WO2019049432A1 - 回転電機の製造装置及び製造方法 - Google Patents

回転電機の製造装置及び製造方法 Download PDF

Info

Publication number
WO2019049432A1
WO2019049432A1 PCT/JP2018/019045 JP2018019045W WO2019049432A1 WO 2019049432 A1 WO2019049432 A1 WO 2019049432A1 JP 2018019045 W JP2018019045 W JP 2018019045W WO 2019049432 A1 WO2019049432 A1 WO 2019049432A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
segment
bending
wire
pressing
Prior art date
Application number
PCT/JP2018/019045
Other languages
English (en)
French (fr)
Inventor
宮脇 伸郎
隆之 望月
裕治 宮崎
亘 涌井
寿善 渡邉
広大 河野
大貴 齋藤
遼 本多
友裕 石塚
Original Assignee
株式会社小田原エンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小田原エンジニアリング filed Critical 株式会社小田原エンジニアリング
Priority to CN201880003530.8A priority Critical patent/CN109792196B/zh
Priority to EP18853175.0A priority patent/EP3503361B1/en
Priority to US16/281,461 priority patent/US11018563B2/en
Publication of WO2019049432A1 publication Critical patent/WO2019049432A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • H02K15/0414Windings consisting of separate elements, e.g. bars, hairpins, segments, half coils
    • H02K15/0421Windings consisting of separate elements, e.g. bars, hairpins, segments, half coils consisting of single conductors, e.g. hairpins
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • H02K15/0414Windings consisting of separate elements, e.g. bars, hairpins, segments, half coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/06Embedding prefabricated windings in machines
    • H02K15/062Windings in slots; salient pole windings
    • H02K15/064Windings consisting of separate segments, e.g. hairpin windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/06Embedding prefabricated windings in machines
    • H02K15/062Windings in slots; salient pole windings
    • H02K15/065Windings consisting of complete sections, e.g. coils, waves
    • H02K15/067Windings consisting of complete sections, e.g. coils, waves inserted in parallel to the axis of the slots or inter-polar channels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/08Forming windings by laying conductors into or around core parts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/10Applying solid insulation to windings, stators or rotors
    • H02K15/105Applying solid insulation to windings, stators or rotors to the windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • H02K3/345Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots

Definitions

  • the present invention relates to a manufacturing apparatus of a rotating electrical machine used for manufacturing a rotating electrical machine (rotating electrical machine) such as a motor and a generator, and a method of manufacturing the rotating electrical machine.
  • a plurality of segments (hairpins) formed by processing a wire into a U shape are respectively inserted into a plurality of slots arranged along the circumferential direction of the stator or rotor as coils of a stator or rotor in a rotating electric machine.
  • a so-called segmented coil is known in which the free ends of the segments are joined together by welding or the like to form a coil.
  • Patent Document 1 As a segment forming method of such a segment type coil, in Patent Document 1, a wire rod cut into a predetermined length is sequentially formed into a three-dimensional shape without movement by the first forming die, the second forming die and the forming roller. A method of forming is disclosed.
  • the curved shape of the transition portion of the segment, the width between the slot insertion portions, etc. are all defined by the mold shape (press surface shape) of the mold. Therefore, in order to change the shape of the transition portion and the width between the slot insertion portions, it is necessary to replace the mold each time.
  • one coil contains many types of coil segments having different lengths and angles of the transition portion in the U-shape, and the width between the pair of slot insertion portions, when manufacturing one coil, It is necessary to prepare molds of various shapes and to replace these molds each time.
  • an object of the present invention is to provide an apparatus and a method for manufacturing a rotating electrical machine that can operate consistently from coil segment formation to coil assembly, and can obtain good working efficiency.
  • Another object of the present invention is to provide a manufacturing apparatus and a manufacturing method of a rotary electric machine which does not require management such as storage and selection of formed coil segments.
  • Still another object of the present invention is to provide a manufacturing apparatus of a rotating electrical machine capable of constructing a facility of a scale according to demand.
  • the manufacturing apparatus of the rotary electric machine comprises a linear wire rod of a predetermined length, a pair of slot insertion portions extending substantially in parallel with each other, and a transition portion connecting the pair of slot insertion portions
  • the coil segment forming unit and the coil assembly unit are configured to continuously perform forming and assembly in units of coil segments based on control information set in accordance with a coil to be manufactured.
  • the coil segment forming portion performs a primary bending portion in which the wire rod is subjected to primary bending in the same plane, and a primary bending formed body in which the wire bending is performed in the primary bending portion.
  • the primary bending portion and the secondary bending portion continue primary bending and secondary bending in each coil segment unit based on the set control information.
  • it is configured to
  • the apparatus further comprises a wire supply unit for supplying a linear wire of a predetermined length, and the wire supply unit, the coil segment forming unit and the coil assembly unit supply, form and assemble the coil segment based on the set control information. It is also preferable to be configured to continuously perform each coil segment unit.
  • a work supply line for supplying a stator or rotor having a core, and a coil supply line connected to the work supply line and having a coil segment forming portion, a coil assembly and a coil insertion mechanism are provided. It is also preferred that the coil insertion mechanism of the coil supply line is configured to insert the assembled coil into the slot of the core supplied from the work supply line.
  • the coil supply line is unitized, and a plurality of units of the coil supply line are provided according to the demand of the rotating electrical machine.
  • the primary bending portion has a plurality of jigs arranged in the same plane and supporting the wire, and a plurality of jigs, and the wire is based on the movement amount set according to the shape condition of the coil segment to be formed. It is also preferable to have a plurality of primary bending drive mechanisms which are respectively moved in the same plane so as to have a predetermined shape.
  • the plurality of primary bending drive mechanisms be configured to turn or linearly move the plurality of jigs based on data of the set movement amount.
  • the secondary bending portions are disposed to face each other in the same plane and intersect each other, and a plurality of pairs of pressing jigs for holding and pressing the transition portion and a plurality of pairs of pressing jigs are coils to be formed. It is also preferable to have a plurality of secondary bending drive mechanisms that are respectively moved in the direction intersecting with the same plane based on the movement amounts respectively set according to the shape conditions of the segments.
  • the plurality of secondary bending drive mechanisms are configured to move the plurality of pairs of pressing jigs on the basis of the set movement amount data.
  • a plurality of segment holding portions capable of inserting the coil segments radially outward from each other are annularly arranged along the circumferential direction, and a segment arrangement body rotatable around a central axis, and segment arrangement Each time the body rotates a first predetermined angle, one slot inserting portion of the pair of slot inserting portions of each of the plurality of coil segments is guided and inserted into one segment holding portion of the plurality of segment holding portions Guiding the other slot inserting portion of the pair of slot inserting portions to another one of the segment holding portions of the plurality of segment holding portions when rotating from the insertion of one slot inserting portion to the second predetermined angle; It is also preferable to have a guide means configured to be inserted.
  • the linear wire rod having a predetermined length is formed of a pair of slot inserting portions extending substantially in parallel with each other and a connecting portion connecting the pair of slot inserting portions.
  • the coil segment forming process and the coil assembling process perform forming and assembly continuously in units of coil segments based on control information set according to a coil to be manufactured.
  • a primary bending process in which the wire rod is subjected to primary bending in the same plane, and a primary bending formed body bent in the primary bending process is secondary in the direction crossing the above-mentioned same plane.
  • the secondary bending process for bending is provided, and the primary bending process and the secondary bending process are continuously performed for each primary coil segment in the primary bending process and the secondary bending process based on the set control information. It is preferred to do.
  • the method further comprises a wire feeding step of feeding a linear wire of a predetermined length, and the wire feeding step, the coil segment forming step and the coil assembling step feed, form and assemble the coil segment based on set control information. It is also preferable to carry out the process continuously in units of coil segments.
  • coil segments are formed and assembled in units of coil segments based on control information set in accordance with the coils to be manufactured, so that coil segments are consistently formed from coil segments to coil assembly. Work efficiency is greatly improved. In addition, since it becomes unnecessary to store the formed coil segments and to select a required one from the stored coil segments, management becomes very easy.
  • a work supply line for supplying a stator or rotor having a core, and a coil supply line connected to the work supply line and having a coil segment forming portion, a coil assembly and a coil insertion mechanism.
  • FIG. 1 It is principal part sectional drawing which shows the state in which the coil assembly part in the embodiment of FIG. 1 inserted the coil segment of the 1st round into a segment holding part.
  • the coil assembly part in the embodiment of FIG. 1 is a fragmentary cross-sectional view showing a state where the front leg of the first coil segment of the second round is inserted into the segment holding part after the coil segment of the first round is inserted into the segment holding part.
  • FIG. It is a perspective view which shows roughly the structure of the segment conveyance means in embodiment of FIG. It is a perspective view which shows roughly the structure which looked at the segment conveyance means in embodiment of FIG. 1 from the back side. It is a perspective view which shows roughly the guide member of the coil assembly part in embodiment of FIG. 1, and the coil segment guided by this guide member.
  • FIG. 1 It is an expanded view explaining the assembly order of one type of coil segment assembled by the coil assembly part in embodiment of FIG. It is a perspective view which shows roughly the structure of the whole coil assembly part in embodiment of FIG. It is a perspective view which shows roughly the structure of the extrusion mechanism of the coil assembly part in embodiment of FIG. 1, and a braid
  • 1 WHEREIN It is a perspective view which shows roughly the state which connected the workpiece
  • the manufacturing apparatus of the rotary electric machine of embodiment of FIG. 1 WHEREIN It is a disassembled perspective view which shows roughly the structure for inserting an assembly coil in a core. It is a perspective view which shows roughly the state which inserted a part of assembly coil in the manufacturing apparatus of the rotary electric machine of embodiment of FIG. 1 in the insertion guide. It is a perspective view which shows roughly the state in front of the completion of insertion to the core of the assembly coil in the manufacturing apparatus of the rotary electric machine of embodiment of FIG.
  • a flat wire having a rectangular cross section is described as the wire, but for example, a wire having a round shape, a square shape, a polygonal shape, or a single wire of any other cross sectional shape or a stranded wire Even the present invention is applicable.
  • a manufacturing apparatus 100 of a rotating electrical machine includes a coil segment forming unit 1 and a coil segment formed by the coil segment forming unit 1 along the circumferential direction of the rotating electrical machine. And a coil assembly portion 2 assembled in correspondence with the annularly arranged slots.
  • the coil segment forming unit 1 has a predetermined shape (for example, a U-shaped shape) in the same plane (in the present embodiment, a horizontal plane) of the wire supply unit 3 and a linear wire of a predetermined length supplied from the wire supply unit 3 ) And a coil segment (primary bending formed body) bent at the primary bending portion 4 in a plane perpendicular to the axis of the coil segment and the above-mentioned plane (in the present embodiment)
  • a shape for example, a step shape, a crank shape) for bending (forming into a curved shape) in the vertical plane) and for shifting the pair of slot insertion parts of the coil segment mutually in the radial direction of the core
  • a secondary bending portion 5 forming a crank-shaped step portion
  • the wire supply unit 3 includes a bobbin 7 wound with a wire 6 made of a flat wire covered with an insulating layer, a feeding direction changing unit 8 for pulling out the wire 6 from the bobbin 7 and changing the supply direction, and a flat of the wire 6
  • the correction conveyance part 9 which has a plurality of roller pairs 9a which sandwich and convey a Wise surface, and a plurality of roller pairs 9b which sandwich and convey an edgewise surface of the wire 6, and which corrects distortion in the longitudinal direction
  • a peeling portion 10 for peeling the covering insulating layer at both ends corresponding to a predetermined length of the wire 6 whose strain is corrected, and a cutting portion 11 for cutting the wire 6 having passed the peeling portion 10 at a predetermined length position Have.
  • the peeling part 10 in this embodiment has a structure which peels a coating insulating layer with a laser beam, and the peeling range includes the peeling part of the one-side edge part of the following wire material. Therefore, the cutting part 11 is comprised so that the wire 6 may be cut
  • the transfer mechanism 12 is provided with a pair of chucks (not shown) by an air cylinder, and the pair of chucks are turned by bending of both legs (one pair of slot inserting portions) of the primary bending formed body It stands by in the state where the chuck piece is opened in the coming range. When the chuck portion grips both legs of the primary bending formed body, the transfer mechanism 12 ascends to remove the primary bending formed body from the primary bending portion 4 and transfers it to the secondary bending portion 5.
  • the primary bending molded body transferred by the transfer mechanism 12 is held by the holding member 13 at the ends of both legs. Similar to the transfer member 12, the holding member 13 is configured to hold the pair of slot insertion portions with a pair of chuck portions opened and closed by an air cylinder. In a state in which the transfer mechanism 12 which has delivered the primary bending formed body to the holding member 13 is retracted and the coil end portion (crossover portion) side is opened in space, the bending by the secondary bending portion 5 with respect to this coil end portion Bending is performed including shape forming and formation of a crank-shaped step. In the configuration shown in FIG.
  • the supply direction changing unit 8 of the wire supply unit 3, the correction conveyance unit 9, the peeling unit 10 and the cutting unit 11, and the primary bending unit 4 are in the lateral direction in FIG.
  • the secondary bending portion 5 is disposed in a row, and the secondary bending portion 5 is disposed in the vertical direction (perpendicular direction) in FIG. 1A with respect to the primary bending portion 4, and the coil assembly portion 2 is disposed relative to the secondary bending portion 5.
  • the assembling portions 2 may be arranged in a line in the lateral direction in FIG. 1 (a). That is, there are no limitations on the layout, as long as the coil formation is completed in a single manufacturing device, in other words, the arrangement of the coil segment forming portion and the coil assembly portion is limited.
  • the primary bending portion 4 has a plurality of (here, six) blocks each having a plurality of recessed grooves for supporting the wire 6 of a predetermined length extending linearly with both ends peeled off.
  • the peeling part of the both ends of the wire 6 is displayed by the dot.
  • the rotational movement or linear movement of the jigs 14A, 14B, 15A, 15B, 16A and 16B is numerically controlled (NC control) based on the set control data.
  • rotational movement means rotation (pivoting) with respect to the rotational center (pivot center).
  • the wire 6 is bent into a U-shape shown in FIG. 3A in the same plane by the primary bending portion 4 to form a primary bending formed body 17A of the coil segment.
  • the primary bending molded body 17A has an angle (hereinafter referred to as a "shoulder angle") between the connecting portion 17a having a mountain shape having an apex angle (hereinafter referred to as "central angle") having an angle ⁇ 1. )
  • a shoulder angle between the connecting portion 17a having a mountain shape having an apex angle (hereinafter referred to as "central angle") having an angle ⁇ 1.
  • ⁇ 2 are connected so as to form an angle ⁇ 2
  • the transition portion 17a and the pair of slot insertion portions 17b and 17c are formed to be located on the same plane.
  • the primary bending molded body 17A is an example of a small coil width in which the length of each
  • the jigs 14A, 14B, 15A, 15B, 16A and 16B in the present embodiment are, in other words, wire members with respect to the bending center line C (bending center line) of the primary bending portion 4. Based on the center position in the axial direction of 6, the same number (three each) is arranged in line symmetry on the left and right sides.
  • the pair of jigs 14A and 14B arranged at the innermost side with respect to the bending center line C performs bending such that the central angle of the crossover portion 17a of the primary bending formed body 17A becomes an angle ⁇ 1 by rotational movement.
  • the pair of jigs 15A and 15B and the pair of jigs 16A and 16B also rotate together with the pair of jigs 14A and 14B.
  • the shoulder angle becomes the angle ⁇ 2 It is provided to perform bending.
  • the coil width is defined.
  • the jigs 14A, 14B, 15A, 15B, 16A and 16B are formed by grooves 14A-1, 14B-1, 15A-1, 15B-1 and 16A which are open at the top and penetrate in the lateral direction. It has -1 and 16B-1 respectively.
  • the width w1 of each recessed groove is set to be slightly larger than the width (width in the edgewise direction) w2 of the wire 6 which is a flat wire, whereby the wire 6 is fixed during bending operation in the edgewise direction.
  • the grooves 14A, 14B, 15A, 15B, 16A and 16B are configured to be reliably supported by the grooves.
  • the support configuration of the wire 6 by each jig is not limited to a specific shape, but here, it is accommodated in a recessed groove to restrain movement in the bending direction.
  • the depth d1 of each recessed groove is set to be equal to or greater than the thickness (width in the flatwise direction) d2 of the wire 6.
  • the width w1 of each groove is a width capable of closely accommodating and supporting the wire 6 in order to improve the dimensional accuracy of the primary bending formed body 17A.
  • the width w1 is not variable, and when the width w2 of the wire 6 is changed according to the type of coil, it is necessary to replace the jigs 14A, 14B, 15A, 15B, 16A and 16B. Therefore, the jigs 14A, 14B, 15A, 15B, 16A and 16B are detachably provided to a support member described later by a fixing screw or the like.
  • Edge portions 14A-2, 14B-2, 15A-2, 15B-2, 16A-2 and 16B-2 in contact with the surface on the edgewise side of 6 are insulated at the corners of wire 6 during the bending operation. It is formed in a curved shape so as not to damage the layer.
  • chamfers 14A-3, 14B-3, 15A are provided on the outer surfaces of the jigs 14A, 14B, 15A, 15B, 16A and 16B. -3, 15B-3, 16A-3 and 16B-3 are respectively formed.
