WO2019049824A1 - 保護l-カルノシン誘導体、l-カルノシン、および結晶性l-カルノシン亜鉛錯体の製造方法 - Google Patents

保護l-カルノシン誘導体、l-カルノシン、および結晶性l-カルノシン亜鉛錯体の製造方法 Download PDF

Info

Publication number
WO2019049824A1
WO2019049824A1 PCT/JP2018/032603 JP2018032603W WO2019049824A1 WO 2019049824 A1 WO2019049824 A1 WO 2019049824A1 JP 2018032603 W JP2018032603 W JP 2018032603W WO 2019049824 A1 WO2019049824 A1 WO 2019049824A1
Authority
WO
WIPO (PCT)
Prior art keywords
carnosine
protected
derivative
group
reaction
Prior art date
Application number
PCT/JP2018/032603
Other languages
English (en)
French (fr)
Inventor
嘉寛 横尾
吉貴 清家
佐藤 誠
健次 田中
雅彦 関
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017184882A external-priority patent/JP2019059688A/ja
Priority claimed from JP2018018339A external-priority patent/JP2019135220A/ja
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to KR1020207002748A priority Critical patent/KR20200050946A/ko
Priority to CN201880056238.2A priority patent/CN111051289A/zh
Publication of WO2019049824A1 publication Critical patent/WO2019049824A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/4172Imidazole-alkanecarboxylic acids, e.g. histidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/555Heterocyclic compounds containing heavy metals, e.g. hemin, hematin, melarsoprol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/64Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms, e.g. histidine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/06Zinc compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a novel process for the preparation of protected L-carnosine derivatives, L-carnosine and crystalline L-carnosine zinc complex.
  • L-carnosine which is shown in U.S. Pat.
  • L-carnosine is a crystalline L-carnosine zinc complex represented by the following formula (hereinafter sometimes simply referred to as "poraprezinc"), which is complexed with zinc because it easily forms a chelate bond with a metal. It is applied to anti-ulcer drugs such as, taste disorder treatment drugs.
  • L-carnosine is usually synthesized by the following method. Specifically, a method of reacting L-histidine or a derivative thereof with cyanoacetic acid ester (see, for example, Patent Document 1), a method of reacting L-histidine or a derivative thereof with an N-trifluoroacetyl derivative (for example, Non-Patent Document 1) or a method of reacting an L-histidine derivative with an N-phthaloyl derivative (see Patent Document 2). In addition, methods for coupling N-carbemate-protected carboxy anhydride and L-histidine methyl ester are also known (see Non-Patent Document 2).
  • the conventional method has room for improvement in the following points.
  • the method described in Patent Document 1 has room for improvement in that the yield is low even when the reaction is performed at a relatively high temperature (for example, 120 ° C.).
  • the L-carnosine derivative protected by a cyano group is converted to an amino group by hydrogen reduction, so that the production cost tends to be relatively high.
  • Non-Patent Document 1 nitrophenol must be used as an activating agent, a purification step for removing nitrophenol is required, and the post-treatment step becomes complicated. There was room for Furthermore, the N-trifluoroacetyl derivative which is a raw material is expensive, and in view of industrial production, production with other raw materials has been desired.
  • the method of Patent Document 2 has room for improvement in the following points.
  • the method comprises reacting an acid chloride of N-phthaloyl- ⁇ -alanine as an N-phthaloyl derivative with an L-histidine derivative having a trimethylsilyl group as a protecting group.
  • dehydrogenation of the trimethylsilyl group of the L-histidine derivative is apt to occur by hydrogen chloride by-produced from the acid chloride, and a large number of products coexist, which makes purification difficult.
  • the reaction had to be strictly controlled, and there was room for improvement in that the yield became unstable.
  • Non-Patent Document 2 required many steps to synthesize N-carbemate protected carboxy anhydride. Therefore, there is room for improvement from an economic point of view.
  • the above-mentioned polaprezinc is usually produced by mixing L-carnosine of crystal (solid) with methanol and sodium hydroxide and dissolving it, and then adding zinc acetate to the solution (for example, Patent Documents 3 to 5) reference).
  • polaprezinc is a pharmaceutical, high purity is required. Therefore, L-carnosine as a raw material is also required to have high purity. According to the conventional method, it is possible to produce a highly pure polaprezinc.
  • L-carnosine is also applied to pharmaceuticals, and its application range is wide. Therefore, if it can be manufactured with a yield as high as possible by a safe and simple method, its industrial utility value will be further enhanced.
  • an object of the present invention is to provide a method for producing L-carnosine in a safe and convenient manner.
  • the conventional method has room for improvement in the following points. That is, it was found that there is room for improvement in the conventional method in that the yield of finally obtained polaprezinc is lowered.
  • Another object of the present invention is to increase the yield of polaprezinc.
  • the present inventors diligently studied to solve the above problems. Then, by reacting the acid anhydride of the N-protected- ⁇ -alanine derivative or the mixed acid anhydride obtained with the N-protected ⁇ -alanine derivative and the pivaloyl chloride with the L-histidine derivative, high yield is obtained. It has been found that protected L-carnosine derivatives can be obtained at a rate which completes the present invention. L-carnosine can be produced by deprotecting the protective group. The inventors have also found out that the method for producing the acid anhydride can be easily produced by reacting an alanine derivative with a halide in the presence of an organic base, and the present invention has been completed.
  • the present inventors considered that the cause is a large decrease in the yield of L-carnosine when L-carnosine is taken out as crystals. .
  • L-carnosine is a compound having an amino group and a hydroxyl group, and is often purified using water and an alcohol. According to the study of the present inventors, L-carnosine is highly soluble in solvents such as water and alcohol, and when it is taken out as crystals, a large amount of L-carnosine which is not crystallized in the liquid is present. I found that. In general, when L-carnosine is zinc-chlorinated to be polaprezinc, L-carnosine crystallized and isolated is used as a raw material, and it is believed that the decrease in the yield of L-carnosine leads to the decrease in the yield of polaprezinc. It was done.
  • the present inventors when producing L-carnosine, do not take it out as a solid (crystal) once out of the reaction system, but convert it as it is into polaprezinc as it is. It has been found that the yield of can be increased, and the present invention has been completed. That is, it has been found that crystalline L-carnosine zinc complex (Polaprezinc) can be obtained with high yield by performing zinc chloride using L-carnosine which is not highly purified by crystallization and filtration purification. It came to complete.
  • the present invention includes the following [1] to [17]. [1] The following formula (1)
  • R 1 represents the following formula (1a)
  • R 3 is a protecting group of amino group.
  • R 2 is the protected amino group, or the following formula (1b)
  • L-histidine derivative (hereinafter, the compound represented by the formula (2) may simply be referred to as “L-histidine derivative”) Following formula (3)
  • R 1 has the same meaning as that of the above formula (1), R 7 , R 8 and R 9 are as defined in the above formula (2).
  • step (a1) of producing a protected L-carnosine derivative hereinafter, the compound represented by the formula (3) may simply be referred to as “protected L-carnosine derivative”) Method for producing protected L-carnosine derivatives.
  • the present invention can take the following aspects.
  • the R 3 is a benzyloxycarbonyl group which may have a substituent, a 9-fluorenylmethyloxycarbonyl group, a trifluoroacetyl group, a t-butoxycarbonyl group, 2,2,2-trichloro Ethoxycarbonyl group or formyl group,
  • the R 7 and the R 8 are a hydrogen atom or a trialkylsilyl group, The method for producing a protected L-carnosine derivative according to [1], wherein R 9 is a hydrogen atom or a trialkylsilyl group.
  • the step (a1) is a step of reacting the acid anhydride with the L-histidine derivative in an organic solvent to produce the protected L-carnosine derivative.
  • the L-histidine derivative is represented by the following formula (2p)
  • L-histidine derivative (I) (hereinafter, among L-histidine derivatives, a compound represented by the formula (2p) may be referred to as “L-histidine derivative (I)”), and The protected L-carnosine derivative is represented by the following formula (3p1)
  • R 1 is as defined in the above formula (1)
  • R 7p ′ is a hydrogen atom or a protecting group of an amino group
  • R 8p and R 9p are as defined in the above formula (2p).
  • the protected L-carnosine derivative (I) (hereinafter, among the protected L-carnosine derivatives, the compound represented by the formula (3p1) may be simply referred to as “L-carnosine derivative (I)”) A method for producing a protected L-carnosine derivative according to [1] or [2].
  • the step (a1) is a step of reacting the acid anhydride with the L-histidine in the presence of a base and water to produce the protected L-carnosine derivative.
  • the L-histidine derivative has the following formula
  • L-histidine represented by The protected L-carnosine derivative is represented by the following formula (3p2)
  • R 1 has the same meaning as that in the above formula (1).
  • [5] A method for producing a protected L-carnosine derivative according to any one of [1] to [4], wherein 0.25 to 0.99 mol of the L-histidine derivative is used per 1 mol of the acid anhydride. .
  • the step (a1) is a step of producing the protected L-carnosine derivative as its acidic aqueous solution, A method for producing a protected L-carnosine derivative according to any one of [1] to [5], further comprising the step (a2) of contacting the acidic aqueous solution with an organic solvent after the step (a1).
  • Process for producing L-carnosine indicated by (b1) A method of producing L-carnosine comprising
  • the step (A) is a step of producing the protected L-carnosine derivative as a solution thereof
  • the step (b1) is a step of carrying out a deprotection reaction of the protected L-carnosine derivative in the solution
  • R 1 is represented by the following formula (1a)
  • R 3 is a protecting group of amino group.
  • a protected amino group selected from the groups represented by R 2 is the protected amino group, or the following formula (1b)
  • R 4 , R 5 and R 6 each is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, provided that m is 0) , R 4, R 5, and at least two groups R 6 is an alkyl group having 1 to 6 carbon atoms.
  • R 1 is represented by the following formula (1a)
  • R 3 is a protecting group of amino group.
  • a protected amino group selected from the groups represented by An N-protected- ⁇ -alanine derivative as shown in Following formula (5)
  • X is a halogen atom
  • m is an integer of 0 or 1
  • R 4 , R 5 and R 6 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, provided that when m is 0, at least two of R 4 , R 5 and R 6 The group is an alkyl group having 1 to 6 carbon atoms.
  • R 1 is represented by the following formula (1a)
  • R 3 is a protecting group of amino group.
  • the protected L-carnosine derivative has the following formula (i)
  • step (b1) the deprotection reaction of the protected L-carnosine derivative is carried out in a solvent in which the protected L-carnosine derivative is dissolved, and the L-carnosine is produced as a mixed solution containing the L-carnosine and the solvent Process
  • step (c) is a step of producing a crystalline L-carnosine zinc complex by zinc-chlorinating L-carnosine in the mixture without isolation as crystals. Method for producing crystalline L-carnosine zinc complex.
  • the L-carnosine is zincated by mixing the mixed solution and at least an alkali hydroxide, and then mixing the obtained mixed solution with zinc acetate.
  • PG which is a protecting group of an amino group in the above-mentioned formula (i) is benzyloxycarbonyl group which may have a substituent, or t-butoxycarbonyl group,
  • the step (b1) is a step of carrying out the deprotection reaction with an acid
  • the step (c) mixes the mixed solution with at least an alkali hydroxide to prepare a pretreatment solution having a pH of 7.0 to 9.0, and the solvent contained in the pretreatment solution has the number of carbon atoms
  • at least an alkali hydroxide is mixed to form a mixed solution, and then the L-carnosine is zincated by mixing the obtained mixed solution with zinc acetate.
  • the method for producing a crystalline L-carnosine zinc complex according to [13] which is a step of producing a crystalline L-carnosine zinc complex.
  • the protected L-carnosine derivative can be produced by a simple method by using a specific raw material, that is, the acid anhydride as a raw material. Furthermore, according to the method for producing L-carnosine of the present invention, L-carnosine can be easily produced by deprotecting the protected L-carnosine derivative.
  • the acid anhydride of this invention is a novel compound. And, according to the method for producing the acid anhydride of the present invention, the acid anhydride can be easily produced.
  • impurities such as N-protected- ⁇ -alanine derivative are removed by bringing an acidic aqueous solution containing the protected L-carnosine derivative into contact with an organic solvent. It is possible to obtain protected L-carnosine derivatives of high purity.
  • an intermediate that activates the N-protected- ⁇ -alanine derivative such as a mixed acid anhydride obtained with N-protected- ⁇ -alanine derivative and pivaloyl chloride.
  • the protected L-carnosine derivative obtained by the production method of the present invention has high purity, and therefore, L of the protected L-carnosine derivative is easily deprotected without further purification operation. -Can produce carnosine.
  • crystalline L-carnosine is zinc-chlorinated by separating L-carnosine from the solvent used in the deprotecting reaction and from the solvent used for the dispersion medium, etc. without decantation or filtration. It is a zinc complex (Polaprezinc).
  • a liquid mixture containing L-carnosine and a solvent can be concentrated to produce crystalline L-carnosine zinc complex using a liquid mixture with a reduced amount of the solvent (in this case, decantation, Alternatively, a concentrated mixture can be used without loss of L-carnosine together with the filtrate, since no filtration operation is performed.
  • the solvent (filtrate) should originally be.
  • L-carnosine which is removed together, can also be efficiently made into crystalline L-carnosine zinc complex (Polaprezinc).
  • the yield of the crystalline L-carnosine zinc complex (Polaprezinc) can be improved.
  • the method for producing crystalline L-carnosine zinc complex (Polaprezinc) can be simplified.
  • the obtained crystalline L-carnosine zinc complex (Polaprezinc) can be highly purified with water and a solvent such as alcohol.
  • the crystalline L-carnosine zinc complex (Polaprezinc) can be produced in a high yield by a simpler method, the industrial utility value of the present invention is high.
  • the method for producing the protected L-carnosine derivative of the present invention comprises reacting a specific raw material, that is, the acid anhydride represented by the formula (1) with the L-histidine derivative represented by the formula (2) Is a method of producing a protected L-carnosine derivative represented by the above formula (3). Furthermore, the method for producing L-carnosine according to the present invention is a method for producing L-carnosine by carrying out a deprotection reaction of the protected L-carnosine derivative. The following will be described in order.
  • the acid anhydride shown by is used as a raw material.
  • R 1 is represented by the following formula (1a)
  • R 3 is a protecting group of amino group.
  • a protected aminoethyl group selected from the groups represented by
  • the protective group for the amino group is a group that substitutes hydrogen on the nitrogen atom to inactivate the amino group during a predetermined reaction. After the predetermined reaction, the amino group is formed by deprotection.
  • protecting groups for amino groups include alkyl groups such as methyl and ethyl, silyl protecting groups such as trimethylsilyl, t-butyldimethylsilyl and triisopropylsilyl, and acyl such as acetyl and benzoyl.
  • R 3 which is a protective group of the amino group includes known protective groups. Among them, in view of productivity of acid anhydride itself, stability at a predetermined reaction, and deprotection reaction, benzyloxycarbonyl group which may have a substituent, 9-fluorenylmethyloxycarbonyl group, tri group Preferred is a fluoroacetyl group, t-butoxycarbonyl group, 2,2,2-trichloroethoxy xycarbonyl group, or formyl group.
  • t-butoxycarbonyl group or benzyloxycarbonyl group which may have a substituent is preferable.
  • the substituent which a benzyloxycarbonyl group has is a substituent which the phenyl group of a benzyloxycarbonyl group has.
  • the substituent include a methyl group, a methoxy group, a halogen group, a nitro group and a dimethylamino group.
  • the most preferable protected amino group is preferably a non-substituted mere benzyloxycarbonyl group.
  • R 1 is preferably a group represented by the formula (1a) or a group represented by the formula (1a ′) where R 3 is the exemplified group.
  • R 1 is a group represented by the formula (1a) in which R 3 is a non-substituted benzyloxycarbonyl group. It is most preferable that
  • R 2 is the protected amino group, or the following formula (1b)
  • R 4 , R 5 and R 6 each is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, provided that m is 0) , R 4 , R 5 , and R 6 is an alkyl group having 1 to 6 carbon atoms.
  • Examples of the protected amino group in R 2 include the same groups as those described for R 1 above, and preferred groups are also the same for the same reason.
  • n is an integer of 0 or 1.
  • R 2 may be a branched group represented by the above formula (1b).
  • R 4 , R 5 and R 6 each independently represent a hydrogen atom or C 1 to C 6 an alkyl group, provided that when m is 0, R 4, R 5, and at least two groups R 6 is an alkyl group having 1 to 6 carbon atoms.
  • m is 1, in consideration of the reactivity of the acid anhydride and the productivity of itself, one of R 4 , R 5 and R 6 is an alkyl group having 1 to 3 carbon atoms, and the other two Is preferably a hydrogen atom.
  • the carbon atom to which R 4 , R 5 and R 6 are bonded must be a secondary or tertiary carbon atom.
  • the alkyl group of R 4 , R 5 and R 6 preferably has 1 to 3 carbon atoms in consideration of the reactivity of the acid anhydride and the productivity of itself.
  • the branching group is a t-butyl group. That is, R 4 , R 5 and R 6 are methyl groups.
  • the acid anhydrides used in the present invention are novel compounds. And the manufacturing method differs in the case where R 2 is the protected amino group or the branched group. Next, these acid anhydrides and their production methods will be described.
  • R 1 has the same meaning as that in the above-mentioned formula (1), and preferred groups also include the groups described above for the same reason.
  • n, R 4 , R 5 and R 6 are as defined in the above-mentioned formula (1b), and preferred examples thereof include the groups described above for the same reason.
  • R 1 is represented by the following formula (1a)
  • R 3 is a protecting group of amino group.
  • a protected aminoethyl group selected from the groups represented by An N-protected- ⁇ -alanine derivative as shown in Following formula (5)
  • X is a halogen atom
  • m is an integer of 0 or 1
  • R 4 , R 5 and R 6 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, provided that when m is 0, at least two of R 4 , R 5 and R 6
  • the group is an alkyl group having 1 to 6 carbon atoms. It can be produced by reacting with a halide represented by) in the presence of an organic base.
  • R 1 in the formula (4) has the same meaning as R 1 in the formula (1)
  • R 3 in the formula (1a) has the same meaning as R 3 in the formula (1a) described in ⁇ acid anhydride>
  • M in Formula (5) and R 4, R 5, and R 6 has the same meaning as R 4, R 5, and R 6 in the formula described in ⁇ anhydride> (1b).
  • R 5 and R 6 has the same meaning as R 4, R 5, and R 6 in the formula described in ⁇ anhydride> (1b).
  • These groups are also the same as the preferred groups for the same reasons as described for ⁇ acid anhydride>.
  • N-protected- ⁇ -alanine derivative is a known compound and can be produced, for example, by the method described in International Publication WO19980197905.
  • the N-protected- ⁇ -alanine derivative is N-t-butoxycarbonyl- ⁇
  • Most preferred is -alanine or N-benzyloxycarbonyl- ⁇ -alanine.
  • X is a halogen atom.
  • X is preferably a chlorine atom, a bromine atom or an iodine atom, and particularly preferably a chlorine atom.
  • the halide is a known compound and can be produced by a known method.
  • it can be produced by the method described in CN 101311155.
  • the halide is preferably ethyl chlorocarbonate or pivaloyl chloride, Most preferred is pivaloyl chloride.
  • the amount of the halide is preferably 1 to 5 moles, and more preferably 1 to 2 moles, per mole of the N-protected- ⁇ -alanine derivative.
  • the organic base is not particularly limited. Among them, tertiary amines in which a hydrogen atom is not bonded to a nitrogen atom of an organic base, and heterocyclic compounds are preferable.
  • Tertiary amines such as trimethylamine, triethylamine, N, N-diisopropylethylamine, N, N-dimethylaniline, N-methylmorpholine, etc. It is preferable that it is a heterocyclic compound which has a nitrogen atom, such as pyridine and quinoline, and the nitrogen atom is not bonded to a hydrogen atom.
  • the organic base is not particularly limited, but it is preferably used in an amount of 1 to 5 moles, more preferably 1 to 2 moles, per mole of the N-protected- ⁇ -alanine derivative.
  • the acid anhydride (I) can be produced by reacting the N-protected- ⁇ -alanine derivative with the halide in the presence of the organic base.
  • the reaction is preferably carried out in an organic solvent.
  • the reaction is preferably carried out by stirring and mixing the organic base, the N-protected- ⁇ -alanine derivative, and the halide in an organic solvent.
  • the organic solvent is not particularly limited as long as it does not inhibit the reaction of the N-protected- ⁇ -alanine derivative with the halide. It is not something to be done.
  • suitable organic solvents are: Ester solvents such as ethyl acetate, isopropyl acetate and butyl acetate, Halogen solvents such as dichloromethane, methylene chloride and chloroform Aromatic solvents such as toluene and xylene Ketone solvents such as acetone, diethyl ketone and methyl ethyl ketone; ether solvents such as t-butyl methyl ether, tetrahydrofuran (THF), diethyl ether, etc. Heteroatom-containing solvents such as acetonitrile, dimethylformamide, dimethylsulfoxide, N-methylpyrrolidone and the like can be mentioned.
  • organic solvents ethyl acetate, isopropyl acetate, butyl acetate, methylene chloride, chloroform and THF are particularly preferable.
  • the amount of the organic solvent used is not particularly limited, as long as the components can be sufficiently stirred and mixed in the organic solvent. Specifically, the amount is preferably 0.5 to 100 ml, more preferably 2 to 50 ml, per 1 g of the N-protected- ⁇ -alanine derivative.
  • the respective components may be contacted by stirring and mixing.
  • transducing each component in this reactor is not restrict
  • an organic base, an N-protected- ⁇ -alanine derivative, and a halide, which are optionally diluted with an organic solvent can be simultaneously introduced into the reactor and stirred and mixed.
  • two components diluted with the organic solvent can be previously introduce
  • the reaction temperature for reacting the N-protected- ⁇ -alanine derivative with the halide is not particularly limited, but is preferably ⁇ 80 to 40 ° C., and is ⁇ 80 to 10 ° C. Is more preferred.
  • the reaction time may be appropriately determined while confirming the consumption of the raw material, the amount of the acid anhydride (I) produced, and the like. Under the above conditions, generally, 0.1 to 96 hours is sufficient, and preferably 0.5 to 24 hours.
  • the reaction atmosphere is also not particularly limited, and may be carried out under a dry air atmosphere, under an inert gas atmosphere, or under a normal air atmosphere.
  • the reaction may be carried out under any pressure of atmospheric pressure, reduced pressure and increased pressure. Therefore, in consideration of operability, it is preferable to carry out the reaction under atmospheric pressure or under an air atmosphere or an inert gas atmosphere.
  • the acid anhydride (I) can be produced by the method as described above.
  • the obtained acid anhydride (I) can be removed from the reaction system according to the following method, or the reaction solution can be used as it is.
  • reaction solution when used as it is, for example, when methylene chloride is used as a solvent, triethylamine hydrochloride produced by the reaction is removed by filtration, and the filtrate containing the acid anhydride (I) is used for coupling. it can.
  • chloroform when chloroform is used as a solvent, triethylamine hydrochloride formed by the reaction is dissolved and can not be separated, but the reaction solution containing the hydrochloride and the acid anhydride (I) is used as it is for coupling be able to.
  • the reaction solution can be concentrated and purified by a known method such as recrystallization.
  • R 1 in the formula has the same meaning as that in the formulas (1) and (4), and preferred groups are also the same for the same reason.
  • the acid anhydride (II) can be produced by reacting the N-protected- ⁇ -alanine derivative represented by the formula (4) with triphosgene in the presence of an organic base.
  • N-protected- ⁇ -alanine derivative ⁇ Method for producing acid anhydride (II); N-protected- ⁇ -alanine derivative>
  • the N-protected- ⁇ -alanine derivative as a raw material for producing the acid anhydride (II) is the one described in ⁇ Method for producing acid anhydride (I); N-protected- ⁇ -alanine derivative> Can be used. Also suitable for the same reason N-protected- ⁇ -alanine derivatives are the same.
  • organic base As the organic base for producing the acid anhydride (II), those described in ⁇ Method for producing acid anhydride (I); organic base> can be used.
  • the acid anhydride (II) it is preferable to use a heterocyclic compound having a nitrogen atom such as N-methylmorpholine, pyridine, quinoline and the like, wherein the nitrogen atom is not bonded to a hydrogen atom, and among these, aromatic amines of pyridine and quinoline It is preferred to use
  • the amount of the organic base used is preferably 1 to 5 moles, more preferably 1 to 5 moles, relative to 1 mole of the N-protected- ⁇ -alanine derivative, as in the case of producing the acid anhydride (I). It is preferable to use 2 moles.
  • the acid anhydride (II) can be produced by reacting the N-protected- ⁇ -alanine derivative with triphosgene (Cl 3 C-OC (O) O-CCl 3 ).
  • triphosgene Cl 3 C-OC (O) O-CCl 3 .
  • An example of the reaction in the case of using an N-protected- ⁇ -alanine derivative when R 3 is R 1 to be a non-substituted benzyloxycarbonyl group is shown below.
  • the reaction is considered to proceed according to the above reaction formula.
  • the triphosgene can be used commercially. In addition, it is preferable to use 0.2-5 moles, preferably 0.3-2 moles, of triphosgene with respect to 1 mole of the N-protected- ⁇ -alanine derivative.
  • the acid anhydride (II) can be produced by reacting the N-protected- ⁇ -alanine derivative with the triphosgene in the presence of the organic base.
  • the reaction is preferably carried out in an organic solvent.
  • the reaction is preferably carried out by stirring and mixing the organic base, the N-protected- ⁇ -alanine derivative, and the halide in an organic solvent.
  • Examples of the organic solvent which can be suitably used include the organic solvents described in ⁇ Method of producing acid anhydride (I); other conditions>, and the same preferable organic solvents are also used.
  • the amount of the organic solvent used is also the same as described in ⁇ Method for producing acid anhydride (I); other conditions>.
  • the respective components may be contacted by stirring and mixing.
  • transducing each component in this reactor is not restrict
  • an organic base, an N-protected- ⁇ -alanine derivative, and triphosgene, which are optionally diluted with an organic solvent can be simultaneously introduced into the reactor and mixed with stirring.
  • two components diluted with the organic solvent can be previously introduce
  • the reaction temperature for reacting the N-protected- ⁇ -alanine derivative with the triphosgene is not particularly limited, but is preferably ⁇ 80 to 40 ° C., and is ⁇ 80 to 10 ° C. Is more preferred.
  • the reaction time may be appropriately determined while confirming the consumption of the raw materials, the amount of the acid anhydride (II) produced, and the like. Under the above conditions, generally, 0.1 to 96 hours is sufficient, and preferably 0.5 to 10 hours.
  • the reaction atmosphere is also not particularly limited, and may be carried out under a dry air atmosphere, under an inert gas atmosphere, or under a normal air atmosphere.
  • the reaction may be carried out under any pressure of atmospheric pressure, reduced pressure and increased pressure. Therefore, in consideration of operability, it is preferable to carry out the reaction under atmospheric pressure or under an air atmosphere or an inert gas atmosphere.
  • the acid anhydride (II) can be produced by the method as described above.
  • the obtained acid anhydride (II) is preferably removed from the reaction system according to the following method. Specifically, the reaction solution can be added to a weakly alkaline aqueous solution and then extracted with an organic solvent, and the combined extract can be extracted by concentration and crystallization.
  • the acid anhydride (II) thus taken out can be purified by a known method such as recrystallization.
  • the above-mentioned acid anhydride (acid anhydride (I) and acid anhydride (II)) is reacted with L-histidine derivative or L-histidine to obtain a protected L-carnosine derivative. Manufacture. Then, L-carnosine is produced by carrying out a deprotection reaction.
  • the method for producing the protected L-carnosine derivative of the present invention comprises the above acid anhydride and the following formula (2)
  • R 7 and R 8 are a hydrogen atom or a protecting group of an amino group
  • R 9 is a hydrogen atom or a carboxyl group protecting group.
  • R 1 has the same meaning as that of the above formula (1)
  • R 7 , R 8 and R 9 are as defined in the above formula (2).
  • the L-histidine derivative shown by is used.
  • R 7 and R 8 are a hydrogen atom or a protecting group of an amino group.
  • Examples of the protecting group for amino group include known protecting groups. Among them, a trialkylsilyl group having a carbon number of 3 to 12 is preferable, taking into consideration the productivity of the L-histidine derivative itself, the stability upon a predetermined reaction, the ease of deprotection, etc. Groups are preferred.
  • R 9 is a hydrogen atom or a protecting group of a carboxyl group.
  • the protective group of the carboxyl group in the production method of the present invention is a group which is substituted with hydrogen bonded to oxygen of the carboxyl group to inactivate the carboxyl group during a predetermined reaction, and is removed after the predetermined reaction It is a group in which a hydroxyl group is formed by protection.
  • carboxyl protecting groups include alkyl groups such as methyl and ethyl, silyl protecting groups such as trimethylsilyl, t-butyldimethylsilyl and triisopropylsilyl, acetyl and benzoyl and the like.
  • An acyl group etc. are mentioned.
  • Examples of the protective group for the carboxyl group include known protective groups. Among them, a trialkylsilyl group having a carbon number of 3 to 12 is preferable, taking into consideration the productivity of the L-histidine derivative itself, the stability upon a predetermined reaction, the ease of deprotection, etc. Groups are preferred.
  • L-histidine derivatives as described above are known compounds and can be produced, for example, by the method described in CN101284862.
  • a protected L-carnosine derivative having at least R 1 as a protecting group is produced by reacting the acid anhydride with the L-histidine derivative (protected L represented by the formula (3) -Produce carnosine derivatives).
  • This reaction can easily proceed because it is a reaction of an acid anhydride and an amine compound (for example, an L-histidine derivative represented by the above formula (2)).
  • an L-histidine derivative represented by the above formula (2) for example, an L-histidine derivative represented by the above formula (2).
  • optimum reaction conditions differ between the case where one having a protecting group is used and the case where L-histidine having no protecting group is used.
  • L-histidine derivative (I) As the L-histidine derivative, the following formula (2p)
  • R 7p and R 8p are a protecting group for amino group, preferably a trialkylsilyl group having 3 to 12 carbon atoms as described for the L-histidine derivative, In particular, a trimethylsilyl group is preferred.
  • R 9p is a carboxyl-protecting group, preferably a trialkylsilyl group having 3 to 12 carbon atoms, as described for the L-histidine derivative, and a trimethylsilyl group is particularly preferred.
  • the amount of L-histidine derivative (I) to be used is not particularly limited, but is preferably 0.25 to 3 moles relative to 1 mole of the acid anhydride. More preferably, it is 5 moles.
  • the acid anhydride may be either the acid anhydride (I) or the acid anhydride (II). Among them, in order to carry out the reaction more efficiently, it is preferable to react with the acid anhydride (I).
  • protected L-carnosine derivative (I) can be produced by reacting the acid anhydride with the L-histidine derivative (I).
  • the reaction is preferably carried out in an organic solvent.
  • the reaction is preferably carried out by stirring and mixing the acid anhydride and the L-histidine derivative (I) in an organic solvent.
  • Examples of the organic solvent which can be suitably used include the organic solvents described in ⁇ Method of producing acid anhydride (I); other conditions>, and the same preferable organic solvents are also used.
  • the amount of the organic solvent used is preferably 0.5 to 100 ml, and more preferably 1 to 20 ml, per 1 g of the acid anhydride.
  • the organic solvent may contain water.
  • water is preferably 40 parts by mass or less, more preferably 30 parts by mass or less, and 20 parts by mass or less with respect to 100 parts by mass of the organic solvent. Is more preferable, and 10 parts by mass or less is particularly preferable.
  • water may be 0 parts by mass.
  • each component may be contacted by stirring and mixing.
  • transducing each component in this reactor is not restrict
  • an acid anhydride, L-histidine derivative (I), diluted with an organic solvent can be simultaneously introduced into the reactor and mixed with stirring.
  • one component diluted with an organic solvent may be introduced into the reactor first, and the other components may be introduced later and stirred and mixed.
  • L-histidine derivative (I) diluted with an organic solvent is introduced into the reactor for stirring and mixing, to which an acid anhydride diluted with an organic solvent is added as needed. It is preferable to do.
  • the reaction temperature for reacting the acid anhydride with the L-histidine derivative (I) is not particularly limited, but is preferably -78 to 100 ° C, and -20 to 20 ° C. Is more preferred.
  • the reaction time may be appropriately determined while confirming the consumption of the raw materials, the amount of the protected L-carnosine derivative (I) and the like. Under the above conditions, generally, 0.1 to 96 hours is sufficient, and preferably 0.5 to 24 hours.
  • the reaction atmosphere is also not particularly limited, and may be carried out under a dry air atmosphere, under an inert gas atmosphere, or under a normal air atmosphere.
  • the reaction may be carried out under any pressure of atmospheric pressure, reduced pressure and increased pressure. Therefore, in consideration of operability, it is preferable to carry out the reaction under an air atmosphere and under atmospheric pressure.
  • R 1 is as defined in the above formula (1)
  • R 7p ′ is a hydrogen atom or a protecting group of an amino group
  • R 8p and R 9p are as defined in the above formula (2p).
  • the protected L-carnosine derivatives (I) shown in) can be prepared.
  • R 7p ′ is a hydrogen atom or a protecting group of an amino group. This is because deprotection of the protective group R 7p may occur during the reaction, which may include a protected L-carnosine derivative that becomes a hydrogen atom. In the case where deprotection is not carried out at the time of the reaction, it goes without saying that R 7p ′ is the same protecting group for amino as R 7p .
  • the resulting protected L-carnosine derivative (I) can be removed from the reaction system according to the following method to increase the purity. Specifically, the reaction solution can be concentrated or cooled and taken out as crystals. The protected L-carnosine derivative (I) taken out can be purified by known methods such as recrystallization, column separation and the like.
  • the resulting protected L-carnosine derivative (I) can also be first deprotected by the method described in detail below for R 1 , but first, R 7 p ′ (in the case of a protecting group for amino group), R It is preferable to carry out 8p and R 9p deprotection reaction.
  • the deprotection reaction of R 7 p ′ (in the case of protecting group of amino group), R 8 p and R 9 p is carried out by once removing the protected L-carnosine derivative (I) from the reaction system as a crystal. be able to.
  • the deprotection reaction can also be carried out by treating the reaction solution containing the protected L-carnosine derivative (I).
  • ⁇ Method for producing protected L-carnosine derivative (II) from protected L-carnosine derivative (I)> In order to carry out the deprotection of R 7 p ′ (wherein the protecting group of amino group), R 8 p and R 9 p from the protected L-carnosine derivative (I), a known deprotection reaction may be used it can. Specifically, it can be deprotected by contacting with water or alcohol (which may be a mixed solvent of water and alcohol).
