WO2019049719A1 - 電源システム - Google Patents

電源システム Download PDF

Info

Publication number
WO2019049719A1
WO2019049719A1 PCT/JP2018/031675 JP2018031675W WO2019049719A1 WO 2019049719 A1 WO2019049719 A1 WO 2019049719A1 JP 2018031675 W JP2018031675 W JP 2018031675W WO 2019049719 A1 WO2019049719 A1 WO 2019049719A1
Authority
WO
WIPO (PCT)
Prior art keywords
singular point
secondary battery
limit value
electrode
capacity
Prior art date
Application number
PCT/JP2018/031675
Other languages
English (en)
French (fr)
Inventor
紀和 安達
智樹 山根
貴郎 末永
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019049719A1 publication Critical patent/WO2019049719A1/ja
Priority to US16/815,082 priority Critical patent/US11217832B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a power supply system including a secondary battery and a control unit that controls charging and discharging of the secondary battery.
  • a power supply system including a secondary battery such as a lithium ion secondary battery and a control unit that controls charge and discharge of the secondary battery is known (see Patent Document 1 below).
  • the secondary battery includes a pair of electrodes of a positive electrode and a negative electrode. These electrodes are provided with an active material, and when the secondary battery is charged and discharged, metal atoms such as lithium are deintercalated in the active material. Along with this, the potential of the electrode changes (see FIG. 14). In the secondary battery, the difference between the potential of the positive electrode and the potential of the negative electrode appears as an output voltage.
  • the potential of the electrode is too high or too low, problems occur. For example, when the potential of the electrode is too high, the electrolytic solution is likely to be oxidatively decomposed. In addition, when the potential of the electrode is too low, problems such as precipitation of metal such as lithium and reduction decomposition of the electrolytic solution tend to occur. Therefore, it is necessary to control the charge and discharge capacity so that the potential of the electrode does not exceed the predetermined range.
  • the conventional power supply system uses the output voltage. For example, if the output voltage reaches the upper limit voltage when charging, there is a possibility that the potential of the positive electrode is too high or the potential of the negative electrode is too low, so charging was stopped there. . Also, if the output voltage reaches the lower limit voltage when discharged, the potential of the positive electrode may be too low or the potential of the negative electrode may be too high, so the discharge was stopped there . As a result, the electrolytic solution is decomposed to suppress the problem of shortening the life of the secondary battery.
  • the progress of the deterioration of the secondary battery can not be sufficiently suppressed. That is, as described later, when the secondary battery is degraded, the relationship between the potentials of the individual electrodes and the output voltage changes (see FIG. 14). Therefore, even if the output voltage is controlled to be within the predetermined range, the potential of the electrode may be too high or too low. In this case, there is a possibility that the decomposition of the electrolyte proceeds and the deterioration of the secondary battery proceeds. As a result, the potential of the electrode may be further out of the predetermined range, and the deterioration of the secondary battery may further progress.
  • the charge and discharge capacity can not be controlled in accordance with the deterioration degree. Therefore, when the secondary battery deteriorated, the potential of the electrode deviated from the predetermined range, and as a result, it is considered that the deterioration may progress. Further, when the voltage range to be used is always limited so that the potential of the positive electrode and the negative electrode is not too high or too low, there is a problem that the capacity of the battery and the performance of input and output can not be sufficiently obtained.
  • a method of installing a third reference electrode in the battery and measuring and controlling the potentials of the positive electrode and the negative electrode has been proposed, but the reference electrode is separately provided in the battery separately from the positive electrode and the negative electrode. It is necessary to set up the battery size and cost easily. Furthermore, since the number of signal lines for sensing the potential of the electrodes and the measurement process increase, there is a problem that the manufacturing cost of the power supply system increases.
  • the present disclosure can draw out capacity and input / output performance, and further suppress the progress of deterioration of the secondary battery.
  • One aspect of the present disclosure is a power supply system including a secondary battery and a control unit that controls charging and discharging of the secondary battery,
  • the secondary battery includes a pair of positive and negative electrodes each having an active material from which metal atoms are inserted and removed, and the difference between the potential of the positive electrode and the potential of the negative electrode is used as an output voltage.
  • the electrode has a singular point at which the amount of change in the output voltage relative to the capacity of the secondary battery changes in a specific manner
  • the control unit A detection unit that detects a singular point capacitance, which is the capacitance at which the singular point appears, by changing the capacitance of the secondary battery and measuring a change in the output voltage; When the secondary battery is deteriorated, the detected value of the singular point capacity after deterioration is used to set the upper limit value and the lower limit value of the capacity so that the potential of the electrode does not exceed a predetermined range.
  • a calculation setting unit configured to calculate and set at least one of the power supply systems.
  • the control unit of the power supply system includes the detection unit and the calculation setting unit. Therefore, the progress of the deterioration of the secondary battery can be effectively suppressed. That is, the electrode in the power supply system has the singular point. Then, a singular point volume, which is a volume at which this singular point appears, can be detected. The singular point capacitance changes in value as the electrode degrades (see FIG. 1). Therefore, this singular point capacity can be used as an index indicating the degree of deterioration of the electrode. Therefore, if this singular point capacity is used, the upper limit value and the lower limit value of the capacity of the secondary battery can be set to optimum values in accordance with the degree of deterioration of the electrode. Therefore, the potential of the deteriorated electrode can be suppressed from exceeding the predetermined range, and the progress of the deterioration of the secondary battery can be suppressed.
  • the "capacity" of the said secondary battery means the charging capacity or discharge capacity of a secondary battery.
  • the position of the singular point can be represented by the amount of charge or the amount of discharge.
  • a charge capacity, a discharge capacity, a charge rate (SOC), a depth of discharge (DOD), and a voltage can be used.
  • the upper limit of the capacity of the secondary battery means the upper limit of the capacity stored in the battery, and the lower limit of the capacity means the upper limit of the capacity stored in the battery.
  • a charge capacity, a discharge capacity, a charge rate (SOC), a depth of discharge (DOD), and a voltage can be used.
  • FIG. 1 is a graph showing the relationship between the positive electrode potential, the output voltage, the negative electrode potential, and the capacity in the first embodiment before and after deterioration of the secondary battery.
  • FIG. 2 is an explanatory view of a singular point and a nonspecific region in the first embodiment.
  • FIG. 3 is a graph showing the relationship between the positive electrode potential, the output voltage, ⁇ V / ⁇ Q, and the capacitance in the first embodiment.
  • FIG. 4 is a conceptual view of the power supply system in the first embodiment.
  • FIG. 5 is a flowchart of the control unit in the first embodiment.
  • FIG. 6 is a conceptual diagram of a secondary battery in the state where the charge capacity is large in the first embodiment.
  • FIG. 7 is a conceptual diagram of a secondary battery in the state where the charge capacity is small in the first embodiment.
  • FIG. 8 is a graph showing the relationship between ⁇ V / ⁇ Q and capacity in the second embodiment before and after deterioration.
  • FIG. 9 is a flowchart of the control unit in the fourth embodiment.
  • FIG. 10 is a graph showing the relationship between the positive electrode potential, the output voltage, the negative electrode potential, and the capacity in the fifth embodiment before and after deterioration of the secondary battery.
  • FIG. 11 is a graph showing the relationship between the positive electrode potential, the output voltage, the negative electrode potential, and the capacity in the sixth embodiment before and after deterioration of the secondary battery.
  • FIG. 12 is a flowchart of the control unit in the sixth embodiment.
  • FIG. 13 is an explanatory diagram of a singular point and a nonspecific region in the sixth embodiment.
  • FIG. 14 is a graph showing the relationship between the positive electrode potential, the output voltage, the negative electrode potential, and the capacity in the comparative embodiment, before and after deterioration of the secondary battery.
  • the power supply system 1 of the present embodiment includes a secondary battery 2 and a control unit 3 that controls charge and discharge of the secondary battery 2.
  • the secondary battery 2 includes a pair of electrodes 4 of a positive electrode 4 P and a negative electrode 4 N. These electrodes 4 P and 4 N respectively have an active material 40 to which a metal atom (in the present embodiment, a lithium atom) is deintercalated.
  • the secondary battery 2 is configured to output a potential E P of the positive electrode 4 P, the difference between the potential E N of the negative electrode 4 N as an output voltage V.
  • the electrode 4 (4 P , 4 N ) has a singular point A at which the change amount ⁇ V / ⁇ Q of the output voltage V with respect to the capacity Q of the secondary battery 2 specifically changes.
  • the control unit 3 includes a detection unit 31 and a calculation setting unit 32.
