WO2019049676A1 - 内燃機関の制御装置および制御方法 - Google Patents
内燃機関の制御装置および制御方法 Download PDFInfo
- Publication number
- WO2019049676A1 WO2019049676A1 PCT/JP2018/031129 JP2018031129W WO2019049676A1 WO 2019049676 A1 WO2019049676 A1 WO 2019049676A1 JP 2018031129 W JP2018031129 W JP 2018031129W WO 2019049676 A1 WO2019049676 A1 WO 2019049676A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- injection
- intake
- timing
- valve
- combustion engine
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
- F02D13/0223—Variable control of the intake valves only
- F02D13/0234—Variable control of the intake valves only changing the valve timing only
- F02D13/0238—Variable control of the intake valves only changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/32—Controlling fuel injection of the low pressure type
- F02D41/34—Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
- F02D41/345—Controlling injection timing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
- F02D13/0223—Variable control of the intake valves only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
- F02D13/0261—Controlling the valve overlap
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/008—Controlling each cylinder individually
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/024—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/047—Taking into account fuel evaporation or wall wetting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/06—Introducing corrections for particular operating conditions for engine starting or warming up
- F02D41/062—Introducing corrections for particular operating conditions for engine starting or warming up for starting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1454—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/32—Controlling fuel injection of the low pressure type
- F02D41/34—Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/021—Engine temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/04—Engine intake system parameters
- F02D2200/0414—Air temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/08—Exhaust gas treatment apparatus parameters
- F02D2200/0802—Temperature of the exhaust gas treatment apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/10—Parameters related to the engine output, e.g. engine torque or engine speed
- F02D2200/101—Engine speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/18—Circuit arrangements for generating control signals by measuring intake air flow
- F02D41/182—Circuit arrangements for generating control signals by measuring intake air flow for the control of a fuel injection device
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present disclosure relates to a control device and control method of an internal combustion engine.
- the control device and control method are applied to an internal combustion engine provided with a port injection valve that injects fuel into an intake passage.
- the internal combustion engine may further include a catalyst that purifies the exhaust gas discharged to the exhaust passage.
- control device described in Patent Document 1 executes multi-injection processing in which fuel injected to one cylinder in one combustion cycle is divided into an exhaust stroke and an intake stroke and injected. According to paragraphs [0017] and [0024] of this document, the control device sets the injection timing in the intake stroke to a predetermined timing.
- control device described in the second embodiment in Patent Document 2 is configured to perform the required amount (required injection amount) of fuel twice in the high load region in one combustion cycle determined according to the intake air amount. Divide and inject.
- Fixing the injection timing can be problematic in controlling exhaust components well.
- Example 1 It is a control device of an internal combustion engine, and the control device is applied to an internal combustion engine including a port injection valve that injects fuel into an intake passage, and the control device is A multi-injection process in which an intake synchronous injection and an intake asynchronous injection are executed to inject fuel of a required injection amount which is a required injection amount in one combustion cycle by operating the port injection valve, The multi-injection processing, wherein the intake synchronous injection injects fuel in synchronization with the valve opening period of the intake valve, and the intake non-synchronous injection injects the fuel at a timing more advanced than the intake synchronous injection;
- the injection timing of the intake synchronous injection is variably set based on at least two of three parameters, and the injection timing of the intake synchronous injection is expressed by the rotation angle of the crankshaft of the internal combustion engine
- the three parameters are configured to execute the variable processing, which is a rotational speed of a crankshaft of the internal combustion engine, an opening start timing of the intake valve,
- the number of particulate matter (PM) (PN) in the exhaust may increase depending on the load when injecting all fuel of the required injection quantity by intake asynchronous injection when the temperature of the intake system of the internal combustion engine is low. .
- the reason for this is presumed to be that the amount of fuel adhering to the intake system increases, and the shear of the adhering fuel causes PM to be generated as a part of the liquid flows into the combustion chamber as droplets. Therefore, in the above configuration, part of the required injection amount is injected by intake synchronous injection. Therefore, the amount of asynchronous injection is reduced, which in turn reduces the amount of fuel adhering to the intake system. That is, it is possible to prevent the fuel from flowing into the combustion chamber as it is as droplets due to the shear of the adhered fuel.
- the inventor has found that the injection timing of intake synchronous injection for reducing PN as much as possible changes with the rotational speed of the crankshaft.
- the reason for this is that the flow velocity in the intake passage changes depending on the rotational speed, and so on, so it is inferred that the amount of fuel adhering to the intake system without flowing into the combustion chamber tends to change. Further, it is presumed that the amount of rotation of the crankshaft within a period until the fuel of a predetermined amount is vaporized among the fuel injected from the port injection valve changes and the like.
- the injection timing of the intake synchronous injection is variably set according to the rotational speed, PN can be suppressed as compared with the case where the injection timing is not variable according to the rotational speed.
- the inventor has also found that the injection timing of the intake synchronous injection for reducing the PN as much as possible changes depending on the opening start timing of the intake valve.
- the reason for this is that the amount of overlap between the intake valve and the exhaust valve changes according to the valve opening start timing of the intake valve, so the amount of internal EGR changes, so the temperature of the intake system rises and fuel in the intake system It is presumed that the change in the ease of vaporization of Furthermore, it is presumed that the amount of fuel adhering to the intake system without flowing into the combustion chamber changes or the like.
- the injection timing of the intake synchronous injection is variably set according to the valve opening start timing of the intake valve, for example, compared with the case where it is not variable according to the valve opening start timing of the intake valve, PN can be suppressed.
- the inventor has also found that the injection timing of intake synchronous injection for reducing PN as much as possible changes with the temperature of the intake system. It is presumed that this is because the temperature of the intake system causes a difference in the ease of vaporization of fuel in the intake system.
- the injection timing of the intake synchronous injection is variably set according to the temperature of the intake system, PN can be suppressed as compared with, for example, the case where it is not variable according to the temperature of the intake system.
- Example 2 In the control device of Example 1, the control device further calculates the required injection amount as the injection amount for controlling the air-fuel ratio to the target air-fuel ratio based on the fresh air amount charged into the cylinder of the internal combustion engine Configured to perform required injection amount calculation processing,
- the variable processing is processing for variably setting the injection timing of the intake synchronous injection based on the load of the internal combustion engine in addition to the at least two parameters.
- the injection timing for reducing PN as much as possible changes depending on the load of the internal combustion engine.
- the reason is presumed to be that the amount of fuel to be injected changes depending on the load, and the ease of atomization of the fuel changes due to the change of pressure in the intake passage. Therefore, in the above configuration, the injection timing of the intake synchronous injection is variably set according to the load. Therefore, PN can be suppressed, for example, compared with the case where it does not make it variable according to load.
- Example 3 In the control device of Example 2, the variable processing is An end timing setting process for variably setting the arrival end timing based on the rotational speed, the temperature of the intake system, and the load, wherein the arrival end timing is fuel injected at the latest timing from the port injection valve
- the end timing setting process which is a target value of the timing of reaching the inlet of the combustion chamber of the internal combustion engine; And a start timing calculation process of calculating an injection start timing of the intake synchronous injection based on the arrival end timing.
- the inventor of the present invention changes the injection ratio of the intake synchronous injection and the intake asynchronous injection somewhat by changing the timing at which the fuel injected at the latest timing reaches the inlet of the combustion chamber of the internal combustion engine greatly changes PN.
- the optimal timing for suppressing PN hardly changes. Therefore, in the above configuration, after the arrival and termination timing is set, the injection start timing of the intake synchronous injection is set. Therefore, it is possible to manage an appropriate time for suppressing the PN by the arrival end time which is a parameter handled by the control device.
- the internal combustion engine includes a valve characteristic variable device configured to make the valve characteristic of the intake valve variable.
- the control device is further configured to execute a valve characteristic control process that variably controls the opening start timing of the intake valve by operating the valve characteristic changing device
- the end timing setting process includes a retardation amount calculation process for calculating an amount of retardation of the arrival end timing with respect to the opening start timing of the intake valve based on the rotational speed, the temperature of the intake system, and the load.
- the end timing setting process is a process of setting a timing that is delayed by the retardation amount with respect to the valve opening start timing of the intake valve as the arrival end timing.
- the inventor has found that the injection timing of intake synchronous injection for reducing PN as much as possible changes depending on the opening start timing of the intake valve.
- the reason for this is that since the amount of overlap between the intake valve and the exhaust valve changes according to the opening start timing of the intake valve, the amount of internal EGR changes, so the temperature of the intake system rises and fuel in the intake system The reason is presumed to be the change in the ease of vaporization of the fuel or the change in the amount of fuel adhering to the intake system without flowing into the combustion chamber. Therefore, in the above configuration, the injection timing of the intake synchronous injection is variably set according to the opening start timing of the intake valve. Therefore, PN can be suppressed, for example, compared with the case where it does not change according to the valve opening start timing of an inlet valve.
- the arrival / end timing is not calculated directly, but the retardation amount of the arrival / end timing with respect to the opening start timing of the intake valve is first calculated. Therefore, it is possible to variably set the arrival end timing according to the valve opening start timing of the intake valve without using the valve opening start timing of the intake valve as the parameter used for calculating the retardation amount.
- Example 5 In the control device of Example 1 or Example 2, the variable processing is In the end timing setting process, the arrival end timing is variably set based on the rotational speed of the crankshaft, and in the arrival end timing, fuel injected at the latest timing from the port injection valve is a combustion of the internal combustion engine.
- the end time setting process which is a target value of the timing of reaching the entrance of the room, And a start timing calculation process of calculating an injection start timing of the intake synchronous injection based on the arrival end timing.
- the number of particulate matter (PM) (PN) in the exhaust may increase depending on the load when injecting all fuel of the required injection quantity by intake asynchronous injection when the temperature of the intake system of the internal combustion engine is low. .
- the reason for this is presumed to be that the amount of fuel adhering to the intake system increases, and the shear of the adhering fuel causes PM to be generated as a part of the liquid flows into the combustion chamber as droplets. Therefore, in the above configuration, part of the required injection amount is injected by synchronous injection. Therefore, the amount of asynchronous injection is reduced, which in turn reduces the amount of fuel adhering to the intake system. Therefore, it is possible to suppress that the fuel flows into the combustion chamber as it is as droplets due to the shear of the adhered fuel.
- the inventor greatly changes the injection ratio of the intake synchronous injection and the intake non-synchronous injection somewhat due to the fluctuation of the timing at which the fuel injected at the latest timing reaches the inlet of the combustion chamber of the internal combustion engine.
- the optimal timing hardly changes in suppressing PN. Therefore, in the above configuration, after the arrival end time is set, the injection start time is set. Therefore, it is possible to manage an appropriate time for suppressing the PN by the arrival end time which is a parameter handled by the control device.
- the inventor has found that the arrival end time for reducing PN as much as possible changes with the rotational speed of the crankshaft.
- the reason for this is that the flow velocity in the intake passage changes with the rotational speed, and so on, so it is presumed that the amount of fuel adhering to the intake system without flowing into the combustion chamber tends to change. Further, it is presumed that the rotation amount of the crankshaft changes in a period until the fuel of a predetermined amount of the fuel injected from the port injection valve is vaporized. Therefore, in the above configuration, the arrival end time is variably set according to the rotation speed. Therefore, PN can be suppressed, for example, compared with the case where it does not make it variable according to rotation speed.
- the end time setting process includes a process of variably setting the arrival end time based on the load of the internal combustion engine in addition to the rotational speed.
- the inventor has found that the arrival and termination timing for minimizing the PN changes depending on the load of the internal combustion engine. The reason is presumed to be that the amount of fuel to be injected changes depending on the load, and the ease of atomization of the fuel changes due to the change of pressure in the intake passage. Therefore, in the above configuration, the arrival end time is variably set according to the load. Therefore, PN can be suppressed, for example, compared with the case where it does not make it variable according to load.
- Example 7 In the control device of Example 6, the internal combustion engine is provided with a valve characteristic variable device configured to make the valve characteristic of the intake valve variable.
- the control device executes a valve characteristic control process for variably controlling the opening start timing of the intake valve by operating the valve characteristic changing device.
- the end timing setting process includes a retardation amount calculation process for calculating an amount of retardation of the arrival end timing with respect to the opening start timing of the intake valve based on the rotational speed and the load.
- the end timing setting process is a process of setting a timing that is delayed by the retardation amount with respect to the valve opening start timing of the intake valve as the arrival end timing.
- the arrival end timing for reducing PN as much as possible changes depending on the opening timing of the intake valve.
- the reason for this is that the amount of overlap between the intake valve and the exhaust valve changes according to the valve opening start timing of the intake valve, so the amount of internal EGR changes, so the temperature of the intake system rises and fuel in the intake system.
- the reason is presumed to be the change in the ease of vaporization of the fuel or the change in the amount of fuel adhering to the intake system without flowing into the combustion chamber. Therefore, in the above configuration, the arrival end timing is variably set according to the opening start timing of the intake valve. Therefore, PN can be suppressed, for example, compared with the case where it does not change according to the valve opening start timing of an inlet valve.
- the arrival / end timing is not calculated directly, but the retardation amount of the arrival / end timing with respect to the opening start timing of the intake valve is first calculated. Therefore, it is possible to variably set the arrival end timing according to the opening start timing of the intake valve without using the opening start timing of the intake valve as a parameter used for calculation of the retardation amount of the arrival end timing.
- Example 8 In the control device of any one of Examples 1 to 7, the internal combustion engine further comprises a catalyst that purifies the exhaust gas discharged to the exhaust passage;
- the required injection amount is the amount of fuel injected from the port injection valve in the multi-injection process to control the air-fuel ratio to the target air-fuel ratio,
- the control device is further configured to execute an advance process for advancing the injection timing of the intake synchronous injection when the temperature of the catalyst is low than when the temperature of the catalyst is high.
- the injection timing of intake synchronous injection optimal for suppressing PN is on the retard side of the injection timing of intake synchronous injection optimal for suppressing HC. Therefore, in the above configuration, the injection timing of the intake synchronous injection is advanced as compared with the high temperature of the catalyst with high HC purification performance at the low temperature of the catalyst with low HC purification performance by the catalyst. Therefore, when the purification performance of HC in the exhaust is low, an appropriate injection timing is set in order to suppress the HC concentration in the exhaust, and when the HC concentration in the exhaust can be purified even if the concentration is high In order to suppress PN, it is possible to set an appropriate injection timing.
- the inventor injects a part of the required injection amount by the intake synchronous injection which is injected in synchronization with the opening period of the intake valve in order to reduce PN which is the number of particulate matter (PM) in the exhaust gas
- PN is the number of particulate matter (PM) in the exhaust gas
- the inventor has found that the number (PN) of particulate matter (PM) in the exhaust gas largely changes depending on the injection timing in the intake stroke.
- the inventor has found that the HC concentration in the exhaust gas may increase when the injection timing of the intake synchronous injection is set to a suitable time for suppressing the PN. The above configuration addresses this as well.
- Example 9 In the control device of the above-mentioned Example 8, the internal combustion engine includes a variable valve characteristic device which makes variable the valve characteristic of the intake valve, and the control device further operates the variable valve characteristic device to operate the valve of the intake valve. Configured to execute a valve characteristic control process for variably controlling the valve opening start timing; The variable processing variably sets the injection timing of the intake synchronous injection in accordance with the valve opening start timing of the intake valve.
- the variable processing is Reference timing setting processing for setting the injection timing of the intake synchronous injection based on the opening start timing of the intake valve; Guard value setting processing for setting a retarding guard value when the temperature of the catalyst is less than a specified value according to the temperature of the intake system of the internal combustion engine; When the temperature of the catalyst is less than the specified value, the injection timing set by the reference timing setting process and the timing on the more advanced side of the retardation guard value is the injection timing of the intake synchronous injection. Including the low temperature time setting process set to The variable processing is processing of setting the injection timing set by the reference timing setting processing as the injection timing of the intake synchronous injection when the temperature of the catalyst is equal to or higher than the specified value.
- the inventor has found that the injection timing of intake synchronous injection for reducing PN as much as possible changes depending on the opening start timing of the intake valve.
- the reason for this is that the amount of overlap between the intake valve and the exhaust valve changes according to the valve opening start timing of the intake valve, so the amount of internal EGR changes, so the temperature of the intake system rises and fuel in the intake system.
- the reason is presumed to be the change in the ease of vaporization of the fuel or the change in the amount of fuel adhering to the intake system without flowing into the combustion chamber. Therefore, in the above configuration, the injection timing of the intake synchronous injection is variably set according to the opening start timing of the intake valve. Therefore, PN can be suppressed, for example, compared with the case where it does not change according to the valve opening start timing of an inlet valve.
- the retarded guard value is set according to the temperature of the intake system. Specifically, a guard process is performed on the injection timing set by the reference timing setting process, which is an appropriate injection timing for suppressing PN, with the retarded guard value as the limit value on the retarded side. Therefore, it is possible to appropriately set an appropriate time for suppressing PN and an appropriate time for suppressing HC.
- Example 10 It is a control device of an internal combustion engine, and the control device is applied to an internal combustion engine including a port injection valve that injects fuel into an intake passage, and the control device is A multi-injection process in which an intake synchronous injection and an intake asynchronous injection are executed to inject fuel of a required injection amount which is a required injection amount in one combustion cycle by operating the port injection valve, The multi-injection processing, wherein the intake synchronous injection injects fuel in synchronization with the valve opening period of the intake valve, and the intake non-synchronous injection injects the fuel at a timing more advanced than the intake synchronous injection; Performing variable processing for variably setting the injection timing of the intake synchronous injection, which is expressed by a rotation angle of a crankshaft of the internal combustion engine; The variable processing is In the end timing setting process, the arrival end timing is variably set based on the rotational speed of the crankshaft, and in the arrival end timing, fuel injected at the latest timing from the port injection valve is a combustion of the internal combustion engine.
- Example 11 A control device for an internal combustion engine, wherein the internal combustion engine to which the control device is applied includes a port injection valve that injects fuel into an intake passage, and a catalyst that purifies exhaust discharged into an exhaust passage, the control device Is A multi-injection process for performing an intake synchronous injection and an intake asynchronous injection by operating the port injection valve so as to inject a fuel of a required injection amount for controlling an air fuel ratio to a target air fuel ratio, The synchronous injection injects fuel in synchronization with the valve opening period of the intake valve, and the intake asynchronous injection injects the fuel at a timing more advanced than the intake synchronous injection, A control device for an internal combustion engine, configured to execute an advancing process that advances the injection timing of the intake synchronous injection when the temperature of the catalyst is low than when the temperature of the catalyst is high.
- Example 12 The present invention is embodied as a control method of an internal combustion engine that executes the various processes described in each of the above-described first to eleventh examples.
- Example 13 The present invention is embodied as a control method of an internal combustion engine that executes various processes described in the above-mentioned Example 11.
- Example 14 The present invention is embodied as a non-temporary computer-readable recording medium storing a program that causes a processing apparatus to execute the various processes described in each of the above-described first to eleventh examples.
- Example 15 The control device of Example 8 is further configured to execute a required injection amount calculation process for calculating the required injection amount based on the air amount charged into the cylinder of the internal combustion engine.
- the variable processing is processing for variably setting the injection timing of the intake synchronous injection in accordance with the rotation speed of the crankshaft of the internal combustion engine and the load of the internal combustion engine in addition to the valve opening start timing of the intake valve. Including.
- the inventor has found that the injection timing of intake synchronous injection for reducing PN as much as possible changes with the rotational speed of the crankshaft.
- One of the reasons is presumed to be that the amount of fuel adhering to the intake system and not to flow into the combustion chamber tends to change because the flow velocity in the intake passage changes with the rotational speed, etc. Ru.
- the amount of rotation of the crankshaft changes within a period until fuel of a predetermined amount is vaporized among the fuel injected from the port injection valve, and the like. Therefore, in the above configuration, the injection timing of the intake synchronous injection is variably set according to the rotational speed. Therefore, PN can be suppressed, for example, compared with the case where it does not make it variable according to rotation speed.
- the injection timing for reducing PN as much as possible changes depending on the load of the internal combustion engine.
- the reason for this is presumed to be that the ease of atomization of the fuel changes as the amount of fuel to be injected changes and the pressure in the intake passage changes depending on the load. Therefore, in the above configuration, the injection timing of the intake synchronous injection is variably set according to the load. Therefore, PN can be suppressed, for example, compared with the case where it does not make it variable according to load.
- the variable processing includes the intake synchronous injection of the internal combustion engine in addition to the valve opening start timing of the intake valve, the rotational speed, and the load. This is processing for variably setting the injection timing.
- the injection timing of intake synchronous injection for reducing PN as much as possible changes with the temperature of the intake system. It is presumed that this is because the temperature of the intake system causes a difference in the ease of vaporization of fuel in the intake system. Therefore, in the above configuration, the injection timing of the intake synchronous injection is variably set according to the temperature of the intake system. Therefore, PN can be suppressed, for example, compared with the case where it does not make it variable according to the temperature of the intake system.
- FIG. 1 is a view showing a control device and an internal combustion engine according to a first embodiment embodying the present disclosure.
- the block diagram which shows the process which a control apparatus performs in the internal combustion engine of FIG. (A) part and (b) part are figures which show the injection pattern in the internal combustion engine of FIG.
- FIG. 7 is a view showing fluctuation of the discharge amount of PN due to the valve opening timing of the intake valve in the internal combustion engine of FIG. 1.
- FIG. 7 is a view showing fluctuation of the discharge amount of PN due to the valve opening timing of the intake valve in the internal combustion engine of FIG. 1.
- FIG. 10 is a block diagram showing processing performed by a control device in the internal combustion engine of FIG. 9; (A) part and (b) part are time charts which show the injection pattern in the internal combustion engine of FIG.
- An internal combustion engine 10 shown in FIG. 1 is mounted on a vehicle.
- a throttle valve 14 and a port injection valve 16 are provided in the intake passage 12 of the internal combustion engine 10 sequentially from the upstream side.
- the air taken into the intake passage 12 and the fuel injected from the port injection valve 16 flow into the combustion chamber 24 divided by the cylinder 20 and the piston 22 as the intake valve 18 is opened.
- the mixture of fuel and air is subjected to combustion by the spark discharge of the igniter 26. Then, combustion energy generated by the combustion is converted to rotational energy of the crankshaft 28 via the piston 22.
- the air-fuel mixture supplied to the combustion is discharged to the exhaust passage 32 as the exhaust as the exhaust valve 30 is opened.
- a catalyst 34 is provided in the exhaust passage 32.
- the rotational power of the crankshaft 28 is transmitted to the intake camshaft 40 and the exhaust camshaft 42 via the timing chain 38.
- the power of the timing chain 38 is transmitted to the intake camshaft 40 via the intake valve timing adjustment device 44.
- the intake valve timing adjustment device 44 is an actuator that adjusts the opening timing of the intake valve 18 by adjusting the rotational phase difference between the crankshaft 28 and the intake camshaft 40.
- the control device 50 controls the internal combustion engine 10 and controls the control amount (torque, exhaust component ratio, etc.) of the internal combustion engine 10 by the throttle valve 14, the port injection valve 16, the ignition device 26, and the intake valve.
- the operation part of the internal combustion engine 10 such as the valve timing adjustment device 44 is operated.
- the control device 50 outputs an output signal Scr of the crank angle sensor 60, an intake air amount Ga detected by the air flow meter 62, an air-fuel ratio Af detected by the air-fuel ratio sensor 64, an output signal of the intake cam angle sensor 66 Reference is made to Sca and the temperature (water temperature THW) of the coolant of the internal combustion engine 10 detected by the water temperature sensor 68.
- control device 50 refers to terminal voltage Vb of battery 70 detected by voltage sensor 72.
- the battery 70 is a power source for the port injection valve 16 and the like.
- FIG. 1 shows operation signals MS1 to MS5 for operating the throttle valve 14, the port injection valve 16, the ignition device 26, the starter motor 36, and the intake valve timing adjustment device 44, respectively.
- the control device 50 includes a CPU 52, a ROM 54, and a power supply circuit 56.
- the CPU 52 executes a program stored in the ROM 54. Therefore, control of the control amount is performed.
- the power supply circuit 56 supplies power to each point in the control device 50.
- FIG. 2 shows a part of the process executed by the control device 50.
- the process shown in FIG. 2 is realized by the CPU 52 executing a program stored in the ROM 54.
- the intake phase difference calculation process M10 is a phase difference of the rotation angle of the intake camshaft 40 with respect to the rotation angle of the crankshaft 28 based on the output signal Scr of the crank angle sensor 60 and the output signal Sca of the intake cam angle sensor 66.
- And is a process of calculating the inspiratory phase difference DIN.
- the target intake phase difference calculation processing M12 is processing for variably setting the target intake phase difference DIN * based on the operating point of the internal combustion engine 10. In the present embodiment, the operating point is defined by the rotational speed NE and the filling efficiency ⁇ .
- the CPU 52 calculates the rotational speed NE based on the output signal Scr of the crank angle sensor 60, and calculates the charging efficiency ⁇ ⁇ ⁇ based on the rotational speed NE and the intake air amount Ga.
- the charging efficiency ⁇ is a parameter that determines the amount of fresh air charged into the combustion chamber 24.
- the intake phase difference control process M14 is a process of outputting the operation signal MS5 to the intake valve timing adjustment device 44 in order to operate the intake valve timing adjustment device 44 in order to control the intake phase difference DIN to the target intake phase difference DIN *. is there.
- the base injection amount calculation process M20 is a process of calculating the base injection amount Qb based on the charging efficiency ⁇ .
- the base injection amount Qb is a base value of the fuel amount for making the air-fuel ratio of the air-fuel mixture in the combustion chamber 24 the target air-fuel ratio.
- the charging efficiency ⁇ is expressed as a percentage, for example, the base injection amount calculation processing M20 sets the charging efficiency ⁇ to the fuel amount QTH per 1% of the charging efficiency ⁇ for setting the air fuel ratio to the target air fuel ratio.
- the process may be performed to calculate the base injection amount Qb by multiplication.
- the base injection amount Qb is a fuel amount calculated to control the air-fuel ratio to the target air-fuel ratio based on the amount of fresh air charged into the combustion chamber 24.
- the target air-fuel ratio may be, for example, the theoretical air-fuel ratio.
- the feedback processing M22 is processing for calculating and outputting a feedback correction coefficient KAF obtained by adding “1” to the correction ratio ⁇ of the base injection amount Qb.
- the correction ratio ⁇ of the base injection amount Qb is a feedback operation amount as an operation amount for performing feedback control of the air-fuel ratio Af to the target value Af *. More specifically, the feedback processing M22 is performed according to the difference between each output value of the proportional element and the differential element to which the difference between the air fuel ratio Af and the target value Af * is input and the difference between the air fuel ratio Af and the target value Af *. A sum with the output value of the integral element that holds and outputs the integrated value is set as a correction ratio ⁇ .
- the low temperature correction process M24 is a process of calculating the low temperature increase coefficient Kw to a value larger than “1” in order to increase the base injection amount Qb when the water temperature THW is less than a predetermined temperature Tth (for example, 60 ° C.). Specifically, the low temperature increase coefficient Kw is calculated to be a larger value than when the water temperature THW is low than when it is high. When the water temperature THW is equal to or higher than the predetermined temperature Tth, the low temperature increase coefficient Kw is “1”, and the correction amount of the base injection amount Qb based on the low temperature increase coefficient Kw is zero.
- a predetermined temperature Tth for example, 60 ° C.
- the injection valve operation process M30 is a process of outputting an operation signal MS2 to the port injection valve 16 in order to operate the port injection valve 16.
- the injection valve operation processing M30 is based on the base injection amount Qb, the feedback correction coefficient KAF, and the low temperature increase coefficient Kw.
- the operation signal MS2 is output to the injection valve 16. More specifically, the port injection valve 16 injects a required injection amount Qd, which is a fuel amount required to be supplied from the port injection valve 16 to one cylinder in one combustion cycle.
- the required injection amount Qd is “KAF ⁇ Kw ⁇ Qb”.
- the fuel injection process has two processes, that is, the process illustrated in part (a) of FIG. 3 and the process illustrated in part (b) of FIG. 3.
- Part (a) of FIG. 3 includes an intake synchronous injection that injects fuel in synchronization with the valve opening period of the intake valve 18 and an intake asynchronous injection that injects the fuel at a timing more advanced than the intake synchronous injection. It is a multi-injection process that executes two fuel injections. Specifically, in the intake synchronous injection, fuel is injected such that the period in which the fuel injected from the port injection valve 16 reaches the position before opening the intake valve 18 falls within the opening period of the intake valve 18 It is.
- the "position before opening the intake valve 18" refers to the downstream end of the intake port, in other words, the inlet IN portion to the combustion chamber 24 shown in FIG.
- FIG. 1 shows a state in which the intake valve 18 is open.
- the start point of the “attainment period” is the timing at which the fuel injected at the earliest timing among the fuel injected from the port injection valve 16 reaches the position before the valve opening of the intake valve 18, “ The end point of “the reaching period” is the timing at which the fuel injected at the latest timing among the fuel injected from the port injection valve 16 reaches the position before the opening of the intake valve 18.
- the “intake asynchronous injection” injects fuel so that the fuel injected from the port injection valve 16 reaches the intake valve 18 before the intake valve 18 opens.
- the fuel injected from the port injection valve 16 stays in the intake passage 12 until the intake valve 18 is opened, and flows into the combustion chamber 24 after being opened. It is an injection.
- the fuel injected from the port injection valve 16 is in a closed period of the intake valve 18 so that the period in which the fuel reaches a position before the intake valve 18 opens. It shall be injected.
- Part (b) of FIG. 3 is a single injection process in which only intake asynchronous injection is performed.
- the multi-injection process is performed aiming to reduce the number (PN) of particulate matter (PM) in the exhaust gas. That is, when the temperature of the intake system of the internal combustion engine 10 such as the intake passage 12 and the intake valve 18 is low to a certain extent, the PN tends to increase when the single injection process is performed in the region where the filling efficiency ⁇ is large to a certain extent.