  • both sides of the wire in some cases the entire peripheral surface, are subjected to a pressing pressure, so the insulating layer of the wire is damaged. It was easy to get along. When the bending accuracy was to be increased, the edge of the forming surface was sharpened, but the stress was concentrated there, and the insulating layer was easily damaged.
  • the jigs 14A, 14B, 15A, 15B, 16A and 16B are concave grooves 14A-1, 14B-1, 15A-1, 15B-1 and 16A which are opened in the upper surface and penetrated in the lateral direction.
  • the wire 6 is inserted from the upper side into these grooves, but the wire 6 may be inserted into the grooves from the lateral direction.
  • this invention is not limited to this.
  • jigs 14A, 14B, 15A, 15B, 16A and 16B into a structure having an insertion hole through which the wire 6 is inserted by forming an overlapping structure, bending the wire 6 by inserting the wire 6 from the lateral direction It is good also as composition which moves and opens an upper or lower jig after completion of primary bending processing.
  • the wire 6 cut to a predetermined length is a concave groove in which the jigs 14A, 14B, 15A, 15B, 16A and 16B are linearly arranged. It is inserted from above from inside and placed and supported in a bridged state. Next, the bending operation by the primary bending portion 4 is started.
  • FIG. 4 schematically shows this bending operation by the primary bending portion 4.
  • the figure (a) has shown the state by which the wire 6 is set and supported in the bridge state in the ditch
  • the jigs 14A, 14B, 15A, 15B, 16A and 16B are rotationally moved to perform the first bending process of the wire 6 as shown in FIG. Processing is performed to finally form a U-shaped primary bending molded body 17A as shown in FIG.
  • the six jigs 14A, 14B, 15A, 15B, 16A and 16B are arranged in line symmetry with respect to the bending center line C, and are arranged at line symmetrical positions. Are rotationally moved or linearly moved in line symmetry based on the control data. Therefore, as shown in FIG. 3A, the primary bending molded body 17A formed by the primary bending portion 4 of the present embodiment has a line-symmetrical U shape.
  • the pair of jigs 15A and 15B and the pair of jigs 16A and 16B are linearly moved in the direction away from the bending center line C, and the jig 14A described above is
  • the second bending process is performed with the distance m between the jig 15A and the jig 15A and the distance m between the jig 14B and the jig 15B increased, as shown in FIG.
  • the length of each piece is L2, and it is larger than the length L1 of each piece of the crossover portion 17a in FIG. 3A (L2> L1), thus producing a linearly symmetrical primary bending molded body 17B having a large coil width. can do.
  • a plurality of simple block-shaped jigs 14A, 14B, 15A, 15B, 16A and 16B which do not have a shape corresponding to the bending shape to be formed are formed on one plane (horizontal surface)
  • the primary bending forming body of the coil segment is formed only by rotational movement or linear movement by NC control based on the control data. Therefore, according to the present embodiment, it is not necessary to use a mold having a shape corresponding to the bending shape to be molded as in the prior art, and a plurality of NC-controlled jigs are used, so an expensive mold is required. The manufacturing cost is eliminated and the manufacturing cost of the coil segment is reduced.
  • no work such as mold replacement is required, so there is no downtime due to mold replacement, and work time can be shortened, and work can be achieved. It becomes extremely easy.
  • the primary bending portion 4 is a fixed base 18 having a notch at the front (the lower in FIG. 6) and at a central portion centering on the bending center line C;
  • the guide rails 19A and 19B are configured such that one point on the bending center line C is the center of the arc.
  • the drive mechanism 21 includes a ball screw portion 22 having a rotation axis in the DX direction along the bending center line C, a nut portion 23 screwed with the ball screw portion 22 and slidable in the DX direction, and a ball screw portion 22.
  • arms 26A and 26B connected to each other.
  • the movable base 20A is disposed along the DU direction, the rotation axis of which is orthogonal to the DX direction, and the driving mechanism capable of changing the distance m between the jig 15A and the jig 14A by linearly moving the jigs 15A and 16A.
  • 27A and a drive mechanism 28A whose rotation axis is disposed in the DY direction parallel to the drive mechanism 27A and which rotationally moves the jig 16A.
  • the movable base 20B is disposed along the DV direction facing the drive mechanism 27A and having its rotation axis orthogonal to the DX direction, and the jigs 15B and 16B are linearly moved to a distance between the jig 15B and the jig 14B.
  • a drive mechanism 27B capable of changing m, a drive mechanism 28B disposed so as to face the drive mechanism 28A and having a rotation axis thereof disposed in the DZ direction parallel to the drive mechanism 27B, and rotating the jig 16B are provided. It is done.
  • the driving mechanism 27A includes a ball screw portion 29A having a rotational axis in the DU direction, a nut portion 30A screwed with the ball screw portion 29A and slidable in the DU direction, and a servomotor 31A for rotationally driving the ball screw portion 29A. And a slide plate 32A which is fixed to the nut portion 30A and moves in the DU direction as the ball screw portion 29A rotates.
  • a jig 15A is fixed to the slide plate 32A, and a pivot plate 34A having a cam follower 33A is pivotally supported, and a jig 16A is fixed to the pivot plate 34A.
  • the drive mechanism 28A includes a ball screw portion 35A having a rotation axis in the DY direction, a nut portion 36A screwed with the ball screw portion 35A and slidable in the DY direction, and a servomotor 37A that rotationally drives the ball screw portion 35A. And a pivot drive plate 38A fixed to the nut portion 36A and moved in the DY direction with the rotation of the ball screw portion 35A.
  • the pivot drive plate 38A has an engagement recess 39A which engages with the cam follower 33A.
  • the drive mechanism 27B rotationally drives a ball screw portion 29B having a rotation axis in the DV direction orthogonal to the DX direction, a nut portion 30B screwed in the ball screw portion 29B and slidable in the DV direction, and the ball screw portion 29B.
  • a slide plate 32B which is fixed to the nut portion 30B and moves in the DV direction as the ball screw portion 29B rotates.
  • a jig 15B is fixed to the slide plate 32B, and a pivoting plate 34B having a cam follower 33B is pivotally supported, and the jig 16B is fixed to the pivoting plate 34B.
  • the drive mechanism 28B includes a ball screw portion 35B having a rotation axis in the DZ direction, a nut portion 36B screwed with the ball screw portion 35B and slidable in the DZ direction, and a servomotor 37B for rotationally driving the ball screw portion 35B. And a pivot drive plate 38B fixed to the nut portion 36B and moved in the DZ direction with the rotation of the ball screw portion 35B.
  • the pivot drive plate 38B has an engagement recess 39B that engages with the cam follower 33B.
  • the jigs 14A, 15A and 16A and the drive mechanisms 27A and 28A are provided on the movable base 20A, and rotationally move with the rotational movement of the movable base 20A.
  • the jigs 14B, 15B and 16B and the drive mechanisms 27B and 28B are provided on the movable base 20B, and rotationally move with the rotational movement of the movable base 20B.
  • two non-illustrated fitting members fitted to the guide rails 19A slide on the guide rails 19A at mutually separated positions along the arc of the guide rails 19A. It is mounted movable.
  • two non-illustrated fitting members fitted to the guide rails 19B are slidably attached to the guide rails 19B at mutually separated positions along the arc of the guide rails 19B. ing.
  • the centers of the arcs of the guide rails 19A and 19B are pivot centers 41 which are one point on the bending center line C, as shown in FIG.
  • the fitting members 40A and 40B of the movable bases 20A and 20B are provided on the rail-shaped guide rails 19A and 19B provided on the fixed base 18.
  • a guide rail having a recessed groove may be provided on the fixed base 18, and a protruding portion provided on the movable bases 20A and 20B may be configured to be engaged with the recessed groove. .
  • t 0.5 mm
  • the grooves of the jigs 14A, 14B, 15A, 15B, 16A and 16B are in a state in which they are linearly aligned with each other,
  • the linear wires 6 are inserted and placed in the recessed grooves of these jigs and supported in a bridged state.
  • the slider 25 advances in the DX + direction, whereby the movable bases 20A and 20B rotationally move around the turning center 41 via the arms 26A and 26B, respectively. Since the jigs 14A, 15A and 16A and the jigs 14B, 15B and 16B are respectively fixed to the movable bases 20A and 20B, the jigs 14A, 15A and 16A and the jigs 14B, 15B and 16B are the movable base 20A.
  • the wire rod 6 is rotationally moved together with 20B, whereby the wire rod 6 is bent at the bending center line C, and the central angle of the connecting portion 17a is bent to an angle ⁇ 1 as a set angle based on the control data.
  • the state after the first bending process by this turning is shown in FIG.
  • the pivoting center 44 of the pivoting plates 34A and 34B that is, the centers of rotational movement (pivoting) of the jigs 16A and 16B is slightly inward t from the center line 43 of the wire 6 as shown in FIG. It is set at a position shifted by 0.5 mm). The reason is that when the wire 6 is bent in the edgewise direction, expansion of thickness occurs due to the compression action inside the bend, and reduction of thickness due to the tension action occurs outside the bend.
  • the rotation center 44 of the turning plates 34A and 34B ie, the rotational movement of the jigs 16A and 16B as described above, in order to minimize expansion and contraction of the wire 6 due to bending.
  • the center of the (turning) is bent inwards.
  • the length of each piece of the crossover portion 17a of the primary bending formed body 17A can change.
  • the width (coil width) of the U-shaped primary bending molded body 17A can be changed, and a coil segment meeting the requirements can be manufactured. . That is, it is possible to create a primary bend-formed body with a small coil width or a primary bend-formed body with a large coil width.
  • the setting of the distance m is performed by the drive mechanisms 27A and 27B.
  • the slide plate 32A to which the jig 15A and the jig 16A are attached is linearly moved in the DU direction and the slide plate 32B to which the jig 15B and the jig 16B are attached is By moving linearly in the DV direction, the distance m can be changed.
  • the cam followers 33A and 33B are fixed to the slide plates 32A and 32B, respectively, and the cam followers 33A and 33B are engaged with the engagement recesses 39A and 39B of the turning drive plates 38A and 38B.
  • Drive mechanisms 28A and 28B operate so that pivoting drive plates 38A and 38B move synchronously with slide plates 32A and 32B.
  • these synchronous movements are appropriately abbreviated as movements of only the slide plates 32A and 32B.
  • the slide plates 32A and 32B are located at the home position in the initial state before the start of bending, and are configured to move from the home position based on given control data.
  • FIG. 11 shows the electrical configuration of the manufacturing apparatus in the present embodiment
  • FIG. 12 shows the control process of the entire manufacturing apparatus.
  • a human-machine interface (HMI) 45 including an input such as a touch panel and a display means, an input of control data for forming processing of the wire, an instruction to read out the control data stored in the memory, and a memory An instruction to correct the control data stored in the controller, an instruction to start the NC control, an instruction to end the NC control, or the like is input.
  • the HMI 45 is connected to a programmable logic controller (PLC) 46 via Ethernet (registered trademark), and the first NC controller 47 and the second NC controller 48 are connected to the PLC 46 via a high-speed network such as CC-Link. .
  • PLC programmable logic controller
  • the PLC 46 has a memory for storing at least control data and control programs for forming coil segments of various shapes, a central processing unit (CPU), and an input / output interface, and the CPU is instructed according to the program. It has a function of transferring control data to the first NC controller 47 and the second NC controller 48.
  • the first NC controller 47 controls data such as the length of the wire at the primary bending portion 4, the center angle ⁇ 1 of the coil segment, the pitch, and the shoulder angle ⁇ 2 of the coil segment, and data development for multi-axis control execution. Further, control data for bending / press and the like in the secondary bending portion 5 and data development for multi-axis control execution are performed.
  • the second NC controller 48 performs data expansion on control data such as coil arrangement in the coil assembly unit 2.
  • the PLC 46, the first NC controller 47, and the second NC controller 48 constitute a control unit 49 that controls the wire supply unit 3, the primary bending unit 4, the secondary bending unit 5, and the coil assembly unit 2. .
  • the first NC controller 47 is connected to the wire supply unit 3, the primary bending unit 4 and the secondary bending unit 5 via the optical communication cable 50 for servo link configuration.
  • a plurality of amplification and drive circuits are connected to the optical communication cable 50 in the wire rod supply unit 3, the primary bending unit 4 and the secondary bending unit 5, and a plurality of servomotors are connected to the plurality of amplification and drive circuits. Each is connected. Signal lines from encoders mechanically connected to the plurality of servomotors are respectively connected to the plurality of amplification and drive circuits.
  • the primary bending portion 4 has a 5-axis control configuration
  • the optical communication cable 50 includes an amplification and drive circuit of the servomotor 24 for driving in the DX direction, and a drive for driving in the DY direction.
  • the secondary bending unit 5 has a 6-axis control configuration
  • the optical communication cable 50 includes an amplification and drive circuit for the servomotor 78 for driving in the UX direction and an amplification for the servomotor 68 for driving in the UY direction and Drive circuit, amplification and drive circuit of servo motor 82 for UZ direction drive, amplification and drive circuit of servo motor 72 for UU direction drive, amplification and drive circuit of servo motor 89 for UV direction drive, and UW direction drive
  • the amplification and drive circuit of the servomotor 102 is connected.
  • the second NC controller 48 is connected to the coil assembly 2 via the optical communication cable 51 for servo link configuration.
  • a plurality of amplification and drive circuits are connected to the optical communication cable 51, and a plurality of servomotors are respectively connected to the plurality of amplification and drive circuits.
  • Signal lines from encoders mechanically connected to the plurality of servomotors are respectively connected to the plurality of amplification and drive circuits.
  • the PLC 46, the first NC controller 47 and the second NC controller 48 control the overall operation of the controller based on the steps shown in FIG.
  • the PLC 46 performs control data for a primary bending operation on a coil segment (hereinafter referred to as a processed coil segment) to be formed and assembled next, that is, wire
  • a series of control data defining the length, the central angle ⁇ 1, the length of each side of the transition portion 17a, the shoulder angle ⁇ 2 and the like are read from the memory and output to the first NC controller 47.
  • Control data for the secondary bending operation that is, a series of control data defining the movement amount of each pressing jig for forming a curved shape, the movement amount of each pressing jig for forming a step (Z bending), etc. Read out and output to the first NC controller 47.
  • control data for the coil assembly operation regarding the processed coil segment that is, the number and arrangement number of coil segments on the segment arrangement drum 105 described later in the coil assembly unit 2, index rotation amount, arm 139A of the separation preventing means 106 and A series of control data relating to the amount of rotation of 139 B, the amount of protrusion of the blade 108, the amount of movement of the pressing ring 135, etc. is read out from the memory and output to the second NC controller 48 (step S1).
  • the first NC controller 47 expands the received control data and executes NC control of the drive mechanism of the designated address.
  • NC control of peeling of the insulating layer at both ends of the wire and cutting to a predetermined length is performed by the peeling unit 10 and the cutting unit 11 in the wire supply unit 3 (step S2). That is, the control data regarding the length of the wire (wire for the processed coil segment) 6 is expanded, and output to the drive mechanism of the peeling section 10 to drive the servomotor to be targeted to correspond to both ends of the wire. Peeling of the insulating layer is performed, control data on the length of the wire (wire for the processed coil segment) 6 is expanded, and output to the drive mechanism of the cutting unit 11 to drive the target servomotor to set the wire Cut into lengths.
  • the first NC controller 47 performs NC control of transporting the cut wire rod (wire rod for the processed coil segment) 6 by the transport mechanism (not shown) (step S3). That is, the control data for conveyance is expanded and output to the drive mechanism of the conveyance mechanism to drive the target servomotor to cut the linear motor into a predetermined length (wire for processed coil segment) 6 Is conveyed to the primary bending unit 4. Specifically, the wire rod (wire rod for the coil segment to be treated) 6 is transported to the jigs 14A, 14B, 15A, 15B, 16A and 16B set in the initial state of the primary bending portion 4, The grooves are inserted into the grooves 14A-1, 14B-1, 15A-1, 15B-1, 16A-1 and 16B-1.
  • the first NC controller 47 performs a primary bending process to be described later on this processed coil segment (step S4).
  • the primary bending formed body relating to the coil segment to be processed is conveyed to the secondary bending portion 5 (step S5), and the secondary bending process described later is performed on the coil segment to be processed (step S6) .
  • the secondary bending formed body relating to the processed coil segment is transported to the coil assembly unit 2 (step S7).
  • the second NC controller 48 performs a coil assembly process described later on the secondary bending formed body relating to the processed coil segment (step S8).
  • the work efficiency is significantly increased Improve.
  • the control of the coil segments becomes very easy.
  • step S4 the primary bending process in step S4 described above will be described in detail based on FIG.
  • the first NC controller 47 performs NC control to start a slight bending process of the central angle of the wire 6 by the drive mechanism 21 (step S41). That is, control data for performing a slight bending process at the central angle is developed and output to the drive mechanism 21 to drive the servomotor to be targeted to start the bending operation at the central angle of the wire 6.
  • the servomotors of the drive mechanism 21 operate according to the control data, and the movable bases 20A and 20B turn and the jigs 14A, 14B, 15A, 15B, 16A and 16B are light (for example, the angle ⁇ 1).
  • the rotational movement (pivoting) to about 50%) and a slight bending of the central angle of the wire 6 is performed.