  • the detection unit 31 changes the capacity Q (see FIG. 1) of the secondary battery 2 and measures the change ⁇ V of the output voltage V.
  • singular point capacitances a and b which are capacitance Q at which the singular point A (in this embodiment, the singular point A of the positive electrode 4 P ) appears, are detected.
  • Calculating setting unit 32 when the secondary battery 2 is deteriorated, so that the potential E P electrode 4 does not exceed the range E TH1 ⁇ E TH2 predetermined singularity after degradation capacity a, using the detection value a 2, b 2 of b, to calculate at least one of the upper limit value Q H and the lower limit Q L of the capacity Q, which is configured to set.
  • the power supply system 1 of the present embodiment is an on-vehicle power supply system to be mounted on a vehicle such as an electric vehicle or a hybrid vehicle.
  • a charging device 10 and a load 11 are connected to the secondary battery 2.
  • the load 11 of this embodiment is an inverter. Using this inverter, DC power supplied from the secondary battery 2 is converted into AC power, and a three-phase AC motor (not shown) is driven. Thereby, the above-mentioned vehicle is made to run.
  • a charging switch 80 is provided between the secondary battery 2 and the charging device 10. Further, a load switch 81 is provided between the secondary battery 2 and the load 11.
  • the control unit 3 controls the on / off operation of the switches 80 and 81. Thereby, charge and discharge of the secondary battery 2 are controlled.
  • the secondary battery 2 of the present embodiment is a lithium ion secondary battery.
  • the secondary battery 2 includes a pair of electrodes 4 of a positive electrode 4 P and a negative electrode 4 N , a separator 20 disposed therebetween, and an electrolytic solution 21.
  • Each electrode 4 comprises an active material 40.
  • lithium is deintercalated in the active material 40.
  • the lithium manganate Li x Mn 2 O 4
  • it is constituted a positive electrode 4 P of the active material 40.
  • lithium titanate Li y Ti 5 O 12
  • lithium amount x of Li x Mn 2 O 4 changes depending on the charge / discharge state
  • a material having x in the range of 0 to 2 can be used in the lithium manganate substituted with the other element.
  • lithium titanate Li y Ti 5 O 12
  • y in the range of 4 to 7.
  • the positive electrode 4 P holds more lithium than the negative electrode 4 N.
  • the lithium held by the positive electrode 4 P is released and moves to the negative electrode 4 N.
  • electrons flow from the positive electrode 4 P , and the negative electrode 4 N receives the electrons.
  • the concentration of lithium in the electrodes 4 P and 4 N changes.
  • the potentials E P and E N of the respective electrodes 4 P and 4 N change.
  • the difference between the potentials E P and E N of the pair of electrodes 4 P and 4 N appears as the output voltage V.
  • the controller 3 measures this output voltage V.
  • the positive electrode 4 P has a singular point A. At the singular point A, the amount of change ⁇ V / ⁇ Q is high.
  • the control unit 3 measures the variation amount ⁇ V / ⁇ Q to detect the singular point A, and also detects singular point capacitances a and b which are capacitances Q at which the singular point A appears.
  • the positive electrode 4 P is a high deterioration electrode 4 F whose deterioration rate is faster than that of the negative electrode 4 N (see FIG. 1).
  • the high degradation electrode 4 F (positive electrode 4 P) has a central singularity A M sandwiched between two non regions B.
  • the nonspecific region B is a region where the amount of change ⁇ V / ⁇ Q is smaller than a predetermined value.
  • the high degradation electrode 4 F (positive electrode 4 P) has a low side singularities A L that is a singular point A that appears when the capacity Q is lower than the central singularity A M.
  • the controller 3 detects the capacity Q (that is, the singular point capacitances a and b) in which the central singular point AM and the low side singular point AL appear by measuring the amount of change ⁇ V / ⁇ Q.
  • the low side singular point AL may move to the right side of the figure. Therefore, if you leave the lower limit Q L deterioration previous value Q L1 capacity Q, the positive electrode potential E P becomes too below the lower limit electric potential E TH2, or electrolyte 21 is reduced degradation of the positive electrode crystal Problems such as deterioration due to structural change may easily occur. In Therefore the present embodiment, when the secondary battery 2 is deteriorated, and change the upper limit value Q H and the lower limit Q L capacity Q, the positive electrode potential E P is prevented deviate from the range E TH1 ⁇ E TH2.
  • the control unit 3 of the present embodiment charges and discharges the secondary battery 2, measures the current I every minute time t, and calculates the capacity Q of the secondary battery 2 from the following equation.
  • Q It It
  • the singular points AM and AL are formed on the positive electrode 4P .
  • Control unit 3 detects, as singular point capacitances a and b, capacitance Q when variation amount ⁇ V / ⁇ Q becomes larger than a predetermined value.
  • the control unit 3 charges and discharges the secondary battery 2, and divides the change amount ⁇ V of the output voltage V by the change amount ⁇ Q of the capacity Q to calculate ⁇ V / ⁇ Q.
  • peaks P L and P M where ⁇ V / ⁇ Q becomes high appear.
  • the control unit 3 detects, as singular point capacitances a and b, capacitances Q at which these peaks P L and P M become local maximum values.
  • control unit 3 of this embodiment first performs step S1.
  • the secondary battery 2 is charged and discharged to calculate ⁇ V / ⁇ Q.
  • step S2 the singular point capacitances a 2 and b 2 after deterioration are detected.
  • step S4 by performing the step S3, the previous, the upper limit Q H and after calculating the lower limit value Q L, only if the deterioration of the secondary battery 2 has proceeded to some extent, the step S4 and subsequent steps (the upper limit value Q A process of calculating H 1 and the lower limit value Q L again is performed. That is, as the deterioration of the secondary battery 2 progresses, the two singular point capacities b 2 and a 2 approach each other (see FIG. 1), and the difference ⁇ Q between them decreases.
  • the process from step S4 is performed only when the amount of decrease of the difference ⁇ Q becomes equal to or larger than a predetermined value ⁇ Q TH , that is, only when the deterioration progresses to a certain extent.
  • step S4 the upper limit value Q H2 and the lower limit value Q L2 of the capacity Q after deterioration are calculated using the above equations (1) and (2). Thereafter, the process proceeds to step S5.
  • These values can be obtained, for example, by setting the capacity Q of the secondary battery 2 to the upper limit value Q H2 or the lower limit value Q L2 and measuring the output voltage V at this time.
  • Control unit 3 controls charge and discharge of secondary battery 2 such that output voltage V is between the above values V H2 and V L2 until the time of changing upper limit value Q H2 and lower limit value Q L2 next. . Thereby, control is performed so that the capacity Q of the secondary battery 2 is between the upper limit value Q H2 and the lower limit value Q L2 .
  • the control unit 3 of the present embodiment includes a detection unit 31 and a calculation setting unit 32. Therefore, the progress of the deterioration of the secondary battery 2 can be effectively suppressed. That is, the electrode 4 of this embodiment has a singular point A.
  • the control unit 3 detects singular point capacitances a and b which are capacitances Q at which the singular point A appears.
  • the singular point capacitances a and b change in value when the electrode 4 is deteriorated (see FIG. 1). Therefore, the singular point capacitances a and b can be used as indices indicating the degree of deterioration of the electrode 4.
  • the singularity capacity a the use of the b, can be in accordance with the deterioration of the electrode 4, to set the upper limit value Q H capacity Q, the lower limit value Q L in the optimum value. Therefore, the potential E of the deteriorated electrode 4 can be suppressed from exceeding the predetermined range E TH1 to E TH2, and the progress of the deterioration of the secondary battery 2 can be suppressed.
  • the output voltage V becomes the same value V CH before and after deterioration, but since both of the two electrode potentials E P and E N are rising, positive electrode potential E P exceeds upper limit value E TH1 . There is a possibility that Therefore, there is a possibility that the oxidative decomposition of the electrolytic solution 21 proceeds. As a result, deviated from the positive electrode potential E P further upper limit value E TH1, possibility of degradation proceeds more of the electrolytic solution 21 can be considered.
  • the upper limit value Q H2 and the lower limit value Q L2 are set to optimum values according to the degree of deterioration of the secondary battery 2 be able to. Therefore, it is possible to suppress a problem that the positive electrode potential E P exceeds the above range E TH1 ⁇ E TH2. Therefore, the progress of the deterioration of the secondary battery 2 can be suppressed.
  • control unit 3 of the present embodiment is configured to determine a state where change amount ⁇ V / ⁇ Q of output voltage V with respect to capacity Q of secondary battery 2 is higher than a predetermined value as the singular point A. ing.
  • the singular point A can be easily detected. Therefore, it is possible to easily detect the capacitance Q where the singular point A appears (that is, the singular point capacitances a and b).
  • the high degradation electrode 4 F (in the present embodiment, the positive electrode 4 P ), which is the electrode 4 with the faster deterioration rate of the pair of electrodes 4 P and 4 N , is sandwiched between the two nonspecific regions B.
  • the is formed a central singularity a M is a singular point a.
  • the central singular point AM is easy to detect because it exists between the two nonspecific regions B. Therefore, by forming the central singularity A M to degradation speed is high high degradation electrode 4 F, the easier to detect the deterioration of the high degradation electrode 4 F, the upper limit Q H and the lower limit Q L optimal It becomes easy to set to
  • the upper limit value Q H2 and the lower limit value Q L2 of the capacity Q after deterioration are calculated using the above formulas (1) and (2). In this way, the upper limit value Q H2 and the lower limit value Q L2 after deterioration can be accurately calculated.
  • the control unit 3 of this embodiment first after calculating the upper limit value Q H and the lower limit value Q L, the output voltage V is a value corresponding to the upper limit value Q H2