  • the amount of water or alcohol used is not particularly limited, and may be an amount sufficient to allow the protected L-carnosine derivative (I) and water or alcohol to contact with each other. Specifically, it is preferable to use 0.1 to 50 ml of water or alcohol per 1 g of the protected L-carnosine derivative.
  • R 7p ′ (provided that the protecting group for amino group), R 8p and R 9p can be carried out by contacting with water or alcohol, and the following formula (3p2)
  • the protected L-carnosine derivative (II) represented by (wherein R 1 has the same meaning as in the above-mentioned formula (1)) can be produced.
  • R 8p and R 9p is carried out by using a reaction solution containing a protected L-carnosine derivative (I), water, or an alcohol. It can also be carried out by mixing. At this time, the reaction solution may be concentrated. Specifically, the following method can be adopted.
  • This protected L-carnosine derivative (II) can also be produced by reacting the acid anhydride with L-histidine. Next, this reaction will be described.
  • the protected L-carnosine derivative (II) can also be produced by reacting L-histidine represented by and the acid anhydride.
  • L-histidine is a hydrogen atom in place of the protecting groups R 8p and R 9p of the L-histidine derivative (I), and by using L-histidine, the protected L-carnosine is used.
  • the protected L-carnosine derivative can be prepared without undergoing the derivative (I).
  • the amount of L-histidine to be used is not particularly limited, but is preferably 0.25 to 3 moles, and more preferably 0.5 to 1.5 moles with respect to 1 mole of the acid anhydride. Is more preferred.
  • the acid anhydride and the L-histidine are preferably reacted in the presence of a base and water.
  • the reaction can be carried out by stirring and mixing the base, the water, the acid anhydride, and the L-histidine.
  • any of an inorganic base and an organic base can be used.
  • bases as inorganic bases, Alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide; Alkali metal carbonates such as sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium carbonate, cesium bicarbonate, cesium carbonate and the like; Hydroxides of alkaline earth metals such as calcium hydroxide and barium hydroxide; And quaternary ammonium hydroxides such as tetramethyl ammonium hydroxide and benzyl trimethyl ammonium hydroxide.
  • sodium hydroxide is preferably used in consideration of easiness of control of reaction, easiness of removal, and the like.
  • organic base those described above in ⁇ Method for producing acid anhydride (I); organic base> can be used.
  • organic bases in view of easiness of control of reaction, easiness of removal, etc., it is preferable to use triethylamine.
  • the base is not particularly limited, but it is preferable to use an amount and a blending method such that the base in the reaction system is maintained weakly basic.
  • the pH in the reaction system tends to be acidic as the reaction proceeds. Since it is easy for the reaction to proceed if the reaction system is basic, it is preferable to add a base to the reaction system so as not to increase the acidity in the reaction system. Therefore, it is preferable to add a base in the reaction system so that the pH is 7 to 15, preferably 8 to 14, and more preferably 9 to 13.
  • the additional base is preferably added to the reaction system in the form of an aqueous solution. When using an aqueous solution of a base, it is preferable to adjust the pH of the aqueous solution to 9 to 10 in order to facilitate control of the reaction.
  • the absolute amount (total amount) of the base may be appropriately determined under the conditions in the reaction system, but in consideration of removal in a later step, it is 1 to 4 moles relative to 1 mole of the acid anhydride. Is preferred.
  • protected L-carnosine derivative (II) may further react with L-histidine to form a trimer.
  • the absolute amount of the base is more preferably 1 mole or more, particularly 1 mole or more, relative to 1 mole in total of the acid anhydride and the L-histidine. It is preferable to set it as the following, and also it is preferable to set it as 1 mol or more and 1.5 mol or less.
  • water is used.
  • the amount of water used is not particularly limited, but it is preferable to use an amount such that the pH in the reaction system is 7 to 15, preferably 9 to 14, and more preferably 9 to 14.
  • the absolute amount (total amount) of water may be appropriately determined under the conditions in the reaction system, but in order to efficiently carry out the reaction, it is preferable to use the following amount.
  • the amount of water used is preferably 0.5 to 100 ml, and more preferably 1 to 20 ml, per 1 g of the acid anhydride.
  • an aqueous solution of an inorganic base is gradually added to the reaction system, it is preferable to make the total amount of water added to the reaction system satisfy the above range.
  • the amount of water includes the amount of water used in the aqueous solution of the inorganic base.
  • the protected L-carnosine derivative (II) can also be produced by reacting the acid anhydride with the L-histidine.
  • the reaction is preferably carried out in an organic solvent.
  • the reaction is preferably carried out by stirring and mixing the acid anhydride and the L-histidine in a medium containing an organic solvent and water.
  • organic solvent examples include the organic solvents described in ⁇ Method of producing acid anhydride (I); other conditions>, and the same preferable organic solvents are also used. It is particularly preferable to carry out with a combination of a solvent selected from acetone, acetonitrile, ethyl acetate and water, or with water alone.
  • the amount of the medium used is preferably 0.5 to 100 ml, and more preferably 1 to 20 ml, per 1 g of the acid anhydride.
  • the volume ratio (the amount of organic solvents / total water) of an organic solvent and water (amount of total water) becomes 0.1-10. It is more preferable that
  • anhydride in order to react the above-mentioned anhydride with L-histidine in the presence of a base and water, they may be mixed and stirred in a reaction vessel (in a reaction system).
  • a reaction vessel in a reaction system.
  • the method for introducing these components into the reaction system is not particularly limited, and the following method can be employed.
  • L-histidine and a base are reacted in advance.
  • the acid anhydride is added into the reaction system and, if necessary, the acid anhydride diluted with a solvent is added to the reaction system and stirred and mixed.
  • a base is added to adjust the pH to preferably 9 to 10 so that the acidity in the reaction system does not increase. Is preferred. Also, it is desirable to stir at high speed so that these reactants can be sufficiently contacted.
  • the reaction temperature of the acid anhydride and L-histin is not particularly limited, but is preferably ⁇ 30 to 70 ° C. in consideration of reaction time, yield, suppression of impurity byproduct, etc. Is preferably ⁇ 10 to 40 ° C.
  • the reaction time may be appropriately determined while confirming the consumption of the raw materials, the amount of the protected L-carnosine derivative (I) and the like. Under the above conditions, generally, 0.1 to 96 hours is sufficient, and preferably 0.5 to 24 hours.
  • the reaction atmosphere is also not particularly limited, and may be carried out under a dry air atmosphere, under an inert gas atmosphere, or under a normal air atmosphere.
  • the reaction may be carried out under any pressure of atmospheric pressure, reduced pressure and increased pressure. Therefore, in consideration of operability, it is preferable to carry out the reaction under an air atmosphere and under atmospheric pressure.
  • the protected L-carnosine derivative (II) represented by (wherein R 1 has the same meaning as in the above-mentioned formula (1)) can be produced.
  • the resulting protected L-carnosine derivative (II) is preferably removed from the reaction system according to the following method. Specifically, the pH is adjusted to 6 to 7, followed by extraction with an organic solvent such as 1-butanol and 2-butanol, and the combined extract can be taken out under reduced pressure concentration. Also, the protected L-carnosine derivative (II) taken out can be purified by a known method such as recrystallization, column separation and the like.
  • protected L-carnosine derivatives can be produced by the following acid anhydride method. That is, the following formula (4 ')
  • R 1 has the same meaning as that of the above formula (1), and R 10 is a hydroxyl group or a halogen atom.
  • R 10 is a hydroxyl group or a halogen atom.
  • X is a halogen atom
  • m is an integer of 0 or 1
  • R 4 , R 5 and R 6 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, provided that when m is 0, at least two of R 4 , R 5 and R 6 The group is an alkyl group having 1 to 6 carbon atoms.
  • An acid anhydride obtained by reacting a halide represented by ()) in the presence of an organic base, and the following formula (2)
  • the halogen atom is preferably a chlorine atom, a bromine atom or an iodine atom, and the chlorine atom is More preferable.
  • the details of the halide are as described in “ ⁇ Method for producing acid anhydride (I); halide>” in the present specification, and the halide in the description can be used, The following formula (1b) in the above formula (5)
  • the group represented by is not particularly limited, but when m is 0, it is preferably a t-butyl group, and when m is 1, it is an ethoxycarbonyl group or an isobutyl carbonyl group Is preferred.
  • the reaction between the acid anhydride and the L-histidine derivative can be carried out in an aqueous solvent or an organic solvent, and it is preferable to use a solvent that dissolves the acid anhydride, the L-histidine derivative, and a base. .
  • a solvent that dissolves the acid anhydride, the L-histidine derivative, and a base In order to cause the acid anhydride and the L-histidine derivative to react in the presence of a base and water, mixing and stirring may be carried out in these reaction vessels (in the reaction system).
  • the method for introducing these components into the reaction system is not particularly limited, and the following method can be employed.
  • the L-histidine derivative and the base are preliminarily added to the reaction system together with the solvent as required. It is preferable to adopt a method in which the acid anhydride is added, added to the reaction system if necessary, and diluted with a solvent, if necessary.
  • Examples of the base include hydroxides of alkali metals such as sodium hydroxide, potassium hydroxide and lithium hydroxide; carbonates of alkali metals such as sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium carbonate, cesium bicarbonate and cesium carbonate Hydroxides of alkaline earth metals such as calcium hydroxide and barium hydroxide; hydroxides of quaternary ammonium such as tetramethylammonium hydroxide and benzyltrimethylammonium hydroxide; and amines such as triethylamine and diisopropylethylamine.
  • alkali metals such as sodium hydroxide, potassium hydroxide and lithium hydroxide
  • carbonates of alkali metals such as sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium carbonate, cesium bicarbonate and cesium carbonate
  • Hydroxides of alkaline earth metals such as calcium hydroxide and barium hydroxide
  • hydroxides of quaternary ammonium
  • a hydroxide of an alkali metal such as sodium hydroxide, or an amine such as triethylamine or diisopropylethylamine, in consideration of easiness of control of reaction, easiness of removal, and the like.
  • the amount of the base used and the method of blending are not particularly limited, but in the reaction of the acid anhydride and the L-histidine derivative, the reaction is more likely to proceed if the reaction system is basic Because of the tendency, the pH in the reaction system is preferably 7 to 15, more preferably 8 to 14, and most preferably 9 to 13. In the reaction, as the reaction proceeds, the pH in the reaction system tends to be acidic. Therefore, a base may be added to the reaction system to adjust the pH in the reaction system.
  • the base to be added is preferably used in the form of an aqueous solution. When an aqueous solution of a base is used, the pH of the aqueous solution is preferably set to 9 to 10 in order to facilitate control of the reaction.
  • the absolute amount (total amount) of the base may be appropriately determined under the conditions in the reaction system, but in consideration of removal in a later step, it is 1 to 4 moles relative to 1 mole of the acid anhydride. It is more preferable that the amount be 1 to 2 moles.
  • the total usage-amount of the base added in the reaction system in the said range it is preferable to make it the total usage-amount of the base added in the reaction system in the said range.
  • Water or a solvent is preferably used in the reaction of the acid anhydride with the L-histidine derivative.
  • the amount of the solvent used is not particularly limited, it is preferable to use an amount which satisfies the pH in the reaction system of 7 to 15, preferably 9 to 14. Therefore, the absolute amount (total amount) of the solvent may be appropriately determined, but in order to efficiently carry out the reaction, the following amount is preferable.
  • the amount of water used is preferably 0.5 to 100 ml, more preferably 1 to 20 ml, per 1 g of the acid anhydride.
  • an aqueous solution of a base is gradually added to the reaction system, it is preferable to make the total amount of water added to the reaction system satisfy the above range.
  • the amount of water includes the amount of water used in the aqueous solution of the base.
  • organic solvent can also be used as the solvent.
  • the organic solvent is not particularly limited as long as it does not inhibit the reaction between the acid anhydride and the L-histidine derivative.
  • suitable organic solvents include ester solvents such as ethyl acetate, isopropyl acetate and butyl acetate, halogen solvents such as dichloromethane and chloroform, aromatic solvents such as toluene and xylene, ketones such as acetone, diethyl ketone and methyl ethyl ketone
  • the solvent include ether solvents such as t-butyl methyl ether, tetrahydrofuran (THF) and diethyl ether, and solvents containing a heteroatom such as acetonitrile, dimethylformamide, dimethylsulfoxide and N-methylpyrrolidone.
  • organic solvents may be used alone, may be used in combination, or may be used in combination with water.
  • a combination of water and an organic solvent selected from acetone, ethyl acetate and acetonitrile is preferred.
  • the amount of the medium used is preferably 0.5 to 100 ml, and more preferably 1 to 20 ml, per 1 g of the acid anhydride.
  • the volume ratio (the amount of organic solvents / total water) of an organic solvent and water (amount of total water) becomes 1-10, and it will be 2-5. Is more preferred.
  • the reaction temperature of the acid anhydride and the L-histidine derivative is not particularly limited, but is preferably ⁇ 30 to 70 ° C. in consideration of reaction time, yield, suppression of impurity byproduct, etc. Furthermore, it is preferable to set the temperature to -10 to 40 ° C.
  • the reaction time may be appropriately determined while confirming the consumption of the raw material, the amount of the protected L-carnosine derivative and the like. Under the above conditions, generally, 0.1 to 96 hours is sufficient, preferably 0.5 to 24 hours.
  • the reaction atmosphere is also not particularly limited, and may be carried out under a dry air atmosphere, under an inert gas atmosphere, or under a normal air atmosphere.
  • the reaction may be carried out under any pressure of atmospheric pressure, reduced pressure and increased pressure. Therefore, in consideration of operability, it is preferable to carry out under an air atmosphere and under an atmospheric pressure atmosphere.
  • the resulting protected L-carnosine derivative can be subjected to the deprotection reaction described later to obtain L-carnosine.
  • the protected L-carnosine derivative is produced as the acidic aqueous solution thereof in the step (a1), and the acidic aqueous solution is brought into contact with the organic solvent after the step (a1).
  • a step (a2) may be provided.
  • R 7 and R 8 in the above-mentioned formula (3) are a hydrogen atom or a protective group of an amino group, and most preferably a hydrogen atom from the viewpoint of production cost and reaction rate.
  • silyl protection such as trimethylsilyl, t-butyldimethylsilyl, triisopropylsilyl and the like is possible because they are easily deprotected under acidic conditions. It is preferably a group, particularly preferably a trimethylsilyl group.
  • R 9 is a hydrogen atom or a protecting group of a carboxyl group, and most preferably a hydrogen atom.
  • a carboxyl protecting group is used as R 9
  • silyl protecting groups such as trimethylsilyl, t-butyldimethylsilyl and triisopropylsilyl are preferred because they are easily deprotected under acidic conditions. Is preferred.
  • the trimethylsilyl group is easily deprotected under acidic conditions, there is no need to carry out a deprotection reaction of R 7 , R 8 and R 9 in the protected L-carnosine derivative after purification of the protected L-carnosine derivative. Therefore, it can be used particularly preferably.
  • the protected L-carnosine derivative which can be suitably used in the step (a2) is not particularly limited, but among the protected L-carnosine derivatives, all of R 7 , R 8 and R 9 are hydrogen atoms from the viewpoint of production cost. Is most preferred.
  • R 3 is a protecting group of an amino group.
  • a protecting group known as a protecting group of the amino group of an amino acid can be used.
  • a protective group specifically, in addition to the protective groups in R 7 and R 8 , a benzyloxycarbonyl group which may have a substituent, a 9-fluorenylmethyloxycarbonyl group, a trifluoroacetyl group , T-butoxycarbonyl group, 2,2,2-trichloroethoxycarbonyl group, or formyl group.
  • a t-butoxycarbonyl group or a benzyloxycarbonyl group which may have a substituent is preferable from the viewpoint of easy deprotection reaction.
  • the substituent which a benzyloxycarbonyl group has is a substituent which the phenyl group of a benzyloxycarbonyl group has.
  • Examples of the substituent include a methyl group, a methoxy group, a halogen group, a nitro group and a dimethylamino group.
  • a non-substituted benzyloxycarbonyl group is most preferable from the viewpoint of easy introduction of a protective group and easy availability of a protective group introducing agent.
  • R 3 is a protecting group different from R 7 and R 8
  • R 7 and R 8 are preferably a hydrogen atom
  • R 3 is preferably a benzyloxycarbonyl group from the viewpoint of production cost.
  • the pH of the aqueous solution may be acidic, but considering the purity of the resultant protected L-carnosine derivative, the pH of the acidic aqueous solution is 0 to The range of 4 is preferable, and the range of 1 to 3 is particularly preferable.
  • the amount of the acidic aqueous solution to be used may be an amount in which the protected L-carnosine derivative is dissolved, and usually 2 to 10 parts by volume per part by mass of the protected L-carnosine derivative is sufficient.
  • the acid used to form an acidic aqueous solution is not particularly limited, and organic acids such as formic acid, acetic acid and propionic acid, and inorganic acids such as hydrogen chloride, sulfuric acid and nitric acid can be used. These acids can also be used as aqueous solutions.
  • Preferred acids include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid. Among them, it is most preferable to use hydrochloric acid because of its price and easiness of purification. As the amount of the acid used, it is sufficient to add the acidic aqueous solution to a desired pH.
  • Organic solvent to be brought into contact with the acidic aqueous solution of the protected L-carnosine derivative in the step (a2) is not particularly limited, but an impurity such as N-protected- ⁇ -alanine derivative is dissolved in the organic solvent to protect L-carnosine.
  • an organic solvent immiscible with water it is preferable to use an organic solvent immiscible with water.
  • this organic solvent the organic solvent used for liquid separation operation after organic synthesis reaction is mentioned suitably.
  • suitable organic solvents include halogen solvents such as dichloromethane and chloroform; ester solvents such as ethyl acetate and butyl acetate; aromatic hydrocarbon solvents such as toluene, xylene and chlorobenzene; tetrahydrofuran, diethyl ether and the like Ether solvents and the like can be mentioned.
  • halogen solvents such as dichloromethane and chloroform
  • ester solvents such as ethyl acetate and butyl acetate
  • aromatic hydrocarbon solvents such as toluene, xylene and chlorobenzene
  • tetrahydrofuran diethyl ether and the like
  • Ether solvents and the like can be mentioned.
  • organic solvents using an organic solvent having a specific gravity greater than that of water is particularly preferable from the viewpoint of operability because the organic solvent containing the above-mentioned impurities can be taken out from the lower part of the reaction vessel.
  • the amount of the organic solvent used can be any amount that can dissolve impurities such as N-protected- ⁇ -alanine derivative in the organic solvent and remove it from the acidic aqueous solution of the protected L-carnosine derivative, and the capacity of the production apparatus It may be determined appropriately in consideration of etc. Usually, it is sufficient to use the organic solvent / water volume ratio in the range of 0.1 to 10, more preferably in the range of 0.3 to 5, and particularly preferably in the range of 0.5 to 2.
  • step (a2) an acidic aqueous solution of a protected L-carnosine derivative is brought into contact with an organic solvent.
  • the method for contacting the acidic aqueous solution of the protected L-carnosine derivative with the organic solvent is not particularly limited, and may be appropriately determined in consideration of the production apparatus, production scale, and the like.
  • the method for contacting an acidic aqueous solution of a protected L-carnosine derivative with an organic solvent after preparing an aqueous solution of the protected L-carnosine derivative, acidifying the aqueous solution and adding an organic solvent, to an organic solvent
  • a protected L-carnosine derivative when a protected L-carnosine derivative is produced, it may be prepared from a solution after reaction.
  • an acidic aqueous solution may be contacted.
  • the protected L-carnosine derivative is produced with water or a mixed solvent of water and an organic solvent, the organic solvent may be removed if necessary, and then an acid may be added to form an acidic aqueous solution.
  • the solution after completion of the reaction is acidic, it may be contacted with the organic solvent as it is.
  • the acidic aqueous solution of the protected L-carnosine derivative When contacting the acidic aqueous solution of the protected L-carnosine derivative with an organic solvent, it may be stirred if necessary, and it may be performed under any atmosphere of air, inert gas, dry air. It may be carried out under any of atmospheric pressure, reduced pressure and pressurized atmosphere.
  • the temperature at which the acidic aqueous solution of the protected L-carnosine derivative is brought into contact with the organic solvent is not particularly limited, and may be appropriately determined in consideration of the production conditions. From the viewpoint of the stability of the protected L-carnosine derivative, the range of 0 to 80 ° C. is preferable, the range of 10 to 50 ° C. is more preferable, and the range of 20 to 30 ° C. is most preferable.
  • the method for separating the acidic aqueous solution and the organic solvent is not particularly limited, and known methods can be used. Specifically, the solution obtained by stirring and mixing the acidic aqueous solution and the organic solvent may be allowed to stand to separate the acidic aqueous solution and the organic solvent, and one solution may be removed. When an organic solvent having a specific gravity greater than that of water, such as dichloromethane or chloroform, is used, the organic solvent can be removed from the lower part of the reaction vessel.
  • the acidic aqueous solution of the protected L-carnosine derivative remaining in the reaction vessel can be stored, but can be subjected to a deprotection reaction as it is.
  • the acidic aqueous solution can be removed from the reaction vessel and stored. Alternatively, it can be taken out directly from the reaction vessel to the reaction vessel where the deprotection reaction is carried out, in which case it can be subjected to the deprotection reaction as it is.
  • the method for producing L-carnosine of the present invention comprises Step (A) of producing a protected L-carnosine derivative by the method of producing the protected L-carnosine derivative of the present invention described above, and performing the deprotection reaction of the protected carnosine derivative to give the following formula
  • Process for producing L-carnosine represented by It is characterized by including.
  • step (b1) at least a deprotection reaction of R 1 is performed.
  • the protected L-carnosine derivative (II) can be produced by using the L-histidine derivative (I) or the L-histidine.
  • R 1 may be deprotected.
  • the method for deprotecting R 1 is not particularly limited, and known methods can be employed.
  • R 1 In order to deprotect R 1 , there may be mentioned a method of acid treatment, a method of allowing a hydrogen source to be present in the presence of a palladium catalyst, and a method of contacting an amine. These methods may be selected according to the type of R 1 .
  • the acid to be used is not particularly limited, and is a Bronsted acid such as hydrogen chloride, sulfuric acid, methanesulfonic acid, trifluoroacetic acid, fluoroboric acid, etc .; Lewis acid such as aluminum chloride, iron chloride or boron trifluoride-ether complex Can be mentioned.
  • a Bronsted acid such as hydrogen chloride, sulfuric acid, methanesulfonic acid, trifluoroacetic acid, fluoroboric acid, etc .
  • Lewis acid such as aluminum chloride, iron chloride or boron trifluoride-ether complex
  • hydrogen chloride, sulfuric acid and methanesulfonic acid are preferable, and hydrogen chloride is more preferable in consideration of ease of removal and the like.
  • these acids can be introduce
  • the amount of the acid used is not particularly limited, but it is preferable to use 0.1 to 100 moles of the acid per 1 mole of the protected L-carnosine derivative (II). Among them, it is preferable to set the amount used in such a range that the pH in the reaction system in which the L-carnosine derivative (II) is brought into contact with the acid is -1 or more and less than 4. It is preferable to carry out the deprotection reaction under such conditions.
  • the pH in the reaction system is in the range of pH when all the acid to be used is introduced into the reaction system.
  • the deprotection reaction can be carried out in a solvent.
  • a solvent When the deprotection reaction is carried out after taking out the L-carnosine derivative, water, Ester solvents such as ethyl acetate, isopropyl acetate and butyl acetate, Halogen solvents such as methylene chloride and chloroform Aromatic solvents such as toluene, xylene, mesitylene and chlorobenzene Ketone solvents such as acetone, diethyl ketone and methyl ethyl ketone; ether solvents such as t-butyl methyl ether, tetrahydrofuran (THF), diethyl ether, dioxane, etc.
  • Ester solvents such as ethyl acetate, isopropyl acetate and butyl acetate
  • Halogen solvents such as methylene chloride and chloroform Aromatic solvents such as toluene, xylene
  • Alcohol solvents such as methanol, ethanol, isopropanol etc.
  • the solvent include solvents containing a heteroatom such as acetonitrile, dimethylformamide, dimethylsulfoxide, N-methylpyrrolidone and the like. These solvents may be used alone or in combination.
  • preferred solvents are ester solvents such as ethyl acetate, isopropyl acetate and butyl acetate, halogen solvents such as methylene chloride and chloroform, aromatic solvents such as toluene, xylene, mesitylene and chlorobenzene, and ethers such as dioxane. It is a poorly water-soluble organic solvent of the system.
  • the volume ratio of organic solvent / water is preferably 0.01 / 1 to 1000/1, although there is no particular limitation.
  • the amount of the solvent used is also not particularly limited as long as it is sufficient to allow the protected L-carnosine derivative (II) and the acid to contact and mix sufficiently. It is usually preferred to use 1 to 100 ml of the medium for 1 g of the protected L-carnosine derivative (II).
  • the procedure for introducing the protected L-carnosine derivative (II) and the acid into the reaction system is not particularly limited.
  • a method may be employed in which the protected L-carnosine derivative (II) diluted with a solvent as necessary and the acid diluted as needed are simultaneously introduced into the reaction system and mixed by stirring.
  • one of them may be diluted with a solvent, if necessary, to be introduced into the reaction system first, and the other diluted with the solvent may be added to the reaction system, if necessary, and stirred and mixed.
  • the protected L-carnosine derivative (II) diluted with the solvent as required is first introduced into the reaction system, and, if necessary, diluted with the solvent. It is preferable to adopt a method of adding an acid and stirring and mixing.
  • the reaction temperature at which the deprotection reaction is carried out is not particularly limited, and is preferably ⁇ 10 to 200 ° C., and more preferably 10 to 120, in consideration of reaction time, yield, suppression of impurity byproduct, and the like. It is preferable to set it as ° C.
  • the reaction time of the deprotection reaction is not particularly limited, but may be appropriately determined while confirming the consumption of raw materials, the amount of L-carnosine produced, and the like. Under the above conditions, generally, 0.1 to 96 hours is sufficient, and preferably 0.5 to 24 hours.
  • the reaction atmosphere is also not particularly limited, and may be carried out under a dry air atmosphere, under an inert gas atmosphere, or under a normal air atmosphere.
  • the reaction may be carried out under any pressure of atmospheric pressure, reduced pressure and increased pressure. Therefore, in consideration of operability, it is preferable to carry out the reaction under an air atmosphere and under atmospheric pressure.
  • palladium-based catalyst ⁇ When deprotecting R 1 using a palladium-based catalyst / hydrogen source; palladium-based catalyst>
  • known palladium-based catalysts capable of carrying out debenzylation and the like can be used. Specifically, examples include 1 to 30% by mass (preferably 1 to 20% by mass) of a palladium-on-palladium catalyst supported by palladium, a palladium barium sulfate catalyst, a palladium calcium carbonate catalyst, and a palladium black catalyst.
  • the amount of the palladium-based catalyst used is not particularly limited, but it is sufficient if it is 0.001 to 20 parts by mass (as metal amount) with respect to 100 parts by mass of the protected L-carnosine derivative (II). is there.
  • a preferable palladium catalyst a commercially available thing can be used, for example, Sigma Aldrich, Alfa Aesar, Johnson Matthey, N. E. The palladium carbon catalyst of CHEMCAT company is mentioned.
  • these palladium-carbon catalysts ones in which a catalyst component such as palladium is difficult to elute in a solvent can be particularly preferably used.
  • the present deprotection reaction is preferably carried out in the presence of hydrogen.
  • the inside of the reaction system is preferably at a hydrogen pressure of 0.5 to 100 atm, more preferably 1 to 100 atm, and more preferably 1 to 30 atm. It is further preferable to set the pressure to 1 to 20 atm.
  • a substance that generates hydrogen specifically, formic acid and ammonium formate, be present in the system.
  • Alcohol solvents such as methanol, ethanol and isopropanol; Ether solvents such as 1,4-dioxane, THF, dimethyl ether, etc.
  • Water can be used. These solvents can be used alone or in combination of two or more.
  • alcohol, water, or a mixed solvent of alcohol and water it is preferable to use alcohol, water, or a mixed solvent of alcohol and water, in consideration of operability and the like.
  • a mixed solvent it is not particularly limited, but the volume ratio of alcohol to water (alcohol / water) should be in the range of 0.01 / 1 to 1000/1 at 23 ° C. Is preferred.
  • the amount of the solvent used is also not particularly limited as long as it is sufficient to allow the protected L-carnosine derivative (II) and the acid to contact and mix sufficiently. It is usually preferred to use 1 to 100 ml of the medium for 1 g of the protected L-carnosine derivative (II).
  • the procedure for introducing the protected L-carnosine derivative (II), the palladium catalyst and hydrogen into the reaction system is not particularly limited in carrying out the deprotection reaction of R 1 using a palladium catalyst.
  • the protected L-carnosine derivative (II), which is optionally diluted with a solvent, and a palladium-based catalyst, which is optionally dispersed in the solvent are simultaneously introduced into the reaction system, and hydrogen gas is further introduced into the reaction system. And stirring and mixing.
  • reaction pressure is not limited, and the reaction may be carried out under atmospheric pressure, reduced pressure or increased pressure. It is preferable to carry out under atmospheric pressure or under pressure in consideration of reactivity and operability.
  • the method of introducing hydrogen gas into the reaction system after introducing the protected L-carnosine derivative (II) and the palladium catalyst into the reaction system has been described.
  • each component is also possible to introduce each component into the reaction system after introducing hydrogen gas into the reaction system beforehand and making the inside of the reaction system under a hydrogen atmosphere.
  • produces hydrogen gas such as formic acid and formate
  • the reaction atmosphere is not particularly limited, and the reaction can be carried out under a dry air atmosphere, under an inert gas atmosphere, or under a normal air atmosphere.
  • the reaction may be carried out under any pressure of atmospheric pressure, reduced pressure and increased pressure. Therefore, in consideration of operability, it is preferable to carry out the reaction under an air atmosphere and under atmospheric pressure.
  • the reaction temperature at which the deprotection reaction is carried out is not particularly limited, and is preferably ⁇ 10 to 200 ° C., and more preferably 10 to 200 ° C., in consideration of reaction time, yield, suppression of impurity byproduct, and the like. It is preferable to set it as 120 degreeC.
  • the reaction time of the deprotection reaction is not particularly limited, but may be appropriately determined while confirming the consumption of raw materials, the amount of L-carnosine produced, and the like. Under the above conditions, generally, 0.1 to 200 hours is sufficient, preferably 0.2 to 150 hours.
  • the reaction atmosphere is also not particularly limited, and may be carried out under a dry air atmosphere, under an inert gas atmosphere, or under a normal air atmosphere.
  • the reaction may be carried out under any pressure of atmospheric pressure, reduced pressure and increased pressure. Therefore, in consideration of operability, it is preferable to carry out the reaction under an air atmosphere and under atmospheric pressure.
  • Hydrazine, ammonia, etc. can be used as an amine to be used.
  • L-carnosine can be produced. After the deprotection reaction (deprotection reaction of R 1 ), L-carnosine or a salt thereof can be removed according to a known method. For example, L-carnosine or a salt thereof can be separated and purified by methods such as extraction, recrystallization, column purification and the like. At this time, the L-carnosine salt can be converted to L-carnosine by washing the L-carnosine salt with a base, water or the like.
  • the following method is preferably employed. Specifically, recrystallization in an alcohol (eg, methanol, ethanol, normal propanol, isopropanol) solvent is preferable.
  • the alcohol may contain water.
  • recrystallization with a mixed solvent of methanol and ethanol and water is preferable.
  • L-histidine or L-histidine derivative (I) is reacted with mixed acid anhydride to synthesize protected L-carnosine derivative (II) or protected L-carnosine derivative (I), depending on the reaction conditions, In some cases, a condensate of L-histidine and an acid other than N-protected- ⁇ -alanine in the mixed acid anhydride used may be by-produced.
  • pivaloyl chloride is used as the halide in the preparation of the mixed acid anhydride, it is preferable to use pivalic acid or pivaloyl chloride and L-histidine in the reaction solution after the deprotection reaction. It contains a condensate (i.e. pivaloyl histidine).
  • recrystallization with a mixed solvent of ethanol and water is particularly preferable in that the removal effect of the condensate is high.
  • the amount of the condensation product is small, it is particularly preferable to carry out recrystallization with a mixed solvent of methanol and water, which is generally highly purified.
  • the temperature at which L-carnosine is dissolved in the recrystallization solvent is not particularly limited, but is preferably 20 to 100 ° C., and more preferably 30 to 70 ° C. At this time, the amount of the recrystallization solvent used is preferably 1 to 50 ml, more preferably 5 to 20 ml, per 1 g of the target to be dissolved (target containing L-carnosine).
  • the temperature at which the crystals are precipitated is preferably -10 to 100 ° C, and more preferably -5 to 50 ° C. The obtained crystals may be dried by a known method.
  • L-carnosine with high purity can be easily obtained even under relatively mild conditions.
  • the process for producing the crystalline L-carnosine zinc complex of the present invention comprises The step (B) of producing L-carnosine by the method of producing L-carnosine of the present invention described above, and the step (c) of producing a crystalline L-carnosine zinc complex from the L-carnosine,
  • the protected L-carnosine derivative has the following formula (i)
  • step (b1) the deprotection reaction of the protected L-carnosine derivative is carried out in a solvent in which the protected L-carnosine derivative is dissolved, and the L-carnosine is produced as a mixture of the L-carnosine and the solvent. It is a process,
