体管和所述平坦层的厚度之和等于所述白色子像素的微腔的厚度。
  8. 根据权利要7所述的显示基板,其特征在于,所述第二驱动晶体管包括:
    设置于所述平坦层之上的栅极;
    设置于所述栅极之上的栅绝缘层;
    设置于所述栅绝缘层之上的有源层;
    设置于所述有源层之上的源极和漏极。
  9. 根据权利要8所述的显示基板,其特征在于,在所述源极和所述漏极之上还设置有钝化层,在所述钝化层之上设置有所述白色子像素的阳极,所述白色子像素的阳极通过所述钝化层中的过孔与所述漏极电连接,在所述白色子像素的阳极之上设置有像素界定层。
  10. 根据权利要求9所述的显示基板,其特征在于,还包括设置在所述发光区域中的所述彩色子像素的阳极,其中,所述第二驱动晶体管的栅极与所述彩色子像素的阳极在同一层中形成。
  11. 根据权利要求10所述的显示基板,其特征在于,还包括:
    设置在所述发光区域的彩色子像素的阳极之上的彩色有机发光层;
    设置在所述彩色有机发光层之上的彩色子像素的阴极。
  12. 根据权利要求11所述的显示基板,其特征在于,所述彩色子像素的阴极与所述白色子像素的阳极在同一层中形成。
  13. 一种显示装置,其特征在于,包括权利要求1至12中任一项所述的显示基板。
  14. 一种显示基板制备方法,其特征在于,包括:
    形成多个像素组,其中,每个所述像素组包括多个彩色子像素和多个白色子像素,每个彩色子像素对应一个白色子像素,每个彩色子像素包括发光区域和发光层缺失区域,在所述发光层缺失区域中设置有第一驱动晶体管,用于驱动所述彩色子像素;
    在所述彩色子像素的所述第一驱动晶体管之上形成第二驱动晶体管;
    在所述第二驱动晶体管之上形成与所述彩色子像素对应的白色子像素,其中,所述第二驱动晶体管用于驱动所述白色子像素。
  15. 根据权利要求14所述的显示基板制备方法,其特征在于,所述第一驱动晶体管的厚度等于所述白色子像素的微腔的厚度。
  16. 根据权利要求14或15所述的显示基板制备方法,其特征在于,每个所述像素组包括4个彩色子像素和4个白色子像素,形成所述像素组包括:
    以2×2矩阵排列的方式形成每个所述像素组中的4个彩色子像素;
    将每个所述彩色子像素的发光层缺失区域形成在该彩色子像素的其中一个角部,其中,同一像素组中不同彩色子像素的发光层缺失区域分别位 于所述不同彩色子像素的不同方位的角部。
  17. 根据权利要求14或15所述的显示基板制备方法,其特征在于,在形成所述第二驱动晶体管之前还包括:
    在所述第一驱动晶体管之上形成平坦层,所述第一驱动晶体管和所述平坦层的厚度之和等于所述白色子像素的微腔的厚度。
  18. 根据权利要求17所述的显示基板制备方法,其特征在于,形成所述第二晶体管包括:
    在所述平坦层之上形成栅极;
    在所述栅极之上形成栅绝缘层;
    在所述栅绝缘层之上形成有源层;
    在所述有源层之上形成源极和漏极。
  19. 根据权利要求18所述的显示基板制备方法,其特征在于,还包括:
    在所述源极和所述漏极之上形成钝化层;
    在所述钝化层中形成过孔;
    在所述钝化层之上形成所述白色子像素的阳极,使所述白色子像素的阳极通过所述过孔与所述漏极电连接;
    在所述白色子像素的阳极之上形成像素界定层。
  20. 根据权利要求19所述的显示基板制备方法,其特征在于,还包括:在所述发光区域中形成所述彩色子像素的阳极,其中,在形成所述第二驱动晶体管的栅极时,形成所述彩色子像素的阳极。
  21. 根据权利要求20所述的显示基板制备方法,其特征在于,还包括:
    在所述彩色子像素的阳极之上形成彩色有机发光层;
    在所述彩色有机发光层之上形成彩色子像素的阴极。
  22. 根据权利要求21所述的显示基板制备方法,其特征在于,在形成所述白色子像素的阳极时,形成所述彩色子像素的阴极。
PCT/CN2016/071333 2015-07-23 2016-01-19 显示基板及其制备方法以及显示装置 WO2017012316A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16793726.7A EP3327782B1 (en) 2015-07-23 2016-01-19 Display substrate and preparation method thereof and display device
US15/113,340 US10062311B2 (en) 2015-07-23 2016-01-19 Display substrate and fabricating method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510437925.7A CN104966728B (zh) 2015-07-23 2015-07-23 显示基板及其制作方法以及显示装置
CN201510437925.7 2015-07-23

Publications (1)

Publication Number Publication Date
WO2017012316A1 true WO2017012316A1 (zh) 2017-01-26