  • the charge and discharge of the secondary battery 2 are controlled to be between the voltage V H2 and the second voltage V L2 which is a value corresponding to the lower limit value Q L2 .
  • the capacity Q of the rechargeable battery 2 it is relatively difficult for the capacity Q of the rechargeable battery 2 to detect whether or not reached the upper limit value Q H or the lower limit value Q L, it is easy to measure the output voltage V. Therefore, if the output voltage V is used, control of the capacity Q of the secondary battery 2 can be easily performed.
  • the secondary battery 2 of the present embodiment is a lithium ion secondary battery.
  • the positive electrode 4 P of the secondary battery 2 there as a high degradation electrode 4 F having the central singularity A M.
  • Lithium-ion secondary battery when the potential E P of the positive electrode 4 P is too high or too low, the electrolyte 21 is easily decomposed. Therefore, the positive electrode 4 P to form a central singularity A M, by utilizing the central singularity A M, the effect which is adapted to control the positive electrode potential E P within a predetermined range E TH1 ⁇ E TH2 is large.
  • the positive electrode 4 P is configured using LiMn 2 O 4
  • the negative electrode 4 N is configured using Li 4 Ti 5 O 12 .
  • LiMn 2 O 4 since a change in crystal structure and lithium is inserted, it is easy to form the central singularity A M.
  • Li 4 Ti 5 O 12 does not change its crystal structure even when lithium is inserted. Therefore, the central singular point AM is not formed on the negative electrode 4N .
  • V the output voltage
  • V i.e. the amount of change [Delta] V / Delta] Q
  • both the upper limit value Q H2 and the lower limit value Q L2 are changed, but the present invention is not limited to this, and only one of them is used. You may change it.
  • the lithium ion secondary battery was used as the secondary battery 2 in this form, this invention is not limited to this, Even if it uses the secondary battery 2 of other types, such as a sodium ion secondary battery, good.
  • the present embodiment is an example in which the configuration of the secondary battery 2 is changed.
  • a plurality of electrode materials are mixed to form the positive electrode 4P . More specifically, LiMn 2 O 4 and LiCoO 2 are mixed to constitute the positive electrode 4 P. Further, as in the first embodiment, the negative electrode 4 N is formed of Li 4 Ti 5 O 12 .
  • FIG. 8 shows the relationship between the amount of change ⁇ V / ⁇ Q and the capacity Q when the secondary battery 2 is used. As shown in the figure, two peaks P L and P L ′ appear in the region where the capacity Q is low.
  • the second peak P L ′ is generated by mixing LiCoO 2 with the positive electrode 4 P. In this embodiment, this second peak P L ′ is used to detect the singular point volume a.
  • a plurality of electrode materials are mixed to form the high deterioration electrode 4 F (positive electrode 4 P ).
  • a plurality of singular points A can be easily formed. Therefore, for example, as shown in FIG. 8, a plurality of peaks of ⁇ V / ⁇ Q can be formed in a region where the capacitance Q is low. Therefore, it is possible to detect the singular point capacitance a by using the peak (in the present embodiment, the second peak P L ′) in which the deterioration of the electrode 4 can be easily detected.
  • the peak in the present embodiment, the second peak P L ′
  • the other configurations and effects are the same as those of the first embodiment.
  • the present embodiment is an example in which the configuration of the secondary battery 2 is changed.
  • the positive electrode 4 P is configured using the following electrode material. Further, by using the electrode material containing the lithium titanate Li y Ti 5 O 12, constitutes a negative electrode 4 N. As the lithium manganate substituted with the other element, the amount x of Li x Mn 2-z Mez O 4 changes depending on the charge and discharge state, so a material with x in the range of 0 to 2 can be used.
  • lithium titanate (Li y Ti 5 O 12 ) can use a material in which y is in the range of 4 to 7.
  • a positive electrode 4 P with a long lifetime can be formed.
  • the negative electrodes 4 N is other than using Li y Ti 5 O 12, TiO 2 (B), it may be used H 2 Ti 22 O 25. These negative electrode materials is greater than the capacitance per weight Li y Ti 5 O 12, it tends to flatten a potential gradient.
  • the other configurations and effects are the same as those of the first embodiment.
  • the present embodiment is an example in which the flowchart of the control unit 3 is modified.
  • the control unit 3 of the present embodiment first performs step S11.
  • the last a predetermined period after changing the upper limit value Q H and the lower limit Q L (e.g. 1 day) It is determined whether or not elapsed. If it is determined Yes here, the process proceeds to step S12.
  • step S12 the secondary battery 2 is charged and discharged to calculate ⁇ V / ⁇ Q. Thereafter, the process proceeds to step S13, and the singular point capacitances a 2 and b 2 after deterioration are detected.
  • step S15 the upper limit value Q H2 and the lower limit value Q L2 of the capacity Q after the deterioration are calculated again. After that, the routine goes to step S16, obtaining the output voltage V H2, V L2 corresponding to the upper limit value Q H2 and the lower limit value Q L2.
  • a predetermined period (a period in which it is predicted that the upper limit value Q H2 and the lower limit value Q L2 need to be reset)
  • It is determined whether it has elapsed (step S11). Then, when it is determined that the above period has elapsed (Yes), the singular point capacities a 2 and b 2 after deterioration are detected. Therefore, it is not necessary to frequently detect the singular point capacitances a 2 and b 2, and the load on the control unit 3 can be reduced.
  • the other configurations and effects are the same as those of the first embodiment.
  • Embodiment 5 is an example in which the structure of the secondary battery 2 is changed. As shown in FIG. 10, in this embodiment, toward the negative electrode 4 N deteriorates faster than the positive electrode 4 P. That is, a negative electrode 4 N, is a high degradation electrode 4 F. Further, a central singular point AM and a low side singular point AL are formed on the negative electrode 4N . These singularities A M, the A L, the amount of change [Delta] V / Delta] Q is increased. Control unit 3, by measuring the amount of change [Delta] V / Delta] Q, singularities A M, A L appears singularity capacity a, detects a b. Further, the upper limit value Q H2 and the lower limit value Q L2 after deterioration are calculated using the equations (1) and (2).
  • the negative electrode 4 N with graphite (graphite).
  • positive electrode 4 P is formed using LiFePO 4 . The same behavior can be exhibited and controlled even in a material obtained by coating or mixing graphite with amorphous carbon.
  • a negative electrode 4 N as a high degradation electrode 4 F. Then, a central singular point AM and a low side singular point AL are formed on the high deterioration electrode 4 F (negative electrode 4 N ). If the potential of the negative electrode 4 N (that is, the negative electrode potential E N ) becomes too low, lithium may be deposited, or the reductive decomposition of the electrolytic solution 21 or the once formed film (SEI) of the carbon surface may be decomposed. Is likely to occur. In addition, when the negative electrode potential E N becomes too high, the electrolytic solution 21 may possibly be oxidized and decomposed.
  • the singular points A M and A L are formed on the negative electrode 4 N , and using these, the upper limit value Q H2 and the lower limit so that the negative electrode potential E N does not exceed the predetermined range E TH1 to E TH2
  • the effect of setting the value Q L2 is large.
  • the negative electrode 4N is configured using graphite. Graphite changes its crystal structure when lithium is inserted, and a region where the potential gradient becomes high appears. Therefore, the singular points A M and A L are easily formed.
  • the positive electrode 4 P is configured using LiFePO 4 .
  • LiFePO 4 does not change its crystal structure even when lithium is inserted. Therefore, it is possible to generally flatten the positive electrode potential E P. Therefore, the singular points A M and A L of the negative electrode 4 N can be easily detected, and the singular point capacitances a and b can be easily detected.
  • the other configurations and effects are the same as those of the first embodiment.
  • Embodiment 6 is an example in which the method of calculating the upper limit value Q H2 and the lower limit value Q L2 of the capacity Q after deterioration is changed.
  • the positive electrode 4 P and the negative electrode 4 N in this embodiment includes a singular point A in the vicinity of the upper limit value Q H and the lower limit value Q L. Further, a nonspecific region B in which the potential gradient is smaller than a predetermined value is between the two singular points A.
  • the upper limit value Q H2 and the lower limit value Q L2 after deterioration are calculated using the singular point A H formed in the vicinity of the upper limit value Q H of the positive electrode 4 P.
  • the secondary battery 2 is before the deterioration, the capacity corresponding to the singular points A H Q (i.e. singularity capacity a ') is a relatively high value a 1' has become.
  • singularities capacity a 'low value a 2' turns to.
  • the control unit 3 of the present embodiment stores, in advance, the relationship between the value of the singular point capacitance a 2 ′ after deterioration, the upper limit value Q H2, and the lower limit value Q L2 as a map. Then, using this map, the post-deterioration upper limit value Q H2 and the lower limit value Q L2 are calculated.
  • positive electrode potential E P does not exceed the predetermined range E TH1 ⁇ E TH2.
  • step S21 the control unit 3 first performs step S21.
  • the secondary battery 2 is charged and discharged to calculate ⁇ V / ⁇ Q.
  • step S22 the singular point capacitance a 2 ′ after deterioration is detected.
  • step S23 the upper limit value Q H2 and the lower limit value Q L2 of the capacity Q after deterioration are obtained using the singular point capacity a 2 ′ after deterioration. Thereafter, the process proceeds to step S24.
  • output voltages V H2 and V L2 corresponding to the upper limit value Q H2 and the lower limit value Q L2 are obtained.
  • the other configurations and effects are the same as those of the first embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