  • the first NC controller 47 performs NC control of coil width adjustment by the drive mechanisms 27A and 27B slightly behind the start of the operation of the drive mechanism 21 (for example, when the slider 25 moves 30 mm) (step S42). That is, the control data for adjusting the coil width is expanded and output to the drive mechanisms 27A and 27B to drive the target servomotor to linearly move the slide plates 32A and 32B. As a result, the slide plates 32A and 32B are moved by the amount of movement for obtaining the distance m according to the control data given from the home position, and the length (coil width) of each side of the transition portion is adjusted.
  • the first NC controller 47 performs NC control in which the central angle of the wire 6 is bent to the set angle ⁇ 1 by the drive mechanism 21 (step S43). That is, control data for performing bending with the center angle set to the set angle ⁇ 1 is expanded and output to the drive mechanism 21 to drive the servomotor to be targeted and bent until the center angle of the wire 6 becomes the set angle ⁇ 1. Do the action. Specifically, the servomotor of the drive mechanism 21 is operated according to the control data, and the movable bases 20A and 20B are pivoted to rotate the jigs 14A, 14B, 15A, 15B, 16A and 16B. The center angle of the wire 6 is bent to the set angle ⁇ 1.
  • the first NC controller 47 performs NC control of bending the shoulder angle of the wire 6 by the drive mechanisms 28A and 28B (step S44). That is, the control data for performing the bending process of the shoulder angle is developed, and output to the drive mechanisms 28A and 28B to drive the servomotors to be processed to perform the bending operation of the shoulder angle of the wire rod 6.
  • the servomotors of the drive mechanisms 28A and 28B operate according to the control data, and the swing drive plates 38A and 38B move a predetermined distance in the DY + direction and the DZ + direction, respectively, and the swing plates 34A and 34B move their swing centers 44. By pivoting around the center, the jigs 16A and 16B are rotationally moved (pivoted), and the shoulder angle is bent to the angle ⁇ 2.
  • the central angle ⁇ 1 and / or the shoulder angle ⁇ 2 are set from the viewpoint of strongly bending in consideration of spring back.
  • a so-called spring back phenomenon occurs, which slightly returns due to the elasticity on the material.
  • the amount of return due to the spring back differs depending on the material of the wire 6, the width d2 in the flatwise direction, the width w2 in the edgewise direction, and other parameters.
  • Step S45 the control data for removal is developed and output to the drive mechanism of the transfer mechanism 12 to drive the target servomotor, and the primary bending formed body 17A is gripped by the pair of chuck portions by the air cylinder, The jigs 14A, 14B, 15A, 15B, 16A and 16B are removed (pulled up from the recessed groove) and transferred to the secondary bending portion 5 (step S5 in FIG. 12). Thereafter, the first NC controller 47 resets the drive mechanism of the primary bending portion 4 to prepare for the primary bending of the coil segment to be processed next.
  • the NC control of the secondary bending portion 5 by the first NC controller 47 and the NC control of the coil assembly portion 2 by the second NC controller 48 will be described later.
  • the secondary bending portion 5 is curved in a convex shape corresponding to the pressing surface 53A-1 and a block-shaped pressing jig 53A having a pressing surface 53A-1 concavely curved on the lower surface.
  • the pair of pressing jigs 53A and 53B are arranged to face each other in a crossing direction (for example, a perpendicular direction orthogonal to) intersecting with a plane (in the present embodiment, a horizontal plane) on which the primary bending molded body 17 is held. And are configured to move close to each other along this cross direction.
  • the pair of pressing jigs 54A and 54B are also arranged to face each other in a crossing direction (for example, a perpendicular direction orthogonal to) crossing a plane (in the present embodiment, a horizontal plane) on which the primary bending molded body 17 is held. And are configured to move close to each other along this cross direction.
  • the plane on which the primary bending molded body 17 is held is a plane in which the primary bending molded body 17 is bent at the primary bending portion 3. That is, the primary bending molded body 17 is transferred to the secondary bending portion 5 by the transfer member 12 with the posture being bent at the primary bending portion 3, and the secondary bending portion 5 is bent in this posture.
  • the pressing jig 53A located at the upper left in FIG. 14 has bolt insertion holes 53A-2 and 53A-3 for fixing to a support member described later, and the pressing located at the upper right in FIG.
  • the jig 54A also has bolt insertion holes 54A-2 and 54A-3.
  • the bolt insertion holes 53A-2 and 53A-3 are curved in a single concave shape formed by aligning the pressing jigs 53A and 54A in the horizontal position adjustment of the pressing jig 53A with respect to the pressing jig 54A.
  • Each has an elongated hole shape in order to absorb an error in assembling the pressing surface.
  • the pressing jig 53B positioned at the lower left in FIG. 14 has bolt insertion holes 53B-2 and 53B-3 for fixing to a support member described later, and is positioned at the lower right in the figure.
  • the pressing jig 54B also has bolt insertion holes 54B-2 and 54B-3.
  • the bolt insertion holes 53B-2 and 53B-3 are curved in a convex shape formed by aligning the pressing jigs 53B and 54B in the horizontal position adjustment of the pressing jig 53B with respect to the pressing jig 54B. In order to absorb the error at the time of the assembly
  • the primary bending molded body 17 bent into a U-shape at the primary bending portion 4 is connected by the crossover portion 17a having the chevron shape and the crossover portion 17a and extends substantially parallel to each other 1 It comprises a pair of slot inserting portions 17b and 17c.
  • a crossing direction for example, orthogonal to the orthogonal direction in which the transition portion 17a of the primary bending molded body 17 intersects with the plane (horizontal plane in the present embodiment) of the primary bending molded body 17 Bending in the direction of Specifically, the pressing jigs 53A and 54A are positioned based on the control data of the coil segment to be formed, that is, by moving the pressing jigs 53A and 54A to a state in which they are adjacent to each other. And the pressing jigs 53B and 54B are positioned on the basis of control data of the coil segment to be formed, and thus the pressing and curing surfaces 53A-1 and 54A-1 form one concave curved surface. By moving the tools 53B and 54B close to each other and adjacent to each other, the pressing surfaces 53B-1 and 54B-1 form one convex curved surface.
  • one or both of the pressing jigs 53A and 54A and the pressing jigs 53B and 54B are vertically moved in a plane (vertical plane) orthogonal to the plane (horizontal plane) of the primary bending molded body 17
  • the bridging portion 17a of the primary bending molded body 17 is pressed and molded into a curved shape.
  • the corner portions 53A-4, 53B-4, 54A-4 and 54B-4 of the pressing jigs 53A, 53B, 54A and 54B, which come into contact with the surface of the transition portion 17a at the time of this pressing, are the insulating layers of the transition portion 17a. It is chamfered so as not to be damaged.
  • the secondary bending portion 5 can continuously perform the bending process of forming the stepped portion of the shape. That is, in the plane (vertical plane) orthogonal to the plane (horizontal plane) of the primary bending molded body 17, two kinds of bending processes of bending in a curved shape and formation of a step portion in a crank shape are formed Can be performed without replacing the jig. The same applies to the pressing jigs 53B and 54B. Further, by changing the moving amounts of these pressing jigs 53A, 53B, 54A and 54B, it is possible to change the control conditions in the two types of bending processing, thereby to cope with the formation of various coil segments. Can.
  • FIG. 15 shows the moving direction of each pressing jig of the secondary bending portion 5.
  • the thickness in the vertical direction on the central axis side (inner side) of the pressing jig 54A is set to be larger than the thickness in the vertical direction on the central axis side (inner side) of the pressing jig 53A.
  • the thickness in the vertical direction on the central axis side (inner side) of the pressing jig 53B is set to be larger than the thickness in the vertical direction on the central axis side (inner side) of the jig 54B.
  • the pressing jigs 53A, 54A, 53B and 54B are separately movable in the vertical plane (UY direction, UX direction, UU direction, and UZ direction) in a vertical plane by a drive mechanism described later.
  • the pressing jigs 53A, 54A, 53B and 54B can be moved in the vertical direction (UV direction) as one pressing jig unit 55, similarly
  • the pressing jigs 54A and 54B can be moved in the vertical direction (UW direction) as one pressing jig unit 56.
  • the pressing jig unit 55 can also move in the horizontal direction (H direction), and therefore can move in the diagonal direction (K direction) by simultaneously performing the vertical movement and the horizontal movement. .
  • the pressing jig unit 56 is capable of turning (pivoting) in the R direction in the vertical plane, in addition to the movement in the vertical direction. By this rotation of the pressing jig unit 56, it is possible to variably adjust the curvature of the curved surface when forming the curved shape (curved surface) in the transition portion 17a of the primary bending molded body 17, and between the slot insertion portions 17b and 17c.
  • the curved surface can also be formed with respect to the transition portion 17a of the primary bending molded body 17 having different widths.
  • NC control Numerical control
  • FIG. 16A shows a state where the pressing jigs 53A, 53B, 54A and 54B are in the initial position (home position). That is, in the same figure, the primary bending formed body 17 obtained by bending at the primary bending portion 4 is transferred by the transfer member 12, and the pair of slot insertion portions 17 b and 17 c of the primary bending formed body 17. A state in which the free end is held by the holding member 13 and then the transfer member 12 can be retracted to start bending at the secondary bending portion 5 is shown.
  • the pressing jigs 53A and 54A which are adjacent to each other and adjacent to each other are positioned such that the upper end faces thereof are on the same plane, and the lower ends of the pressing jigs 53B and 54B are on the same plane. It is located to be.
  • the pressing surfaces 53A-1 and 54A-1 by the pressing jigs 53A and 54A have a step between them, and the pressing surfaces 53B-1 and 54B-1 by the pressing jigs 53B and 54B are between them. There is a step in the
  • the pressing jig unit 55 including the pressing jigs 53A and 53B is integrally moved in the left lower direction, and as a result, the pressing jig 53A and the pressing jig are pressed. While a gap g is formed between the tool 54A and the pressing surfaces 53A-1 and 54A-1 by the pressing jigs 53A and 54A, one smooth concave curved surface having no step between them is formed.
  • the pressing surfaces 53B-1 and 54B-1 by the pressing jigs 53B and 54B also constitute a smooth single convex curved surface without any step between them.
  • the pair of pressing jigs 53B and 54B are lifted and brought into contact with the lower surface of the transition portion 17a, and in this state, the pair of pressing jigs 53A and The pressing operation is started by lowering 54A. That is, a concave curved surface by the pressing surfaces 53A-1 and 54A-1 of the pair of pressing jigs 53A and 54A and a convex shape by the pressing surfaces 53B-1 and 54B-1 of the pair of pressing jigs 53B and 54B.
  • the pressing operation is performed with the connecting portion 17a interposed between the connecting portion 17a and the curved surface, and the connecting portion 17a is bent in the direction perpendicular to the horizontal plane.
  • the pressing operation When the pressing operation has progressed to a certain extent, in other words, when there is no possibility that the primary bending molded body 17 is displaced, the holding (chucking by the air cylinder) by the holding member 13 is released.
  • the moving process of the pressing jig in this pressing operation is not limited to the above-described example, and various moving processes can be made within the range in which the primary bending molded body 17 does not shift.
  • the pressing surfaces 53A-1 and 54A-1 of the pressing jigs 53A and 54A and the pressing surfaces 53B-1 and 54B-1 of the pressing jigs 53B and 54B are the crossover portions. While holding 17a, as shown in FIG. 16 (d), the upper end surfaces of the pressing jigs 53A and 54A become the same surface, and the lower end surfaces of the pressing jigs 53B and 54B become the same surface. Thus, the pressing jig unit 55 (pressing jigs 53A and 53B) is moved in the upper right direction. Thus, a crank-shaped step portion 57 is formed at the top of the transition portion 17a. That is, the gap g due to the movement of the pressing jig unit 55 in the lower left direction shown in FIG. 22B is formed for forming the curved shape on the connecting portion 17a and forming the stepped portion in the crank shape. It is
  • each bending process (forming process) is intentionally simplified by separately performing a plurality of bending processes (forming) of forming a curved shape and forming a crank-shaped step portion. And by moving the pressing jig.
  • the transition between the forming process of the curved shape and the forming process of the step portion of the crank shape is also only the change of the moving amount of the pressing jig.
  • the molding time is almost the same as that of the prior art in which molding is performed in one step using a molding die.
  • the transition portion is sandwiched and pressed between smooth curved surfaces, the damage of the insulating layer of the wire does not occur.
  • the formation of the crank-shaped stepped portion only the positions of the pair of pressing jigs sandwiching the crossover portion are shifted, and the configuration is not such that the molding surface having the stepped shape is pressed. There is no damage.
  • FIG. 17A shows an initial state before the curvature adjustment operation is performed.
  • This state corresponds to the state shown in FIG. 17C, and the radius of curvature is R1.
  • the curvature radius is R1 to R2 (R1 ⁇ R1 ⁇ R2), and the curvature (1 / R2) decreases.
  • the curvature in the curved shape of the transition portion 17a can be changed by the rotation of the pressing jig unit 56, and various coil segments having different curvatures of the curved shape of the transition portion 17a can be bent. This means that even when the width between the slot insertion portions 17b and 17c of the primary bending molded body 17 is different, the curvature can be adjusted to perform corresponding bending.
  • the secondary bending portion 5 is disposed in parallel with a vertical plane (a plane orthogonal to the horizontal plane on which the primary bending molded body 17 is held), and fixed with an opening 58a at the center.
  • the drive mechanism 60A includes a ball screw portion 65 having a UY direction rotation axis parallel to the vertical direction, a nut portion 66 screwed to the ball screw portion 65 and slidable in the UY direction, and a ball screw portion 65. Instead, a slider 67 slidably provided in the UY direction along the rotation axis and a servomotor 68 for rotationally driving the ball screw portion 65 are provided.
  • the drive mechanism 60B includes a ball screw portion 69 having a UU-direction rotation axis parallel to the vertical direction, a nut portion 70 screwed on the ball screw portion 69 and slidable in the UU direction, and a ball screw portion 69. Instead, a slider 71 slidably provided in the UU direction along the rotation axis, and a servomotor 72 for rotationally driving the ball screw portion 69 are provided.
  • a moving plate 73 which is a member for supporting the pressing jig is fixed to the nut portion 66 of the driving mechanism 60A and the slider 71 of the driving mechanism 60B, and a plurality of pressing jigs 53A are provided at the lower right end of the moving plate 73. It is fixed by a bolt screw. Therefore, only the pressing jig 53A can be moved in the UY direction by the operation of the servomotor 68 of the drive mechanism 60A.
  • a moving plate 74 which is a member for supporting the pressing jig is fixed to the slider 67 of the drive mechanism 60A and the nut portion 70 of the drive mechanism 60B.
  • the tool 53B is fixed by a plurality of bolt screws.
  • the pressing jig 53B can be moved in the UU direction by the operation of the servomotor 72 of the drive mechanism 60B.
  • the moving plates 73 and 74 are supported across the drive mechanisms 60A and 60B in order to obtain rigidity and stability for securing and maintaining pressing accuracy by the pressing jigs 53A and 53B.
  • the drive mechanism 63A includes a ball screw portion 75 having a rotation axis in the UX direction parallel to the vertical direction, a nut portion 76 screwed to the ball screw portion 75 and slidable in the UX direction, and a ball screw portion 75. Instead, a slider 77 slidably provided in the UX direction along the rotation axis and a servomotor 78 for rotationally driving the ball screw portion 75 are provided.
  • the drive mechanism 63B includes a ball screw portion 79 having a UZ direction rotation axis parallel to the vertical direction, a nut portion 80 screwed in the ball screw portion 79 and slidable in the UZ direction, and a ball screw portion 79. Instead, a slider 81 slidably provided in the UZ direction along the rotation axis and a servomotor 82 for rotationally driving the ball screw portion 79 are provided.
  • a moving plate 83 which is a member for supporting the pressing jig, is fixed to the nut portion 76 of the driving mechanism 63A and the slider 81 of the driving mechanism 63B, and a plurality of pressing jigs 54A are provided at the left lower end of the moving plate 83. It is fixed by a bolt screw. Therefore, only the pressing jig 54A can be moved in the UX direction by the operation of the servomotor 78 of the drive mechanism 63A.
  • a moving plate 84 which is a member for supporting the pressing jig is fixed to the slider 77 of the driving mechanism 63A and the nut portion 80 of the driving mechanism 63B, and the pressing jig 54B is fixed to the upper left end of the moving plate 84. It is fixed by multiple bolt screws. Therefore, only the pressing jig 54B can be moved in the UZ direction by the operation of the servomotor 82 of the drive mechanism 63B.
  • the moving plates 83 and 84 are supported across the drive mechanisms 63A and 63B in order to obtain rigidity and stability for securing and maintaining pressing accuracy by the pressing jigs 54A and 54B.
  • FIG. 19 shows the disassembled configuration of one side portion (left half when viewed from the front) of the secondary bending portion 5 and the periphery of the drive mechanism 61
  • FIG. 20 shows the operation of this portion.
  • the drive mechanism 61 fixed to the fixed base 58 has a ball screw portion 85 having a rotational axis in the UV direction parallel to the vertical direction, and is screwed with the ball screw portion 85. It comprises nut portions 86 and 87 slidable in directions, a slide plate 88 fixed to the nut portions 86 and 87 and slidable in the UV direction, and a servomotor 89 for rotationally driving the ball screw portion 85.
  • a pair of rail members 90 extending in the left-right direction are fixed to the fixed base 58 in parallel in the upper and lower two rows. Two pairs of sliding members 91 are fixed to the back surface of the movable base 59.
  • Each pair of sliding members 91 is slidably engaged with the rail members 90 along the respective rail members 90.