- the reason for this is considered to be that the required injection amount Qd becomes a larger value when the filling efficiency ⁇ is larger than when it is small, and as a result, the amount of fuel adhering to the intake system increases.
- FIG. 4 shows the procedure of the injection valve operation processing M30.
- the process shown in FIG. 4 is realized by the CPU 52 repeatedly executing the program stored in the ROM 54 at a predetermined cycle, for example.
- the step number of each process is represented by the number to which "S" was provided at the head.
- the CPU 52 first determines whether or not it is within a predetermined period after the starter motor 36 is started (described as "after starter ON” in the figure) (S10).
- the “predetermined period” is a period in which the amount of air charged into the combustion chamber 24 can not be accurately grasped and the base injection amount Qb can not be accurately computed.
- the CPU 52 determines whether there is a request for multi-injection processing (S12), when it is determined that it is within a predetermined period after the starter motor 36 is started (S10: YES).
- the CPU 52 determines that there is a request for multi-injection processing.
- the CPU 52 determines that there is a request for multi-injection processing (S12: YES), it is the injection amount of intake asynchronous injection based on the water temperature THW, the number of injections after starter ON, and the stop time Tstp of the internal combustion engine 10.
- the asynchronous injection amount Qns is calculated (S14).
- the stop time Tstp of the internal combustion engine 10 is an elapsed time from the previous stop of the internal combustion engine 10 to the current start.
- the CPU 52 calculates the asynchronous injection amount Qns to a larger value than when the water temperature THW is low than when it is high. Further, the CPU 52 calculates the asynchronous injection amount Qns to a larger value than when the stop time Tstp is long than when it is short.
- the CPU 52 calculates a synchronous injection amount Qs, which is an injection amount of intake synchronous injection, based on the water temperature THW (S16).
- the CPU 52 calculates the synchronous injection amount Qs to a larger value than when the water temperature THW is low than when it is high.
- the sum of the asynchronous injection amount Qns and the synchronous injection amount Qs is a required injection amount Qd, which is the injection amount required for one combustion cycle. That is, the processing of S14 and S16 can be regarded as processing of dividing the fuel of the required injection amount Qd into the asynchronous injection amount Qns and the synchronous injection amount Qs.
- the CPU 52 calculates the injection start timing Is (crank angle) of the intake synchronous injection based on the water temperature THW, the rotational speed NE, and the intake phase difference DIN (S18).
- the water temperature THW is a parameter that has a positive correlation with the temperature of the intake system of the internal combustion engine 10. If the water temperature THW is different, the ease of vaporization of the fuel adhering to the intake system tends to be different, so the injection start timing Is of the intake synchronous injection appropriate for suppressing the PN depends on the water temperature THW.
- the injection start timing Is of the intake synchronous injection appropriate for suppressing the PN depends on the rotational speed NE.
- the overlap amount in which the valve opening period of the intake valve 18 and the valve opening period of the exhaust valve 30 overlap is different, so that the amount of blow back of fluid from the combustion chamber 24 to the intake passage 12 Will be different. If the blowback amount is different, the temperature of the intake system is different, so the ease of vaporization of the fuel in the intake system is different, or the amount of fuel adhering to the intake system without flowing into the combustion chamber 24 is different. To Therefore, the injection start timing Is of the intake synchronous injection appropriate for suppressing the PN depends on the intake phase difference DIN.
- the target intake phase difference DIN * can not be made variable based on the charging efficiency ⁇ , so the target intake phase difference DIN * may be a fixed value. Even in this case, since the fixed position of the target intake phase difference DIN * may be different for each vehicle, the injection start timing Is of the intake synchronous injection is calculated based on the intake phase difference DIN. Therefore, the versatility of the process of S18 can be improved.
- map data is set data of discrete values of input variables and values of output variables corresponding to the values of the input variables. Also, in the case of “map operation”, for example, when the value of the input variable matches any of the values of the input variable of map data, while the value of the output variable of the corresponding map data is taken as the operation result, the map does not match. A value obtained by interpolating the values of a plurality of output variables included in the data may be processed as the calculation result.
- the CPU 52 calculates the injection start timing Ins (crank angle) of the intake non-synchronous injection (S20).
- the CPU 52 calculates the injection start timing Ins of the intake non-synchronous injection such that the time interval between the injection end timing of the intake non-synchronous injection and the injection start timing Is of the intake synchronous injection becomes a predetermined time or more.
- the "predetermined time” is determined by the structure of the port injection valve 16, and of the two fuel injections adjacent in time series, the injection on the retard side starts before the injection on the advance side ends. It is time to avoid things.
- the CPU 52 operates the port injection valve 16 by outputting the operation signal MS2 to the port injection valve 16 so as to inject the fuel of the asynchronous injection amount Qns at the injection start timing Ins, and then the injection start timing of the intake synchronous injection.
- the port injection valve 16 is operated by outputting the operation signal MS2 to the port injection valve 16 (S22).
- the CPU 52 determines that there is no request for execution of the multi-injection process (S12: NO)
- the injection required for one combustion cycle is based on the water temperature THW, the number of injections after starter ON, and the stop time Tstp A required injection amount Qd, which is an amount, is calculated (S24).
- the CPU 52 sets the injection start timing Isin (crank angle) of single injection (S26).
- the CPU 52 operates the port injection valve 16 by outputting the operation signal MS2 to the port injection valve 16 in order to inject the fuel of the required injection amount Qd at the injection start timing Isin of the single injection (S22).
- FIG. 5 shows the procedure of the injection valve operation process M30.
- the processing shown in FIG. 5 is realized by the CPU 52 repeatedly executing the program stored in the ROM 54 at a predetermined cycle, for example.
- the CPU 52 first determines whether a predetermined period has elapsed since the starter motor 36 was turned on (S30). When it is determined that the predetermined period has elapsed since the starter motor 36 was turned on (S30: YES), the CPU 52 determines whether there is a multi-injection request (S32). Here, the CPU 52 indicates that the condition (i) that the water temperature THW is below the predetermined temperature Tth, the condition (ii) that the filling efficiency ⁇ is above the specified value, and that the rotational speed NE is below the predetermined speed NEth If the logical product with the condition (iii) of is true, it is determined that there is a request to execute the multi-injection process.
- Condition (iii) is a condition for securing a time interval between the end timing of intake asynchronous injection and the start timing of intake synchronous injection. Further, this condition is a condition to suppress that the calorific value becomes excessive due to the increase of the calculation load of the control device 50, since the multi-injection process has a larger calculation load than the single injection process.
- the CPU 52 calculates a synchronous injection amount Qs, which is an injection amount of the intake synchronous injection (S34).
- the CPU 52 calculates the synchronous injection amount Qs in accordance with the rotational speed NE, the charging efficiency ⁇ , the water temperature THW, and the intake phase difference DIN. More specifically, the synchronous injection is performed by the CPU 52 in a state where map data having the rotational speed NE, the filling efficiency ⁇ , the water temperature THW, and the intake phase difference DIN as input variables and the synchronous injection amount Qs as an output variable is stored in the ROM 54 in advance. The quantity Qs is mapped.
- the CPU 52 subtracts the synchronous injection amount Qs from the required injection amount Qd "Qb KAF Kw" to calculate the asynchronous injection amount Qns which is the injection amount of the intake asynchronous injection (S36).
- the sum of the asynchronous injection amount Qns and the synchronous injection amount Qs is equal to the required injection amount Qd. That is, the fuel of the required injection amount Qd is divided into the asynchronous injection amount Qns and the synchronous injection amount Qs by the processes of S34 to S36.
- the synchronous injection amount Qs is not influenced by the values of the feedback correction coefficient KAF and the low temperature increase coefficient Kw.
- the reason why the synchronous injection amount Qs is fixed is that the change in the exhaust gas component ratio when changing the synchronous injection amount Qs is more prominent than the change in the exhaust gas component ratio when changing the asynchronous injection amount Qns. It is.
- the CPU 52 positions the fuel injected at the latest timing among the fuel injected from the port injection valve 16 in the valve closing period of the intake valve 18 (FIG.
- the arrival end timing AEs shown in part (a) of FIG. 3, which is the target value of the timing to reach the IN portion) is calculated (S38).
- the rotational speed NE is different, a change in the flow velocity of the fluid in the intake passage 12 is caused, so that the amount of fuel adhering and staying in the intake system without flowing into the combustion chamber 24 is different.
- the arrival end time AEs appropriate for suppressing the PN depends on the rotational speed NE. Also, if the charging efficiency ⁇ ⁇ ⁇ is different, the base injection amount Qb will be different, and consequently the amount of fuel adhering to the intake system will be different. In addition, when the filling efficiency ⁇ is different, the pressure in the intake passage 12 is changed, and the ease of atomization of the fuel is different. Therefore, the arrival end time AEs appropriate for suppressing PN depends on the filling efficiency ⁇ .
- the CPU 52 substitutes a value obtained by multiplying the arrival end time AEs calculated by the process of S38, as the water temperature correction coefficient Kthw, which is a correction coefficient according to the water temperature THW, into the arrival end time AEs (S40).
- the reference crank angle is positioned on the retarding side with respect to the assumed most retarded position of the arrival end timing AEs.
- the arrival end time AEs has a larger value as the value on the advance side with respect to the reference crank angle.
- the water temperature correction coefficient Kthw is a value larger than zero.
- the CPU 52 corrects the arrival end timing AEs to the retard side by calculating the water temperature correction coefficient Kthw to a smaller value than when the water temperature THW is low. This is because the fuel is less likely to be vaporized in the intake system when the water temperature THW is lower than when the water temperature THW is higher, so that the amount of fuel adhering to the intake system without flowing into the combustion chamber 24 increases. This is in view of the fact that the optimum time for retarding the PN is shifted to the retard side.
- the CPU 52 calculates the injection start timing Is of the intake synchronous injection based on the arrival end timing AEs obtained by the processing of S40, the synchronous injection amount Qs, the rotational speed NE, and the terminal voltage Vb (S42).
- the CPU 52 calculates the injection start timing Is of intake synchronous injection to a more advanced value than when the synchronous injection amount Qs is large than when it is small.
- the CPU 52 sets the injection start timing Is of intake synchronous injection to a value more on the advancing side than in the case where the rotation speed NE is large and the case where the rotation speed NE is large.
- the CPU 52 starts injection of intake synchronous injection at a timing advanced from the arrival end timing AEs by a value obtained by adding the injection period by the port injection valve 16 determined from the synchronous injection amount Qs, the flight time, and the invalid injection time. It is assumed that time Is.
- the "flight time” is the time required for the fuel injected from the port injection valve 16 to reach the inlet IN of the combustion chamber 24, and is a fixed value in this embodiment.
- the "ineffective injection time” is the time from when the operation signal MS2 for opening the port injection valve 16 is output to when fuel injection is actually started. Since the ineffective injection time depends on the drive voltage applied to the port injection valve 16, the CPU 52 calculates the ineffective injection time according to the terminal voltage Vb in the present embodiment.
- the CPU 52 calculates the injection start time Ins of the asynchronous injection based on the injection start time Is of the intake synchronous injection (S44).
- the time interval between the injection end timing of the intake asynchronous injection and the injection start timing Is of the intake synchronous injection is set to be equal to or longer than the predetermined time.
- the injection start timing Is of the intake synchronous injection is set independently of the injection start timing Ins of the intake asynchronous injection.
- the reason is that the arrival completion timing AEs of the intake synchronous injection is particularly susceptible to PN and HC in the exhaust gas.
- the CPU 52 injects the fuel of the asynchronous injection amount Qns at the injection start timing Ins, and then injects the fuel of the synchronous injection amount Qs at the injection start timing Is of the intake synchronous injection. Is operated to operate the port injection valve 16 (S46).
- the CPU 52 substitutes “KAF ⁇ Kw ⁇ Qb” for the required injection amount Qd (S48).
- the CPU 52 calculates the injection start timing Isin of single injection (S50). Specifically, as shown in the part (b) of FIG. 3, the CPU 52 sets a timing that is advanced by a predetermined amount ⁇ 1 with respect to the valve opening start timing of the intake valve 18 as the arrival end timing AEns.
- the CPU 52 starts injection of single injection at a timing advanced from the arrival end timing AEs by a value obtained by adding the injection period by the port injection valve 16 determined from the required injection amount Qd, flight time and invalid injection time.
- the CPU 52 operates the port injection valve 16 by outputting the operation signal MS2 to the port injection valve 16 so as to inject fuel of the required injection amount Qd at the injection start timing Isin of single injection (S46) ).
- the CPU 52 variably sets the injection start timing Is of the intake synchronous injection based on the water temperature THW, the rotational speed NE, and the intake phase difference DIN in a predetermined period after the starter is turned on.
- the CPU 52 variably sets the injection start timing Is of the intake synchronous injection based on the rotational speed NE, the charging efficiency ⁇ , and the water temperature THW after a predetermined period of time has elapsed after the starter is turned on. Therefore, as compared with, for example, the case where the injection start timing Is of the intake synchronous injection is fixed, the adaptation to the optimal timing for suppressing the PN can be performed, so the PN can be suppressed.
- the CPU 52 sets the injection start timing Is of the intake synchronous injection based on the arrival end timing AEs when a predetermined period elapses after the starter is turned on.
- the appropriate timing for suppressing the PN is determined when the fuel injected at the latest timing from the port injection valve 16 reaches the inlet IN of the combustion chamber 24. ing. Then, from the timing of reaching the inlet IN, the injection start timing Is of the intake synchronous injection is not uniquely determined, and the injection start timing Is of the intake synchronous injection depends on the synchronous injection amount Qs and the like.
- the synchronous injection amount Qs is calculated according to the rotational speed NE, the water temperature THW, the charging efficiency ⁇ , and the intake phase difference DIN. Therefore, if the injection start timing Is of the intake synchronous injection is directly obtained without obtaining the arrival end timing AEs, a high-dimensional adaptation including all the parameters used for calculation of the synchronous injection amount Qs at least is required. Man-hours increase. On the other hand, in the present embodiment, the arrival end time AEs is used.
- the adaptation of the relationship between the rotational speed NE and the two-dimensional parameters of the filling efficiency ⁇ and the arrival end timing AEs and the adaptation of the relationship between the one-dimensional parameter of the coolant temperature THW and the coolant temperature correction coefficient Kthw can be reduced.
- FIGS. 6A and 6B The relationship between the arrival end timing and PN and HC is shown in both FIGS. 6A and 6B. Specifically, FIG. 6A shows the case where the overlap amount is zero, and FIG. 6B shows the case where the overlap amount is larger than zero by advancing the opening start timing of the intake valve 18. Show.
- the arrival end time AEs is not directly adapted, but the delay amount ⁇ AEs of the arrival end time AEs with respect to the opening start time of the intake valve 18 is adapted. Therefore, as the intake phase difference DIN becomes more advanced, the arrival end time AEs becomes more advanced.
- FIG. 6A shows the case where the water temperature THW is 0 °, 20 ° and 40 °
- FIG. 6B shows the case where the water temperature THW is 0 ° and 20 °.
- FIG. 6A and FIG. 6B show that PN can be suppressed if the arrival end time AEs is further retarded when the water temperature THW is low, and such a tendency is due to the process of S40 of FIG. It matches with the setting of the water temperature correction coefficient Kthw in.
- FIG. 7 shows the procedure of the injection valve operation processing M30 according to the present embodiment.
- the processing shown in FIG. 7 is realized by the CPU 52 repeatedly executing the program stored in the ROM 54 at a predetermined cycle, for example.
- the same step numbers are given to the processing corresponding to the processing shown in FIG. 5 for the sake of convenience.
- the CPU 52 calculates the retardation amount ⁇ AEs based on the rotational speed NE and the filling efficiency ⁇ (S38a).
- the CPU 52 substitutes a value obtained by multiplying the retardation amount ⁇ AEs calculated in S38a by the water temperature correction coefficient Kthw for the retardation amount ⁇ AEs (S40a).
- the arrival end timing AEs is a timing that is retarded by the retardation amount ⁇ AEs with respect to the opening start timing of the intake valve 18 determined from the intake phase difference DIN, and the CPU 52 calculates the synchronous injection amount with respect to the arrival end timing AEs.
- a timing obtained by advancing the injection period, the flight time, and the invalid injection time determined by the port injection valve 16 by a value obtained by adding the injection period, the flight time, and the ineffective injection time is set as the injection start timing Is of the intake synchronous injection (S42a). Then, the CPU 52 shifts to the processing of S44.
- the arrival end time AEs is determined by the retardation amount ⁇ AEs, the arrival end time AEs becomes more advanced as the valve opening start time of the intake valve 18 becomes more advanced. It is considered a value.
- Such processing reflects the tendency shown in FIGS. 6A and 6B.
- the arrival end timing AEs is determined according to the rotational speed NE and the filling efficiency ⁇ ⁇ as in the first embodiment. Therefore, as the intake phase difference DIN becomes more advanced, the arrival end time AEs is adapted to the more advanced value.
- the setting of the intake phase difference DIN according to the rotational speed NE and the charging efficiency ⁇ may differ depending on the mounted vehicle type, and in this case, the setting is changed only Re-adapting the arrival end time AEs leads to an increase in the number of adaptation steps.
- the retardation amount ⁇ AEs is adapted. Therefore, even when the settings of the intake phase difference DIN according to the rotational speed NE and the charging efficiency ⁇ ⁇ ⁇ are different, it is possible to share the retardation amount ⁇ AEs between different settings of the intake phase difference DIN. It becomes.
- FIG. 8 shows the procedure of the injection valve operation processing M30 according to the present embodiment.
- the process shown in FIG. 8 is realized by the CPU 52 repeatedly executing the program stored in the ROM 54 at a predetermined cycle, for example.
- the same step numbers are given to the processing corresponding to the processing shown in FIG. 5 for the sake of convenience.
- the CPU 52 selectively executes one of the following processes according to the value of the water temperature THW (described as THW1,... THWn in the figure).
- the first processing is processing for performing map operation of the arrival end timing AEs based on map data with the rotation speed NE, the filling efficiency ⁇ , and the intake phase difference DIN as input variables and the arrival end timing AEs as an output variable.
- the second process is a process of performing a map calculation of the retardation amount ⁇ AEs based on map data having the rotation speed NE and the filling efficiency ⁇ as input variables and the retardation amount ⁇ AEs as an output variable.
- the arrival end timing AEs that is optimum for suppressing the PN is not necessarily required. It is carried out in the water temperature area where there is an imminent concern.
- the CPU 52 executes the process of S42a of FIG. 7 or the process of S42 of FIG. 5 depending on whether the retardation amount ⁇ AEs is calculated or the arrival end time AEs is calculated in the process of S38b. (S42b).
- the CPU 52 proceeds to the process of S44.
- the arrival end timing AEs by setting the arrival end timing AEs in proportion to the advance amount of the valve opening start timing of the intake valve 18, in the water temperature region where optimization is difficult from the viewpoint of suppressing PN,
- the adaptation value of the arrival end timing AEs is used according to the rotational speed NE, the charging efficiency ⁇ , and the intake phase difference DIN. Therefore, PN can be further reduced while suppressing an increase in the number of fitting processes.
- the arrival end timing AEs is set based on the intake phase difference DIN. Therefore, for example, when the water temperature THW is low, the intake phase difference DIN is exceptionally made more retarded than the rotational speed NE and the charging efficiency ⁇ . Even if it is, it can be an appropriate value for the suppression of PN.
- multi-injection process corresponds to the process of S22 via the process of S20 in FIG. 4 and the process of S46 via the process of S44 in FIG.
- the “variable process” corresponds to the process of S18 in FIG. 4, the processes of S38 to S42 in FIG. 5, the processes of S38a to S42a in FIG. 7, and the processes of S38b and S42b in FIG.
- the "required injection amount calculation process” corresponds to the base injection amount calculation process M20, the feedback process M22, and the low temperature correction process M24. That is, since the required injection amount Qd is "Qb KAF Kw", the required injection amount is calculated by calculating the base injection amount Qb, the feedback correction coefficient KAF, and the low temperature increase coefficient Kw by each of the above processes. It can be considered that the quantity Qd has been calculated.
- end time setting process correspond to the processes of S38 and S40 in FIG. 5, the processes of S38a and S40a in FIG. 7, and the process of S38b in FIG. . That is, the arrival end timing is a timing that is retarded by the retardation amount ⁇ AEs with respect to the valve opening start timing of the intake valve 18 determined from the intake phase difference DIN. Therefore, referring to the intake phase difference DIN in the processing of S42a and S42b can be regarded as timing that is retarded from the opening start timing of the intake valve 18 by the retardation amount ⁇ AEs.
- the “start timing calculation process” corresponds to the process of S42 of FIG. 5, the process of S42a of FIG. 7, and the process of S42b of FIG. [4], [7]
- "Valve characteristic change device” corresponds to the intake valve timing adjustment device 44.
- "Valve characteristic control processing” corresponds to the target intake phase difference calculation process M12 and the intake phase difference control process M14.
- the “retardation amount calculation process” corresponds to the process of S38a and S38b.
- the injection start timing Is of intake synchronous injection is calculated in consideration of the ineffective injection time depending on the terminal voltage Vb, but the invention is not limited thereto.
- the invalid injection time may be a fixed value.
- the retardation amount ⁇ AEs is map calculated and corrected based on the water temperature THW. It is not limited to this.
- map calculation may be performed using map data in which the rotational speed NE, the filling efficiency ⁇ , and the water temperature THW are used as input variables, and the retardation amount ⁇ AEs is used as an output variable.
- map data is used with the rotational speed NE, the filling efficiency ⁇ and the intake phase difference DIN as input variables and the arrival end timing AEs as an output variable.
- the map operation was performed on the arrival end time AEs, it is not limited thereto.
- the reaching end timing AEs is map calculated using map data with the rotational speed NE, the filling efficiency ⁇ and the intake phase difference DIN as input variables and the reaching end timing AEs as an output variable. It may be corrected according to the water temperature THW.
- map data with rotation speed NE, filling efficiency ⁇ , intake phase difference DIN and water temperature THW as input variables and arrival end timing AEs as output variable
- map calculation of arrival end timing AEs You may be used with the rotational speed NE, filling efficiency ⁇ and the intake phase difference DIN as input variables and arrival end timing AEs as output variable.
- the injection start timing is calculated based on map data with the rotational speed NE, the water temperature THW, and the intake phase difference DIN as input variables and the injection start timing as an output variable.
- map data with the rotational speed NE and the intake phase difference DIN as input variables and the injection start timing as an output variable the injection start timing may be map-computed and corrected based on the water temperature THW.
- the injection start timing is calculated based only on the rotational speed NE and the water temperature THW regardless of the intake phase difference DIN, or the injection start timing is calculated based on the rotational speed NE and the intake phase difference DIN regardless of the water temperature THW.
- the injection start timing may be calculated based on the water temperature THW and the intake phase difference DIN regardless of the rotation speed NE. Note that, instead of using the intake phase difference DIN, a target intake phase difference DIN * may be used.
- the arrival end timing AEs is set based on the rotational speed NE, the filling efficiency ⁇ , the water temperature THW, etc., but the invention is not limited thereto.
- a base injection amount Qb may be used as a parameter indicating a fresh air amount charged into the combustion chamber 24 (a parameter indicating a load) instead of the charging efficiency ⁇ .
- the arrival end timing AEs is variably set based on only three of those parameters other than the above embodiment. It may be variably set based on only one parameter.
- the invention is not limited to the one that calculates the injection start timing Is of the intake synchronous injection.
- the injection start timing Is of intake synchronous injection may be calculated based on map data with the rotational speed NE and the filling efficiency ⁇ as input variables and the injection start timing Is of intake synchronous injection as an output variable.
- the calculated injection start timing Is of intake synchronous injection may be corrected according to the water temperature THW.
- the injection start timing Is of intake synchronous injection is calculated based on map data using the rotational speed NE, the filling efficiency ⁇ and the intake phase difference DIN as input variables and the injection start timing Is of intake synchronous injection as an output variable.
- the calculated injection start timing Is of intake synchronous injection may be corrected according to the water temperature THW. Also, for example, based on map data with rotational speed NE, filling efficiency ⁇ , intake phase difference DIN, and water temperature THW as input variables and intake start timing Is of intake synchronous injection as an output variable, injection start timing Is of intake synchronous injection May be calculated.
- a target intake phase difference DIN * may be used instead of using the intake phase difference DIN. Furthermore, the calculated injection start timing Is of intake synchronous injection may be corrected according to the terminal voltage Vb.
- the required injection amount Qd may be added to the low temperature increase coefficient Kw or the feedback correction coefficient KAF, and the base injection amount Qb may be corrected by the learning value LAF.
- the calculation process of the learning value LAF is a process of receiving the feedback correction coefficient KAF and updating the learning value LAF so that the correction ratio of the base injection amount Qb by the feedback correction coefficient KAF becomes small.
- the learning value LAF is desirably stored in an electrically rewritable non-volatile memory.
- the required injection amount Qd may be calculated by feedforward control based on the disturbance fuel ratio, for example, so that the required injection amount Qd is smaller than when the disturbance fuel ratio is large.
- the “disturbance fuel ratio” refers to the amount of fuel (disturbance fuel) flowing into the combustion chamber 24 of the internal combustion engine 10 in addition to the fuel injected from the port injection valve 16 in one combustion cycle. It is a percentage of the total amount of fuel flowing into the interior.
- a canister for collecting fuel vapor from a fuel tank storing fuel injected from the port injection valve 16 and an inflow amount of fluid in the canister to the intake passage 12 are adjusted
- there is fuel vapor flowing into the intake passage 12 from the canister there is fuel vapor flowing into the intake passage 12 from the canister.
- the fuel vapor flowing into the intake passage 12 from the crankcase may be mentioned as the disturbance fuel.
- the synchronous injection amount Qs is variably set based on the rotational speed NE, the filling efficiency ⁇ , the water temperature THW, and the intake phase difference DIN, but the invention is not limited thereto.
- the base injection amount Qb may be used instead of the charging efficiency ⁇ as a load parameter that is a parameter indicating the amount of fresh air charged into the combustion chamber 24.
- the synchronous injection amount Qs is variably set based on only three of them, or based on only two parameters. It may be variably set or variably set based on only one parameter.
- the synchronous injection amount Qs by using at least one of the load parameter and the water temperature THW as much as possible.
- an intake pressure or a flow velocity of intake air may be used.
- the intake pressure and the flow velocity of the intake air can be grasped.
- the synchronous injection ratio Ks which is a ratio of the synchronous injection amount Qs to the base injection amount Qb, may be determined according to, for example, the load. Furthermore, for example, the value “KAF ⁇ Qb” in which the base injection amount Qb is corrected by the feedback correction coefficient KAF may be divided by the synchronous injection ratio Ks to be the synchronous injection amount Qs. In this case, the synchronous injection amount Qs is “Ks ⁇ KAF ⁇ Qb”.
- the target intake phase difference DIN * is variably set according to the rotational speed NE and the filling efficiency ⁇ , but the present invention is not limited to this.
- variable characteristic device for changing the characteristic of the intake valve 18 is not limited to the intake valve timing adjustment device 44.
- the lift amount of the intake valve 18 may be changed.
- the parameter indicating the valve characteristic of the intake valve 18 is a lift amount or the like instead of the intake phase difference DIN.
- control device is not limited to one that includes the CPU 52 and the ROM 54 and executes software processing.
- a dedicated hardware circuit for example, an ASIC or the like
- the control device may have any one of the following configurations (a) to (c).
- B A processing device and a program storage device that execute part of the above processing according to a program, and a dedicated hardware circuit that performs the remaining processing.
- a dedicated hardware circuit is provided to execute all of the above processes.
- the software processing circuit provided with the processing device and the program storage device, and a dedicated hardware circuit may be plural. That is, the above process may be performed by a processing circuit including at least one of one or more software processing circuits and one or more dedicated hardware circuits.
- the rotating electric machine may be used instead of the starter motor 36 as a means for imparting initial rotation to the crankshaft 28 .
- the internal combustion engine 10 shown in FIG. 9 is mounted on a vehicle.
- a throttle valve 14 and a port injection valve 16 are provided in the intake passage 12 of the internal combustion engine 10 sequentially from the upstream side.
- the air taken into the intake passage 12 and the fuel injected from the port injection valve 16 flow into the combustion chamber 24 divided by the cylinder 20 and the piston 22 as the intake valve 18 is opened.
- the mixture of fuel and air is subjected to combustion by the spark discharge of the igniter 26.
- combustion energy generated by the combustion is converted to rotational energy of the crankshaft 28 via the piston 22.
- the air-fuel mixture supplied to the combustion is discharged to the exhaust passage 32 as the exhaust as the exhaust valve 30 is opened.
- a catalyst 34 is provided in the exhaust passage 32.
- a filter (GPF 136) for collecting particulate matter (PM) in the exhaust gas is provided downstream of the catalyst 34 in the exhaust passage 32.
- the rotational power of the crankshaft 28 is transmitted to the intake camshaft 40 and the exhaust camshaft 42 via the timing chain 38.
- the power of the timing chain 38 is transmitted to the intake camshaft 40 via the intake valve timing adjustment device 44.
- the intake valve timing adjustment device 44 is an actuator that adjusts the opening timing of the intake valve 18 by adjusting the rotational phase difference between the crankshaft 28 and the intake camshaft 40.
- the control device 50 controls the internal combustion engine 10 and controls the control amount (torque, exhaust component ratio, etc.) of the internal combustion engine 10 by the throttle valve 14, the port injection valve 16, the ignition device 26, and the intake valve.
- the operation part of the internal combustion engine 10 such as the valve timing adjustment device 44 is operated.