  • step (c) is a step of producing a crystalline L-carnosine zinc complex by zinc-chlorinating L-carnosine in the mixture without isolation as crystals.
  • the method for producing the crystalline L-carnosine zinc complex of the present invention comprises: taking out L-carnosine from the reaction system in the method for producing crystalline L-carnosine zinc complex by zinc-chlorinating L-carnosine It is characterized in that the deprotection reaction and the zincation are carried out continuously.
  • PG is preferably a benzyloxy group which may have a substituent, or a t-butoxycarbonyl group, and more preferably a t-butoxycarbonyl group.
  • R 3 is a benzyloxycarbonyl group which may have a substituent (preferably, an unsubstituted benzyloxycarbonyl group) preferable.
  • the acid to be used is not particularly limited, and is a Bronsted acid such as hydrogen chloride, sulfuric acid, methanesulfonic acid, trifluoroacetic acid, fluoroboric acid, etc .; Lewis acid such as aluminum chloride, iron chloride, boron trifluoride-ether complex, etc. Can be mentioned.
  • hydrogen chloride is preferable in consideration of ease of removal and the like.
  • these acids can be introduce
  • the amount of the acid used is not particularly limited, but it is preferable to use 0.1 to 100 moles of the acid per 1 mole of the protected L-carnosine (i). Among them, it is preferable to set the amount used in such a range that the pH in the reaction system in which the protected L-carnosine (i) is brought into contact with the acid is -1 or more and less than 4. It is preferable to carry out the deprotection reaction under such conditions.
  • the pH in the reaction system is in the range of pH when all the acid to be used is introduced into the reaction system.
  • ⁇ Deprotection reaction When deprotecting PG using an acid; solvent, other conditions> The deprotection reaction can be carried out in a solvent. When carrying out the deprotection reaction, it can be carried out without solvent if the acid is liquid, but it is preferred to carry out in a solvent.
  • ⁇ Method for zinc-chlorination from deprotection reaction by acid treatment> ⁇ First pretreatment method of mixed liquid> The acid treatment is carried out by the method as described above, and a mixed solution containing the solvent used for the reaction and L-carnosine obtained by the deprotection reaction is prepared. Conventionally, the obtained L-carnosine is crystallized and purified and separated, and then zincation is performed. However, in the present invention, the mixed solution is used without being taken out as crystals. However, in order to increase the purity of the crystalline L-carnosine zinc complex to be finally obtained, it is preferable to carry out pretreatment such as concentration instead of using the mixture as it is.
  • the acid deprotection reaction is preferably carried out in the solvent containing the poorly water-soluble organic solvent and water, and the mixture contains the poorly water-soluble organic solvent and water.
  • the mixture contains the poorly water-soluble organic solvent and water.
  • the mixture contains a poorly water-soluble organic solvent
  • the mixture separates from the organic solvent layer and the aqueous layer.
  • water is added to the organic solvent layer to extract L-carnosine into the aqueous layer.
  • Zinc chloride can use the water layer.
  • the above-mentioned water layer a combination of separated water and washing water
  • hydrogen chloride hydrochloric acid
  • part of the hydrogen chloride can be removed during concentration.
  • the liquid which concentrated this aqueous layer be a 1st mixture.
  • the first mixture preferably contains 0 to 0.1 parts by mass of water based on 1 part by mass of L-carnosine.
  • the first mixture is acidic, depending on the amount of acid used. Therefore, it is preferable to perform neutralization treatment once to prepare a pretreatment liquid.
  • a base to the first mixture to prepare a pretreatment solution having a pH of 7.0 to 9.0.
  • the base to be used is preferably the same alkali hydroxide as that described in the step of zincation, in consideration of the ease of removal and the ease of handling.
  • the amount of the base to be mixed is not particularly limited, and it may be blended so that the pH of the pretreatment liquid is 7.0 to 9.0.
  • the pretreatment solution preferably contains 1 to 100 parts by mass of water with respect to 1 part by mass of L-carnosine.
  • the alkali hydroxide may be mixed as it is, or may be mixed in the state of an aqueous solution or a solution dissolved in an alcohol having 1 to 3 carbon atoms.
  • the pretreatment liquid obtained by the above method may be mixed with alkali hydroxide as it is, and then mixed with zinc acetate to form crystalline L-carnosine zinc complex (Polaprezinc).
  • an alcohol having 1 to 3 carbon atoms is added to the pretreatment solution, water contained in the pretreatment solution is replaced with an alcohol having 1 to 3 carbon atoms, and then alkali hydroxide is added. It is preferred to add.
  • Examples of the alcohol having 1 to 3 carbon atoms include methanol, ethanol, n-propyl alcohol, and isopropyl alcohol. Among them, methanol is preferred.
  • the obtained liquid may be concentrated to azeotropically remove water and alcohol to gradually reduce the amount of water. It is preferable to repeat this method to reduce water.
  • the liquid substituted with the alcohol is not particularly limited, but it is preferable that the amount of water is 0 to 0.1 parts by mass with respect to 1 part by mass of L-carnosine.
  • the alcohol having 1 to 3 carbon atoms is preferably 5 to 100 parts by mass per 1 part by mass of L-carnosine.
  • an alkali hydroxide and an alcohol having 1 to 3 carbon atoms are added to the alcohol-substituted pretreatment solution.
  • alkali hydroxide examples include sodium hydroxide, potassium hydroxide, lithium hydroxide and the like. Among them, sodium hydroxide is preferred.
  • the amount of alkali hydroxide used is not particularly limited, but it is preferable to use 3 to 10 moles relative to 1 mole of L-carnosine.
  • this alkali hydroxide one dissolved in the above-mentioned alcohol having 1 to 3 carbon atoms can be used.
  • the amount of alcohol to be used is not particularly limited, but it is preferable that the amount of the alcohol is 5 to 100 parts by mass with respect to 1 part by mass of L-carnosine in the mixed solution to which the alcohol is added. .
  • the method for producing a mixed solution by mixing an alcohol-substituted pretreatment liquid, an alcohol having 1 to 3 carbon atoms, and an alkali hydroxide is not particularly limited, and the order of addition does not matter, and the respective components are mixed. You should do it. If necessary, the alkali hydroxide can be dissolved and mixed in an alcohol having 1 to 3 carbon atoms. By doing this, a mixed solution can be obtained.
  • L-carnosine contained in the mixed solution can be made into a crystalline L-carnosine zinc complex (Polaprezinc) by mixing zinc acetate in the obtained mixed solution.
  • the zinc acetate to be mixed is not particularly limited, but in terms of ease of handling, it is preferable to use a dihydrate of zinc acetate.
  • the amount of zinc acetate used is not particularly limited, and is preferably 1 to 3 moles in terms of zinc acetate relative to 1 mole of L-carnosine.
  • the zinc acetate can be mixed with the mixed solution as it is, or can be mixed as a solution dissolved in an alcohol having 1 to 3 carbon atoms.
  • the reaction temperature is preferably ⁇ 10 to 70 ° C., preferably 0 to 50 ° C., and more preferably 0 to 30 ° C.
  • the atmosphere at the time of mixing the zinc acetate and the mixed solution is not particularly limited either, and can be performed under a dry air atmosphere, under an inert gas atmosphere, or under a normal air atmosphere.
  • the reaction may be carried out under any pressure of atmospheric pressure, reduced pressure and increased pressure. Therefore, in consideration of operability, it is preferable to carry out the reaction under an air atmosphere and under atmospheric pressure.
  • L-carnosine can be made into a crystalline L-carnosine zinc complex (Polaprezinc) by mixing the mixed solution with zinc acetate by the method as described above. According to the above method, even though the solvent used is concentrated, the yield of the crystalline L-carnosine zinc complex can be increased because L-carnosine is not isolated from the solvent. .
  • crystalline L-carnosine zinc complex (Polaprezinc) precipitates in the reaction solution.
  • the crystalline L-carnosine zinc complex (Polaprezinc) can remove impurities such as alkali metal salts according to a known method, for example, a method such as WO 2015/119235. Specifically, a crystalline L-carnosine zinc complex (Polaprezinc) is separated by filtration, then washed with an alcohol having 1 to 3 carbon atoms, and washed with water, hot water or the like to reduce impurities. L-carnosine zinc complex can be obtained.
  • PG is a benzyloxycarbonyl group which may have a substituent (preferably, an unsubstituted benzyloxycarbonyl group). It is preferred to carry out the deprotection reaction using a hydrogen source.
  • the mixed solution obtained by the above method can be made into a mixed solution by mixing with at least an alkali hydroxide.
  • the mixed solution is not particularly limited, but in order to improve the operability, it is preferable to use the reaction system used in the deprotection reaction as the mixed solution. Therefore, it is preferable to contain 1 to 100 parts by mass of the solvent used for the deprotection reaction per 1 part by mass of L-carnosine.
  • This mixed solution can be mixed with alkali hydroxide as it is, or an alcohol having 1 to 3 carbon atoms can be further added to facilitate mixing, and if necessary, the amount of the solvent can be increased by concentration. Can also be reduced.
  • the mixed solution and at least an alkali hydroxide are mixed to form a mixed solution.
  • the alkali hydroxide can be mixed with the liquid mixture as it is, but if necessary, it can be dissolved in an alcohol having 1 to 3 carbon atoms and used as a solution.
  • the alcohol having 1 to 3 carbon atoms and the alkali hydroxide to be used are the same as those described in the above-mentioned ⁇ Method for producing zinc chloride (process for producing crystalline L-carnosine zinc complex) when deprotection reaction is carried out with an acid>. Can be used.
  • the mixed solution contains an insoluble palladium catalyst, it is preferable to remove the palladium catalyst by filtration. Then, it is preferable to further mix it with zinc acetate in the mixed solution from which the palladium-based catalyst has been removed to obtain a crystalline L-carnosine zinc complex (Polaprezinc).
  • the alcohol having 1 to 3 carbon atoms to be used is preferably 5 to 100 parts by mass of alcohol having 1 to 3 carbons per 1 part by mass of L-carnosine in the mixed solution after removing the palladium catalyst.
  • the amount is preferably 10 to 20 parts by mass.
  • the alcohol having 1 to 3 carbon atoms satisfies the above range, the alcohol may not be added.
  • the alcohol exceeds the above range, the alcohol can be reduced by concentration or the like. Of course, if not enough, the alcohol can also be added.
  • the amount of alkali hydroxide used is preferably 2 to 9 moles relative to 1 mole of L-carnosine.
  • the resulting mixed solution can convert L-carnosine contained in the mixed solution into crystalline L-carnosine zinc complex (Polaprezinc) by mixing zinc acetate.
  • the zinc acetate to be mixed is not particularly limited, but in terms of ease of handling, it is preferable to use a dihydrate of zinc acetate.
  • the amount of zinc acetate used is not particularly limited, and is preferably 1 to 3 moles in terms of zinc acetate relative to 1 mole of L-carnosine.
  • the zinc acetate can be mixed with the mixed solution as it is, or can be mixed as a solution dissolved in an alcohol having 1 to 3 carbon atoms.
  • the reaction temperature is preferably ⁇ 10 to 70 ° C., preferably 0 to 50 ° C., and more preferably 0 to 30 ° C.
  • the atmosphere at the time of mixing the zinc acetate and the mixed solution is not particularly limited either, and can be performed under a dry air atmosphere, under an inert gas atmosphere, or under a normal air atmosphere.
  • the reaction may be carried out under any pressure of atmospheric pressure, reduced pressure and increased pressure. Therefore, in consideration of operability, it is preferable to carry out the reaction under an air atmosphere and under atmospheric pressure.
  • L-carnosine can be made into a crystalline L-carnosine zinc complex (Polaprezinc) by mixing the mixed solution with zinc acetate by the method as described above. According to the above method, even though the solvent used is concentrated, the yield of the crystalline L-carnosine zinc complex can be increased because L-carnosine is not isolated from the solvent. .
  • the obtained crystalline L-carnosine zinc complex (Polaprezinc) can be purified by the same method as described above in ⁇ Purification of crystalline L-carnosine zinc complex (Polaprezinc)> and taken out of the reaction system it can.
  • Detector Ultraviolet absorptiometer (manufactured by Waters Corporation) Measurement wavelength: 210 nm
  • Column A stainless steel tube with an inner diameter of 4.6 mm and a length of 150 mm, packed with 5 ⁇ m octadecylsilylated silica gel for liquid chromatography.
  • Measurement time 30 minutes
  • Retention time L-histidine: 2.9 minutes
  • ⁇ -alanyl-histidyl-histidine derivative compound in which L-carnosine derivative and L-histidine are coupled
  • protected L-carnosine (II) 12.9 minutes
  • Measurement condition 2 When L-carnosine is synthesized by deprotecting L-carnosine derivative (I) or L-carnosine derivative (II), the following measurement conditions were used.
  • Detector same as measurement condition 1
  • Measurement wavelength 210 nm
  • Column A stainless steel tube with an inner diameter of 4.6 mm and a length of 150 mm, packed with 5 ⁇ m octadecylsilylated silica gel for liquid chromatography.
  • Mobile phase A mixed solution in which dipotassium hydrogen phosphate (26.1 g) and sodium 1-decanesulfonate (3.7 g) are added and dissolved in 3000 mL of water and then phosphoric acid is added to adjust to pH 3.0 Of the mixture and acetonitrile at a mixing ratio of 78:22 Flow rate: 1.0 mL per minute Column temperature: Constant temperature around 30 ° C.
  • the obtained filtrate was mixed with an aqueous solution containing sodium bicarbonate of pH 8.0.
  • the resulting solution was extracted with ethyl acetate (10 mL).
  • the resulting solution of ethyl acetate was then washed with an aqueous solution containing sodium bicarbonate pH 8.0 until neutral (pH 7).
  • Example 2 Reaction of acid anhydride (II) with L-histidine (preparation of protected L-carnosine (II))> According to the following reaction formula, the acid anhydride (II) represented by the formula (1 ′ ′) was reacted with L-histidine to produce a protected L-carnosine derivative (II) represented by the formula (3p2).
  • an aqueous solution containing L-histidine (0.35 g, 2.26 mmol), water (5 mL), and 10% by mass sodium hydroxide was mixed to prepare an alkaline aqueous solution of L-histidine at pH 11.0.
  • the filtrate containing 3-N-benzyloxycarbonylaminopropionic acid anhydride (acid anhydride (II)) in the alkaline aqueous solution of L-histidine maintains the temperature of the reaction solution in the range of 5 to 10 ° C. Add for 30 minutes as you want. Under the present circumstances, 10 mass% sodium hydroxide aqueous solution (aqueous solution containing an inorganic base) is added suitably, maintaining the temperature of a reaction liquid at 5-10 degreeC, and pH of a reaction liquid is 10.9-11.8. To maintain the range of After the filtrate was added, stirring was carried out at that temperature for 10 minutes. After stirring, the reaction solution was confirmed by high performance liquid chromatography (HPLC), and the conversion of 3-N-benzyloxycarbonylaminopropionic acid anhydride (acid anhydride (II)) was 75.6%.
  • HPLC high performance liquid chromatography
  • N-benzyloxycarbonyl- ⁇ -alanine (N-protected- ⁇ -alanine derivative represented by the formula (4); 1.00 g, 4.48 mmol), triethylamine (organic base; 0.45 g, 4) under a nitrogen atmosphere
  • a mixed solution containing .45 mmol) and acetonitrile (7 mL) was prepared, and the solution was cooled to 7 ° C. or less.
  • Example 4 Reaction of Acid Anhydride (I) with L-Histidine (Production of Protected L-Carnosine Derivative (II))>
  • the acid anhydride (I) represented by the formula (1 ′) is synthesized according to the following reaction formula, and then the acid anhydride (I) is reacted with L-histidine to give a protected compound represented by the formula (3p2) L-carnosine derivative (II) was produced.
  • Example 3 The same operation as in Example 3 (the same amount of raw materials was also used) was performed to prepare an acetonitrile solution in which the acid anhydride (I) represented by the formula (1 ') was dissolved in acetonitrile.
  • Example 5 Reaction of acid anhydride (I) with L-histidine (preparation of protected L-carnosine derivative (II))
  • Example of change of solvent and base The same operation as in Example 4 was carried out except that, in Example 4, a THF solution was used instead of the acetonitrile solution in which the acid anhydride (I) was dissolved, and pyridine was used instead of triethylamine as a base.
  • the reaction was carried out under the same conditions as in Example 4 except that the same amount of THF and the same amount of pyridine (the same equivalent amount of pyridine) was used instead of triethylamine.
  • the assay yield of the same protected L-carnosine derivative (II) as obtained in Example 4 was 38.3%.
  • Example 6 Reaction of acid anhydride (I) with L-histidine (preparation of protected L-carnosine derivative (II))
  • Example of change of solvent and base The same operation as in Example 4 was carried out except that in Example 4, a THF solution was used instead of the acetonitrile solution in which the acid anhydride (I) was dissolved, and 4-methylmorpholine was used instead of triethylamine as a base ( The reaction was performed in the same manner as in Example 4 except that the same amount of THF was used instead of acetonitrile, and the same amount of 4-methylmorpholine was used instead of triethylamine (the same amount of 4-methylmorpholine was used). ).
  • the assay yield of the same protected L-carnosine derivative (II) as obtained in Example 4 was 55.9%.
  • Example 7 Reaction of acid anhydride (I) with L-histidine (production of protected L-carnosine derivative (II))
  • Example of solvent change> The same operation as in Example 4 was carried out except that the THF solution was used instead of the acetonitrile solution in which the acid anhydride (I) was dissolved in Example 4 (except that the same amount of THF was used instead of acetonitrile, The reaction was carried out under the same conditions as in Example 4).
  • the assay yield of the same protected L-carnosine derivative (II) as obtained in Example 4 was 62.4%.
  • Example 8 ⁇ Reaction of acid anhydride (I) with L-histidine (production of protected L-carnosine derivative (II))
  • Example of solvent change The same operation as in Example 4 was carried out except that, in Example 4, a solution of dimethylformamide (DMF) was used instead of the solution of acetonitrile in which acid anhydride (I) was dissolved (the same amount of DMF was used instead of acetonitrile).
  • the reaction was carried out under the same conditions as in Example 4 except that the reaction was carried out.
  • the assay yield of the same protected L-carnosine derivative (II) as obtained in Example 4 was 68.3%.
  • Example 9 Reaction of acid anhydride (I) with L-histidine (production of protected L-carnosine derivative (II))
  • Example of solvent change The same operation as in Example 4 was carried out except that methyl ethyl ketone solution was used instead of the acetonitrile solution in which acid anhydride (I) was dissolved in Example 4 (except that the same amount of methyl ethyl ketone was used instead of acetonitrile, The reaction was carried out under the same conditions as in Example 4).
  • the assay yield of the same protected L-carnosine derivative (II) as obtained in Example 4 was 55.6%.
  • Example 10 ⁇ Reaction of acid anhydride (I) with L-histidine (production of protected L-carnosine derivative (II))
  • Example of solvent change The same operation as in Example 4 was carried out except that instead of the acetonitrile solution in which the acid anhydride (I) was dissolved, an ethyl acetate solution was used in Example 4 (except that the same amount of ethyl acetate was used instead of acetonitrile. The reaction was carried out under the same conditions as in Example 4). The assay yield of the same protected L-carnosine derivative (II) as obtained in Example 4 was 61.2%.
  • Example 11 Reaction of Acid Anhydride (I) with L-Histidine (Production of Protected L-Carnosine Derivative (II))
  • the same operation as in Example 4 was carried out except that, in Example 4, a solution of 1,2-dimethoxyethane was used instead of the acetonitrile solution in which the acid anhydride (I) was dissolved (1, 2- in place of acetonitrile).
  • the reaction was conducted in the same manner as in Example 4 except that the same amount of dimethoxyethane was used.
  • the assay yield of the same protected L-carnosine derivative (II) as obtained in Example 4 was 85.0%.
  • Example 12 Reaction of acid anhydride (I) with L-histidine derivative (preparation of protected L-carnosine derivative (I))> According to the following reaction formula, protected L-carnosine derivative (I) represented by formula (3p1) was produced.
  • TMS refers to a trimethylsilyl group.
  • the chloroform solution containing the acid anhydride (I) represented by the formula (1 ′) is added to a chloroform solution in which the L-histidine derivative (I) represented by the formula (2p) is dissolved. It dripped over 1 hour, maintaining as follows. Stirring was performed for 2 hours while maintaining the temperature of the reaction solution after dropping. As a result of confirming the obtained reaction solution by HPLC that the buffer is an acid, and the amount of the residue, the assay yield of the protected L-carnosine derivative (I) represented by the formula (3p1) is 94.93% The
  • R 7 P ′ of protected L-carnosine derivative (I) may be a hydrogen atom or a trimethylsilyl group (TMS)
  • TMS trimethylsilyl group
  • Example 13 ⁇ Reaction of acid anhydride (I) with L-histidine derivative (preparation of protected L-carnosine derivative (I))
  • Example of modification of halide The same operation as in Example 10 was carried out except that, in Example 12, as the halide, ethyl chlorocarbonate was used instead of pivaloyl chloride.
  • the assay yield of the obtained protected L-carnosine derivative (II) was 90.4%.
  • Example 14 Example of producing protected L-carnosine derivative (II) from protected L-carnosine derivative (I)>
  • a chloroform solution containing the acid anhydride (I) represented by the formula (1 ′) is dropped into a chloroform solution in which the L-histidine derivative (I) represented by the formula (2p) is dissolved, and then Chloroform (20 mL) was added to the reaction solution stirred for 2 hours.
  • Example 15 Method for producing L-carnosine from protected L-carnosine derivative (II)> The following reactions were performed.
  • the protected L-carnosine derivative (II) (5.0 g, 13.9 mmol, HPLC purity: 99.51%), prepared by the same procedure as in Example 14 and stirred, methanol (15 mL), ion exchanged water (35 mL) were stirred. The solution was obtained by mixing. After confirming that the protected L-carnosine derivative (II) has dissolved, commercially available 5 mass% palladium carbon (50% wet, 30 mg, 0.05 mol%) is added to the solution, and the atmosphere is hydrogen (1 atm). The mixture was stirred for 24 hours.
  • the obtained filtrate was concentrated under reduced pressure at an external temperature of 60 ° C. until crystals were precipitated, then methanol (50 mL) was added, and then cooled to 5 ° C. and stirred for 2 hours. After stirring, it was filtered through a Kiriyama funnel (solid was separated), and the solid was washed twice with methanol (5 mL).
  • the obtained solid was dried under reduced pressure at 40 ° C. for 12 hours to obtain a white solid of L-carnosine (2.9 g, yield: 92.3%).
  • the HPLC purity of the white solid was 99.62%.
  • Example 16 Example of producing protected L-carnosine derivative (II) from protected L-carnosine derivative (I) without removing it from the reaction system and deprotecting as it is to produce L-carnosine> The reaction shown below was performed.
  • Pivaloyl chloride (halide represented by formula (5)) was added to the chloroform solution containing triethylamine; A solution containing .12 g, 75.6 mmol) and chloroform (23 mL) was added dropwise over 20 minutes while maintaining the temperature of the reaction solution at 10 ° C. or less.
  • the chloroform solution containing the acid anhydride (I) represented by the formula (1 ′) is added to a chloroform solution in which the L-histidine derivative (I) represented by the formula (2p) is dissolved. It dripped over 1 hour, maintaining as follows. Stirring was performed for 2 hours while maintaining the temperature of the reaction solution after dropping.
  • the resulting reaction solution was a suspension of chloroform containing protected L-carnosine derivative (I) (20.5 g, 56.9 mmol, yield 88%) represented by formula (3p1).
  • the resultant was filtered using Radiolite with a Kiriyama funnel (to remove palladium carbon), and washed with 50 mL of ion-exchanged water to obtain an aqueous solution of L-carnosine.
  • ion-exchanged water was added to dissolve the solid.
  • 125 mL of ethanol was added at 70 ° C., and the mixture was heated for 30 minutes, allowed to cool, and then aged at 5 ° C. for 12 hours to crystallize L-carnosine.
  • the mixture was filtered through a Kiriyama funnel (the precipitated L-carnosine was separated) and washed with 50 mL of ethanol.
  • L-carnosine (11.5 g, yield: 79%: yield from L-histidine) as a white solid.
  • the analytical values of L-carnosine obtained were as follows. Melting point 255-260 ° C (decomposition) IR (KBr) 2924, 1639, 1574, 1460, 1408, 1269, 840 cm -1 .
  • Example 17 A solvent modification example in an example of producing L-carnosine by preparing protected L-carnosine derivative (II) from protected L-carnosine derivative (I) without removing it from the reaction system to carry out deprotection as it is.
  • Example 16 it is an example using methylene chloride instead of the used chloroform.
  • the yield of L-carnosine was 78.3%) and was 98.93%. The details are as follows.
  • N-benzyloxycarbonyl- ⁇ -alanine (N-protected- ⁇ -alanine derivative; 7.25 g, 32.4 mmol), methylene chloride (30 mL), represented by the formula (4) in Example 3 under a nitrogen atmosphere
  • Triethylamine (3.29 g, 32.5 mmol) was added and cooled to 5 ° C.
  • the methylene chloride solution containing the acid anhydride (I) represented by the formula (1 ′) is added to the methylene chloride solution in which the L-histidine derivative (I) represented by the formula (2p) is dissolved. It was added dropwise over 1 hour while maintaining the temperature in the range of 0-5 ° C. Stirring was performed for 1 hour while maintaining the temperature of the reaction solution after dropping.
  • the assay yield of protected L-carnosine derivative (I) represented by Formula (3p1) was 82%.
  • Example 18 Example of producing L-carnosine using a Boc group as a protecting group> The synthesis shown by the following reaction formula was performed.
  • Example 19 Method for producing L-carnosine using an organic base in the reaction of acid anhydride (I) with L-histidine (production of protected L-carnosine derivative (II))>
  • the acid anhydride (I) represented by the formula (1 ′) is synthesized according to the following reaction formula, and then the acid anhydride (I) is reacted with L-histidine to give a protected compound represented by the formula (3p2) L-carnosine derivative (II) was produced.
  • the reaction liquid of the obtained protected L-carnosine derivative (II) was not taken out of the reaction system, and deprotection was carried out as it was to produce L-carnosine.
  • N-benzyloxycarbonyl- ⁇ -alanine (N-protected- ⁇ -alanine derivative represented by the formula (4); 40.00 g, 179.19 mmol), triethylamine (organic base; 18.13 g, 179) under an air atmosphere
  • a mixed solution containing .19 mmol) and acetonitrile (120 mL) was prepared, and the solution was cooled to 7 ° C. or less.
  • a solution containing pivaloyl chloride (21.61 g, 179.19 mmol) and acetonitrile (40 mL) in the cooled solution is maintained for 30 minutes so that the temperature in the reaction solution is 10 ° C. or less. It dripped. Stirring was performed for 1 hour while maintaining the temperature (10 ° C. or lower) of the reaction solution after dropping.
  • the above operation was performed to prepare an acetonitrile solution containing the acid anhydride (I) represented by the formula (1 ').
  • triethylamine (32.60 g, 322.27 mmol) is added to a mixture of L-histidine (20.00 g, 128.90 mmol) and water (100 mL) to prepare an alkaline aqueous solution of L-histidine, The aqueous solution was cooled to 10 ° C.
  • Example 20 Purification Example of L-Carnosine The same operation as in Example 19 (the same amount of raw materials was used) was performed to obtain a white solid of L-carnosine. As a result of analysis by HPLC, the content: 94.38%, pivaloylhistidine: 0.623%, ⁇ -alanyl-histyl-histidine: 0.103%.
  • Example 21 ⁇ Purification of L-carnosine> The same operations as in Example 20 were carried out except that, in Example 20, methanol was used instead of ethanol as a crystallization and washing solvent for L-carnosine.
  • the purified L-carnosine (4.07 g, yield: 87.17%) was obtained in the same manner as that obtained in Example 20.
  • the content 99.24%, pivaloylhistidine: 0.126%, ⁇ -alanyl-histyl-histidine: 0.041%.
  • Example 22 Provide of protected L-carnosine derivative (II) by reaction of acid anhydride (I) with L-histidine> N-benzyloxycarbonyl- ⁇ -alanine (N-protected- ⁇ -alanine derivative represented by the formula (4); 1.00 g, 4.480 mmol), triethylamine (organic base; 0.45 g, 4) under an air atmosphere A mixed solution containing .480 mmol) and acetonitrile (7 mL) was prepared, and the solution was cooled to 7 ° C. or less.
  • N-benzyloxycarbonyl- ⁇ -alanine represented by the formula (4); 1.00 g, 4.480 mmol
  • triethylamine organic base; 0.45 g, 4
  • a mixed solution containing .480 mmol) and acetonitrile (7 mL) was prepared, and the solution was cooled to 7 ° C. or less.
  • Example 23 ⁇ Production of protected L-carnosine (II) by reaction of acid anhydride (I) with L-histidine>
  • the same operation as in Example 22 was performed except that the number of equivalents of triethylamine used in the alkaline aqueous solution of L-histidine was doubled in Example 22.
  • Example 24 ⁇ Production of protected L-carnosine (II) by the reaction of acid anhydride (I) with L-histidine>
  • the same operation as in Example 22 was performed except that the number of equivalents of triethylamine used in the alkaline aqueous solution of L-histidine was tripled in Example 22.
  • Example 25 Provided L-carnosine (II) by reaction of acid anhydride (I) with L-histidine> N-benzyloxycarbonyl- ⁇ -alanine (N-protected- ⁇ -alanine derivative represented by the formula (4); 10.0 g, 44.8 mmol), triethylamine (organic base; 4.5 g, 44) under an air atmosphere A mixed solution containing .8 mmol) and acetonitrile (40 mL) was prepared, and the solution was cooled to -40.degree.
  • N-benzyloxycarbonyl- ⁇ -alanine N-protected- ⁇ -alanine derivative represented by the formula (4); 10.0 g, 44.8 mmol
  • triethylamine organic base; 4.5 g, 44
  • Example 26 Provide of protected L-carnosine derivative (II) by reaction of acid anhydride (I) with L-histidine> Prepare a mixed solution containing pivaloyl chloride (halide represented by formula (5); 5.4 g, 44.8 mmol) and acetonitrile (10 mL) under an air atmosphere, and cool the solution to -15 ° C. did.
  • pivaloyl chloride halide represented by formula (5); 5.4 g, 44.8 mmol
  • acetonitrile 10 mL
  • N-benzyloxycarbonyl- ⁇ -alanine N-protected- ⁇ -alanine derivative represented by formula (4); 10.0 g, 44.8 mmol
  • triethylamine organic base; 4.5 g
  • a mixed solution containing 44.8 mmol) and acetonitrile (30 mL) was added dropwise over 30 minutes so that the temperature in the reaction solution was kept below -10.degree.
  • the mixture was stirred for 30 minutes while maintaining the temperature (-15 to -10 ° C.) of the reaction solution after dropping, and filtration under reduced pressure was performed to remove the precipitate.
  • the above operation was performed to prepare an acetonitrile solution containing the acid anhydride (I) represented by the formula (1 ′).
  • Example 27 Provides ⁇ Production example of N-protected- ⁇ -alanine derivative>
  • the N-protected- ⁇ -alanine derivative represented by the formula (1 ′) was produced according to the following reaction formula.
  • Example 28 ⁇ Reaction of N-protected- ⁇ -alanine derivative with L-histidine (preparation of protected L-carnosine derivative)> According to the above reaction formula, an N-protected- ⁇ -alanine derivative represented by the formula (1 ′) is synthesized, and then the N-protected- ⁇ -alanine derivative is reacted with L-histidine to give a compound of formula (3p1) The protected L-carnosine derivatives shown were prepared.
  • Sodium hydroxide (3.2 g, 79.3 mmol) was added to an aqueous solution of L-histidine (10.8 g, 72.1 mmol), water (100 mL) and the aqueous solution was cooled to 5 ° C.
  • the acetonitrile solution of the N-protected- ⁇ -alanine derivative prepared in Example 1 was added dropwise to an alkaline aqueous solution of L-histidine such that the temperature of the reaction solution was in the range of 0 to 10 ° C. After the dropwise addition, the temperature was kept at 0-10 ° C., and stirring was performed for 22 hours.
  • Example 29 Post-treatment after producing a protected L-carnosine derivative> 35% hydrochloric acid was added to the solution prepared in Example 28 so that the pH was 3, 20 mL of methylene chloride was added, and the mixture was stirred at 25 ° C. for 30 minutes. After stirring, the mixture was allowed to stand for 30 minutes, and the organic layer and the aqueous layer were separated. The separated organic layer and aqueous layer were measured by HPLC. The purity of the protected L-carnosine derivative was 87.13%, and the content of the N-protected- ⁇ -alanine derivative was 1.96%.
  • Example 30 Post-treatment after production of protected L-carnosine derivative> 35% hydrochloric acid was added to the solution prepared in Example 28 so that the pH was 6, 20 mL of methylene chloride was added, and the mixture was stirred at 25 ° C. for 30 minutes. After stirring, the mixture was allowed to stand for 30 minutes, and the organic layer and the aqueous layer were separated. The separated organic layer and aqueous layer were measured by HPLC. The purity of the protected L-carnosine derivative was 76.36%, and the content of the N-protected- ⁇ -alanine derivative was 14.10%.
  • Example 31 Post-treatment after production of protected L-carnosine derivative> Triethylamine was added to the solution prepared in Example 28 so that the pH was 10, 20 mL of methylene chloride was added, and the mixture was stirred at 25 ° C. for 30 minutes. After stirring, the mixture was allowed to stand for 30 minutes, and the organic layer and the aqueous layer were separated. The separated organic layer and aqueous layer were measured by HPLC, and the purity of the protected L-carnosine derivative was 73.79%, and the content of the N-protected- ⁇ -alanine derivative was 17.17%.
  • Example 32 Method for producing L-carnosine from protected L-carnosine derivative>
  • Pd / C 154 mg, 0.036 mmol, 5% Pd, 50% Wet
  • water was distilled off by concentration under reduced pressure
  • ethanol 140 mL was added to crystallize L-carnosine, and then it was cooled to 5 ° C. and stirred for 18 hours.
  • the precipitated crystals were filtered and dried to obtain L-carnosine (12.2 g, yield: 75%: yield from L-histidine, purity: 99.79%) as a white solid.
  • Example 33 Crystalline L-carnosine zinc complex (Polaprezinc) was produced according to the following reaction formula.
  • N-Boc-L-carnosine protected L-carnosine derivative (II), 20 g, 61.2 mmol
  • chloroform solvent, 100 mL
  • 4N HCl acid, 60 mL, converted to hydrogen chloride; 197.6 mmol
  • ⁇ Zinc chloride (decomposition method of crystalline L-carnosine zinc complex) when the deprotection reaction is carried out with an acid>
  • a solution of sodium hydroxide (alkali hydroxide, 4.90 g, 122.6 mmol) dissolved in methanol (C1-C3 alcohol, 180 mL) in the concentrated residue containing L-carnosine obtained is obtained at 5 ° C.
  • the mixture was stirred for 1 hour while maintaining the temperature to obtain a mixed solution.
  • a solution of sodium hydroxide (alkali hydroxide, 1.96 g, 49.0 mmol) dissolved in methanol (C1-C3 alcohol, 72 mL) in the obtained L-carnosine is maintained at a temperature of 5 ° C.
  • the mixture was stirred for 1 hour while being added to obtain a mixed solution.
  • Example 34 Crystalline L-carnosine zinc complex (Polaprezinc) was produced according to the following reaction formula.
  • ⁇ Zinc chloride (decomposition method of crystalline L-carnosine zinc complex) when the deprotection reaction is carried out with an acid>
  • a solution of sodium hydroxide (alkali hydroxide, 2.45 g, 61.3 mmol) dissolved in methanol (C1-C3 alcohol, 90 mL) in the concentrated residue containing L-carnosine obtained is obtained at 5 ° C.
  • the mixture was stirred for 1 hour while maintaining the temperature to obtain a mixed solution.
  • the obtained suspension is filtered, and the solid collected by filtration is washed with hot water (50 mL) and then air-dried at 70 ° C. for 4 hours to give a solid crystalline L-carnosine zinc complex (Polaprezinc). It was confirmed.
  • the yield was 7.38 g, the yield from N-Boc-L-carnosine was 100%, and the yield from N-Boc- ⁇ -alanine was 83.6%.
  • Comparative example 3 ⁇ Production of acid anhydride (I)>, ⁇ production of L-histidine derivative>, ⁇ production of protected L-carnosine>, ⁇ deprotection reaction with acid>, ⁇ mixture of the mixture in the same manner as in Reference Example 2>
  • the solid collected by filtration was dispersed in water (120 mL) as a wet substance, and stirred at 23 ° C. for 2 hours.
  • the resulting suspension is filtered, and the solid collected by filtration is washed with hot water (40 mL) and then air-dried at 70 ° C. for 4 hours to give a crystalline L-carnosine zinc complex (Polaprezinc) as a solid. It was confirmed.
  • the yield was 5.90 g, 80% yield from N-Boc-L-carnosine and 68.32% from N-Boc- ⁇ -alanine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明は、簡便に保護L-カルノシン誘導体を製造する方法等を提供することを目的とする。 本発明の保護L-カルノシン誘導体を製造する方法は、式(1)で示される酸無水物と、式(2)で示されるL-ヒスチジン誘導体とを反応させることにより、式(3)で示される保護L-カルノシン誘導体を製造する工程を含むことを特徴としている。{式中、R1は、所定の保護アミノ基であり、R2は、所定の保護アミノ基または分岐基であり、R7、およびR8は、水素原子、又はアミノ基の保護基であり、R9は、水素原子、又はカルボキシル基の保護基である。}