  • the movable base 59 is supported so as to be movable in the left-right direction (horizontal direction) orthogonal to the UV direction (see FIG. 18).
  • the movable base 59 is provided with a cam follower 92 projecting from the surface thereof, and an engagement groove 93 in which the cam follower 92 is engaged and slides on the back surface of the slide plate 88.
  • the cam follower 92 engaged with the engagement groove 93 is in the position shown in FIG. 20 (a).
  • the movable base 59 to which the cam follower 92 is fixed moves to the right by a dimension S shown in FIG. If the servomotor 89 is reversely rotated, the movable base 59 moves in the reverse direction. By changing the inclination angle and / or the length of the engagement groove 93, the amount of movement of the movable base 59 in the left and right direction can be changed. By changing the amount of movement of the movable base 59 in the left-right direction, it is possible to change the curvature of the crank shape or the step shape formed in the connecting portion 17a or the curved shape.
  • the pressing jig unit 55 including the pressing jigs 53A and 53B can be moved in the vertical direction by the drive mechanisms 60A and 60B. Therefore, the movement in the lateral direction by the drive mechanism 61 and the vertical movement by the drive mechanisms 60A and 60B By simultaneously performing the movement of the direction in combination, the oblique movement of the pressing jig unit 55 becomes possible. For example, from the home position state shown in FIG. 16A by moving moving plates 73 and 74 downward by driving mechanisms 60A and 60B simultaneously with moving movable base 59 leftward by driving mechanism 61. In the state shown in FIG. 16 (b), oblique movement is possible. Further, from the state shown in FIG.
  • the movable plates 73 and 74 are moved upward by the drive mechanisms 60A and 60B simultaneously with the movement of the movable base 59 in the right direction by the drive mechanism 61. In the state shown in (d), oblique movement is possible.
  • FIG. 21 shows the disassembled configuration of one side portion (right half when viewed from the front) of the secondary bending portion 5 and the periphery of the drive mechanism 64
  • FIG. 22 shows the operation of this portion.
  • the fixed base 58 has a common center of curvature C and a pair of arc-shaped rail members 95 and 96 having different curvatures are fixed apart from each other in the left-right direction.
  • a pair of sliding members 97 and one sliding member 98 are fixed to the back of the moving base 62.
  • a pair of sliding members 97 are slidably engaged with the rail members 95 along the rail members 95, and one sliding member 98 is slidably movable along the rail members 96. Is engaged.
  • the drive mechanism 64 is fixed to a ball screw portion 99 having a UW direction rotation axis parallel to the vertical direction, a nut portion 104 screwed to the ball screw portion 99 and slidable in the UW direction, and a nut portion 104
  • the engaging member 101 and the servomotor 102 for rotationally driving the ball screw portion 99 are provided.
  • the rotation base 62 is provided with a cam follower 103 projecting from the surface thereof, and the back surface of the engagement member 101 is provided with an engagement groove 101a (see FIG. 21) with which the cam follower 103 is engaged.
  • the curvature at the time of forming the curved shape with respect to the transition portion 17a by the pressing jigs 53A, 53B, 54A and 54B becomes large.
  • the pivoting base 62 is pivoted clockwise from the central position shown in FIG. 22A, the curvature at the time of forming the curved shape can be reduced.
  • the center of curvature C which is the center of rotation of the rotation base 62 stably guided by the pair of rail members 95 and 96, is in the vicinity of the left end of the pressing jigs 54A and 54B.
  • the curvature at the time of forming a curved shape can be changed with high accuracy.
  • the secondary bending unit 5 has a 6-axis control configuration
  • the optical communication cable 50 includes an amplification and drive circuit for the servomotor 78 for driving in the UX direction, for driving in the UY direction.
  • the circuit and the amplification and drive circuit of the servomotor 102 for UW direction drive are connected.
  • the PLC 46 and the first NC controller 47 form a curved shape and crank the primary bending formed body 17 related to the processed coil segment based on the steps shown in the flowchart of FIG. 23 corresponding to the process of step S6 of FIG. Control the secondary bending operation to form the step portion of The secondary bending operation will be described in detail below using this flowchart.
  • the secondary bending is performed on the primary bending molded body 17 in which the coil width is small, that is, the length of each side of the crossover portion is small.
  • the first NC controller 47 develops control data concerning the received coil assembly operation, and executes NC control of the drive mechanism of the designated address.
  • NC control is performed on the placement and movement of the pressing jigs 53A, 53B, 54A and 54B according to the dimensions (shapes) of the primary bending molded body 17 (step S61). That is, the control data regarding the movement amount of the pressing jig is expanded, and the secondary curved surfaces of the concave curved surfaces by the pressing jigs 53A and 54A and the convex curved surfaces by the pressing jigs 53B and 54B have a predetermined curvature.
  • the servomotor to be output is outputted to the drive mechanisms 60A, 60B, 63A and 63B of the bending portion 5, and the pressing jig is moved.
  • FIG. 16 (b) shows this state.
  • the first NC controller 47 performs NC control to execute a light pressing process (light pressing process) to lightly press the transition portion 17a of the primary bending molded body 17 (step S62). That is, the control data for the pressing process is expanded and output to the drive mechanism of the secondary bending unit 5 to drive the target servomotor to perform the light pressing process, and the primary bending formed body 17 is not displaced. Let's do it.
  • the first NC controller 47 performs NC control to release the holding of the primary bending formed body 17 by the holding member 13 (step S63). That is, the control data for releasing the primary bending formed body 17 from the holding member 13 is expanded and output to the drive mechanism of the holding member 13 and the air cylinder is driven to release the gripping of the slot insertion portions 17b and 17c by the chucks. .
  • the first NC controller 47 performs NC control of bending for bending the transition portion 17a into a curved shape (step S64). That is, control data for pressing is developed and output to the drive mechanisms 60A, 60B, 63A and 63B, and the servomotors to be targeted are driven to perform pressing processing.
  • the control table may be created by acquiring data which can suppress the influence of the spring back in advance by using the above-mentioned parameters to create a control table, or a spring according to the type of the input wire 6 or the shape of the primary bending formed body 17 A molding condition that can suppress the back may be set automatically.
  • the first NC controller 47 performs NC control in which the pressing jig unit 55 (pressing jigs 53A and 53B) is moved obliquely by the drive mechanism 61 to form a crank-shaped stepped portion (step S65). That is, the control data for forming the stepped portion is expanded and output to the drive mechanism 61, and the control data is output to the drive mechanisms 60A and 60B while driving the servomotor 89 to move the movable base 59 in the right direction.
  • the first NC controller 47 After forming the step portion, the first NC controller 47 performs NC control to partially release the pressed state (step S66). That is, control data for moving the left pressing jigs 53A and 53B is expanded and output to the drive mechanisms 60A and 60B, and the servomotors 68 and 72 are driven to separate the pressing jigs 53A and 53B from the pressed position. To control.
  • the first NC controller 47 grips the secondary bending formed body 17 which is the wire for which the secondary bending is finished, and transfers it to the coil assembly part 2.
  • NC control for preparation is performed (step S67). That is, the control data for transfer is developed and output to the drive mechanism of the loader (not shown), and the air cylinder is driven to grip the secondary bending molded body 17 with a pair of chucks.
  • the first NC controller 47 resets the drive mechanism of the secondary bending portion 5 to prepare for the secondary bending of the next coil segment (primary bending formed body).
  • the bending area of the primary bending portion 4 and the bending area of the secondary bending portion 5 do not overlap in one plane, and exist separately. That is, the movement and configuration of bending in the primary bending portion 4 and the secondary bending portion 5 are avoided by using the three-dimensional shape mold as in the prior art and removing the idea of press forming at one time and daringly setting it as separate steps. To simplify processing by numerical control.
  • the coil assembly unit 2 comprises segment transport means 110 for transporting the coil segments 17S sequentially, and a plurality of coil segments as shown in FIGS. 24A to 24F and 29.
  • a segment arrangement drum 105 (corresponding to the segment arrangement body of the present invention) in which a plurality of segment holding parts 109 capable of respectively inserting 17S radially from the outside are arranged annularly along the circumferential direction, and a plurality of coil segments
  • a guide member 112 (corresponding to the guide means of the present invention) having a one-stage structure for guiding and inserting the 17S into the plurality of segment holding portions 109 is provided.
  • the segment arrangement drum 105 is configured to rotate around a central axis C (rotational axis 121) by a predetermined angle by an index rotational drive mechanism (not shown).
  • the guide member 112 is disposed above the segment placement drum 105, and one of the pair of slot insertion portions 17b and 17c of each coil segment 17S each time the segment placement drum 105 rotates a first predetermined angle.
  • Slot insertion part (front leg) 17b is guided and inserted into one segment holding part 109, and when it is rotated by a second predetermined angle from the insertion of the one slot insertion part 17b, the other slot insertion part (rear leg ) 17c is configured to be guided and inserted into another one of the segment holding portions 109.
  • the coil assembly unit 2 separates the plurality of coil segments inserted in the plurality of segment holding portions 109 of the segment arrangement drum 105 from the plurality of segment holding portions 109. It has the detachment prevention means 106 which supports so that it does not carry out.
  • the detachment preventing means 106 is in contact with the circumferential surface of the segment placement drum 105, and is made of a rubber belt 107 as a flexible contact member that rotates (follows rotation) with the rotation of the segment placement drum 105.
  • the belt 107 Corresponding to the belt body of The belt 107 is formed in a narrow width of about 3 cm, and is looped so as to cover a part of the segment arrangement drum 105 in the circumferential direction at a plurality of locations (here two locations) in the axial direction of the segment arrangement drum 105 Is located in However, the belt 107 is not disposed above the segment disposition drum 105 where the coil segment 17S is guided. The details of the configuration of the detachment prevention means 106 will be described later.
  • the segment arrangement drum 105 is arranged such that the central axis C of its rotation is horizontal, so that the plurality of coil segment holding parts 109 are also horizontal.
  • the segment arrangement drum 105 is rotatably supported in the counterclockwise direction in FIG. 24A.
  • the central axis C thereof is substantially parallel to the axial direction (insertion direction to the slot) of the coil segment 17S in a state where bending at the secondary bending portion 5 is completed. It is arranged horizontally.
  • a plurality of blades 108 which are axially extending partition walls, are annularly arranged along the circumferential direction of the segment arrangement drum 105 and extend radially from the central axis C.
  • a plurality of segment holding parts 109 are respectively formed between the plurality of blades 108.
  • the radial heights of the plurality of blades 108 are variable as they slide in the radial direction.
  • the radial height of the plurality of blades 108 that is, the amount of radially outward projection of the segment arrangement drum 105 is configured to be adjusted simultaneously for all the blades 108. The adjustment structure will be described later.
  • the belt 107 of the detachment prevention means 106 is substantially in contact with the blade 108.
  • the processed coil segment 17S whose bending is completed in the secondary bending portion 5 is conveyed by the segment conveying means 110 in parallel from the secondary bending portion 5 and guided and inserted into the segment holding portion 109 of the segment arrangement drum 105 .
  • the segment transport means 110 is provided with a chuck portion 111 for gripping one of the pair of slot insertion portions 17b and 17c of the coil segment 17S, the slot insertion portion (rear leg) 17c.
  • the entire segment transport means 110 is movable in the vertical direction (Z (-) (+) direction) and in the horizontal direction (X (-) (+) direction).
  • the X ( ⁇ ) (+) direction is a direction in which the segment conveyance means 110 moves back and forth between the secondary bending portion 5 and the segment arrangement drum 105.
  • the chuck portion 111 is rotatable in the R direction in the vertical plane, and is configured to be able to change its posture in a state in which one slot insertion portion (rear leg) 17c of the coil segment 17S is gripped. There is.
  • FIG. 25 shows a state in which the processed coil segment 17S is gripped and moved by the segment conveying means 110 before bending at the secondary bending portion 5 is completed and released from the pressing jig.
  • the chuck portion 111 of the segment conveyance means 110 grips the other slot insertion portion (rear leg) 17c which is the rear side when moving toward the coil assembly portion side (segment placement drum 105 side) of the coil segment 17S. There is.
  • the chuck portion 111 of the segment transport means 110 pivots upward (R (+) direction) and the front slot insertion portion (front leg) 17b is inclined.
  • the posture of the coil segment 17S is inclined to be downward.
  • the segment conveyance means 110 has a horizontal direction (X (-) (+) direction) and a vertical direction (Z (Z ( -)
  • the base 157 provided movably in the (+) direction
  • the chuck portion 111 rotatably attached to the base 157
  • the chuck portion 111 are turned in the R (-) (+) direction
  • a drive mechanism 158 has a ball screw portion 159 having a rotation axis parallel to the X (-) (+) direction, and a nut portion screwed to the ball screw portion 159 and slidable in the X (-) (+) direction.
  • 160 a servomotor 161 for rotationally driving the ball screw portion 159
  • a slider 162 fixed to the nut portion 160 and moving in the X (-) (+) direction with the rotation of the ball screw portion 159 There is.
  • the slider 162 has a rectangular shape extending in the vertical direction, and a drive claw 164 is fixed to the back surface of the lower end portion thereof via a bracket 163. Further, as shown in FIG. 26, an arc-shaped rail 165 is fixed to the back surface side of the base 157, and the chuck portion 111 is supported by a pivoting base 166 which is engaged with the rail 165 and pivots.
  • the swing base 166 is provided with an air cylinder 167 that opens and closes the chuck portion 111.
  • a cam follower 168 is provided on the surface side of the turning base 166, and a concave groove 164 a engaged with the cam follower 168 is formed in the drive claw 164.
  • the chuck portion 111 rotates in the R (-) direction, and when the slider 162 moves in the X (+) direction, the chuck The part 111 rotates in the R (+) direction. Therefore, by controlling the operation of the servomotor 161, the inclination of the coil segment 17S can be changed.
  • a guide surface 112c is provided along the circumferential surface of the segment arrangement drum 105 above the segment arrangement drum 105 to guide the coil segment 17S to a predetermined segment holding portion 109 of the segment arrangement drum 105.
  • the guide member 112 is supported by a frame (not shown). As shown in FIG. 29, the guide member 112 extends in the axial direction of the segment arrangement drum 105, and is arranged at a distance from the circumferential surface of the segment arrangement drum 105.
  • the guide member 112 is provided with a plurality (three in this example) of narrow guide pieces 112a and a bracket 112b for supporting the guide pieces 112a apart from each other.
  • the bracket 112b is provided along the axial direction of the segment arrangement drum 105, and the guide piece 112a extends in the direction orthogonal to the bracket 112b.
  • the bracket 112 b is fixed to a frame (not shown) as described above.
  • the front leg 17b of the coil segment 17S is gripped by the chuck portion 111 of the segment conveying means 110, and the lower side of the guide member 112 (between the guide member 112 and the segment arrangement drum 105) as shown in FIG. Then, the leg 17c is conveyed so as to pass the upper side of the guide member 112 (the side opposite to the segment placement drum 105 of the guide member 112). As shown in FIG. 24A, the segment transport means 110 is configured to be lowered when the front leg 17b of the coil segment 17S reaches above the segment holding portion 109a which is a reference point.
  • the reference point in the present embodiment is set in the segment holding portion 109a between the blade 108 located at the upper center of the segment placement drum 105 and the blade 108 adjacent to the downstream side of the rotation direction of the segment placement drum 105.
  • the reference point is not limited to this.
  • the segment placement drum 105 When it is detected that the front leg 17b of the coil segment 17S has been inserted into the segment holding portion 109a, the segment placement drum 105 is set to a first predetermined angle for one slot, ie, a first portion of the segment holding portion 109. It is controlled to rotate counterclockwise in the figure by a predetermined angle of 1 (index rotation). Since the front leg 17b of the coil segment 17S is accommodated and restrained in the segment holding portion 109, when the segment placement drum 105 rotates, the rear leg 17c of the coil segment 17S slides on the guide surface 112c and moves.
  • the segment holding portion 109b adjacent to the upstream side in the rotational direction of the segment holding portion 109a which is the first reference point becomes the reference point of the coil segment 17S to be arranged next.
  • the upstream side in the rotational direction of the segment arrangement drum 105 of each blade 108 is chamfered to form a tapered surface 108b.
  • the angle for one slot of the segment arrangement drum 105, that is, the first predetermined angle is 10 degrees.
  • the coil segment 17S is displayed only on the end faces of its front leg and rear leg, and the front leg is distinguished by white outline, and the rear leg is distinguished by ⁇ .
  • FIG. 24B shows a state in which the front legs 17b of the three coil segments 17S are respectively inserted into the segment holding portion 109 of the segment arrangement drum 105, and the respective rear legs 17c are placed on the guide surface 112c.
  • reference numerals 17b-1, 17b-2 and 17b-3 respectively indicate the front legs of the first to third coil segments 17S
  • 17c-1, 17c-2 and 17c-3 respectively indicate the first to third ones.
  • the rear leg of the coil segment 17S is shown.
  • FIG. 24C shows a state in which the rear leg 17c-1 of the first coil segment 17S drops away from the guide member 112.
  • the coil segment 17S whose rear leg 17c-1 is separated from the guide member 112 is pivoted by gravity with the front leg 17b-1 already inserted in the segment holding portion 109 of the segment arrangement drum 105 as a fulcrum, and the rear leg 17c- 1 is inserted into a predetermined segment holding unit 109 by its own weight without control.
  • the eighth segment holding portion 109 on the upstream side in the rotational direction of the segment placement drum 105 counted from the segment holding portion 109 into which the front leg 17b-1 is inserted is the rear leg 17c-1 according to the width of the coil segment 17S. Is inserted.