- the control device 50 outputs an output signal Scr of the crank angle sensor 60, an intake air amount Ga detected by the air flow meter 62, an air-fuel ratio Af detected by the air-fuel ratio sensor 64, an output signal of the intake cam angle sensor 66 Reference is made to Sca and the temperature (water temperature THW) of the coolant of the internal combustion engine 10 detected by the water temperature sensor 68.
- operation signals MS1 to MS3 and MS5 for operating the throttle valve 14, the port injection valve 16, the ignition device 26, and the intake valve timing adjustment device 44 are shown.
- the control device 50 includes a CPU 52, a ROM 54, and a power supply circuit 56.
- the CPU 52 executes a program stored in the ROM 54 to execute control of the control amount.
- the power supply circuit 56 supplies power to each point in the control device 50.
- FIG. 10 shows a part of the process executed by the control device 50.
- the process shown in FIG. 10 is realized by the CPU 52 executing a program stored in the ROM 54.
- the intake phase difference calculation process M10 is a phase difference of the rotation angle of the intake camshaft 40 with respect to the rotation angle of the crankshaft 28 based on the output signal Scr of the crank angle sensor 60 and the output signal Sca of the intake cam angle sensor 66.
- And is a process of calculating the inspiratory phase difference DIN.
- the target intake phase difference calculation processing M12 is processing for variably setting the target intake phase difference DIN * based on the operating point of the internal combustion engine 10. In the present embodiment, the operating point is defined by the rotational speed NE and the filling efficiency ⁇ .
- the CPU 52 calculates the rotational speed NE based on the output signal Scr of the crank angle sensor 60, and calculates the charging efficiency ⁇ ⁇ ⁇ based on the rotational speed NE and the intake air amount Ga.
- the charging efficiency ⁇ is a parameter that determines the amount of air charged into the combustion chamber 24.
- the intake phase difference control process M14 outputs the operation signal MS5 to the intake valve timing adjustment device 44 in order to operate the intake valve timing adjustment device 44 in order to control the intake phase difference DIN to the target intake phase difference DIN *. It is.
- the base injection amount calculating process M20 is a process of calculating a base injection amount Qb, which is a base value of the fuel amount, for making the air-fuel ratio of the air-fuel mixture in the combustion chamber 24 the target air-fuel ratio based on the charging efficiency ⁇ . .
- the base injection amount calculation processing M20 sets the charging efficiency ⁇ to the fuel amount QTH per 1% of the charging efficiency ⁇ for setting the air fuel ratio to the target air fuel ratio.
- the processing may be performed to calculate the base injection amount Qb by multiplication.
- the base injection amount Qb is a fuel amount calculated to control the air-fuel ratio to the target air-fuel ratio based on the amount of air charged into the combustion chamber 24.
- the target air-fuel ratio may be, for example, the theoretical air-fuel ratio.
- the feedback processing M22 is processing for calculating and outputting a feedback correction coefficient KAF obtained by adding “1” to the correction ratio ⁇ of the base injection amount Qb, which is a feedback operation amount.
- the correction ratio ⁇ of the base injection amount Qb is an operation amount for feedback control of the air-fuel ratio Af to the target value Af *. More specifically, the feedback processing M22 is performed according to the difference between each output value of the proportional element and the differential element to which the difference between the air fuel ratio Af and the target value Af * is input and the difference between the air fuel ratio Af and the target value Af *. The sum with the output value of the integral element that holds and outputs the integrated value is taken as a correction ratio ⁇ .
- the low temperature correction process M24 is a process of calculating the low temperature increase coefficient Kw to a value larger than “1” in order to increase the base injection amount Qb when the water temperature THW is less than a predetermined temperature Tth (for example, 60 ° C.). Specifically, the low temperature increase coefficient Kw is calculated to be a larger value than when the water temperature THW is low than when it is high. When the water temperature THW is equal to or higher than the predetermined temperature Tth, the low temperature increase coefficient Kw is “1”, and the correction amount of the base injection amount Qb based on the low temperature increase coefficient Kw is zero.
- a predetermined temperature Tth for example, 60 ° C.
- the injection valve operation process M30 is a process of outputting an operation signal MS2 to the port injection valve 16 in order to operate the port injection valve 16.
- the injection valve operation process M30 is a process for injecting from the port injection valve 16 a required injection amount Qd, which is a fuel amount required to be supplied from the port injection valve 16 to one cylinder in one combustion cycle. .
- the fuel injection process includes two processes of the process illustrated in part (a) of FIG. 11 and the process illustrated in part (b) of FIG. Part (a) of FIG. 11 includes intake synchronous injection that injects fuel in synchronization with the valve opening period of the intake valve 18, and intake asynchronous injection that injects fuel at a timing more advanced than the intake synchronous injection.
- This is a multi-injection process that executes two fuel injections. Specifically, in the intake synchronous injection, fuel is injected such that the period in which the fuel injected from the port injection valve 16 reaches the position before opening the intake valve 18 falls within the opening period of the intake valve 18 It is.
- the position before opening the intake valve 18 refers to the downstream end of the intake port, in other words, the inlet IN portion to the combustion chamber 24 shown in FIG.
- FIG. 9 shows the state where the intake valve 18 is open.
- the start point of the “arriving period” is the timing at which the fuel injected at the earliest timing of the fuel injected from the port injection valve 16 reaches the position before the opening of the intake valve 18.
- the end point of the “attainment period” is the timing at which the latest one of the fuel injected from the port injection valve 16 reaches the position before the intake valve 18 is opened.
- “intake non-synchronous injection” is to inject fuel so that the fuel injected from the port injection valve 16 reaches the intake valve 18 before the intake valve 18 opens.
- the fuel injected from the port injection valve 16 stays in the intake passage 12 until the intake valve 18 is opened, and flows into the combustion chamber 24 after being opened. It is injection that becomes.
- the fuel injected from the port injection valve 16 in the non-intake-asynchronous injection, is in a closed period of the intake valve 18 so that the period in which the fuel reaches a position before the intake valve 18 opens. It shall be injected.
- Part (b) of FIG. 11 is a single injection process that executes only the intake asynchronous injection.
- the multi-injection process is performed aiming to reduce the number (PN) of particulate matter (PM) in the exhaust gas. That is, when the temperature of the intake system of the internal combustion engine 10 such as the intake passage 12 and the intake valve 18 is low to a certain extent, the PN tends to increase when the single injection process is performed in the region where the filling efficiency ⁇ is large to a certain extent.
- the reason for this is considered to be that the required injection amount Qd becomes a larger value when the filling efficiency ⁇ is larger than when it is small, and as a result, the amount of fuel adhering to the intake system increases.
- FIG. 12 shows the procedure of the injection valve operation process M30.
- the process shown in FIG. 12 is realized by the CPU 52 repeatedly executing the program stored in the ROM 54 at a predetermined cycle, for example.
- the step number of each process is represented by the number to which "S" was provided at the head.
- the CPU 52 first updates the value of the warm-up counter C with the update amount ⁇ C (S110).
- the warm-up counter C is a parameter having a correlation with the temperature of the catalyst 34.
- the CPU 52 calculates the update amount ⁇ C to a larger value than in the case where the intake air amount Ga is large.
- the update amount ⁇ C can be a value smaller than zero.
- the CPU 52 calculates the update amount ⁇ C to a smaller value when the value of the warm-up counter C is large than when it is small.
- Such processing is performed in view of the fact that the temperature of the catalyst 34 is less likely to rise as the warm-up progresses.
- This process is realized by the CPU 52 calculating the update amount ⁇ C while the warm-up counter C and the intake air amount Ga are used as input variables and map data using the update amount ⁇ C as an output variable is stored in the ROM 54 in advance. it can.
- map data is set data of discrete values of input variables and values of output variables corresponding to the values of the input variables. Further, in the map calculation, for example, when the value of the input variable matches any of the values of the input variable of map data, the value of the output variable of the corresponding map data is taken as the calculation result, while the value does not match.
- a process may be performed in which a value obtained by interpolation of values of a plurality of output variables included in data is used as a calculation result.
- the CPU 52 calculates the required injection amount Qd by multiplying the base injection amount Qb by the low temperature increase coefficient Kw and the feedback correction coefficient KAF (S112).
- the CPU 52 determines whether there is a multi-injection request (S114).
- the CPU 52 indicates that the condition that the water temperature THW is below the specified temperature Tth (Vi), the condition that the filling efficiency ⁇ is above the specified value (Vii), and that the rotational speed NE is below the predetermined speed NEth If the logical product with the condition (Viii) of is true, it is determined that there is a request to execute the multi-injection process.
- Condition (Viii) is a condition for securing a time interval between the end timing of intake asynchronous injection and the start timing of intake synchronous injection at a predetermined time or more. Further, this condition is a condition to suppress that the calorific value becomes excessive due to the increase of the calculation load of the control device 50, since the multi-injection process has a larger calculation load than the single injection process.
- the "predetermined time” is determined according to the structure of the port injection valve 16, and is set to a value that can avoid the start of intake synchronous injection before the end of the intake asynchronous injection.
- the CPU 52 calculates a synchronous injection amount Qs, which is an injection amount of the intake synchronous injection (S116).
- the CPU 52 calculates the synchronous injection amount Qs in accordance with the rotational speed NE, the charging efficiency ⁇ , the intake phase difference DIN, and the water temperature THW.
- the synchronous injection amount Qs is adapted to an appropriate value for suppressing the PN.
- the synchronous injection is performed by the CPU 52 in a state where map data having the rotational speed NE, the filling efficiency ⁇ , the intake phase difference DIN, and the water temperature THW as input variables and the synchronous injection amount Qs as an output variable is stored in the ROM 54 in advance.
- the quantity Qs is mapped.
- the CPU 52 subtracts the synchronous injection amount Qs from the required injection amount Qd to calculate an asynchronous injection amount Qns that is an injection amount of the intake asynchronous injection (S118). Therefore, the sum of the asynchronous injection amount Qns and the synchronous injection amount Qs is equal to the required injection amount Qd. That is, the fuel of the required injection amount Qd is divided into the asynchronous injection amount Qns and the synchronous injection amount Qs by the processes of S116 and S118.
- the synchronous injection amount Qs is not influenced by the values of the feedback correction coefficient KAF and the low temperature increase coefficient Kw.
- the reason why the synchronous injection amount Qs is fixed is that, since the synchronous injection amount Qs is adapted to an appropriate value for suppressing the PN, when the synchronous injection amount Qs largely changes due to the correction, It is because there is a possibility that the increase of PN may be caused.
- the CPU 52 determines whether the warm-up counter C is equal to or more than the threshold Cth (S120).
- This process is a process for determining whether the temperature of the catalyst 34 is equal to or higher than a specified value at which the catalyst 34 is activated.
- the “activated state” may be, for example, a temperature at which the temperature of the central portion of the catalyst 34 becomes a purification rate of 50% or more.
- the CPU 52 sets the threshold Cth to a smaller value when the water temperature THW is high than when it is low.
- the catalyst 34 is in an active state, based on the rotational speed NE, the filling efficiency ⁇ , the intake phase difference DIN, and the water temperature THW.
- the arrival end time AEs shown in part (a) of FIG. 11 is calculated (S122).
- the arrival end timing AEs is a target value of the timing at which the fuel injected at the latest timing among the fuel injected from the port injection valve 16 reaches the position (IN portion in FIG. 9) in the valve closing period of the intake valve 18 It is.
- the rotational speed NE when the rotational speed NE is different, a change in the flow velocity of the fluid in the intake passage 12 is caused, so that the amount of fuel adhering and staying in the intake system without flowing into the combustion chamber 24 is different.
- the rotational speed NE when the rotational speed NE is different, the amount of rotation of the crankshaft 28 in a period required for the fuel of a predetermined amount of the fuel injected from the port injection valve 16 to be vaporized is different. Therefore, the arrival end time AEs appropriate for suppressing the PN depends on the rotational speed NE. Also, if the charging efficiency ⁇ ⁇ ⁇ is different, the base injection amount Qb will be different, and consequently the amount of fuel adhering to the intake system will be different.
- the arrival end time AEs appropriate for suppressing PN depends on the filling efficiency ⁇ .
- the water temperature THW is low, the fuel is less likely to be vaporized in the intake system than when it is high, and the amount of fuel adhering to the intake system without flowing into the combustion chamber 24 is increased. The optimal time for restraining is shifted to the retard side. Therefore, the appropriate arrival end time AEs in suppressing the PN depends on the water temperature THW.
- the appropriate arrival end time AEs in suppressing the PN depends on the intake phase difference DIN.
- the CPU 52 is stored in the ROM 54 with map data having the rotational speed NE, the charging efficiency ⁇ , the intake phase difference DIN, and the water temperature THW as input variables and the arrival end timing AEsa at catalyst activation as an output variable.
- the arrival end time AEsa is calculated by the map, and this is taken as the arrival end time AEs.
- the CPU 52 calculates the arrival end time AEsb before catalyst activation and sets it as the arrival end time AEs (S124). More specifically, the CPU 52 is in a state where map data, in which the rotational speed NE, the charging efficiency ⁇ , the intake phase difference DIN, and the water temperature THW are input variables and the arrival end timing AEsb before catalyst activation is an output variable, is stored in the ROM 54 in advance. The arrival end time AEsb is calculated by the map, and this is taken as the arrival end time AEs. The arrival end time AEsb before catalyst activation is set to a value on the advance side of the arrival end time AEsa when the catalyst 34 is in the activated state.
- the CPU 52 calculates the injection start timing Is (crank angle) of the intake synchronous injection based on the arrival end timing AEs, the synchronous injection amount Qs and the rotational speed NE (S126).
- the CPU 52 calculates the injection start timing Is of intake synchronous injection to a more advanced value than when the synchronous injection amount Qs is large than when it is small.
- the CPU 52 sets the injection start timing Is of intake synchronous injection to a value more on the advancing side than in the case where the rotation speed NE is large and the case where the rotation speed NE is large.
- the CPU 52 starts injection of intake synchronous injection at a timing advanced from the arrival end timing AEs by a value obtained by adding the injection period by the port injection valve 16 determined from the synchronous injection amount Qs, the flight time, and the invalid injection time. It is assumed that time Is.
- the "flight time” is the time required for the fuel injected from the port injection valve 16 to reach the inlet IN of the combustion chamber 24, and is a fixed value in this embodiment.
- the "ineffective injection time” is the time from when the operation signal MS2 for opening the port injection valve 16 is output to when fuel injection is actually started.
- the CPU 52 calculates the injection start timing Ins of the intake asynchronous injection based on the injection start timing Is of the intake synchronous injection (S128).
- the time interval between the injection end timing of the intake asynchronous injection and the injection start timing Is of the intake synchronous injection is set to be equal to or longer than the predetermined time.
- the injection start timing Is of the intake synchronous injection is set independently of the injection start timing Ins of the intake asynchronous injection. This is because the arrival completion timing AEs of the intake synchronous injection is particularly likely to affect PN and HC in the exhaust gas.
- the CPU 52 operates the port injection valve 16 to inject the fuel of the asynchronous injection amount Qns at the injection start timing Ins, and then inject the fuel of the synchronous injection amount Qs at the injection start timing Is of the intake synchronous injection.
- the port injection valve 16 is operated by outputting the signal MS2 (S130).
- the CPU 52 calculates the injection start timing Isin of single injection (S132). More specifically, as shown in part (b) of FIG. 11, the CPU 52 sets a timing that is advanced by a predetermined amount ⁇ 1 with respect to the valve opening start timing of the intake valve 18 as an arrival end timing AEns. Next, the CPU 52 advances the injection timing of the port injection valve 16 determined from the required injection amount Qd, the value obtained by adding the flight time and the invalid injection time to the arrival end timing AEns, as a single injection injection. It is assumed that the start time Isin. Referring back to FIG. 12, the CPU 52 operates the port injection valve 16 by outputting the operation signal MS2 to the port injection valve 16 so as to inject the fuel of the required injection amount Qd when the single injection injection start timing Isin comes (S130) ).
- the CPU 52 determines the arrival end timing AEs The value is more advanced. This is because, as shown in FIG. 13, when the temperature of the catalyst 34 is low, the HC purification rate is lower than when the temperature is high, but as shown in FIG. 14B, the more advanced the arrival end timing AEs. This is because the emission of HC is suppressed.
- FIG. 14A shows the relationship between the arrival end timings AEs and AEns and the concentration of PN in the exhaust
- FIG. 14B shows the relationship between the arrival end timings AEs and AEns and the concentration of HC in the exhaust. More specifically, the values of PN and HC with respect to the arrival end time AEs are described as "at the time of multi-injection", and the values of PN and HC with respect to the arrival end time AEns are described as "at the time of single injection” It is 14A and 14B, which are indicated by solid vertical lines, and which are shown by dashed lines in both FIG. 14A and FIG. And the appropriate arrival end time AEs is the value on the advance side. The reason for this is considered to be because there is a time margin for atomizing the fuel as the arrival end time AEs is a value on the advance side.
- the CPU 52 suppresses HC in the exhaust gas by using an appropriate arrival end timing AEsb to suppress HC, and consequently suppresses HC flowing downstream of the catalyst 34. .
- the PM that has flowed downstream of the catalyst 34 is collected by the GPF 136.
- the CPU 52 suppresses the PN in the exhaust gas by using an appropriate arrival end timing AEsa in order to suppress the PN.
- the HC in the exhaust gas is sufficiently purified by the catalyst 34.
- the fifth embodiment will be described below with reference to FIG. 15, focusing on the differences with the fourth embodiment.
- FIG. 15 shows the procedure of the injection valve operation process M30.
- the process shown in FIG. 15 is realized by the CPU 52 repeatedly executing the program stored in the ROM 54 at a predetermined cycle, for example. Note that, in FIG. 15, the same step numbers are given to the processing corresponding to the processing shown in FIG. 12 for the sake of convenience.
- the CPU 52 calculates the arrival end timing AEs based on the rotational speed NE, the charging efficiency ⁇ , the intake phase difference DIN, and the water temperature THW (S122a).
- the arrival end time AEs here is a suitable time for suppressing the PN, and corresponds to the arrival end time AEsa calculated by the process of S122.
- the CPU 52 determines whether the warm-up counter C is equal to or more than the threshold Cth (S120).
- the CPU 52 calculates the injection start time Is of the intake synchronous injection using the arrival end time AEs calculated by the process of S122a ( S126).
- the CPU 52 calculates the retarded guard value AEth of the arrival end timing AEs based on the water temperature THW and the rotational speed NE (S134).
- the retarded guard value AEth is set according to the angle on the most retarded side to bring the concentration of HC in the exhaust gas within the allowable range before activation of the catalyst 34. More specifically, with the map data stored in advance in the ROM 54 with the rotational speed NE and the water temperature THW as input variables and the retarded angle guard value AEth as an output variable, the CPU 52 maps the retarded angle guard value AEth.
- the CPU 52 substitutes the advance end side of the arrival end time AEs calculated by the process of S122a and the retarded guard value AEth for the arrival end time AEs (S136).
- the arrival end time AEs is expressed by a relative angle to a reference angle, and is set to a positive value on the advance side of the reference angle. The smaller one of the arrival end time AEs and the retarded-angle guard value AEth is substituted for the arrival end time AEs.
- the CPU 52 calculates the injection start time Is of the intake synchronous injection using the arrival end time AEs calculated in the process of S136 (S126).
- the arrival end timing AEs appropriate for suppressing HC is determined based on the retardation guard value AEth.
- Such a process is considered in view of that the appropriate time itself for suppressing HC is less affected by the intake phase difference DIN and the filling efficiency ⁇ as the appropriate time for suppressing PN.
- the "multi-injection process” corresponds to the process of S130 that is subsequently performed to the process of S128.
- the “advance process” corresponds to the processes of S120 to S124 of FIG. 12 and the processes of S122a, S120, S134, and S136 of FIG.
- valve characteristic variable device corresponds to the intake valve timing adjustment device 44
- valve characteristic control process corresponds to the target intake phase difference calculation process M12 and the intake phase difference control process M14
- variable processing corresponds to the processing of S122 and S124 of FIG. 12 and the processing of S122a of FIG.
- the “reference time setting process” corresponds to the process of S122a of FIG. 15, and the “guard value setting process” corresponds to the process of S134 of FIG.
- the “low temperature timing setting process” corresponds to the process of S136 in FIG.
- the “required injection amount calculation process” corresponds to the process of S112.
- "Intake system temperature” corresponds to the water temperature THW.
- the retarded guard value AEth is calculated based on the water temperature THW and the rotational speed NE, but the present invention is not limited to this.
- the retardation guard value AEth is calculated using only one of the two parameters of the water temperature THW and the rotational speed NE, such as calculating the retardation guard value AEth based on only the water temperature THW. It is also good.
- the arrival end timings AEs, AEsa, AEsb are set based on the rotational speed NE, the filling efficiency ⁇ , the water temperature THW, and the intake phase difference DIN, but the invention is not limited thereto.
- a parameter indicating the amount of air charged into the combustion chamber 24 for example, a base injection amount Qb may be used instead of the filling efficiency ⁇ .
- the arrival end timings AEs, AEsa, AEsb are variably set, or two, based on only three of the four parameters of the rotational speed NE, the load, the water temperature THW, and the intake phase difference DIN.
- the arrival end timings AEs, AEsa, AEsb are variably set only on the basis of intake phase difference DIN, etc. It may be set variably based on it.
- a delay amount with respect to the opening start timing of the intake valve 18 may be set.
- the delay amount may be variably set based on parameters other than the intake phase difference DIN.
- the invention is not limited to the one that calculates the injection start timing Is of the intake synchronous injection.
- one parameter such as intake phase difference DIN is used as an input variable
- injection start timing Is of intake synchronous injection is used as an output variable.
- the injection start timing Is of the intake synchronous injection may be calculated based on the map data.
- injection start of intake synchronous injection is based on map data using injection start timing Is of intake synchronous injection as an output variable.
- the time Is may be calculated.
- the calculated injection start timing Is of intake synchronous injection may be corrected according to the water temperature THW.
- the injection start timing Is of the intake synchronous injection may be calculated.
- the calculated injection start timing Is of intake synchronous injection may be corrected according to the water temperature THW. Also, for example, based on map data with rotational speed NE, filling efficiency ⁇ , intake phase difference DIN, and water temperature THW as input variables and intake start timing Is of intake synchronous injection as an output variable, injection start timing Is of intake synchronous injection May be calculated.
- the present invention is not limited to this.
- a simple integrated value of the intake air amount Ga may be used.
- the process of updating the integrated value is a process of updating the integrated value with an update amount that is uniquely determined by the intake air amount Ga without depending on the value of the integrated value.
- the catalyst 34 may be provided with a temperature sensor such as a thermocouple, and the detection value of this temperature sensor may be used.
- the water temperature THW is used as the temperature of the intake system, but the invention is not limited to this.
- the temperature of the lubricating oil of the internal combustion engine 10 may be used.
- the required injection amount Qd may be added to the low temperature increase coefficient Kw or the feedback correction coefficient KAF, and the base injection amount Qb may be corrected by the learning value LAF.
- the calculation process of the learning value LAF is a process of updating the learning value LAF so that the correction ratio of the base injection amount Qb by the feedback correction coefficient KAF becomes small, using the feedback correction coefficient KAF as an input.
- the learning value LAF is desirably stored in an electrically rewritable non-volatile memory.
- the required injection amount Qd may be calculated by feedforward control based on the disturbance fuel ratio, for example, so that the required injection amount Qd is smaller than when the disturbance fuel ratio is large.
- the “disturbance fuel ratio” refers to the amount of fuel (disturbance fuel) flowing into the combustion chamber 24 of the internal combustion engine 10 in addition to the fuel injected from the port injection valve 16 in one combustion cycle. It is a percentage of the total amount of fuel flowing into the interior.
- a canister for collecting fuel vapor from a fuel tank storing fuel injected from the port injection valve 16 and an inflow amount of fluid in the canister to the intake passage 12 are adjusted
- there is fuel vapor flowing into the intake passage 12 from the canister there is fuel vapor flowing into the intake passage 12 from the crankcase.
- the internal combustion engine is provided with a system for returning fuel vapor in the crankcase to the intake passage 12, there is fuel vapor flowing into the intake passage 12 from the crankcase.
- the injection amount is large regardless of the charging efficiency ⁇ , and thus, when the single injection process is performed, the PN tends to increase. Therefore, since the intake air amount Ga can not be accurately grasped by the air flow meter 62 at the time of startup, the multi-injection process is executed even when the required injection amount Qd is determined based on the water temperature THW regardless of the intake air amount Ga. It is also good. Even in this case, when the temperature of the catalyst 34 is low, it is more effective to set the injection start timing Is of the intake synchronous injection to the advancing side than when the temperature is high.
- the fuel injection is performed such that the fuel injected from the port injection valve 16 reaches the position before the valve opening of the intake valve 18 falls within the valve closing period of the intake valve 18.
- the invention is not limited thereto. For example, when the rotational speed NE is high and the asynchronous injection amount Qns is excessively large, part of the period during which the fuel injected from the port injection valve 16 reaches the position before the intake valve 18 opens corresponds to the intake valve 18. It may overlap with the opening period of
- the single injection processing is such that the fuel is injected such that the time when the fuel injected from the port injection valve 16 reaches the position before the opening of the intake valve 18 falls within the closing time of the intake valve 18 But it is not limited to this. For example, when the required injection amount Qd is large, part of the period in which the fuel injected from the port injection valve 16 reaches the position before opening the intake valve 18 overlaps with the opening period of the intake valve 18 May be. Note that performing single injection processing is not essential.
- the synchronous injection amount Qs is variably set based on the rotational speed NE, the filling efficiency ⁇ , the water temperature THW, and the intake phase difference DIN, but the invention is not limited thereto.
- the base injection amount Qb may be used instead of the filling efficiency ⁇ .
- the four parameters of the load parameter, the rotational speed NE, the water temperature THW, and the intake phase difference DIN are variably set based on only three of them, or variably set based on only two parameters, It may be variably set based on only one parameter.
- an intake pressure or a flow velocity of intake air may be used.
- the intake pressure and the flow velocity of the intake air can be grasped.
- the synchronous injection ratio Ks which is a ratio of the synchronous injection amount Qs to the base injection amount Qb It may be determined. Furthermore, for example, a value obtained by dividing the value “KAF ⁇ Qb” in which the base injection amount Qb is corrected by the feedback correction coefficient KAF by the synchronous injection ratio Ks may be used as the synchronous injection amount Qs. In this case, the synchronous injection amount Qs is “Ks ⁇ KAF ⁇ Qb”.
- the target intake phase difference DIN * is variably set according to the rotational speed NE and the filling efficiency ⁇ , but the invention is not limited thereto.
- the actual timing is retarded with respect to the valve opening timing of the intake valve 18, which is determined according to the rotational speed NE and the charging efficiency ⁇ . Good.
- variable characteristic device for changing the characteristic of the intake valve 18 is not limited to the intake valve timing adjustment device 44.
- the lift amount of the intake valve 18 may be changed.
- the parameter indicating the valve characteristic of the intake valve 18 is a lift amount or the like instead of the intake phase difference DIN.
- control device is not limited to one that includes the CPU 52 and the ROM 54 and executes software processing.
- a dedicated hardware circuit for example, an ASIC or the like
- the control device may have any one of the following configurations (a) to (c).
- a processing device that executes all of the above processes in accordance with a program, and a program storage device (including a non-transitory computer readable storage medium) such as a ROM that stores the program.
- B A processing device and a program storage device that execute part of the above processing according to a program, and a dedicated hardware circuit that performs the remaining processing.
- a dedicated hardware circuit is provided to execute all of the above processes.
- the software processing circuit provided with the processing device and the program storage device, and a dedicated hardware circuit may be plural. That is, the above process may be performed by a processing circuit including at least one of one or more software processing circuits and one or more dedicated hardware circuits.