二次電池(2)と制御部(3)とを備える。二次電池(2)の電極(4)は、容量(Q)に対する出力電圧(V)の変化量(ΔV/ΔQ)が特異的に変化する特異点(A)を有する。制御部(3)は、検出部(31)と算出設定部(32)とを備える。検出部(31)は、二次電池(2)の容量(Q)を変化させ、特異点(A)が現れる容量(Q)である特異点容量(a,b)を検出する。算出設定部(32)は、二次電池(2)が劣化したときに、電極(4)の電位(EP)が予め定められた範囲(ETH1~ETH2)を超えないように、劣化後における特異点容量(a,b)の検出値(a2,b2)を用いて、容量の上限値(QH)と下限値(QL)との少なくとも一方を算出し、設定する。

Description

電源システム 関連出願の相互参照
 本出願は、2017年9月11日に出願された日本出願番号2017-174288号に基づくもので、ここにその記載内容を援用する。
 本開示は、二次電池と、該二次電池の充放電を制御する制御部とを備える電源システムに関する。
 従来から、リチウムイオン二次電池等の二次電池と、該二次電池の充放電を制御する制御部とを備える電源システムが知られている(下記特許文献1参照)。上記二次電池は、正電極と負電極との一対の電極を備える。これらの電極は活物質を備えており、二次電池を充放電すると、上記活物質にリチウム等の金属原子が脱挿入される。これに伴って、電極の電位が変化する(図14参照)。上記二次電池では、正電極の電位と負電極の電位との差が、出力電圧となって表れる。
 上記電極の電位は、高すぎても、低すぎても、問題が発生する。例えば、電極の電位が高すぎると、電解液が酸化分解しやすくなる。また、電極の電位が低すぎると、リチウム等の金属が析出したり、電解液が還元分解したりする問題が生じやすくなる。そのため、電極の電位が所定の範囲を超えないように、充放電容量を制御する必要がある。
 このように充放電容量の制御を行う際、従来の電源システムでは、出力電圧を用いていた。例えば、充電したときに出力電圧が上限電圧に達した場合は、正電極の電位が高すぎたり、負電極の電位が低すぎたりしている可能性があるため、そこで充電を停止していた。また、放電したときに出力電圧が下限電圧に達した場合は、正電極の電位が低すぎたり、負電極の電位が高すぎたりしている可能性があるため、そこで放電を停止していた。これにより、電解液が分解されて、二次電池の寿命が短くなる不具合を抑制していた。
特開2015-111656号公報
 上記電源システムでは、二次電池の劣化が進行することを充分に抑制できない可能性がある。すなわち、後述するように、二次電池が劣化すると、個々の電極の電位と、出力電圧との関係が変化する(図14参照)。そのため、出力電圧が所定範囲内となるように制御しても、電極の電位が高すぎたり低すぎたりする場合が有り得る。この場合、電解液の分解等が進み、二次電池の劣化が進行する可能性が考えられる。その結果、電極の電位が所定範囲からさらに外れ、二次電池の劣化がさらに進行する可能性が考えられる。
 すなわち、上記電源システムでは、二次電池が劣化した場合、その劣化度に合せて、充放電容量を制御できていなかった。そのため、二次電池が劣化した場合、電極の電位が所定範囲から外れ、その結果、劣化が進行する可能性が考えられた。
 また、正極と負極の電位が高すぎたり低すぎたりしないように、使用する電圧範囲を常に制限をする場合、電池の容量、及び入出力の性能を十分に引き出せない課題がある。
 また、別の方法として、電池内に第三の参照極を設置して、正極と負極の電位を測定して制御する手法が提案されているが、電池内に正極、負極とは別に参照電極を設置する必要があり、電池の体格とコストが上昇しやすい。さらに、電極の電位をセンシングするための信号線、計測処理も増えるため、電源システムの製造コストが上昇する課題がある。
 本開示は、二次電池の各電極の使用できる電位範囲を適切に使用することで、容量、及び入出力の性能を引き出すことができ、かつ、二次電池の劣化が進行することをより抑制できる電源システムを提供しようとするものである。
 本開示の一態様は、二次電池と、該二次電池の充放電を制御する制御部とを備える電源システムであって、
 上記二次電池は、金属原子が脱挿入される活物質をそれぞれ有する、正電極と負電極との一対の電極を備え、上記正電極の電位と上記負電極の電位との差を出力電圧として出力するよう構成され、
 上記電極は、上記二次電池の容量に対する上記出力電圧の変化量が特異的に変化する特異点を有し、
 上記制御部は、
 上記二次電池の上記容量を変化させ、上記出力電圧の変化を測定することにより、上記特異点が現れる上記容量である特異点容量を検出する検出部と、
 上記二次電池が劣化したときに、上記電極の電位が予め定められた範囲を超えないように、劣化後における上記特異点容量の検出値を用いて、上記容量の上限値と下限値との少なくとも一方を算出し、設定する算出設定部とを備える、電源システムにある。
 上記電源システムの制御部は、上記検出部と算出設定部を備える。
 そのため、二次電池の劣化が進行することを効果的に抑制できる。すなわち、上記電源システムにおける上記電極は、上記特異点を有する。そして、この特異点が現れる容量である特異点容量を検出できるようにしてある。特異点容量は、電極が劣化すると、値が変化する(図1参照)。そのため、この特異点容量を、電極の劣化度を表す指標として用いることができる。したがって、この特異点容量を用いれば、電極の劣化度に合せて、二次電池の容量の上限値と、下限値とを最適な値に設定することができる。そのため、劣化した電極の電位が所定範囲を超えることを抑制でき、二次電池の劣化が進行することを抑制できる。
 以上のごとく、上記態様によれば、二次電池の劣化が進行することをより抑制できる電源システムを提供することができる。
 なお、上記二次電池の「容量」とは、二次電池の充電容量又は放電容量を意味する。また、上記特異点の位置は、充電量又は放電量によって表すことができる。指標としては、充電容量、放電容量、充電率(SOC)、放電深度(DOD)、電圧を用いることができる。また、上記二次電池の容量の上限値は、電池に蓄えられた容量の上限値を意味し、容量の下限値は、電池に蓄えられた容量の上限値を意味する。同様に指標としては、充電容量、放電容量、充電率(SOC)、放電深度(DOD)、電圧を用いることができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
図1は、実施形態1における、正極電位と、出力電圧と、負極電位と、容量との関係を、二次電池の劣化前と劣化後とについて表したグラフである。 図2は、実施形態1における、特異点と非特異領域の説明図である。 図3は、実施形態1における、正極電位と、出力電圧と、ΔV/ΔQと、容量との関係を表したグラフである。 図4は、実施形態1における、電源システムの概念図である。 図5は、実施形態1における、制御部のフローチャートである。 図6は、実施形態1における、充電容量が多い状態での、二次電池の概念図である。 図7は、実施形態1における、充電容量が少ない状態での、二次電池の概念図である。 図8は、実施形態2における、ΔV/ΔQと容量との関係を、劣化前と劣化後について表したグラフである。 図9は、実施形態4における、制御部のフローチャートである。 図10は、実施形態5における、正極電位と、出力電圧と、負極電位と、容量との関係を、二次電池の劣化前と劣化後とについて表したグラフである。 図11は、実施形態6における、正極電位と、出力電圧と、負極電位と、容量との関係を、二次電池の劣化前と劣化後とについて表したグラフである。 図12は、実施形態6における、制御部のフローチャートである。 図13は、実施形態6における、特異点と非特異領域の説明図である。 図14は、比較形態における、正極電位と、出力電圧と、負極電位と、容量との関係を、二次電池の劣化前と劣化後とについて表したグラフである。
(実施形態1)
 上記電源システムに係る実施形態について、図1~図7を参照して説明する。図4に示すごとく、本形態の電源システム1は、二次電池2と、該二次電池2の充放電を制御する制御部3とを備える。
 図6、図7に示すごとく、二次電池2は、正電極4Pと負電極4Nとの一対の電極4を備える。これらの電極4P,4Nは、金属原子(本形態ではリチウム原子)が脱挿入される活物質40をそれぞれ有する。二次電池2は、正電極4Pの電位EPと、負電極4Nの電位ENとの差を出力電圧Vとして出力するよう構成されている。
 図2に示すごとく、電極4(4P,4N)は、二次電池2の容量Qに対する出力電圧Vの変化量ΔV/ΔQが特異的に変化する特異点Aを有する。
 図4に示すごとく、制御部3は、検出部31と算出設定部32とを備える。検出部31は、二次電池2の容量Q(図1参照)を変化させ、出力電圧Vの変化ΔVを測定する。これにより、特異点A(本形態では、正電極4Pの特異点A)が現れる容量Qである特異点容量a,bを検出する。
 算出設定部32は、図1に示すごとく、二次電池2が劣化したときに、電極4の電位EPが予め定められた範囲ETH1~ETH2を超えないように、劣化後における特異点容量a,bの検出値a2,b2を用いて、上記容量Qの上限値QHと下限値QLとの少なくとも一方を算出し、設定するよう構成されている。
 本形態の電源システム1は、電気自動車やハイブリッド車等の車両に搭載するための、車載用電源システムである。図4に示すごとく、二次電池2には、充電装置10と、負荷11が接続している。本形態の負荷11はインバータである。このインバータを用いて、二次電池2から供給される直流電力を交流電力に変換し、図示しない三相交流モータを駆動している。これにより、上記車両を走行させている。二次電池2と充電装置10との間には、充電用スイッチ80が設けられている。また、二次電池2と負荷11との間には、負荷用スイッチ81が設けられている。制御部3は、これらのスイッチ80,81のオンオフ動作を制御する。これにより、二次電池2の充放電を制御している。
 本形態の二次電池2は、リチウムイオン二次電池である。図6に示すごとく、二次電池2は、正電極4Pと負電極4Nとの一対の電極4と、これらの間に配されたセパレータ20と、電解液21とを備える。個々の電極4は、活物質40を備える。二次電池2を充放電すると、活物質40にリチウムが脱挿入される。本形態では、マンガン酸リチウム(LixMn24)を用いて、正電極4Pの活物質40を構成してある。また、チタン酸リチウム(LiyTi512)を用いて、負電極4Nの活物質40を構成してある。上記他元素置換したマンガン酸リチウムは充放電状態によりLixMn24のLi量xが変わるため、xが0~2の範囲の材料を使用することができる。同様に、チタン酸リチウム(LiyTi512)はyが4~7の範囲の材料を使用することができる。
 二次電池2の充電率が高い場合は、図6に示すごとく、正電極4Pよりも負電極4Nの方が、多くのリチウムを保持している。二次電池2を放電させると、負電極4Nに保持されているリチウムが離脱し、正電極4Pに移動する。この際、負電極4Nから電子が流れ、正電極4Pは電子を受け取る。