Description

保護L-カルノシン誘導体、L-カルノシン、および結晶性L-カルノシン亜鉛錯体の製造方法
 本発明は、保護L-カルノシン誘導体、L-カルノシン、および結晶性L-カルノシン亜鉛錯体の新規な製造方法に関する。
 下記式
Figure JPOXMLDOC01-appb-C000026
で示されるL-カルノシンは、組織修復促進作用、免疫調整作用、抗炎症作用を有していることから、医薬品や健康食品などの需要が高まっている。また、該L-カルノシンは、容易に金属とキレート結合をつくることから、亜鉛と錯形成した、下記式で示される結晶性L-カルノシン亜鉛錯体(以下、単に「ポラプレジンク」とする場合もある)などの抗潰瘍薬、味覚障害治療薬へ応用されている。
Figure JPOXMLDOC01-appb-C000027
 L-カルノシンは、通常、以下の方法で合成されている。具体的には、L-ヒスチジン又はその誘導体と、シアノ酢酸エステルとを反応させる方法(例えば、特許文献1参照)、L-ヒスチジン又はその誘導体とN-トリフルオロアセチル誘導体とを反応させる方法(例えば、非特許文献1参照)、又は、L-ヒスチジン誘導体とN-フタロイル誘導体とを反応させる方法(特許文献2参照)が知られている。その他、N-カルベメート保護-カルボキシ無水物とL-ヒスチジンメチルエステルとをカップリングする方法(非特許文献2参照)も知られている。
 しかしながら、前記従来方法では、以下の点で改善の余地があった。例えば、特許文献1に記載の方法では、比較的高温(例えば、120℃)で反応させても、収率が低いという点で改善の余地があった。また、この方法では、シアノ基で保護されたL-カルノシン誘導体を、水素還元によって該シアノ基をアミノ基にするため、製造コストが比較的高くなる傾向にあった。
 また、非特許文献1に記載の方法では、活性化剤としてニトロフェノールを使用しなければならず、ニトロフェノールを除去するための精製工程が必要となり、後処理工程が煩雑になるという点で改善の余地があった。さらに、原料となるN-トリフルオロアセチル誘導体が高価であり、工業的な生産を考えると他原料での製造が望まれていた。
 また、特許文献2の方法は、以下の点で改善の余地があった。該方法は、具体的には、N-フタロイル誘導体としてN-フタロイル-β-アラニンの酸クロライドと、保護基としてトリメチルシリル基を有するL-ヒスチジン誘導体とを反応させるものである。該反応においては、該酸クロライドから副生される塩化水素により、該L-ヒスチジン誘導体のトリメチルシリル基の脱保護が生じ易く、多数の生成物が混在するため、精製が困難となる点、またトリメチルシリル基の脱保護を抑制させるためには、反応を厳密に制御しなければならず、収率が不安定になるという点で改善の余地があった。
 また、非特許文献2の方法では、N-カルベメート保護-カルボキシ無水物を合成するために多くの工程が必要であった。そのため、経済的な観点で改善の余地があった。
 前記ポラプレジンクは、通常、結晶(固体)のL-カルノシンをメタノール、および水酸化ナトリウムと混合して溶解させた後、該溶液に酢酸亜鉛を加えて製造されている(例えば、特許文献3~5参照)。
 ポラプレジンクは、医薬品であるため、高純度のものが要求されている。そのため、原料となるL-カルノシンも純度の高いものが要求されている。従来の方法によれば、純度の高いポラプレジンクを製造することができる。
国際公開第2001/064638号 中国特許出願公開第101284862号明細書 特公平07-116160号公報 特開2007-204397号公報 国際公開第2015/119235号
Russ. J. General Chem. 2007, 77(9), 1576 J. Org. Chem. 2010,75,7107.
 L-カルノシンは、前記の通り、医薬品にも適用されており、その適用範囲は広い。そのため、なるべく安全かつ簡便な方法で、収率よく製造することができれば、その工業的利用価値はさらに高くなる。
 したがって、本発明の目的は、安全かつ簡便な方法でL-カルノシンを製造する方法を提供することにある。
 さらに、本発明者等の検討によれば、従来の方法には以下の点で改善の余地があることが分かった。すなわち、従来の方法では、最終的に得られるポラプレジンクの収率が低くなるという点で改善の余地があることが分かった。
 したがって、本発明の別の目的は、ポラプレジンクの収率を高める点にある。
 本発明者等は、上記課題を解決するために、鋭意検討を行った。そして、N-保護-β-アラニン誘導体の酸無水物又は、N-保護β-アラニン誘導体とピバロイルクロリドとで得られる混合酸無水物とL-ヒスチジン誘導体とを反応させることで、高収率で保護L-カルノシン誘導体が得られることを見出し、本発明を完成するに至った。L-カルノシンは、該保護基の脱保護を行うことにより製造できる。また、該酸無水物の製造方法を検討し、有機塩基の存在下でアラニン誘導体とハロゲン化物とを反応させることにより、容易に製造できることを見出し、本発明を完成するに至った。
 一方、上記方法により、高収率で保護L-カルノシン誘導体は得られるものの、得られた保護L-カルノシン誘導体中に未反応のN-保護-β-アラニン誘導体等が残存している。かかるN-保護-β-アラニン誘導体は、保護L-カルノシン誘導体からL-カルノシンを製造する過程において、β-アラニンへと変換されるが、L-カルノシンから、β-アラニン等の不純物を取り除くことが困難であることを見出した。特にL-ヒスチジン誘導体が高価であることから、上記保護L-カルノシン誘導体の製造において、N-保護-β-アラニン誘導体を過剰に使用した場合には、得られる保護L-カルノシン誘導体中に多量のN-保護-β-アラニン誘導体が含有してしまうことが判明した。
 そこで、本発明者等は、保護L-カルノシン誘導体が酸性水溶液に可溶であるのに対し、N-保護-β-アラニン誘導体等の不純物は酸性水溶液に対する溶解性が極めて低く、有機溶媒に可溶であるという知見を得た。そこで保護L-カルノシン誘導体を製造後の精製方法について検討を進めた結果、保護L-カルノシン誘導体を含有する酸性水溶液を得た後、該酸性水溶液と有機溶媒を接触させることで、高純度の保護L-カルノシン誘導体が得られることを見出し、本発明を完成するに至った。
 さらに、本発明者等は、ポラプレジンクの収率が低下する原因を様々検討した結果、L-カルノシンを結晶として取り出す際に、L-カルノシンの収率が大きく低下することが原因ではないかと考えた。
 L-カルノシンは、アミノ基、および水酸基を有する化合物であり、水、およびアルコールを使用して精製する場合が多い。本発明者等の検討によれば、水、およびアルコールのような溶媒に対して、L-カルノシンは溶解性が高く、結晶として取り出す際に、液中に結晶化されないL-カルノシンが多く存在することが分かった。通常、L-カルノシンを亜鉛塩化してポラプレジンクにする場合には、結晶化して単離したL-カルノシンを原料としており、L-カルノシンの収率低下がポラプレジンクの収率低下につながっていると考えられた。
 そこで、本発明者等は、上記原因を解消するために、L-カルノシンを製造した際に、反応系外に一旦、固体(結晶)として取り出さずに、そのままポラプレジンクへと変換することにより、ポラプレジンクの収率を高くできることを見出し、本発明を完成するに至った。つまり、結晶化・濾過精製により高度に高純度化していないL-カルノシンを用いて亜鉛塩化することにより、高収率で結晶性L-カルノシン亜鉛錯体(ポラプレジンク)を得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の[1]~[17]を含む。
[1]下記式(1)
Figure JPOXMLDOC01-appb-C000028
{式中、R1は、下記式(1a)
Figure JPOXMLDOC01-appb-C000029
  (式中、
   R3は、アミノ基の保護基である。)
で示される基、および下記式(1a’)
Figure JPOXMLDOC01-appb-C000030
で示される基から選ばれる保護アミノ基(以下、式(1a)、および式(1a’)で示される基を「保護アミノエチル基」とする場合もある。)であり、
 R2は、前記保護アミノ基、または下記式(1b)
Figure JPOXMLDOC01-appb-C000031
  (式中、mは0又は1の整数であり、R4、R5、およびR6は、それぞれ、水素原子、又は炭素数1~6のアルキル基であり、ただし、mが0である場合、R4、R5、およびR6の少なくとも2つの基が炭素数1~6のアルキル基である。)
で示される分岐基である。}で示される酸無水物(以下、式(1)で示される化合物を単に「酸無水物」とする場合もある。)と、
 下記式(2)
Figure JPOXMLDOC01-appb-C000032
{式中、
 R7、およびR8は、水素原子、又はアミノ基の保護基であり、
 R9は、水素原子、又はカルボキシル基の保護基である。}で示されるL-ヒスチジン誘導体(以下、式(2)で示される化合物を単に「L-ヒスチジン誘導体」とする場合もある。)とを反応させることにより、
 下記式(3)
Figure JPOXMLDOC01-appb-C000033
{式中、
 R1は、前記式(1)のものと同義であり、
 R7、R8、およびR9は、前記式(2)におけるものと同義である。}で示される保護L-カルノシン誘導体(以下、式(3)で示される化合物を単に「保護L-カルノシン誘導体」とする場合もある。)を製造する工程(a1)を含む、
保護L-カルノシン誘導体を製造する方法。
 本発明は、以下の態様をとることができる。
 [2]前記R3が、置換基を有していてもよいベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、トリフルオロアセチル基、t-ブトキシカルボニル基、2,2,2-トリクロロエトキシカルボニル基、又はホルミル基であり、
 前記R7、および前記R8が、水素原子、又はトリアルキルシリル基であり、
 前記R9が、水素原子、又はトリアルキルシリル基である[1]に記載の保護L-カルノシン誘導体を製造する方法。
 [3]前記工程(a1)が、有機溶媒中、前記酸無水物と前記L-ヒスチジン誘導体とを反応させて前記保護L-カルノシン誘導体を製造する工程であり、
 前記L-ヒスチジン誘導体が、下記式(2p)
Figure JPOXMLDOC01-appb-C000034
(式中、
 R7p、およびR8pは、アミノ基の保護基であり、
 R9pは、カルボキシル基の保護基である。)で示されるL-ヒスチジン誘導体(I)(以下、L-ヒスチジン誘導体の中でも式(2p)で示される化合物を「L-ヒスチジン誘導体(I)」とする場合もある。)であり、
 前記保護L-カルノシン誘導体が、下記式(3p1)
Figure JPOXMLDOC01-appb-C000035
(式中、
 R1は、前記式(1)におけるものと同義であり、
 R7p’は、水素原子、又はアミノ基の保護基であり、
 R8p、およびR9pは、前記式(2p)におけるものと同義である。)で示される保護L-カルノシン誘導体(I)(以下、保護L-カルノシン誘導体の中でも、式(3p1)で示される化合物を単に「L-カルノシン誘導体(I)」とする場合もある。)である
[1]または[2]に記載の保護L-カルノシン誘導体を製造する方法。
 [4]前記工程(a1)が、塩基、および水の存在下、前記酸無水物と前記L-ヒスチジンとを反応させて前記保護L-カルノシン誘導体を製造する工程であり、
 前記L-ヒスチジン誘導体が、下記式
Figure JPOXMLDOC01-appb-C000036
で示されるL-ヒスチジンであり、
 前記保護L-カルノシン誘導体が、下記式(3p2)
Figure JPOXMLDOC01-appb-C000037
(式中、R1は、前記式(1)におけるものと同義である。)
で示される保護L-カルノシン誘導体(II)(以下、保護L-カルノシン誘導体の中でも式(3p2)で示される化合物を単に「保護L-カルノシン誘導体(II)」とする場合もある。)
[1]または[2]に記載の保護L-カルノシン誘導体を製造する方法。
 [5]前記酸無水物1モルに対し、前記L-ヒスチジン誘導体を0.25~0.99モル用いる、[1]~[4]のいずれかに記載の保護L-カルノシン誘導体を製造する方法。
 [6]前記工程(a1)が、前記保護L-カルノシン誘導体をその酸性水溶液として製造する工程であり、
 前記工程(a1)の後に、前記酸性水溶液と有機溶媒とを接触させる工程(a2)をさらに含む[1]~[5]のいずれかに記載の保護L-カルノシン誘導体を製造する方法。
 [7][1]~[6]のいずれか1項に記載の方法により保護L-カルノシン誘導体を製造する工程(A)、および
 前記保護L-カルノシン誘導体の脱保護反応を行うことにより、下記式
Figure JPOXMLDOC01-appb-C000038
で示されるL-カルノシンを製造する工程(b1)
を含むL-カルノシンを製造する方法。
 [8]前記工程(A)が、前記保護L-カルノシン誘導体をその溶液として製造する工程であり、前記工程(b1)が、該溶液中で前記保護L-カルノシン誘導体の脱保護反応を行う工程である、[7]に記載のL-カルノシンを製造する方法。
 [9]前記工程(b1)の後に、アルコールと水の混合溶媒にて前記L-カルノシンの再結晶化を行う工程(b2)をさらに含む、[7]または[8]に記載のL-カルノシンを製造する方法。
 [10]下記式(1)
Figure JPOXMLDOC01-appb-C000039
{式中、
 R1は、下記式(1a)
Figure JPOXMLDOC01-appb-C000040
 (式中、
   R3は、アミノ基の保護基である。)
で示される基、および下記式(1a’)
Figure JPOXMLDOC01-appb-C000041
で示される基から選ばれる保護アミノ基であり、
 R2は、前記保護アミノ基、または下記式(1b)
Figure JPOXMLDOC01-appb-C000042
(式中、mは0又は1の整数であり、R4、R5、およびR6は、それぞれ、水素原子、又は炭素数1~6のアルキル基であり、ただし、mが0である場合、R4、R5、およびR6の少なくとも2つの基が炭素数1~6のアルキル基である。)
で示される分岐基である。}で示される酸無水物。
 [11]下記式(4)
Figure JPOXMLDOC01-appb-C000043
 {式中、
 R1は、下記式(1a)
Figure JPOXMLDOC01-appb-C000044
(式中、
   R3は、アミノ基の保護基である。)
で示される基、および下記式(1a’)
Figure JPOXMLDOC01-appb-C000045
で示される基から選ばれる保護アミノ基である。}で示されるN-保護-β-アラニン誘導体と、
 下記式(5)
Figure JPOXMLDOC01-appb-C000046
(式中、
 Xは、ハロゲン原子であり、mは0又は1の整数であり、
 R4、R5、およびR6は、それぞれ、水素原子、又は炭素数1~6のアルキル基であり、ただし、mが0である場合、R4、R5、およびR6の少なくとも2つの基が炭素数1~6のアルキル基である。)で示されるハロゲン化物と
を、有機塩基の存在下で反応させる、
 下記式(1’)
Figure JPOXMLDOC01-appb-C000047
(式中
 R1は、前記式(4)におけるものと同義であり、
 mは0又は1の整数であり、R4、R5、およびR6は、前記式(5)におけるものと同義である。)
で示される酸無水物(I)を製造する方法。
 [12] 下記式(4)
Figure JPOXMLDOC01-appb-C000048
{式中、
 R1は、下記式(1a)
Figure JPOXMLDOC01-appb-C000049
(式中、
   R3は、アミノ基の保護基である。)
で示される基、および下記式(1a’)
Figure JPOXMLDOC01-appb-C000050
で示される基から選ばれる保護アミノ基である。}で示されるN-保護-β-アラニン誘導体と、トリホスゲンと
を、有機塩基の存在下で反応させる、
 下記式(1’’)
Figure JPOXMLDOC01-appb-C000051
 (式中、R1は、前記式(4)におけるものと同義である。)
で示される酸無水物(II)を製造する方法。
 [13][7]または[8]に記載の方法でL-カルノシンを製造する工程(B)、および
 前記L-カルノシンから結晶性L-カルノシン亜鉛錯体を製造する工程(c)を含み、
 前記保護L-カルノシン誘導体が下記式(i)
Figure JPOXMLDOC01-appb-C000052
(式中、PGは、アミノ基の保護基である。)
で示され、
 前記工程(b1)が、前記保護L-カルノシン誘導体の脱保護反応を該保護L-カルノシン誘導体が溶解する溶媒中で行い、前記L-カルノシンを前記L-カルノシンおよび前記溶媒を含む混合液として製造する工程であり、
 前記工程(c)が、前記混合液中のL-カルノシンを、結晶として単離することなく亜鉛塩化することにより結晶性L-カルノシン亜鉛錯体を製造する工程である、
結晶性L-カルノシン亜鉛錯体を製造する方法。
 [14]前記工程(c)が、前記混合液と、少なくとも水酸化アルカリとを混合し、次いで、得られた混合溶液と酢酸亜鉛とを混合することにより、該L-カルノシンを亜鉛塩化して結晶性L-カルノシン亜鉛錯体を製造する工程である、[13]に記載の結晶性L-カルノシン亜鉛錯体を製造する方法。
 [15]前記式(i)におけるアミノ基の保護基であるPGが、置換基を有してもよいベンジルオキシカルボニル基、又はt-ブトキシカルボニル基であり、
 前記脱保護反応を、パラジウム系触媒、および水素源の存在下で実施するか、又は酸により実施する[13]または[14]に記載の結晶性L-カルノシン亜鉛錯体を製造する方法。
 [16]前記混合液が、前記L-カルノシン1質量部当たり、前記溶媒を1~100質量部含む[14]又は[15]に記載の結晶性L-カルノシン亜鉛錯体を製造する方法。
 [17]前記工程(b1)が、前記脱保護反応を酸により実施する工程であり、
 前記工程(c)が、前記混合液と、少なくとも水酸化アルカリとを混合してpHが7.0~9.0である前処理溶液を調製し、該前処理溶液に含まれる溶媒を炭素数1~3のアルコールに置換した後、さらに、少なくとも水酸化アルカリを混合して混合溶液とし、次いで、得られた混合溶液と酢酸亜鉛とを混合することにより、該L-カルノシンを亜鉛塩化して結晶性L-カルノシン亜鉛錯体を製造する工程である、[13]に記載の結晶性L-カルノシン亜鉛錯体を製造する方法。
 本発明の保護L-カルノシン誘導体を製造する方法によれば、特定の原料、すなわち、前記酸無水物を原料とすることにより、簡便な方法で保護L-カルノシン誘導体を製造できる。さらに、本発明のL-カルノシンを製造する方法によれば該保護L-カルノシン誘導体を脱保護することにより、容易にL-カルノシンを製造できる。
 また、本発明の酸無水物は新規な化合物である。そして、本発明の酸無水物を製造する方法に従えば、容易に該酸無水物を製造することができる。
 以上の通り、前記酸無水物を使用することにより、より簡便な方法で保護L-カルノシン、およびL-カルノシンを製造できるため、本発明の工業的利用価値は高い。
 また、前記[5]および[6]の方法によれば、該保護L-カルノシン誘導体を含有する酸性水溶液と有機溶媒とを接触させることで、N-保護-β-アラニン誘導体等の不純物を除去することが可能であり、高純度の保護L-カルノシン誘導体を取得できる。特に保護L-カルノシン誘導体の製造において、N-保護-β-アラニン誘導体とピバロイルクロリドとで得られる混合酸無水物等、N-保護-β-アラニン誘導体を活性化させる中間体を経由して保護L-カルノシン誘導体を製造した場合には、該中間体由来の不純物も副生するがこれらも本発明の製造方法において容易に除去できるため高純度の保護L-カルノシン誘導体を取得できる。上記のとおり本発明の製造方法によって得られる保護L-カルノシン誘導体は高純度であるため、さらなる精製操作を行うことなく、保護L-カルノシン誘導体の脱保護を行うことにより、容易に高純度のL-カルノシンを製造することができる。
 本発明の結晶性L-カルノシン亜鉛錯体を製造する方法において、「単離することなく」とは、「脱保護反応により得られたL-カルノシンを結晶として一旦取り出すことがない」ということを意味する。すなわち、これにより脱保護反応時、および分散媒等に使用した溶媒とL-カルノシンとを、デカンテーション、又は濾過操作により分別することなく、該L-カルノシンを亜鉛塩化して結晶性L-カルノシン亜鉛錯体(ポラプレジンク)とするものである。そのため、L-カルノシンと溶媒とを含む混合液を濃縮して、該溶媒の量を低減した混合液を使用して結晶性L-カルノシン亜鉛錯体を製造することもできる(この場合、デカンテーション、又は濾過操作を行わないため、ろ液と共にL-カルノシンを損失せず、濃縮した混合液を使用することができる。)。
 本発明の結晶性L-カルノシン亜鉛錯体を製造する方法によれば、前記デカンテーション、又は濾過操作等により、溶媒とL-カルノシンとを分離する際に、本来であれば該溶媒(ろ液)ともに除去されるL-カルノシンをも効率よく、結晶性L-カルノシン亜鉛錯体(ポラプレジンク)とすることができる。その結果、該結晶性L-カルノシン亜鉛錯体(ポラプレジンク)の収率を向上させることができる。加えて、L-カルノシンを結晶として取り出さないため、結晶性L-カルノシン亜鉛錯体(ポラプレジンク)の製造方法を簡略化することができる。さらには、得られた結晶性L-カルノシン亜鉛錯体(ポラプレジンク)は、水、およびアルコール等の溶媒により、高純度化することができる。
 以上の通り、本発明によれば、より簡便な方法で結晶性L-カルノシン亜鉛錯体(ポラプレジンク)を高収率で製造できるため、本発明の工業的利用価値は高い。
 本発明の保護L-カルノシン誘導体を製造する方法は、特定の原料、すなわち、前記式(1)で示される酸無水物と、前記式(2)で示されるL-ヒスチジン誘導体とを反応させることにより、前記式(3)で示される保護L-カルノシン誘導体を製造する方法である。さらに、本発明のL-カルノシンを製造する方法は、前記保護L-カルノシン誘導体の脱保護反応を行うことにより、L-カルノシンを製造する方法である。以下、順を追って説明する。
 <酸無水物>
 本発明の保護L-カルノシン誘導体を製造する方法においては、
 下記式(1)
Figure JPOXMLDOC01-appb-C000053
で示される酸無水物を原料とする。
 前記式(1)において、
 R1は、下記式(1a)
Figure JPOXMLDOC01-appb-C000054
  (式中、
   R3は、アミノ基の保護基である。)
で示される基、および下記式(1a’)
Figure JPOXMLDOC01-appb-C000055
で示される基から選ばれる保護アミノエチル基である。
 前記アミノ基の保護基とは、窒素原子上の水素に置換して所定反応中にアミノ基を不活性化する基である。所定反応後、脱保護によりアミノ基が形成される。アミノ基の保護基として具体的には、メチル基、エチル基等のアルキル基、トリメチルシリル基、t-ブチルジメチルシリル基、トリイソプロピルシリル基等のシリル系保護基、アセチル基、ベンゾイル基等のアシル基、置換基を有していてもよいベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、トリフルオロアセチル基、t-ブトキシカルボニル基、2,2,2-トリクロロエトキシキカルボニル基、又はホルミル基等が挙げられる。
 前記式(1a)の保護アミノ基において、アミノ基の保護基であるR3は、公知の保護基が挙げられる。中でも、酸無水物自体の生産性、所定反応時の安定性、および脱保護反応を考慮すると、置換基を有していてもよいベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、トリフルオロアセチル基、t-ブトキシカルボニル基、2,2,2-トリクロロエトキシキカルボニル基、又はホルミル基であることが好ましい。
 この中でも、脱保護反応という点から、t-ブトキシカルボニル基、又は置換基を有してもよいベンジルオキシカルボニル基が好ましい。ベンジルオキシカルボニル基が有する置換基とは、ベンジルオキシカルボニル基のフェニル基が有する置換基である。該置換基としては、メチル基、メトキシ基、ハロゲン基、ニトロ基、ジメチルアミノ基が挙げられる。中でも、最も好ましい保護アミノ基としては、非置換の、単なるベンジルオキシカルボニル基であることが好ましい。
 以上のことより、R1は、R3が前記例示した基となる式(1a)で示される基、又は前記式(1a’)で示される基であることが好ましい。中でも、前記酸無水物自体の生産性、所定反応時の安定性、および脱保護反応を考慮すると、R1は、R3が非置換のベンジルオキシカルボニル基となる式(1a)で示される基であることが最も好ましい。
 R2は、前記保護アミノ基、または下記式(1b)
Figure JPOXMLDOC01-appb-C000056
(式中、mは0又は1の整数であり、R4、R5、およびR6は、それぞれ、水素原子、又は炭素数1~6のアルキル基であり、ただし、mが0である場合、R4、R5、およびR6の少なくとも2つの基が炭素数1~6のアルキル基である。)で示される分岐基である。
 R2において、保護アミノ基は、前記R1で説明したものと同じ基が挙げられ、同じ理由で好ましい基も同じである。
 また、mは0又は1の整数である。
 また、R2は、前記式(1b)で示される分岐基であってもよい、該分岐基において、R4、R5、およびR6は、それぞれ、水素原子、又は炭素数1~6のアルキル基であり、ただし、mが0である場合、R4、R5、およびR6の少なくとも2つの基が炭素数1~6のアルキル基である。mが1である場合、酸無水物の反応性、それ自体の生産性を考慮すると、R4、R5、およびR6の1つが炭素数1~3のアルキル基であり、他の2つは水素原子であることが好ましい。一方、mが0である場合には、R4、R5、およびR6が結合する炭素原子は、2級または3級炭素原子とならなければならない。中でも、酸無水物の反応性、それ自体の生産性を考慮すると、R4、R5、およびR6のアルキル基は、炭素数1~3であることが好ましい。最も好ましくは、該分岐基がt-ブチル基となる場合である。すなわち、R4、R5、およびR6が、メチル基となる場合である。
 本発明で使用する前記酸無水物は、新規な化合物である。そして、R2が前記保護アミノ基、又は前記分岐基の場合とでその製造方法が異なる。次に、これら酸無水物、およびその製造方法について説明する。
 <酸無水物;酸無水物(I)、およびその製造方法>
 前記酸無水物において、R2が前記分岐基である場合には、下記式(1’)
Figure JPOXMLDOC01-appb-C000057
で示される酸無水物(I)となる。
 なお、前記酸無水物(I)において、R1は、前記式(1)におけるものと同義であり、好ましい基も同じ理由で前記に説明した基が挙げられる。
 また、m、およびR4、R5、並びにR6は、前記式(1b)におけるものと同義であり、好ましい基も同じ理由で前記に説明した基が挙げられる。
 前記酸無水物(I)は、特に制限されるものではないが、以下の方法で製造することができる。具体的には、
 下記式(4)
Figure JPOXMLDOC01-appb-C000058
{式中、
 R1は、下記式(1a)
Figure JPOXMLDOC01-appb-C000059
  (式中、
   R3は、アミノ基の保護基である。)
で示される基、および下記式(1a’)
Figure JPOXMLDOC01-appb-C000060
で示される基から選ばれる保護アミノエチル基である。}で示されるN-保護-β-アラニン誘導体と、
 下記式(5)
Figure JPOXMLDOC01-appb-C000061
(式中、
 Xは、ハロゲン原子であり、mは0又は1の整数であり、
 R4、R5、およびR6は、それぞれ、水素原子、又は炭素数1~6のアルキル基であり、ただし、mが0である場合、R4、R5、およびR6の少なくとも2つの基が炭素数1~6のアルキル基である。)で示されるハロゲン化物と
を、有機塩基の存在下で反応させることにより製造できる。
 なお、当然のことではあるが、
 前記式(4)におけるR1は、前記式(1)におけるR1と同義であり、
 前記式(1a)におけるR3は、<酸無水物>で説明した前記式(1a)におけるR3と同義であり、
 前記式(5)におけるm、およびR4、R5、並びにR6は、<酸無水物>で説明した前記式(1b)におけるR4、R5、およびR6と同義である。また、これら基は、<酸無水物>で説明したのと同じ理由で好ましい基も同じである。
 <酸無水物(I)の製造方法;N-保護-β-アラニン誘導体>
 前記N-保護-β-アラニン誘導体は、公知の化合物であり、例えば、国際公開WO1998019705号に記載の方法で製造することができる。この中でも、酸無水物(I)の生産性、反応時における安定性、および脱保護のし易さ等を考慮すると、前記N-保護-β-アラニン誘導体は、N-t-ブトキシカルボニル-β-アラニン、又はN-ベンジルオキシカルボニル-β-アラニンであることが最も好ましい。
 <酸無水物(I)の製造方法;ハロゲン化物>
 前記式(5)において、Xは、ハロゲン原子である。中でも、Xは、塩素原子、臭素原子、又はヨウ素原子であることが好ましく、特に、塩素原子であることが好ましい。
 前記ハロゲン化物は、公知の化合物であり、公知の方法で製造できる。例えば、CN 101311155に記載の方法で製造することができる。この中でも、酸無水物(I)の生産性、反応時における安定性、および脱保護のし易さ等を考慮すると、前記ハロゲン化物は、クロロ炭酸エチル、ピバロイルクロリドであることが好ましく、ピバロイルクロリドであることが最も好ましい。
 前記ハロゲン化物は、前記N-保護-β-アラニン誘導体1モルに対して、1~5モル使用することが好ましく、さらに1~2モル使用することが好ましい。
 <酸無水物(I)の製造方法;有機塩基>
 前記酸無水物(I)を製造するためには、前記N-保護-β-アラニン誘導体と前記ハロゲン化物とを有機塩基存在下で反応させる。
 前記有機塩基は、特に制限されるものではない。中でも、有機塩基の窒素原子に水素原子が結合していない3級アミン、および複素環式化合物であることが好ましい。具体的には、
 トリメチルアミン、トリエチルアミン、N,N-ジイソプロピルエチルアミン、N,N-ジメチルアニリン、N-メチルモルホリン、等の3級アミン、
 ピリジン、キノリン等の、窒素原子を有し、かつ該窒素原子が水素原子と結合していない複素環式化合物であることが好ましい。
 前記有機塩基は、特に制限されるものではないが、前記N-保護-β-アラニン誘導体1モルに対して、1~5モル使用することが好ましく、さらに1~2モル使用することが好ましい。
 <酸無水物(I)の製造方法;その他の条件>
 本発明において、前記酸無水物(I)は、前記有機塩基の存在下、前記N-保護-β-アラニン誘導体と前記ハロゲン化物とを反応させることにより、製造できる。該反応は、有機溶媒中で実施することが好ましい。具体的には、該反応は、有機溶媒中で前記有機塩基、前記N-保護-β-アラニン誘導体、および前記ハロゲン化物を攪拌混合することにより、実施することが好ましい。
 前記酸無水物(I)の製造方法において、有機溶媒を使用する場合、該有機溶媒は、前記N-保護-β-アラニン誘導体と前記ハロゲン化物との反応を阻害しないものであれば、特に制限されるものではない。好適な有機溶媒を例示すると、
 酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル系溶媒、
 ジクロロメタン、塩化メチレン、クロロホルム等のハロゲン系溶媒、
 トルエン、キシレン等の芳香族系溶媒、
 アセトン、ジエチルケトン、メチルエチルケトン等のケトン系溶媒、
 t-ブチルメチルエーテル、テトラヒドロフラン(THF)、ジエチルエーテル等のエーテル系溶媒、
 アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドン等のヘテロ原子含有溶媒等が挙げられる。
 これら有機溶媒の中でも、特に、酢酸エチル、酢酸イソプロピル、酢酸ブチル、塩化メチレン、クロロホルム、THFが好ましい。
 前記有機溶媒の使用量は、特に制限されるものではなく、各成分を有機溶媒中で十分に攪拌混合できる量であればよい。具体的には、前記N-保護-β-アラニン誘導体1gに対して、0.5~100mlとすることが好ましく、2~50mlとすることがより好ましい。
 前記有機塩基の存在下、前記N-保護-β-アラニン誘導体と前記ハロゲン化物とを反応させるには、各成分を攪拌混合して接触させればよい。各成分を反応器中で攪拌するに際し、該反応器中に各成分を導入する手順は特に制限されるものではない。例えば、必要に応じて有機溶媒で希釈した有機塩基、N-保護-β-アラニン誘導体、およびハロゲン化物を反応器内に同時に導入し攪拌混合することができる。また、必要に応じて有機溶媒で希釈した2成分を先に反応器内に導入しておき、他成分を後から導入し攪拌混合することもできる。さらには、必要に応じて有機溶媒で希釈した1成分を予め反応器内に導入しておき、他に2成分を同時に反応器に導入して攪拌混合する方法等を採用することができる。
 前記N-保護-β-アラニン誘導体と前記ハロゲン化物とを反応させる際の反応温度は、特に制限されるものではないが、-80~40℃であることが好ましく、-80~10℃であることがより好ましい。
 反応時間は、原料の消費量、酸無水物(I)の生成量等を確認しながら、適宜決定すればよい。上記条件であれば、通常、0.1~96時間あれば十分であり、好ましくは0.5~24時間である。
 反応雰囲気も、特に制限されるものではなく、乾燥空気雰囲気下、不活性ガス雰囲気下、通常の空気雰囲気下で実施することができる。また、大気圧下、減圧下、加圧下の何れの圧力下で反応を実施してもよい。そのため、操作性を考慮すると、空気雰囲気下又は不活性ガス雰囲気下、大気圧下で反応を実施することが好ましい。
 以上のような方法で前記酸無水物(I)を製造することができる。得られた酸無水物(I)は、以下の方法に従い反応系内から取り出すか、反応液をそのまま用いることができる。
 反応液をそのまま使用する場合、例えば、溶媒として塩化メチレンを用いた際には、反応により生じたトリエチルアミン塩酸塩を濾過により取り除き、前記酸無水物(I)を含む濾液をカップリングに用いることができる。また、溶媒としてクロロホルムを用いた際には、反応により生じたトリエチルアミン塩酸塩は溶解しており分離できないが、該塩酸塩、および前記酸無水物(I)を含む反応液をそのままカップリングに用いることができる。
 また、酸無水物(I)を取り出す場合には、反応液を濃縮して、再結晶等の公知の方法で精製することもできる。
 <酸無水物;酸無水物(II)、およびその製造方法>
 本発明において、前記式(1)で示される酸無水物において、R2が前記保護アミノエチル基である場合には、下記式(1’’)
Figure JPOXMLDOC01-appb-C000062
で示される酸無水物(II)となる。なお、当然のことであるが、式中のR1は、前記式(1)、および前記式(4)におけるものと同義であり、同じ理由で好ましい基も同じとなる。
 前記酸無水物(II)は、有機塩基の存在下、前記式(4)で示されるN-保護-β-アラニン誘導体とトリホスゲンとを反応させることにより製造できる。
 <酸無水物(II)の製造方法;N-保護-β-アラニン誘導体>
 前記酸無水物(II)を製造するに際し、原料となるN-保護-β-アラニン誘導体は、前記<酸無水物(I)の製造方法;N-保護-β-アラニン誘導体>で説明したものが使用できる。また、同じ理由で好適なN-保護-β-アラニン誘導体も、同じである。
 <酸無水物(II)の製造方法;有機塩基>
 前記酸無水物(II)を製造する際の有機塩基も、前記<酸無水物(I)の製造方法;有機塩基>説明したものが使用できる。
 前記有機塩基の中でも、前記酸無水物(II)を製造する場合には、
 N-メチルモルホリン、ピリジン、キノリン等の、窒素原子を有し、かつ該窒素原子が水素原子と結合していない複素環式化合物を使用することが好ましく、この中でも、ピリジン、キノリンの芳香族アミンを使用することが好ましい。
 前記有機塩基の使用量は、前記酸無水物(I)を製造する場合と同じく、前記N-保護-β-アラニン誘導体1モルに対して、1~5モル使用することが好ましく、さらに1~2モル使用することが好ましい。
 <酸無水物(II)の製造方法;トリホスゲン>
 前記酸無水物(II)は、前記N-保護-β-アラニン誘導体とトリホスゲン(Cl3C-OC(O)O-CCl3)と反応させて製造できる。R3が非置換のベンジルオキシカルボニル基となるR1である場合のN-保護-β-アラニン誘導体を使用した場合の反応例を下記に示す。
Figure JPOXMLDOC01-appb-C000063
 以上の反応式に従い反応が進むものと考えられる。
 該トリホスゲンは、市販のものを使用することができる。また、該トリホスゲンは、前記N-保護-β-アラニン誘導体1モルに対して、0.2~5モル使用することが好ましく、0.3~2モル使用することが好ましい。
 <酸無水物(II)の製造方法;その他の条件>
 本発明において、前記酸無水物(II)は、前記有機塩基の存在下、前記N-保護-β-アラニン誘導体と前記トリホスゲンとを反応させることにより、製造できる。該反応は、有機溶媒中で実施することが好ましい。具体的には、該反応は、有機溶媒中で前記有機塩基、前記N-保護-β-アラニン誘導体、および前記ハロゲン化物を攪拌混合することにより、実施することが好ましい。
 好適に使用できる有機溶媒は、<酸無水物(I)の製造方法;その他の条件>で説明した有機溶媒が挙げられ、好適な有機溶媒も同じである。また、有機溶媒の使用量も、<酸無水物(I)の製造方法;その他の条件>で説明したのと同じである。
 前記有機塩基の存在下、前記N-保護-β-アラニン誘導体と前記トリホスゲンとを反応させるには、各成分を攪拌混合して接触させればよい。各成分を反応器中で攪拌するに際し、該反応器中に各成分を導入する手順は特に制限されるものではない。例えば、必要に応じて有機溶媒で希釈した有機塩基、N-保護-β-アラニン誘導体、およびトリホスゲンを反応器内に同時に導入し攪拌混合することができる。また、必要に応じて有機溶媒で希釈した2成分を先に反応器内に導入しておき、他成分を後から導入し攪拌混合することもできる。さらには、必要に応じて有機溶媒で希釈した1成分を予め反応器内に導入しておき、他に2成分を同時に反応器に導入して攪拌混合する方法等を採用することができる。
 前記N-保護-β-アラニン誘導体と前記トリホスゲンとを反応させる際の反応温度は、特に制限されるものではないが、-80~40℃であることが好ましく、-80~10℃であることがより好ましい。
 反応時間は、原料の消費量、酸無水物(II)の生成量等を確認しながら、適宜決定すればよい。上記条件であれば、通常、0.1~96時間あれば十分であり、好ましくは0.5~10時間である。
 反応雰囲気も、特に制限されるものではなく、乾燥空気雰囲気下、不活性ガス雰囲気下、通常の空気雰囲気下で実施することができる。また、大気圧下、減圧下、加圧下の何れの圧力下で反応を実施してもよい。そのため、操作性を考慮すると、空気雰囲気下又は不活性ガス雰囲気下、大気圧下で反応を実施することが好ましい。
 以上のような方法で前記酸無水物(II)を製造することができる。得られた酸無水物(II)は、以下の方法に従い反応系内から取り出すことが好ましい。具体的には、反応液を弱アルカリ性水溶液へ加えた後、有機溶媒で抽出し、合した抽出液を濃縮し結晶化することにより取り出すことができる。また、取り出した酸無水物(II)は、再結晶等の公知の方法で精製することができる。
 次に、本発明おいては、前記酸無水物(酸無水物(I)、および酸無水物(II))と、L-ヒスチジン誘導体又はL-ヒスチジンとを反応させて、保護L-カルノシン誘導体を製造する。次いで、脱保護反応を実施することにより、L-カルノシンを製造する。
 <保護L-カルノシン誘導体の製造方法>
 本発明の保護L-カルノシン誘導体を製造する方法は、前記酸無水物と下記式(2)
Figure JPOXMLDOC01-appb-C000064
{式中、
 R7、およびR8は、水素原子、又はアミノ基の保護基であり、
 R9は、水素原子、又はカルボキシル基の保護基である。}で示されるL-ヒスチジン誘導体とを反応させることにより、
 下記式(3)
Figure JPOXMLDOC01-appb-C000065
{式中、
 R1は、前記式(1)のものと同義であり、
 R7、R8、およびR9は、前記式(2)におけるものと同義である。}で示される保護L-カルノシン誘導体を製造する工程(a1)を含むことを特徴としている。
 <L-ヒスチジン誘導体>
 本発明おいては、下記式(2)
Figure JPOXMLDOC01-appb-C000066
で示されるL-ヒスチジン誘導体を使用する。
 式中、R7、およびR8は、水素原子、又はアミノ基の保護基である。
 該アミノ基の保護基としては、公知の保護基が挙げられる。中でも、L-ヒスチジン誘導体自体の生産性、所定反応時の安定性、および脱保護のし易さ等を考慮すると、炭素数が3~12のトリアルキルシリル基であることが好ましく、特に、トリメチルシリル基が好ましい。
 前記R9は、水素原子、又はカルボキシル基の保護基である。ここで、本発明の製造方法におけるカルボキシル基の保護基とは、カルボキシル基の酸素に結合した水素に置換して、所定反応中にカルボキシル基を不活性化する基であり、所定反応後、脱保護により水酸基が形成される基である。かかるカルボキシル基の保護基として具体的には、メチル基、エチル基等のアルキル基、トリメチルシリル基、t-ブチルジメチルシリル基、トリイソプロピルシリル基等のシリル系保護基、アセチル基、ベンゾイル基等のアシル基等が挙げられる。