- Providing the GPF 136 is not essential.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
マルチ噴射処理は、吸気通路(12)に燃料を噴射するポート噴射弁(16)を操作することで、要求噴射量(Qd)の燃料を噴射すべく、吸気同期噴射と吸気非同期噴射とを実行する。可変処理は、吸気同期噴射の噴射時期(Is)を、3つのパラメータのうちの少なくとも2つのパラメータに基づき可変設定する。吸気同期噴射の噴射時期は内燃機関(10)のクランクシャフト(28)の回転角度で表現される。3つのパラメータは、内燃機関のクランクシャフトの回転速度(NE)、吸気バルブ(18)の開弁開始時期(DIN、AEs)、および内燃機関(10)の吸気系の温度(THW)である。
Description
本開示は内燃機関の制御装置および制御方法に関する。制御装置および制御方法は、吸気通路に燃料を噴射するポート噴射弁を備える内燃機関に適用される。内燃機関はさらに、排気通路に排出された排気を浄化する触媒を備えうる。
たとえば特許文献1に記載されている制御装置は、1燃焼サイクル内に1つの気筒に噴射する燃料を、排気行程と吸気行程とに分割して噴射するマルチ噴射処理を実行する。この文献の段落[0017],[0024]によれば、制御装置は、吸気行程における噴射時期を、予め定められたタイミングに設定している。
また、たとえば特許文献2に第2実施形態として記載されている制御装置は、吸入空気量に応じて定まる1燃焼サイクルにおいて必要な量(要求噴射量)の燃料を、高負荷領域において2回に分割して噴射する。
噴射時期を固定することは、排気成分を良好に制御する上で問題がありうる。
以下、本開示の例について記載する。
例1.内燃機関の制御装置であって、前記制御装置は、吸気通路に燃料を噴射するポート噴射弁を備える内燃機関に適用され、前記制御装置は、
前記ポート噴射弁を操作することで、1燃焼サイクル内において要求される噴射量である要求噴射量の燃料を噴射すべく、吸気同期噴射と吸気非同期噴射とを実行するマルチ噴射処理であって、前記吸気同期噴射は吸気バルブの開弁期間に同期して燃料を噴射し、前記吸気非同期噴射は前記吸気同期噴射よりも進角側のタイミングにて燃料を噴射する、前記マルチ噴射処理と、
前記吸気同期噴射の噴射時期を、3つのパラメータのうちの少なくとも2つのパラメータに基づき可変設定する可変処理であって、前記吸気同期噴射の噴射時期は前記内燃機関のクランクシャフトの回転角度で表現され、前記3つのパラメータは、前記内燃機関のクランクシャフトの回転速度、前記吸気バルブの開弁開始時期、および前記内燃機関の吸気系の温度である、前記可変処理と
を実行するように構成される、内燃機関の制御装置。
例1.内燃機関の制御装置であって、前記制御装置は、吸気通路に燃料を噴射するポート噴射弁を備える内燃機関に適用され、前記制御装置は、
前記ポート噴射弁を操作することで、1燃焼サイクル内において要求される噴射量である要求噴射量の燃料を噴射すべく、吸気同期噴射と吸気非同期噴射とを実行するマルチ噴射処理であって、前記吸気同期噴射は吸気バルブの開弁期間に同期して燃料を噴射し、前記吸気非同期噴射は前記吸気同期噴射よりも進角側のタイミングにて燃料を噴射する、前記マルチ噴射処理と、
前記吸気同期噴射の噴射時期を、3つのパラメータのうちの少なくとも2つのパラメータに基づき可変設定する可変処理であって、前記吸気同期噴射の噴射時期は前記内燃機関のクランクシャフトの回転角度で表現され、前記3つのパラメータは、前記内燃機関のクランクシャフトの回転速度、前記吸気バルブの開弁開始時期、および前記内燃機関の吸気系の温度である、前記可変処理と
を実行するように構成される、内燃機関の制御装置。
内燃機関の吸気系の温度が低いときに、要求噴射量の燃料を全て吸気非同期噴射によって噴射する場合、負荷によっては排気中の粒子状物質(PM)の数(PN)が多くなるおそれがある。この理由は、吸気系に付着する燃料量が多くなり、付着した燃料のせん断によって、一部が液滴のまま燃焼室に流入することによってPMが発生するからであると推察される。そこで上記構成では、要求噴射量の一部を吸気同期噴射によって噴射する。したがって、非同期噴射量を低減し、ひいては吸気系に付着する燃料量を低減する。すなわち、付着した燃料のせん断によって液滴のまま燃料が燃焼室に流入することを抑制できる。
ただし発明者は、排気中の粒子状物質(PM)の数(PN)が、吸気行程における噴射時期によって大きく変化することを見出した。よって、たとえば噴射時期を固定することは、排気成分を良好に制御する上で問題がありうる。上記構成は、このような問題に対処する。
すなわち発明者は、PNを極力少なくするための吸気同期噴射の噴射時期が、クランクシャフトの回転速度によって変化することを見出している。この理由は、回転速度によって、吸気通路内の流速が変化することなどから、燃焼室に流入することなく吸気系に付着して留まる燃料量が変化する傾向にあることが推察される。さらに、ポート噴射弁から噴射された燃料のうち、所定量の燃料が気化するまでの期間内におけるクランクシャフトの回転量が、変化することなどが理由と推察される。これに対し、上記構成において、回転速度に応じて吸気同期噴射の噴射時期を可変設定するなら、たとえば回転速度に応じて可変としない場合と比較して、PNを抑制できる。
また発明者は、PNを極力少なくするための吸気同期噴射の噴射時期が、吸気バルブの開弁開始時期によって変化することを見出している。この理由は、吸気バルブの開弁開始時期に応じて吸気バルブと排気バルブとのオーバーラップ量が変化することによって、内部EGR量が変化するので、吸気系の温度が上昇して吸気系における燃料の気化のしやすさが変化することが要因と推察される。さらに、燃焼室内に流入することなく吸気系に付着して留まる燃料量が、変化したりすることなどが要因と推察される。これに対し、上記構成において、吸気バルブの開弁開始時期に応じて吸気同期噴射の噴射時期を可変設定するなら、たとえば吸気バルブの開弁開始時期に応じて可変としない場合と比較して、PNを抑制できる。
また発明者は、PNを極力少なくするための吸気同期噴射の噴射時期が、吸気系の温度によって変化することを見出している。この理由は、吸気系の温度によって、吸気系における燃料の気化のしやすさに相違が生じるからであると推察される。これに対し、上記構成において、吸気系の温度に応じて吸気同期噴射の噴射時期を可変設定するなら、たとえば吸気系の温度に応じて可変としない場合と比較して、PNを抑制できる。
例2.上記例1の制御装置において、前記制御装置はさらに、前記内燃機関の気筒内に充填される新気量に基づき、空燃比を目標空燃比に制御するための噴射量として前記要求噴射量を算出する要求噴射量算出処理を実行するように構成され、
前記可変処理は、前記吸気同期噴射の噴射時期を、前記少なくとも2つのパラメータに加えて、前記内燃機関の負荷に基づき可変設定する処理である。
前記可変処理は、前記吸気同期噴射の噴射時期を、前記少なくとも2つのパラメータに加えて、前記内燃機関の負荷に基づき可変設定する処理である。
発明者は、PNを極力少なくするための噴射時期が、内燃機関の負荷によって変化することを見出している。この理由は、負荷によって、噴射される燃料量が変化することや、吸気通路内の圧力が変化することによって燃料の霧化のしやすさが変化するからであると推察される。そこで上記構成では、吸気同期噴射の噴射時期を、負荷に応じて可変設定する。したがって、たとえば負荷に応じて可変としない場合と比較して、PNを抑制できる。
例3.上記例2の制御装置において、前記可変処理は、
前記回転速度、前記吸気系の温度、および前記負荷に基づき、到達終了時期を可変設定する終了時期設定処理であって、前記到達終了時期は、前記ポート噴射弁から最も遅いタイミングで噴射される燃料が、前記内燃機関の燃焼室の入口に到達するタイミングの目標値である、前記終了時期設定処理と、
前記到達終了時期に基づき、前記吸気同期噴射の噴射開始時期を算出する開始時期算出処理と
を含む。
前記回転速度、前記吸気系の温度、および前記負荷に基づき、到達終了時期を可変設定する終了時期設定処理であって、前記到達終了時期は、前記ポート噴射弁から最も遅いタイミングで噴射される燃料が、前記内燃機関の燃焼室の入口に到達するタイミングの目標値である、前記終了時期設定処理と、
前記到達終了時期に基づき、前記吸気同期噴射の噴射開始時期を算出する開始時期算出処理と
を含む。
発明者は、最も遅いタイミングで噴射される燃料が、内燃機関の燃焼室の入口に到達するタイミングの変動によってPNが大きく変動し、吸気同期噴射と吸気非同期噴射との噴射割合を多少変更しても、PNを抑制する上で最適なタイミングがほとんど変化しないことを見出した。よって、上記構成では、到達終了時期を設定した後、吸気同期噴射の噴射開始時期を設定する。したがって、制御装置が扱うパラメータである到達終了時期によって、PNを抑制する上で適切な時期を管理することができる。
例4.上記例3の制御装置において、前記内燃機関は、前記吸気バルブのバルブ特性を可変とするように構成されるバルブ特性可変装置を備え、
前記制御装置はさらに、前記バルブ特性可変装置を操作することで前記吸気バルブの開弁開始時期を可変制御する、バルブ特性制御処理を実行するように構成され、
前記終了時期設定処理は、前記回転速度、前記吸気系の温度、および前記負荷に基づき、前記吸気バルブの開弁開始時期に対する前記到達終了時期の遅角量を算出する遅角量算出処理を含み、
前記終了時期設定処理は、前記吸気バルブの開弁開始時期に対して前記遅角量だけ遅角したタイミングを、前記到達終了時期とする処理である。
前記制御装置はさらに、前記バルブ特性可変装置を操作することで前記吸気バルブの開弁開始時期を可変制御する、バルブ特性制御処理を実行するように構成され、
前記終了時期設定処理は、前記回転速度、前記吸気系の温度、および前記負荷に基づき、前記吸気バルブの開弁開始時期に対する前記到達終了時期の遅角量を算出する遅角量算出処理を含み、
前記終了時期設定処理は、前記吸気バルブの開弁開始時期に対して前記遅角量だけ遅角したタイミングを、前記到達終了時期とする処理である。
発明者は、PNを極力少なくするための吸気同期噴射の噴射時期が、吸気バルブの開弁開始時期によって変化することを見出している。この理由は、吸気バルブの開弁開始時期に応じて、吸気バルブと排気バルブとのオーバーラップ量が変化することによって内部EGR量が変化するので、吸気系の温度が上昇して吸気系における燃料の気化のしやすさが変化したり、燃焼室に流入することなく吸気系に付着して留まる燃料量が変化したりすることなどが要因と推察される。そこで上記構成では、吸気同期噴射の噴射時期を、吸気バルブの開弁開始時期に応じて可変設定する。したがって、たとえば吸気バルブの開弁開始時期に応じて可変としない場合と比較して、PNを抑制できる。
特に、上記構成では、到達終了時期を直接算出するのではなく、吸気バルブの開弁開始時期に対する、到達終了時期の遅角量をまず算出する。したがって、遅角量の算出に用いるパラメータに、吸気バルブの開弁開始時期を用いることなく、到達終了時期を吸気バルブの開弁開始時期に応じて可変設定することができる。
例5.上記例1または例2の制御装置において、前記可変処理は、
前記クランクシャフトの回転速度に基づき、到達終了時期を可変設定する終了時期設定処理であって、前記到達終了時期は、前記ポート噴射弁から最も遅いタイミングで噴射される燃料が、前記内燃機関の燃焼室の入口に到達するタイミングの目標値である、前記終了時期設定処理と、
前記到達終了時期に基づき、前記吸気同期噴射の噴射開始時期を算出する開始時期算出処理と
を含む。
前記クランクシャフトの回転速度に基づき、到達終了時期を可変設定する終了時期設定処理であって、前記到達終了時期は、前記ポート噴射弁から最も遅いタイミングで噴射される燃料が、前記内燃機関の燃焼室の入口に到達するタイミングの目標値である、前記終了時期設定処理と、
前記到達終了時期に基づき、前記吸気同期噴射の噴射開始時期を算出する開始時期算出処理と
を含む。
内燃機関の吸気系の温度が低いときに、要求噴射量の燃料を全て吸気非同期噴射によって噴射する場合、負荷によっては排気中の粒子状物質(PM)の数(PN)が多くなるおそれがある。この理由は、吸気系に付着する燃料量が多くなり、付着した燃料のせん断によって、一部が液滴のまま燃焼室に流入することによってPMが発生するからであると推察される。そこで上記構成では、要求噴射量の一部を同期噴射によって噴射する。したがって、非同期噴射量を低減し、ひいては吸気系に付着する燃料量を低減する。よって、付着した燃料のせん断によって液滴のまま燃料が燃焼室に流入することを抑制できる。
ただし発明者は、最も遅いタイミングで噴射される燃料が、内燃機関の燃焼室の入口に到達するタイミングの変動によってPNが大きく変動し、吸気同期噴射と吸気非同期噴射との噴射割合を多少変更しても、PNを抑制する上で最適なタイミングがほとんど変化しないことを見出している。よって、上記構成では、到達終了時期を設定した後、噴射開始時期を設定する。したがって、制御装置が扱うパラメータである到達終了時期によって、PNを抑制する上で適切な時期を管理することができる。
ところで発明者は、PNを極力少なくするための到達終了時期が、クランクシャフトの回転速度によって変化することを見出している。この理由として、回転速度によって吸気通路内の流速が変化することなどから、燃焼室に流入することなく吸気系に付着して留まる燃料量が変化する傾向にあることが推察される。また、ポート噴射弁から噴射された燃料のうちの所定量の燃料が気化するまでの期間内における、クランクシャフトの回転量が変化することなどが理由と推察される。そこで上記構成では、到達終了時期を、回転速度に応じて可変設定する。したがって、たとえば回転速度に応じて可変としない場合と比較して、PNを抑制できる。
例6.上記例5の制御装置において、前記終了時期設定処理は、前記回転速度に加えて前記内燃機関の負荷に基づき、前記到達終了時期を可変設定する処理を含む。
発明者は、PNを極力少なくするための到達終了時期が、内燃機関の負荷によって変化することを見出している。この理由は、負荷によって、噴射される燃料量が変化することや、吸気通路内の圧力が変化することによって燃料の霧化のしやすさが変化するからであると推察される。そこで上記構成では、到達終了時期を、負荷に応じて可変設定する。したがって、たとえば負荷に応じて可変としない場合と比較して、PNを抑制できる。
発明者は、PNを極力少なくするための到達終了時期が、内燃機関の負荷によって変化することを見出している。この理由は、負荷によって、噴射される燃料量が変化することや、吸気通路内の圧力が変化することによって燃料の霧化のしやすさが変化するからであると推察される。そこで上記構成では、到達終了時期を、負荷に応じて可変設定する。したがって、たとえば負荷に応じて可変としない場合と比較して、PNを抑制できる。
例7.上記例6の制御装置において、前記内燃機関は、前記吸気バルブのバルブ特性を可変とするように構成されるバルブ特性可変装置を備え、
前記制御装置は、前記バルブ特性可変装置を操作することで、前記吸気バルブの開弁開始時期を可変制御するバルブ特性制御処理を実行し、
前記終了時期設定処理は、前記回転速度および前記負荷に基づき、前記吸気バルブの開弁開始時期に対する前記到達終了時期の遅角量を算出する遅角量算出処理を含み、
前記終了時期設定処理は、前記吸気バルブの開弁開始時期に対して前記遅角量だけ遅角したタイミングを、前記到達終了時期とする処理である。
前記制御装置は、前記バルブ特性可変装置を操作することで、前記吸気バルブの開弁開始時期を可変制御するバルブ特性制御処理を実行し、
前記終了時期設定処理は、前記回転速度および前記負荷に基づき、前記吸気バルブの開弁開始時期に対する前記到達終了時期の遅角量を算出する遅角量算出処理を含み、
前記終了時期設定処理は、前記吸気バルブの開弁開始時期に対して前記遅角量だけ遅角したタイミングを、前記到達終了時期とする処理である。
発明者は、PNを極力少なくするための到達終了時期が、吸気バルブの開弁開始時期によって変化することを見出している。この理由は、吸気バルブの開弁開始時期に応じて吸気バルブと排気バルブとのオーバーラップ量が変化することによって、内部EGR量が変化するので、吸気系の温度が上昇して吸気系における燃料の気化のしやすさが変化したり、燃焼室に流入することなく吸気系に付着して留まる燃料量が変化したりすることなどが要因と推察される。そこで上記構成では、到達終了時期を、吸気バルブの開弁開始時期に応じて可変設定する。したがって、たとえば吸気バルブの開弁開始時期に応じて可変としない場合と比較して、PNを抑制できる。
特に、上記構成では、到達終了時期を直接算出するのではなく、吸気バルブの開弁開始時期に対する到達終了時期の遅角量をまず算出する。したがって、到達終了時期の遅角量の算出に用いるパラメータに、吸気バルブの開弁開始時期を用いることなく、到達終了時期を吸気バルブの開弁開始時期に応じて可変設定することができる。
例8.例1~例7のいずれか1つの制御装置において、前記内燃機関はさらに、排気通路に排出された排気を浄化する触媒を備え、
前記要求噴射量は、空燃比を目標空燃比に制御するために前記マルチ噴射処理において前記ポート噴射弁から噴射される燃料の量であり、
前記制御装置はさらに、前記触媒の温度が低い場合には前記触媒の温度が高い場合よりも、前記吸気同期噴射の噴射時期を進角させる進角処理を実行するように構成される。
前記要求噴射量は、空燃比を目標空燃比に制御するために前記マルチ噴射処理において前記ポート噴射弁から噴射される燃料の量であり、
前記制御装置はさらに、前記触媒の温度が低い場合には前記触媒の温度が高い場合よりも、前記吸気同期噴射の噴射時期を進角させる進角処理を実行するように構成される。
発明者は、PNを抑制する上で最適な吸気同期噴射の噴射時期は、HCを抑制するうえで最適な吸気同期噴射の噴射時期よりも、遅角側であることを見出した。そこで上記構成では、触媒によるHCの浄化性能が低い触媒の低温時に、HCの浄化性能が高い触媒の高温時と比較して、吸気同期噴射の噴射時期を進角する。したがって、排気中のHCの浄化性能が低いときには、排気中のHC濃度を抑制するうえで適切な噴射時期を設定して且つ、排気中のHC濃度が高くてもこれを浄化することができるときには、PNを抑制する上で適切な噴射時期を設定できる。
発明者は、排気中の粒子状物質(PM)の数であるPNを減少させるべく、要求噴射量の一部を、吸気バルブの開弁期間に同期して噴射する吸気同期噴射によって噴射し、残りを吸気同期噴射よりも進角側の吸気非同期噴射によって噴射するマルチ噴射処理を検討した。そして、発明者は、吸気行程における噴射時期によって、排気中の粒子状物質(PM)の数(PN)が大きく変化することを見出した。さらに、発明者は、吸気同期噴射の噴射時期をPNを抑制する上で適切な時期とする場合、排気中のHC濃度が上昇するおそれがあることを見出した。上記構成は、このようなおそれに対処する。
例9.上記例8の制御装置において、前記内燃機関は、吸気バルブのバルブ特性を可変とするバルブ特性可変装置を備え、前記制御装置はさらに、前記バルブ特性可変装置を操作することで、前記吸気バルブの開弁開始時期を可変制御するバルブ特性制御処理を実行するように構成され、
前記可変処理は、前記吸気バルブの開弁開始時期に応じて、前記吸気同期噴射の噴射時期を可変設定する。
前記可変処理は、前記吸気バルブの開弁開始時期に応じて、前記吸気同期噴射の噴射時期を可変設定する。
前記可変処理は、
前記吸気バルブの開弁開始時期に基づき、前記吸気同期噴射の噴射時期を設定する基準時期設定処理と、
前記内燃機関の吸気系の温度に応じて、前記触媒の温度が規定値未満である場合の遅角ガード値を設定するガード値設定処理と、
前記触媒の温度が前記規定値未満の場合に、前記基準時期設定処理によって設定される噴射時期と、前記遅角ガード値とのうちのより進角側の時期を、前記吸気同期噴射の噴射時期に設定する低温時期設定処理と
を含み、
前記可変処理は、前記触媒の温度が前記規定値以上である場合、前記基準時期設定処理によって設定される噴射時期を、前記吸気同期噴射の噴射時期に設定する処理である。
前記吸気バルブの開弁開始時期に基づき、前記吸気同期噴射の噴射時期を設定する基準時期設定処理と、
前記内燃機関の吸気系の温度に応じて、前記触媒の温度が規定値未満である場合の遅角ガード値を設定するガード値設定処理と、
前記触媒の温度が前記規定値未満の場合に、前記基準時期設定処理によって設定される噴射時期と、前記遅角ガード値とのうちのより進角側の時期を、前記吸気同期噴射の噴射時期に設定する低温時期設定処理と
を含み、
前記可変処理は、前記触媒の温度が前記規定値以上である場合、前記基準時期設定処理によって設定される噴射時期を、前記吸気同期噴射の噴射時期に設定する処理である。
発明者は、PNを極力少なくするための吸気同期噴射の噴射時期が、吸気バルブの開弁開始時期によって変化することを見出している。この理由は、吸気バルブの開弁開始時期に応じて吸気バルブと排気バルブとのオーバーラップ量が変化することで内部EGR量が変化するので、吸気系の温度が上昇することで吸気系における燃料の気化のしやすさが変化したり、燃焼室に流入することなく吸気系に付着して留まる燃料量が変化したりすることなどが要因と推察される。そこで上記構成では、吸気同期噴射の噴射時期を、吸気バルブの開弁開始時期に応じて可変設定する。したがって、たとえば吸気バルブの開弁開始時期に応じて可変としない場合と比較して、PNを抑制できる。
触媒の温度が低い場合に、排気中のHCの濃度が高くなることを抑制するうえで必要な噴射時期の設定には、吸気系の温度が大きく関与する傾向がある。そこで上記構成では、吸気系の温度によって遅角ガード値を設定する。具体的には、PNを抑制する上で適切な噴射時期である基準時期設定処理によって設定される噴射時期に対して、遅角ガード値を遅角側の限界値とする、ガード処理を施す。したがって、PNを抑制する上で適切な時期と、HCを抑制する上で適切な時期とを、適切に設定することができる。
例10.内燃機関の制御装置であって、前記制御装置は、吸気通路に燃料を噴射するポート噴射弁を備える内燃機関に適用され、前記制御装置は、
前記ポート噴射弁を操作することで、1燃焼サイクル内において要求される噴射量である要求噴射量の燃料を噴射すべく、吸気同期噴射と吸気非同期噴射とを実行するマルチ噴射処理であって、前記吸気同期噴射は吸気バルブの開弁期間に同期して燃料を噴射し、前記吸気非同期噴射は前記吸気同期噴射よりも進角側のタイミングにて燃料を噴射する、前記マルチ噴射処理と、
前記内燃機関のクランクシャフトの回転角度で表現される、前記吸気同期噴射の噴射時期を可変設定する可変処理と
を実行するように構成され、
前記可変処理は、
前記クランクシャフトの回転速度に基づき、到達終了時期を可変設定する終了時期設定処理であって、前記到達終了時期は、前記ポート噴射弁から最も遅いタイミングで噴射される燃料が、前記内燃機関の燃焼室の入口に到達するタイミングの目標値である、前記終了時期設定処理と、
前記到達終了時期に基づき、前記吸気同期噴射の噴射開始時期を算出する開始時期算出処理と
を含む、内燃機関の制御装置。
前記ポート噴射弁を操作することで、1燃焼サイクル内において要求される噴射量である要求噴射量の燃料を噴射すべく、吸気同期噴射と吸気非同期噴射とを実行するマルチ噴射処理であって、前記吸気同期噴射は吸気バルブの開弁期間に同期して燃料を噴射し、前記吸気非同期噴射は前記吸気同期噴射よりも進角側のタイミングにて燃料を噴射する、前記マルチ噴射処理と、
前記内燃機関のクランクシャフトの回転角度で表現される、前記吸気同期噴射の噴射時期を可変設定する可変処理と
を実行するように構成され、
前記可変処理は、
前記クランクシャフトの回転速度に基づき、到達終了時期を可変設定する終了時期設定処理であって、前記到達終了時期は、前記ポート噴射弁から最も遅いタイミングで噴射される燃料が、前記内燃機関の燃焼室の入口に到達するタイミングの目標値である、前記終了時期設定処理と、
前記到達終了時期に基づき、前記吸気同期噴射の噴射開始時期を算出する開始時期算出処理と
を含む、内燃機関の制御装置。
例11.内燃機関の制御装置であって、前記制御装置が適用される内燃機関は、吸気通路に燃料を噴射するポート噴射弁と、排気通路に排出された排気を浄化する触媒とを備え、前記制御装置は、
空燃比を目標空燃比に制御するための要求噴射量の燃料を噴射すべく前記ポート噴射弁を操作することで、吸気同期噴射と吸気非同期噴射とを実行するマルチ噴射処理であって、前記吸気同期噴射は吸気バルブの開弁期間に同期して燃料を噴射し、前記吸気非同期噴射は前記吸気同期噴射よりも進角側のタイミングにて燃料を噴射する、前記マルチ噴射処理と、
前記触媒の温度が低い場合には前記触媒の温度が高い場合よりも、前記吸気同期噴射の噴射時期を進角させる進角処理と
を実行するように構成される、内燃機関の制御装置。
空燃比を目標空燃比に制御するための要求噴射量の燃料を噴射すべく前記ポート噴射弁を操作することで、吸気同期噴射と吸気非同期噴射とを実行するマルチ噴射処理であって、前記吸気同期噴射は吸気バルブの開弁期間に同期して燃料を噴射し、前記吸気非同期噴射は前記吸気同期噴射よりも進角側のタイミングにて燃料を噴射する、前記マルチ噴射処理と、
前記触媒の温度が低い場合には前記触媒の温度が高い場合よりも、前記吸気同期噴射の噴射時期を進角させる進角処理と
を実行するように構成される、内燃機関の制御装置。
例12.上記の各例1~例11に記載された各種処理を実行する内燃機関の制御方法として具現化される。
例13.上記の例11に記載された各種処理を実行する内燃機関の制御方法として具現化される。
例13.上記の例11に記載された各種処理を実行する内燃機関の制御方法として具現化される。
例14.上記の各例1~例11に記載された各種処理を処理装置に実行させるプログラムを記憶した非一時的なコンピュータ読取可能な記録媒体として具現化される。
例15.上記例8の制御装置はさらに、前記内燃機関の気筒内に充填される空気量に基づき、前記要求噴射量を算出する要求噴射量算出処理を実行するように構成され、
前記可変処理は、前記吸気バルブの開弁開始時期に加えて、前記内燃機関のクランクシャフトの回転速度、および前記内燃機関の負荷に応じて、前記吸気同期噴射の噴射時期を可変設定する処理を含む。
例15.上記例8の制御装置はさらに、前記内燃機関の気筒内に充填される空気量に基づき、前記要求噴射量を算出する要求噴射量算出処理を実行するように構成され、
前記可変処理は、前記吸気バルブの開弁開始時期に加えて、前記内燃機関のクランクシャフトの回転速度、および前記内燃機関の負荷に応じて、前記吸気同期噴射の噴射時期を可変設定する処理を含む。
発明者は、PNを極力少なくするための吸気同期噴射の噴射時期が、クランクシャフトの回転速度によって変化することを見出している。この理由は、回転速度によって吸気通路内の流速が変化することなどから、燃焼室に流入することなく吸気系に付着して留まる燃料量が変化する傾向にあることが、理由の一つと推察される。さらに、ポート噴射弁から噴射された燃料のうち所定量の燃料が気化するまでの期間内における、クランクシャフトの回転量が変化することなどが、理由と推察される。そこで上記構成では、吸気同期噴射の噴射時期を、回転速度に応じて可変設定する。したがって、たとえば回転速度に応じて可変としない場合と比較して、PNを抑制できる。
また発明者は、PNを極力少なくするための噴射時期が、内燃機関の負荷によって変化することを見出している。この理由は、負荷によって、噴射される燃料量が変化することや吸気通路内の圧力が変化することで、燃料の霧化のしやすさが変化するからであると推察される。そこで上記構成では、吸気同期噴射の噴射時期を、負荷に応じて可変設定する。したがって、たとえば負荷に応じて可変としない場合と比較して、PNを抑制できる。
例16.上記例15の制御装置において、前記可変処理は、前記吸気バルブの開弁開始時期、前記回転速度、および前記負荷に加えて、前記内燃機関の吸気系の温度に応じて、前記吸気同期噴射の噴射時期を可変設定する処理である。
発明者は、PNを極力少なくするための吸気同期噴射の噴射時期が、吸気系の温度によって変化することを見出している。この理由は、吸気系の温度によって、吸気系における燃料の気化のしやすさに相違が生じるからであると推察される。そこで上記構成では、吸気同期噴射の噴射時期を、吸気系の温度に応じて可変設定する。したがって、たとえば吸気系の温度に応じて可変としない場合と比較して、PNを抑制できる。
<第1実施形態>
以下、本開示を具体化した第1実施形態に係る内燃機関の制御装置について、図1~図5を参照しつつ説明する。
以下、本開示を具体化した第1実施形態に係る内燃機関の制御装置について、図1~図5を参照しつつ説明する。
図1に示す内燃機関10は、車両に搭載される。内燃機関10の吸気通路12には、上流から順に、スロットルバルブ14およびポート噴射弁16が設けられている。吸気通路12に吸入された空気と、ポート噴射弁16から噴射された燃料とは、吸気バルブ18の開弁に伴って、シリンダ20およびピストン22によって区画された燃焼室24に流入する。燃焼室24において、燃料と空気との混合気は、点火装置26の火花放電によって燃焼に供される。そして、燃焼によって生成される燃焼エネルギは、ピストン22を介して、クランクシャフト28の回転エネルギに変換される。燃焼に供された混合気は、排気バルブ30の開弁に伴って、排気として排気通路32に排出される。排気通路32には、触媒34が設けられている。
クランクシャフト28の回転動力は、タイミングチェーン38を介して、吸気カム軸40および排気カム軸42に伝達される。なお、本実施形態では、吸気カム軸40には、吸気バルブタイミング調整装置44を介して、タイミングチェーン38の動力が伝達される。吸気バルブタイミング調整装置44は、クランクシャフト28と吸気カム軸40との回転位相差を調整することによって、吸気バルブ18の開弁タイミングを調整するアクチュエータである。
制御装置50は、内燃機関10を制御対象とし、内燃機関10の制御量(トルク、排気成分比率等)を制御するために、上記スロットルバルブ14や、ポート噴射弁16、点火装置26、および吸気バルブタイミング調整装置44等の内燃機関10の操作部を操作する。この際、制御装置50は、クランク角センサ60の出力信号Scrや、エアフローメータ62によって検出される吸入空気量Ga、空燃比センサ64によって検出される空燃比Af、吸気カム角センサ66の出力信号Sca、および水温センサ68によって検出される内燃機関10の冷却水の温度(水温THW)を参照する。また、制御装置50は、電圧センサ72によって検出される、バッテリ70の端子電圧Vbを参照する。ここで、バッテリ70は、ポート噴射弁16等の電源となるものである。なお、図1には、スロットルバルブ14、ポート噴射弁16、点火装置26、スタータモータ36、および吸気バルブタイミング調整装置44のそれぞれを操作するための、操作信号MS1~MS5を記載している。