 また、二次電池2の充電率が低い場合は、図7に示すごとく、負電極4Nよりも正電極4Pの方が、多くのリチウムを保持している。二次電池2を充電すると、正電極4Pに保持されているリチウムが離脱し、負電極4Nに移動する。この際、正電極4Pから電子が流れ、負電極4Nは電子を受け取る。
 このように、二次電池2を充放電すると、電極4P,4N内におけるリチウムの濃度が変化する。これに伴って、図2に示すごとく、各電極4P,4Nの電位EP,ENが変化する。また、一対の電極4P,4Nの電位EP,ENの差が出力電圧Vとなって表れる。制御部3は、この出力電圧Vを測定する。また、上述したように、正電極4Pは特異点Aを有する。この特異点Aでは、上記変化量ΔV/ΔQが高い。制御部3は、この変化量ΔV/ΔQを測定することにより、特異点Aを検出すると共に、この特異点Aが現れる容量Qである特異点容量a,bを検出する。
 上述したように、本形態では、正極4Pにマンガン酸リチウムを用い、負極4Nにチタン酸リチウムを用いている。この二次電池2においては、正電極4Pは、負電極4Nよりも劣化速度が速い(図1参照)高劣化電極4Fである。図2に示すごとく、高劣化電極4F(正電極4P)は、2つの非特異領域Bに挟まれた中央特異点AMを有する。非特異領域Bは、上記変化量ΔV/ΔQが予め定められた値よりも小さい領域である。また、高劣化電極4F(正電極4P)は、中央特異点AMよりも容量Qが低いときに現れる特異点Aである低側特異点ALを有する。制御部3は、上記変化量ΔV/ΔQを測定することにより、これら中央特異点AMおよび低側特異点ALが現れる容量Q(すなわち特異点容量a,b)を検出する。
 図1に示すごとく、二次電池2が劣化すると、正極電位EP及び負極電位ENの挙動が変化する。これは、充放電を繰り返すと、電極4にリチウムが繰り返し脱挿入され、電極4の結晶構造の変化、それに伴う電極体積変化により、正極活物質中の充放電で使用できるLi量が減少するためだと考えられる。図1に示すごとく、二次電池2は劣化すると、容量Qが少なくても、正極電位EPが高い値になりやすい。そのため、容量Qの上限値QHを劣化前の値QH1のままにしておくと、正極電位EPが上限電位ETH1を超えてしまい、電解液21が酸化分解する等の問題が生じやすくなる。
 また、図1に示すごとく、二次電池2は劣化すると、低側特異点ALが図の右側に移動することがある。そのため、容量Qの下限値QLを劣化前の値QL1のままにしておくと、正極電位EPが下限電位ETH2以下になってしまい、電解液21が還元分解したり、正極の結晶構造変化に伴う劣化が進行したりする等の問題が生じやすくなる。そのため本形態では、二次電池2が劣化した場合、容量Qの上限値QHと下限値QLを変更し、正極電位EPが上記範囲ETH1~ETH2から外れないようにしている。
 より詳しくは、本形態では、二次電池2が劣化する前における、低側特異点ALに対応する特異点容量a1と、中央特異点AMに対応する特異点容量b1と、上記上限値QH1及び下限値QL1と、劣化後における、低側特異点ALに対応する特異点容量a2と、中央特異点AMに対応する特異点容量b2とを用いて、下記式から、劣化後における、容量Qの上限値QH2と下限値QL2を算出する。
H2=(b2-a2)/(b1-a1)×(QH1-b1)+b2   ・・・(1)
L2=(b2-a2)/(b1-a1)×(QL1-a1)+a2   ・・・(2)
 上記式をどのように導出したか説明する。図1に示すごとく、劣化後の正極電位EPのグラフは、劣化前のグラフを、X軸について全体的に縮小したものとみなすことができる。そのため、低側特異点ALに対応する特異点容量をa、中央特異点AMに対応する特異点容量をb、容量Qの上限値をQHとした場合、下記の比は、二次電池2が劣化する前と後とで殆ど同じであるとみなすことができる。
(b-a):(QH-b)
 すなわち、下記式が成立すると考えられる。
(b1-a1):(QH1-b1)=(b2-a2):(QH2-b2
この式から、上記式(1)を導くことができる。
 また、同様に、容量Qの下限値をQLとした場合、下記の比は、二次電池2が劣化する前と後で殆ど同じであるとみなすことができる。
(QL-a):(b-a)
 すなわち、下記式が成立すると考えられる。
(QL1-a1):(b1-a1)=(QL2-a2):(b2-a2
 この式から、上記式(2)を導くことができる。
 次に、特異点容量a,bの検出方法について説明する。本形態の制御部3は、二次電池2を充放電し、微小時間t毎に電流Iを測定して、下記式から、二次電池2の容量Qを算出する。
Q=ΣIt
 また、本形態では上述したように、正電極4Pに特異点AM,ALを形成してある。これらの特異点AM,ALでは、上記変化量ΔV/ΔQが急峻になる。制御部3は、変化量ΔV/ΔQが予め定められた値よりも大きくなったときの容量Qを特異点容量a,bとして検出する。
 すなわち、制御部3は図3に示すごとく、二次電池2を充放電し、出力電圧Vの変化量ΔVを容量Qの変化量ΔQで除してΔV/ΔQを算出する。2つの特異点AM,ALに対応する位置に、ΔV/ΔQが高くなるピークPL,PMが現れる。制御部3は、これらのピークPL,PMが極大値となる容量Qを、特異点容量a,bとして検出する。
 次に、制御部3のフローチャートの説明をする。本形態の制御部3は、図5に示すごとく、まずステップS1を行う。ここでは、二次電池2を充放電し、ΔV/ΔQを算出する。その後、ステップS2に移る。ここでは、劣化後の特異点容量a2,b2を検出する。
 次いで、ステップS3に移る。ここでは、劣化後における、中央特異点AMに対応する特異点容量b2と、低側特異点ALに対応する特異点容量a2との差ΔQ(=b2-a2)を算出する。そして、前回、上記上限値QH及び下限値QLを算出したときと比較して、上記差ΔQが予め定められた値ΔQTH以上小さくなったか否かを判断する。ここでYesと判断した場合は、ステップS4に移る。また、Noと判断した場合は、ステップS1に移る。本形態では、ステップS3を行うことにより、前回、上限値QH及び下限値QLを算出してから、二次電池2の劣化がある程度進行した場合のみ、ステップS4以降の処理(上限値QH、下限値QLを再び算出する処理)を行っている。すなわち、二次電池2の劣化が進行すると、2つの特異点容量b2,a2が接近し(図1参照)、これらの差ΔQが小さくなる。この差ΔQの減少量が所定値ΔQTH以上になった場合、すなわち劣化がある程度進行した場合にのみ、ステップS4以降の処理を行うようにしている。
 ステップS4では、上記式(1)、(2)を用いて、劣化後における、容量Qの上限値QH2と下限値QL2とを算出する。その後、ステップS5に移る。ここでは、算出した上限値QH2及び下限値QL2に対応する出力電圧VH2,VL2を求める。これらの値は、例えば、二次電池2の容量Qを上限値QH2又は下限値QL2にし、このときの出力電圧Vを測定して得ることができる。制御部3は、次に上限値QH2及び下限値QL2を変更するときまで、出力電圧Vが上記値VH2~VL2の間になるように、二次電池2の充放電を制御する。これにより、二次電池2の容量Qが、上限値QH2と下限値QL2との間になるように制御する。
 次に、本形態の作用効果について説明する。図4に示すごとく、本形態の制御部3は、検出部31と算出設定部32とを備える。
 そのため、二次電池2の劣化が進行することを効果的に抑制できる。すなわち、本形態の電極4は特異点Aを有する。制御部3は、この特異点Aが現れる容量Qである特異点容量a,bを検出する。特異点容量a,bは、電極4が劣化すると、値が変化する(図1参照)。そのため、この特異点容量a,bを、電極4の劣化度を表す指標として用いることができる。したがって、この特異点容量a,bを用いれば、電極4の劣化度に合せて、容量Qの上限値QHと、下限値QLとを最適な値に設定することができる。そのため、劣化した電極4の電位Eが所定範囲ETH1~ETH2を超えることを抑制でき、二次電池2の劣化が進行することを抑制できる。
 ここで仮に、図14に示すごとく、出力電圧Vが所定値VCHに達したときを容量Qの上限値QHにしたとすると、二次電池2が劣化した場合、正極電位EPが上限電位ETH1を超えてしまう可能性が生じ得る。すなわち、上限値QHにおける正極電位EP及び負極電位ENを、劣化前と劣化後とで比較すると、劣化後は全体的に高い値になる。また、上限値QHにおける正極電位EPと負極電位ENとの差(EP-EN)は、劣化前と劣化後とで互いに等しい。そのため、劣化前と劣化後とで出力電圧Vは同じ値VCHになるが、2つの電極電位EP,ENが両方とも上昇しているため、正極電位EPが上限値ETH1を超えてしまう場合があり得る。そのため、電解液21の酸化分解が進行する可能性が考えられる。その結果、正極電位EPがさらに上限値ETH1から外れ、電解液21の分解がより進行する可能性が考えられる。
 同様に、出力電圧Vが所定値VCLに達したときを容量Qの下限値QLにすると、二次電池2が劣化した場合、正極電位EPが下限値ETH2を下回る可能性がある。そのため、電解液21の還元分解や正極活物質の結晶構造変化が進行する可能性が考えられる。その結果、正極電位EPがさらに下限値ETH2から外れ、電解液21の分解がより進行する可能性が考えられる。
 すなわち、上述のように出力電圧Vを用いて制御する場合は、二次電池2が劣化したとき、その劣化度に合せて、容量Qの上限値QHと下限値QLを最適な値に変更することができない。したがって、電極4の電位Eが所定範囲ETH1~ETH2からさらに外れ、二次電池2の劣化が進行するおそれが考えられる。
 これに対して、本形態のように特異点容量a2,b2を用いれば、二次電池2の劣化度に応じて、上記上限値QH2及び下限値QL2を最適な値に設定することができる。そのため、正極電位EPが上記範囲ETH1~ETH2を超える不具合を抑制できる。したがって、二次電池2の劣化が進行することを抑制できる。
 また、本形態の制御部3は、二次電池2の容量Qに対する出力電圧Vの変化量ΔV/ΔQが、予め定められた値よりも高い状態を、上記特異点Aと判断するよう構成されている。
 この場合には、特異点Aを容易に検出できる。そのため、この特異点Aが現れる容量Q(すなわち特異点容量a,b)を容易に検出できる。
 また、本形態では、一対の電極4P,4Nのうち劣化速度が速い方の電極4である高劣化電極4F(本形態では正電極4P)に、2つの非特異領域Bに挟まれた特異点Aである中央特異点AMを形成してある。
 中央特異点AMは、2つの非特異領域Bの間に存在しているため、検出しやすい。したがって、劣化速度が速い高劣化電極4Fに中央特異点AMを形成しておけば、この高劣化電極4Fの劣化を検出しやすくなり、上記上限値QH及び下限値QLを最適な値に設定しやすくなる。
 また、図1に示すごとく、本形態では、劣化速度が遅い方の電極4(本形態では負電極4N)には、中央特異点AMを形成していない。すなわち、負電極4Nは、上記上限値QH及び下限値QL付近以外は、ΔV/ΔQが小さい。