 該カルボキシル基の保護基としては、公知の保護基が挙げられる。中でも、L-ヒスチジン誘導体自体の生産性、所定反応時の安定性、および脱保護のし易さ等を考慮すると、炭素数が3~12のトリアルキルシリル基であることが好ましく、特に、トリメチルシリル基が好ましい。
 以上のようなL-ヒスチジン誘導体は、公知の化合物であり、例えば、CN101284862に記載の方法で製造することができる。
 本発明おいては、前記酸無水物と前記L-ヒスチジン誘導体とを反応させることにより、少なくとも保護基としてR1を有する保護L-カルノシン誘導体を製造する(前記式(3)で示される保護L-カルノシン誘導体を製造する。)。この反応は、酸無水物とアミン化合物(例えば、前記式(2)で示されるL-ヒスチジン誘導体)との反応であるため、容易に進行することができる。ただし、該L-ヒスチジン誘導体として、保護基を有するものを使用する場合と、保護基を有さないL-ヒスチジンを使用する場合とでは、最適な反応条件が異なる。
 先ず、保護基を有するL-ヒスチジン誘導体(I)を使用した場合の製造方法について説明する。
 <L-ヒスチジン誘導体(I)を使用した場合の保護L-カルノシン誘導体(I)の製造方法;L-ヒスチジン誘導体(I)>
 前記L-ヒスチジン誘導体として、下記式(2p)
Figure JPOXMLDOC01-appb-C000067
で示されるL-ヒスチジン誘導体(I)を使用する場合について説明する。
 前記式(2p)において、R7p、およびR8pは、アミノ基の保護基であり、好ましくは、前記L-ヒスチジン誘導体で説明した通り、炭素数が3~12のトリアルキルシリル基であり、特に、トリメチルシリル基が好ましい。
 R9pは、カルボキシル基の保護基であり、好ましくは、前記L-ヒスチジン誘導体で説明した通り、炭素数が3~12のトリアルキルシリル基であり、特に、トリメチルシリル基が好ましい。
 前記L-ヒスチジン誘導体(I)の使用量は、特に制限されるものではないが、前記酸無水物1モルに対して、0.25~3モルとすることが好ましく、0.5~1.5モルとすることがより好ましい。
 前記L-ヒスチジン誘導体(I)を使用する場合、前記酸無水物は、前記酸無水物(I)であっても、前記酸無水物(II)の何れであってもよい。中でも、反応をより効率的に行うためには、前記酸無水物(I)と反応させることが好ましい。
 <L-ヒスチジン誘導体(I)を使用した場合の保護L-カルノシン誘導体(I)の製造方法;反応条件>
 本発明において、保護L-カルノシン誘導体(I)は、前記酸無水物と前記L-ヒスチジン誘導体(I)とを反応させることにより、製造できる。該反応は、有機溶媒中で実施することが好ましい。具体的には、該反応は、有機溶媒中で前記酸無水物、および前記L-ヒスチジン誘導体(I)を攪拌混合することにより、実施することが好ましい。
 好適に使用できる有機溶媒は、<酸無水物(I)の製造方法;その他の条件>で説明した有機溶媒が挙げられ、好適な有機溶媒も同じである。また、有機溶媒の使用量は、前記酸無水物1gに対して、0.5~100mlであることが好ましく、1~20mlであることが好ましい。該有機溶媒を使用する場合、水を含んでいてもよい。ただし、水が含まれる場合には、該有機溶媒100質量部に対して、水が40質量部以下となることが好ましく、30質量部以下となることがより好ましく、20質量部以下となることがさらに好ましく、10質量部以下となることが特に好ましい。なお、当然のことながら、水は0質量部であってもよい。
 前記酸無水物と前記L-ヒスチジン誘導体(I)とを反応させるには、各成分を攪拌混合して接触させればよい。各成分を反応器中で攪拌するに際し、該反応器中に各成分を導入する手順は特に制限されるものではない。例えば、必要に応じて有機溶媒で希釈した酸無水物、L-ヒスチジン誘導体(I)を反応器内に同時に導入し攪拌混合することができる。また、必要に応じて有機溶媒で希釈した1成分を先に反応器内に導入しておき、他成分を後から導入し攪拌混合することもできる。好ましくは、必要に応じて有機溶媒で希釈したL-ヒスチジン誘導体(I)を反応器内に導入して攪拌混合を行い、その中に、必要に応じて有機溶媒で希釈した酸無水物を添加することが好ましい。
 前記酸無水物と前記L-ヒスチジン誘導体(I)とを反応させる際の反応温度は、特に制限されるものではないが、-78~100℃であることが好ましく、-20~20℃であることがより好ましい。
 反応時間は、原料の消費量、保護L-カルノシン誘導体(I)の生成量等を確認しながら、適宜決定すればよい。上記条件であれば、通常、0.1~96時間あれば十分であり、好ましくは0.5~24時間である。
 反応雰囲気も、特に制限されるものではなく、乾燥空気雰囲気下、不活性ガス雰囲気下、通常の空気雰囲気下で実施することができる。また、大気圧下、減圧下、加圧下の何れの圧力下で反応を実施してもよい。そのため、操作性を考慮すると、空気雰囲気下、大気圧下で反応を実施することが好ましい。
 以上のような方法で反応を行うことにより、下記式(3p1)
Figure JPOXMLDOC01-appb-C000068
{式中、
 R1は、前記式(1)におけるものと同義であり、
 R7p’は、水素原子、又はアミノ基の保護基であり、
 R8p、およびR9pは、前記式(2p)におけるものと同義である。)で示される保護L-カルノシン誘導体(I)を製造することができる。
 前記保護L-カルノシン誘導体(I)において、R7p’は、水素原子、又はアミノ基の保護基である。これは、反応時に保護基であるR7pの脱保護が生じ、水素原子となる保護L-カルノシン誘導体が含まれる場合があるからである。該反応時に脱保護が行われない場合には、当然、R7p’はR7pと同じアミノ基の保護基となる。
 得られた保護L-カルノシン誘導体(I)は、以下の方法に従い反応系内から取り出し、純度を高めることができる。具体的には、反応液を濃縮、又は冷却して、結晶として取り出すことができる。取り出した保護L-カルノシン誘導体(I)は、再結晶、カラム分離等の公知の方法で精製することができる。
 得られた保護L-カルノシン誘導体(I)は、先ずR1を下記に詳述する方法で脱保護することもできるが、先ず、R7p’(ただし、アミノ基の保護基の場合)、R8p、およびR9pの脱保護反応を行うことが好ましい。このR7p’(ただし、アミノ基の保護基の場合)、R8p、およびR9pの脱保護反応は、一旦、結晶として反応系内から該保護L-カルノシン誘導体(I)を取り出して実施することができる。また、反応後、該保護L-カルノシン誘導体(I)を含む反応液を処理することにより、該脱保護反応を実施することもできる。
 <保護L-カルノシン誘導体(I)から保護L-カルノシン誘導体(II)を製造する方法>
 前記保護L-カルノシン誘導体(I)から、R7p’(ただし、アミノ基の保護基の場合)、R8p、およびR9pの脱保護を行うには、公知の脱保護反応を利用することができる。具体的には、水、または、アルコール(水とアルコールとの混合溶媒でもよい)と接触させることにより脱保護できる。
 使用する水、またはアルコールの量は、特に制限されるものではなく、保護L-カルノシン誘導体(I)と水、またはアルコールとが十分に接触できるだけの量であればよい。具体的には、保護L-カルノシン誘導体1gに対して、水、またはアルコールを0.1~50ml使用することが好ましい。
 水、またはアルコールと接触させることにより、R7p’(ただし、アミノ基の保護基の場合)、R8p、およびR9pの脱保護を行うことができ、下記式(3p2)
Figure JPOXMLDOC01-appb-C000069
(式中、R1は、前記式(1)におけるものと同義である。)で示される保護L-カルノシン誘導体(II)を製造することができる。
 前記の通り、R7p’(ただし、アミノ基の保護基の場合)、R8p、およびR9pの脱保護は、保護L-カルノシン誘導体(I)を含む反応液と、水、またはアルコールとを混合することによっても、実施できる。この際、反応液は、濃縮してもよい。具体的には、以下の方法を採用できる。
 例えば、(1)反応後、反応液に水を加え、水層を2-ブタノール等で抽出する。次いで、濃縮、結晶化することにより、脱保護された保護L-カルノシン誘導体(II)を取り出すことができる。また、(2)反応後、反応液を濃縮し、濃縮残渣にエタノールなどアルコールを加えて、結晶化することにより、脱保護された保護L-カルノシン誘導体(II)を取り出すことができる。その他、(3)反応液にエタノールなどアルコールを加えて撹拌した後、該溶液中で晶析・濾過して取り出す方法が挙げられる。なお、(1)(2)の方法においては、反応液を濃縮しなくてもよいが、使用する溶媒量を少なくするためには、濃縮することが好ましい。
 この保護L-カルノシン誘導体(II)は、前記酸無水物とL-ヒスチジンとを反応させることによっても、製造することができる。次に、この反応について説明する。
 <L-ヒスチジンを使用した場合の保護L-カルノシン誘導体(II)の製造方法;L-ヒスチジン>
 下記式
Figure JPOXMLDOC01-appb-C000070
で示されるL-ヒスチジンと前記酸無水物とを反応させて、保護L-カルノシン誘導体(II)を製造することもできる。この場合、L-ヒスチジンは、前記L-ヒスチジン誘導体(I)の保護基R8p、およびR9pの代わりに水素原子となるものであり、L-ヒスチジンを使用することにより、前記保護L-カルノシン誘導体(I)を経ることなく、前記保護L-カルノシン誘導体を製造できる。
 L-ヒスチジンの使用量は、特に制限されるものではないが、前記酸無水物1モルに対して、0.25~3モルとすることが好ましく、0.5~1.5モルとすることがより好ましい。
 前記酸無水物と前記L-ヒスチジンとは、塩基、および水の存在下で反応させることが好ましい。該反応は、前記塩基、前記水、前記酸無水物、および前記L-ヒスチジンを攪拌混合することにより、実施できる。
 <L-ヒスチジンを使用した場合の保護L-カルノシン誘導体(II)の製造方法;塩基>
 本発明おいては、塩基の存在下で反応を行う。
 塩基としては、無機塩基、および有機塩基のいずれも用いることができる。かかる塩基の中で、無機塩基としては、
 水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属の水酸化物;
 重曹、炭酸ナトリウム、重炭酸カリウム、炭酸カリウム、重炭酸セシウム、炭酸セシウム等のアルカリ金属の炭酸塩;
 水酸化カルシウム、水酸化バリウム等のアルカリ土類金属の水酸化物;
 水酸化テトラメチルアンモニウム、水酸化ベンジルトリメチルアンモニウム等の4級アンモニウム水酸化物
等が挙げられる。中でも、反応の制御のし易さ、除去のし易さ等を考慮すると、水酸化ナトリウムを使用することが好ましい。
 有機塩基としては、前記<酸無水物(I)の製造方法;有機塩基>にて説明したものが使用できる。これらの有機塩基の中でも反応の制御のし易さ、除去のし易さ等を考慮すると、トリエチルアミンを使用することが好ましい。
 塩基は、特に制限されるものではないが、反応系内が弱塩基性に維持されるような使用量、および配合方法とすることが好ましい。前記酸無水物と前記L-ヒスチジンとの反応においては、反応が進むにつれて、反応系内のpHが酸性へ傾く。反応系内が塩基性であるほうが反応は進行し易いため、塩基を反応系内に追加して該反応系内の酸性度が高くならないようにすることが好ましい。そのため、反応系内は、pHが7~15、好ましくは8~14、さらに好ましくは9~13となるように塩基を追加することが好ましい。この追加する塩基は、水溶液の状態で反応系内に追加することが好ましい。塩基の水溶液を使用する場合には、反応の制御のし易さから、該水溶液のpHが9~10となるようにすることが好ましい。
 そのため、塩基の絶対量(合計量)は、反応系における条件で適宜決定すればよいが、後工程での除去を考慮すると、前記酸無水物1モルに対して、1~4モルとすることが好ましい。反応条件によっては、保護L-カルノシン誘導体(II)とさらにL-ヒスチジンが反応し、3量体が生成する場合がある。3量体の生成を抑制する観点から、塩基の絶対量を特に前記酸無水物+前記L-ヒスチジンの合計1モルに対して、1モル以上とすることがさらに好ましく、1モル以上、3モル以下とすることが好ましく、さらに1モル以上、1.5モル以下とすることが好ましい。徐々に塩基を追加する場合、反応系内に添加した塩基の全使用量が前記範囲を満足するようにすることが好ましい。
 <L-ヒスチジンを使用した場合の保護L-カルノシン誘導体(II)の製造方法;水>
 本発明においては、水を使用する。水の使用量は、特に制限されるものではないが、反応系内のpHが7~15、好ましくは9~14、さらに好ましくは9~14を満足するような量を使用することが好ましい。
 そのため、水の絶対量(合計量)は、反応系における条件で適宜決定すればよいが、反応を効率よく行うためには、以下の量とすることが好ましい。水のみを反応媒体として使用する場合には、水の使用量は、前記酸無水物1gに対して、0.5~100mlとすることが好ましく、1~20mlとすることが好ましい。無機塩基の水溶液を徐々に反応系内に追加する場合には、反応系内に添加した水の全使用量が前記範囲を満足するようにすることが好ましい。なお、この水の量は、無機塩基の水溶液に使用する水の量を含むものである。
 <L-ヒスチジンを使用した場合の保護L-カルノシン誘導体(II)の製造方法;その他 反応条件>
 本発明において、保護L-カルノシン誘導体(II)は、前記酸無水物と前記L-ヒスチジンとを反応させることによっても製造できる。該反応は、有機溶媒中で実施することが好ましい。具体的には、該反応は、有機溶媒、および水を含む媒体中で前記酸無水物、および前記L-ヒスチジンを攪拌混合することにより、実施することが好ましい。
 好適に使用できる有機溶媒は、<酸無水物(I)の製造方法;その他の条件>で説明した有機溶媒が挙げられ、好適な有機溶媒も同じである。特に好ましくは、アセトン、アセトニトリル、酢酸エチルから選ばれる溶媒と水との組み合わせ、又は水単独で実施することが好ましい。
 有機溶媒、および水を含む媒体を使用する場合、該媒体の使用量は、前記酸無水物1gに対して、0.5~100mlであることが好ましく、1~20mlであることが好ましい。この際、特に制限されるものではないが、有機溶媒と水(全水の量)との体積比(有機溶媒量/全水量)は、0.1~10となることが好ましく、0.5~5となることがより好ましい。
 本発明において、塩基、および水の存在下、前記無水物とL-ヒスジンとを反応させるには、これらを反応容器内(反応系内)で混合攪拌すればよい。これら成分を反応系内に導入する方法は、特に制限されるものではなく、以下の方法が採用できる。
 例えば、必要に応じて溶媒(水を含む)で希釈した各成分を同時に反応系内に導入して攪拌混合する方法を採用することできる。また、前記酸無水物、またはL-ヒスジンの一方の原料を必要に応じて溶媒と一緒に予め反応系内に入れておき、必要に応じて溶媒で希釈した他方の原料を反応系内に添加して攪拌混合する方法を採用することができる。さらには、両方の原料を必要に応じて溶媒と一緒に予め反応系内に入れておき、必要に応じて溶媒で希釈した塩基を反応系内に添加して攪拌混合する方法を採用することもできる。中でも、最終的に得られる保護L-カルノシン誘導体(II)の収量を向上させ、後処理工程を容易にするためには、L-ヒスジン、及び塩基を必要に応じて溶媒と一緒に予め反応系内に入れておき、必要に応じて溶媒で希釈した前記酸無水物を反応系内に添加して攪拌混合する方法を採用することが好ましい。そして、反応系内のpHが変化する場合(低くなる場合)には、塩基を追加して、反応系内の酸性度が高くならない様に、好ましくはpHが9~10となるように調整することが好ましい。また、これらの反応剤が十分接触できるように高速に撹拌することが望まれる。
 前記酸無水物とL-ヒスジンとの反応温度は、特に制限されるものではないが、反応時間、収量、不純物副生の抑制等を考慮すると、-30~70℃とすることが好ましく、さらには-10~40℃とすることが好ましい。
 反応時間は、原料の消費量、保護L-カルノシン誘導体(I)の生成量等を確認しながら、適宜決定すればよい。上記条件であれば、通常、0.1~96時間あれば十分であり、好ましくは0.5~24時間である。
 反応雰囲気も、特に制限されるものではなく、乾燥空気雰囲気下、不活性ガス雰囲気下、通常の空気雰囲気下で実施することができる。また、大気圧下、減圧下、加圧下の何れの圧力下で反応を実施してもよい。そのため、操作性を考慮すると、空気雰囲気下、大気圧下で反応を実施することが好ましい。
 以上のような反応を実施することによっても、下記式(3p2)
Figure JPOXMLDOC01-appb-C000071
(式中、R1は、前記式(1)におけるものと同義である。)で示される保護L-カルノシン誘導体(II)を製造できる。得られた保護L-カルノシン誘導体(II)は、以下の方法に従い反応系内から取り出すことが好ましい。具体的には、pHを6~7に調整後1-ブタノール、2-ブタノール等の有機溶媒で抽出し、合せた抽出液を減圧濃縮して取り出すことができる。また、取り出した保護L-カルノシン誘導体(II)は、再結晶、カラム分離等の公知の方法で精製することができる。
 <保護L-カルノシン誘導体の他の製造方法>
 また、保護L-カルノシン誘導体は、以下の酸無水物法においても製造することができる。すなわち、下記式(4’)
Figure JPOXMLDOC01-appb-C000072
{式中、R1は、前記式(1)と同義であり、R10は、水酸基またはハロゲン原子である。}N-保護-β-アラニン誘導体と、下記式(5)
Figure JPOXMLDOC01-appb-C000073
(式中、
 Xは、ハロゲン原子であり、mは0又は1の整数であり、
 R4、R5、およびR6は、それぞれ、水素原子、又は炭素数1~6のアルキル基であり、ただし、mが0である場合、R4、R5、およびR6の少なくとも2つの基が炭素数1~6のアルキル基である。)で示されるハロゲン化物とを、有機塩基の存在下で反応させて得られた酸無水物と、下記式(2)
Figure JPOXMLDOC01-appb-C000074
(式中、R7、およびR8は、水素原子、又はアミノ基の保護基であり、R9は、水素原子、又はカルボキシル基の保護基である。)で示されるL-ヒスチジン誘導体とを反応させることにより前記式(3)記載の保護L-カルノシン誘導体を得ることができる。
 上記N-保護-β-アラニン誘導体とハロゲン化物との反応において、式(4’)のR10がハロゲン原子の場合、ハロゲン原子としては塩素原子、臭素原子、又はヨウ素原子が好ましく、塩素原子がより好ましい。また、ハロゲン化物の詳細については、本明細書の“<酸無水物(I)の製造方法;ハロゲン化物>”に記載のとおりであり、該記載中のハロゲン化物を使用することができるが、前記式(5)中の下記式(1b)
Figure JPOXMLDOC01-appb-C000075
で示される基としては、特に制限されるものではないが、mが0である場合、t-ブチル基であることが好ましく、mが1である場合、エトキシカルボニル基、イソブチルカルボニル基であることが好ましい。
 上記N-保護-β-アラニン誘導体とハロゲン化物との反応において使用する有機塩基の詳細は、本明細書の“<酸無水物(I)の製造方法;有機塩基>”に記載の通りであり、上記反応は、本明細書の“<酸無水物(I)の製造方法;その他の条件>”に記載の条件で行うことができる。
 上記酸無水物と前記L-ヒスチジン誘導体との反応は、水溶媒、有機溶媒中で実施することができ、前記酸無水物と前記L-ヒスチジン誘導体、及び塩基を溶解する溶媒を用いることが好ましい。塩基、及び水の存在下、前記酸無水物とL-ヒスチジン誘導体とを反応させるには、これらの反応容器内(反応系内)で混合攪拌すればよい。これら成分を反応系内に導入する方法は、特に制限されるものではなく、以下の方法を採用できる。
 例えば必要に応じて溶媒(水を含む)で希釈した各成分を同時に反応系内に導入して攪拌混合する方法を採用することができる。また、前記酸無水物と、又はL-ヒスチジン誘導体の一方の原料を必要に応じて溶媒と一緒にあらかじめ反応系内に入れておき、必要に応じて溶媒で希釈した他方の原料を反応系内に添加して攪拌混合する方法を採用することができる。さらには、両方の原料を必要に応じて溶媒と一緒に予め反応系内に入れておき、必要に応じて溶媒で希釈した塩基を反応系内に添加して攪拌混合する方法を採用することもできる。中でも、最終的に得られる保護L-カルノシン誘導体の収量を向上させ、後処理工程を容易にするためには、L-ヒスチジン誘導体、及び塩基を必要に応じて溶媒と一緒に予め反応系内に入れておき、必要に応じて溶媒で希釈した前記酸無水物を反応系内に添加して攪拌混合する方法を採用することが好ましい。
 前記塩基としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属の水酸化物;重曹、炭酸ナトリウム、重炭酸カリウム、炭酸カリウム、重炭酸セシウム、炭酸セシウムなどのアルカリ金属の炭酸塩;水酸化カルシウム、水酸化バリウムなどのアルカリ土類金属の水酸化物、水酸化テトラメチルアンモニウム、水酸化ベンジルトリメチルアンモニウムなどの4級アンモニウムの水酸化物;トリエチルアミン、ジイソプロピルエチルアミン等のアミン等が挙げられる。中でも、反応の制御のしやすさ、除去のしやすさなどを考慮すると、水酸化ナトリウム等のアルカリ金属の水酸化物、又はトリエチルアミン、ジイソプロピルエチルアミン等のアミン等を使用することが好ましい。
 塩基の使用量、および配合方法は特に制限されるものではないが、前記酸無水物と前記L-ヒスチジン誘導体との反応においては、反応系内が塩基性である方が、反応が進行しやすい傾向にあるため、反応系内のpHが7~15であることが好ましく、8~14であることがさらに好ましく、9~13であることが最も好ましい。該反応では、反応が進行するに従い、反応系内のpHが酸性へ傾く。そのため、塩基を反応系内に追加して、該反応系内のpHを調整してもよい。追加する塩基は、水溶液の状態で使用することが好ましい。塩基の水溶液を使用する場合には、反応の制御のしやすさから、該水溶液のpHを9~10とすることが好ましい。
 そのため、塩基の絶対量(合計量)は、反応系内における条件で適宜決定すればよいが、後工程での除去を考慮すると、前記酸無水物1モルに対して、1~4モルとすることが好ましく、1~2モルとすることがさらに好ましい。徐々に塩基を追加する場合、反応系内に添加した塩基の全使用量が前記範囲を満足するようにすることが好ましい。
 前記酸無水物と前記L-ヒスチジン誘導体との反応の際に、水もしくは溶媒を使用することが好ましい。溶媒の使用量は、特に制限されるものではないが、反応系内のpHが7~15、好ましくは9~14で満足するような量を使用することが好ましい。そのため、溶媒の絶対量(合計量)は、適宜決定すればよいが、反応を効率よく行うためには、下記の量とすることが好ましい。水のみを反応媒体として使用する場合には、水の使用量は前記酸無水物1gに対して、0.5~100mlとすることが好ましく、1~20mlとすることがさらに好ましい。塩基の水溶液を徐々に反応系内に追加する場合には、反応系内に添加した水の全使用量が、前記範囲を満足するようにすることが好ましい。なお、この水の量は、塩基の水溶液に使用される水の量を含むものである。
 前記溶媒として有機溶媒を使用することもできる。有機溶媒を使用する場合、該有機溶媒は前記酸無水物と前記L-ヒスチジン誘導体との反応を阻害しないものであれば特に制限されるものではない。好適な有機溶媒を例示すると、酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル系溶媒、ジクロロメタン、クロロホルム等のハロゲン系溶媒、トルエン、キシレン等の芳香族系溶媒、アセトン、ジエチルケトン、メチルエチルケトン等のケトン系溶媒、t-ブチルメチルエーテル、テトラヒドロフラン(THF)、ジエチルエーテル等のエーテル系溶媒、アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドン等のヘテロ原子含有溶媒などが挙げられる。これら有機溶媒は単独で用いてもよく、複数組み合わせてもよく、また水と組み合わせて使用してもよい。水と組み合わせて使用する場合、アセトン、酢酸エチル、アセトニトリルから選ばれる有機溶媒と水との組み合わせが好ましい。
 有機溶媒、及び水を含む媒体を使用する場合、該媒体の使用量は、前記酸無水物1gに対して、0.5~100mlであることが好ましく、1~20mlであることが好ましい。この際、特に制限されるものではないが、有機溶媒と水(全水の量)との体積比(有機溶媒量/全水量)は1~10となることが好ましく、2~5となることがより好ましい。
 前記酸無水物とL-ヒスチジン誘導体との反応温度は、特に制限されるものではないが、反応時間、収量、不純物副生の抑制などを考慮すると、-30~70℃とすることが好ましく、さらには-10~40℃とすることが好ましい。
 反応時間は、原料の消費量、保護L-カルノシン誘導体の生成量等を確認しながら、適宜決定すればよい。上記条件であれば、通常、0.1~96時間であれば十分であり、好ましくは0.5~24時間である。
 反応雰囲気も、特に制限されるものではなく、乾燥空気雰囲気下、不活性ガス雰囲気下、通常の空気雰囲気下で実施することができる。また、大気圧下、減圧下、加圧下の何れの圧力下で反応を実施してもよい。そのため、操作性を考慮すると、空気雰囲気下、大気圧雰囲気下で実施することが好ましい。得られた保護L-カルノシン誘導体に対して後述する脱保護反応を行い、L-カルノシンを得ることができる。
 <保護L-カルノシン誘導体の製造方法;精製工程>
 本発明の保護L-カルノシン誘導体を製造する方法においては、前記工程(a1)において保護L-カルノシン誘導体をその酸性水溶液として製造し、工程(a1)の後に前記酸性水溶液と有機溶媒とを接触させる工程(a2)を設けてもよい。
 保護L-カルノシン誘導体が酸性水溶液に可溶であるのに対し、N-保護-β-アラニン誘導体等の不純物は酸性水溶液に対する溶解性が極めて低く、有機溶媒に可溶であるため、保護L-カルノシン誘導体を含有する酸性水溶液と有機溶媒とを接触させることによって、N-保護-β-アラニン誘導体等の不純物が有機溶媒に溶解されるため、その結果、酸性水溶液に溶解している保護L-カルノシン誘導体の純度が向上するものと推測される。
 さらに該方法で得られた保護L-カルノシン誘導体の脱保護反応を行うことにより、高純度なL-カルノシンを高収率で製造することができる。
 保護L-カルノシン誘導体は、上述した工程(a1)により製造される。その際、前記式(3)における、R7、R8は水素原子、またはアミノ基の保護基であり、製造コスト、反応速度の観点から、水素原子であることが最も好ましい。またR7、R8としてアミノ基の保護基を用いる場合には、酸性条件下で容易に脱保護されることから、トリメチルシリル基、t-ブチルジメチルシリル基、トリイソプロピルシリル基等のシリル系保護基であることが好ましく、トリメチルシリル基を用いることが特に好ましい。
 またR9は水素原子、またはカルボキシル基の保護基であり、水素原子であることが最も好ましい。またR9としてカルボキシル基の保護基を用いる場合には、酸性条件下で容易に脱保護されることから、トリメチルシリル基、t-ブチルジメチルシリル基、トリイソプロピルシリル基等のシリル系保護基であることが好ましい。特にトリメチルシリル基は、酸性条件下で容易に脱保護されるため、該保護L-カルノシン誘導体を精製後に、保護L-カルノシン誘導体におけるR7、R8、R9の脱保護反応を行う必要がないため、特に好適に使用することができる。
 また工程(a2)に好適に使用できる保護L-カルノシン誘導体に特に制限はないが、上記保護L-カルノシン誘導体の中でも、製造コストの観点から、R7、R8、R9の全てが水素原子であるものが最も好ましい。
 前記式(1a)において、R3は、アミノ基の保護基である。使用されるアミノ基の保護基としては特に制限はなく、アミノ酸のアミノ基の保護基として公知の保護基を使用することができる。かかる保護基として具体的には、前記R7、R8における保護基の他に、置換基を有していてもよいベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、トリフルオロアセチル基、t-ブトキシカルボニル基、2,2,2-トリクロロエトキシカルボニル基、又はホルミル基等が挙げられる。
 この中でも、脱保護反応が容易であるという観点から、t-ブトキシカルボニル基、又は置換基を有してもよいベンジルオキシカルボニル基が好ましい。ベンジルオキシカルボニル基が有する置換基とは、ベンジルオキシカルボニル基のフェニル基が有する置換基である。該置換基としては、メチル基、メトキシ基、ハロゲン基、ニトロ基、ジメチルアミノ基が挙げられる。中でも、保護基の導入が容易である点、保護基導入剤の入手が容易である点から、非置換のベンジルオキシカルボニル基であることが、最も好ましい。
 R7、R8、R9はいずれも公知のアミノ基を制限なく使用できるが、得られる保護L-カルノシン誘導体の純度を考慮すると、R3は、R7、R8とは異なった保護基であることが好ましく、製造コストの観点から、R7、R8は水素原子であることが好ましく、R3はベンジルオキシカルボニル基であることが好ましい。
 <酸性水溶液>
 工程(a2)における保護L-カルノシン誘導体の酸性水溶液としては、該水溶液のpHが酸性であればよいが、得られる前記保護L-カルノシン誘導体の純度を考慮すると、前記酸性水溶液のpHを0~4の範囲とすることが好ましく、特に1~3の範囲にすることがさらに好ましい。酸性水溶液の使用量としては、保護L-カルノシン誘導体が溶解する量であれば良く、通常保護L-カルノシン誘導体1質量部あたり2~10容量部あれば十分である。
 また、酸性水溶液とするために使用する酸は特に制限されるものではなく、蟻酸、酢酸、プロピオン酸等の有機酸、塩化水素、硫酸、硝酸等の無機酸を使用することができる。またこれらの酸は水溶液として使用することもできる。好ましい酸としては、塩酸、硫酸、硝酸など無機酸が挙げられる。中でも価格、精製の容易さから、塩酸を用いることが最も好ましい。酸の使用量としては、酸性水溶液が所望のpHとなるまで添加すれば十分である。
 <有機溶媒>
 工程(a2)において保護L-カルノシン誘導体の酸性水溶液と接触させる有機溶媒は特に制限されるものではないが、N-保護-β-アラニン誘導体等の不純物を有機溶媒に溶解せしめて保護L-カルノシン誘導体の酸性水溶液から除去することを考慮すると、水と混和しない有機溶媒を使用することが好ましい。かかる有機溶媒としては、有機合成反応後の分液操作に用いられる有機溶媒が好適に挙げられる。好適な有機溶媒として具体的には、ジクロロメタン、クロロホルムなどのハロゲン系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;トルエン、キシレン、クロロベンゼンなどの芳香族炭化水素系溶媒;テトラヒドロフラン、ジエチルエーテルなどのエーテル系溶媒等が挙げられる。これらの有機溶媒の中でも、水よりも比重の重い有機溶媒を用いると、反応容器の下部から、上記不純物が含有された有機溶媒を取り出すことができるため、操作性の観点から特に好適である。かかる有機溶媒としては、ジクロロメタン、クロロホルムなどのハロゲン系溶媒が挙げられる。
 有機溶媒の使用量としては、N-保護-β-アラニン誘導体等の不純物を有機溶媒に溶解せしめて保護L-カルノシン誘導体の酸性水溶液から除去することができる量であれば良く、製造装置の容量等を勘案して適宜決定すれば良い。通常、有機溶媒/水の体積比が0.1~10の範囲で、より好ましくは0.3~5の範囲で、特に好ましくは0.5~2の範囲で使用すれば十分である。
 <酸性水溶液と有機溶媒との接触>
 工程(a2)では、保護L-カルノシン誘導体の酸性水溶液と有機溶媒を接触させる。保護L-カルノシン誘導体の酸性水溶液と有機溶媒との接触方法については、特に制限されるものではなく、製造装置や製造スケール等を勘案して適宜決定すれば良い。保護L-カルノシン誘導体の酸性水溶液と有機溶媒との接触方法について具体的には、保護L-カルノシン誘導体の水溶液を調製後、該水溶液を酸性にした後、有機溶媒を添加する方法、有機溶媒に、予め調製した保護L-カルノシン誘導体の酸性水溶液を添加する方法、或いは、保護L-カルノシン誘導体の水と有機溶媒との混合溶液を調製し、該混合溶液に酸を添加して酸性水溶液とする方法等が挙げられる。また、上記製造方法において、保護L-カルノシン誘導体を製造した場合、反応後の溶液から調製を行っても良い。例えば、反応後、保護L-カルノシン誘導体の有機溶媒溶液となっている場合には、酸性水溶液を接触させればよい。或いは、保護L-カルノシン誘導体の製造を水又は水と有機溶媒の混合溶媒で行った場合には、必要に応じて有機溶媒を除去した後、酸を添加して酸性水溶液とすれば良い。また、反応終了後の溶液が酸性となっている場合には、そのまま有機溶媒と接触させれば良い。
 保護L-カルノシン誘導体の酸性水溶液と有機溶媒を接触させる際には必要に応じて攪拌しても良く、さらに空気雰囲気下、不活性ガス雰囲気下、乾燥空気雰囲気下のいずれの雰囲気下で行っても良く、大気圧下、減圧下、加圧下のいずれかの雰囲気下で実施してもよい。
 保護L-カルノシン誘導体の酸性水溶液と有機溶媒とを接触させる際の温度については特に制限されず、製造条件を勘案して適宜決定すれば良い。保護L-カルノシン誘導体の安定性の観点から0~80℃の範囲が好ましく、10~50℃の範囲がさらに好ましく、20~30℃の範囲が最も好ましい。
 工程(a2)において、該酸性水溶液と該有機溶媒の分離方法に特に制限はなく、公知の方法を使用できる。具体的には、該酸性水溶液と該有機溶媒を攪拌混合した溶液を、静置することにより、該酸性水溶液と該有機溶媒とを分層し、一方の溶液を取り除けばよい。ジクロロメタンやクロロホルムなどの、水よりも比重の重い有機溶媒を用いた場合、反応容器の下部から、該有機溶媒を取り出すことができる。反応容器に残った保護L-カルノシン誘導体の酸性水溶液は保管することもできるが、そのまま脱保護反応に付すことができる。また酢酸エチル等の水よりも比重の軽い溶媒を用いた場合、該酸性水溶液を反応容器から取り出し、保管することができる。また反応容器から、脱保護反応を行う反応容器へ直接取出すこともでき、その場合、そのまま脱保護反応に付すことができる。
 <L-カルノシンの製造方法>
 本発明のL-カルノシンを製造する方法は、
 上述した本発明の保護L-カルノシン誘導体を製造する方法により保護L-カルノシン誘導体を製造する工程(A)、および
 前記保護カルノシン誘導体の脱保護反応を行うことにより、下記式
Figure JPOXMLDOC01-appb-C000076
で表されるL-カルノシンを製造する工程(b1)
を含むことを特徴としている。工程(b1)では、少なくともR1の脱保護反応が行われる。
 <L-カルノシンの製造;保護L-カルノシン誘導体(II)の脱保護反応>
 前記L-ヒスチジン誘導体(I)、又は前記L-ヒスチジンを使用することにより、前記保護L-カルノシン誘導体(II)を製造できる。前記保護L-カルノシン誘導体(II)からL-カルノシンを製造するには、R1を脱保護してやればよい。R1を脱保護する方法は、特に制限されるものではなく、公知の方法が採用できる。
 R1を脱保護するためには、酸処理を行う方法、パラジウム触媒存在下、水素源を存在させる方法、アミンを接触させる方法が挙げられる。これらの方法は、R1の種類に応じて選択すればよい。
 <L-カルノシンの製造;酸を使用してR1を脱保護する場合>
 例えば、R1が、前記式(1a)で示され、かつ式(1a)のR3がt-ブトキシカルボニル基である場合には、酸処理によって脱保護反応を行うことが好ましい。
 使用する酸は、特に制限されるものではなく、塩化水素、硫酸、メタンスルホン酸、トリフルオロ酢酸、フルオロホウ酸などのブレンステッド酸;、塩化アルミニウム、塩化鉄、ボロントリフルオリドーエーテル錯体などのルイス酸が挙げられる。このうち、塩化水素、硫酸、メタンスルホン酸が好ましく、除去のし易さ等を考慮すると、塩化水素がより好ましい。また、これら酸は、水溶液の状態で反応系内に導入することができる。
 酸の使用量は、特に制限されるものではないが、前記保護L-カルノシン誘導体(II)1モルに対して、酸を0.1~100モル使用することが好ましい。中でも、前記L-カルノシン誘導体(II)と酸とを接触させる反応系内のpHが-1以上4未満となる範囲の使用量とすることが好ましい。このような条件で脱保護反応を実施するのが好ましい。前記反応系内pHは、使用する酸全量を反応系内に導入した際のpHの範囲である。
 <酸を使用してR1を脱保護する場合;溶媒>
 脱保護反応は、溶媒中で実施することができる。前記L-カルノシン誘導体を取り出した後、脱保護反応を実施する場合には、
 水、
 酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル系溶媒、
 塩化メチレン、クロロホルム等のハロゲン系溶媒、
 トルエン、キシレン、メシチレン、クロロベンゼン等の芳香族系溶媒、
 アセトン、ジエチルケトン、メチルエチルケトン等のケトン系溶媒、
 t-ブチルメチルエーテル、テトラヒドロフラン(THF)、ジエチルエーテル、ジオキサン等のエーテル系溶媒、
 メタノール、エタノール、イソプロパノール等のアルコール系溶媒、
 アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドン等のヘテロ原子含有溶媒等が溶媒として挙げられる。これら溶媒は、単独種でも複数種であってもよい。この中でも、好ましい溶媒としては、酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル系溶媒、塩化メチレン、クロロホルム等のハロゲン系溶媒、トルエン、キシレン、メシチレン、クロロベンゼン等の芳香族系溶媒、ジオキサン等のエーテル系の難水溶性の有機溶媒である。
 上記有機溶媒と水とを含む溶媒中で酸処理を行うことが好ましい。水を含む溶媒中で行う場合には、特に制限されるものではないが、有機溶媒/水の体積比が0.01/1~1000/1となることが好ましい。また、溶媒の使用量も、特に制限されるものではなく、前記保護L-カルノシン誘導体(II)と酸とが十分に接触混合できるような量であればよい。通常であれば、前記保護L-カルノシン誘導体(II)1gに対して、該媒体を1~100ml使用することが好ましい。
 <酸を使用してR1を脱保護する場合;その他条件>
 酸を使用してR1の脱保護反応を行うに際し、反応系内へ前記保護L-カルノシン誘導体(II)、及び酸を導入する手順は、特に制限されるものではない。例えば、必要に応じて溶媒で希釈した前記保護L-カルノシン誘導体(II)、必要に応じて希釈した前記酸を同時に反応系内に導入し、攪拌混合する方法を採用できる。また、何れか一方を必要に応じて溶媒で希釈して先ず反応系内へ入れておき、必要に応じて溶媒で希釈したもう一方を反応系内へ添加して攪拌混合することもできる。中でも、不純物を低減するという点では、必要に応じて前記溶媒で希釈した前記保護L-カルノシン誘導体(II)を先に反応系内に導入し、それに、必要に応じて前記溶媒で希釈した前記酸を添加して、攪拌混合する方法を採用することが好ましい。
 脱保護反応を行う際の反応温度は、特に制限されるものではなく、反応時間、収量、不純物副生の抑制等を考慮すると、-10~200℃とすることが好ましく、さらには10~120℃とすることが好ましい。
 脱保護反応の反応時間は、特に制限されるものではないが、原料の消費量、L-カルノシンの生成量等を確認しながら、適宜決定すればよい。上記条件であれば、通常、0.1~96時間あれば十分であり、好ましくは0.5~24時間である。
 反応雰囲気も、特に制限されるものではなく、乾燥空気雰囲気下、不活性ガス雰囲気下、通常の空気雰囲気下で実施することができる。また、大気圧下、減圧下、加圧下の何れの圧力下で反応を実施してもよい。そのため、操作性を考慮すると、空気雰囲気下、大気圧下で反応を実施することが好ましい。
 <L-カルノシンの製造;塩基を使用してR1を脱保護する場合>
 例えば、R1が、前記式(1a)で示され、かつ式(1a)のR3がトリフルオロアセチル基である場合には、炭酸カリウム、炭酸ナトリウム等のアルカリ金属炭酸塩を合水メタノール中処理することよって脱保護反応を行うことが好ましい。
 <L-カルノシンの製造;パラジウム系触媒/水素源を使用してR1を脱保護する場合>
 例えば、R1が、前記式(1a)で示され、かつ式(1a)のR3が置換基を有してもよいベンジルオキシカルボニル基、又はフルオレニルオキシカルボニル基である場合には、パラジウム系触媒/水素源を使用して脱保護反応を行うことが好ましい。
 <パラジウム系触媒/水素源を使用してR1を脱保護する場合;パラジウム系触媒>
 本発明においては、脱ベンジル化等が実施できる、公知のパラジウム系触媒を使用することができる。具体的には、1~30質量%(好ましくは1~20質量%)のパラジウムが担持したパラジウム炭素触媒、パラジウム硫酸バリウム触媒、パラジウム炭酸カルシウム触媒、パラジウムブラック触媒が挙げられる。
 該パラジウム系触媒の使用量は、特に制限されるものではいが、前記保護L-カルノシン誘導体(II)100質量部に対して0.001~20質量部(金属量換算)であれば十分である。好ましいパラジウム触媒としては、市販のものを使用することができ、例えば、Sigma Aldrich社、Alfa Aesar社、Johnson Matthey社、N.E.CHEMCAT社のパラジウム炭素触媒が挙げられる。これらのパラジウム炭素触媒の中でも、パラジウム等の触媒成分が溶媒中に溶出し難いものが特に好適に使用できる。
 <パラジウム系触媒/水素源を使用してR1を脱保護する場合;水素>
 本脱保護反応は、水素の存在下で実施することが好ましい。水素の存在下とする際し水素ガスを使用する場合には、反応系内を水素圧0.5~100気圧とすることが好ましく、1~100気圧とすることがより好ましく、1~30気圧とすることがさらに好ましく、1~20気圧とすることが特に好ましい。