制御装置50は、CPU52、ROM54、および電源回路56を備えており、ROM54に記憶されたプログラムを、CPU52が実行する。したがって、上記制御量の制御を実行する。電源回路56は、制御装置50内の各箇所に電力を供給する。
図2に、制御装置50が実行する処理の一部を示す。図2に示す処理は、ROM54に記憶されたプログラムを、CPU52が実行することで実現される。
吸気位相差算出処理M10は、クランク角センサ60の出力信号Scrと、吸気カム角センサ66の出力信号Scaとに基づき、クランクシャフト28の回転角度に対する吸気カム軸40の回転角度の位相差である、吸気位相差DINを算出する処理である。目標吸気位相差算出処理M12は、内燃機関10の動作点に基づき、目標吸気位相差DIN*を可変設定する処理である。なお、本実施形態では、回転速度NEと充填効率ηとによって動作点を定義している。ここで、CPU52は、回転速度NEを、クランク角センサ60の出力信号Scrに基づき算出し、充填効率ηを、回転速度NEおよび吸入空気量Gaに基づき算出する。なお、充填効率ηは、燃焼室24内に充填される新気量を定めるパラメータである。
吸気位相差算出処理M10は、クランク角センサ60の出力信号Scrと、吸気カム角センサ66の出力信号Scaとに基づき、クランクシャフト28の回転角度に対する吸気カム軸40の回転角度の位相差である、吸気位相差DINを算出する処理である。目標吸気位相差算出処理M12は、内燃機関10の動作点に基づき、目標吸気位相差DIN*を可変設定する処理である。なお、本実施形態では、回転速度NEと充填効率ηとによって動作点を定義している。ここで、CPU52は、回転速度NEを、クランク角センサ60の出力信号Scrに基づき算出し、充填効率ηを、回転速度NEおよび吸入空気量Gaに基づき算出する。なお、充填効率ηは、燃焼室24内に充填される新気量を定めるパラメータである。
吸気位相差制御処理M14は、吸気位相差DINを目標吸気位相差DIN*に制御するために吸気バルブタイミング調整装置44を操作すべく、吸気バルブタイミング調整装置44に操作信号MS5を出力する処理である。
ベース噴射量算出処理M20は、充填効率ηに基づきベース噴射量Qbを算出する処理である。ベース噴射量Qbは、燃焼室24内の混合気の空燃比を目標空燃比とするための、燃料量のベース値である。詳しくは、ベース噴射量算出処理M20は、たとえば充填効率ηが百分率で表現される場合、空燃比を目標空燃比とするための充填効率ηの1%当たりの燃料量QTHに、充填効率ηを乗算することでベース噴射量Qbを算出する処理とすればよい。ベース噴射量Qbは、燃焼室24内に充填される新気量に基づき、空燃比を目標空燃比に制御するために算出された燃料量である。ちなみに、目標空燃比は、たとえば理論空燃比とすればよい。
フィードバック処理M22は、ベース噴射量Qbの補正比率δに、「1」を加算したフィードバック補正係数KAFを算出して出力する処理である。ベース噴射量Qbの補正比率δは、空燃比Afを目標値Af*にフィードバック制御するための操作量としてのフィードバック操作量である。詳しくは、フィードバック処理M22は、空燃比Afと目標値Af*との差を入力とする比例要素および微分要素の各出力値と、空燃比Afと目標値Af*との差に応じた値の積算値を保持し出力する積分要素の出力値との和を補正比率δとする。
低温補正処理M24は、水温THWが所定温度Tth(たとえば60℃)未満の場合、ベース噴射量Qbを増量すべく、低温増量係数Kwを「1」よりも大きい値に算出する処理である。詳しくは、水温THWが低い場合に高い場合よりも、低温増量係数Kwは大きい値に算出される。なお、水温THWが所定温度Tth以上の場合には、低温増量係数Kwは「1」とされ、低温増量係数Kwによるベース噴射量Qbの補正量をゼロとする。
噴射弁操作処理M30は、ポート噴射弁16を操作すべく、ポート噴射弁16に操作信号MS2を出力する処理である。特に、噴射弁操作処理M30は、エアフローメータ62によって検出される吸入空気量Gaの精度が許容範囲となる場合には、ベース噴射量Qb、フィードバック補正係数KAF、および低温増量係数Kwに基づき、ポート噴射弁16に操作信号MS2を出力する処理となる。詳しくは、ポート噴射弁16から1燃焼サイクル内に1つの気筒に供給することが要求される燃料量である要求噴射量Qdを、ポート噴射弁16から噴射させる処理である。ここで、要求噴射量Qdは、「KAF・Kw・Qb」である。
本実施形態では、燃料噴射処理として、図3の(a)部分に例示する処理と、図3の(b)部分に例示する処理との2通りの処理を有する。
図3の(a)部分は、吸気バルブ18の開弁期間に同期して燃料を噴射する吸気同期噴射と、吸気同期噴射よりも進角側のタイミングにて燃料を噴射する吸気非同期噴射との2つの燃料噴射を、実行するマルチ噴射処理である。詳しくは、吸気同期噴射は、ポート噴射弁16から噴射された燃料が、吸気バルブ18の開弁前の位置に到達する期間が、吸気バルブ18の開弁期間に収まるように燃料を噴射するものである。ここで、「吸気バルブ18の開弁前の位置」とは、吸気ポートの下流端のことであり、換言すれば図1に示す燃焼室24への入口IN部分のことである。なお、図1においては、吸気バルブ18が開弁している状態を記載している。また、「到達する期間」の始点は、ポート噴射弁16から噴射された燃料のうち、最も早いタイミングで噴射された燃料が、吸気バルブ18の開弁前の位置に到達するタイミングであり、「到達する期間」の終点は、ポート噴射弁16から噴射された燃料のうち、最も遅いタイミングで噴射された燃料が、吸気バルブ18の開弁前の位置に到達するタイミングである。これに対し、「吸気非同期噴射」は、ポート噴射弁16から噴射された燃料が、吸気バルブ18が開弁する前に、吸気バルブ18に到達するように燃料を噴射するものである。換言すれば、「吸気非同期噴射」は、ポート噴射弁16から噴射された燃料が、吸気バルブ18が開弁するまでは吸気通路12内で滞留し、開弁した後に燃焼室24内に流入する噴射である。なお、本実施形態において吸気非同期噴射は、ポート噴射弁16から噴射された燃料が、吸気バルブ18の開弁前の位置に到達する期間が、吸気バルブ18の閉弁期間に収まるように燃料を噴射するものとする。
図3の(a)部分は、吸気バルブ18の開弁期間に同期して燃料を噴射する吸気同期噴射と、吸気同期噴射よりも進角側のタイミングにて燃料を噴射する吸気非同期噴射との2つの燃料噴射を、実行するマルチ噴射処理である。詳しくは、吸気同期噴射は、ポート噴射弁16から噴射された燃料が、吸気バルブ18の開弁前の位置に到達する期間が、吸気バルブ18の開弁期間に収まるように燃料を噴射するものである。ここで、「吸気バルブ18の開弁前の位置」とは、吸気ポートの下流端のことであり、換言すれば図1に示す燃焼室24への入口IN部分のことである。なお、図1においては、吸気バルブ18が開弁している状態を記載している。また、「到達する期間」の始点は、ポート噴射弁16から噴射された燃料のうち、最も早いタイミングで噴射された燃料が、吸気バルブ18の開弁前の位置に到達するタイミングであり、「到達する期間」の終点は、ポート噴射弁16から噴射された燃料のうち、最も遅いタイミングで噴射された燃料が、吸気バルブ18の開弁前の位置に到達するタイミングである。これに対し、「吸気非同期噴射」は、ポート噴射弁16から噴射された燃料が、吸気バルブ18が開弁する前に、吸気バルブ18に到達するように燃料を噴射するものである。換言すれば、「吸気非同期噴射」は、ポート噴射弁16から噴射された燃料が、吸気バルブ18が開弁するまでは吸気通路12内で滞留し、開弁した後に燃焼室24内に流入する噴射である。なお、本実施形態において吸気非同期噴射は、ポート噴射弁16から噴射された燃料が、吸気バルブ18の開弁前の位置に到達する期間が、吸気バルブ18の閉弁期間に収まるように燃料を噴射するものとする。
図3の(b)部分は、吸気非同期噴射のみを実行するシングル噴射処理である。
本実施形態においてマルチ噴射処理は、排気中の粒子状物質(PM)の数(PN)を低減することを狙って実行される。すなわち、吸気通路12や吸気バルブ18等の内燃機関10の吸気系の温度が、ある程度低い場合、充填効率ηがある程度大きい領域においてシングル噴射処理を実行すると、PNが増加する傾向がある。この理由は、充填効率ηが大きい場合には小さい場合よりも、要求噴射量Qdが大きい値となり、結果、吸気系に付着する燃料量が多くなることに起因していると考えられる。詳しくは、吸気系に付着した燃料量がある程度多くなる場合、付着した燃料のせん断によって、付着した燃料の一部が液滴のまま燃焼室24に流入するからであると推察される。そこで本実施形態では、要求噴射量Qdの一部を吸気同期噴射によって噴射する。したがって、要求噴射量Qdが多い場合であっても、吸気系に付着する燃料量を要求噴射量Qdが多い割に少なくし、ひいてはPNの低減を図る。なお、内燃機関10の冷間始動時においては、充填効率ηによらず、噴射量が多くなるので、やはりシングル噴射処理を実行するとPNが増加する傾向がある。
本実施形態においてマルチ噴射処理は、排気中の粒子状物質(PM)の数(PN)を低減することを狙って実行される。すなわち、吸気通路12や吸気バルブ18等の内燃機関10の吸気系の温度が、ある程度低い場合、充填効率ηがある程度大きい領域においてシングル噴射処理を実行すると、PNが増加する傾向がある。この理由は、充填効率ηが大きい場合には小さい場合よりも、要求噴射量Qdが大きい値となり、結果、吸気系に付着する燃料量が多くなることに起因していると考えられる。詳しくは、吸気系に付着した燃料量がある程度多くなる場合、付着した燃料のせん断によって、付着した燃料の一部が液滴のまま燃焼室24に流入するからであると推察される。そこで本実施形態では、要求噴射量Qdの一部を吸気同期噴射によって噴射する。したがって、要求噴射量Qdが多い場合であっても、吸気系に付着する燃料量を要求噴射量Qdが多い割に少なくし、ひいてはPNの低減を図る。なお、内燃機関10の冷間始動時においては、充填効率ηによらず、噴射量が多くなるので、やはりシングル噴射処理を実行するとPNが増加する傾向がある。
図4に、噴射弁操作処理M30の処理の手順を示す。図4に示す処理は、ROM54に記憶されたプログラムを、CPU52がたとえば所定周期で繰り返し実行することで実現される。なお、以下では、先頭に「S」が付与された数字によって各処理のステップ番号を表現する。
図4に示す一連の処理において、CPU52は、まず、スタータモータ36が起動されてから(図中、「スタータON後」と記載)、所定期間内であるか否かを判定する(S10)。ここで「所定期間」とは、燃焼室24内に充填される空気量を精度よく把握することができず、ベース噴射量Qbを精度よく算出することができない期間とする。CPU52は、スタータモータ36が起動されてから所定期間内であると判定する場合(S10:YES)、マルチ噴射処理の要求があるか否かを判定する(S12)。ここで、CPU52は、水温THWが所定温度Tth未満の場合に、マルチ噴射処理の要求があると判定する。そしてCPU52は、マルチ噴射処理の要求があると判定する場合(S12:YES)、水温THW、スタータON後の噴射回数、および内燃機関10の停止時間Tstpに基づき、吸気非同期噴射の噴射量である非同期噴射量Qnsを算出する(S14)。内燃機関10の停止時間Tstpは、内燃機関10が前回停止してから、今回の始動までの経過時間である。ここでCPU52は、水温THWが低い場合に高い場合よりも、非同期噴射量Qnsを大きい値に算出する。またCPU52は、停止時間Tstpが長い場合に短い場合よりも、非同期噴射量Qnsを大きい値に算出する。
次にCPU52は、水温THWに基づき、吸気同期噴射の噴射量である同期噴射量Qsを算出する(S16)。ここでCPU52は、水温THWが低い場合に高い場合よりも、同期噴射量Qsを大きい値に算出する。
上記非同期噴射量Qnsと同期噴射量Qsとの和は、1燃焼サイクルに要求される噴射量である要求噴射量Qdである。すなわち、S14,S16の処理は、要求噴射量Qdの燃料を、非同期噴射量Qnsと同期噴射量Qsとに分割する処理とみなせる。
次にCPU52は、水温THW、回転速度NE、および吸気位相差DINに基づき、吸気同期噴射の噴射開始時期Is(クランク角度)を算出する(S18)。ここで、水温THWは、内燃機関10の吸気系の温度との正の相関を有するパラメータである。水温THWが異なると、吸気系に付着した燃料の気化のしやすさが異なる傾向があるので、PNを抑制する上で適切な吸気同期噴射の噴射開始時期Isは、水温THWに依存する。また、回転速度NEが異なると、吸気通路12内の流体の流速が異なるので、燃焼室24内に流入することなく吸気系に付着して留まる燃料量が、異なることとなる。また、回転速度NEが異なると、ポート噴射弁16から噴射された燃料のうち、所定量の燃料が気化するまでの期間内における、クランクシャフト28の回転量が異なることとなる。よって、PNを抑制するうえで適切な吸気同期噴射の噴射開始時期Isは、回転速度NEに依存する。また、吸気位相差DINが異なると、吸気バルブ18の開弁期間と、排気バルブ30の開弁期間とが重複するオーバーラップ量が異なり、ひいては燃焼室24から吸気通路12への流体の吹き返し量が異なることとなる。そして、吹き返し量が異なると、吸気系の温度が異なるので、吸気系における燃料の気化のしやすさが異なったり、燃焼室24内に流入することなく吸気系に付着して留まる燃料量が異なったりする。よって、PNを抑制するうえで適切な吸気同期噴射の噴射開始時期Isは、吸気位相差DINに依存する。なお、スタータON後の所定期間内においては、充填効率ηに基づき目標吸気位相差DIN*を可変とすることもできないので、目標吸気位相差DIN*を固定値としてもよい。この場合であっても、目標吸気位相差DIN*の固定される位置が車両毎に異なる場合があるので、吸気位相差DINに基づき吸気同期噴射の噴射開始時期Isを算出する。したがって、S18の処理の汎用性を高めることができる。
具体的には、水温THW、回転速度NE、および吸気位相差DINを入力変数とし、吸気同期噴射の噴射開始時期Isを出力変数とするマップデータが、予めROM54に記憶された状態で、CPU52によって吸気同期噴射の噴射開始時期Isをマップ演算する処理となる。ここで、「マップデータ」とは、入力変数の離散的な値と、入力変数の値のそれぞれに対応する出力変数の値と、の組データである。また「マップ演算」は、たとえば、入力変数の値がマップデータの入力変数の値のいずれかに一致する場合、対応するマップデータの出力変数の値を演算結果とする一方、一致しない場合、マップデータに含まれる複数の出力変数の値の補間によって得られる値を、演算結果とする処理とすればよい。
次にCPU52は、吸気非同期噴射の噴射開始時期Ins(クランク角度)を算出する(S20)。ここでCPU52は、吸気非同期噴射の噴射終了時期と、吸気同期噴射の噴射開始時期Isとの間の時間間隔が、所定時間以上となるように、吸気非同期噴射の噴射開始時期Insを算出する。ここで「所定時間」は、ポート噴射弁16の構造によって定まるものであり、時系列的に隣り合う2つの燃料噴射のうち、進角側の噴射の終了前に、遅角側の噴射が始まることを回避するための時間である。そしてCPU52は、噴射開始時期Insに非同期噴射量Qnsの燃料を噴射すべく、ポート噴射弁16に操作信号MS2を出力することでポート噴射弁16を操作し、次に吸気同期噴射の噴射開始時期Isに同期噴射量Qsの燃料を噴射すべく、ポート噴射弁16に操作信号MS2を出力することでポート噴射弁16を操作する(S22)。
これに対し、CPU52は、マルチ噴射処理の実行要求がないと判定する場合(S12:NO)、水温THW、スタータON後の噴射回数、および停止時間Tstpに基づき、1燃焼サイクルに要求される噴射量である要求噴射量Qdを算出する(S24)。次にCPU52は、シングル噴射の噴射開始時期Isin(クランク角度)を設定する(S26)。そしてCPU52は、シングル噴射の噴射開始時期Isinに要求噴射量Qdの燃料を噴射させるべく、ポート噴射弁16に操作信号MS2を出力することでポート噴射弁16を操作する(S22)。
なお、CPU52は、S22の処理が完了する場合や、S10の処理において否定判定する場合には、図4に示す一連の処理を一旦終了する。
図5に、噴射弁操作処理M30の処理の手順を示す。図5に示す処理は、ROM54に記憶されたプログラムを、CPU52がたとえば所定周期で繰り返し実行することで実現される。
図5に、噴射弁操作処理M30の処理の手順を示す。図5に示す処理は、ROM54に記憶されたプログラムを、CPU52がたとえば所定周期で繰り返し実行することで実現される。
図5に示す一連の処理において、CPU52は、まずスタータモータ36がON状態とされてから、所定期間が経過したか否かを判定する(S30)。そしてCPU52は、スタータモータ36がON状態とされてから所定期間が経過したと判定する場合(S30:YES)、マルチ噴射要求があるか否かを判定する(S32)。ここでCPU52は、水温THWが所定温度Tth以下である旨の条件(i)と、充填効率ηが規定値以上である旨の条件(ii)と、回転速度NEが所定速度NEth以下である旨の条件(iii)との論理積が真である場合に、マルチ噴射処理を実行する要求があると判定する。なお、条件(iii)は、吸気非同期噴射の終了タイミングと、吸気同期噴射の開始タイミングとの間の時間間隔を確保するための条件である。また、この条件は、マルチ噴射処理がシングル噴射処理よりも演算負荷が大きいので、制御装置50の演算負荷の増大によって発熱量が過大となることを抑制する旨の条件である。
そしてCPU52は、マルチ噴射要求があると判定する場合(S32:YES)、吸気同期噴射の噴射量である、同期噴射量Qsを算出する(S34)。ここで、CPU52は、回転速度NE、充填効率η、水温THW、および吸気位相差DINに応じて、同期噴射量Qsを算出する。詳しくは、回転速度NE、充填効率η、水温THW、および吸気位相差DINを入力変数とし、同期噴射量Qsを出力変数とするマップデータが、予めROM54に記憶された状態で、CPU52によって同期噴射量Qsがマップ演算される。
次にCPU52は、要求噴射量Qdである「Qb・KAF・Kw」から、同期噴射量Qsを減算することによって、吸気非同期噴射の噴射量である非同期噴射量Qnsを算出する(S36)。
よって、非同期噴射量Qnsと同期噴射量Qsとの和は、要求噴射量Qdに等しい。すなわち、S34~S36の処理によって、要求噴射量Qdの燃料が、非同期噴射量Qnsと同期噴射量Qsとに分割される。ちなみに、同期噴射量Qsは、フィードバック補正係数KAFおよび低温増量係数Kwの値に影響されない。このように、同期噴射量Qsを固定する理由は、同期噴射量Qsを変化させる場合の排気成分比率の変化が、非同期噴射量Qnsを変化させる場合の排気成分比率の変化よりも顕著となるからである。
次に、CPU52は、回転速度NEおよび充填効率ηに基づき、ポート噴射弁16から噴射された燃料のうち最も遅いタイミングで噴射された燃料が、吸気バルブ18の閉弁期間における位置(図1のIN部分)に到達するタイミングの目標値である、図3の(a)部分に示す到達終了時期AEsを算出する(S38)。ここで、回転速度NEが異なると、吸気通路12内の流体の流速の変化をもたらすので、燃焼室24内に流入することなく吸気系に付着して留まる燃料量が異なることとなる。また、回転速度NEが異なると、ポート噴射弁16から噴射された燃料のうち、所定量の燃料が気化するまでに要する期間内における、クランクシャフト28の回転量が異なることとなる。よって、PNを抑制するうえで適切な到達終了時期AEsは、回転速度NEに依存する。また、充填効率ηが異なると、ベース噴射量Qbが異なり、ひいては吸気系に付着する燃料量が異なることとなる。また、充填効率ηが異なると、吸気通路12内の圧力が変化し、燃料の霧化のしやすさが異なることとなる。よって、PNを抑制するうえで適切な到達終了時期AEsは、充填効率ηに依存する。
次に、CPU52は、水温THWに応じた補正係数である水温補正係数Kthwを、S38の処理によって算出された到達終了時期AEsに乗算した値を、到達終了時期AEsに代入する(S40)。
ここで、基準とするクランク角度は、到達終了時期AEsの想定される最も遅角側の位置よりも、遅角側に位置するとする。そして到達終了時期AEsは、基準とするクランク角度に対して、進角側の値であるほど大きい値となっている。水温補正係数Kthwは、ゼロよりも大きい値である。詳しくは、CPU52は、水温THWが低い場合に高い場合よりも、水温補正係数Kthwを小さい値に算出することによって、到達終了時期AEsを遅角側に補正する。これは、水温THWが低い場合には高い場合よりも、吸気系において燃料が気化しにくくなることによって、燃焼室24内に流入することなく吸気系に付着して留まる燃料量が多くなるので、PNを抑制する上で最適な時期が遅角側にズレることに鑑みたものである。
そしてCPU52は、S40の処理によって求めた到達終了時期AEsと、同期噴射量Qsと回転速度NEと端子電圧Vbとに基づき、吸気同期噴射の噴射開始時期Isを算出する(S42)。ここで、CPU52は、同期噴射量Qsが大きい場合に小さい場合よりも、吸気同期噴射の噴射開始時期Isをより進角側の値に算出する。また、CPU52は、回転速度NEが大きい場合に小さい場合よりも、吸気同期噴射の噴射開始時期Isをより進角側の値とする。詳しくはCPU52は、同期噴射量Qsから定まるポート噴射弁16による噴射期間と飛行時間と無効噴射時間とを加算した値だけ、到達終了時期AEsに対して進角したタイミングを吸気同期噴射の噴射開始時期Isとする。ここで、「飛行時間」とは、ポート噴射弁16から噴射された燃料が、燃焼室24の入口INに到達するまでの所要時間のことであり、本実施形態では固定値としている。また、「無効噴射時間」とは、ポート噴射弁16を開弁させる操作信号MS2を出力した後、実際に燃料の噴射が開始されるまでの時間のことである。無効噴射時間は、ポート噴射弁16に印加される駆動電圧に依存するので、本実施形態においてCPU52は、端子電圧Vbに応じて無効噴射時間を算出する。
次にCPU52は、吸気同期噴射の噴射開始時期Isに基づき、非同期噴射の噴射開始時期Insを算出する(S44)。ここでは、吸気非同期噴射の噴射終了時期と、吸気同期噴射の噴射開始時期Isとの間の時間間隔が、上記所定時間以上となるようにする。
上記処理によって、吸気同期噴射の噴射開始時期Isが、吸気非同期噴射の噴射開始時期Insとは独立に設定される。この理由は、吸気同期噴射の上記到達終了時期AEsが、排気中のPNやHCに特に影響しやすいからである。
そして、CPU52は、噴射開始時期Insにおいて非同期噴射量Qnsの燃料を噴射し、次に吸気同期噴射の噴射開始時期Isにおいて同期噴射量Qsの燃料を噴射すべく、ポート噴射弁16に操作信号MS2を出力することでポート噴射弁16を操作する(S46)。
一方、CPU52は、マルチ噴射処理の要求がないと判定する場合(S32:NO)、要求噴射量Qdに「KAF・Kw・Qb」を代入する(S48)。次にCPU52は、シングル噴射の噴射開始時期Isinを算出する(S50)。詳しくは、CPU52は、図3の(b)部分に示すように、吸気バルブ18の開弁開始時期に対して、所定量Δ1だけ進角したタイミングを到達終了時期AEnsとする。次にCPU52は、要求噴射量Qdから定まるポート噴射弁16による噴射期間と、飛行時間と無効噴射時間とを加算した値だけ、到達終了時期AEsに対して進角したタイミングをシングル噴射の噴射開始時期Isinとする。図5に戻り、CPU52は、シングル噴射の噴射開始時期Isinにおいて要求噴射量Qdの燃料を噴射すべく、ポート噴射弁16に操作信号MS2を出力することで、ポート噴射弁16を操作する(S46)。
なお、CPU52は、S46の処理が完了する場合や、S30において否定判定する場合には、図5に示す一連の処理を一旦終了する。
ここで、本実施形態の作用および効果について説明する。
ここで、本実施形態の作用および効果について説明する。
CPU52は、スタータON後の所定期間内においては、水温THW、回転速度NE、および吸気位相差DINに基づき、吸気同期噴射の噴射開始時期Isを可変設定する。また、CPU52は、スタータON後に所定期間経過した後においては、回転速度NE、充填効率η、および水温THWに基づき、吸気同期噴射の噴射開始時期Isを可変設定する。したがって、たとえば吸気同期噴射の噴射開始時期Isを固定する場合と比較すると、PNを抑制するうえで最適な時期への適合が可能となるので、PNを抑制することができる。
以上説明した本実施形態によれば、さらに以下に記載する効果が得られる。
(1)CPU52は、スタータON後に所定期間経過すると、到達終了時期AEsに基づき吸気同期噴射の噴射開始時期Isを設定した。ここで、PNを抑制する上で適切なタイミングは、ポート噴射弁16から最も遅いタイミングで噴射された燃料が、燃焼室24の入口INに到達するタイミングで定まることが、発明者によって見出されている。そして、入口INに到達する上記タイミングから、吸気同期噴射の噴射開始時期Isは一義的に定まらず、吸気同期噴射の噴射開始時期Isは同期噴射量Qs等に依存する。ここで、同期噴射量Qsは、回転速度NE、水温THW、充填効率η、および吸気位相差DINに応じて算出される。よって、仮に到達終了時期AEsを求めることなく、吸気同期噴射の噴射開始時期Isを直接求める場合には、少なくとも同期噴射量Qsの算出に用いるパラメータすべてを含んだ高次元の適合が必要となり、適合工数が大きくなる。これに対し、本実施形態では、到達終了時期AEsを用いる。したがって、回転速度NEおよび充填効率ηという2次元のパラメータと、到達終了時期AEsとの関係の適合と、水温THWという1次元のパラメータと水温補正係数Kthwとの関係の適合とで済むので、本実施形態では、適合工数を低減できる。
(1)CPU52は、スタータON後に所定期間経過すると、到達終了時期AEsに基づき吸気同期噴射の噴射開始時期Isを設定した。ここで、PNを抑制する上で適切なタイミングは、ポート噴射弁16から最も遅いタイミングで噴射された燃料が、燃焼室24の入口INに到達するタイミングで定まることが、発明者によって見出されている。そして、入口INに到達する上記タイミングから、吸気同期噴射の噴射開始時期Isは一義的に定まらず、吸気同期噴射の噴射開始時期Isは同期噴射量Qs等に依存する。ここで、同期噴射量Qsは、回転速度NE、水温THW、充填効率η、および吸気位相差DINに応じて算出される。よって、仮に到達終了時期AEsを求めることなく、吸気同期噴射の噴射開始時期Isを直接求める場合には、少なくとも同期噴射量Qsの算出に用いるパラメータすべてを含んだ高次元の適合が必要となり、適合工数が大きくなる。これに対し、本実施形態では、到達終了時期AEsを用いる。したがって、回転速度NEおよび充填効率ηという2次元のパラメータと、到達終了時期AEsとの関係の適合と、水温THWという1次元のパラメータと水温補正係数Kthwとの関係の適合とで済むので、本実施形態では、適合工数を低減できる。
<第2実施形態>
以下、第2実施形態について、第1実施形態との相違点を中心に、図6A~図7を参照しつつ説明する。
以下、第2実施形態について、第1実施形態との相違点を中心に、図6A~図7を参照しつつ説明する。
図6Aおよび図6Bのいずれにも、到達終了時期と、PNおよびHCとの関係を示す。詳しくは、図6Aは、オーバーラップ量がゼロである場合を示し、図6Bは、吸気バルブ18の開弁開始時期を進角させることによって、オーバーラップ量がゼロよりも大きくなっている場合を示す。
図6Aおよび図6Bに示すように、吸気バルブ18を進角させてオーバーラップ量が大きくなると、PNを抑制する上で最適な到達終了時期は、進角側に移行する。この理由は、吸気バルブ18と排気バルブ30との双方が開弁している期間において、燃焼室24内の流体が吸気通路12に吹き返すことによって、吸気系が温められ、吸気系における燃料が気化しやすくなるからであると考えられる。また、燃焼室24内に流入することなく吸気系に付着して留まる燃料量が、減少するからであると考えられる。
よって、本実施形態では、到達終了時期AEsを直接適合するのではなく、吸気バルブ18の開弁開始時期に対する、到達終了時期AEsの遅角量ΔAEsを適合する。したがって、吸気位相差DINが進角側となるほど、到達終了時期AEsは進角側の時期となる。
なお、図6Aは、水温THWが0°,20°,40°のそれぞれである場合を示しており、図6Bは、水温THWが0°,20°のそれぞれである場合を示している。図6Aおよび図6Bには、水温THWが低い場合、到達終了時期AEsをより遅角側とした方が、PNを抑制できることが示されており、このような傾向は、図5のS40の処理における水温補正係数Kthwの設定と整合している。
図7に、本実施形態にかかる噴射弁操作処理M30の処理の手順を示す。図7に示す処理は、ROM54に記憶されたプログラムを、CPU52がたとえば所定周期で繰り返し実行することで実現される。なお、図7において、図5に示した処理に対応する処理については、便宜上同一のステップ番号を付している。
図7に示す一連の処理において、CPU52は、S36の処理が完了すると、回転速度NEおよび充填効率ηに基づき、遅角量ΔAEsを算出する(S38a)。次に、CPU52は、S38aにおいて算出された遅角量ΔAEsに、水温補正係数Kthwを乗算した値を、遅角量ΔAEsに代入する(S40a)。到達終了時期AEsは、吸気位相差DINから定まる吸気バルブ18の開弁開始時期に対して遅角量ΔAEsだけ遅角したタイミングであり、そしてCPU52は、到達終了時期AEsに対して、同期噴射量Qsから定まるポート噴射弁16による噴射期間と飛行時間と無効噴射時間とを加算した値だけ進角したタイミングを、吸気同期噴射の噴射開始時期Isとする(S42a)。そしてCPU52は、S44の処理に移行する。
このように、本実施形態によれば、遅角量ΔAEsによって到達終了時期AEsを定めるので、到達終了時期AEsは、吸気バルブ18の開弁開始時期が進角側となるほど、より進角側の値とされる。このような処理は、図6Aおよび図6Bに示した傾向を反映させたものとなっている。
なお、たとえば吸気位相差DINが、回転速度NEおよび充填効率ηから定まる場合、上記第1実施形態のように、到達終了時期AEsを、回転速度NEおよび充填効率ηに応じて定める。したがって、吸気位相差DINが進角側となるほど、到達終了時期AEsは進角側の値に適合される。ただし、同一の内燃機関10であっても、搭載車種によって、回転速度NEおよび充填効率ηに応じた吸気位相差DINの設定が異なる場合があり、その場合に設定を変えたことのみを理由として、到達終了時期AEsの適合をやり直すことは適合工数の増大を招く。これに対し、本実施形態では、遅角量ΔAEsを適合する。したがって、回転速度NEおよび充填効率ηに応じた吸気位相差DINの設定が異なる場合であっても、それら吸気位相差DINの設定が互いに異なるもの同士で、遅角量ΔAEsを共有することが可能となる。
<第3実施形態>