 このようにすると、正電極4Pの中央特異点AMを検出しやすくなる。
 また、本形態では、上記式(1)(2)を用いて、劣化後の容量Qの上限値QH2と下限値QL2を算出している。
 このようにすると、劣化後の上記上限値QH2及び下限値QL2を正確に算出することができる。
 また、図5のステップS3に示すごとく、本形態の制御部3は、2つの特異点容量a2,b2の差ΔQ(=b2-a2)を算出する。そして、前回、上限値QH及び下限値QLを算出したときと比較して、上記差ΔQが予め定められた値ΔQTH以上小さくなった場合に、再び上限値QH及び下限値QLを算出するよう構成されている。
 このようにすると、上記差ΔQが上記値ΔQTH以上小さくなった場合、すなわち二次電池2の劣化がある程度進行した場合のみ、上限値QHと下限値QLの算出を行わせることができる。そのため、上限値QHと下限値QLの算出を頻繁に行わずにすみ、制御部3の負担を低減できる。
 また、図5のステップS5に示すごとく、本形態の制御部3は、上限値QH及び下限値QLを算出した後、出力電圧Vが、上限値QH2に対応する値である第1電圧VH2と、下限値QL2に対応する値である第2電圧VL2との間になるように、二次電池2の充放電を制御するよう構成されている。
 二次電池2の容量Qが上限値QH又は下限値QLに達したか否かを検出することは比較的困難であるが、出力電圧Vを測定することは容易である。そのため、出力電圧Vを用いれば、二次電池2の容量Qの制御を容易に行うことができる。
 また、本形態の二次電池2はリチウムイオン二次電池である。この二次電池2の正電極4Pを、上記中央特異点AMを有する高劣化電極4Fとしてある。
 リチウムイオン二次電池は、正電極4Pの電位EPが高すぎたり低すぎたりすると、電解液21が分解しやすい。そのため、正電極4Pに中央特異点AMを形成し、この中央特異点AMを利用して、正極電位EPを所定範囲ETH1~ETH2内に制御するようにした効果は大きい。
 また、本形態では、LiMn24を用いて正電極4Pを構成し、Li4Ti512を用いて負電極4Nを構成してある。LiMn24は、リチウムが挿入されると結晶構造が変化するため、中央特異点AMを形成しやすい。また、Li4Ti512は、リチウムが挿入されても結晶構造が変化しない。そのため、負電極4Nには中央特異点AMが形成されない。したがって、正電極4Pの中央特異点AMに対応する位置に現れる、出力電圧Vの高い変化(すなわち上記変化量ΔV/ΔQ)を検出しやすくなり、特異点容量bを容易に検出することが可能になる。
 以上のごとく、本形態によれば、二次電池の劣化が進行することをより抑制できる電源システムを提供することができる。
 なお、本形態では、二次電池2が劣化した場合、上記上限値QH2と下限値QL2とを両方とも変更しているが、本発明はこれに限るものではなく、これらの一方のみを変更してもよい。
 また、本形態では二次電池2としてリチウムイオン二次電池を用いたが、本発明はこれに限るものではなく、ナトリウムイオン二次電池等の、他の種類の二次電池2を用いても良い。
(実施形態2)
 本形態は、二次電池2の構成を変更した例である。本形態では、複数の電極材料を混合して、正電極4Pを構成している。より詳しくは、LiMn24とLiCoO2とを混合して正電極4Pを構成している。また、負電極4Nは、実施形態1と同様に、Li4Ti512によって形成している。
 図8に、上記二次電池2を用いた場合の、上記変化量ΔV/ΔQと容量Qとの関係を示す。同図に示すごとく、容量Qが低い領域に、2つのピークPL,PL’が現れる。2番目のピークPL’は、正電極4PにLiCoO2を混合したことにより生じたものである。本形態では、この2番目のピークPL’を用いて、特異点容量aを検出している。
 本形態の作用効果について説明する。本形態では、複数の電極材料を混合して、高劣化電極4F(正電極4P)を形成している。このようにすると、複数の特異点Aを容易に形成することができる。そのため、例えば図8に示すごとく、容量Qが低い領域にΔV/ΔQのピークを複数個、形成することができる。したがって、電極4の劣化を検出しやすいピーク(本形態では2番目のピークPL’)を用いて、特異点容量aを検出することが可能になる。
 その他、実施形態1と同様の構成および作用効果を備える。
(実施形態3)
 本形態は、二次電池2の構成を変更した例である。本形態では、マンガン酸リチウムの一部を他元素で置換したLixMn2-zMez4(z=0~0.5、MeはLi又は遷移金属、x=0~2)を含有する電極材料を用いて、正電極4Pを構成している。また、チタン酸リチウムLiyTi512を含有する電極材料を用いて、負電極4Nを構成している。
 上記他元素置換したマンガン酸リチウムは、充放電状態によりLixMn2-zMez4のLi量xが変わるため、xが0~2の範囲の材料を使用することができる。同様にチタン酸リチウム(LiyTi512)はyが4~7の範囲の材料を使用することができる。
 マンガン酸リチウムの一部を他元素で置換したLixMn2-zMez4を用いると、寿命の長い正電極4Pを形成することができる。また、負極4NはLiyTi512を用いる以外に、TiO2(B)、H2Ti2225を用いても良い。これらの負極材料は、重量当たりの容量がLiyTi512よりも大きく、電位勾配を平坦にしやすい。
 その他、実施形態1と同様の構成および作用効果を備える。
(実施形態4)
 本形態は、制御部3のフローチャートを変更した例である。図9に示すごとく、本形態の制御部3は、まずステップS11を行う。ここでは、前回、上限値QH及び下限値QLを変更してから所定期間(例えば1日)経過したか否かを判断する。ここでYesと判断した場合は、ステップS12に移る。ステップS12では、二次電池2を充放電し、ΔV/ΔQを算出する。その後、ステップS13に移り、劣化後の特異点容量a2,b2を検出する。
 次いで、ステップS14に移る。ここでは、2つの特異点容量a2,b2の差ΔQ(=b2-a2)を算出し、前回、上限値QH2及び下限値QL2を算出してから、差ΔQが所定値ΔQTH以上小さくなったか否かを判断する。ここでYesと判断した場合はステップS15に移り、Noと判断した場合はステップS11に戻る。
 ステップS15では、劣化後における、容量Qの上限値QH2と下限値QL2とを再び算出する。その後、ステップS16に移り、上限値QH2及び下限値QL2に対応する出力電圧VH2,VL2を求める。
 本形態の作用効果について説明する。本形態では、前回、上限値QH2と下限値QL2を算出してから、予め定められた期間(上限値QH2と下限値QL2を設定し直す必要があると予測される期間)、経過したか否かを判断する(ステップS11)。そして、上記期間を経過した(Yes)と判断した場合に、劣化後の特異点容量a2,b2を検出する。
 そのため、特異点容量a2,b2を頻繁に検出しなくてすみ、制御部3の負担を低減できる。
 その他、実施形態1と同様の構成および作用効果を備える。
(実施形態5)
 本形態は、二次電池2の構造を変更した例である。図10に示すごとく、本形態では、負電極4Nの方が正電極4Pよりも速く劣化する。すなわち、負電極4Nを、高劣化電極4Fとしてある。また、負電極4Nに、中央特異点AMと、低側特異点ALとを形成してある。これらの特異点AM,ALでは、上記変化量ΔV/ΔQが高くなる。制御部3は、この変化量ΔV/ΔQを測定することにより、特異点AM,ALが現れる特異点容量a,bを検出する。また、上記式(1)(2)を用いて、劣化後における上記上限値QH2及び下限値QL2を算出する。
 本形態では、グラファイト(黒鉛)を用いて負電極4Nを形成してある。また、LiFePO4を用いて正電極4Pを形成してある。グラファイトにアモルファスカーボンを被覆したり、混合した材料でも同様な挙動を示し、制御可能である。
 本形態の作用効果について説明する。本形態では、負電極4Nを高劣化電極4Fとしてある。そして、この高劣化電極4F(負電極4N)に、中央特異点AMと低側特異点ALとを形成してある。
 負電極4Nの電位(すなわち負極電位EN)は、低くなりすぎると、リチウムが析出したり、電解液21の還元分解や一度形成されたカーボン表面の皮膜(SEI)が分解したりする問題が生じやすい。また、負電位ENは、高くなりすぎると、電解液21が酸化分解する可能性が考えられる。そのため、負電極4Nに上記特異点AM,ALを形成し、これらを用いて、負電位ENが所定範囲ETH1~ETH2を超えないように、上記上限値QH2及び下限値QL2を設定することによる効果は大きい。
 また、本形態では、グラファイトを用いて負電極4Nを構成してある。グラファイトは、リチウムが挿入されると結晶構造が変化し、電位勾配が高くなる領域が現れる。そのため、上記特異点AM,ALを形成しやすい。
 また、本形態では、LiFePO4を用いて正電極4Pを構成してある。LiFePO4は、リチウムが挿入されても結晶構造が変化しない。そのため、正極電位EPを全体的に平坦にすることができる。したがって、負電極4Nの特異点AM,ALを検出しやすくなり、特異点容量a,bを容易に検出することが可能になる。
 その他、実施形態1と同様の構成および作用効果を備える。
(実施形態6)
 本形態は、劣化後における容量Qの上限値QH2と下限値QL2との算出方法を変更した例である。図13に示すごとく、本形態の正電極4P及び負電極4Nは、上記上限値QHおよび下限値QL付近に特異点Aを有する。また、2つの特異点Aの間は、電位勾配が所定値よりも小さい非特異領域Bとなっている。本形態では、正電極4Pの、上限値QH付近に形成された特異点AHを用いて、劣化後の上限値QH2及び下限値QL2を算出する。
 図11に示すごとく、二次電池2が劣化する前は、特異点AHに対応する容量Q(すなわち特異点容量a’)は比較的高い値a1’になっている。二次電池2が劣化すると、特異点容量a’は低い値a2’に変わる。本形態の制御部3は、劣化後の特異点容量a2’の値と、上限値QH2及び下限値QL2との関係を、予めマップとして記憶している。そして、このマップを用いて、劣化後の上限値QH2及び下限値QL2を算出する。これにより、正極電位EPが所定範囲ETH1~ETH2を超えないようにする。
 次に、制御部3のフローチャートについて説明する。図12に示すごとく、制御部3は、まずステップS21を行う。ここでは、二次電池2を充放電し、ΔV/ΔQを算出する。その後、ステップS22に移る。ここでは、劣化後の特異点容量a2’を検出する。
 次いで、ステップS23に移る。ここでは、劣化後の特異点容量a2’を用いて、劣化後における容量Qの上限値QH2と下限値QL2を求める。その後、ステップS24に移る。ここでは、上限値QH2及び下限値QL2に対応する出力電圧VH2,VL2を求める。
 その他、実施形態1と同様の構成および作用効果を備える。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (10)