 また、水素源とするためには、水素を発生する物質、具体的には、蟻酸、蟻酸アンモニウムを系内に存在させることが好ましい。この場合、保護L-カルノシン(i)1モルに対して、水素を発生する物質を1~100モル使用することが好ましく、1~10モル使用することがさらに好ましい。
 <パラジウム系触媒/水素源を使用してR1を脱保護する場合;溶媒>
 パラジウム系触媒を使用する場合、水素ガス存在下、溶媒中で前記L-カルノシン誘導体(II)とパラジウム触媒とを攪拌混合することが好ましい。
 溶媒としては、
 メタノール、エタノール、イソプロパノール等のアルコール溶媒;
 1,4-ジオキサン、THF、ジメチルエーテル等のエーテル系溶媒、
 水
を使用することができる。これら溶媒は、単独で使用しようすることもできるし、複数種類の混合溶媒として使用することもできる。以上の溶媒の中も、操作性等を考慮すると、アルコール、水、またはアルコールと水との混合溶媒を使用することが好ましい。混合溶媒を使用する場合には、特に制限されるものではないが、アルコールと水との体積比(アルコール/水)は、23℃において、0.01/1~1000/1の範囲とすることが好ましい。
 また、溶媒の使用量も、特に制限されるものではなく、前記保護L-カルノシン誘導体(II)と酸とが十分に接触混合できるような量であればよい。通常であれば、前記保護L-カルノシン誘導体(II)1gに対して、該媒体を1~100ml使用することが好ましい。
 <パラジウム系触媒/水素源を使用してR1を脱保護する場合;その他 条件>
 パラジウム系触媒を使用してR1の脱保護反応を行うに際し、反応系内へ前記保護L-カルノシン誘導体(II)、パラジウム系触媒、および水素を導入する手順は、特に制限されるものではない。例えば、必要に応じて溶媒で希釈した前記保護L-カルノシン誘導体(II)、必要に応じて該溶媒に分散させたパラジウム系触媒を同時に反応系内に導入し、さらに、水素ガスを反応系内に導入して攪拌混合する方法が挙げられる。また、何れか一方を必要に応じて溶媒で希釈(分散)して先ず反応系内へ入れておき、必要に応じて溶媒で希釈(分散)したもう一方を反応系内へ添加して、水素ガスを反応系内に導入して攪拌混合する方法が挙げられる。本反応において、反応圧力は制限されるものではなく、大気圧下、減圧下、加圧下のいずれの圧力下で反応を実施してもよい。反応性、操作性を考慮すると、大気圧下もしくは加圧下で実施することが好ましい。なお、前記方法においては、前記保護L-カルノシン誘導体(II)、およびパラジウム系触媒を反応系内に導入した後、水素ガスを反応系内に導入する方法を示したが、当然のことながら、予め反応系内に水素ガスを導入し、反応系内を水素雰囲気下とした後、各成分を反応系内に導入することもできる。また、前記には、水素ガスを使用した場合の例を示したが、蟻酸、蟻酸塩など水素ガスを発生する化合物を使用することもできる。その場合、反応雰囲気は特に制限されるものではなく、乾燥空気雰囲気下、不活性ガス雰囲気下、通常の空気雰囲気下で実施することができる。また、大気圧下、減圧下、加圧下のいずれの圧力下で反応を実施してもよい。そのため、操作性を考慮すると、空気雰囲気下、大気圧下で反応を実施することが好ましい。
 該脱保護反応を行う際の反応温度は、特に制限されるものではなく、反応時間、収量、不純物副生の抑制等を考慮すると、-10~200℃とすることが好ましく、さらには10~120℃とすることが好ましい。
 脱保護反応の反応時間は、特に制限されるものではないが、原料の消費量、L-カルノシンの生成量等を確認しながら、適宜決定すればよい。上記条件であれば、通常、0.1~200時間あれば十分であり、好ましくは0.2~150時間である。
 反応雰囲気も、特に制限されるものではなく、乾燥空気雰囲気下、不活性ガス雰囲気下、通常の空気雰囲気下で実施することができる。また、大気圧下、減圧下、加圧下の何れの圧力下で反応を実施してもよい。そのため、操作性を考慮すると、空気雰囲気下、大気圧下で反応を実施することが好ましい。
 <L-カルノシンの製造;金属を使用してR1を脱保護する場合>
 例えば、R1が、前記式(1a)で示され、かつ式(1a)のR3が2,2,2-トリクロロエトキシカルボニル基である場合には、亜鉛末等の金属を合水メタノール中処理することよって脱保護反応を行うことが好ましい。
 <L-カルノシンの製造;アミンを使用してR1を脱保護する場合>
 例えば、R1が、前記式(1a’)で示される基(以下、フタロイル基とする)である場合には、アミンを使用して脱保護反応を行うことが好ましい。
 使用するアミンとしては、ヒドラジン、アンモニア等を使用することができる。
 その他の条件は、特許文献2に記載の方法が採用できる。
 <L-カルノシンの精製方法>
 以上のような方法により、下記式
Figure JPOXMLDOC01-appb-C000077
で示されるL-カルノシンが製造できる。脱保護反応(R1の脱保護反応)後は、公知の方法に従いL-カルノシンまたはその塩を取り出すことができる。例えば、抽出、再結晶、カラム精製等の方法により、L-カルノシンまたはその塩を分離精製することができる。この際、L-カルノシン塩を塩基、水等を用いて洗浄等することにより、L-カルノシン塩は、L-カルノシンとすることができる。
 L-カルノシンを精製する場合には、以下の方法を採用することが好ましい。具体的には、アルコール(例えば、メタノール、エタノール、ノルマルプロパノール、イソプロパノール)溶媒で再結晶することが好ましい。該アルコールは、水を含んでいてもよい。特に、L-カルノシンの精製効果が高い点で、メタノール及びエタノールと水の混合溶媒で再結晶することが好ましい。なお、L-ヒスチジンあるいはL-ヒスチジン誘導体(I)と混合酸無水物を反応させることで保護L-カルノシン誘導体(II)または保護L-カルノシン誘導体(I)を合成する場合、反応条件によっては、使用した混合酸無水物におけるN-保護-β-アラニンではない方の酸とL-ヒスチジンの縮合物が副生する場合がある。具体的には、混合酸無水物を製造する際の前記ハロゲン化物としてピバロイルクロリドを用いた場合には、脱保護反応後の反応溶液中にピバリン酸あるいはピバロイルクロリドとL-ヒスチジンの縮合物(すなわちピバロイルヒスチジン)を含有している。かかる縮合物を含有する場合には該縮合物の除去効果が高い点で、エタノールと水の混合溶媒で再結晶することが特に好ましい。一方で、該縮合物が少ない場合には、全般的に精製効果が高いメタノールと水の混合溶媒で再結晶することが特に好ましい。
 L-カルノシンを該再結晶溶媒で溶解させる際の温度は、特に制限されるものではないが、20~100℃で行うことが好ましく、さらに30~70℃で行うことが好ましい。この際、再結晶溶媒の使用量は、溶解させる対象物(L-カルノシンを含む対象物)1gに対して、1~50mlとすることが好ましく、さらに5~20mlとすることが好ましい。また、結晶を析出させる際の温度は、-10~100℃が好ましく、さらに-5~50℃が好ましい。得られた結晶は、公知の方法で乾燥すればよい。
 以上のような方法に従えば、比較的柔和な条件であっても、純度の高いL-カルノシンを容易に得ることができる。
 <結晶性L-カルノシン亜鉛錯体(ポラポレジンク)の製造方法>
 本発明の結晶性L-カルノシン亜鉛錯体を製造する方法は、
 上述した本発明のL-カルノシンを製造する方法によりL-カルノシンを製造する工程(B)、および
 前記L-カルノシンから結晶性L-カルノシン亜鉛錯体を製造する工程(c)を含み、
 前記保護L-カルノシン誘導体が下記式(i)
Figure JPOXMLDOC01-appb-C000078
で示され、
 前記工程(b1)が、前記保護L-カルノシン誘導体の脱保護反応を該保護L-カルノシン誘導体が溶解する溶媒中で行い、前記L-カルノシンを前記L-カルノシンおよび前記溶媒を混合液として製造する工程であり、
 前記工程(c)が、前記混合液中のL-カルノシンを、結晶として単離することなく亜鉛塩化することにより結晶性L-カルノシン亜鉛錯体を製造する工程であることを特徴としている。
 すなわち、本発明の結晶性L-カルノシン亜鉛錯体を製造する方法は、L-カルノシンを亜鉛塩化して結晶性L-カルノシン亜鉛錯体を製造する方法において、該L-カルノシンを反応系外に取り出すことなく、連続して脱保護反応、および亜鉛塩化を行うことを特徴とするものである。
 前記保護L-カルノシンにおけるPGを脱保護するためには、酸処理を行う方法、パラジウム系触媒存在下、および水素源を存在させる方法が挙げられる。酸を使用する場合には、PGは、置換基を有してもよいベンジルオキシ基、又はt-ブトキシカルボニル基であることが好ましく、中でも、t-ブトキシカルボニル基であることが好ましい。また、パラジウム系触媒存在下、および水素源を存在させる方法においては、R3は、置換基を有していてもよいベンジルオキシカルボニル基(好ましくは非置換のベンジルオキシカルボニル基)であることが好ましい。これらの方法は、PGの種類に応じて選択すればよい。次に、脱保護反応から亜鉛塩化するまでの一連の方法について説明する。先ず、酸処理により脱保護反応を行い、続けて、亜鉛塩化を行う方法について説明する。
 <結晶性L-カルノシン亜鉛錯体(ポラポレジンク)の製造方法(1)>
 <脱保護反応;酸を使用してR3を脱保護する場合>
 例えば、PGがt-ブトキシカルボニル基である場合には、酸処理によって脱保護反応を行うことが好ましい。使用する酸は、特に制限されるものではなく、塩化水素、硫酸、メタンスルホン酸、トリフルオロ酢酸、フルオロホウ酸などのブレンステッド酸;、塩化アルミニウム、塩化鉄、ボロントリフルオリドーエーテル錯体などのルイス酸が挙げられる。中でも、除去のし易さ等を考慮すると、塩化水素であることが好ましい。また、これら酸は、水溶液の状態で反応系内に導入することができる。
 酸の使用量は、特に制限されるものではないが、前記保護L-カルノシン(i)1モルに対して、酸を0.1~100モル使用することが好ましい。中でも、前記保護L-カルノシン(i)と酸とを接触させる反応系内のpHが-1以上4未満となる範囲の使用量とすることが好ましい。このような条件で脱保護反応を実施するのが好ましい。前記反応系内pHは、使用する酸全量を反応系内に導入した際のpHの範囲である。
 <脱保護反応:酸を使用してPGを脱保護する場合;溶媒、その他条件>
 脱保護反応は、溶媒中で実施することができる。脱保護反応を実施する場合には、酸が液体である場合には、無溶媒で実施することもできるが、溶媒中で実施することが好ましい。使用できる溶媒、脱保護反応の反応温度、反応時間、反応雰囲気は、上述した本発明のL-カルノシンを製造する方法についての説明の中の“<酸を使用してR1を脱保護する場合;その他の条件>”に記載のとおりである。
 <酸処理による脱保護反応から亜鉛塩化する方法>
 <混合液の第一前処理方法>
 以上のような方法により、酸処理を行い、反応に使用した溶媒と、脱保護反応により得られたL-カルノシンとを含む混合液を準備する。従来であれば、得られたL-カルノシンを結晶化させて精製分離させた後、亜鉛塩化を行うが、本発明においては、結晶として取り出すことなく、前記混合液を使用する。ただし、最終的に得られる結晶性L-カルノシン亜鉛錯体の純度を高めるためには、該混合液をそのまま使用するのではなく、濃縮等による前処理を行うことが好ましい。この場合、酸による脱保護反応は、前記難水溶性の有機溶媒、および水を含む溶媒中で実施することが好ましく、該混合液は、該難水溶性の有機溶媒、および水を含むことが好ましい。また、濃縮等の前処理を行う場合に、酸の除去も可能であるという利点から、塩化水素を含む水、つまり、塩酸を酸処理に用いることが好ましい。
 該混合液が難水溶性の有機溶媒を含む場合、先ず、該混合液が有機溶媒層と水層と分離する。次いで、該有機溶媒層に水を加え、L-カルノシンを水層に抽出する。そして、先に分離していた水層と、抽出に使用した水層とを併せた状態で次の亜鉛塩化を実施することが好ましい。
 亜鉛塩化は、前記水層を使用することができる。ただし、前記水層(分離水、および洗浄水を合わせたもの)をそのまま使用することができるが、効率よく反応を実施するためには、該水層を濃縮することが好ましい。酸処理に塩化水素(塩酸)を用いた場合には、濃縮時に一部の塩化水素を除去することもできる。なお、この水層を濃縮した液を第一混合物とする。この場合、第一混合物は、L-カルノシン1質量部に対して、水を0~0.1質量部含むことが好ましい。
 脱保護反応を酸処理で行った場合には、前記方法で得られた第一混合物に対して、さらに以下に示す第二前処理を行った後、亜鉛塩化を実施することが好ましい。
 <第二前処理方法;第一混合物の中和処理:前処理液の準備>
 前記第一混合物は、使用した酸の量にもよるが、酸性となっている。そのため、一旦、中和処理して前処理液とすることが好ましい。中和処理には、前記第一混合物に、塩基を加え、pHが7.0~9.0の前処理液とすることが好ましい。使用する塩基は、除去のし易さ、取り扱いやすさを考慮すると、亜鉛塩化する工程で説明するものと同一の水酸化アルカリであることが好ましい。また、混合する塩基の量は、特に制限されるものではなく、前処理液のpHが7.0~9.0となる量を配合すればよい。この場合、前処理液は、L-カルノシン1質量部に対して、水を1~100質量部含むことが好ましい。なお、前記水酸化アルカリは、そのまま混合することもできるが、水溶液、又は炭素数1~3のアルコールに溶解させた溶液の状態で混合することもできる。
 <酸により脱保護反応を実施した場合の亜鉛塩化(結晶性L-カルノシン亜鉛錯体の製造方法)>
 前記方法で得られた前処理液は、そのまま、水酸化アルカリと混合した後、さらに、酢酸亜鉛と混合して、結晶性L-カルノシン亜鉛錯体(ポラプレジンク)とすることもできる。ただし、操作性を向上させるためには、前処理液に炭素数1~3のアルコールを加え、該前処理液に含まれる水を炭素数1~3のアルコールに置換した後、水酸化アルカリを加えることが好ましい。
 炭素数1~3のアルコールとしては、メタノール、エタノール、n-プロピルアルコール、又はイソプロピルアルコールが挙げられる。中でも、メタノールが好ましい。
 該アルコールで置換する方法は、前処理液にアルコールを追加した後、得られた液を濃縮して水とアルコールとを共沸除去して、徐々に水の量を減らせばよい。この方法を繰り返し行い、水を低減することが好ましい。該アルコールで置換した液は、特に制限されるものではないが、L-カルノシン1質量部当たり、水が0~0.1質量部となることが好ましい。また、炭素数1~3のアルコールは、L-カルノシン1質量部当たり、5~100質量部となることが好ましい。
 次に、アルコール置換した前処理液に、水酸化アルカリ、および炭素数1~3のアルコールを加える。
 水酸化アルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等が挙げられる。中でも、水酸化ナトリウムが好ましい。
 水酸化アルカリの使用量は、特に制限されるものではないが、L-カルノシン1モルに対して、3~10モル使用することが好ましい。なお、この水酸化アルカリは、前記炭素数1~3のアルコールに溶解したものを使用することができる。
 また、使用するアルコールの量は、特に制限されるものではないが、該アルコールを追加した混合溶液において、L-カルノシン1質量部に対して、該アルコールが5~100質量部となることが好ましい。
 アルコール置換した前処理液と、炭素数1~3のアルコール、および水酸化アルカリを混合して混合溶液を製造する方法は、特に制限されるものではなく、添加順序は関係なく、各成分を混合してやればよい。必要に応じて、水酸化アルカリは、炭素数1~3のアルコールに溶解して混合することできる。こうすることにより、混合溶液を得ることができる。
 得られた混合溶液には、酢酸亜鉛を混合することにより、該混合溶液に含まれるL-カルノシンを結晶性L-カルノシン亜鉛錯体(ポラプレジンク)とすることができる。混合する酢酸亜鉛は、特に制限されるものではないが、取扱の容易さから、酢酸亜鉛の2水和物を使用することが好ましい。酢酸亜鉛の使用量は、特に制限されるものではなく、L-カルノシン1モルに対して、酢酸亜鉛換算で1~3モルとすることが好ましい。この酢酸亜鉛は、そのまま混合溶液と混合することもできるが、炭素数1~3のアルコールに溶解させた溶液として混合することもできる。
 酢酸亜鉛と混合溶液とを混合する際には、-10~70℃、好ましくは0~50℃、より好ましくは0~30℃の反応温度とすることが好ましい。また、該酢酸亜鉛と混合溶液とを混合する際の雰囲気も、特に制限されるものではなく、乾燥空気雰囲気下、不活性ガス雰囲気下、通常の空気雰囲気下で実施することができる。また、大気圧下、減圧下、加圧下の何れの圧力下で反応を実施してもよい。そのため、操作性を考慮すると、空気雰囲気下、大気圧下で反応を実施することが好ましい。
 以上のような方法で混合溶液と酢酸亜鉛とを混合することにより、L-カルノシンを結晶性L-カルノシン亜鉛錯体(ポラプレジンク)とすることができる。上記方法によれば、使用した溶媒を濃縮することはあっても、L-カルノシンを溶媒から単離する操作を行っていないため、結晶性L-カルノシン亜鉛錯体の収率を高くすることができる。
 <結晶性L-カルノシン亜鉛錯体(ポラプレジンク)の精製方法>
 上記方法に従えば、反応溶液中に、結晶性L-カルノシン亜鉛錯体(ポラプレジンク)が析出する。該結晶性L-カルノシン亜鉛錯体(ポラプレジンク)は、公知の方法、例えば、国際公開第WO2015/119235号パンフレット等の方法に従い、アルカリ金属塩等の不純物を除去することができる。具体的には、結晶性L-カルノシン亜鉛錯体(ポラプレジンク)を濾別した後、炭素数1~3のアルコールで洗浄し、水、および熱水等で洗浄することにより、不純物が低減された結晶性L-カルノシン亜鉛錯体を得ることができる。
 以上、酸を使用して脱保護反応を行った場合の結晶性L-カルノシン亜鉛錯体(ポラプレジンク)の製造方法について説明したが、次に、パラジウム系触媒、水素源を用いた場合の方法について説明する。
 <結晶性L-カルノシン亜鉛錯体(ポラポレジンク)の製造方法(2)>
 <脱保護反応;パラジウム系触媒、水素源を使用してPGを脱保護する場合>
 前記式(i)で示される保護L-カルノシンにおいて、PGが、置換基を有してもよいベンジルオキシカルボニル基(好ましくは、非置換のベンジルオキシカルボニル基)である場合には、パラジウム系触媒/水素源を使用して脱保護反応を行うことが好ましい。
 <脱保護反応;パラジウム系触媒、水素源を使用してPG脱保護する場合;パラジウム系触媒、水素、溶媒、その他条件>
 脱保護反応に使用するパラジウム系触媒、水素、溶媒、およびその他条件は、それぞれ上述した本発明のL-カルノシンを製造する方法についての説明の中の“<パラジウム系触媒/水素源を使用してR1を脱保護する場合:パラジウム系触媒>”、“<パラジウム系触媒/水素源を使用してR1を脱保護する場合:水素>”、“<パラジウム系触媒/水素源を使用してR1を脱保護する場合:溶媒>”、および“<パラジウム系触媒/水素源を使用してR1を脱保護する場合:その他 条件>”に記載のとおりである。
 <パラジウム系触媒、水素源により脱保護反応を実施した場合の亜鉛塩化(結晶性L-カルノシン亜鉛錯体の製造方法)>
 前記方法で得られた混合液は、少なくとも水酸化アルカリと混合することにより混合溶液とすることができる。この混合液は、特に制限されるものではないが、操作性を向上するためには、脱保護反応で使用した反応系そのままを混合液とすることが好ましい。そのため、L-カルノシン1質量部当たり、脱保護反応に使用した溶媒を1~100質量部含むことが好ましい。この混合液は、そのまま水酸化アルカリと混合することもできるし、混合を容易にするため、さらに炭素数1~3のアルコールを追加することもできるし、必要に応じて、濃縮により該溶媒量を低減させることもできる。
 そして、該混合液と少なくとも水酸化アルカリとを混合して混合溶液とする。水酸化アルカリは、そのまま該混合液と混合することができるが、必要に応じて、炭素数1~3のアルコールに溶解させ溶液として使用することができる。
 使用する炭素数1~3のアルコール、および水酸化アルカリは、前記<酸により脱保護反応を実施した場合の亜鉛塩化(結晶性L-カルノシン亜鉛錯体の製造方法)>で説明したものと同様のものが使用できる。
 本発明においては、得られた混合溶液と、酢酸亜鉛とを混合することもできるが、該混合溶液は不溶なパラジウム系触媒を含むため、該パラジウム誌系触媒を濾過により取り除くことが好ましい。そして、パラジウム系触媒を取り除いた混合溶液に、さらに、酢酸亜鉛と混合して、結晶性L-カルノシン亜鉛錯体(ポラプレジンク)とすることが好ましい。
 使用する炭素数1~3のアルコールは、パラジウム系触媒を取り除いた後の混合溶液において、L-カルノシン1質量部あたり、炭素数1~3のアルコールが5~100質量部となることが好ましく、10~20質量部となることが好ましい。パラジウム系触媒を取り除いた混合溶液において、炭素数1~3のアルコールが前記範囲を満足する場合には、該アルコールを追加しなくともよい。また、該アルコールが前記範囲を超えている場合には、濃縮等により該アルコールを低減させることができる。当然のことながら、足りない場合には、該アルコールを追加することもできる。
 使用する水酸化アルカリの使用量は、L-カルノシン1モルに対して、2~9モルであることが好ましい。
 得られた混合溶液は、酢酸亜鉛を混合することにより、該混合溶液に含まれるL-カルノシンを結晶性L-カルノシン亜鉛錯体(ポラプレジンク)とすることができる。混合する酢酸亜鉛は、特に制限されるものではないが、取扱の容易さから、酢酸亜鉛の2水和物を使用することが好ましい。酢酸亜鉛の使用量は、特に制限されるものではなく、L-カルノシン1モルに対して、酢酸亜鉛換算で1~3モルとすることが好ましい。この酢酸亜鉛は、そのまま混合溶液と混合することもできるが、炭素数1~3のアルコールに溶解させた溶液として混合することもできる。
 酢酸亜鉛と混合溶液とを混合する際には、-10~70℃、好ましくは0~50℃、より好ましくは0~30℃の反応温度とすることが好ましい。また、該酢酸亜鉛と混合溶液とを混合する際の雰囲気も、特に制限されるものではなく、乾燥空気雰囲気下、不活性ガス雰囲気下、通常の空気雰囲気下で実施することができる。また、大気圧下、減圧下、加圧下の何れの圧力下で反応を実施してもよい。そのため、操作性を考慮すると、空気雰囲気下、大気圧下で反応を実施することが好ましい。
 以上のような方法で混合溶液と酢酸亜鉛とを混合することにより、L-カルノシンを結晶性L-カルノシン亜鉛錯体(ポラプレジンク)とすることができる。上記方法によれば、使用した溶媒を濃縮することはあっても、L-カルノシンを溶媒から単離する操作を行っていないため、結晶性L-カルノシン亜鉛錯体の収率を高くすることができる。
 得られた結晶性L-カルノシン亜鉛錯体(ポラプレジンク)は、前記<結晶性L-カルノシン亜鉛錯体(ポラプレジンク)の精製方法>で説明したのと同様の方法で精製して反応系外に取り出すことができる。
 以下、本発明を、実施例を用いて説明するが、本発明は以下の実施例に限定されるものではない。
 実施例1~26における、純度、アッセイ収率および不純物の量は、高速液体クロマトグラフィー(HPLC)により測定した。以下、測定条件を示す。
 測定条件1
 カップリング反応によりL-カルノシン誘導体(I)あるいはL-カルノシン誘導体(II)を合成する場合、下記測定条件を使用した。
 装置:液体クロマトグラフ装置(Waters Corporation製)
 検出器:紫外吸光光度計(Waters Corporation製)
 測定波長:210nm
 カラム:内径4.6mm、長さ150mmのステンレス管に、5μmの液体クロマトグラフィー用オクタデシルシリル化シリカゲルが充填されたもの。
 移動相(グラジエント):
  0分 0.1%りん酸水溶液:アセトニトリル=90:10
  5分 0.1%りん酸水溶液:アセトニトリル=90:10
  20分 0.1%りん酸水溶液:アセトニトリル=10:90
 流量:毎分0.5mL
 カラム温度:30℃付近の一定温度
 測定時間:30分
 保持時間:L-ヒスチジン:2.9分、β-アラニル-ヒスチジル-ヒスチジン誘導体(L-カルノシン誘導体とL-ヒスチジンがカップリングした化合物):11.0分、保護L-カルノシン(II):12.9分
 測定条件2
 L-カルノシン誘導体(I)あるいはL-カルノシン誘導体(II)を脱保護することにより、L-カルノシンを合成する場合、下記測定条件を使用した。
 装置:測定条件1と同じ
 検出器:測定条件1と同じ
 測定波長:210nm
 カラム:内径4.6mm、長さ150mmのステンレス管に、5μmの液体クロマトグラフィー用オクタデシルシリル化シリカゲルが充填されたもの。
 移動相:りん酸水素二カリウム(26.1g)、1-デカンスルホン酸ナトリウム(3.7g)を水3000mLに添加し溶解させた後、りん酸を加えて、pH3.0に調整した混合液を調製し、混合液とアセトニトリルを78:22の混合比で送液
 流量:毎分1.0mL
 カラム温度:30℃付近の一定温度
 測定時間:30分
 保持時間:L-ヒスチジン:2.6分、L-カルノシン:3.6分、ピバロイルヒスチジン:4.2分、β-アラニル-ヒスチジル-ヒスチジン(L-カルノシンとL-ヒスチジンがカップリングした化合物):9.0分
 以下の実施例において、純度は、上記条件で測定される全ピークの面積値の合計に対するL-カルノシンのピーク面積値の割合である。
 実施例1<酸無水物(II)の製造例>
 以下の反応式に従い式(1’’)で示される酸無水物(II)を製造した。
Figure JPOXMLDOC01-appb-C000079
 トリホスゲン(0.53g、1.79mmol)のテトラヒドロフラン(THF;5mL)を7℃以下まで冷却した。トリホスゲンを含むTHF溶液に、N-ベンジルオキシカルボニル-β-アラニン(式(4)で示されるN-保護-β-アラニン誘導体;1.00g、4.48mmol)、ピリジン(有機塩基;0.35g、4.42mmol)、およびTHF(5mL)を含む混合液を、反応液の温度が10℃以下を維持するように、10分間かけて滴下した。その後、反応液の温度が10℃以下を維持するようにして、1時間攪拌後、得られた反応液を減圧濾過した。
 得られたろ液とpHが8.0の重曹を含む水溶液とを混合した。得られた液を酢酸エチル(10mL)で抽出した。その後、得られた酢酸エチルの溶液を、pHが8.0の重曹を含む水溶液で、中性(pH7)になるまで洗浄した。洗浄後の酢酸エチルの溶液をエバポレーターにて濃縮後、得られた濃縮残渣へ、酢酸エチル、およびヘキサンを加えて結晶化させることにより、3-N-ベンジルオキシカルボニルアミノプロピオン酸無水物(式(1’’)で示される酸無水物(II);0.57g、収率:59.3%)を白色結晶として得た。
 得られた3-N-ベンジルオキシカルボニルアミノプロピオン酸無水物(酸無水物(II))の分析値は以下の通りであった。
融点 77~80℃。
IR(KBr)3361、1817、1693cm-1
1H-NMR(CDCl3)δ 2.50-2.80(m、4H),3.25-3.75(m.4H),4.80-5.50(m,6H),7.20-7.50(m,10H)。
 実施例2<酸無水物(II)とL-ヒスチジンとの反応(保護L-カルノシン(II)の製造)>
 以下の反応式に従い、式(1’’)で示される酸無水物(II)とL-ヒスチジンとを反応させて、式(3p2)で示される保護L-カルノシン誘導体(II)を製造した。
Figure JPOXMLDOC01-appb-C000080
 トリホスゲン(0.53g、1.79mmol)を含むテトラヒドロフラン(THF;5mL)溶液を7℃以下まで冷却した。トリホスゲンを含むTHF溶液に、N-ベンジルオキシカルボニル-β-アラニン(式(4)で示されるN-保護-β-アラニン誘導体;1.00g、4.48mmol)、ピリジン(有機塩基;0.35g、4.42mmol)、およびTHF(5mL)を含む混合液を、反応液の温度が10℃以下を維持するように、10分間かけて滴下した。その後、反応液の温度が10℃以下を維持するようにして、1時間攪拌後、得られた反応液を減圧濾過して、前記式(1’’)で示される3-N-ベンジルオキシカルボニルアミノプロピオン酸無水物(酸無水物(II))を含むろ液を準備した。
 また、L-ヒスチジン(0.35g、2.26mmol)、水(5mL)、および10質量% 水酸化ナトリウムを含む水溶液を混合して、pH11.0のL-ヒスチジンのアルカリ水溶液を準備した。
 このL-ヒスチジンのアルカリ水溶液中に、3-N-ベンジルオキシカルボニルアミノプロピオン酸無水物(酸無水物(II))を含む前記ろ液を、反応液の温度が5~10℃の範囲を維持するように30分間かけて加えた。この際、反応液の温度を5~10℃に維持しつつ、かつ、10質量%の水酸化ナトリウム水溶液(無機塩基を含む水溶液)を適宜加え、反応液のpHが10.9~11.8の範囲を維持するようにした。前記ろ液を加えた後、その温度で10分間攪拌を行った。攪拌後、反応液を高速液体クロマトグラフィー(HPLC)にて確認したところ、3-N-ベンジルオキシカルボニルアミノプロピオン酸無水物(酸無水物(II))の転化率は、75.6%であった。
 実施例3<酸無水物(I)の製造例>
 以下の反応式に従い式(1’)で示される酸無水物(I)を製造した。
Figure JPOXMLDOC01-appb-C000081
 窒素雰囲気下において、N-ベンジルオキシカルボニル-β-アラニン(式(4)で示されるN-保護-β-アラニン誘導体;1.00g、4.48mmol)、トリエチルアミン(有機塩基;0.45g、4.45mmol)、およびアセトニトリル(7mL)を含む混合溶液を準備し、該溶液を7℃以下まで冷却した。該冷却した溶液中に、ピバロイルクロリド(式(5)で示されるハロゲン化物;0.54g、4.48mmol)、およびアセトニトリル(3mL)を含む溶液を、反応液中の温度が10℃以下を維持するように、10分間かけて滴下した。滴下後の反応液の温度(10℃以下)を維持したまま、1時間攪拌を行った。得られた反応液から結晶を一部取り出し、生成物を確認した。以下の分析結果であった。
IR(KBr)3339,2976,2939,2739,2677,1813,1692cm-11H-NMR(CDCl3)δ 1.23-1.27(m,9H),2.62-2.77(m,2H),3.45-3.55(m,2H),5.09-5.10(m,2H),5.32(brs,1H),7.28-7.34(m,5H)。
以上の結果から、生成物が式(1’)で示される酸無水物(I)であることが確認できた。
 実施例4<酸無水物(I)とL-ヒスチジンとの反応(保護L-カルノシン誘導体(II)の製造)>
 以下の反応式に従い式(1’)で示される酸無水物(I)を合成し、次いで、該酸無水物(I)とL-ヒスチジンとを反応させて、式(3p2)で示される保護L-カルノシン誘導体(II)を製造した。
Figure JPOXMLDOC01-appb-C000082
 実施例3と同じ操作(原料等の量も同じ量を使用した)を行い、アセトニトリル中に式(1’)で示される酸無水物(I)が溶解したアセトニトリル溶液を準備した。
 また、L-ヒスチジン(0.56g、3.61mmol)、水(5mL)、およびアセトニトリル(5mL)の混合液に、10質量%水酸化ナトリウム水溶液を加え、pH12.5に調整した、L-ヒスチジンのアルカリ水溶液を準備し、該水溶液を10℃まで冷却した。
 L-ヒスチジンのアルカリ水溶液に、酸無水物(I)が溶解したアセトニトリル溶液を、反応液の温度が10℃以下となるように維持しながら滴下した。この際、反応液のpHが12~13の範囲となるように、10質量%水酸化ナトリウム水溶液を反応液に適宜添加した。滴下後の温度、pHを維持したまま、1時間攪拌を行った。得られた反応液をHPLCで確認した結果、および残渣の量から、前記式(3p2)で示される保護L-カルノシン誘導体(II)のアッセイ収率は71.25%であった。
 実施例5<酸無水物(I)とL-ヒスチジンとの反応(保護L-カルノシン誘導体(II)の製造) 溶媒・塩基変更例>
 実施例4において、酸無水物(I)が溶解したアセトニトリル溶液の代わりにTHF溶液とし、塩基としてトリエチルアミンの代わりにピリジンを用いた以外は、実施例4と同様の操作を行った(アセトニトリルの代わりにTHFを同量、およびトリエチルアミンの代わりにピリジンを同量(ピリジンは同当量)用いた以外は、その他の条件を実施例4と同じにして反応を行った。)。実施例4で得られたものと同じ保護L-カルノシン誘導体(II)のアッセイ収率は38.3%であった。
 実施例6<酸無水物(I)とL-ヒスチジンとの反応(保護L-カルノシン誘導体(II)の製造) 溶媒・塩基変更例>
 実施例4において、酸無水物(I)が溶解したアセトニトリル溶液の代わりにTHF溶液とし、塩基としてトリエチルアミンの代わりに4-メチルモルホリンを用いた以外は、実施例4と同様の操作を行った(アセトニトリルの代わりにTHFを同量、およびトリエチルアミンの代わりに4-メチルモルホリンを同量(4-メチルモルホリンは同当量)用いた以外は、その他の条件を実施例4と同じにして反応を行った。)。実施例4で得られたものと同じ保護L-カルノシン誘導体(II)のアッセイ収率は55.9%であった。
 実施例7<酸無水物(I)とL-ヒスチジンとの反応(保護L-カルノシン誘導体(II)の製造) 溶媒変更例>
 実施例4において、酸無水物(I)が溶解したアセトニトリル溶液の代わりにTHF溶液とした以外は、実施例4と同様の操作を行った(アセトニトリルの代わりにTHFを同量用いた以外は、その他の条件を実施例4と同じにして反応を行った。)。実施例4で得られたものと同じ保護L-カルノシン誘導体(II)のアッセイ収率は62.4%であった。
 実施例8<酸無水物(I)とL-ヒスチジンとの反応(保護L-カルノシン誘導体(II)の製造) 溶媒変更例>
 実施例4において、酸無水物(I)が溶解したアセトニトリル溶液の代わりにジメチルホルムアミド(DMF)溶液とした以外は、実施例4と同様の操作を行った(アセトニトリルの代わりにDMFを同量用いた以外は、その他の条件を実施例4と同じにして反応を行った。)。実施例4で得られたものと同じ保護L-カルノシン誘導体(II)のアッセイ収率は68.3%であった。
 実施例9<酸無水物(I)とL-ヒスチジンとの反応(保護L-カルノシン誘導体(II)の製造) 溶媒変更例>
 実施例4において、酸無水物(I)が溶解したアセトニトリル溶液の代わりにメチルエチルケトン溶液とした以外は、実施例4と同様の操作を行った(アセトニトリルの代わりにメチルエチルケトンを同量用いた以外は、その他の条件を実施例4と同じにして反応を行った。)。実施例4で得られたものと同じ保護L-カルノシン誘導体(II)のアッセイ収率は55.6%であった。
 実施例10<酸無水物(I)とL-ヒスチジンとの反応(保護L-カルノシン誘導体(II)の製造) 溶媒変更例>
 実施例4において、酸無水物(I)が溶解したアセトニトリル溶液の代わりに酢酸エチル溶液とした以外は、実施例4と同様の操作を行った(アセトニトリルの代わりに酢酸エチルを同量用いた以外は、その他の条件を実施例4と同じにして反応を行った。)。実施例4で得られたものと同じ保護L-カルノシン誘導体(II)のアッセイ収率は61.2%であった。
 実施例11<酸無水物(I)とL-ヒスチジンとの反応(保護L-カルノシン誘導体(II)の製造) 溶媒変更例>
 実施例4において、酸無水物(I)が溶解したアセトニトリル溶液の代わりに1,2-ジメトキシエタン溶液とした以外は、実施例4と同様の操作を行った(アセトニトリルの代わりに1,2-ジメトキシエタンを同量用いた以外は、その他の条件を実施例4と同じにして反応を行った。)。実施例4で得られたものと同じ保護L-カルノシン誘導体(II)のアッセイ収率は85.0%であった。
 実施例12<酸無水物(I)とL-ヒスチジン誘導体との反応(保護L-カルノシン誘導体(I)の製造)>
 以下の反応式に従い、式(3p1)で示される保護L-カルノシン誘導体(I)を製造した。式中、TMSは、トリメチルシリル基を指す。
Figure JPOXMLDOC01-appb-C000083
 窒素雰囲気下において、実施例3における式(4)で示されるN-ベンジルオキシカルボニル-β-アラニン((N-保護-β-アラニン誘導体;7.25g、32.48mmol)、クロロホルム(40mL)を含むクロロホルム溶液に、トリエチルアミン(有機塩基;3.29g、32.51mmol)を加え7℃まで冷却した。トリエチルアミンを含む前記クロロホルム溶液に、ピバロイルクロリド(式(5)で示されるハロゲン化物;3.91g、32.43mmol)、クロロホルム(10mL)を含む溶液を、反応液の温度が10℃以下となるように維持しながら、20分間かけて滴下した。以上の操作を行い、式(1’)で示される酸無水物(I)を含むクロロホルム溶液を準備した。なお、クロロホルム溶液に含まれる酸無水物(I)は、別途、精製・分析を行い、実施例3で製造した酸無水物(I)と同じものであることを確認した。
 一方、窒素雰囲気下において、硫酸(0.0136g、0.14mmol)にヘキサメチルジシラザン(17.92g、111.03mmol)を加え5分攪拌した。その後、L-ヒスチジン(4.31g、27.78mmol)をゆっくり加え130℃の恒温器にて40分間還流した。反応液を100℃まで冷却し減圧濃縮を行い、残渣にクロロホルム(10mL)を加え、式(2p)で示されるL-ヒスチジン誘導体(I)が溶解したクロロホルム溶液を準備した。
 次いで、式(2p)で示されるL-ヒスチジン誘導体(I)が溶解したクロロホルム溶液に、式(1’)で示される酸無水物(I)を含むクロロホルム溶液を、反応液の温度が7℃以下にあるように維持しながら、1時間かけて滴下した。滴下後の反応液の温度を維持しながら2時間攪拌を行った。得られた反応液を、バッファが酸となるHPLCで確認した結果、および残渣の量から、式(3p1)で示される保護L-カルノシン誘導体(I)のアッセイ収率は94.93%であった。
 なお、前記アッセイ収率は、保護L-カルノシン誘導体(I)のR7P’が水素原子、又はトリメチルシリル基(TMS)の場合があるため、バッファが酸であるHPLCを使用してTMS基の脱保護を行い、実施例4における式(3p2)で示される保護L-カルノシン誘導体(II)の状態の割合(HPLCのピーク面積)を使用して求めた値である。
 実施例13<酸無水物(I)とL-ヒスチジン誘導体との反応(保護L-カルノシン誘導体(I)の製造) ハロゲン化物の変更例>
 実施例12において、ハロゲン化物として、ピバロイルクロリドに代えてクロロ炭酸エチルを使用した以外は、実施例10と同様の操作を行った。得られた保護L-カルノシン誘導体(II)のアッセイ収率は90.4%であった。
 実施例14<保護L-カルノシン誘導体(I)から保護L-カルノシン誘導体(II)を製造する例>
 実施例12において、式(2p)で示されるL-ヒスチジン誘導体(I)が溶解したクロロホルム溶液に、式(1’)で示される酸無水物(I)を含むクロロホルム溶液滴下して、その後、2時間攪拌を行った反応液に、クロロホルム(20mL)を追加した。
 得られた、実施例12における式(3p1)で示される保護L-カルノシン誘導体(I)が溶解したクロロホルム溶液に、エタノール(10mL)を、反応液の温度が10℃以下に維持されるように、1時間かけて滴下した。滴下後ゆっくり室温(23℃)まで昇温し、同温で15時間攪拌した。得られた懸濁液を、その温度を10℃以下にして1時間攪拌した後、固体を濾過した。得られた固体をクロロホルム(40mL)で洗浄後、40℃で4時間減圧乾燥することにより、実施例4における式(3p2)で示される保護L-カルノシン誘導体と同じ保護L-カルノシン誘導体(II)を得た。収量は9.4gであり、含量:84.2%(収量9.4g中に目的物が84.2質量%含まれる)、アッセイ収率79%であった。
得られた保護L-カルノシン誘導体(II)の分析値は以下の通りであった。
IR(KBr)3318,3151,2934,2677,2492,1693,1647,1613,1542,1396,1266cm-1
1H-NMR(D2O) δ 2.30(t,J=6.4Hz,2H),2.80-2.90(m,1H),3.18-3.20(m,2H),4.33-4.36(m,1H),4.93(s,1H),7.01(s,1H),7.21-7.27(m,5H),8.30(s,1H)。
 実施例15<保護L-カルノシン誘導体(II)からL-カルノシンを製造する方法>
 以下の反応を行った。
Figure JPOXMLDOC01-appb-C000084
 実施例14と同様の操作を行い製造した保護L-カルノシン誘導体(II)(5.0g、13.9mmol、HPLC純度:99.51%)、メタノール(15mL)、イオン交換水(35mL)を撹拌混合して溶液を得た。該保護L-カルノシン誘導体(II)が溶解したのを確認した後、市販の5質量%パラジウムカーボン(50%ウェット、30mg、0.05mol%)を該溶液に加え、水素雰囲気下(1気圧)で24時間撹拌した。
 撹拌後、桐山ロートにてラジオライトを用いて溶液をろ過し(パラジウムカーボンを除去し)、メタノール(5mL)で2回洗浄した。
 得られたろ液を結晶が析出するまで外部温度が60℃の状態で減圧濃縮し、次いで、メタノール(50mL)を加えた後、5℃に冷却して2時間撹拌した。撹拌後、桐山ロートにてろ過し(固体を分取し)、メタノール(5mL)で該固体を2回洗浄した。
 得られた固体を40℃で12時間減圧乾燥したところ、L-カルノシン(2.9g、収率:92.3%)の白色固体を得た。該白色固体のHPLC純度は99.62%であった。
 実施例16<保護L-カルノシン誘導体(I)から保護L-カルノシン誘導体(II)を製造し、反応系外に取り出さず、そのまま脱保護を行いL-カルノシンを製造する例>
 以下に示す反応を行った。
Figure JPOXMLDOC01-appb-C000085
 <保護L-カルノシン誘導体(I)の製造>