以下、第3実施形態について、第1実施形態との相違点を中心に、図8を参照しつつ説明する。
以下、第3実施形態について、第1実施形態との相違点を中心に、図8を参照しつつ説明する。
図8に、本実施形態にかかる噴射弁操作処理M30の処理の手順を示す。図8に示す処理は、ROM54に記憶されたプログラムを、CPU52がたとえば所定周期で繰り返し実行することで実現される。なお、図8において、図5に示した処理に対応する処理については、便宜上同一のステップ番号を付している。
図8に示す一連の処理において、CPU52は、S36の処理が完了する場合、水温THWの値(図中、THW1,…THWnと記載)に応じて、次のいずれかの処理を選択的に実行する(S38b)。ここで第1処理は、回転速度NE、充填効率η、および吸気位相差DINを入力変数とし、到達終了時期AEsを出力変数とするマップデータに基づき、到達終了時期AEsをマップ演算する処理である。また第2処理は、回転速度NEおよび充填効率ηを入力変数とし、遅角量ΔAEsを出力変数とするマップデータに基づき、遅角量ΔAEsをマップ演算する処理である。ここで、第1処理は、吸気バルブ18の開弁開始時期の進角量に比例して、到達終了時期AEsを進角させることによっては、必ずしもPNを抑制する上で最適な到達終了時期AEsとならない懸念が存在する水温領域において実行される。
次にCPU52は、S38bの処理において遅角量ΔAEsが算出されたか、到達終了時期AEsが算出されたかに応じて、図7のS42aの処理か、図5のS42の処理に応じた処理を実行する(S42b)。なお、CPU52は、S42bの処理が完了する場合、S44の処理に移行する。
このように本実施形態では、吸気バルブ18の開弁開始時期の進角量に比例して到達終了時期AEsを定めることによっては、PNを抑制する観点から最適化が困難な水温領域においては、回転速度NE、充填効率η、および吸気位相差DINに応じた、到達終了時期AEsの適合値を用いる。よって、適合工数の増大を抑制しつつも、PNをより低減できる。さらに、吸気位相差DINに基づき、到達終了時期AEsを設定する。したがって、たとえば水温THWが低い場合等において、吸気位相差DINが、回転速度NEおよび充填効率ηに応じた値とされることなく、例外的に、より遅角側の値とされる場合等であっても、PNの抑制にとって適切な値とすることができる。
<対応関係>
上記実施形態における事項と、上記「概要」の欄に記載した事項との対応関係は、次の通りである。以下では、「概要」の欄に記載した例の番号毎に、対応関係を示している。
上記実施形態における事項と、上記「概要」の欄に記載した事項との対応関係は、次の通りである。以下では、「概要」の欄に記載した例の番号毎に、対応関係を示している。
[1],[2]「マルチ噴射処理」は、図4におけるS20の処理を経由したS22の処理や、図5におけるS44の処理を経由したS46の処理に対応する。
「可変処理」は、図4におけるS18の処理や、図5におけるS38~S42の処理、図7におけるS38a~S42aの処理、および図8におけるS38b,S42bの処理のそれぞれに対応する。
「可変処理」は、図4におけるS18の処理や、図5におけるS38~S42の処理、図7におけるS38a~S42aの処理、および図8におけるS38b,S42bの処理のそれぞれに対応する。
[2]「要求噴射量算出処理」は、ベース噴射量算出処理M20、フィードバック処理M22、および低温補正処理M24に対応する。すなわち、要求噴射量Qdは、「Qb・KAF・Kw」であるので、上記各処理のそれぞれによって、ベース噴射量Qb、フィードバック補正係数KAF、および低温増量係数Kwが算出されることによって、要求噴射量Qdが算出されたとみなせる。
[3],[5],[6]「終了時期設定処理」は、図5におけるS38,S40の処理と、図7におけるS38a,S40aの処理と、図8におけるS38bの処理のそれぞれに対応する。すなわち、吸気位相差DINから定まる吸気バルブ18の開弁開始時期に対して、遅角量ΔAEsだけ遅角したタイミングが到達終了時期である。したがって、S42a,S42bの処理において吸気位相差DINを参照していることを、吸気バルブ18の開弁開始時期に対して遅角量ΔAEsだけ遅角したタイミングとしているとみなせる。
「開始時期算出処理」は、図5のS42の処理や、図7のS42aの処理、図8のS42bの処理のそれぞれに対応する。
[4],[7]「バルブ特性可変装置」は、吸気バルブタイミング調整装置44に対応し、「バルブ特性制御処理」は、目標吸気位相差算出処理M12および吸気位相差制御処理M14に対応する。「遅角量算出処理」は、S38a,S38bの処理に対応する。
[4],[7]「バルブ特性可変装置」は、吸気バルブタイミング調整装置44に対応し、「バルブ特性制御処理」は、目標吸気位相差算出処理M12および吸気位相差制御処理M14に対応する。「遅角量算出処理」は、S38a,S38bの処理に対応する。
<その他の実施形態>
なお、上記各実施形態は、以下のように変更して実施することができる。上記各実施形態および以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
なお、上記各実施形態は、以下のように変更して実施することができる。上記各実施形態および以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
・「開始時期算出処理について」
上記実施形態では、無効噴射時間が端子電圧Vbに依存することを考慮して、吸気同期噴射の噴射開始時期Isを算出したがこれに限らない。たとえば、無効噴射時間を固定値としてもよい。
上記実施形態では、無効噴射時間が端子電圧Vbに依存することを考慮して、吸気同期噴射の噴射開始時期Isを算出したがこれに限らない。たとえば、無効噴射時間を固定値としてもよい。
・「終了時期算出処理について」
図7においては、回転速度NEおよび充填効率ηを入力変数とし、遅角量ΔAEsを出力変数とするマップデータを用いて、遅角量ΔAEsをマップ演算し、これを水温THWに基づき補正したがこれに限らない。たとえば、回転速度NE、充填効率η、および水温THWを入力変数とし、遅角量ΔAEsを出力変数とするマップデータを用いて、マップ演算してもよい。
図7においては、回転速度NEおよび充填効率ηを入力変数とし、遅角量ΔAEsを出力変数とするマップデータを用いて、遅角量ΔAEsをマップ演算し、これを水温THWに基づき補正したがこれに限らない。たとえば、回転速度NE、充填効率η、および水温THWを入力変数とし、遅角量ΔAEsを出力変数とするマップデータを用いて、マップ演算してもよい。
図8においては、水温THWが所定温度領域に入る場合に限り、回転速度NE、充填効率η、および吸気位相差DINを入力変数とし、到達終了時期AEsを出力変数とするマップデータを用いて、到達終了時期AEsをマップ演算したがこれに限らない。たとえば水温THWにかかわらず、回転速度NE、充填効率η、および吸気位相差DINを入力変数とし、到達終了時期AEsを出力変数とするマップデータを用いて到達終了時期AEsをマップ演算し、これを水温THWに応じて補正してもよい。また、これに代えて、回転速度NE、充填効率η、吸気位相差DIN、および水温THWを入力変数とし、到達終了時期AEsを出力変数とするマップデータを用いて、到達終了時期AEsをマップ演算してもよい。
・「可変処理について」
(a)スタータON後の所定期間内
図4においては、回転速度NE、水温THW、および吸気位相差DINを入力変数とし、噴射開始時期を出力変数とするマップデータに基づき噴射開始時期をマップ演算したがこれに限らない。たとえば、回転速度NEおよび吸気位相差DINを入力変数とし、噴射開始時期を出力変数とするマップデータに基づき、噴射開始時期をマップ演算し、これを水温THWに基づき補正してもよい。また、たとえば、吸気位相差DINによらずに回転速度NEおよび水温THWのみに基づき、噴射開始時期を算出したり、水温THWによらずに回転速度NEおよび吸気位相差DINに基づき噴射開始時期を算出したり、回転速度NEによらずに水温THWおよび吸気位相差DINに基づき噴射開始時期を算出したりしてもよい。なお、吸気位相差DINを用いることに代えて、目標吸気位相差DIN*を用いてもよい。
(a)スタータON後の所定期間内
図4においては、回転速度NE、水温THW、および吸気位相差DINを入力変数とし、噴射開始時期を出力変数とするマップデータに基づき噴射開始時期をマップ演算したがこれに限らない。たとえば、回転速度NEおよび吸気位相差DINを入力変数とし、噴射開始時期を出力変数とするマップデータに基づき、噴射開始時期をマップ演算し、これを水温THWに基づき補正してもよい。また、たとえば、吸気位相差DINによらずに回転速度NEおよび水温THWのみに基づき、噴射開始時期を算出したり、水温THWによらずに回転速度NEおよび吸気位相差DINに基づき噴射開始時期を算出したり、回転速度NEによらずに水温THWおよび吸気位相差DINに基づき噴射開始時期を算出したりしてもよい。なお、吸気位相差DINを用いることに代えて、目標吸気位相差DIN*を用いてもよい。
(b)スタータON後の所定期間経過後
上記実施形態では、回転速度NE、充填効率η、水温THW等に基づき、到達終了時期AEsを設定したがこれに限らない。燃焼室24内に充填される新気量を示すパラメータ(負荷を示すパラメータ)として、充填効率ηに代えて、たとえばベース噴射量Qbを用いてもよい。また、回転速度NE、負荷、水温THW、および吸気位相差DINの4つのパラメータのうち、上記実施形態以外にもそれらのうちの3つのパラメータのみに基づき到達終了時期AEsを可変設定したり、2つのパラメータのみに基づき可変設定したりしてもよい。
上記実施形態では、回転速度NE、充填効率η、水温THW等に基づき、到達終了時期AEsを設定したがこれに限らない。燃焼室24内に充填される新気量を示すパラメータ(負荷を示すパラメータ)として、充填効率ηに代えて、たとえばベース噴射量Qbを用いてもよい。また、回転速度NE、負荷、水温THW、および吸気位相差DINの4つのパラメータのうち、上記実施形態以外にもそれらのうちの3つのパラメータのみに基づき到達終了時期AEsを可変設定したり、2つのパラメータのみに基づき可変設定したりしてもよい。
到達終了時期AEsや遅角量ΔAEsを算出した後、吸気同期噴射の噴射開始時期Isを算出するものに限らない。たとえば、回転速度NEおよび充填効率ηを入力変数とし、吸気同期噴射の噴射開始時期Isを出力変数とするマップデータに基づき、吸気同期噴射の噴射開始時期Isを算出してもよい。この場合、算出した吸気同期噴射の噴射開始時期Isを、水温THWに応じて補正してもよい。またたとえば、回転速度NE、充填効率η、および吸気位相差DINを入力変数とし、吸気同期噴射の噴射開始時期Isを出力変数とするマップデータに基づき、吸気同期噴射の噴射開始時期Isを算出してもよい。この場合、算出した吸気同期噴射の噴射開始時期Isを、水温THWに応じて補正してもよい。またたとえば、回転速度NE、充填効率η、吸気位相差DIN、および水温THWを入力変数とし、吸気同期噴射の噴射開始時期Isを出力変数とするマップデータに基づき、吸気同期噴射の噴射開始時期Isを算出してもよい。
なお、吸気位相差DINを用いる代わりに、目標吸気位相差DIN*を用いてもよい。さらに、算出した吸気同期噴射の噴射開始時期Isを、端子電圧Vbに応じて補正してもよい。
・「吸気系の温度について」
上記構成では、吸気系の温度として水温THWを用いたが、これに限らない。たとえば内燃機関10の潤滑油の温度を用いてもよい。
上記構成では、吸気系の温度として水温THWを用いたが、これに限らない。たとえば内燃機関10の潤滑油の温度を用いてもよい。
・「要求噴射量について」
要求噴射量Qdを、低温増量係数Kwや、フィードバック補正係数KAFに加えて、学習値LAFによって、ベース噴射量Qbが補正されたものとしてもよい。ちなみに、学習値LAFの算出処理は、フィードバック補正係数KAFを入力とし、フィードバック補正係数KAFによるベース噴射量Qbの補正比率が小さくなるように学習値LAFを更新する処理である。なお、学習値LAFは、電気的に書き換え可能な不揮発性メモリに記憶されることが望ましい。
要求噴射量Qdを、低温増量係数Kwや、フィードバック補正係数KAFに加えて、学習値LAFによって、ベース噴射量Qbが補正されたものとしてもよい。ちなみに、学習値LAFの算出処理は、フィードバック補正係数KAFを入力とし、フィードバック補正係数KAFによるベース噴射量Qbの補正比率が小さくなるように学習値LAFを更新する処理である。なお、学習値LAFは、電気的に書き換え可能な不揮発性メモリに記憶されることが望ましい。
また、たとえば外乱燃料割合に基づくフィードフォワード制御によって、外乱燃料割合が大きい場合に小さい場合よりも、要求噴射量Qdが小さくなるようにして要求噴射量Qdを算出してもよい。ここで、「外乱燃料割合」とは、1燃焼サイクル内においてポート噴射弁16から噴射される燃料以外に、内燃機関10の燃焼室24に流入する燃料(外乱燃料)の量の、燃焼室24内に流入する燃料総量に対する割合である。また、「外乱燃料」としては、たとえばポート噴射弁16から噴射される燃料を貯蔵する燃料タンクからの、燃料蒸気を捕集するキャニスタと、キャニスタ内の流体の吸気通路12への流入量を調整する調整装置とを内燃機関が備える場合、キャニスタから吸気通路12に流入する燃料蒸気がある。またたとえば、クランクケース内の燃料蒸気を吸気通路12に戻すシステムを内燃機関が備える場合には、クランクケースから吸気通路12に流入する燃料蒸気が、外乱燃料として挙げられる。
・「吸気非同期噴射について」
上記実施形態では、吸気非同期噴射を、ポート噴射弁16から噴射された燃料が吸気バルブ18の開弁前の位置に到達する期間が、吸気バルブ18の閉弁期間に収まるように燃料を噴射するものとしたが、これに限らない。たとえば回転速度NEが高くて且つ非同期噴射量Qnsが過度に多い場合、ポート噴射弁16から噴射された燃料が吸気バルブ18の開弁前の位置に到達する期間の一部が、吸気バルブ18の開弁期間と重複してもよい。
上記実施形態では、吸気非同期噴射を、ポート噴射弁16から噴射された燃料が吸気バルブ18の開弁前の位置に到達する期間が、吸気バルブ18の閉弁期間に収まるように燃料を噴射するものとしたが、これに限らない。たとえば回転速度NEが高くて且つ非同期噴射量Qnsが過度に多い場合、ポート噴射弁16から噴射された燃料が吸気バルブ18の開弁前の位置に到達する期間の一部が、吸気バルブ18の開弁期間と重複してもよい。
・「シングル噴射処理について」
上記実施形態では、シングル噴射処理を、ポート噴射弁16から噴射された燃料が吸気バルブ18の開弁前の位置に到達する期間が、吸気バルブ18の閉弁期間に収まるように燃料を噴射するものとしたがこれに限らない。たとえば、要求噴射量Qdが大きい場合には、ポート噴射弁16から噴射された燃料が吸気バルブ18の開弁前の位置に到達する期間の一部が、吸気バルブ18の開弁期間と重複することがあってもよい。なお、シングル噴射処理を実行することは必須ではない。
上記実施形態では、シングル噴射処理を、ポート噴射弁16から噴射された燃料が吸気バルブ18の開弁前の位置に到達する期間が、吸気バルブ18の閉弁期間に収まるように燃料を噴射するものとしたがこれに限らない。たとえば、要求噴射量Qdが大きい場合には、ポート噴射弁16から噴射された燃料が吸気バルブ18の開弁前の位置に到達する期間の一部が、吸気バルブ18の開弁期間と重複することがあってもよい。なお、シングル噴射処理を実行することは必須ではない。
・「要求噴射量の分割手法について」
上記実施形態では、回転速度NE、充填効率η、水温THW、および吸気位相差DINに基づき、同期噴射量Qsを可変設定したが、これに限らない。たとえば、燃焼室24内に充填される新気量を示すパラメータである負荷パラメータとして、充填効率ηに代えて、ベース噴射量Qbを用いてもよい。また、負荷パラメータと回転速度NEと水温THWと吸気位相差DINとの4つのパラメータについては、それらのうちの3つパラメータのみに基づき同期噴射量Qsを可変設定したり、2つのパラメータのみに基づき可変設定したり、1つのパラメータのみに基づき可変設定したりしてもよい。なお、この際、負荷パラメータおよび水温THWのうちの少なくとも1つを極力用いて、同期噴射量Qsを可変設定することが望ましい。また、上記4つのパラメータ以外にたとえば、吸気圧や、吸入空気の流速を用いてもよい。ただし、上記4つのパラメータによれば、吸気圧や吸入空気の流速を把握することができる。
上記実施形態では、回転速度NE、充填効率η、水温THW、および吸気位相差DINに基づき、同期噴射量Qsを可変設定したが、これに限らない。たとえば、燃焼室24内に充填される新気量を示すパラメータである負荷パラメータとして、充填効率ηに代えて、ベース噴射量Qbを用いてもよい。また、負荷パラメータと回転速度NEと水温THWと吸気位相差DINとの4つのパラメータについては、それらのうちの3つパラメータのみに基づき同期噴射量Qsを可変設定したり、2つのパラメータのみに基づき可変設定したり、1つのパラメータのみに基づき可変設定したりしてもよい。なお、この際、負荷パラメータおよび水温THWのうちの少なくとも1つを極力用いて、同期噴射量Qsを可変設定することが望ましい。また、上記4つのパラメータ以外にたとえば、吸気圧や、吸入空気の流速を用いてもよい。ただし、上記4つのパラメータによれば、吸気圧や吸入空気の流速を把握することができる。
また、同期噴射量Qsを算出すること自体必須ではなく、たとえば負荷等に応じて、ベース噴射量Qbに対する同期噴射量Qsの割合である同期噴射割合Ksを定めてもよい。さらに、たとえばベース噴射量Qbがフィードバック補正係数KAFによって補正された値「KAF・Qb」を、同期噴射割合Ksによって分割したものを同期噴射量Qsとしてもよい。この場合、同期噴射量Qsは、「Ks・KAF・Qb」となる。
・「バルブ特性制御処理について」
上記実施形態では、回転速度NEおよび充填効率ηに応じて、目標吸気位相差DIN*を可変設定したが、これに限らない。たとえば、上記第3実施形態において触れたように、たとえば水温THWが低い場合には、例外的に、回転速度NEおよび充填効率ηに応じて定まる吸気バルブ18の開弁タイミングに対して、実際のタイミングを遅角側に制限するなどしてもよい。
上記実施形態では、回転速度NEおよび充填効率ηに応じて、目標吸気位相差DIN*を可変設定したが、これに限らない。たとえば、上記第3実施形態において触れたように、たとえば水温THWが低い場合には、例外的に、回転速度NEおよび充填効率ηに応じて定まる吸気バルブ18の開弁タイミングに対して、実際のタイミングを遅角側に制限するなどしてもよい。
・「吸気バルブの特性可変装置について」
吸気バルブ18の特性を変更する特性可変装置としては、吸気バルブタイミング調整装置44に限らない。たとえば、吸気バルブ18のリフト量を変更するものであってもよい。この場合、吸気バルブ18のバルブ特性を示すパラメータは、吸気位相差DINに代えて、リフト量等となる。
吸気バルブ18の特性を変更する特性可変装置としては、吸気バルブタイミング調整装置44に限らない。たとえば、吸気バルブ18のリフト量を変更するものであってもよい。この場合、吸気バルブ18のバルブ特性を示すパラメータは、吸気位相差DINに代えて、リフト量等となる。
・「制御装置について」
制御装置が、CPU52とROM54とを備えて、ソフトウェア処理を実行するものに限らない。たとえば、上記実施形態においてソフトウェア処理されたものの少なくとも一部を、ハードウェア処理する専用のハードウェア回路(たとえばASIC等)を備えてもよい。すなわち、制御装置は、以下の(a)~(c)のいずれかの構成であればよい。(a)上記処理の全てを、プログラムに従って実行する処理装置と、プログラムを記憶するROM等のプログラム格納装置(非一時的なコンピュータ読取可能な記録媒体を含む)とを備える。(b)上記処理の一部をプログラムに従って実行する処理装置およびプログラム格納装置と、残りの処理を実行する専用のハードウェア回路とを備える。(c)上記処理の全てを実行する専用のハードウェア回路を備える。ここで、処理装置およびプログラム格納装置を備えたソフトウェア処理回路や、専用のハードウェア回路は複数であってもよい。すなわち、上記処理は、1または複数のソフトウェア処理回路および1または複数の専用のハードウェア回路の少なくとも一方を備えた処理回路によって実行されればよい。
制御装置が、CPU52とROM54とを備えて、ソフトウェア処理を実行するものに限らない。たとえば、上記実施形態においてソフトウェア処理されたものの少なくとも一部を、ハードウェア処理する専用のハードウェア回路(たとえばASIC等)を備えてもよい。すなわち、制御装置は、以下の(a)~(c)のいずれかの構成であればよい。(a)上記処理の全てを、プログラムに従って実行する処理装置と、プログラムを記憶するROM等のプログラム格納装置(非一時的なコンピュータ読取可能な記録媒体を含む)とを備える。(b)上記処理の一部をプログラムに従って実行する処理装置およびプログラム格納装置と、残りの処理を実行する専用のハードウェア回路とを備える。(c)上記処理の全てを実行する専用のハードウェア回路を備える。ここで、処理装置およびプログラム格納装置を備えたソフトウェア処理回路や、専用のハードウェア回路は複数であってもよい。すなわち、上記処理は、1または複数のソフトウェア処理回路および1または複数の専用のハードウェア回路の少なくとも一方を備えた処理回路によって実行されればよい。
・「そのほか」
内燃機関10が、吸気バルブ18の特性を変更する特性可変装置を備えることは必須ではない。内燃機関10が、スロットルバルブ14を備えることは必須ではない。
内燃機関10が、吸気バルブ18の特性を変更する特性可変装置を備えることは必須ではない。内燃機関10が、スロットルバルブ14を備えることは必須ではない。
内燃機関10が搭載される車両が、車両の推力を生成する原動機として回転電機を搭載する場合、クランクシャフト28に初期回転を付与する手段として、スタータモータ36に代えて回転電機を用いてもよい。
<第4実施形態>
以下、本開示を具体化した第4実施形態に係る内燃機関の制御装置について、図9~図14Bを参照しつつ説明する。
以下、本開示を具体化した第4実施形態に係る内燃機関の制御装置について、図9~図14Bを参照しつつ説明する。
図9に示す内燃機関10は、車両に搭載される。内燃機関10の吸気通路12には、上流から順に、スロットルバルブ14およびポート噴射弁16が設けられている。吸気通路12に吸入された空気と、ポート噴射弁16から噴射された燃料とは、吸気バルブ18の開弁に伴って、シリンダ20およびピストン22によって区画された燃焼室24に流入する。燃焼室24において、燃料と空気との混合気は、点火装置26の火花放電によって燃焼に供される。そして、燃焼によって生成される燃焼エネルギは、ピストン22を介して、クランクシャフト28の回転エネルギに変換される。燃焼に供された混合気は、排気バルブ30の開弁に伴って、排気として排気通路32に排出される。排気通路32には、触媒34が設けられている。また、排気通路32のうち触媒34の下流には、排気中の粒子状物質(PM)を捕集するフィルタ(GPF136)が設けられている。
クランクシャフト28の回転動力は、タイミングチェーン38を介して、吸気カム軸40および排気カム軸42に伝達される。なお、本実施形態では、吸気カム軸40には、吸気バルブタイミング調整装置44を介して、タイミングチェーン38の動力が伝達される。吸気バルブタイミング調整装置44は、クランクシャフト28と吸気カム軸40との回転位相差を調整することで、吸気バルブ18の開弁タイミングを調整するアクチュエータである。
制御装置50は、内燃機関10を制御対象とし、内燃機関10の制御量(トルク、排気成分比率等)を制御するために、上記スロットルバルブ14や、ポート噴射弁16、点火装置26、および吸気バルブタイミング調整装置44等の内燃機関10の操作部を操作する。この際、制御装置50は、クランク角センサ60の出力信号Scrや、エアフローメータ62によって検出される吸入空気量Ga、空燃比センサ64によって検出される空燃比Af、吸気カム角センサ66の出力信号Sca、および水温センサ68によって検出される内燃機関10の冷却水の温度(水温THW)を参照する。なお、図9には、スロットルバルブ14、ポート噴射弁16、点火装置26、および吸気バルブタイミング調整装置44のそれぞれを操作するための、操作信号MS1~MS3およびMS5を記載している。
制御装置50は、CPU52、ROM54、および電源回路56を備えており、ROM54に記憶されたプログラムをCPU52が実行することで、上記制御量の制御を実行する。電源回路56は、制御装置50内の各箇所に電力を供給する。
図10に、制御装置50が実行する処理の一部を示す。図10に示す処理は、ROM54に記憶されたプログラムを、CPU52が実行することで実現される。
吸気位相差算出処理M10は、クランク角センサ60の出力信号Scrと、吸気カム角センサ66の出力信号Scaとに基づき、クランクシャフト28の回転角度に対する吸気カム軸40の回転角度の位相差である、吸気位相差DINを算出する処理である。目標吸気位相差算出処理M12は、内燃機関10の動作点に基づき、目標吸気位相差DIN*を可変設定する処理である。なお、本実施形態では、回転速度NEと充填効率ηとによって、動作点を定義している。ここで、CPU52は、回転速度NEを、クランク角センサ60の出力信号Scrに基づき算出し、充填効率ηを、回転速度NEおよび吸入空気量Gaに基づき算出する。なお、充填効率ηは、燃焼室24内に充填される空気量を定めるパラメータである。
吸気位相差算出処理M10は、クランク角センサ60の出力信号Scrと、吸気カム角センサ66の出力信号Scaとに基づき、クランクシャフト28の回転角度に対する吸気カム軸40の回転角度の位相差である、吸気位相差DINを算出する処理である。目標吸気位相差算出処理M12は、内燃機関10の動作点に基づき、目標吸気位相差DIN*を可変設定する処理である。なお、本実施形態では、回転速度NEと充填効率ηとによって、動作点を定義している。ここで、CPU52は、回転速度NEを、クランク角センサ60の出力信号Scrに基づき算出し、充填効率ηを、回転速度NEおよび吸入空気量Gaに基づき算出する。なお、充填効率ηは、燃焼室24内に充填される空気量を定めるパラメータである。
吸気位相差制御処理M14は、吸気位相差DINを目標吸気位相差DIN*に制御するために、吸気バルブタイミング調整装置44を操作すべく、吸気バルブタイミング調整装置44に操作信号MS5を出力する処理である。
ベース噴射量算出処理M20は、燃焼室24内の混合気の空燃比を目標空燃比とするための、燃料量のベース値であるベース噴射量Qbを、充填効率ηに基づき算出する処理である。詳しくは、ベース噴射量算出処理M20は、たとえば充填効率ηが百分率で表現される場合、空燃比を目標空燃比とするための充填効率ηの1%当たりの燃料量QTHに、充填効率ηを乗算することで、ベース噴射量Qbを算出する処理とすればよい。ベース噴射量Qbは、燃焼室24内に充填される空気量に基づき、空燃比を目標空燃比に制御するために算出された燃料量である。ちなみに、目標空燃比は、たとえば理論空燃比とすればよい。
フィードバック処理M22は、フィードバック操作量であるベース噴射量Qbの補正比率δに、「1」を加算したフィードバック補正係数KAFを算出して出力する処理である。ベース噴射量Qbの補正比率δは、空燃比Afを目標値Af*にフィードバック制御するための操作量である。詳しくは、フィードバック処理M22は、空燃比Afと目標値Af*との差を入力とする比例要素および微分要素の各出力値と、空燃比Afと目標値Af*との差に応じた値の積算値を保持し出力する積分要素の出力値との和を、補正比率δとする。
低温補正処理M24は、水温THWが所定温度Tth(たとえば60℃)未満の場合、ベース噴射量Qbを増量すべく、低温増量係数Kwを「1」よりも大きい値に算出する処理である。詳しくは、水温THWが低い場合に高い場合よりも、低温増量係数Kwは大きい値に算出される。なお、水温THWが所定温度Tth以上の場合には、低温増量係数Kwは「1」とされ、低温増量係数Kwによるベース噴射量Qbの補正量をゼロとする。
噴射弁操作処理M30は、ポート噴射弁16を操作すべく、ポート噴射弁16に操作信号MS2を出力する処理である。特に、噴射弁操作処理M30は、ポート噴射弁16から1燃焼サイクル内に1つの気筒に供給することが要求される燃料量である要求噴射量Qdを、ポート噴射弁16から噴射させる処理である。
本実施形態では、燃料噴射処理として、図11の(a)部分に例示する処理と、図11の(b)部分に例示する処理との2通りの処理を有する。
図11の(a)部分は、吸気バルブ18の開弁期間に同期して燃料を噴射する吸気同期噴射と、吸気同期噴射よりも進角側のタイミングにて燃料を噴射する吸気非同期噴射との2つの燃料噴射を実行するマルチ噴射処理である。詳しくは、吸気同期噴射は、ポート噴射弁16から噴射された燃料が、吸気バルブ18の開弁前の位置に到達する期間が、吸気バルブ18の開弁期間に収まるように燃料を噴射するものである。ここで、「吸気バルブ18の開弁前の位置」とは、吸気ポートの下流端のことであり、換言すれば、図9に示す燃焼室24への入口IN部分のことである。なお、図9においては、吸気バルブ18が開弁している状態を記載している。また、「到達する期間」の始点は、ポート噴射弁16から噴射された燃料のうちの最も早いタイミングで噴射された燃料が、吸気バルブ18の開弁前の位置に到達するタイミングである。「到達する期間」の終点は、ポート噴射弁16から噴射された燃料のうちの最も遅いタイミングで噴射された燃料が、吸気バルブ18の開弁前の位置に到達するタイミングである。これらに対し、「吸気非同期噴射」は、ポート噴射弁16から噴射された燃料が、吸気バルブ18が開弁する前に吸気バルブ18に到達するように、燃料を噴射するものである。換言すれば、「吸気非同期噴射」は、ポート噴射弁16から噴射された燃料が、吸気バルブ18が開弁するまでは吸気通路12内で滞留し、開弁した後に燃焼室24内に流入するようになる噴射である。なお、本実施形態において吸気非同期噴射は、ポート噴射弁16から噴射された燃料が、吸気バルブ18の開弁前の位置に到達する期間が、吸気バルブ18の閉弁期間に収まるように燃料を噴射するものとする。