  • the segment arrangement drum 105 when the segment arrangement drum 105 is rotated by a second predetermined angle of eight slots, that is, the second predetermined angle of eight segment holding portions 109, the rear leg 17c-1 is rotated. It is inserted into the segment holding unit 109.
  • the relative angle of the front leg inserted in the segment holding portion 109 with respect to the circumferential surface of the segment placement drum 105 decreases as the index rotation progresses, that is, the posture is parallel to the circumferential surface.
  • the angle for eight slots of the segment arrangement drum 105 that is, the second predetermined angle is 80 degrees. However, this second predetermined angle differs depending on the coil width of the coil segment.
  • the back legs of the first to third coil segments 17S are guided and inserted into the segment holding portion to be placed on the front legs of the eighth to tenth coil segments 17S, and the back legs of the fourth coil segment 17S. Shows a state of being separated from the guide member 112.
  • the rear leg 17c-1 of the first coil segment 17S is inserted and arranged on the front leg 17b-8 of the eighth coil segment 17S.
  • a so-called lane change is possible due to the rear leg 17c-1 being shifted outward in the radial direction of the segment arrangement drum 105 by the step 17a-1 formed in the crossover portion 17a of the coil segment It is because.
  • the front leg 17b-1 of the first coil segment 17S is disposed in the first layer
  • the rear leg 17c-1 is disposed in the second layer.
  • each blade 108 protrudes radially outward of the segment placement drum 105 before the second round of insertion and placement starts.
  • the amount of projection of the blade 108 is set to be greater than the total thickness of the coil segments already inserted.
  • the tolerance (height Yt) of the protrusion amount of the blade 108 to the total thickness of the coil segment is a range in which the front leg and the rear leg of the coil segment 17S can be stably inserted and arranged and the new insertion is not inhibited, for example , 4 mm.
  • the first front leg 17b-1 of the coil segment 17S of the second round is inserted into the segment holding portion 109a of the reference point, and the rear leg 17c-1 is mounted on the guide member 112 .
  • the coil segments 17S are sequentially inserted in the same manner as in the first round, and when the segment arrangement drum 105 makes one rotation, the insertion and arrangement in the second round are completed, and the arranged coil segments 17S become four layers. If the amount of protrusion corresponding to the thickness of the target layer is set from the beginning to the blade 108, the segment holding portion becomes deep and smooth insertion operation is impeded. Therefore, as the stepwise protrusion operation corresponding to the layer thickness as described above There is.
  • the diameter of the circumferential surface of the segment placement drum 105 changes, so that the contact pressure of the belt 107 with the blade 108 is kept constant, as described later, in accordance with the protrusion operation of the blade 108. An adjustment is made.
  • the coil segments supplied to the coil assembly unit 2 are arranged such that the coil segments 17S having basically the same shape are sequentially arranged in the same pattern. That is, when 10 coil segments are simply arranged and developed, the rear legs of the first to third coil segments are disposed on the front legs of the eighth to tenth coil segments, respectively.
  • the coil segment 17S which has been bent into a predetermined shape is placed above the segment arrangement drum 105 which is horizontally disposed in the state of being laid horizontally at the time of bending.
  • the coil segment 17S is continuously inserted into the segment holding portion while being conveyed and rotating the segment disposition drum 105 by a predetermined angle.
  • the segment arrangement drum 105 is arranged horizontally and the coil segment 17S is guided from above, if only the front leg of the coil segment 17S is inserted into the predetermined segment holding portion of the segment arrangement drum 105, The rear legs are inserted automatically under their own weight. For this reason, automation is easy compared with the past, and a coil can be assembled quickly and efficiently.
  • the coil assembly 2 is disposed on the base 116 and on the base 116 so that the rotation axis 121, which is the central axis C of its rotation, is horizontal, and is rotatably supported.
  • Segment placement drum 105, separation prevention means 106 having a belt 107, servomotor 117 which is a drive source for driving the segment placement drum 105 to rotate, a blade adjustment mechanism 118 for changing the projection amount of the blade 108, segment placement
  • An extruding mechanism for extruding an assembled coil consisting of a predetermined number (36 in the above embodiment) of coil segments inserted and held in the annularly arranged segment holding portion 109 of the drum 105 in the axial direction of the segment arrangement drum 105 119 and the opposite side of the pushing mechanism 119 with the segment arrangement drum 105 interposed therebetween. It has the work support stand 120 placed, the segment conveyance means 110 mentioned above, and the guide member 112 of 1 step
  • the segment arrangement drum 105 is rotatably supported around its rotation axis 121.
  • a disc-like bearing 122 for supporting the rotation shaft 121 is disposed on the side opposite to the assembly coil extruding direction (P (+) direction) of the segment arrangement drum 105.
  • the diameter gear 123 is coaxially fixed.
  • a small diameter gear (not shown) fixed to the rotational shaft of the servomotor 117 is engaged with the large diameter gear 123. Therefore, when the servomotor 117 rotates, the segment arrangement drum 105 is rotationally driven through the rotation shaft, the small diameter gear, and the large diameter gear 123.
  • the speed reduction structure based on the engagement of the small diameter gear and the large diameter gear 123 can increase the accuracy of the index rotation of the segment arrangement drum 105 by the servomotor 117.
  • the bearing 122 is supported by a receiving portion 124 whose bottom is fixed to the base 116, whereby the segment arrangement drum 105 is supported in a cantilever manner.
  • the portion where the coil segment 17S of the segment arrangement drum 105 is arranged is held by the separation preventing means 106 as described above, the segment arrangement drum 105 can be stably rotated.
  • the index rotation mechanism is configured to rotate the segment disposition drum 105 by a predetermined angle (first predetermined angle).
  • the blade adjustment mechanism 118 has a ball screw portion 125 having a rotation axis parallel to the rotation axis 121 of the segment disposition drum 105, and is screwed with the ball screw portion 125 and parallel to the rotation axis.
  • the nut portion 126 is slidable in the P (-) (+) direction, the servomotor 127 for rotationally driving the ball screw portion 125, and the base portion is fixed to the nut portion 126.
  • the slide member 128 has a base fixed to the nut portion 126, and a pair of parallel arms 128a and 128b extending from the base along the ball screw portion 125.
  • a pair of protrusions projecting inward is formed at the tip of the pair of arms 128a and 128b, respectively, and the pair of protrusions are engaged with the annular groove 129a of the engagement portion 129 in a cam follower manner. There is. As a result, even when the rotation shaft 121 and the engagement portion 129 are both rotated, the slide member 128 and the engagement portion 129 are connected under low friction.
  • each blade 108 of the segment arrangement drum 105 is formed with an obliquely extending groove 108a, and the conical cam 130 is slidably inserted in the groove 108a. Therefore, when the servomotor 127 rotates and the rotary shaft 121 moves in the P (-) direction, the blade 108 protrudes outward in the radial direction of the segment arrangement drum 105, and when the rotary shaft 121 moves in the P (+) direction 108 will be pulled in radially inward of the segment arrangement drum 105. Thus, by controlling the amount of rotation and the direction of rotation of the servomotor 127, the amount of protrusion of the blade 108 can be adjusted.
  • the pushing mechanism 119 has a ball screw portion 131 having a rotation axis parallel to the rotation axis 121, and is screwed to the ball screw portion 131 and can slide in the P (-) (+) direction.
  • a pressing ring 135 is disposed slidably on the circumferential surface of the segment placement drum 105 in the axial direction (P ( ⁇ ) (+) direction) and engaged with the slide member 134.
  • the slide member 134 has a base fixed to the nut portion 132, and a pair of parallel parallel arms 134a and 134b extending from the base along the ball screw portion 131.
  • a pair of projections projecting inward is formed at the tip of the pair of arms 134a and 134b, respectively, and the pair of projections are engaged with the annular groove 135a of the pressing ring 135 in a cam follower manner. .
  • the work support 120 includes a base 136, a work placement portion 138 having a V-shaped recess 138a fixed to the base 136 via a support 137, and a pair of rails 136a formed on both sides of the upper surface of the base 136. And.
  • the separation preventing means 106 is disposed on the radial side of the segment arrangement drum 105 so as to face each other with the segment arrangement drum 105 interposed therebetween and extend in the vertical direction. It has arms 139A and 139B.
  • the pair of arms 139A and 139B is rotatably supported with a shaft 140 provided at substantially the center of each arm as an arm fulcrum, and the upper end of the pair can contact and separate from the circumferential surface of the segment arrangement drum 105 Is configured as.
  • the lower end portion of the arm 139A is connected to the rack member 141A sliding in the direction orthogonal to the P (-) (+) direction via a cam follower, and the lower end portion of the arm 139B is connected to the P (-) (+) direction
  • a cam follower is connected to the rack member 141B which slides in the orthogonal direction.
  • the rack member 141A and the rack member 141B are both meshed with the pinion gear 142, and are connected via the pinion gear 142.
  • the rack member 141A is connected to the servomotor 143, and when the servomotor 143 rotates, not only the rack member 141A but also the rack member 141B slides, and as a result, the pair of arms 139A and 139B are synchronized. Rotate.
  • a pair of horizontal bars 144 which are respectively fixed so as to perpendicularly intersect with the pair of arms.
  • a pair of holders 145 are respectively fixed to both ends of each of the pair of horizontal bars 144. Therefore, a total of two pairs of holders 145 are provided at both ends of the pair of horizontal bars 144.
  • Two pairs of movable pulleys 146 for belts are rotatably supported and fixed to the two pairs of holders 145, respectively.
  • Two fixed pulleys 147 are rotatably supported and fixed to the frame of the detachment prevention means 106, and two small diameter fixed pulleys 148 are rotatably supported and fixed, and further, the tension pulleys 149 are fixed pulleys. It is rotatably supported between 148 and fixed.
  • One set of these two fixed pulleys 147, two small diameter fixed pulleys 148, and a tension pulley 149 are provided corresponding to the two pairs of movable pulleys 146.
  • One of the pair of belts 107 arranged in line in the axial direction of the segment arrangement drum 105 is a movable pulley 146 fixed to the holder 145, two fixed pulleys 147, and two small diameter fixed pulleys. 148 and a tension pulley 149, and is configured to cover the lower circumferential surface of the segment arrangement drum 105.
  • the tension pulley 149 is connected to the air cylinder 151 via the support shaft 150. Since the tension pulley 149 is displaced in the vertical direction by the operation of the air cylinder 151, the contact pressure of the belt 107 with respect to the circumferential surface of the segment arrangement drum 105 can be variably adjusted.
  • the other belt of the pair of belts 107 has the same configuration, and is configured to perform the same operation.
  • each of the pair of arms 139A and 139B a plurality of screw holes 139a are formed in two rows spaced apart in the vertical direction, whereby the vertical fixing position of the horizontal bar 144 can be adjusted. ing.
  • two fixing holes 144a in the form of elongated holes extending vertically are formed, and the horizontal bars 144 are inserted by screws 144b inserted through the fixing holes 144a.
  • Is fixed to the arm 139A or 139B so as to be finely adjustable in the vertical direction.
  • FIG. 34 shows the state in which the core 152 is set on the workpiece support 120 and the workpiece support 120 is connected to the base 116 so that the assembly coil on the segment disposition drum 105 can be inserted into the core 152.
  • the core 152 is placed on the work placement portion 138 in a state where the work support 120 is separated from the base 116, and the cuff support 154 supporting the insertion guide unit 153 is from the P (-) direction of the work support 120. It is moved through the rails 136a to connect the ring-shaped insertion guide unit 153 and the core 152. Thereafter, the workpiece support 120 is connected to the base 116 of the coil assembly 2 so that the insertion guide unit 153 faces the segment disposition drum 105. In FIG. 34, the guide member 112 is not shown.
  • the insertion guide unit 153 has a cuff support 154 on the side facing the segment placement drum 105, and has a recess 153a on the other side that engages with the core 152.
  • the cuff support 154 is for protecting the cuff portion 155 of the insulating paper inserted in each slot of the core 152, and the cuff of the core 152 is provided between the plurality of protrusions 154a radially arranged along the circumferential direction.
  • the part 155 is configured to be inserted.
  • the plurality of protrusions 154a are configured to be simultaneously slidable in the radial direction by a drive mechanism (not shown).
  • the servomotor 133 of the pushing mechanism 119 rotates and the slide member 134 moves in the P (+) direction.
  • the pressing ring 135 moves in the P (+) direction along the circumferential surface of the segment arrangement drum 105.
  • a recess (not shown) is provided on the P (+) side of the pressing ring 135 for accommodating the coil end portion (crossover portion) side of the assembled coil over the entire circumferential direction. The assembly coil in which the coil end portion is accommodated in the recess moves along the circumferential surface of the segment arrangement drum 105, and as shown in FIG.
  • the coil end portion (crossover portion) of the assembly coil is inserted into the insertion guide unit 153. Be inserted. That is, the ends of the front and rear legs of each coil segment 17S enter between the projections 154a of the insertion guide unit 153.
  • the servomotor 133 stops its rotational operation at the timing immediately before the coil end portion (crossover portion) of the assembled coil interferes with the blade 108 of the segment arrangement drum 105, or at the timing immediately before the pressing ring 135 strikes the detachment preventing means 106. The movement of the pressing ring 135 is stopped.
  • the segment arrangement drum 105 Since the coil end portion (crossover portion) of the assembly coil is inserted into the insertion guide unit 153, the segment arrangement drum 105 is in a double support state. In this double-supported state, the servomotor 117 of the blade adjustment mechanism 118 rotates, the slide member 128 (see FIG. 30) moves in the P (+) direction, and the blade 108 protrudes from the circumferential surface of the segment arrangement drum 105 It retracts to a position where it does not interfere with the movement of the pressing ring 135. Further, the servomotor 143 (see FIG. 32) of the detachment preventing means 106 rotates so that the two pairs of arms 139A and 139B open radially outward from the circumferential surface of the segment arrangement drum 105. The contact state of the belt 107 is released. After that, the detachment preventing means 106 is lowered so as not to disturb the movement of the pressing ring 135.
  • the pressing ring 135 is moved in the P (+) direction, and the insertion of the assembly coil into the core 152 proceeds.
  • the movement of the pressing ring 135 is stopped immediately before the coil end portion (crossover portion) of the assembled coil abuts on the cuff support 154 as shown in FIG. 37, and all the projections 154a of the cuff support 154 as shown in FIG.
  • the cuff support 154 is opened outward by moving it radially outward.
  • FIG. 38 shows a state in which insertion of the assembly coil in the core 152 is completed.
  • the core is formed by pressing the assembled coil assembled by arranging a plurality of coil segments on the segment arrangement drum 105 in the axial direction of the segment arrangement drum 105 It can be inserted into 152. Therefore, after pulling out the segment assembly from the jig, it is not necessary to exchange the jig and the core and then insert the segment assembly into the core, which significantly increases the working efficiency in manufacturing the rotary electric machine. It can be improved. That is, according to the configuration of the present embodiment, when the assembly of the coil segment is completed, it is possible to immediately shift to the operation of inserting the core 152 as it is, unnecessary time for exchanging the jig and the core, etc. It can be omitted.
  • the coil assembly unit 2 includes the index rotation drive mechanism of the segment arrangement drum 105, the separation preventing means 106, the segment conveyance means 110, the blade adjustment mechanism 118, and the pushing mechanism 119.
  • Signal lines from encoders mechanically connected to the plurality of servomotors are connected to the amplification and drive circuits of the plurality of servomotors.
  • the PLC 46 and the second NC controller 48 insert the coil segment in the coil assembly unit 2 and insert the assembled coil into the core 152 based on the steps S1 and S8 in FIG. 12 and the steps shown in the flowchart in FIG. Control.
  • the operation of the coil assembly unit 2 will be described in detail using the flowcharts of FIGS. 12 and 39.
  • step S1 of FIG. 12 the PLC 46 arranges the number and the number of layers of the coil segment on the segment arrangement drum 105, the index rotation amount, the rotation amount of the arms 139A and 139B of the separation preventing means 106, and A series of control data relating to the amount of protrusion, the amount of movement of the pressing ring 135, and the like are read from the memory and output to the second NC controller 48.
  • the second NC controller 48 develops the control data thus received, and executes NC control of the drive mechanism of the designated address.
  • the important points are cutting and peeling of the covering insulation layer in the wire feeding portion 3, primary bending in the primary bending portion 4, secondary bending in the secondary bending portion 5, and assembly in the coil assembly portion 2.
  • the point is that it is performed in units of coil segments based on the set control information. That is, cutting and insulating layer peeling are performed in accordance with set control information for a certain processed coil segment, and primary bending is performed in accordance with set control information for the same processed coil segment. For the processing coil segment, secondary bending is performed according to the set control information, and coil assembly is performed according to the set control information for the same processed coil segment.
  • step S8 in FIG. 12 index control for arranging the coil segment 17S on the circumferential surface of the segment arrangement drum 105 is performed (step S8 in FIG. 12). It is detected by the detection sensor 170 that the first coil segment 17S, which is a processed coil segment, is conveyed by the segment conveyance means 110 and its front leg is inserted into the segment holding portion 109a of the reference point of the segment arrangement drum 105.
  • the servomotor 117 is rotationally driven to rotate the segment arrangement drum 105 in the counterclockwise direction shown in FIG. 24A by one slot (10 degrees in this embodiment). This operation is sequentially repeated, and when the arrangement of the coil segments 17S for a predetermined number of cycles is completed, the servomotor 127 is rotationally driven to project the blade 108 by a predetermined amount (step S11 in FIG. 39).