Family

ID=54220743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071333 WO2017012316A1 (zh) 2015-07-23 2016-01-19 显示基板及其制备方法以及显示装置

Country Status (4)

Country Link
US (1) US10062311B2 (zh)
EP (1) EP3327782B1 (zh)
CN (1) CN104966728B (zh)
WO (1) WO2017012316A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111312766A (zh) * 2020-02-21 2020-06-19 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104966728B (zh) * 2015-07-23 2017-12-08 京东方科技集团股份有限公司 显示基板及其制作方法以及显示装置
JP2017076174A (ja) * 2015-10-13 2017-04-20 株式会社ジャパンディスプレイ 表示装置
CN109300945B (zh) * 2018-09-27 2020-07-28 京东方科技集团股份有限公司 阵列基板及制作方法、显示面板
FR3087582B1 (fr) * 2018-10-22 2021-09-03 Microoled Dispositif d'affichage jour et nuit
DE112021007999T5 (de) * 2021-07-20 2024-05-23 Boe Technology Group Co., Ltd. Anzeigesubstrat, Anzeigefeld und Anzeigevorrichtung
US20230317000A1 (en) * 2022-03-31 2023-10-05 Meta Platforms Technologies, Llc Subpixels with reduced dimensions by using shared switching transistors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101118335A (zh) * 2006-08-01 2008-02-06 三星电子株式会社 液晶显示器面板
CN103489894A (zh) * 2013-10-09 2014-01-01 合肥京东方光电科技有限公司 有源矩阵有机电致发光显示器件、显示装置及其制作方法
CN104966728A (zh) * 2015-07-23 2015-10-07 京东方科技集团股份有限公司 显示基板及其制作方法以及显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7583279B2 (en) * 2004-04-09 2009-09-01 Samsung Electronics Co., Ltd. Subpixel layouts and arrangements for high brightness displays
EP2239798A1 (en) * 2009-04-07 2010-10-13 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Patterning the emission colour in top-emissive OLEDs
KR102089324B1 (ko) * 2013-09-30 2020-03-16 엘지디스플레이 주식회사 유기전계발광표시장치
CN104716167B (zh) * 2015-04-13 2017-07-25 京东方科技集团股份有限公司 一种有机电致发光显示器件、其制作方法及显示装置
CN105428392A (zh) * 2015-12-31 2016-03-23 京东方科技集团股份有限公司 一种有机电致发光显示装置及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101118335A (zh) * 2006-08-01 2008-02-06 三星电子株式会社 液晶显示器面板
CN103489894A (zh) * 2013-10-09 2014-01-01 合肥京东方光电科技有限公司 有源矩阵有机电致发光显示器件、显示装置及其制作方法
CN104966728A (zh) * 2015-07-23 2015-10-07 京东方科技集团股份有限公司 显示基板及其制作方法以及显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3327782A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111312766A (zh) * 2020-02-21 2020-06-19 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法
CN111312766B (zh) * 2020-02-21 2022-12-06 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法

Also Published As

Publication number Publication date
EP3327782A4 (en) 2019-04-17
US10062311B2 (en) 2018-08-28
CN104966728A (zh) 2015-10-07
EP3327782A1 (en) 2018-05-30
US20170148366A1 (en) 2017-05-25
EP3327782B1 (en) 2022-03-02
CN104966728B (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
WO2017012316A1 (zh) 显示基板及其制备方法以及显示装置
WO2021232984A1 (zh) 显示面板、驱动方法及显示装置
US10686018B2 (en) Display device and manufacturing method thereof
TWI649870B (zh) 有機發光二極體顯示器
TWI621259B (zh) 有機發光顯示器裝置
WO2019127790A1 (zh) 用于woled显示器的彩膜基板及woled显示器
WO2020233284A1 (zh) 显示面板及其制作方法、显示装置
CN109599420B (zh) 一种显示面板及其制作方法
US10460633B2 (en) Pixel array, display substrate and display device
TWI559526B (zh) 有機發光元件及像素陣列
TW201703248A (zh) 畫素結構及其製造方法
KR20050107840A (ko) 유기전계발광 소자 및 그 제조방법
US9312310B2 (en) Display panel, fabricating method thereof and display device
WO2019196336A1 (zh) Oled面板
US20130207085A1 (en) Organic light emitting diode display and method for manufacturing the same
WO2016149969A1 (zh) 一种oled显示用基板及显示装置
JP7182569B2 (ja) 発光素子及びその製造方法、表示装置
US10269886B2 (en) Organic electroluminescent display device and manufacturing method thereof
CN109148545B (zh) 一种显示面板和显示装置
JP2011526719A (ja) 発光装置
JP2010123286A (ja) 積層型有機el表示装置
WO2020155464A1 (zh) 显示面板及其制备方法、电子装置
WO2019001362A1 (zh) 显示基板及其制造方法、显示面板及显示装置
KR102419155B1 (ko) 유기발광 표시장치
KR20170015601A (ko) 유기 발광 표시 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15113340

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016793726

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16793726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016793726

Country of ref document: EP