図11の(a)部分は、吸気バルブ18の開弁期間に同期して燃料を噴射する吸気同期噴射と、吸気同期噴射よりも進角側のタイミングにて燃料を噴射する吸気非同期噴射との2つの燃料噴射を実行するマルチ噴射処理である。詳しくは、吸気同期噴射は、ポート噴射弁16から噴射された燃料が、吸気バルブ18の開弁前の位置に到達する期間が、吸気バルブ18の開弁期間に収まるように燃料を噴射するものである。ここで、「吸気バルブ18の開弁前の位置」とは、吸気ポートの下流端のことであり、換言すれば、図9に示す燃焼室24への入口IN部分のことである。なお、図9においては、吸気バルブ18が開弁している状態を記載している。また、「到達する期間」の始点は、ポート噴射弁16から噴射された燃料のうちの最も早いタイミングで噴射された燃料が、吸気バルブ18の開弁前の位置に到達するタイミングである。「到達する期間」の終点は、ポート噴射弁16から噴射された燃料のうちの最も遅いタイミングで噴射された燃料が、吸気バルブ18の開弁前の位置に到達するタイミングである。これらに対し、「吸気非同期噴射」は、ポート噴射弁16から噴射された燃料が、吸気バルブ18が開弁する前に吸気バルブ18に到達するように、燃料を噴射するものである。換言すれば、「吸気非同期噴射」は、ポート噴射弁16から噴射された燃料が、吸気バルブ18が開弁するまでは吸気通路12内で滞留し、開弁した後に燃焼室24内に流入するようになる噴射である。なお、本実施形態において吸気非同期噴射は、ポート噴射弁16から噴射された燃料が、吸気バルブ18の開弁前の位置に到達する期間が、吸気バルブ18の閉弁期間に収まるように燃料を噴射するものとする。
図11の(b)部分は、吸気非同期噴射のみを実行するシングル噴射処理である。
本実施形態においてマルチ噴射処理は、排気中の粒子状物質(PM)の数(PN)を低減することを狙って実行される。すなわち、吸気通路12や吸気バルブ18等の内燃機関10の吸気系の温度が、ある程度低い場合、充填効率ηがある程度大きい領域においてシングル噴射処理を実行すると、PNが増加する傾向がある。この理由は、充填効率ηが大きい場合には小さい場合よりも、要求噴射量Qdが大きい値となり、結果、吸気系に付着する燃料量が多くなることに起因していると考えられる。詳しくは、吸気系に付着した燃料量がある程度多くなる場合、付着した燃料のせん断によって、付着した燃料の一部が液滴のまま燃焼室24に流入するからであると推察される。そこで本実施形態では、要求噴射量Qdの一部を吸気同期噴射によって噴射する。したがって、要求噴射量Qdが多い場合であっても、吸気系に付着する燃料量を、要求噴射量Qdが多い割に少なくし、ひいてはPNの低減を図る。
本実施形態においてマルチ噴射処理は、排気中の粒子状物質(PM)の数(PN)を低減することを狙って実行される。すなわち、吸気通路12や吸気バルブ18等の内燃機関10の吸気系の温度が、ある程度低い場合、充填効率ηがある程度大きい領域においてシングル噴射処理を実行すると、PNが増加する傾向がある。この理由は、充填効率ηが大きい場合には小さい場合よりも、要求噴射量Qdが大きい値となり、結果、吸気系に付着する燃料量が多くなることに起因していると考えられる。詳しくは、吸気系に付着した燃料量がある程度多くなる場合、付着した燃料のせん断によって、付着した燃料の一部が液滴のまま燃焼室24に流入するからであると推察される。そこで本実施形態では、要求噴射量Qdの一部を吸気同期噴射によって噴射する。したがって、要求噴射量Qdが多い場合であっても、吸気系に付着する燃料量を、要求噴射量Qdが多い割に少なくし、ひいてはPNの低減を図る。
図12に、噴射弁操作処理M30の処理の手順を示す。図12に示す処理は、ROM54に記憶されたプログラムを、CPU52がたとえば所定周期で繰り返し実行することで実現される。なお、以下では、先頭に「S」が付与された数字によって各処理のステップ番号を表現する。
図12に示す一連の処理において、CPU52は、まず、暖機カウンタCの値を、更新量ΔCによって更新する(S110)。暖機カウンタCは、触媒34の温度との相関を有するパラメータである。CPU52は、吸入空気量Gaが大きい場合に小さい場合よりも、更新量ΔCを大きい値に算出する。ここで、吸入空気量Gaが小さい場合、更新量ΔCはゼロよりも小さい値となりうる。また、CPU52は、吸入空気量Gaが同一であっても、暖機カウンタCの値が大きい場合には小さい場合よりも、更新量ΔCを小さい値に算出する。このような処理は、暖機が進むにつれて触媒34の温度が上昇しにくくなることに鑑みたものである。この処理は、暖機カウンタCおよび吸入空気量Gaを入力変数とし、更新量ΔCを出力変数とするマップデータが予めROM54に記憶された状態で、CPU52によって更新量ΔCをマップ演算することで実現できる。
ここで、マップデータとは、入力変数の離散的な値と、入力変数の値のそれぞれに対応する出力変数の値と、の組データである。またマップ演算は、たとえば、入力変数の値がマップデータの入力変数の値のいずれかに一致する場合、対応するマップデータの出力変数の値を演算結果とするのに対し、一致しない場合、マップデータに含まれる複数の出力変数の値の補間によって得られる値を演算結果とする処理とすればよい。
次にCPU52は、ベース噴射量Qbに、低温増量係数Kwおよびフィードバック補正係数KAFを乗算することで、要求噴射量Qdを算出する(S112)。次に、CPU52は、マルチ噴射要求があるか否かを判定する(S114)。ここでCPU52は、水温THWが規定温度Tth以下である旨の条件(Vi)と、充填効率ηが規定値以上である旨の条件(Vii)と、回転速度NEが所定速度NEth以下である旨の条件(Viii)との論理積が真である場合に、マルチ噴射処理を実行する要求があると判定する。なお、条件(Viii)は、吸気非同期噴射の終了タイミングと、吸気同期噴射の開始タイミングとの間の時間間隔を、所定時間以上に確保するための条件である。また、この条件は、マルチ噴射処理がシングル噴射処理よりも演算負荷が大きいので、制御装置50の演算負荷の増大によって発熱量が過大となることを抑制する旨の条件である。なお、上記「所定時間」は、ポート噴射弁16の構造に応じて定まるものであり、吸気非同期噴射の終了前に吸気同期噴射が開始されることを回避できる値とされている。
そしてCPU52は、マルチ噴射要求があると判定する場合(S114:YES)、吸気同期噴射の噴射量である、同期噴射量Qsを算出する(S116)。ここで、CPU52は、回転速度NE、充填効率η、吸気位相差DIN、および水温THWに応じて、同期噴射量Qsを算出する。同期噴射量Qsは、PNを抑制する上で適切な値に適合されている。詳しくは、回転速度NE、充填効率η、吸気位相差DIN、および水温THWを入力変数とし、同期噴射量Qsを出力変数とするマップデータが、予めROM54に記憶された状態で、CPU52によって同期噴射量Qsがマップ演算される。
次にCPU52は、要求噴射量Qdから同期噴射量Qsを減算することで、吸気非同期噴射の噴射量である非同期噴射量Qnsを算出する(S118)。
よって、非同期噴射量Qnsと同期噴射量Qsとの和は、要求噴射量Qdに等しい。すなわち、S116,S118の処理によって、要求噴射量Qdの燃料が、非同期噴射量Qnsと同期噴射量Qsとに分割される。ちなみに、同期噴射量Qsは、フィードバック補正係数KAFおよび低温増量係数Kwの値に影響されない。このように、同期噴射量Qsを固定する理由は、同期噴射量Qsは、PNを抑制する上で適切な値に適合されているので、同期噴射量Qsが補正によって大きく変化する場合には、PNの増加を招くおそれがあるからである。
よって、非同期噴射量Qnsと同期噴射量Qsとの和は、要求噴射量Qdに等しい。すなわち、S116,S118の処理によって、要求噴射量Qdの燃料が、非同期噴射量Qnsと同期噴射量Qsとに分割される。ちなみに、同期噴射量Qsは、フィードバック補正係数KAFおよび低温増量係数Kwの値に影響されない。このように、同期噴射量Qsを固定する理由は、同期噴射量Qsは、PNを抑制する上で適切な値に適合されているので、同期噴射量Qsが補正によって大きく変化する場合には、PNの増加を招くおそれがあるからである。
次に、CPU52は、暖機カウンタCが閾値Cth以上であるか否かを判定する(S120)。この処理は、触媒34の温度が、活性状態となる規定値以上であるか否かを判定するための処理である。なお、ここでの「活性状態」は、たとえば、触媒34の中央部の温度が、浄化率が50%以上となる温度になることであるとすればよい。詳しくは、CPU52は、水温THWが高い場合に低い場合よりも、閾値Cthを小さい値に設定する。
CPU52は、暖機カウンタCが閾値Cth以上であると判定する場合(S120:YES)、触媒34が活性状態にあるとして、回転速度NE、充填効率η、吸気位相差DIN、および水温THWに基づき、図11の(a)部分に示す到達終了時期AEsを算出する(S122)。到達終了時期AEsは、ポート噴射弁16から噴射された燃料のうち最も遅いタイミングで噴射された燃料が、吸気バルブ18の閉弁期間における位置(図9のIN部分)に到達するタイミングの目標値である。ここで、回転速度NEが異なると、吸気通路12内の流体の流速の変化をもたらすので、燃焼室24内に流入することなく吸気系に付着して留まる燃料量が異なることとなる。また、回転速度NEが異なると、ポート噴射弁16から噴射された燃料のうち所定量の燃料が気化するまでに要する期間内における、クランクシャフト28の回転量が異なることとなる。よって、PNを抑制するうえで適切な到達終了時期AEsは、回転速度NEに依存する。また、充填効率ηが異なると、ベース噴射量Qbが異なり、ひいては吸気系に付着する燃料量が異なることとなる。また、充填効率ηが異なると、吸気通路12内の圧力が変化し、燃料の霧化のしやすさが異なることとなる。よって、PNを抑制するうえで適切な到達終了時期AEsは、充填効率ηに依存する。また、水温THWが低い場合には高い場合よりも、吸気系において燃料が気化しにくくなることで、燃焼室24内に流入することなく吸気系に付着して留まる燃料量が多くなるので、PNを抑制する上で最適な時期が遅角側にズレる。よって、PNを抑制する上で適切な到達終了時期AEsは、水温THWに依存する。また、吸気位相差DINに応じて吸気バルブ18と排気バルブ30とのオーバーラップ量が変化することで、内部EGR量が変化するので、吸気系の温度が上昇して吸気系における燃料の気化のしやすさが変化したり、燃焼室24に流入することなく吸気系に付着して留まる燃料量が変化したりする。よって、PNを抑制する上で適切な到達終了時期AEsは、吸気位相差DINに依存する。
詳しくは、回転速度NE、充填効率η、吸気位相差DIN、および水温THWを入力変数とし、触媒活性時の到達終了時期AEsaを出力変数とするマップデータが予めROM54に記憶された状態で、CPU52によって到達終了時期AEsaがマップ演算され、これが到達終了時期AEsとされる。
これに対し、CPU52は、暖機カウンタCが閾値Cth未満であると判定する場合(S120:NO)、触媒活性前の到達終了時期AEsbを算出して、到達終了時期AEsとする(S124)。詳しくは、回転速度NE、充填効率η、吸気位相差DIN、および水温THWを入力変数とし、触媒活性前の到達終了時期AEsbを出力変数とするマップデータが予めROM54に記憶された状態で、CPU52によって到達終了時期AEsbがマップ演算され、これが到達終了時期AEsとされる。なお、触媒活性前の到達終了時期AEsbは、触媒34が活性状態にあるときの到達終了時期AEsaよりも、進角側の値とされている。
CPU52は、S122,S124の処理が完了する場合、到達終了時期AEsと同期噴射量Qsと回転速度NEとに基づき、吸気同期噴射の噴射開始時期Is(クランク角度)を算出する(S126)。ここで、CPU52は、同期噴射量Qsが大きい場合に小さい場合よりも、吸気同期噴射の噴射開始時期Isをより進角側の値に算出する。また、CPU52は、回転速度NEが大きい場合に小さい場合よりも、吸気同期噴射の噴射開始時期Isをより進角側の値とする。詳しくはCPU52は、同期噴射量Qsから定まるポート噴射弁16による噴射期間と飛行時間と無効噴射時間とを加算した値だけ、到達終了時期AEsに対して進角したタイミングを吸気同期噴射の噴射開始時期Isとする。ここで、「飛行時間」とは、ポート噴射弁16から噴射された燃料が燃焼室24の入口INに到達するまでの所要時間のことであり、本実施形態では固定値としている。また、「無効噴射時間」とは、ポート噴射弁16を開弁させる操作信号MS2を出力した後、実際に燃料の噴射が開始されるまでの時間のことである。
次にCPU52は、吸気同期噴射の噴射開始時期Isに基づき、吸気非同期噴射の噴射開始時期Insを算出する(S128)。ここでは、吸気非同期噴射の噴射終了時期と、吸気同期噴射の噴射開始時期Isとの間の時間間隔が、上記所定時間以上となるようにする。
上記処理によって、吸気同期噴射の噴射開始時期Isが、吸気非同期噴射の噴射開始時期Insとは独立に設定される。これは、吸気同期噴射の上記到達終了時期AEsが、排気中のPNやHCに特に影響しやすいからである。
そして、CPU52は、噴射開始時期Insとなると非同期噴射量Qnsの燃料を噴射し、次に吸気同期噴射の噴射開始時期Isとなると同期噴射量Qsの燃料を噴射すべく、ポート噴射弁16に操作信号MS2を出力することでポート噴射弁16を操作する(S130)。
一方、CPU52は、マルチ噴射処理の要求がないと判定する場合(S114:NO)、シングル噴射の噴射開始時期Isinを算出する(S132)。詳しくは、CPU52は、図11の(b)部分に示すように、吸気バルブ18の開弁開始時期に対して、所定量Δ1だけ進角したタイミングを到達終了時期AEnsとする。次にCPU52は、要求噴射量Qdから定まるポート噴射弁16による噴射期間と、飛行時間と無効噴射時間とを加算した値だけ、到達終了時期AEnsに対して進角したタイミングを、シングル噴射の噴射開始時期Isinとする。図12に戻り、CPU52は、シングル噴射の噴射開始時期Isinとなると要求噴射量Qdの燃料を噴射すべく、ポート噴射弁16に操作信号MS2を出力することでポート噴射弁16を操作する(S130)。
なお、CPU52は、S130の処理が完了する場合には、図12に示す一連の処理を一旦終了する。
ここで、本実施形態の作用および効果について説明する。
ここで、本実施形態の作用および効果について説明する。
CPU52は、マルチ噴射処理の実行要求がある場合において、たとえば暖機カウンタCが閾値Cth以上である場合と比較して、暖機カウンタCが閾値Cth未満である場合には、到達終了時期AEsをより進角側の値とする。これは、図13に示すように、触媒34の温度が低い場合には高い場合よりも、HCの浄化率が低い一方、図14Bに示すように、到達終了時期AEsが進角側であるほどHCの排出が抑制されるからである。
図14Aは、到達終了時期AEs,AEnsと、排気中のPNの濃度との関係を示し、図14Bは、到達終了時期AEs,AEnsと、排気中のHCの濃度との関係を示す。詳しくは、到達終了時期AEsに関するPNおよびHCの値は、「マルチ噴射時」と記載されているものであり、到達終了時期AEnsに関するPNおよびHCの値は、「シングル噴射時」と記載されているものである。図14Aおよび図14Bの両方に実線の縦線にて示す、PNを抑制する上で最適な到達終了時期AEsに対して、図14Aおよび図14Bの両方に破線にて示す、HCを抑制する上で適切な到達終了時期AEsの方が、進角側の値となる。この理由は、到達終了時期AEsが進角側の値であるほど、燃料が霧化する時間的な余裕ができるからであると考えられる。
CPU52は、触媒34の温度が低い場合には、HCを抑制する上で適切な到達終了時期AEsbを用いることで、排気中のHCを抑制し、ひいては触媒34の下流に流出するHCを抑制する。この場合、触媒34の下流に流出したPMは、GPF136によって捕集される。これに対しCPU52は、触媒34の温度が高くなると、PNを抑制する上で適切な到達終了時期AEsaを用いることで、排気中のPNを抑制する。この場合、排気中のHCは、触媒34によって十分に浄化される。
<第5実施形態>
以下、第5実施形態について、第4実施形態との相違点を中心に、図15を参照しつつ説明する。
以下、第5実施形態について、第4実施形態との相違点を中心に、図15を参照しつつ説明する。
図15に、噴射弁操作処理M30の処理の手順を示す。図15に示す処理は、ROM54に記憶されたプログラムを、CPU52がたとえば所定周期で繰り返し実行することで実現される。なお、図15において、図12に示した処理に対応する処理については、便宜上同一のステップ番号を付している。
CPU52は、非同期噴射量Qnsを算出すると(S118)、回転速度NE、充填効率η、吸気位相差DIN、および水温THWに基づき、到達終了時期AEsを算出する(S122a)。ここでの到達終了時期AEsは、PNを抑制する上で適切な時期であり、S122の処理によって算出される到達終了時期AEsaに相当する。次にCPU52は、暖機カウンタCが閾値Cth以上であるか否かを判定する(S120)。そしてCPU52は、暖機カウンタCが閾値Cth以上であると判定する場合(S120:YES)、S122aの処理によって算出した到達終了時期AEsを用いて、吸気同期噴射の噴射開始時期Isを算出する(S126)。
これに対しCPU52は、暖機カウンタCが閾値Cth未満と判定する場合(S120:NO)、水温THWおよび回転速度NEに基づき、到達終了時期AEsの遅角ガード値AEthを算出する(S134)。遅角ガード値AEthは、触媒34の活性前において、排気中のHC濃度を許容範囲内とするうえでの最も遅角側の角度に応じて設定されている。詳しくは、回転速度NEおよび水温THWを入力変数とし、遅角ガード値AEthを出力変数とするマップデータが予めROM54に記憶された状態で、CPU52によって遅角ガード値AEthがマップ演算される。
次にCPU52は、S122aの処理によって算出した到達終了時期AEsと、遅角ガード値AEthとのうちの進角側の方を、到達終了時期AEsに代入する(S136)。具体的には、到達終了時期AEsを、基準となる角度に対する相対角度にて表現し、基準となる角度よりも進角側において正の値とする。到達終了時期AEsと遅角ガード値AEthとのうちの小さくない方の値が、到達終了時期AEsに代入される。
そしてCPU52は、S136の処理において算出した到達終了時期AEsを用いて、吸気同期噴射の噴射開始時期Isを算出する(S126)。
このように本実施形態では、HCを抑制する上で適切な到達終了時期AEsを、遅角ガード値AEthに基づき定めている。このような処理は、HCを抑制する上で適切な時期自体が、PNを抑制する上で適切な時期ほどには吸気位相差DINや充填効率ηの影響を受けにくいことに鑑みる。そして、図12のS124の処理と比較して、HCを抑制する上で適切な時期であって且つ、PNを極力抑制可能な到達終了時期AEsを、簡易に適合することができる。
このように本実施形態では、HCを抑制する上で適切な到達終了時期AEsを、遅角ガード値AEthに基づき定めている。このような処理は、HCを抑制する上で適切な時期自体が、PNを抑制する上で適切な時期ほどには吸気位相差DINや充填効率ηの影響を受けにくいことに鑑みる。そして、図12のS124の処理と比較して、HCを抑制する上で適切な時期であって且つ、PNを極力抑制可能な到達終了時期AEsを、簡易に適合することができる。
<対応関係>
上記実施形態における事項と、上記「概要」の欄に記載した事項との対応関係は、次の通りである。以下では、「概要」の欄に記載した例の番号毎に、対応関係を示している。
上記実施形態における事項と、上記「概要」の欄に記載した事項との対応関係は、次の通りである。以下では、「概要」の欄に記載した例の番号毎に、対応関係を示している。
[8]「マルチ噴射処理」は、S128の処理に引き続き実行されるS130の処理に対応する。「進角処理」は、図12のS120~S124の処理や、図15のS122a,S120,S134,S136の処理に対応する。
[9]「バルブ特性可変装置」は、吸気バルブタイミング調整装置44に対応し、「バルブ特性制御処理」は、目標吸気位相差算出処理M12および吸気位相差制御処理M14に対応する。「可変処理」は、図12のS122,S124の処理や、図15のS122aの処理に対応する。
「基準時期設定処理」は、図15のS122aの処理に対応し、「ガード値設定処理」は、図15のS134の処理に対応する。「低温時期設定処理」は、図15のS136の処理に対応する。
・「要求噴射量算出処理」は、S112の処理に対応する。
・「吸気系の温度」は、水温THWに対応する。
<その他の実施形態>
なお、上記各実施形態は、以下のように変更して実施することができる。上記各実施形態および以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
・「吸気系の温度」は、水温THWに対応する。
<その他の実施形態>
なお、上記各実施形態は、以下のように変更して実施することができる。上記各実施形態および以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
・「ガード値設定処理」
上記実施形態では、水温THWおよび回転速度NEに基づき、遅角ガード値AEthを算出したがこれに限らない。たとえば、水温THWのみに基づき、遅角ガード値AEthを算出するなど、水温THWおよび回転速度NEの2つのパラメータのうち、それらのうちの1つのみを用いて遅角ガード値AEthを算出してもよい。
上記実施形態では、水温THWおよび回転速度NEに基づき、遅角ガード値AEthを算出したがこれに限らない。たとえば、水温THWのみに基づき、遅角ガード値AEthを算出するなど、水温THWおよび回転速度NEの2つのパラメータのうち、それらのうちの1つのみを用いて遅角ガード値AEthを算出してもよい。
・「可変処理について」
上記実施形態では、回転速度NE、充填効率η、水温THW、および吸気位相差DINに基づき、到達終了時期AEs,AEsa,AEsbを設定したがこれに限らない。燃焼室24内に充填される空気量を示すパラメータ(負荷を示すパラメータ)として、充填効率ηに代えて、たとえばベース噴射量Qbを用いてもよい。また、回転速度NE、負荷、水温THW、および吸気位相差DINの4つのパラメータのうち、それらのうちの3つのパラメータのみに基づき、到達終了時期AEs,AEsa,AEsbを可変設定したり、2つのパラメータのみに基づき可変設定したりしてもよい。またたとえば、回転速度NE、負荷、水温THW、および吸気位相差DINの4つのパラメータのうち、吸気位相差DINのみに基づき到達終了時期AEs,AEsa,AEsbを可変設定するなど、1つのパラメータのみに基づき可変設定してもよい。
上記実施形態では、回転速度NE、充填効率η、水温THW、および吸気位相差DINに基づき、到達終了時期AEs,AEsa,AEsbを設定したがこれに限らない。燃焼室24内に充填される空気量を示すパラメータ(負荷を示すパラメータ)として、充填効率ηに代えて、たとえばベース噴射量Qbを用いてもよい。また、回転速度NE、負荷、水温THW、および吸気位相差DINの4つのパラメータのうち、それらのうちの3つのパラメータのみに基づき、到達終了時期AEs,AEsa,AEsbを可変設定したり、2つのパラメータのみに基づき可変設定したりしてもよい。またたとえば、回転速度NE、負荷、水温THW、および吸気位相差DINの4つのパラメータのうち、吸気位相差DINのみに基づき到達終了時期AEs,AEsa,AEsbを可変設定するなど、1つのパラメータのみに基づき可変設定してもよい。
またたとえば到達終了時期AEs,AEsa,AEsbを算出する代わりに、吸気バルブ18の開弁開始時期に対する、遅延量を設定してもよい。この際、到達終了時期AEsの算出に用いるパラメータのうち、吸気位相差DIN以外のパラメータに基づき遅延量を可変設定してもよい。
到達終了時期AEs,AEsa,AEsbや遅延量を算出した後、吸気同期噴射の噴射開始時期Isを算出するものに限らない。たとえば、回転速度NE、負荷、水温THW、および吸気位相差DINの4つのパラメータのうち、たとえば吸気位相差DIN等の1つのパラメータを入力変数とし、吸気同期噴射の噴射開始時期Isを出力変数とするマップデータに基づき吸気同期噴射の噴射開始時期Isを算出してもよい。また、たとえば上記4つのパラメータのうち、回転速度NEおよび充填効率η等の2つのパラメータを入力変数とし、吸気同期噴射の噴射開始時期Isを出力変数とするマップデータに基づき吸気同期噴射の噴射開始時期Isを算出してもよい。この場合、算出した吸気同期噴射の噴射開始時期Isを、水温THWに応じて補正してもよい。またたとえば、上記4つのパラメータのうち、回転速度NE、充填効率η、および吸気位相差DIN等の3つのパラメータを入力変数とし、吸気同期噴射の噴射開始時期Isを出力変数とするマップデータに基づき、吸気同期噴射の噴射開始時期Isを算出してもよい。この場合、算出した吸気同期噴射の噴射開始時期Isを、水温THWに応じて補正してもよい。またたとえば、回転速度NE、充填効率η、吸気位相差DIN、および水温THWを入力変数とし、吸気同期噴射の噴射開始時期Isを出力変数とするマップデータに基づき、吸気同期噴射の噴射開始時期Isを算出してもよい。
・「触媒の温度について」
上記実施形態では、暖機カウンタCによって触媒34の温度を把握したが、これに限らない。たとえば吸入空気量Gaの単なる積算値を用いてもよい。ここでの積算値の更新処理は、積算値の大きさに寄らずに、吸入空気量Gaによって一義的に定まる更新量にて積算値を更新する処理である。またたとえば、触媒34に熱電対等の温度センサを備えて、この温度センサの検出値を用いてもよい。
上記実施形態では、暖機カウンタCによって触媒34の温度を把握したが、これに限らない。たとえば吸入空気量Gaの単なる積算値を用いてもよい。ここでの積算値の更新処理は、積算値の大きさに寄らずに、吸入空気量Gaによって一義的に定まる更新量にて積算値を更新する処理である。またたとえば、触媒34に熱電対等の温度センサを備えて、この温度センサの検出値を用いてもよい。
・「吸気系の温度について」
上記実施形態では、吸気系の温度として水温THWを用いたが、これに限らない。たとえば内燃機関10の潤滑油の温度を用いてもよい。
上記実施形態では、吸気系の温度として水温THWを用いたが、これに限らない。たとえば内燃機関10の潤滑油の温度を用いてもよい。
・「要求噴射量について」
要求噴射量Qdを、低温増量係数Kwや、フィードバック補正係数KAFに加えて、学習値LAFによってベース噴射量Qbが補正されたものとしてもよい。ちなみに、学習値LAFの算出処理は、フィードバック補正係数KAFを入力とし、フィードバック補正係数KAFによるベース噴射量Qbの補正比率が小さくなるように、学習値LAFを更新する処理である。なお、学習値LAFは、電気的に書き換え可能な不揮発性メモリに記憶されることが望ましい。
要求噴射量Qdを、低温増量係数Kwや、フィードバック補正係数KAFに加えて、学習値LAFによってベース噴射量Qbが補正されたものとしてもよい。ちなみに、学習値LAFの算出処理は、フィードバック補正係数KAFを入力とし、フィードバック補正係数KAFによるベース噴射量Qbの補正比率が小さくなるように、学習値LAFを更新する処理である。なお、学習値LAFは、電気的に書き換え可能な不揮発性メモリに記憶されることが望ましい。
また、たとえば外乱燃料割合に基づくフィードフォワード制御によって、外乱燃料割合が大きい場合に小さい場合よりも、要求噴射量Qdが小さくなるようにして要求噴射量Qdを算出してもよい。ここで、「外乱燃料割合」とは、1燃焼サイクル内においてポート噴射弁16から噴射される燃料以外に、内燃機関10の燃焼室24に流入する燃料(外乱燃料)の量の、燃焼室24内に流入する燃料総量に対する割合である。また、「外乱燃料」としては、たとえばポート噴射弁16から噴射される燃料を貯蔵する燃料タンクからの、燃料蒸気を捕集するキャニスタと、キャニスタ内の流体の吸気通路12への流入量を調整する調整装置とを内燃機関が備える場合、キャニスタから吸気通路12に流入する燃料蒸気がある。またたとえば、クランクケース内の燃料蒸気を吸気通路12に戻すシステムを内燃機関が備える場合には、クランクケースから吸気通路12に流入する燃料蒸気がある。
なお、内燃機関10の冷間始動時においては、充填効率ηによらず、噴射量が多くなるので、やはりシングル噴射処理を実行するとPNが増加する傾向がある。よって、始動時においてエアフローメータ62によって吸入空気量Gaを精度良く把握できないので、吸入空気量Gaによらず水温THWに基づき要求噴射量Qdを定める場合であっても、マルチ噴射処理を実行してもよい。この場合であっても、触媒34の温度が低い場合には高い場合よりも、吸気同期噴射の噴射開始時期Isを進角側とすることが有効である。
・「マルチ噴射処理の吸気非同期噴射について」
上記実施形態では、ポート噴射弁16から噴射された燃料が吸気バルブ18の開弁前の位置に到達する期間が、吸気バルブ18の閉弁期間に収まるように燃料を噴射するものが、吸気非同期噴射であるとしたがこれに限らない。たとえば回転速度NEが高くて且つ、非同期噴射量Qnsが過度に多い場合、ポート噴射弁16から噴射された燃料が吸気バルブ18の開弁前の位置に到達する期間の一部が、吸気バルブ18の開弁期間と重複してもよい。
上記実施形態では、ポート噴射弁16から噴射された燃料が吸気バルブ18の開弁前の位置に到達する期間が、吸気バルブ18の閉弁期間に収まるように燃料を噴射するものが、吸気非同期噴射であるとしたがこれに限らない。たとえば回転速度NEが高くて且つ、非同期噴射量Qnsが過度に多い場合、ポート噴射弁16から噴射された燃料が吸気バルブ18の開弁前の位置に到達する期間の一部が、吸気バルブ18の開弁期間と重複してもよい。
・「シングル噴射処理について」
上記実施形態では、ポート噴射弁16から噴射された燃料が吸気バルブ18の開弁前の位置に到達する期間が、吸気バルブ18の閉弁期間に収まるように燃料を噴射するものがシングル噴射処理であるとしたがこれに限らない。たとえば、要求噴射量Qdが大きい場合には、ポート噴射弁16から噴射された燃料が吸気バルブ18の開弁前の位置に到達する期間の一部が、吸気バルブ18の開弁期間と重複することがあってもよい。なお、シングル噴射処理を実行することは必須ではない。
上記実施形態では、ポート噴射弁16から噴射された燃料が吸気バルブ18の開弁前の位置に到達する期間が、吸気バルブ18の閉弁期間に収まるように燃料を噴射するものがシングル噴射処理であるとしたがこれに限らない。たとえば、要求噴射量Qdが大きい場合には、ポート噴射弁16から噴射された燃料が吸気バルブ18の開弁前の位置に到達する期間の一部が、吸気バルブ18の開弁期間と重複することがあってもよい。なお、シングル噴射処理を実行することは必須ではない。
・「要求噴射量の分割手法について」
上記実施形態では、回転速度NE、充填効率η、水温THW、および吸気位相差DINに基づき、同期噴射量Qsを可変設定したが、これに限らない。たとえば、燃焼室24内に充填される空気量を示すパラメータである負荷パラメータとして、充填効率ηに代えて、ベース噴射量Qbを用いてもよい。また、負荷パラメータと回転速度NEと水温THWと吸気位相差DINとの4つのパラメータについては、それらのうちの3つパラメータのみに基づき可変設定したり、2つのパラメータのみに基づき可変設定したり、1つのパラメータのみに基づき可変設定したりしてもよい。なお、この際、負荷パラメータおよび水温THWのうちの少なくとも1つを極力用いて、可変設定することが望ましい。また、上記4つのパラメータ以外にたとえば、吸気圧や、吸入空気の流速を用いてもよい。ただし、上記4つのパラメータによれば、吸気圧や吸入空気の流速を把握することができる。