  • the detection sensor 170 in the present embodiment is desirably a distance determination sensor using a laser or the like. That is, as shown in FIG. 24A, a laser light emitting unit and a laser light receiving unit are disposed on the lower surface of the guide member 112, the laser light is irradiated from the light emitting unit to the segment holding unit at the reference point, and the reflected light is The distance is determined by receiving light.
  • the PLC 46 can determine from the determined distance whether the first coil segment has been inserted or the second or subsequent coil segment has been inserted, and transmits the result to the second NC controller 48.
  • a sensor that emits and receives color light may be provided.
  • a color light sensor including a line-shaped light emitting unit and a light receiving unit extended in the axial direction of the segment arrangement drum 105 is arranged in line with the distance determination sensor.
  • the light is irradiated to the segment holding portion of the light receiving portion, and the reflected light is received by the light receiving portion.
  • the PLC 46 calculates the spectral light intensity of the reflected light output from the detection sensor 170, and compares the obtained light intensity with the reference spectral light intensity range stored in advance. If the spectral light intensity detected and calculated falls within the set tolerance, it is determined that the front leg has been inserted and placed normally, and is transmitted to the second NC controller 48.
  • the coil segment 17S is generally copper colored and is different from the color of the peripheral surface of the blade 108 or the segment arrangement drum 105, it can be distinguished from the reflected light from other than the front leg. It should be noted that the judgment as to whether or not the front leg is properly arranged is made by combining a photoelectric sensor such as a color sensor with an imaging device such as a charge coupled device (CCD) or a complementary metal oxide semiconductor device (CMOS). It is also good. According to the combination of sensors having different detection methods, detection errors can be reduced.
  • CMOS complementary metal oxide semiconductor device
  • second NC controller 48 starts NC control to insert the assembly coil into core 152 (FIG. 39). Step 12). That is, control data for inserting the assembly coil into the core 152 is expanded and output to the push-out mechanism 119, the blade adjustment mechanism 118, and the detachment prevention means 106 to start an insertion operation to rotationally drive the target servomotor.
  • the second NC controller 48 rotates the servomotor 133 of the pushing mechanism 119 to move the pressing ring 135 in the P (+) direction, and the end of the slot insertion portion of the assembly coil is inserted into the insertion guide unit 153.
  • the insertion is made (step 13 of FIG. 39). This movement is stopped immediately before the coil end portion (crossover portion) of the assembled coil interferes with the blade 108 or immediately before the pressing ring 135 abuts against the detachment preventing means 106. Thereby, the segment arrangement
  • FIG. 36 shows this state.
  • the second NC controller 48 rotationally drives the servomotor 127 of the blade adjustment mechanism 118 to retract the blade 108 from the circumferential surface of the segment arrangement drum 105 so as not to protrude, and the servomotor 143 of the detachment prevention means 106 To rotate the belt 107 away from the circumferential surface of the segment arrangement drum 105 and lower the separation preventing means 106 (step 14 in FIG. 39).
  • the second NC controller 48 rotates the servomotor 133 of the push-out mechanism 119 to advance the pressing ring 135 in the P (+) direction, and the coil end portion (crossing portion) of the assembly coil It is made to stop just before contacting (Step 15 of FIG. 39).
  • FIG. 37 shows this state.
  • the second NC controller 48 controls the drive mechanism (not shown) to move all the projections 154a of the cuff support 154 radially outward to open the cuff support 154 (step 16 in FIG. 39).
  • the second NC controller 48 rotationally drives the servomotor 133 of the pushing mechanism 119 to advance the pressing ring 135 to a predetermined position, thereby inserting the assembled coil into the core 152, ie, in the slot of the core 152.
  • Annular insertion of the coil segments is complete (step 17 in FIG. 39).
  • the pressure ring 135 is returned to its original position.
  • FIG. 38 shows this state.
  • the guide means of the coil assembly portion has a two-stage configuration, and two types of coil segment crossover portions and coil widths are different from each other.
  • the coil segment is also constructed.
  • the configurations, operations, and effects of the other parts in the present embodiment are the same as those in the above-described embodiment, and thus the description thereof will be omitted, and the same components will be described using the same reference numerals.
  • the guide means 113 in this embodiment includes an outer guide member 114 and an inner guide member 115 positioned closer to the central axis C of the segment arrangement drum 105 than the outer guide member 114.
  • the outer guide member 114 and the inner guide member 115 are disposed above the segment arrangement drum 105.
  • the configuration of each of the outer guide member 114 and the inner guide member 115 is basically the same as the configuration of the guide member 112 in the embodiment shown in FIG. That is, a plurality of (three in this example) narrow guide pieces and brackets 114b and 115b for supporting the guide pieces apart from each other are provided, and the brackets 114b and 115b are axes of the segment arrangement drum 105.
  • the guide pieces are provided along the direction, and extend in the direction orthogonal to the brackets 114b and 115b, respectively.
  • the brackets 114 b and 115 b are fixed to a frame (not shown).
  • the outer guide member 114 is provided to guide the coil segment 17S having a large coil width and a large distance between the slot insertion portions 17b and 17c
  • the inner guide member 115 is provided between the slot insertion portions 17d and 17e. Is provided to guide the coil segment 17SS having a small coil width.
  • the inner guide member 115 is configured such that the circumferential length of the guide surface 115 c is shorter than the circumferential length of the guide surface 114 c of the outer guide member 114.
  • the coil segment 17S having a large coil width is held by the chuck portion 111 of the segment conveyance means 110 so that the front leg 17b passes below the inner guide member 115 and the rear leg 17c passes above the outer guide member 114. It is transported. When the segment placement drum 105 rotates and the front leg 17b reaches the segment holding portion of the reference point above the segment placement drum 105, it is lowered.
  • the front leg 17d passes below the inner guide member 115 and the rear leg 17e passes above the inner guide member 115 while being held by the chuck portion 111 of the segment transport means 110. It is transported.
  • the front leg 17d is lowered when the segment placement drum 105 is index-rotated and reaches the segment holding portion of the reference point.
  • the detection sensor 170 is disposed on the lower surface of the inner guide member 115, and is configured to detect the front leg 17d of the coil segment 17SS.
  • the coil assembly is performed by alternately supplying the coil segment 17S having a large coil width and the coil segment 17SS having a small coil width.
  • the front leg 17b-1 of the coil segment 17S of the first coil width is inserted into the predetermined segment holding portion 109 of the segment arrangement drum 105, and then the leg 17c-1 is mounted on the outer guide member 114;
  • the front leg 17d-1 of the second coil segment 17SS is inserted into the next segment holding portion 109 of the segment arrangement drum 105, and then the leg 17e-1 is mounted on the inner guide member 115, and the third coil segment 17S having a large coil width
  • Front leg 17b-2 is inserted into the next segment holding portion 109 of the segment placement drum 105 and then the leg 17c-2 is placed on the outer guide member 114.
  • the rear leg 17e-1 of the second coil segment 17SS having a small coil width is formed.
  • And is disposed prior to the rear leg 17c-1 of the first coil segment 17S having a large coil width.
  • the circumferential length of the outer guide member 114 and the inner guide member 115 is set so that the rear legs fall at such timing.
  • FIG. 40D shows a state in which the arrangement of the first round is completed.
  • the guide members may be configured in three or more stages to be able to cope with more complicated arrangement patterns.
  • the coil segments 17S having a large coil width and the coil segments 17SS having a small coil width are alternately arranged. ing.
  • the rear legs of the second coil segment 17SS, the first coil segment 17S, the fourth coil segment 17SS, and the third coil segment 17S are The seventh coil segment 17SS, the eighth coil segment 17S, the ninth coil segment 17SS, and the tenth coil segment 17S are respectively disposed on the front legs.
  • the manufacturing system shown in FIG. 42 is on the downstream side of the stator core pallet 180 containing the cores of a plurality of stators, which is an example of a rotating electrical machine, a core conveyance line 181, and the core conveyance line 181.
  • the stator conveyance line 184 and the stator conveyance line 184 are arranged to intersect (orthogonal) with the stator conveyance line 184 and wire cutting, insulation layer peeling, primary bending molding, secondary bending molding, coil assembly, and coil insertion to the core Production of a single rotating electrical machine that is a unitized coil supply line And a location 100.
  • a coil twist portion that twists the coil segment free end side (slot insertion portion end side) and a twisted portion are welded to the stator conveyance line 184 downstream of the rotary electric machine manufacturing apparatus 100.