 実施例12と同様の実験を以下の配合量で行った(式の化合物は実施例10と同じである)。窒素雰囲気下において、実施例3における式(4)で示されるN-ベンジルオキシカルボニル-β-アラニン((N-保護-β-アラニン誘導体;16.9g、75.8mmol)、クロロホルム(40mL)を含むクロロホルム溶液に、トリエチルアミン(有機塩基;7.68g、75.6mmol)を加え7℃まで冷却した。トリエチルアミンを含む前記クロロホルム溶液に、ピバロイルクロリド(式(5)で示されるハロゲン化物;9.12g、75.6mmol)、クロロホルム(23mL)を含む溶液を、反応液の温度が10℃以下となるように維持しながら、20分間かけて滴下した。以上の操作を行い、式(1’)で示される酸無水物(I)を含むクロロホルム溶液を準備した。
 一方、窒素雰囲気下において、硫酸(0.06g、0.6mmol)にヘキサメチルジシラザン(41.61g、257.8mmol)を加え5分攪拌した。その後、L-ヒスチジン(10.06g、64.4mmol)をゆっくり加え130℃の恒温器にて40分間還流した。反応液を100℃まで冷却し減圧濃縮を行い、残渣にクロロホルム(10mL)を加え、式(2p)で示されるL-ヒスチジン誘導体(I)が溶解したクロロホルム溶液を準備した。
 次いで、式(2p)で示されるL-ヒスチジン誘導体(I)が溶解したクロロホルム溶液に、式(1’)で示される酸無水物(I)を含むクロロホルム溶液を、反応液の温度が7℃以下にあるように維持しながら、1時間かけて滴下した。滴下後の反応液の温度を維持しながら2時間攪拌を行った。得られた反応液は、式(3p1)で示される保護L-カルノシン誘導体(I)(20.5g、56.9mmol、収率88%)を含むクロロホルムの懸濁液であった。
 <保護L-カルノシン誘導体(II)の製造>
 該懸濁液からエバポレーターにてクロロホルムを減圧留去した。さらに、残渣にメタノール250mLを加え、エバポレーターにて減圧留去し、クロロホルムを除去した。得られた残渣は、脱保護反応が進行しており、式(3p2)で示される保護L-カルノシン誘導体(II)であった。
 <L-カルノシンの製造>
 その後、残渣に、メタノール250mLを加えて、保護L-カルノシン誘導体(II)のメタノール懸濁液(240g)を得た。ガラス製オートクレーブに、得られた前記メタノール懸濁液、10質量%のパラジウムを含むパラジウムカーボン(市販品;50%ウェット、2.7g、1.3mmol)、メタノール(25mL)を仕込み、水素圧0.45MPa、反応温度55℃で水素添加反応を実施した。約1時間の反応で生成物であるL-カルノシンの析出が確認できた。反応を2時間行い、反応液をオートクレーブから取出し、さらに、5℃で12時間撹拌した。
 その後、桐山ロートにてろ過し(析出したL-カルノシンを分取し)、メタノール(50mL)で洗浄した。次に、得られたL-カルノシンとパラジウムカーボンの混合物をナスフラスコに移し、イオン交換水125mL、活性炭0.8gを加え、室温で1時間撹拌し、L-カルノシンを溶解させた。
 その後、桐山ロートにてラジオライトを用いてろ過し(パラジウムカーボンを除去し)、イオン交換水50mLで洗浄し、L-カルノシンの水溶液を得た。エバポレーターにて水を減圧留去した後、イオン交換水10mLを加えて固体を溶解させた。その後、70℃でエタノール125mLを加えて30分加熱し、放冷後、5℃で12時間熟成させて、L-カルノシンを結晶化させた。桐山ロートにてろ過し(析出したL-カルノシンを分取し)、エタノール50mLで洗浄した。40℃で12時間真空乾燥し、L-カルノシン(11.5g、収率:79%:L-ヒスチジンからの収率)を白色固体として得た。得られたL-カルノシンの分析値は以下の通りであった。
融点 255~260℃(分解)
IR(KBr) 2924,1639,1574,1460,1408,1269,840cm-1
1H-NMR(D2O) δ2.46(m,2H),2.77(dd,J=15Hz,8Hz,1H),2.93(dd,J=15Hz,5Hz,1H),3.02(td,J=6Hz,1Hz,2H),4.26(q,J=5Hz,1H),6.75(s,1H),7.51(d,J=1Hz,1H) 。
 実施例17<保護L-カルノシン誘導体(I)から保護L-カルノシン誘導体(II)を製造し、反応系外に取り出さず、そのまま脱保護を行いL-カルノシンを製造する例のける溶媒変更例>
 実施例16において、使用したクロロホルムの代わりに塩化メチレンを使用した例である。L-カルノシンの収率は78.3%)であり、98.93%であった。詳細は以下の通りである。
 窒素雰囲気下において、実施例3における式(4)で示されるN-ベンジルオキシカルボニル-β-アラニン(N-保護-β-アラニン誘導体;7.25g、32.4mmol)、塩化メチレン(30mL)、トリエチルアミン(3.29g、32.5mmol)を加え5℃まで冷却した。トリエチルアミンを含む前記塩化メチレン溶液に、ピバロイルクロリド(式(5)で示されるハロゲン化物;3.91g、32.5mmol)、塩化メチレン(10mL)を含む溶液を、反応液の温度が0~5℃の範囲を維持するように滴下した。滴下後、5℃で1時間撹拌し、桐山ロートにてろ過し、析出した固体(トリエチルアミンの塩酸塩)を除去することにより、式(1’)で示される酸無水物(I)を含む塩化メチレン溶液を準備した。塩化メチレンを使用することにより、有機塩基の塩酸塩を容易に分離することが可能となる。
 一方、窒素雰囲気下において、硫酸(0.0136g、0.14mmol)にヘキサメチルジシラザン(17.92g、111.0mmol)を加え5分撹拌した。その後、L-ヒスチジン(4.31g、27.8mmol)をゆっくり加え130℃の恒温器にて40分間還流した。反応液を100℃まで冷却し減圧濃縮を行い、残渣に塩化メチレン(10mL)を加え、式(2p)で示されるL-ヒスチジン誘導体(I)が溶解した塩化メチレン溶液を準備した。なお、塩化メチレン溶液に含まれる酸無水物(I)は、別途、分析を行い、実施例3で製造した酸無水物(I)と同じものであることを確認した。
 次いで、式(2p)で示されるL-ヒスチジン誘導体(I)が溶解した塩化メチレン溶液に、式(1’)で示される酸無水物(I)を含む塩化メチレン溶液を、反応液の温度が0~5℃の範囲にあるように維持しながら、1時間かけて滴下した。滴下後の反応液の温度を維持しながら1時間撹拌を行った。得られた反応液を、バッファが酸となるHPLCで確認した結果、および残渣の量から、式(3p1)で示される保護L-カルノシン誘導体(I)のアッセイ収率は82%であった。
 <保護L-カルノシン誘導体(II)の製造>
 該反応液の温度が0~5℃の範囲としてメタノール10mlを加えた。メタノール添加後、外温を60℃にし、減圧濃縮にて、塩化メチレン、メタノールを留去した。得られた残渣は、脱保護反応が進行しており、式(3p2)で示される保護L-カルノシン誘導体(II)であった。
 <L-カルノシンの製造>
 その後、メタノール(100mL)を加え、撹拌し、該保護L-カルノシン誘導体(II)のメタノール溶液を得た。ガラス製オートクレーブに、得られた前記メタノール溶液、5質量%のパラジウムを含むパラジウムカーボン(市販品;1.23g、1.0mol%)を加え、水素雰囲気下(1気圧)で22時間撹拌し、L-カルノシンの析出を確認した。
 撹拌後、桐山ロートにてろ過し、メタノール(10mL)で2回洗浄した。得られたL-カルノシンとパラジウムカーボンとの混合物を200mLナスフラスコに移し、イオン交換水(50mL)を加え、室温で30分間撹拌し、L-カルノシンを溶解した。
 その後、桐山ロートにてラジオライトを用いてろ過し、イオン交換水(10mL)で2回洗浄し、L-カルノシンの水溶液を得た。外温60℃で水を減圧留去した後、エタノール150mLを加えて70℃の温度とし、次いで、5℃に冷却し12時間撹拌した。撹拌後、桐山ロートにてろ過し(析出したL-カルノシンを分取し)、エタノール(10mL)で2回洗浄した。得られたL-カルノシンの湿体を40℃で12時間減圧乾燥し、L-カルノシン(4.9g、78.3%:L-ヒスチジンからの収率)を白色固体として得た。本品のHPLC純度は98.93%であった。
 実施例18<保護基としてBoc基を用いたL-カルノシンを製造する例>
 以下の反応式で示される合成を行った。
Figure JPOXMLDOC01-appb-C000086
 <酸無水物(I)の合成>
 窒素雰囲気下において、Boc-β-アラニン(式(4)で示されるN-保護-β-アラニン誘導体;6.78g、35.8mmol)を含むクロロホルム(30mL)溶液に、トリエチルアミン(有機塩基;3.63g、35.9mmol)を加え、7℃まで冷却した。トリエチルアミンを含む前記クロロホルム溶液に、ピバロイルクロリド(式(5)で示されるハロゲン化物;4.32g、35.8mmol)、クロロホルム(20mL)を含む溶液を、反応液の温度が7℃以下となるように維持しながら、1時間かけて滴下した。その後、7℃で1時間攪拌を行い、式(1’)で示される酸無水物(I)を含むクロロホルム溶液を準備した。なお、クロロホルム溶液に含まれる酸無水物は、別途、精製・分析を行い、以下の結果であった。
IR(KBr)2979、2602、2497、1814、1719、1697。
1H-NMR(CDCl3)δ 1.10-1.60(m、9H),2.5-3.7(m、4H),5.00(brs、1H)。
以上の結果から、式(1’)で示される酸無水物(I)であることが確認できた。
 <式(2p)で示されるL-ヒスチジン誘導体(I)の準備>
 窒素雰囲気下において、硫酸(0.015g、0.15mmol)にヘキサメチルジシラザン(19.8g、122.7mmol)を加え10分間攪拌した。その後、L-ヒスチジン(4.8g、30.9mmol)をゆっくり加え130℃の恒温器にて40分間攪拌した。反応液を100℃まで冷却し減圧濃縮を行い、残渣にクロロホルム(10mL)を加え、式(2p)で示されるL-ヒスチジン誘導体(I)が溶解したクロロホルム溶液を準備した。
 <式(3p2)で示される保護L-カルノシン誘導体(II)の製造;カップリング反応と脱保護>
 次いで、式(2p)で示されるL-ヒスチジン誘導体(I)が溶解したクロロホルム溶液に、式(1’)で示される酸無水物(I)を含むクロロホルム溶液を、反応液の温度が
7℃以下にあるように維持しながら、1.5時間かけて滴下した。滴下後の反応液の温度を維持しながら2時間攪拌を行った(カップリング反応)。式(3p2)で示される保護L-カルノシン誘導体(I)のアッセイ収率は90%であった。
 攪拌後の反応液に、4N-HCl(30mL、98.8mmol)を10分間かけて滴下し、室温(23℃)まで昇温後、1時間攪拌した(脱保護反応)。得られた反応液(水層)を確認したところ、式(3p2)で示される保護L-カルノシン誘導体(II)が生成されていることを確認した。
 <L-カルノシンの製造>
 得られた反応液を分液ロートに移し、水層を分離後、クロロホルム層を水(10mL)にて洗浄し、洗浄に使用した水と前述の水層とを混合し、エバポレーターで濃縮した。残渣に、水(10mL)を加え、さらに無水水酸化リチウム(2.2g)を加え、液のpHを8.22に調整してエバポレーターで濃縮した。得られた残渣にメタノール(50mL)を加え一夜室温で攪拌を行った。析出した結晶を濾過、乾燥することによりL-カルノシン(5.59g、収率:80%:L-ヒスチジンからの収率)を白色固体として得た。
 実施例19<酸無水物(I)とL-ヒスチジンとの反応(保護L-カルノシン誘導体(II)の製造)に有機塩基を使用し、L-カルノシンを製造する方法>
 以下の反応式に従い式(1’)で示される酸無水物(I)を合成し、次いで、該酸無水物(I)とL-ヒスチジンとを反応させて、式(3p2)で示される保護L-カルノシン誘導体(II)を製造した。得られた保護L-カルノシン誘導体(II)の反応液を反応系外に取り出さず、そのまま脱保護を行い、L-カルノシンを製造した。
Figure JPOXMLDOC01-appb-C000087
 大気雰囲気下において、N-ベンジルオキシカルボニル-β-アラニン(式(4)で示されるN-保護-β-アラニン誘導体;40.00g、179.19mmol)、トリエチルアミン(有機塩基;18.13g、179.19mmol)、およびアセトニトリル(120mL)を含む混合溶液を準備し、該溶液を7℃以下まで冷却した。該冷却した溶液中に、ピバロイルクロリド(21.61g、179.19mmol)、およびアセトニトリル(40mL)を含む溶液を、反応液中の温度が10℃以下を維持するように、30分間かけて滴下した。滴下後の反応液の温度(10℃以下)を維持したまま、1時間攪拌を行った。以上の操作を行い、式(1’)で示される酸無水物(I)を含むアセトニトリル溶液を準備した。
 また、L-ヒスチジン(20.00g、128.90mmol)、水(100mL)の混合液に、トリエチルアミン(32.60g、322.27mmol)を加えることで、L-ヒスチジンのアルカリ水溶液を準備し、該水溶液を10℃まで冷却した。
 L-ヒスチジンのアルカリ水溶液に、酸無水物(I)が溶解したアセトニトリル溶液を、反応液の温度が10℃以下となるように維持しながら30分かけて滴下した。滴下後の反応液を40℃に加熱し、1時間攪拌を行った。得られた反応液をHPLCで確認した結果、および残渣の量から、前記式(3p2)で示される保護L-カルノシン誘導体(II)のアッセイ収率は86%であった。
 次いで、保護L-カルノシン誘導体(II)に、市販の5質量%パラジウムカーボン(50%ウェット、2180mg、0.2mol%)を該溶液に加え、水素雰囲気下(5.5気圧)で6時間撹拌した。
 撹拌後、桐山ロートにてラジオライトを用いて溶液をろ過し(パラジウムカーボンを除去し)、水(29mL)で洗浄した。
 <L-カルノシンの製造>
 得られたろ液を外部温度が70℃の状態で減圧濃縮し、次いで、エタノール(50mL)を50~60℃を維持したまま加えて1時間撹拌した。20℃に冷却して1時間撹拌した後、桐山ロートにてろ過し(固体を分取し)、エタノール(29mL)で該固体を洗浄した。
 得られた固体を55℃で6時間送風乾燥したところ、L-カルノシン(26.7g、収率:82.2%:L-ヒスチジンからの収率)の白色固体を得た。
 実施例20<L-カルノシンの精製例>
 実施例19と同じ操作(原料の量も同じ量を使用した)を行い、L-カルノシンの白色固体を得た。HPLCで分析した結果、含量:94.38%、ピバロイルヒスチジン:0.623%、β-アラニル-ヒスチジル-ヒスチジン:0.103%であった。
 得られたL-カルノシン(5.00g、22.10mmol)に水(11mL)を加えて60℃で撹拌した。L-カルノシンの溶解を確認後、エタノール(55mL)を加えて30分加熱し、放冷後、20℃で12時間熟成させてL-カルノシンを結晶化させた。桐山ロートにてろ過し(析出したL-カルノシンを分取し)、エタノール(5mL)で洗浄した。55℃で6時間送風乾燥し、精製済みのL-カルノシン(4.22g、収率:90.38%)を白色固体として得た。HPLCで分析した結果、含量:99.70%、ピバロイルヒスチジン:0.068%、β-アラニル-ヒスチジル-ヒスチジン:0.054%であった。
 実施例21<L-カルノシンの精製例>
 実施例20において、L-カルノシンの結晶化および洗浄溶媒として、エタノールの代わりにメタノールを用いた以外は、実施例20と同様の操作を行った。実施例20で得られたものと同じく、精製済みのL-カルノシン(4.07g、収率:87.17%)を得た。HPLCで分析した結果、含量:99.24%、ピバロイルヒスチジン:0.126%、β-アラニル-ヒスチジル-ヒスチジン:0.041%であった。
 実施例22<酸無水物(I)とL-ヒスチジンとの反応による保護L-カルノシン誘導体(II)の製造>
 大気雰囲気下において、N-ベンジルオキシカルボニル-β-アラニン(式(4)で示されるN-保護-β-アラニン誘導体;1.00g、4.480mmol)、トリエチルアミン(有機塩基;0.45g、4.480mmol)、およびアセトニトリル(7mL)を含む混合溶液を準備し、該溶液を7℃以下まで冷却した。該冷却した溶液中に、ピバロイルクロリド(式(5)で示されるハロゲン化物;0.54g、4.480mmol)、およびアセトニトリル(3mL)を含む溶液を、反応液中の温度が10℃以下を維持するように、15分間かけて滴下した。滴下後の反応液の温度(10℃以下)を維持したまま、1時間攪拌を行った。以上の操作を行い、式(1’)で示される酸無水物(I)を含むアセトニトリル溶液を準備した。
 また、L-ヒスチジン(0.56g、3.584mmol)、水(5mL)の混合液に、トリエチルアミン(0.36g、3.584mmol)を加えることで、L-ヒスチジンのアルカリ水溶液を準備し、該水溶液を10℃まで冷却した。
 L-ヒスチジンのアルカリ水溶液に、酸無水物(I)が溶解したアセトニトリル溶液を、反応液の温度が10℃以下となるように維持しながら10分かけて滴下した。滴下後の反応液を40℃に加熱し、1時間攪拌を行った。得られた反応液をHPLCで確認した結果、転化率(=<保護L-カルノシン誘導体(II)の面積%>/(<L-ヒスチジンの面積%>+<保護L-カルノシン誘導体(II)の面積%>)×100)は97.8%、β-アラニル-ヒスチジル-ヒスチジン誘導体:1.357%であった。
 実施例23<酸無水物(I)とL-ヒスチジンとの反応による保護L-カルノシン(II)の製造>
 実施例22において、L-ヒスチジンのアルカリ水溶液に用いるトリエチルアミンの当量数を2倍にした点以外は、実施例22と同様の操作を行った。得られた反応液は実施例22と同じものであり、HPLCで確認した結果、転化率(=<保護L-カルノシン誘導体(II)の面積%>/(<L-ヒスチジンの面積%>+<保護L-カルノシン誘導体(II)の面積%>)×100)は98.6%、β-アラニル-ヒスチジル-ヒスチジン誘導体:0.309%であった。
 実施例24<酸無水物(I)とL-ヒスチジンとの反応による保護L-カルノシン(II)の製造>
 実施例22において、L-ヒスチジンのアルカリ水溶液に用いるトリエチルアミンの当量数を3倍にした点以外は、実施例22と同様の操作を行った。得られた反応液は実施例22と同じものであり、HPLCで確認した結果、転化率(=<保護L-カルノシン誘導体(II)の面積%>/(<L-ヒスチジンの面積%>+<保護L-カルノシン誘導体(II)の面積%>)×100)は98.3%、β-アラニル-ヒスチジル-ヒスチジン誘導体は検出されなかった。
 実施例25<酸無水物(I)とL-ヒスチジンとの反応による保護L-カルノシン(II)の製造>
 大気雰囲気下において、N-ベンジルオキシカルボニル-β-アラニン(式(4)で示されるN-保護-β-アラニン誘導体;10.0g、44.8mmol)、トリエチルアミン(有機塩基;4.5g、44.8mmol)、およびアセトニトリル(40mL)を含む混合溶液を準備し、該溶液を-40℃まで冷却した。該冷却した溶液中に、ピバロイルクロリド(式(5)で示されるハロゲン化物;5.4g、44.8mmol)を、反応液中の温度が-30℃以下を維持するように、30分間かけて滴下した。滴下後の反応液の温度(-40~-30℃)を維持したまま、30分間攪拌し、減圧ろ過を行って、析出物を除いた。以上の操作を行い、式(1’)で示される酸無水物(I)を含むアセトニトリル溶液を準備した。
 また、L-ヒスチジン(5.1g、33.2mmol)、水(25mL)の混合液に、トリエチルアミン(8.4g、83.0mmol)を加えることで、L-ヒスチジンのアルカリ水溶液を準備した。
 L-ヒスチジンのアルカリ水溶液に、酸無水物(I)が溶解したアセトニトリル溶液を、反応液の温度が30℃以下となるように維持しながら10分かけて滴下した。滴下後の反応液を40℃に加熱し、1時間攪拌を行った。得られた反応液をHPLCで確認した結果、転化率(=<保護L-カルノシン誘導体(II)の面積%>/(<L-ヒスチジンの面積%>+<保護L-カルノシン誘導体(II)の面積%>)×100)は99.5%、β-アラニル-ヒスチジル-ヒスチジン誘導体:0.033%であった。
 実施例26<酸無水物(I)とL-ヒスチジンとの反応による保護L-カルノシン誘導体(II)の製造>
 大気雰囲気下において、ピバロイルクロリド(式(5)で示されるハロゲン化物;5.4g、44.8mmol)、およびアセトニトリル(10mL)を含む混合溶液を準備し、該溶液を-15℃まで冷却した。該冷却した溶液中に、N-ベンジルオキシカルボニル-β-アラニン(式(4)で示されるN-保護-β-アラニン誘導体;10.0g、44.8mmol)、トリエチルアミン(有機塩基;4.5g、44.8mmol)、およびアセトニトリル(30mL)を含む混合溶液を、反応液中の温度が-10℃以下を維持するように、30分間かけて滴下した。滴下後の反応液の温度(-15~-10℃)を維持したまま、30分間攪拌し、減圧ろ過を行って、析出物を除いた。以上の操作を行い、式(1’)で示される酸無水物(I)を含むアセトニトリル溶液を準備した。
 また、L-ヒスチジン(5.8g、37.3mmol)、水(25mL)の混合液に、トリエチルアミン(9.4g、93.2mmol)を加えることで、L-ヒスチジンのアルカリ水溶液を準備し、該水溶液を-10℃まで冷却した。
 L-ヒスチジンのアルカリ水溶液に、酸無水物(I)が溶解したアセトニトリル溶液を、反応液の温度が0℃以下となるように維持しながら20分かけて滴下した。滴下後の反応液の温度(-10~0℃)を維持したまま、20時間攪拌を行った。得られた反応液をHPLCで確認した結果、転化率(=<保護L-カルノシン誘導体(II)の面積%>/(<L-ヒスチジンの面積%>+<保護L-カルノシン誘導体(II)の面積%>)×100)は99.5%、β-アラニル-ヒスチジル-ヒスチジン誘導体は検出されなかった。
 以下、実施例27~32における、保護L-カルノシン誘導体の化学純度の測定は、HPLC法を用いて以下の条件で行った。
 装置:ウォーターズ社製2695
 検出器:紫外吸光光度計(ウォーターズ社製2489)
 検出波長:210nm
 カラム:内径4.6mm、長さ25cmのステンレス管に5μmの液体クロマトグラフィー用オクタデシルシリル化シリカゲルが充填されたもの
 移動相A: アセトニトリル
 移動相B:1%りん酸水溶液
 移動相の送液:移動相A及び移動相Bの混合比を下記表1のように変えて濃度勾配制御する。
 カラム温度:35℃付近の一定温度
 注入量:5μL
 サンプル濃度:0.5mg/mL
Figure JPOXMLDOC01-appb-T000088
 また、L-カルノシン誘導体の化学純度の測定は、HPLC法を用いて以下の条件で行った。
 装置:ウォーターズ社製2695
 検出器:紫外吸光光度計(ウォーターズ社製2489)
 検出波長:210nm
 カラム:内径4.6mm、長さ25cmのステンレス管に5μmの液体クロマトグラフィー用オクタデシルシリル化シリカゲルが充填されたもの
 移動相A: アセトニトリル
 移動相B:りん酸水素二カリウム26.1g、1-デカンスルホン酸ナトリウム3.7gを蒸留水3000mLに溶解させ、りん酸でpH3.0に調整
 移動相の送液:移動相A:移動相B=22:78
 カラム温度:35℃付近の一定温度
 注入量:10μL
 サンプル濃度:0.5mg/mL
 実施例27<N-保護-β-アラニン誘導体の製造例>
 以下の反応式に従い式(1’)で示されるN-保護-β-アラニン誘導体を製造した。
 大気下において、N-ベンジルオキシカルボニル-β-アラニン;20g、89.6mmol)、トリエチルアミン(有機塩基;9.0g、89.6mmol)、およびアセトニトリル(140mL)を含む混合溶液を準備し、該溶液を1℃以下まで冷却した。該冷却した溶液中に、ピバロイルクロリド(10.8g、89.6mmol)、およびアセトニトリル(60mL)を含む溶液を、反応液中の温度が10℃以下を維持するように、15分間かけて滴下した。滴下後の反応液の温度(0~10℃)を維持したまま、30分間攪拌を行った。撹拌後、減圧濾過により、析出した固体を取り除き、酸無水物の溶液を得た。
Figure JPOXMLDOC01-appb-C000089
 実施例28<N-保護-β-アラニン誘導体とL-ヒスチジンとの反応(保護L-カルノシン誘導体の製造)>
 上記反応式に従い式(1’)で示されるN-保護-β-アラニン誘導体を合成し、次いで、該N-保護-β-アラニン誘導体とL-ヒスチジンとを反応させて、式(3p1)で示される保護L-カルノシン誘導体を製造した。
Figure JPOXMLDOC01-appb-C000090
 L-ヒスチジン(10.8g、72.1mmol)、水(100mL)の水溶液に、水酸化ナトリウム(3.2g、79.3mmol)を加え、該水溶液を5℃まで冷却した。L-ヒスチジンのアルカリ水溶液に、実施例1で調製したN-保護-β-アラニン誘導体のアセトニトリル溶液を、反応液の温度が0~10℃の範囲となるように滴下した。滴下後、温度を0~10℃に保ち22時間撹拌した。得られた反応液をHPLCで確認した結果、保護L-カルノシン誘導体の純度は69.51%、N-保護-β-アラニン誘導体(N-ベンジルオキシカルボニル-β-アラニン)の含量は22.31%であった。
 実施例29<保護L-カルノシン誘導体製造後の後処理>
 実施例28で調製した溶液にpHが3になるように35%塩酸を加え、塩化メチレン20mLを加え、25℃で30分間撹拌した。撹拌後、30分間静置し、有機層と水層を分液した。分液後の有機層、水層をHPLCで測定し、保護L-カルノシン誘導体の純度は87.13%、N-保護-β-アラニン誘導体の含量は1.96%であった。
 実施例30<保護L-カルノシン誘導体製造後の後処理>
 実施例28で調製した溶液にpHが6になるように35%塩酸を加え、塩化メチレン20mLを加え、25℃で30分間撹拌した。撹拌後、30分間静置し、有機層と水層を分液した。分液後の有機層、水層をHPLCで測定し、保護L-カルノシン誘導体の純度は76.36%、N-保護-β-アラニン誘導体の含量は14.10%であった。
 実施例31<保護L-カルノシン誘導体製造後の後処理>
 実施例28で調製した溶液にpHが10になるようにトリエチルアミンを加え、塩化メチレン20mLを加え、25℃で30分間撹拌した。撹拌後、30分間静置し、有機層と水層を分液した。分液後の有機層、水層をHPLCで測定し、保護L-カルノシン誘導体の純度は73.79%、N-保護-β-アラニン誘導体の含量は17.17%であった。
 実施例32<保護L-カルノシン誘導体からL-カルノシンを製造する方法>
 実施例29で得た保護L-カルノシン誘導体の水溶液にPd/C(154mg、0.036mmol、5%Pd,50%Wet)を加え、水素5気圧下で25℃、24時間撹拌した。撹拌後、減圧濃縮により水を留去し、エタノール(140mL)を加えて、L-カルノシンを結晶化させた後、5℃に冷却し、18時間撹拌した。析出した結晶を濾過、乾燥することによりL-カルノシン(12.2g、収率:75%:L-ヒスチジンからの収率、純度:99.79%)を白色固体として得た。
 参考例1
 下記反応式で示される反応に従い、結晶性L-カルノシン亜鉛錯体(ポラプレジンク)を製造した。使用した保護L-カルノシン誘導体(II)は、PGがベンジルオキシカルボニル基であり、国際公開第WO2011/080139に記載の方法で合成したもの(N-Cbz-L-カルノシン)である。
Figure JPOXMLDOC01-appb-C000091
 <パラジウム系触媒、水素源を使用した脱保護反応>
 N―Cbz-L-カルノシン(保護L-カルノシン誘導体(II)、3.78g、10.49mmol)をメタノール(溶媒;40mL)に溶解した。得られた溶液に、市販のパラジウム(Pd)/炭素(C)(パラジウム系触媒、Pd:4.85質量%、水:53.0質量%、0.43g、パラジウム換算0.01mmol)を加えた。この液を水素(1気圧)雰囲気下、50℃、8時間撹拌した。得られた混合液には、L-カルノシンが生成されていたことを確認した。
 <亜鉛塩化;結晶性L-カルノシン亜鉛錯体(ポラプレジンク)の製造>
 次いで、得られたL-カルノシン、およびメタノールを含む混合液に、水酸化ナトリウム(水酸化アルカリ、0.44g、20.98mmol)をメタノール(炭素数1~3のアルコール、40ml)に溶解させた溶液を、5℃の温度を維持するように加えた。その後、5℃にて1時間攪拌後、パラジウム系触媒を濾過により取り除いた。
 得られた混合溶液に、酢酸亜鉛・2水和物(酢酸亜鉛、2.30g、酢酸亜鉛換算10.49mmol)をメタノール(20mL)に溶解させた溶液を、5℃の温度を維持するように、10分間かけて滴下した。得られた液(固体が生じた懸濁液)を室温まで昇温し、2時間攪拌後、濾過した。濾取した固体を湿体のままイオン交換水(40mL)にて1時間攪拌後、濾過した。得られた固体を70℃で4時間送風乾燥した後、IRにて分析すると下記の結果となり、該固体が結晶性L-カルノシン亜鉛錯体(ポラプレジンク)であることを確認した。収量は3.03gであり、N-Cbz-L-カルノシンからの収率は100%であった。
分析結果
IR(KBr)3282、1618、1559、1383、1257、1115、998
cm-1
 実施例33
 下記反応式に従い、結晶性L-カルノシン亜鉛錯体(ポラプレジンク)を製造した。
Figure JPOXMLDOC01-appb-C000092
 <酸無水物(I)の製造>
 N-Cbz-β-アラニン(N-保護-β-アラニン誘導体、16.9g、75.8mmol)をクロロホルム(40mL)に溶解した溶液に、トリエチルアミン(7.68g、75.6mmol)を加え、7℃まで冷却した。ここへ、ピバロイルクロリド(ハロゲン化物、9.12g、75.6mmol)をクロロホルム(23mL)に溶解した溶液を、反応液の温度が10℃となるように維持しながら、20分間かけて滴下し、酸無水物(I)のクロロホルム溶液を得た。
 <L-ヒスチジン誘導体の製造>
 一方、硫酸(0.06g、0.6mmol)にヘキサメチルジシラザン(41.61g、257.8mmol)を加え5分攪拌した。その後、L-ヒスチジン(10.06g、64.4mmol)を加え、外部加熱が130℃の温度で、40分間、前記混合物を加熱還流した。得られた反応液を100℃まで冷却して減圧濃縮を行い、残渣にクロロホルム(10mL)を加え、トリ-トリメチルシリル基保護-L-ヒスチジン誘導体(L-ヒスチジン誘導体)が溶解したクロロホルム溶液を得た。
 <保護L-カルノシン誘導体の製造>
 次いで、得られたトリ-トリメチルシリル保護-L-ヒスチジン誘導体のクロロホルム溶液に、上記の酸無水物(I)のクロロホルム溶液を、反応液の温度が7℃を維持するように、1時間かけて滴下した。滴下後の反応液の温度を7℃に維持しながら2時間攪拌を行った。得られた反応液を減圧濃縮し、濃縮残渣にメタノール250mLを加え、減圧留去した。得られた濃縮残渣には、N-Cbz-L-カルノシン(保護L-カルノシン誘導体(II)、20.4g、L-ヒスチジンからの収率:88%)が含まれていた。
 <パラジウム系触媒、水素源を使用した脱保護反応>
 上記のN-Cbz-L-カルノシンを含む濃縮残渣に、メタノール(溶媒、216mL)、および市販のパラジウム(Pd)/炭素(C)(パラジウム系触媒、Pd:4.85質量%、水:53.0質量%、2.32g、パラジウム換算0.054mmol)を加えた。この混合液を水素(1気圧)雰囲気下、50℃、8時間撹拌した。得られた混合液には、L-カルノシンが生成されていたことを確認した。
 <亜鉛塩化;結晶性L-カルノシン亜鉛錯体(ポラプレジンク)の製造>
 次いで、得られたL-カルノシン、およびメタノールを含む混合液に、水酸化ナトリウム(2.38g、113mmol)、およびメタノール(216ml)を、混合溶液の温度が5℃を維持するように加えた。5℃にて1時間攪拌後、濾過してパラジウム系触媒を取り除いた。
 この混合溶液(濾液)に、酢酸亜鉛・2水和物(酢酸亜鉛、12.4g、酢酸亜鉛換算56.67mmol)のメタノール(108mL)溶液を、5℃を維持するように10分間かけて滴下した。得られた液(固体が生じた懸濁液)を室温まで昇温し、2時間攪拌後、濾過した。濾取した固体を湿体のままイオン交換水(40mL)を加えて1時間攪拌後、濾過した。得られた固体を70℃で4時間送風乾燥した後、IRにて分析すると下記の結果となり、該固体が結晶性L-カルノシン亜鉛錯体(ポラプレジンク)であることを確認した。収量は16.37gであり、N-Cbz-L-カルノシンからの収率は100%、N-Cbz-β-アラニンからの収率は88%であった。
 参考例2
 下記反応式で示される反応に従い、結晶性L-カルノシン亜鉛錯体(ポラプレジンク)を製造した。使用した保護L-カルノシンは、PGがt-ブトキシカルボニル基であり、中国公開CN103408497号公報に記載の方法で合成したもの(N-Boc-L-カルノシン)である。
Figure JPOXMLDOC01-appb-C000093
 <酸により脱保護反応>
 N-Boc-L-カルノシン(保護L-カルノシン誘導体(II)、20g、61.2mmol)をクロロホルム(溶媒、100mL)に溶解した。得られた溶液に、4N-HCl(酸、60mL、塩化水素換算;197.6mmol)を10分間かけて滴下し、4時間攪拌を行い、混合液を得た。
 <混合液の第一前処理方法>
 得られた混合液を分液ロートに移し水層を分離後、クロロホルム層を水(20mL)で抽出し、前述の水層と合わして減圧濃縮して、水、およびL-カルノシンを含む第一混合物とした。
 <第二前処理方法;第一混合物の中和処理:前処理液の準備>
 前記第一混合物に、水(20mL)を加え、さらに、24%質量 水酸化ナトリウム水溶液を加えて、pH:8.2の前処理液を調製した。この前処理液を、再度、減圧濃縮した。得られた濃縮残渣にメタノール(20ml)を加えて濃縮し、さらにメタノール(20ml)を加え濃縮して、前処理液に含まれる水を極力低減した。
 <酸により脱保護反応を実施した場合の亜鉛塩化(結晶性L-カルノシン亜鉛錯体の製造方法)>
 得られたL-カルノシンを含む濃縮残渣に、水酸化ナトリウム(水酸化アルカリ、4.90g、122.6mmol)をメタノール(炭素数1~3のアルコール、180mL)に溶解した溶液を、5℃の温度を維持するように加えながら1時間攪拌して混合溶液を得た。
 得られた混合溶液に、酢酸亜鉛・2水和物(酢酸亜鉛、13.44g、酢酸亜鉛換算61.2mmol)をメタノール(200mL)に溶解した溶液を5℃の温度を維持するように加えた後、23℃で17時間攪拌した。得られた液を濾過して固体を分別し、該固体をメタノール(100mL)で洗浄した。さらに、濾取した固体を湿体のまま水(300mL)中に分散して、23℃で2時間撹拌した。得られた懸濁液を濾過し、濾取した固体を、熱水(100mL)で洗浄後、70℃で4時間送風乾燥することにより、固体の結晶性L-カルノシン亜鉛錯体(ポラプレジンク)であることを確認した。収量は7.06gであり、N-Boc-L-カルノシンからの収率は80%であった。
 比較例2
 N-Boc-L-カルノシン(保護L-カルノシン誘導体(II)、6.78g、35.8mmol)から参考例2の<酸により脱保護反応>と同様の操作を行い、得られた混合液からL-カルノシンを結晶として取り出した(L-カルノシンの収量5.54gg、収率68.32%)。
 得られたL-カルノシンに、水酸化ナトリウム(水酸化アルカリ、1.96g、49.0mmol)をメタノール(炭素数1~3のアルコール、72mL)に溶解した溶液を、5℃の温度を維持するように加えながら1時間攪拌して混合溶液を得た。
 得られた混合溶液に、酢酸亜鉛・2水和物(酢酸亜鉛、5.38g、酢酸亜鉛換算24.5mmol)をメタノール(80mL)に溶解した溶液を5℃の温度を維持するように加えた後、23℃で17時間攪拌した。得られた液(固体が生じた懸濁液)を濾過して固体を分別し、該固体をメタノール(40mL)で洗浄した。さらに、濾取した固体を湿体のまま水(120mL)中に分散して、23℃で2時間撹拌した。得られた懸濁液を濾過し、濾取した固体を、熱水(40mL)で洗浄後、70℃で4時間送風乾燥することにより、固体の結晶性L-カルノシン亜鉛錯体(ポラプレジンク)であることを確認した。収量は5.90gであり、N-Boc-L-カルノシンからの収率は68.32%であった。
 実施例34
 下記反応式に従い、結晶性L-カルノシン亜鉛錯体(ポラプレジンク)を製造した。
Figure JPOXMLDOC01-appb-C000094
 <酸無水物(I)の製造>
 N-Boc-β-アラニン(N-保護-β-アラニン誘導体、6.78g、35.8mmol)をクロロホルム(30mL)に溶解した溶液に、トリエチルアミン(3.63g、35.9mmol)を加え、7℃まで冷却した。ここへ、ピバロイルクロリド(ハロゲン化物、4.32g、35.8mmol)をクロロホルム(20mL)に溶解した溶液を、反応液の温度が7℃を維持するように、1時間かけて滴下し、その後、7℃で1時間攪拌を行い、酸無水物(I)のクロロホルム溶液を得た。
 <L-ヒスチジン誘導体の製造>
 一方、硫酸(0.015g、0.15mmol)にヘキサメチルジシラザン(19.8g、122.7mmol)を加え10分間、23℃で攪拌した。その後、L-ヒスチジン(4.8g、30.9mmol)を加え、外部加熱が130℃の温度で、40分間、前記混合物を加熱還流した。得られた反応液を100℃まで冷却して減圧濃縮を行い、残渣にクロロホルム(10mL)を加え、トリ-トリメチルシリル基保護-L-ヒスチジン誘導体(L-ヒスチジン誘導体)が溶解したクロロホルム溶液を得た。
 <保護L-カルノシン誘導体(II)の製造>
 次いで、得られたトリ-トリメチルシリル基保護-L-ヒスチジン誘導体のクロロホルム溶液に、上記の酸無水物(I)のクロロホルム溶液を、反応液の温度が7℃を維持するように、1時間かけて滴下した。滴下後の反応液の温度を7℃に維持しながら2時間攪拌を行うことにより、N-Boc-L-カルノシン(保護L-カルノシン誘導体(II)、8.36g、N-Boc-β―アラニンからの収率:83.6%)のクロロホルム溶液を得た。
 <酸により脱保護反応>
 前記N-Boc-L-カルノシンのクロロホルムに、4N-HCl(酸、30mL、塩化水素換算;98.8mmol)を10分間かけて滴下し、4時間攪拌を行い、混合液を得た。
 <混合液の第一前処理方法>
 得られた混合液を分液ロートに移し水層を分離後、クロロホルム層を水(10mL)で抽出し、前述の水層と合わして減圧濃縮して、水、およびL-カルノシンを含む第一混合物とした。
 <第二前処理方法;第一混合物の中和処理:前処理液の準備>
 前記第一混合物に、水(10mL)を加え、さらに、24%質量 水酸化ナトリウム水溶液を加えて、pH:8.2の前処理液を調製した。この前処理液を、再度、減圧濃縮した。得られた濃縮残渣にメタノール(20ml)を加えて濃縮し、さらにメタノール(20ml)を加え濃縮して、前処理液に含まれる水を極力低減した。濃縮残渣にはL-カルノシンが5.84g含まれていた。N-Boc-β-アラニンからの収率は83.6%であった。
 <酸により脱保護反応を実施した場合の亜鉛塩化(結晶性L-カルノシン亜鉛錯体の製造方法)>
 得られたL-カルノシンを含む濃縮残渣に、水酸化ナトリウム(水酸化アルカリ、2.45g、61.3mmol)をメタノール(炭素数1~3のアルコール、90mL)に溶解した溶液を、5℃の温度を維持するように加えながら1時間攪拌して混合溶液を得た。
 得られた混合溶液に、酢酸亜鉛・2水和物(酢酸亜鉛、6.72g、酢酸亜鉛換算30.6mmol)をメタノール(100mL)に溶解した溶液を5℃の温度を維持するように加えた後、23℃で17時間攪拌した。得られた液(固体が生じた懸濁液)を濾過して固体を分別し、該固体をメタノール(50mL)で洗浄した。さらに、濾取した固体を湿体のまま水(150mL)中に分散して、23℃で2時間撹拌した。得られた懸濁液を濾過し、濾取した固体を、熱水(50mL)で洗浄後、70℃で4時間送風乾燥することにより、固体の結晶性L-カルノシン亜鉛錯体(ポラプレジンク)であることを確認した。収量は7.38gであり、N-Boc-L-カルノシンからの収率は100%、N-Boc-β-アラニンからの収率は83.6%であった。
 比較例3
 参考例2と同様の方法で、<酸無水物(I)の製造>、<L-ヒスチジン誘導体の製造>、<保護L-カルノシンの製造>、<酸により脱保護反応>、<混合液の第一前処理方法>、<第二前処理方法;第一混合物の中和処理:前処理液の準備>を行い、前処理液に含まれる水を極力低減した濃縮残渣を得た。同じく濃縮残渣には、L-カルノシンが6.92g含まれていた。この時、N-Boc-β-アラニンからの収率は85.4%であった。
 <L-カルノシンの取り出し>
 該濃縮残渣に、メタノール(53mL)を加えて23℃で終夜攪拌し、5℃まで冷却した後、5℃の温度を維持しながら3時間撹拌した。その後、析出した固体を濾取することによりL-カルノシン(5.54g、含量補正した実質収量;結晶化濾取によるL-カルノシンの回収率:80%;N-Boc-β-アラニンからの収率:68.32%)を得た。
 <結晶性L-カルノシン亜鉛錯体の製造>
 前記L-カルノシンの結晶に、水酸化ナトリウム(1.96g、49.0mmol)をメタノール(72mL)に溶解した溶液を、5℃の温度を維持しながら加え、1時間攪拌した。ここへ、酢酸亜鉛・2水和物(酢酸亜鉛、5.38g、酢酸亜鉛換算24.5mmol)をメタノール(80mL)で溶解した溶液を、5℃の温度を維持しながら加えた後、23℃で17時間攪拌した。得られた液(固体が生じた懸濁液)を濾過して固体を分別し、該固体をメタノール(40mL)で洗浄した。さらに、濾取した固体を湿体のまま水(120mL)に分散して、23℃で2時間撹拌した。得られた懸濁液を濾過し、濾取した固体を、熱水(40mL)で洗浄後、70℃で4時間送風乾燥することにより、固体の結晶性L-カルノシン亜鉛錯体(ポラプレジンク)であることを確認した。収量は5.90gであり、N-Boc-L-カルノシンからの収率80%、N-Boc-β-アラニンからの収率は68.32%であった。