上記実施形態では、回転速度NE、充填効率η、水温THW、および吸気位相差DINに基づき、同期噴射量Qsを可変設定したが、これに限らない。たとえば、燃焼室24内に充填される空気量を示すパラメータである負荷パラメータとして、充填効率ηに代えて、ベース噴射量Qbを用いてもよい。また、負荷パラメータと回転速度NEと水温THWと吸気位相差DINとの4つのパラメータについては、それらのうちの3つパラメータのみに基づき可変設定したり、2つのパラメータのみに基づき可変設定したり、1つのパラメータのみに基づき可変設定したりしてもよい。なお、この際、負荷パラメータおよび水温THWのうちの少なくとも1つを極力用いて、可変設定することが望ましい。また、上記4つのパラメータ以外にたとえば、吸気圧や、吸入空気の流速を用いてもよい。ただし、上記4つのパラメータによれば、吸気圧や吸入空気の流速を把握することができる。
また、同期噴射量Qsを算出することで要求噴射量Qdを分割すること自体、必須ではなく、たとえば負荷等に応じて、ベース噴射量Qbに対する同期噴射量Qsの割合である同期噴射割合Ksを定めてもよい。さらに、たとえばベース噴射量Qbがフィードバック補正係数KAFによって補正された値「KAF・Qb」を、同期噴射割合Ksによって分割したものを、同期噴射量Qsとしてもよい。この場合、同期噴射量Qsは、「Ks・KAF・Qb」となる。
・「バルブ特性制御処理について」
上記実施形態では、回転速度NEおよび充填効率ηに応じて、目標吸気位相差DIN*を可変設定したがこれに限らない。たとえば、水温THWが低い場合には、例外的に、回転速度NEおよび充填効率ηに応じて定まる吸気バルブ18の開弁タイミングに対して、実際のタイミングを遅角側に制限するなどしてもよい。
上記実施形態では、回転速度NEおよび充填効率ηに応じて、目標吸気位相差DIN*を可変設定したがこれに限らない。たとえば、水温THWが低い場合には、例外的に、回転速度NEおよび充填効率ηに応じて定まる吸気バルブ18の開弁タイミングに対して、実際のタイミングを遅角側に制限するなどしてもよい。
・「吸気バルブの特性可変装置について」
吸気バルブ18の特性を変更する特性可変装置としては、吸気バルブタイミング調整装置44に限らない。たとえば、吸気バルブ18のリフト量を変更するものであってもよい。この場合、吸気バルブ18のバルブ特性を示すパラメータは、吸気位相差DINに代えて、リフト量等となる。
吸気バルブ18の特性を変更する特性可変装置としては、吸気バルブタイミング調整装置44に限らない。たとえば、吸気バルブ18のリフト量を変更するものであってもよい。この場合、吸気バルブ18のバルブ特性を示すパラメータは、吸気位相差DINに代えて、リフト量等となる。
・「制御装置について」
制御装置がCPU52とROM54とを備えて、ソフトウェア処理を実行するものに限らない。たとえば、上記実施形態においてソフトウェア処理されたものの少なくとも一部を、ハードウェア処理する専用のハードウェア回路(たとえばASIC等)を備えてもよい。すなわち、制御装置は、以下の(a)~(c)のいずれかの構成であればよい。(a)上記処理の全てを、プログラムに従って実行する処理装置と、プログラムを記憶するROM等のプログラム格納装置(非一時的なコンピュータ読取可能な記憶媒体を含む)とを備える。(b)上記処理の一部をプログラムに従って実行する処理装置およびプログラム格納装置と、残りの処理を実行する専用のハードウェア回路とを備える。(c)上記処理の全てを実行する専用のハードウェア回路を備える。ここで、処理装置およびプログラム格納装置を備えたソフトウェア処理回路や、専用のハードウェア回路は複数であってもよい。すなわち、上記処理は、1または複数のソフトウェア処理回路および1または複数の専用のハードウェア回路の少なくとも一方を備えた処理回路によって実行されればよい。
制御装置がCPU52とROM54とを備えて、ソフトウェア処理を実行するものに限らない。たとえば、上記実施形態においてソフトウェア処理されたものの少なくとも一部を、ハードウェア処理する専用のハードウェア回路(たとえばASIC等)を備えてもよい。すなわち、制御装置は、以下の(a)~(c)のいずれかの構成であればよい。(a)上記処理の全てを、プログラムに従って実行する処理装置と、プログラムを記憶するROM等のプログラム格納装置(非一時的なコンピュータ読取可能な記憶媒体を含む)とを備える。(b)上記処理の一部をプログラムに従って実行する処理装置およびプログラム格納装置と、残りの処理を実行する専用のハードウェア回路とを備える。(c)上記処理の全てを実行する専用のハードウェア回路を備える。ここで、処理装置およびプログラム格納装置を備えたソフトウェア処理回路や、専用のハードウェア回路は複数であってもよい。すなわち、上記処理は、1または複数のソフトウェア処理回路および1または複数の専用のハードウェア回路の少なくとも一方を備えた処理回路によって実行されればよい。
・「そのほか」
内燃機関10が、吸気バルブ18の特性を変更する特性可変装置を備えることは必須ではない。内燃機関10が、スロットルバルブ14を備えることは必須ではない。
内燃機関10が、吸気バルブ18の特性を変更する特性可変装置を備えることは必須ではない。内燃機関10が、スロットルバルブ14を備えることは必須ではない。
GPF136を備えることは必須ではない。
Claims (14)
- 内燃機関の制御装置であって、前記制御装置が適用される前記内燃機関は、吸気通路に燃料を噴射するポート噴射弁を備え、前記制御装置は、
前記ポート噴射弁を操作することで、1燃焼サイクル内において要求される噴射量である要求噴射量の燃料を噴射すべく、吸気同期噴射と吸気非同期噴射とを実行するマルチ噴射処理であって、前記吸気同期噴射は吸気バルブの開弁期間に同期して燃料を噴射し、前記吸気非同期噴射は前記吸気同期噴射よりも進角側のタイミングにて燃料を噴射する、前記マルチ噴射処理と、
前記吸気同期噴射の噴射時期を、3つのパラメータのうちの少なくとも2つのパラメータに基づき可変設定する可変処理であって、前記吸気同期噴射の噴射時期は前記内燃機関のクランクシャフトの回転角度で表現され、前記3つのパラメータは、前記内燃機関のクランクシャフトの回転速度、前記吸気バルブの開弁開始時期、および前記内燃機関の吸気系の温度である、前記可変処理と
を実行するように構成される、内燃機関の制御装置。 - 前記制御装置はさらに、前記内燃機関の気筒内に充填される新気量に基づき、空燃比を目標空燃比に制御するための噴射量として前記要求噴射量を算出する要求噴射量算出処理を実行するように構成され、
前記可変処理は、前記吸気同期噴射の噴射時期を、前記少なくとも2つのパラメータに加えて、前記内燃機関の負荷に基づき可変設定する処理である、
請求項1記載の内燃機関の制御装置。 - 前記可変処理は、
前記回転速度、前記吸気系の温度、および前記負荷に基づき、到達終了時期を可変設定する終了時期設定処理であって、前記到達終了時期は、前記ポート噴射弁から最も遅いタイミングで噴射される燃料が、前記内燃機関の燃焼室の入口に到達するタイミングの目標値である、前記終了時期設定処理と、
前記到達終了時期に基づき、前記吸気同期噴射の噴射開始時期を算出する開始時期算出処理と
を含む、請求項2記載の内燃機関の制御装置。 - 前記内燃機関は、前記吸気バルブのバルブ特性を可変とするように構成されるバルブ特性可変装置を備え、
前記制御装置はさらに、前記バルブ特性可変装置を操作することで、前記吸気バルブの開弁開始時期を可変制御するバルブ特性制御処理を実行するように構成され、
前記終了時期設定処理は、前記回転速度、前記吸気系の温度、および前記負荷に基づき、前記吸気バルブの開弁開始時期に対する前記到達終了時期の遅角量を算出する遅角量算出処理を含み、
前記終了時期設定処理は、前記吸気バルブの開弁開始時期に対して、前記遅角量だけ遅角したタイミングを、前記到達終了時期とする処理である、
請求項3記載の内燃機関の制御装置。 - 前記可変処理は、
前記クランクシャフトの回転速度に基づき、到達終了時期を可変設定する終了時期設定処理であって、前記到達終了時期は、前記ポート噴射弁から最も遅いタイミングで噴射される燃料が、前記内燃機関の燃焼室の入口に到達するタイミングの目標値である、前記終了時期設定処理と、
前記到達終了時期に基づき、前記吸気同期噴射の噴射開始時期を算出する開始時期算出処理と
を含む、請求項1または2に記載の内燃機関の制御装置。 - 前記終了時期設定処理は、前記回転速度に加えて前記内燃機関の負荷に基づき、前記到達終了時期を可変設定する処理を含む、
請求項5記載の内燃機関の制御装置。 - 前記内燃機関は、前記吸気バルブのバルブ特性を可変とするように構成されるバルブ特性可変装置を備え、
前記制御装置はさらに、前記バルブ特性可変装置を操作することで前記吸気バルブの開弁開始時期を可変制御する、バルブ特性制御処理を実行し、
前記終了時期設定処理は、前記回転速度および前記負荷に基づき、前記吸気バルブの開弁開始時期に対する前記到達終了時期の遅角量を算出する遅角量算出処理を含み、
前記終了時期設定処理は、前記吸気バルブの開弁開始時期に対して前記遅角量だけ遅角したタイミングを、前記到達終了時期とする処理である、
請求項6記載の内燃機関の制御装置。 - 前記内燃機関はさらに、排気通路に排出された排気を浄化する触媒を備え、
前記要求噴射量は、空燃比を目標空燃比に制御するために、前記マルチ噴射処理において前記ポート噴射弁から噴射される燃料量であり、
前記制御装置はさらに、前記触媒の温度が低い場合には前記触媒の温度が高い場合よりも、前記吸気同期噴射の噴射時期を進角させる進角処理を実行するように構成される、
請求項1~7のいずれか1項に記載の内燃機関の制御装置。 - 前記内燃機関は、吸気バルブのバルブ特性を可変とするバルブ特性可変装置を備え、前記制御装置はさらに、前記バルブ特性可変装置を操作することで、前記吸気バルブの開弁開始時期を可変制御するバルブ特性制御処理を実行するように構成され、
前記可変処理は、前記吸気バルブの開弁開始時期に応じて、前記吸気同期噴射の噴射時期を可変設定し、
前記可変処理は、
前記吸気バルブの開弁開始時期に基づき、前記吸気同期噴射の噴射時期を設定する基準時期設定処理と、
前記内燃機関の吸気系の温度に応じて、前記触媒の温度が規定値未満である場合の遅角ガード値を設定するガード値設定処理と、
前記触媒の温度が前記規定値未満の場合に、前記基準時期設定処理によって設定される噴射時期と、前記遅角ガード値とのうちのより進角側の時期を、前記吸気同期噴射の噴射時期に設定する低温時期設定処理と
を含み、
前記可変処理は、前記触媒の温度が前記規定値以上である場合、前記基準時期設定処理によって設定される噴射時期を、前記吸気同期噴射の噴射時期に設定する処理である、
請求項8に記載の内燃機関の制御装置。 - 内燃機関の制御装置であって、前記制御装置は、吸気通路に燃料を噴射するポート噴射弁を備える内燃機関に適用され、前記制御装置は、
前記ポート噴射弁を操作することで、1燃焼サイクル内において要求される噴射量である要求噴射量の燃料を噴射すべく、吸気同期噴射と吸気非同期噴射とを実行するマルチ噴射処理であって、前記吸気同期噴射は吸気バルブの開弁期間に同期して燃料を噴射し、前記吸気非同期噴射は前記吸気同期噴射よりも進角側のタイミングにて燃料を噴射する、前記マルチ噴射処理と、
前記内燃機関のクランクシャフトの回転角度で表現される、前記吸気同期噴射の噴射時期を可変設定する可変処理と
を実行するように構成され、
前記可変処理は、
前記クランクシャフトの回転速度に基づき、到達終了時期を可変設定する終了時期設定処理であって、前記到達終了時期は、前記ポート噴射弁から最も遅いタイミングで噴射される燃料が、前記内燃機関の燃焼室の入口に到達するタイミングの目標値である、前記終了時期設定処理と、
前記到達終了時期に基づき、前記吸気同期噴射の噴射開始時期を算出する開始時期算出処理と
を含む、内燃機関の制御装置。 - 内燃機関の制御装置であって、前記制御装置が適用される内燃機関は、吸気通路に燃料を噴射するポート噴射弁と、排気通路に排出された排気を浄化する触媒とを備え、前記制御装置は、
空燃比を目標空燃比に制御するための要求噴射量の燃料を噴射すべく前記ポート噴射弁を操作することで、吸気同期噴射と吸気非同期噴射とを実行するマルチ噴射処理であって、前記吸気同期噴射は吸気バルブの開弁期間に同期して燃料を噴射し、前記吸気非同期噴射は前記吸気同期噴射よりも進角側のタイミングにて燃料を噴射する、前記マルチ噴射処理と、
前記触媒の温度が低い場合には前記触媒の温度が高い場合よりも、前記吸気同期噴射の噴射時期を進角させる進角処理と
を実行するように構成される、内燃機関の制御装置。 - 内燃機関の制御方法であって、前記内燃機関は吸気通路に燃料を噴射するポート噴射弁を備え、前記制御方法は、
前記ポート噴射弁を操作することで、1燃焼サイクル内において要求される噴射量である要求噴射量の燃料を噴射すべく、吸気同期噴射と吸気非同期噴射とを実行するマルチ噴射処理であって、前記吸気同期噴射は吸気バルブの開弁期間に同期して燃料を噴射し、前記吸気非同期噴射は前記吸気同期噴射よりも進角側のタイミングにて燃料を噴射する、前記マルチ噴射処理と、
前記吸気同期噴射の噴射時期を、3つのパラメータのうちの少なくとも2つのパラメータに基づき可変設定する可変処理であって、前記吸気同期噴射の噴射時期は前記内燃機関のクランクシャフトの回転角度で表現され、前記3つのパラメータは、前記内燃機関のクランクシャフトの回転速度、前記吸気バルブの開弁開始時期、および前記内燃機関の吸気系の温度である、前記可変処理と
を備える、内燃機関の制御方法。 - 内燃機関の制御方法であって、前記制御方法が適用される内燃機関は、吸気通路に燃料を噴射するポート噴射弁と、排気通路に排出された排気を浄化する触媒とを備え、前記制御方法は、
空燃比を目標空燃比に制御するための要求噴射量の燃料を噴射すべく前記ポート噴射弁を操作することで、吸気同期噴射と吸気非同期噴射とを実行するマルチ噴射処理であって、前記吸気同期噴射は吸気バルブの開弁期間に同期して燃料を噴射し、前記吸気非同期噴射は前記吸気同期噴射よりも進角側のタイミングにて燃料を噴射する、前記マルチ噴射処理と、
前記触媒の温度が低い場合には前記触媒の温度が高い場合よりも、前記吸気同期噴射の噴射時期を進角させる進角処理と
を備える、内燃機関の制御方法。 - 内燃機関の制御処理を処理装置に実行させるプログラムを記憶した、非一時的なコンピュータ読取可能な記憶媒体であって、前記内燃機関は吸気通路に燃料を噴射するポート噴射弁を備え、前記制御処理は、
前記ポート噴射弁を操作することで、1燃焼サイクル内において要求される噴射量である要求噴射量の燃料を噴射すべく、吸気同期噴射と吸気非同期噴射とを実行するマルチ噴射処理であって、前記吸気同期噴射は吸気バルブの開弁期間に同期して燃料を噴射し、前記吸気非同期噴射は前記吸気同期噴射よりも進角側のタイミングにて燃料を噴射する、前記マルチ噴射処理と、
前記吸気同期噴射の噴射時期を、3つのパラメータのうちの少なくとも2つのパラメータに基づき可変設定する可変処理であって、前記吸気同期噴射の噴射時期は前記内燃機関のクランクシャフトの回転角度で表現され、前記3つのパラメータは、前記内燃機関のクランクシャフトの回転速度、前記吸気バルブの開弁開始時期、および前記内燃機関の吸気系の温度である、前記可変処理と
を備える、非一時的なコンピュータ読取可能な記憶媒体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880056840.6A CN111065809B (zh) | 2017-09-05 | 2018-08-23 | 内燃机的控制装置以及控制方法 |
US16/643,876 US11002213B2 (en) | 2017-09-05 | 2018-08-23 | Internal combustion engine control device and control method |
EP18853272.5A EP3680475A4 (en) | 2017-09-05 | 2018-08-23 | COMBUSTION ENGINE CONTROL DEVICE AND CONTROL METHOD |
Applications Claiming Priority (18)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017170476 | 2017-09-05 | ||
JP2017-170476 | 2017-09-05 | ||
JP2018060412A JP6977647B2 (ja) | 2017-09-05 | 2018-03-27 | 内燃機関の燃料噴射制御装置 |
JP2018-060412 | 2018-03-27 | ||
JP2018060404A JP7031431B2 (ja) | 2018-03-27 | 2018-03-27 | 内燃機関の制御装置 |
JP2018-060404 | 2018-03-27 | ||
JP2018092491A JP6969492B2 (ja) | 2018-05-11 | 2018-05-11 | 内燃機関の燃料噴射制御装置 |
JP2018-092491 | 2018-05-11 | ||
JP2018-095430 | 2018-05-17 | ||
JP2018095429A JP6930493B2 (ja) | 2018-05-17 | 2018-05-17 | 内燃機関の制御装置 |
JP2018095430A JP6927142B2 (ja) | 2018-05-17 | 2018-05-17 | 内燃機関の制御装置 |
JP2018095434A JP6930494B2 (ja) | 2018-05-17 | 2018-05-17 | 内燃機関の制御装置 |
JP2018-095429 | 2018-05-17 | ||
JP2018-095434 | 2018-05-17 | ||
JP2018-114649 | 2018-06-15 | ||
JP2018114649A JP6911815B2 (ja) | 2018-06-15 | 2018-06-15 | 内燃機関の制御装置 |
JP2018128754A JP7239868B2 (ja) | 2018-07-06 | 2018-07-06 | 内燃機関の制御装置 |
JP2018-128754 | 2018-07-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019049676A1 true WO2019049676A1 (ja) | 2019-03-14 |
Family
ID=65633891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/031129 WO2019049676A1 (ja) | 2017-09-05 | 2018-08-23 | 内燃機関の制御装置および制御方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111065809B (ja) |
WO (1) | WO2019049676A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3557034A1 (en) * | 2018-03-27 | 2019-10-23 | Toyota Jidosha Kabushiki Kaisha | Controller and control method for internal combustion engine |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60132043A (ja) * | 1983-12-19 | 1985-07-13 | Toyota Motor Corp | 燃料噴射制御装置 |
JPH06330788A (ja) * | 1993-05-24 | 1994-11-29 | Nippondenso Co Ltd | 多気筒内燃機関の燃料噴射制御装置 |
JP2005023850A (ja) * | 2003-07-02 | 2005-01-27 | Toyota Motor Corp | 内燃機関の空燃比制御装置 |
JP2005291133A (ja) | 2004-04-01 | 2005-10-20 | Hitachi Ltd | 燃料噴射制御装置 |
JP2011149333A (ja) * | 2010-01-21 | 2011-08-04 | Toyota Motor Corp | ポート噴射型多気筒内燃機関 |
JP2012136959A (ja) * | 2010-12-24 | 2012-07-19 | Toyota Motor Corp | 内燃機関の制御装置 |
JP2015059456A (ja) | 2013-09-18 | 2015-03-30 | 日立オートモティブシステムズ株式会社 | 内燃機関の制御装置 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58150048A (ja) * | 1982-03-02 | 1983-09-06 | Toyota Motor Corp | 内燃機関の電子制御燃料噴射方法 |
JP2611473B2 (ja) * | 1990-02-02 | 1997-05-21 | トヨタ自動車株式会社 | 内燃機関の燃料噴射量制御装置 |
US20010045194A1 (en) * | 1998-04-02 | 2001-11-29 | Takuya Shiraishi | Internal combustion engine control system |
JP3185637B2 (ja) * | 1995-11-09 | 2001-07-11 | トヨタ自動車株式会社 | 内燃機関の燃料噴射制御装置 |
US6062201A (en) * | 1997-05-13 | 2000-05-16 | Denso Corporation | Fuel injection control for internal combustion engine |
JP3736031B2 (ja) * | 1997-05-19 | 2006-01-18 | トヨタ自動車株式会社 | 内燃機関の始動時燃料噴射制御装置 |
JP3780740B2 (ja) * | 1999-04-15 | 2006-05-31 | トヨタ自動車株式会社 | 内燃機関の燃料噴射制御装置 |
JP3968245B2 (ja) * | 2002-01-15 | 2007-08-29 | 株式会社ミクニ | 燃料噴射制御装置 |
JP2003222049A (ja) * | 2002-01-30 | 2003-08-08 | Mazda Motor Corp | 火花点火式直噴エンジン |
JP2007107406A (ja) * | 2005-10-11 | 2007-04-26 | Toyota Motor Corp | 車両の駆動制御装置 |
JP4788647B2 (ja) * | 2007-04-26 | 2011-10-05 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
US8739760B2 (en) * | 2009-04-02 | 2014-06-03 | Toyota Jidosha Kabushiki Kaisha | Control system of an internal combustion engine |
JP5168233B2 (ja) * | 2009-05-28 | 2013-03-21 | 日産自動車株式会社 | エンジンの燃料噴射制御装置 |
JP2012102674A (ja) * | 2010-11-10 | 2012-05-31 | Toyota Motor Corp | 内燃機関の制御装置 |
WO2013080362A1 (ja) * | 2011-12-01 | 2013-06-06 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
JP5967296B2 (ja) * | 2013-04-09 | 2016-08-10 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
JP6170852B2 (ja) * | 2014-03-10 | 2017-07-26 | 本田技研工業株式会社 | 内燃機関の燃焼制御装置 |
JP6052224B2 (ja) * | 2014-04-23 | 2016-12-27 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
JP6252495B2 (ja) * | 2015-01-07 | 2017-12-27 | トヨタ自動車株式会社 | 車両の制御装置 |
-
2018
- 2018-08-23 WO PCT/JP2018/031129 patent/WO2019049676A1/ja active Search and Examination
- 2018-08-23 CN CN201880056840.6A patent/CN111065809B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60132043A (ja) * | 1983-12-19 | 1985-07-13 | Toyota Motor Corp | 燃料噴射制御装置 |
JPH06330788A (ja) * | 1993-05-24 | 1994-11-29 | Nippondenso Co Ltd | 多気筒内燃機関の燃料噴射制御装置 |
JP2005023850A (ja) * | 2003-07-02 | 2005-01-27 | Toyota Motor Corp | 内燃機関の空燃比制御装置 |
JP2005291133A (ja) | 2004-04-01 | 2005-10-20 | Hitachi Ltd | 燃料噴射制御装置 |
JP2011149333A (ja) * | 2010-01-21 | 2011-08-04 | Toyota Motor Corp | ポート噴射型多気筒内燃機関 |
JP2012136959A (ja) * | 2010-12-24 | 2012-07-19 | Toyota Motor Corp | 内燃機関の制御装置 |
JP2015059456A (ja) | 2013-09-18 | 2015-03-30 | 日立オートモティブシステムズ株式会社 | 内燃機関の制御装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3680475A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3557034A1 (en) * | 2018-03-27 | 2019-10-23 | Toyota Jidosha Kabushiki Kaisha | Controller and control method for internal combustion engine |
US10968854B2 (en) | 2018-03-27 | 2021-04-06 | Toyota Jidosha Kabushiki Kaisha | Controller and control method for internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
CN111065809B (zh) | 2022-04-01 |
CN111065809A (zh) | 2020-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3557034A1 (en) | Controller and control method for internal combustion engine | |
CN110410227B (zh) | 内燃机的控制装置以及控制方法 | |
CN111051672B (zh) | 内燃机的控制装置以及控制方法 | |
CN111033020B (zh) | 内燃机的控制装置及控制方法 | |
WO2019049676A1 (ja) | 内燃機関の制御装置および制御方法 | |
EP3680474B1 (en) | Internal combustion engine control device and control method | |
JP6911815B2 (ja) | 内燃機関の制御装置 | |
JP6981358B2 (ja) | 内燃機関の制御装置 | |
JP2019044760A (ja) | 内燃機関の燃料噴射制御装置 | |
EP3680475A1 (en) | Internal combustion engine control device and control method | |
EP3680476B1 (en) | Internal-combustion-engine control device and control method | |
EP3640460B1 (en) | Controller for internal combustion engine and method for controlling internal combustion engine | |
JP7239868B2 (ja) | 内燃機関の制御装置 | |
EP3569849B1 (en) | Controller and control method for internal combustion engine | |
JP7332276B2 (ja) | 内燃機関の制御装置 | |
JP6927142B2 (ja) | 内燃機関の制御装置 | |
JP6904310B2 (ja) | 内燃機関の制御装置 | |
JP6930494B2 (ja) | 内燃機関の制御装置 | |
JP6969492B2 (ja) | 内燃機関の燃料噴射制御装置 | |
JP2019173598A (ja) | 内燃機関の制御装置 | |
JP2020002874A (ja) | 内燃機関の制御装置 | |
JP2019218935A (ja) | 内燃機関の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18853272 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018853272 Country of ref document: EP Effective date: 20200406 |