  • a weld or the like is arranged to make all the coil segments electrically conductive.
  • the coil supply line (the manufacturing apparatus 100 for the rotary electric machine) extends the wire supply part 3 for supplying a linear wire of a predetermined length from which the insulating layer at both ends is peeled off, Bending is performed at the primary bending portion 4 that performs primary bending in the same plane in a U-shape consisting of a pair of slot insertion portions and a transition portion that connects the pair of slot insertion portions, and bending at the primary bending portion 4
  • the secondary bending portion 5 which performs secondary bending of the formed primary bending formed body in the direction intersecting with the above-described same plane, and the coil segment which has been subjected to bending at the secondary bending portion 5 are arranged in an annular shape
  • a pushing mechanism 119 for pushing the coil assembled in the coil assembly 2 and inserting the coil into the slot of the stator core.
  • a unitized coil supply line (the manufacturing apparatus 100 for a rotating electrical machine) is disposed so as to cross (orthogonal) a plurality of (six in this example) stator transport lines 184.
  • a single coil supply line can be provided to reduce the initial investment, but unitization can be achieved in response to increased demand for stators. It is possible to make an efficient capital investment to increase the number of coil supply lines and expand the scale of production. Since these coil supply lines (the manufacturing apparatus 100 for the rotary electric machine) are unitized and have the same specifications, if the production capacity can be verified for the first single coil supply line, the verification is not necessary in the later expansion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

成形したコイルセグメントをその都度管理する必要がなく、コイルセグメントの成形からコイル組立までを一貫して行うことにより良好な作業効率を得ることができ、また、需要に応じた規模の設備を構築することが可能な回転電機の製造装置及び回転電機の製造方法を提供する。回転電機の製造装置は、所定長さの直線状の線材を、互いに略平行に延びる1対のスロット挿入部とこれら1対のスロット挿入部を連結する渡り部とからなる所定の形状に成形するコイルセグメント成形部と、コイルセグメント成形部で成形されたコイルセグメントを円環状に配列してコイルを組み立てるコイル組立部とを備えている。コイルセグメント成形部及びコイル組立部は、製造すべきコイルに応じて設定された制御情報に基づき、成形及び組立を各コイルセグメント単位で連続して行うように構成されている。

Description

回転電機の製造装置及び製造方法
 本発明は、モータや発電機等の回転電機(回転電気機械)の製造に用いられる回転電機の製造装置及び回転電機の製造方法に関する。
 回転電機におけるステータやロータのコイルとして、このステータ又はロータの周方向に沿って配列された複数のスロットに、線材をU字形状に加工してなる複数のセグメント(ヘアピン)をそれぞれ挿入し、これらセグメントの自由端側を溶接等により互いに接合してコイルを形成したいわゆるセグメント型コイルが知られている。
 このようなセグメント型コイルのセグメント成形方法として、特許文献1には、所定長さに切断した線材を、第1成形型、第2成形型及び成形ローラにより移動を伴うことなく順次3次元形状に成形する方法が開示されている。
特開2004-297863号公報
 特許文献1に開示されている従来のコイルセグメント成形方法によると、セグメントの渡り部の湾曲形状やスロット挿入部間の幅等は、全て成形型の型形状(プレス面形状)によって規定される。このため、渡り部の形状やスロット挿入部間の幅を変更するためには、成形型をその都度取り替える必要がある。一般に、1つのコイルには、U字形状における渡り部の長さや角度、及び1対のスロット挿入部間の幅等が異なる多種類のコイルセグメントが混在するため、1つのコイルを製造するにあたり、多種形状の成形型を用意し、これら成形型をその都度取り替えることが必要となる。また、このように成型して得た多種形状のコイルセグメントを組み合わせてコイルを組立てる場合に、どの形状のコイルセグメントをどの部分に用いるか等のセグメントの管理が必要であるため、組立作業が非常に煩雑となる。
 なお、同種形状のセグメントを同一の成形型であらかじめ多数成形してストックしておき、ストックしておいたセグメントを必要時に取り出すようにすれば、成形型の取り替え作業回数を減らすことは可能であるが、ストックされている種々の形状のセグメントの管理が必要となるため、この場合も作業が煩雑となり、しかも、種々の形状のセグメントを過不足なく形成しておくことも管理を複雑にする。
 さらにまた、従来技術においては、コイルセグメント成形作業とコイル組立作業とを一貫して行うことができず互いに独立して行わねばならなかったため、作業効率を向上させることができなかった。
 従って、本発明の目的は、コイルセグメントの成形からコイル組立まで一貫して作業することができ、良好な作業効率を得ることができる回転電機の製造装置及び製造方法を提供することにある。
 本発明の他の目的は、成形したコイルセグメントの保管及び選択等の管理を行う必要がない回転電機の製造装置及び製造方法を提供することにある。
 本発明のさらに他の目的は、需要に応じた規模の設備を構築することが可能な回転電機の製造装置を提供することにある。
 本発明によれば、回転電機の製造装置は、所定長さの直線状の線材を、互いに略平行に延びる1対のスロット挿入部とこれら1対のスロット挿入部を連結する渡り部とからなる所定の形状に成形するコイルセグメント成形部と、コイルセグメント成形部で成形されたコイルセグメントを円環状に配列してコイルを組み立てるコイル組立部とを備えている。コイルセグメント成形部及びコイル組立部は、製造すべきコイルに応じて設定された制御情報に基づき、成形及び組立を各コイルセグメント単位で連続して行うように構成されている。
 製造すべきコイルに応じて設定された制御情報に基づいて各コイルセグメント単位でコイルセグメントの成形及び組立を行うことにより、コイルセグメントの成形からコイル組立まで一貫して行うことが可能となるため、作業効率が大幅に向上する。また、成形したコイルセグメントを保管すること、保管したコイルセグメントから必要とするものを選択すること等が不要となるため、管理が非常に容易となる。
 コイルセグメント成形部が、線材を同一平面内で1次曲げ加工する1次曲げ部と、1次曲げ部で曲げ加工がなされた1次曲げ成形体を上述の同一平面と交差する方向に2次曲げ加工する2次曲げ部とを有しており、1次曲げ部及び2次曲げ部は、設定された制御情報に基づき、1次曲げ加工及び2次曲げ加工を各コイルセグメント単位で連続して行うように構成されていることが好ましい。
 所定長さの直線状の線材を供給する線材供給部をさらに備えており、線材供給部、コイルセグメント成形部及びコイル組立部は、設定された制御情報に基づき、コイルセグメントの供給、成形及び組立を各コイルセグメント単位で連続して行うように構成されていることも好ましい。
 コイル組立部で組み立てられた組立コイルを、組立コイルの軸心方向に押し出し、組立コイルと同軸に配置されたコアのスロット内に挿入するコイル挿入機構をさらに備えていることも好ましい。
 この場合、コアを有するステータ又はロータを供給するワーク供給ラインと、ワーク供給ラインに接続されており、コイルセグメント成形部、コイル組立部及びコイル挿入機構を有するコイル供給ラインとが設けられており、コイル供給ラインのコイル挿入機構がワーク供給ラインから供給されたコアのスロット内に組立コイルを挿入するように構成されていることも好ましい。
 この場合、コイル供給ラインがユニット化されており、このコイル供給ラインのユニットが回転電機の需要に応じて複数設けられていることがより好ましい。コイル供給ラインをこのようにユニット化すれば、製造設備構築の初期においては、製造装置の規模を小型に構築して初期投資を少なくし、需要増に応じて規模を拡大するという効率的な設備投資を行うことが可能となる。
 1次曲げ部は、同一平面内に配置され線材を支持する複数の治具と、複数の治具を、成形すべきコイルセグメントの形状条件に応じてそれぞれ設定された移動量に基づいて線材が所定の形状となるように同一平面内でそれぞれ移動させる複数の1次曲げ駆動機構とを有していることも好ましい。
 これら複数の1次曲げ駆動機構が、設定された移動量のデータに基づいて複数の治具をそれぞれ旋回又は直線移動させるように構成されていることがより好ましい。
 2次曲げ部は、同一平面と交差する方向で互いに対向して配置されておりかつ渡り部を挟持して押圧する複数対の押圧治具と、複数対の押圧治具を、成形すべきコイルセグメントの形状条件に応じてそれぞれ設定された移動量に基づいて同一平面と交差する方向にそれぞれ移動させる複数の2次曲げ駆動機構とを有していることも好ましい。
 これら複数の2次曲げ駆動機構が、設定された移動量のデータに基づいて複数対の押圧治具をそれぞれ移動させるように構成されていることがより好ましい。
 複数の2次曲げ駆動機構が、複数対の押圧治具を上述の同一平面と直交する方向及び/又は上述の同一平面に対して斜めの方向に移動させて渡り部に同一平面と交差する方向のずれを形成するように構成されていることも好ましい。
 コイル組立部が、コイルセグメントを放射方向外側からそれぞれ挿入可能な複数のセグメント保持部が周方向に沿って円環状に配列されており、中心軸の回りを回転可能なセグメント配置体と、セグメント配置体が第1の所定角度回転する毎に複数のコイルセグメントの各々の1対のスロット挿入部のうちの一方のスロット挿入部を複数のセグメント保持部の1つのセグメント保持部に案内して挿入させ、一方のスロット挿入部の挿入から第2の所定角度回転した際に、1対のスロット挿入部のうちの他方のスロット挿入部を複数のセグメント保持部の他の1つのセグメント保持部に案内して挿入させるように構成されたガイド手段とを備えていることも好ましい。
 本発明によれば、さらに、回転電機の製造方法は、所定長さの直線状の線材を、互いに略平行に延びる1対のスロット挿入部と1対のスロット挿入部を連結する渡り部とからなる所定の形状に成形するコイルセグメント成形工程と、成形工程で成形されたコイルセグメントを円環状に配列してコイルを組み立てるコイル組立工程とを備えている。コイルセグメント成形工程及びコイル組立工程は、製造すべきコイルに応じて設定された制御情報に基づき、各コイルセグメント単位で連続して成形及び組立を行う。
 製造すべきコイルに応じて設定された制御情報に基づいて各コイルセグメント単位でコイルセグメントの成形及び組立を行うことにより、コイルセグメントの成形からコイル組立まで一貫して行うことが可能となるため、作業効率が大幅に向上する。また、成形したコイルセグメントを保管すること、保管したコイルセグメントから必要とするものを選択すること等が不要となるため、管理が非常に容易となる。
 コイルセグメント成形工程が、線材を同一平面内で1次曲げ加工する1次曲げ工程と、1次曲げ工程で曲げ加工がなされた1次曲げ成形体を上述の同一平面と交差する方向に2次曲げ加工する2次曲げ工程とを備えており、1次曲げ工程及び2次曲げ工程は、設定された制御情報に基づき、1次曲げ加工及び2次曲げ加工を各コイルセグメント単位で連続して行うことが好ましい。
 所定長さの直線状の線材を供給する線材供給工程をさらに備えており、線材供給工程、コイルセグメント成形工程及びコイル組立工程は、設定された制御情報に基づき、コイルセグメントの供給、成形及び組立を各コイルセグメント単位で連続して行うことも好ましい。
 コイル組立工程で組み立てられた組立コイルを、組立コイルの軸心方向に押し出し、組立コイルと同軸に配置されたコアのスロット内に挿入するコイル挿入工程をさらに備えていることも好ましい。
 本発明によれば、製造すべきコイルに応じて設定された制御情報に基づいて各コイルセグメント単位でコイルセグメントの成形及び組立を行うことにより、コイルセグメントの成形からコイル組立まで一貫して行うことが可能となるため、作業効率が大幅に向上する。また、成形したコイルセグメントを保管すること、保管したコイルセグメントから必要とするものを選択すること等が不要となるため、管理が非常に容易となる。
 本発明によれば、さらに、コアを有するステータ又はロータを供給するワーク供給ラインと、ワーク供給ラインに接続されており、コイルセグメント成形部、コイル組立部及びコイル挿入機構を有するコイル供給ラインとを設け、このコイル供給ラインをユニット化することにより、製造の初期においては、製造装置の規模を小型に構築して初期投資を少なくし、需要増に応じて規模を拡大するという効率的な設備投資を行うことが可能となる。
本発明の一実施形態に係る回転電機の製造装置の一部構成を概略的に示す図で、(a)は平面図、(b)は側面図である。 図1の実施形態におけるコイルセグメント成型装置の1次曲げ部の初期状態の治具及び線材の関係を概略的に示す要部斜視図である。 図1の実施形態における1次曲げ部で成形される1次曲げ成形体の形状を示す図で、(a)はコイル幅小の1次曲げ成形体を示す図、(b)はコイル幅大の1次曲げ成形体を示す図である。 図1の実施形態における線材の1次折り曲げ動作を段階的に示す要部斜視図である。 図1の実施形態における1次曲げ部の初期状態の構成を概略的に示す斜視図である。 図1の実施形態における1次曲げ部の初期状態の構成を概略的に示す平面図である。 図1の実施形態における可動ベースの旋回中心が線材の中心からずれていることを説明するための平面図である。 図1の実施形態における1次曲げ部の折り曲げ動作の途中状態を示す平面図である。 図1の実施形態における1次曲げ部の折り曲げ動作の完了状態を示す平面図である。 図1の実施形態における最も外側に位置する治具を旋回させる旋回プレートの旋回中心が線材の中心からずれていることを説明するための平面図である。 図1の実施形態における製造装置の電気的構成を概略的に示すブロック図である。 図1の実施形態における製造装置全体の制御工程を概略的に示すフローチャートである。 図1の実施形態における1次曲げ部の折り曲げ動作の制御工程を概略的に示すフローチャートである。 図1の実施形態におけるコイルセグメント成型装置の2次曲げ部の押圧治具の構成と、これら押圧治具によって曲げ加工される1次曲げ成形体の位置を概略的に示す分解斜視図である。 図1の実施形態における2次曲げ部の各押圧治具の移動方向を示す図である。 図1の実施形態における2次曲げ部の渡り部の湾曲状の曲げ加工(湾曲形状の成形)工程と段差形状の付与(クランク形状の段差部形成)工程とを説明する図である。 図1の実施形態における2次曲げ部の曲率調整動作を説明する図である。 図1の実施形態における2次曲げ部の駆動機構を含む全体構成を概略的に示す斜視図である。 図1の実施形態における2次曲げ部の片側部分(正面から見て左側半分)の駆動機構を含む構成を示す分解斜視図である。 図1の実施形態における2次曲げ部の図19に示す片側部分の駆動機構の動作を説明するための正面図である。 図1の実施形態における2次曲げ部の片側部分(正面から見て右側半分)の駆動機構を含む構成を示す分解斜視図である。 図1の実施形態における2次曲げ部の図21に示す片側部分の駆動機構の動作を説明するための正面図である。 図1の実施形態における2次曲げ部の曲げ動作の制御工程を概略的に示すフローチャートである。 図1の実施形態におけるコイル組立部が1番目のコイルセグメントをセグメント保持部に案内及び挿入する動作を示す要部断面図である。 図1の実施形態におけるコイル組立部が3番目までのコイルセグメントの前脚をセグメント保持部に挿入した状態を示す要部断面図である。 図1の実施形態におけるコイル組立部が1番目のコイルセグメントの後脚がガイド部材から離れてセグメント保持部に案内される状態を示す要部断面図である。 図1の実施形態におけるコイル組立部が1~3番目のコイルセグメントの後脚がセグメント保持部に案内及び挿入されて8~10番目のコイルセグメントの前脚の上に載り、さらに4番目のコイルセグメントの後脚がガイド部材から離れてセグメント保持部に案内される状態を示す要部断面図である。 図1の実施形態におけるコイル組立部が1周目のコイルセグメントがセグメント保持部に挿入された状態を示す要部断面図である。 図1の実施形態におけるコイル組立部が1周目のコイルセグメントがセグメント保持部に挿入された後に2周目の1番目のコイルセグメントの前脚がセグメント保持部に挿入された状態を示す要部断面図である。 図1の実施形態におけるセグメント搬送手段の構成を概略的に示す斜視図である。 図1の実施形態におけるセグメント搬送手段を裏側から見た構成を概略的に示す斜視図である。 図1の実施形態におけるコイル組立部のガイド部材とこのガイド部材によって案内されるコイルセグメントとを概略的に示す斜視図である。 図1の実施形態におけるコイル組立部で組み立てられる1種類のコイルセグメントの組立順序を説明する展開図である。 図1の実施形態におけるコイル組立部全体の構成を概略的に示す斜視図である。 図1の実施形態におけるコイル組立部の押し出し機構及びブレード調整機構の構成を概略的に示す斜視図である。 図1の実施形態におけるコイル組立部のブレード調整機構の一部の構成を概略的に示す一部破断斜視図である。 図1の実施形態におけるコイル組立部の離脱防止手段を示す概要斜視図である。 図1の実施形態におけるコイル組立部の離脱防止手段の構成を概略的に示す斜視図である。 図1の実施形態の回転電機の製造装置において、ワーク支持台とコイル組立部とを連結した状態を概略的に示す斜視図である。 図1の実施形態の回転電機の製造装置において、組立コイルをコアへ挿入するための構成を概略的に示す分解斜視図である。 図1の実施形態の回転電機の製造装置における組立コイルの一部を挿入ガイドに挿入した状態で概略的に示す斜視図である。 図1の実施形態の回転電機の製造装置における組立コイルのコアへの挿入が完了する直前の状態を概略的に示す斜視図である。 図1の実施形態の回転電機の製造装置における組立コイルのコアへの挿入が完了した状態を概略的に示す分解斜視図である。 図1の実施形態のコイル組立部の制御工程を概略的に示すフローチャートである。 本発明の他の実施形態におけるコイル組立部が1番目及び2番目のコイルセグメントがセグメント保持部に挿入された状態を示す要部断面図である。 上述の他の実施形態におけるコイル組立部が3番目までのコイルセグメントの前脚がセグメント保持部に挿入された状態を示す要部断面図である。 上述の他の実施形態におけるコイル組立部が1番目のコイルセグメントの後脚よりも2番目のコイルセグメントの後脚が先にセグメント保持部に挿入される状態を示す要部断面図である。 上述の他の実施形態におけるコイル組立部が1周目のコイルセグメントがセグメント保持部に挿入された状態を示す要部断面図である。 上述の他の実施形態におけるコイル組立部全体の構成を概略的に示す斜視図である。 本発明の回転電機の製造装置のシステム構成例を概略的に示す平面図である。 本発明の回転電機の製造装置の他のシステム構成例を概略的に示す平面図である。
 以下、本発明の実施形態について図を参照して説明する。なお、以下に述べる実施形態は、線材として断面が四角形状の平角線を用いる場合について説明するが、例えば丸形状、正方形形状、多角形状若しくはその他の任意の断面形状の単線、又は撚り線による線材であっても本発明は適用可能である。
 図1に示すように、本発明の一実施形態に係る回転電機の製造装置100は、コイルセグメント成形部1と、コイルセグメント成形部1で成形されたコイルセグメントを回転電機の周方向に沿って円環状に配列されたスロットに対応させてアセンブルするコイル組立部2とを備えている。
 コイルセグメント成形部1は、線材供給部3と、線材供給部3から供給された所定長さの直線状の線材を同一平面(本実施形態では水平平面)内で所定の形状(例えばU字形状)に曲げ加工する1次曲げ部4と、1次曲げ部4で曲げ加工されたコイルセグメント(1次曲げ成形体)をこのコイルセグメントの軸線及び上述の平面と垂直な平面(本実施形態では垂直平面)内において曲げ加工する(湾曲形状に成形する)と共にその先端部にコイルセグメントの1対のスロット挿入部が互いにコアの径方向にずれるための形状(例えば、段差形状、クランク形状)を付与する(クランク形状の段差部を成形する)2次曲げ部5とを備えている。
 線材供給部3は、表面が絶縁層で被覆された平角線による線材6が巻かれたボビン7と、ボビン7から線材6を引き出して供給方向を変える供給方向転換部8と、線材6のフラットワイズ面を挟持して搬送する複数のローラ対9aと、線材6のエッジワイズ面を挟持して搬送する複数のローラ対9bと等を有し、長手方向の歪みを矯正する矯正搬送部9と、歪みが矯正された線材6の所定長さに対応する両端部における被覆絶縁層を剥離する剥離部10と、剥離部10を通過した線材6を所定長さ位置で切断する切断部11とを備えている。本実施形態における剥離部10はレーザ光で被覆絶縁層を剥離する構成を有し、剥離範囲は次の線材の片側端部の剥離部を含んでいる。従って、切断部11は剥離範囲の中央部で線材6を切断するように構成されている。なお、剥離部10として、レーザ光を用いることなく、機械的な切削又は削り取りで線材6の被覆絶縁層を剥離する構成を用いても良いことはもちろんである。