  1.  二次電池(2)と、該二次電池の充放電を制御する制御部(3)とを備える電源システム(1)であって、
     上記二次電池は、金属原子が脱挿入される活物質(40)をそれぞれ有する、正電極(4P)と負電極(4N)との一対の電極(4)を備え、上記正電極の電位(EP)と上記負電極の電位(EN)との差を出力電圧(V)として出力するよう構成され、
     上記電極は、上記二次電池の容量(Q)に対する上記出力電圧の変化量(ΔV/ΔQ)が特異的に変化する特異点(A)を有し、
     上記制御部は、
     上記二次電池の上記容量を変化させ、上記出力電圧の変化を測定することにより、上記特異点が現れる上記容量である特異点容量(a,b)を検出する検出部(31)と、
     上記二次電池が劣化したときに、上記電極の電位が予め定められた範囲(ETH1~ETH2)を超えないように、劣化後における上記特異点容量の検出値を用いて、上記容量の上限値(QH)と下限値(QL)との少なくとも一方を算出し、設定する算出設定部(32)とを備える、電源システム。
  2.  上記制御部は、上記二次電池の容量に対する上記出力電圧の変化量が、予め定められた値よりも高い状態を、上記特異点と判断するよう構成されている、請求項1に記載の電源システム。
  3.  上記一対の電極のうち一方の電極は、他方の上記電極よりも劣化速度が速い高劣化電極(4F)であり、該高劣化電極は、上記変化量が予め定められた値よりも小さい2つの非特異領域(B)の間に存在する上記特異点である中央特異点(AM)を有する、請求項2に記載の電源システム。
  4.  上記高劣化電極は、上記中央特異点と、該中央特異点よりも上記容量が低いときに現れる上記特異点である低側特異点(AL)とを有し、上記制御部は、上記二次電池が劣化する前における、上記低側特異点に対応する上記特異点容量a1と、上記中央特異点に対応する上記特異点容量b1と、上記上限値QH1及び上記下限値QL1と、劣化後における、上記低側特異点に対応する上記特異点容量a2と、上記中央特異点に対応する上記特異点容量b2とを用いて、下記式から、劣化後における、上記上限値QH2と上記下限値QL2とを算出するよう構成されている、請求項3に記載の電源システム。
    H2=(b2-a2)/(b1-a1)×(QH1-b1)+b2
    L2=(b2-a2)/(b1-a1)×(QL1-a1)+a2
  5.  上記制御部は、上記中央特異点に対応する上記特異点容量(b)と、上記低側特異点に対応する上記特異点容量(a)との差(ΔQ)を算出し、前回、上記上限値及び上記下限値を算出したときと比較して、上記差が予め定められた値(ΔQTH)以上小さくなった場合に、再び上記上限値及び上記下限値を算出するよう構成されている、請求項4に記載の電源システム。
  6.  上記制御部は、上記上限値及び上記下限値を算出した後、上記出力電圧が、上記上限値に対応する第1電圧(VH2)と、上記下限値に対応する第2電圧(VL2)との間になるように、上記二次電池の充放電を制御するよう構成されている、請求項4又は5に記載の電源システム。
  7.  複数種類の電極材料を混合することにより、上記高劣化電極を形成してある、請求項3~6のいずれか一項に記載の電源システム。
  8.  上記二次電池はリチウムイオン二次電池である、請求項3~7のいずれか一項に記載の電源システム。
  9.  上記高劣化電極は上記正電極であり、該正電極はLixMn2-zMez4(z=0~0.5、MeはLi又は遷移金属、x=0~2)を含有し、上記負電極はLiyTi512(y=4~7)を含有する、請求項8に記載の電源システム。
  10.  上記高劣化電極は上記負電極であり、該負極はグラファイトを含有する、請求項8に記載の電源システム。
PCT/JP2018/031675 2017-09-11 2018-08-28 電源システム WO2019049719A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/815,082 US11217832B2 (en) 2017-09-11 2020-03-11 Power supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017174288A JP6760233B2 (ja) 2017-09-11 2017-09-11 電源システム
JP2017-174288 2017-09-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/815,082 Continuation US11217832B2 (en) 2017-09-11 2020-03-11 Power supply system