Claims (17)

  1.  下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    {式中、
     R1は、下記式(1a)
    Figure JPOXMLDOC01-appb-C000002
     (式中、R3は、アミノ基の保護基である。)
    で示される基、および下記式(1a’)
    Figure JPOXMLDOC01-appb-C000003
    で示される基から選ばれる保護アミノ基であり、
     R2は、前記保護アミノ基、または下記式(1b)
    Figure JPOXMLDOC01-appb-C000004
     (式中、mは0又は1の整数であり、R4、R5、およびR6は、それぞれ、水素原子、又は炭素数1~6のアルキル基であり、ただし、mが0である場合、R4、R5、およびR6の少なくとも2つの基が炭素数1~6のアルキル基である。)
    で示される分岐基である。}で示される酸無水物と、
     下記式(2)
    Figure JPOXMLDOC01-appb-C000005
    {式中、
     R7、およびR8は、水素原子、又はアミノ基の保護基であり、
     R9は、水素原子、又はカルボキシル基の保護基である。}で示されるL-ヒスチジン誘導体とを反応させることにより、
     下記式(3)
    Figure JPOXMLDOC01-appb-C000006
    {式中、
     R1は、前記式(1)のものと同義であり、
     R7、R8、およびR9は、前記式(2)におけるものと同義である。}で示される保護L-カルノシン誘導体を製造する工程(a1)を含む、
    保護L-カルノシン誘導体を製造する方法。
  2.  前記R3が、置換基を有していてもよいベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、トリフルオロアセチル基、t-ブトキシカルボニル基、2,2,2-トリクロロエトキシカルボニル基、又はホルミル基であり、
     前記R7、および前記R8が、水素原子、又はトリアルキルシリル基であり、
     前記R9が、水素原子、又はトリアルキルシリル基である、
    請求項1に記載の保護L-カルノシン誘導体を製造する方法。
  3.  前記工程(a1)が、有機溶媒中、前記酸無水物と前記L-ヒスチジン誘導体とを反応させて前記保護L-カルノシン誘導体を製造する工程であり、
     前記L-ヒスチジン誘導体が、下記式(2p)
    Figure JPOXMLDOC01-appb-C000007
    (式中、
     R7p、およびR8pは、アミノ基の保護基であり、
     R9pは、カルボキシル基の保護基である。)で示されるL-ヒスチジン誘導体(I)であり、
     前記保護L-カルノシン誘導体が、下記式(3p1)
    Figure JPOXMLDOC01-appb-C000008
    (式中、
     R1は、前記式(1)におけるものと同義であり、
     R7p’は、水素原子、又はアミノ基の保護基であり、
     R8p、およびR9pは、前記式(2p)におけるものと同義である。)で示される保護L-カルノシン誘導体(I)である
    請求項1または2に記載の保護L-カルノシン誘導体を製造する方法。
  4.  前記工程(a1)が、塩基、および水の存在下、前記酸無水物と前記L-ヒスチジンとを反応させて前記保護L-カルノシン誘導体を製造する工程であり、
     前記L-ヒスチジン誘導体が、下記式
    Figure JPOXMLDOC01-appb-C000009
    で示されるL-ヒスチジンであり、
     前記式保護L-カルノシン誘導体が、下記式(3p2)
    Figure JPOXMLDOC01-appb-C000010
    (式中、R1は、前記式(1)におけるものと同義である。)
    で示される保護L-カルノシン誘導体(II)である
    請求項1または2に記載の保護L-カルノシン誘導体を製造する方法。
  5.  前記酸無水物1モルに対し、前記L-ヒスチジン誘導体を0.25~0.99モル用いる、請求項1~4のいずれか1項に記載の保護L-カルノシン誘導体を製造する方法。
  6.  前記工程(a1)が、前記保護L-カルノシン誘導体をその酸性水溶液として製造する工程であり、
     前記工程(a1)の後に、前記酸性水溶液と有機溶媒とを接触させる工程(a2)をさらに含む
    請求項1~5のいずれか1項に記載の保護L-カルノシン誘導体を製造する方法。
  7.  請求項1~6のいずれか1項に記載の方法により保護L-カルノシン誘導体を製造する工程(A)、および
     前記保護L-カルノシン誘導体の脱保護反応を行うことにより、下記式
    Figure JPOXMLDOC01-appb-C000011
    で示されるL-カルノシンを製造する工程(b1)
    を含むL-カルノシンを製造する方法。
  8.  前記工程(A)が、前記保護L-カルノシン誘導体をその溶液として製造する工程であり、前記工程(b1)が、該溶液中で前記保護L-カルノシン誘導体の脱保護反応を行う工程である、請求項7に記載のL-カルノシンを製造する方法。
  9.  前記工程(b1)の後に、アルコールと水の混合溶媒にて前記L-カルノシンの再結晶化を行う工程(b2)をさらに含む、請求項7または8に記載のL-カルノシンを製造する方法。
  10.  下記式(1)
    Figure JPOXMLDOC01-appb-C000012
    {式中、
     R1は、下記式(1a)
    Figure JPOXMLDOC01-appb-C000013
      (式中、
       R3は、アミノ基の保護基である。)
    で示される基、および下記式(1a’)
    Figure JPOXMLDOC01-appb-C000014
    で示される基から選ばれる保護アミノ基であり、
     R2は、前記保護アミノ基、または下記式(1b)
    Figure JPOXMLDOC01-appb-C000015
     (式中、mは0又は1の整数であり、R4、R5、およびR6は、それぞれ、水素原子、又は炭素数1~6のアルキル基であり、ただし、mが0である場合、R4、R5、およびR6の少なくとも2つの基が炭素数1~6のアルキル基である。)
    で示される分岐基である。}で示される酸無水物。
  11.  下記式(4)
    Figure JPOXMLDOC01-appb-C000016
    {式中、
     R1は、下記式(1a)
    Figure JPOXMLDOC01-appb-C000017
      (式中、
       R3は、アミノ基の保護基である。)
    で示される基、および下記式(1a’)
    Figure JPOXMLDOC01-appb-C000018
    で示される基から選ばれる保護アミノ基である。}で示されるN-保護-β-アラニン誘導体と、
     下記式(5)
    Figure JPOXMLDOC01-appb-C000019
    (式中、
     Xは、ハロゲン原子であり、mは0又は1の整数であり、
     R4、R5、およびR6は、それぞれ、水素原子、又は炭素数1~6のアルキル基であり、ただし、mが0である場合、R4、R5、およびR6の少なくとも2つの基が炭素数1~6のアルキル基である。)で示されるハロゲン化物と
    を、有機塩基の存在下で反応させる、
     下記式(1’)
    Figure JPOXMLDOC01-appb-C000020
    (式中
     R1は、前記式(4)におけるものと同義であり、
     mは0又は1の整数であり、R4、R5、およびR6は、前記式(5)におけるものと同義である。)
    で示される酸無水物(I)を製造する方法。
  12.  下記式(4)
    Figure JPOXMLDOC01-appb-C000021
    {式中、
     R1は、下記式(1a)
    Figure JPOXMLDOC01-appb-C000022
      (式中、
       R3は、アミノ基の保護基である。)
    で示される基、および下記式(1a’)
    Figure JPOXMLDOC01-appb-C000023
    で示される基から選ばれる保護アミノ基である。}で示されるN-保護-β-アラニン誘導体と、トリホスゲンと
    を、有機塩基の存在下で反応させる、
     下記式(1’’)
    Figure JPOXMLDOC01-appb-C000024
    (式中、R1は、前記式(4)におけるものと同義である。)
    で示される酸無水物(II)を製造する方法。
  13.  請求項7または8に記載の方法でL-カルノシンを製造する工程(B)、および
     前記L-カルノシンから結晶性L-カルノシン亜鉛錯体を製造する工程(c)を含み、
     前記保護L-カルノシン誘導体が下記式(i)
    Figure JPOXMLDOC01-appb-C000025
    (式中、PGは、アミノ基の保護基である。)
    で示され、
     前記工程(b1)が、前記保護L-カルノシン誘導体の脱保護反応を該保護L-カルノシン誘導体が溶解する溶媒中で行い、前記L-カルノシンを前記L-カルノシンおよび前記溶媒を含む混合液として製造する工程であり、
     前記工程(c)が、前記混合液中のL-カルノシンを、結晶として単離することなく亜鉛塩化することにより結晶性L-カルノシン亜鉛錯体を製造する工程である、
    結晶性L-カルノシン亜鉛錯体を製造する方法。
  14.  前記工程(c)が、前記混合液と、少なくとも水酸化アルカリとを混合し、次いで、得られた混合溶液と酢酸亜鉛とを混合することにより、該L-カルノシンを亜鉛塩化して結晶性L-カルノシン亜鉛錯体を製造する工程である、請求項13に記載の結晶性L-カルノシン亜鉛錯体を製造する方法。
  15.  前記式(i)におけるアミノ基の保護基であるPGが、置換基を有してもよいベンジルオキシカルボニル基、又はt-ブトキシカルボニル基であり、
     前記脱保護反応を、パラジウム系触媒、および水素源の存在下で実施するか、又は酸により実施する請求項13又は14に記載の結晶性L-カルノシン亜鉛錯体を製造する方法。
  16.  前記混合液が、前記L-カルノシン1質量部当たり、前記溶媒を1~100質量部含む請求項14又は15に記載の結晶性L-カルノシン亜鉛錯体を製造する方法。
  17.  前記工程(b1)が、前記脱保護反応を酸により実施する工程であり、
     前記工程(c)が、前記混合液と、少なくとも水酸化アルカリとを混合してpHが7.0~9.0である前処理溶液を調製し、該前処理溶液に含まれる溶媒を炭素数1~3のアルコールに置換した後、さらに、少なくとも水酸化アルカリを混合して混合溶液とし、次いで、得られた混合溶液と酢酸亜鉛とを混合することにより、該L-カルノシンを亜鉛塩化して結晶性L-カルノシン亜鉛錯体を製造する工程である、請求項13に記載の結晶性L-カルノシン亜鉛錯体を製造する方法。
PCT/JP2018/032603 2017-09-05 2018-09-03 保護l-カルノシン誘導体、l-カルノシン、および結晶性l-カルノシン亜鉛錯体の製造方法 WO2019049824A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207002748A KR20200050946A (ko) 2017-09-05 2018-09-03 보호 l-카르노신 유도체, l-카르노신, 및 결정성 l-카르노신 아연착체의 제조 방법
CN201880056238.2A CN111051289A (zh) 2017-09-05 2018-09-03 被保护的l-肌肽衍生物、l-肌肽以及结晶性l-肌肽锌络合物的制造方法

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2017-170573 2017-09-05
JP2017170573 2017-09-05
JP2017-184882 2017-09-26
JP2017184882A JP2019059688A (ja) 2017-09-26 2017-09-26 結晶性l−カルノシン亜鉛錯体の製造方法
JP2018-013197 2018-01-30
JP2018013197 2018-01-30
JP2018018339A JP2019135220A (ja) 2018-02-05 2018-02-05 L−カルノシン及びその誘導体の製造方法
JP2018-018339 2018-02-05

Publications (1)

Publication Number Publication Date
WO2019049824A1 true WO2019049824A1 (ja) 2019-03-14

Family

ID=65634075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032603 WO2019049824A1 (ja) 2017-09-05 2018-09-03 保護l-カルノシン誘導体、l-カルノシン、および結晶性l-カルノシン亜鉛錯体の製造方法

Country Status (3)

Country Link
KR (1) KR20200050946A (ja)
CN (1) CN111051289A (ja)
WO (1) WO2019049824A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114149452A (zh) * 2021-12-08 2022-03-08 江苏诚信药业有限公司 一种l-肌肽锌络合物的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115197150B (zh) * 2022-08-10 2023-08-08 苏州富士莱医药股份有限公司 一种l-肌肽的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188862A (ja) * 1982-04-28 1983-11-04 Ajinomoto Co Inc N−アシルカルノシンの製造法
JPS6442471A (en) * 1987-08-10 1989-02-14 Hamari Yakuhin Kogyo Kk Production of crystalline l-carnosine zinc complex and production thereof
JP2007204397A (ja) * 2006-01-31 2007-08-16 Tokuyama Corp 結晶性l−カルノシン亜鉛錯体の製造方法
CN101357884A (zh) * 2008-09-04 2009-02-04 浙江工业大学 一种对称酸酐的制备方法
CN102702039A (zh) * 2012-05-14 2012-10-03 河南农业大学 一种合成β-丙氨酰-牛磺酸的工艺
CN103319413A (zh) * 2013-06-08 2013-09-25 西藏海思科药业集团股份有限公司 一种聚普瑞锌化合物
WO2015119235A1 (ja) * 2014-02-10 2015-08-13 株式会社トクヤマ 結晶性l-カルノシン亜鉛錯体を含有する精製体の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3294920B2 (ja) 1993-10-27 2002-06-24 アロカ株式会社 超音波画像記録再生装置
ATE392413T1 (de) 2000-03-03 2008-05-15 Lonza Ag Verfahren zur herstellung von beta-alaninamiden
KR101284862B1 (ko) 2011-02-25 2013-07-09 삼성중공업 주식회사 무인운항을 위한 선박의 운항정보 전송 시스템 및 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188862A (ja) * 1982-04-28 1983-11-04 Ajinomoto Co Inc N−アシルカルノシンの製造法
JPS6442471A (en) * 1987-08-10 1989-02-14 Hamari Yakuhin Kogyo Kk Production of crystalline l-carnosine zinc complex and production thereof
JP2007204397A (ja) * 2006-01-31 2007-08-16 Tokuyama Corp 結晶性l−カルノシン亜鉛錯体の製造方法
CN101357884A (zh) * 2008-09-04 2009-02-04 浙江工业大学 一种对称酸酐的制备方法
CN102702039A (zh) * 2012-05-14 2012-10-03 河南农业大学 一种合成β-丙氨酰-牛磺酸的工艺
CN103319413A (zh) * 2013-06-08 2013-09-25 西藏海思科药业集团股份有限公司 一种聚普瑞锌化合物
WO2015119235A1 (ja) * 2014-02-10 2015-08-13 株式会社トクヤマ 結晶性l-カルノシン亜鉛錯体を含有する精製体の製造方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
COTRAIT,M ET AL.: "Synthesis, crystal structure and infrared spectra of beta-alanylaminomethylphosphonic acid", JOURNAL OF MOLECULAR STRUCTURE, vol. 50, no. 2, 1978, pages 313 - 324, ISSN: 0022-2860 *
LEWIS, C. A. ET AL.: "Catalytic site-selective synthesis and evaluation of a series of erythromycin analogs", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 18, no. 22, 2008, pages 6007 - 6011, XP025627192, ISSN: 0960-894X, DOI: doi:10.1016/j.bmcl.2008.09.019 *
LIANG, X. ET AL.: "Poly (oxanorbornenedicarboximide) s dendronized with amphiphilic poly(alkyl ether) dendrons", JOURNAL OF POLYMER SCIENCE , PART A: POLYMER CHEMISTRY, vol. 52, no. 22, 2014, pages 3221 - 3239, XP055581112, ISSN: 0887-624X *
MURAMATSU,I. ET AL.: "Studies on the synthesis of peptides by N,N'-dicyclohexylcarbodiimide", THE FORMATION OF BIS(N-ACYLAMINO ACID) ANHYDRIDES, vol. 80, 1959, pages 1497 - 1501, ISSN: 0369-5387 *
OKULOV, V. N. ET AL.: "Synthesis of new ferrocene derivatives with rod-like structure", MENDELEEV COMMUNICATIONS, vol. 25, no. 2, 2015, pages 111 - 113, XP055581105, ISSN: 0959-9436 *
PIETTA, P. G. ET AL.: "beta -Alanyl-L-histidine", ANNALI DI CHIMICA, vol. 58, no. 11, 1968, pages 1431 - 1434, ISSN: 0003-4592 *
SHIBA,T. ET AL.: "Synthesis and stereochemistry of hypusine, a new amino acid in bovine brain", BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, vol. 55, no. 3, 1982, pages 899 - 903, XP001061582, ISSN: 0009-2673 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114149452A (zh) * 2021-12-08 2022-03-08 江苏诚信药业有限公司 一种l-肌肽锌络合物的制备方法

Also Published As

Publication number Publication date
KR20200050946A (ko) 2020-05-12
CN111051289A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
CA3061713C (en) Method for preparing intermediate of 4-methoxypyrrole derivative
US20060094757A1 (en) Substantially pure cilostazol and processes for making same
KR102266680B1 (ko) 벨리노스테트의 다형태 및 이의 제조 방법
JP6985367B2 (ja) 新規化合物および方法
US20240317773A1 (en) High-purity thienopyrimidine compound and preparation method therefor
KR20140098131A (ko) 스테롤 유도체의 제조 공정
WO2019049824A1 (ja) 保護l-カルノシン誘導体、l-カルノシン、および結晶性l-カルノシン亜鉛錯体の製造方法
CN107674062B (zh) 抗丙肝药物中间体、制备方法及应用
WO2004062571A2 (en) Substantially pure cilostazol and processes for making same
US12077484B2 (en) Process for the synthesis of melphalan
CN111527067B (zh) 1-[5-(2-氟苯基)-1-(吡啶-3-基磺酰基)-1h-吡咯-3-基]-n-甲基甲胺单富马酸盐的制造法
US12110277B2 (en) Synthesis of nirogacestat
WO2023033016A1 (ja) アルギニン誘導体
CN116332809A (zh) 烷基胺衍生物的制造方法及其制造中间体
CN104093718B (zh) 用于2-苯基-[1,2,4]三唑并[1,5-a]吡啶衍生物的制备的方法
JP2019131532A (ja) 酸無水物、および該酸無水物を用いたl−カルノシンの製造方法
JP3884063B2 (ja) セフカペンピボキシルのメタンスルホン酸塩
KR20130134407A (ko) 게피티닙의 제조방법 및 이의 제조에 사용되는 중간체
US9085569B2 (en) 1,2,4-oxadiazol derivatives, process for their preparation and use thereof as intermediates in the preparation of indolic alkaloids
CN111943894A (zh) 一种4,7-二氮杂螺[2.5]辛烷类化合物的合成方法
JP2019135220A (ja) L−カルノシン及びその誘導体の製造方法
US7910776B2 (en) Methods of producing 1,3,5-triamino-2,4,6-trinitrobenzene
KR20200009001A (ko) 디아미노벤젠 화합물의 제조 방법
JP2019059688A (ja) 結晶性l−カルノシン亜鉛錯体の製造方法
US20220041589A1 (en) Method for preparing apixaban

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855059

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18855059

Country of ref document: EP

Kind code of ref document: A1