Publications (1)

Publication Number Publication Date
WO2019049719A1 true WO2019049719A1 (ja) 2019-03-14

Family

ID=65635306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031675 WO2019049719A1 (ja) 2017-09-11 2018-08-28 電源システム

Country Status (3)

Country Link
US (1) US11217832B2 (ja)
JP (1) JP6760233B2 (ja)
WO (1) WO2019049719A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110618387A (zh) * 2019-09-25 2019-12-27 华霆(合肥)动力技术有限公司 锂电池失效分析方法、装置、电子设备和存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230074240A (ko) 2020-09-28 2023-05-26 티에이이 테크놀로지스, 인크. 다상 모듈 기반의 에너지 시스템 프레임워크 및 그것에 관련되는 방법
US20220368150A1 (en) * 2021-04-27 2022-11-17 China Energy Investment Corporation Limited Voltage gradient-biased controller, system and method for controlling discharge of heterogeneous battery packs

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015230817A (ja) * 2014-06-05 2015-12-21 株式会社日立製作所 二次電池システムおよび二次電池の制御方法
JP2016009659A (ja) * 2014-06-26 2016-01-18 プライムアースEvエナジー株式会社 蓄電池の検査方法及び蓄電池の検査装置
JP2016054082A (ja) * 2014-09-04 2016-04-14 株式会社デンソー リチウムイオン電池の充電制御方法、リチウムイオン電池の充電制御装置およびリチウムイオン電池システム
JP2016167368A (ja) * 2015-03-09 2016-09-15 トヨタ自動車株式会社 二次電池の制御装置
JP2016197955A (ja) * 2015-04-03 2016-11-24 プライムアースEvエナジー株式会社 電池制御装置、電池制御方法及び下限電圧の決定方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247003A (ja) * 2012-05-28 2013-12-09 Sony Corp 二次電池の充電制御装置、二次電池の充電制御方法、二次電池の充電状態推定装置、二次電池の充電状態推定方法、二次電池の劣化度推定装置、二次電池の劣化度推定方法、及び、二次電池装置
JP2014139897A (ja) * 2013-01-21 2014-07-31 Toyota Industries Corp 二次電池システム
JP2015111656A (ja) 2013-11-05 2015-06-18 Jmエナジー株式会社 蓄電モジュール、蓄電装置および蓄電モジュールの制御方法
EP3076478B1 (en) * 2013-11-29 2019-06-05 Hitachi Automotive Systems, Ltd. Battery module and assembled battery
JP6251091B2 (ja) * 2014-03-17 2017-12-20 株式会社東芝 二次電池内部状態算出装置および二次電池内部状態算出方法
JP6485041B2 (ja) * 2014-12-26 2019-03-20 株式会社リコー 蓄電デバイス劣化推定装置、蓄電デバイス劣化推定方法、移動体
KR101875536B1 (ko) * 2015-09-01 2018-07-06 주식회사 엘지화학 Ups 배터리 충전용량 제어 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015230817A (ja) * 2014-06-05 2015-12-21 株式会社日立製作所 二次電池システムおよび二次電池の制御方法
JP2016009659A (ja) * 2014-06-26 2016-01-18 プライムアースEvエナジー株式会社 蓄電池の検査方法及び蓄電池の検査装置
JP2016054082A (ja) * 2014-09-04 2016-04-14 株式会社デンソー リチウムイオン電池の充電制御方法、リチウムイオン電池の充電制御装置およびリチウムイオン電池システム
JP2016167368A (ja) * 2015-03-09 2016-09-15 トヨタ自動車株式会社 二次電池の制御装置
JP2016197955A (ja) * 2015-04-03 2016-11-24 プライムアースEvエナジー株式会社 電池制御装置、電池制御方法及び下限電圧の決定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110618387A (zh) * 2019-09-25 2019-12-27 华霆(合肥)动力技术有限公司 锂电池失效分析方法、装置、电子设备和存储介质

Also Published As

Publication number Publication date
US11217832B2 (en) 2022-01-04
US20200212511A1 (en) 2020-07-02
JP6760233B2 (ja) 2020-09-23
JP2019050151A (ja) 2019-03-28

Similar Documents

Publication Publication Date Title
JP5419832B2 (ja) 電池容量算出装置および電池容量算出方法
US10254346B2 (en) SOC estimation device for secondary battery
JP6500789B2 (ja) 二次電池の制御システム
JP6295858B2 (ja) バッテリ管理装置
JP5621818B2 (ja) 蓄電システムおよび均等化方法
JP2018185259A (ja) 車載の電池システムおよび電池の経年劣化推定方法
US11217832B2 (en) Power supply system
WO2013121466A1 (ja) 電池システムおよび劣化判別方法
JP5397013B2 (ja) 組電池の制御装置
JP6225340B2 (ja) 電池状態推定装置
JP5738784B2 (ja) 蓄電システム
WO2012046375A1 (ja) 非水電解質二次電池の充放電制御システム及び制御方法、並びに電池パック
CN105591170A (zh) 电池系统
US10193195B2 (en) Charging condition control apparatus and battery pack
JP4810417B2 (ja) 蓄電デバイスの残存容量演算装置
JP6864503B2 (ja) 二次電池の制御方法及び装置
JP5737138B2 (ja) 電池の制御装置及び電池の制御方法
JP2020034524A (ja) 電源システム
JP2014107032A (ja) 電池システムおよび、リチウムイオン二次電池の内部抵抗の推定方法
JP2018179684A (ja) 二次電池の劣化状態推定装置並びにそれを備えた電池システム及び電動車両
WO2022224681A1 (ja) 電池監視装置及びそれが搭載された電動車両
JP6164147B2 (ja) 電池制御システム及びその制御方法
US10218203B2 (en) Control device for controlling charging and discharging of a lithium ion capacitor
JP5673422B2 (ja) 二次電池の充電システム
WO2017179347A1 (ja) 二次電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18853275

Country of ref document: EP

Kind code of ref document: A1