 1次曲げ部4によって曲げ加工された線材6、即ちU字形状に曲げられた1次曲げ成形体は、1次曲げ部4と2次曲げ部5との間に配置された移送機構12によって2次曲げ部5へ移送される。移送機構12はエアシリンダによる1対のチャック部(図示無し)を備えており、この1対のチャック部は1次曲げ成形体の両脚部(1対のスロット挿入部)が曲げによって旋回してくる範囲にチャック片が開放された状態で待機している。チャック部が1次曲げ成形体の両脚部を把持すると、移送機構12は上昇して1次曲げ部4から1次曲げ成形体を外し、2次曲げ部5へ移送する。移送機構12で移送された1次曲げ成形体はその両脚部の端部が保持部材13で保持される。保持部材13を移送部材12と同様に、エアシリンダによって開閉する1対のチャック部で1対のスロット挿入部を把持する構成を有している。1次曲げ成形体を保持部材13に受け渡した移送機構12が退避してスペース的にコイルエンド部(渡り部)側が開放された状態で、このコイルエンド部に対して2次曲げ部5による湾曲形状の成形及びクランク形状の段差部の形成を含む曲げ加工がなされる。なお、図1に示す構成では、線材供給部3の供給方向転換部8、矯正搬送部9、剥離部10及び切断部11と、1次曲げ部4とが図1(a)にて横方向に一列状に配置され、2次曲げ部5が1次曲げ部4に対して図1(a)にて縦方向(直角方向)に配置され、コイル組立部2が2次曲げ部5に対して図1(a)にて横方向に配置されているが、これら供給方向転換部8、矯正搬送部9、剥離部10、切断部11、1次曲げ部4、2次曲げ部5及びコイル組立部2が図1(a)にて横方向に一列状に配置されていても良い。即ち、コイルセグメントの成形部とコイルの組立部との配置の制限、換言すれば、単一の製造装置においてコイル形成が完結する構成であれば、レイアウト上の制限はない。
 以下、1次曲げ部4の構成及び曲げ動作について詳細に説明する。
 1次曲げ部4は、図2に示すように、両端部が剥離された直線状に延びる所定長さの線材6を支持する複数の凹溝をそれぞれ備えた複数(ここでは6個)のブロック状の治具14A、14B、15A、15B、16A及び16Bを有している。同図においては、線材6の両端の剥離部分はドットで表示されている。これらの治具14A、14B、15A、15B、16A及び16Bの回転移動又は直線移動が、設定された制御データに基づいてそれぞれ数値制御(NC制御)される。なお、本明細書において「回転移動」とは、回転中心(旋回中心)に関して回転(旋回)することを意味する。
 本実施形態において、線材6は、この1次曲げ部4によって、同一平面内で図3(a)に示すU字形状に曲げ加工されることにより、コイルセグメントの1次曲げ成形体17Aとなる。1次曲げ成形体17Aは、頂角の角度(以下、「中央角度」という)が角度θ1の山形形状をなす渡り部17aと、この渡り部17aとの角度(以下、「肩部角度」という)が角度θ2となるように連結され、互いに略平行に延びる1対のスロット挿入部17b及び17cとからなる。これら渡り部17a並びに1対のスロット挿入部17b及び17cは、同一平面上に位置するように成形されている。なお、この1次曲げ成形体17Aは渡り部17aの各片の長さがL1と小さい、コイル幅小の例である。
 本実施形態における治具14A、14B、15A、15B、16A及び16Bは、図2に示すように、1次曲げ部4の折り曲げ中心線C(曲げ中心線)に対して、換言すれば、線材6の軸方向の中央位置を基準として、左右側に等数(3個ずつ)、線対称に配置されている。折り曲げ中心線Cに対して最も内側に配置された1対の治具14A及び14Bは、回転移動することにより1次曲げ成形体17Aの渡り部17aの中央角度が角度θ1となる折り曲げを行うために設けられている。実際には、これら1対の治具14A及び14Bと共に1対の治具15A及び15B並びに1対の治具16A及び16Bも回転移動する。一方、折り曲げ中心線Cに対して最も外側に配置された1対の治具16A及び16B並びにその隣の1対の治具15A及び15Bは、回転移動することにより肩部角度が角度θ2となる折り曲げを行うために設けられている。治具14A及び治具15A間の距離m及び治具14B及び治具15B間の距離mによって、図3(a)に示す1次曲げ成形体17Aの渡り部17aの各片の長さL1のコイル幅が規定される。
 図2に示すように、治具14A、14B、15A、15B、16A及び16Bは、上面が開口し横方向に貫通する凹溝14A-1、14B-1、15A-1、15B-1、16A-1及び16B-1をそれぞれ有している。各凹溝の幅w1は平角線である線材6の幅(エッジワイズ方向の幅)w2よりも僅かに大きくなるように設定されており、これにより線材6はエッジワイズ方向の曲げ動作中、治具14A、14B、15A、15B、16A及び16Bの凹溝によって確実に支持されるように構成されている。各治具による線材6の支持構成は特定の形状に限定されないが、ここでは凹溝に収容して曲げ方向の動きを拘束する形態を採っている。各凹溝の深さd1は線材6の厚み(フラットワイズ方向の幅)d2以上となるように設定されている。なお、各溝の幅w1は1次曲げ成形体17Aの寸法精度を高めるために線材6を密接に収容して支持できる幅となっている。この幅w1は可変ではなく、コイルの種類に応じて線材6の幅w2が変更となった場合には、治具14A、14B、15A、15B、16A及び16Bの交換が必要となる。このため、これら治具14A、14B、15A、15B、16A及び16Bは、後述する支持部材に対して固定ネジ等により着脱可能に設けられている。
 1次曲げ部4の曲げ加工が開始される前の初期状態においては、図2に示すように、これら治具14A、14B、15A、15B、16A及び16Bの凹溝14A-1、14B-1、15A-1、15B-1、16A-1及び16B-1が互いに一直線上に並ぶように設定されている。即ち、治具14A、14B、15A、15B、16A及び16Bの初期位置である。
 図2に示すように、治具14A、14B、15A、15B、16A及び16Bの凹溝14A-1、14B-1、15A-1、15B-1、16A-1及び16B-1内における、線材6のエッジワイズ側の面と接するエッジ部分14A-2、14B-2、15A-2、15B-2、16A-2及び16B-2は、曲げ加工動作中にその角の形状で線材6の絶縁層を傷付けないように、湾曲形状に形成されている。また、治具14A、14B、15A、15B、16A及び16Bの外面には、曲げ加工動作中の変位による他の治具との干渉を避けるために、面取り部14A-3、14B-3、15A-3、15B-3、16A-3及び16B-3がそれぞれ形成されている。従来のように目的の曲げ形状に対応した加工面を有する1対の成形型でプレスする方式では、線材の両面、場合によっては周面全体がプレス圧を受けるため、その線材の絶縁層が傷付き易かった。曲げ加工精度を上げようとすると成形面のエッジが先鋭化するが、ここに応力が集中して絶縁層が傷付き易かった。また、成形型でプレスする方式では、実際にプレスしてみないと絶縁層が傷付くかどうかわからず、不具合があった場合に成形型作製のやり直しが必要となり高コスト化を招来していた。本実施形態では上記のように線材6を治具の凹溝に収容しただけの、開放系内での曲げ加工であるため、線材の絶縁層の傷付きは生じない。
 なお、上述の説明では、治具14A、14B、15A、15B、16A及び16Bは、上面が開口し横方向に貫通する凹溝14A-1、14B-1、15A-1、15B-1、16A-1及び16B-1をそれぞれ有し、これら凹溝内に線材6が上方から挿入される構成としたが、凹溝内に線材6が横方向から挿入される構成としても良い。また、曲げ加工動作中に上面開口型の凹溝によって線材6を拘束して支持する構成としたが、本発明はこれに限定されない。例えば、治具14A、14B、15A、15B、16A及び16Bを、上下重ね合わせ構造とすることにより線材6が挿通される挿通穴を有する構成とし、線材6を横方向から挿通して曲げ加工を行い、1次曲げ加工終了後に上側又は下側の治具を移動させて開放する構成としても良い。
 1次曲げ部4が線材6の曲げ加工を行う場合、まず、所定長さに切断された線材6が、治具14A、14B、15A、15B、16A及び16Bの直線状に配列された凹溝内に上方から挿入・載置され、橋渡し状態で支持される。次いで、1次曲げ部4による曲げ加工動作が開始される。
 図4は1次曲げ部4によるこの曲げ加工動作を概略的に示している。同図(a)は、線材6が治具14A、14B、15A、15B、16A及び16Bの互いに直線状に並んだ凹溝内に橋渡し状態にセットされ支持されている状態を示している。この状態から治具14A、14B、15A、15B、16A及び16Bが回転移動することにより、同図(b)に示すように線材6の1回目の折り曲げ加工が行われ、次いで、2回目の折り曲げ加工が行われて最終的に同図(c)に示すようにU字形状の1次曲げ成形体17Aが形成される。
 上述したように、本実施形態では、6個の治具14A、14B、15A、15B、16A及び16Bが折り曲げ中心線Cについて線対称に配置され、線対称位置に配置された1対の治具が制御データに基づいて線対称に回転移動又は直線移動する。従って、本実施形態の1次曲げ部4で形成される1次曲げ成形体17Aは、図3(a)に示すように線対称のU字形状となる。制御データを変更して治具14A、14B、15A、15B、16A及び16Bの回転移動量又は直線移動量を変えれば、種々の形状の1次曲げ成形体を形成することができる。例えば、折り曲げ加工前の初期状態時又は折り曲げ加工時に、1対の治具15A及び15Bと1対の治具16A及び16Bとを折り曲げ中心線Cから離れる方向に直線移動し、前述した治具14A及び治具15A間の距離m及び治具14B及び治具15B間の距離mを増大させた状態で2回目の折り曲げ加工を行えば、図3(b)に示すように、渡り部17a′の各片の長さがL2であり、図3(a)の渡り部17aの各片の長さL1より大きい(L2>L1)、従ってコイル幅の大きい線対称の1次曲げ成形体17Bを作製することができる。このように、治具14A、14B、15A、15B、16A及び16Bを移動させる量(制御データ)を変更するだけで、種々の形状のコイルセグメントに対応した1次曲げ成形体を、成形用の部品(治具)を交換することなく、直ちに得ることができる。前述したように、回転電機の1つのコイルには複数種類の形状コイルセグメントが存在するが、本実施形態では複数種類の制御データを入力しておけば、読み出される制御データに基づいて各治具が自動的に移動し、複数種類のコイルセグメント(1次曲げ成形体)が連続的に作製される。このため、ストック管理を要することなく1つのコイル形成に必要な複数種類のコイルセグメント(1次曲げ成形体)を一括で作製することができる。
 このように本実施形態においては、成形すべき曲げ形状に応じた形状を持たない単なるブロック状の複数の治具14A、14B、15A、15B、16A及び16Bを、1つの平面上(水平面上)で制御データに基づくNC制御によって回転移動又は直線移動させるだけでコイルセグメントの1次曲げ成形体を形成するものである。従って、本実施形態によれば、従来技術のように成形すべき曲げ形状に応じた形状を有する成形型を用いる必要がなく、NC制御される複数の治具を用いているので、高額な型製作費用が不要となり、コイルセグメントの製造コストが安価となる。また、種々の形状のコイルセグメントを成形する場合に、成形型交換等の作業が不要となるため、型交換に起因するダウンタイムが生じず、作業時間の短縮化を図ることができると共に、作業性が極めて容易となる。
 次に、上述した治具14A、14B、15A、15B、16A及び16Bの支持構造及び駆動構成について詳細に説明する。
 図5及び図6に示すように、1次曲げ部4は、前方(図6にて下方)であって折り曲げ中心線Cを中心とする中央部に切り欠き部を有する固定ベース18と、この固定ベース18上の前方部分に折り曲げ中心線Cについて線対称に配置固定された1対の円弧状のガイドレール19A及び19Bと、これらガイドレール19A及び19Bにそれぞれ係合しておりこれらガイドレール19A及び19Bに沿ってそれぞれ摺動可能な可動ベース20A及び20Bと、可動ベース20A及び20Bをガイドレール19A及び19Bに沿ってそれぞれ移動させる駆動機構21等を備えている。
 ガイドレール19A及び19Bは折り曲げ中心線C上の1点が円弧の中心となるように構成されている。
 駆動機構21は、折り曲げ中心線Cに沿ったDX方向の回転軸を有するボールネジ部22と、このボールネジ部22に螺合しておりDX方向に摺動可能なナット部23と、ボールネジ部22を回転駆動するサーボモータ24と、ナット部23に固定されており、ボールネジ部22の回転に伴ってDX方向に移動するスライダ25と、スライダ25と可動ベース20A及び20Bとの間に回転自在なジョイントを介してそれぞれ連結されたアーム26A及び26Bとを備えている。
 可動ベース20Aには、その回転軸がDX方向と直交するDU方向に沿って配置され、治具15A及び16Aを直線移動させて治具15A及び治具14A間の距離mを変更可能な駆動機構27Aと、その回転軸が駆動機構27Aと平行なDY方向に配置され、治具16Aを回転移動させる駆動機構28Aとが設けられている。可動ベース20Bには、駆動機構27Aに対向すると共にその回転軸がDX方向と直交するDV方向に沿って配置され、治具15B及び16Bを直線移動させて治具15B及び治具14B間の距離mを変更可能な駆動機構27Bと、駆動機構28Aに対向して配置されると共にその回転軸が駆動機構27Bと平行なDZ方向に配置され、治具16Bを回転移動させる駆動機構28Bとが設けられている。
 駆動機構27Aは、DU方向の回転軸を有するボールネジ部29Aと、このボールネジ部29Aに螺合しておりDU方向に摺動可能なナット部30Aと、ボールネジ部29Aを回転駆動するサーボモータ31Aと、ナット部30Aに固定されており、ボールネジ部29Aの回転に伴ってDU方向に移動するスライドプレート32Aとを備えている。このスライドプレート32Aには治具15Aが固定されていると共に、カムフォロア33Aを有する旋回プレート34Aが旋回可能に軸支されており、旋回プレート34Aには治具16Aが固定されている。駆動機構28Aは、DY方向の回転軸を有するボールネジ部35Aと、このボールネジ部35Aに螺合しておりDY方向に摺動可能なナット部36Aと、ボールネジ部35Aを回転駆動するサーボモータ37Aと、ナット部36Aに固定されており、ボールネジ部35Aの回転に伴ってDY方向に移動する旋回駆動プレート38Aとを備えている。旋回駆動プレート38Aはカムフォロア33Aに係合する係合凹部39Aを有している。
 駆動機構27Bは、DX方向と直交するDV方向の回転軸を有するボールネジ部29Bと、このボールネジ部29Bに螺合しておりDV方向に摺動可能なナット部30Bと、ボールネジ部29Bを回転駆動するサーボモータ31Bと、ナット部30Bに固定されており、ボールネジ部29Bの回転に伴ってDV方向に移動するスライドプレート32Bとを備えている。このスライドプレート32Bには治具15Bが固定されていると共に、カムフォロア33Bを有する旋回プレート34Bが旋回可能に軸支されており、旋回プレート34Bには治具16Bが固定されている。駆動機構28Bは、DZ方向の回転軸を有するボールネジ部35Bと、このボールネジ部35Bに螺合しておりDZ方向に摺動可能なナット部36Bと、ボールネジ部35Bを回転駆動するサーボモータ37Bと、ナット部36Bに固定されており、ボールネジ部35Bの回転に伴ってDZ方向に移動する旋回駆動プレート38Bとを備えている。旋回駆動プレート38Bはカムフォロア33Bに係合する係合凹部39Bを有している。
 上述したように、治具14A、15A及び16A並びに駆動機構27A及び28Aは可動ベース20A上に設けられており、この可動ベース20Aの回転移動と共に回転移動する。また、治具14B、15B及び16B並びに駆動機構27B及び28Bは可動ベース20B上に設けられており、この可動ベース20Bの回転移動と共に回転移動する。
 図7に示すように、可動ベース20Aの下面にはガイドレール19Aに嵌合する2つの図示しない嵌合部材がこのガイドレール19Aの円弧に沿った互いに離隔した位置にガイドレール19Aに対して摺動可能に取り付けられている。可動ベース20Bの下面にも同様にガイドレール19Bに嵌合する2つの図示しない嵌合部材がこのガイドレール19Bの円弧に沿った互いに離隔した位置にガイドレール19Bに対して摺動可能に取り付けられている。
 ガイドレール19A及び19Bの円弧の中心、即ち可動ベース20A及び20Bの回動移動の中心は、図7に示すように、折り曲げ中心線C上の1点である旋回中心41となる。なお、本実施形態においては、可動ベース20A及び20Bの回動移動動作を、固定ベース18上に設けられたレール形状のガイドレール19A及び19Bに可動ベース20A及び20Bの嵌合部材40A及び40Bがそれぞれ嵌合して摺動する構成としたが、固定ベース18上に凹溝を有するガイドレールを設け、可動ベース20A及び20B側に設けた凸部がこの凹溝に係合する構成としても良い。
 可動ベース20A及び20Bの旋回中心41は、図7に示すように、折り曲げ中心線C上であって、線材6の中心線43から曲げる内側(図7にて下側)へ若干の距離t(例えばt=0.5mm)だけずれた位置に設定されている。その理由は、線材6をエッジワイズ方向に曲げると、曲げの内側では圧縮作用によって厚みの膨張が生じ、曲げの外側では引っ張り作用によって厚みの縮小が生じる。この厚みの変化は曲げの内側では外側より大きいため、曲げによる線材6の伸縮をできる限り少なくするため、上記のように可動ベース20A及び20Bの旋回中心41を曲げる内側にずらしている。
 次に、本実施形態の1次曲げ部4の曲げ加工動作について、図6~図9に基づいて説明する。
 1次曲げ部4が初期状態にある場合は、図6及び図7に示すように、治具14A、14B、15A、15B、16A及び16Bの凹溝が互いに直線状に並んだ状態にあり、直線状の線材6がこれら治具の凹溝内に挿入・載置され、橋渡し状態で支持されている。
 この状態から駆動機構21が動作すると、スライダ25がDX+方向へ前進し、これによってアーム26A及び26Bをそれぞれ介して可動ベース20A及び20Bが旋回中心41の回りを回転移動する。治具14A、15A及び16A並びに治具14B、15B及び16Bが可動ベース20A及び20Bにそれぞれ固定されているので、これら治具14A、15A及び16A並びに治具14B、15B及び16Bは可動ベース20Aが20Bと共に回転移動し、これによって線材6が折り曲げ中心線Cの部分で折り曲げられ、渡り部17aの中央角度が制御データに基づく設定角度としての角度θ1となるまで折り曲げ加工される。この旋回による1回目の折り曲げ加工後の状態が図8に示されている。
 中央角度が角度θ1となると、駆動機構28A及び28Bが動作し、旋回駆動プレート38AがDY+方向(図6参照)に移動し、旋回駆動プレート38BがDZ+方向に移動する。これにより、図10により詳細に示されているように、係合凹部39A及び39Bがカムフォロア33A及び33Bをそれぞれ押圧して旋回プレート34A及び34Bがその旋回中心44(図10参照)を中心にして旋回する。旋回プレート34A及び34Bのこの旋回により治具16A及び16Bが回転移動し、線材6の肩部角度が制御データに基づく設定角度としての角度θ2となるまで折り曲げ加工されU字形状の曲げ加工が完了する。2回目の折り曲げ加工後の状態が図9に示されている。
 旋回プレート34A及び34Bの旋回中心44、即ち治具16A及び16Bの回転移動(旋回)の中心は、図10に示すように、線材6の中心線43から曲げる内側へ若干の距離t(例えばt=0.5mm)だけずれた位置に設定されている。その理由は、線材6をエッジワイズ方向に曲げると、曲げの内側では圧縮作用によって厚みの膨張が生じ、曲げの外側では引っ張り作用によって厚みの縮小が生じる。この厚みの変化は曲げの内側では外側より大きいため、曲げによる線材6の伸縮をできる限り少なくするため、上記のように旋回プレート34A及び34Bの旋回中心44、即ち治具16A及び16Bの回転移動(旋回)の中心を曲げる内側にずらしている。
 前述したように、治具14A及び治具15A間の距離m及び治具14B及び治具15B間の距離mを変化させることによって、1次曲げ成形体17Aの渡り部17aの各片の長さを変化させることができる。このように渡り部17aの各片の長さを変化させることによって、U字形状の1次曲げ成形体17Aの幅(コイル幅)を変化させ、要求にあったコイルセグメントを作製することができる。即ち、コイル幅小の1次曲げ成形体又はコイル幅大の1次曲げ成形体を作成することができる。この距離mの設定は、駆動機構27A及び27Bによって行われる。即ち、駆動機構27A及び27Bが動作すると、治具15A及び治具16Aが取り付けられているスライドプレート32AがDU方向に直線移動すると共に治具15B及び治具16Bが取り付けられているスライドプレート32BがDV方向に直線移動することにより、距離mを変化させることができる。なお、上記のようにスライドプレート32A及び32Bにはそれぞれカムフォロア33A及び33Bが固定され、これらのカムフォロア33A及び33Bは旋回駆動プレート38A及び38Bの係合凹部39A及び39Bに係合しているので、旋回駆動プレート38A及び38Bがスライドプレート32A及び32Bと同期移動するように駆動機構28A及び28Bが動作する。以降ではこれらの同期移動を適宜スライドプレート32A及び32Bのみの移動として略す。
 距離mの設定は曲げ加工が開始される前に設定しても良いが、曲げ加工動作中であっても治具16A及び16B自体が旋回するまでは可能である。なお、スライドプレート32A及び32Bは、曲げ加工開始前の初期状態においてはホームポジションに位置しており、与えられた制御データに基づいてこのホームポジションから移動するように構成されている。
 図11には、本実施形態における製造装置の電気的構成が示されており、図12にはこの製造装置全体の制御工程が示されている。
 図11に示すように、タッチパネル等の入力及びディスプレイ手段を含むヒューマンマシンインターフェース(HMI)45によって、線材の成形加工のための制御データの入力、メモリに記憶されている制御データの読み出し指示、メモリに記憶されている制御データの修正指示、NC制御の開始指示、又はNC制御の終了指示等が入力される。HMI45はイーサネット(登録商標)を介してプログラマブルロジックコントローラ(PLC)46に接続され、PLC46にはCC-Link等の高速ネットワークで第1のNCコントローラ47及び第2のNCコントローラ48が接続されている。PLC46は、種々の形状のコイルセグメントを成形するための制御データと制御プログラムとを少なくとも記憶するメモリとセントラルプロセッシングユニット(CPU)と入出力インタフェースとを備えており、CPUがそのプログラムに従って指示された制御データを第1のNCコントローラ47及び第2のNCコントローラ48へ転送する機能を有している。第1のNCコントローラ47は、1次曲げ部4における線材の長さ、コイルセグメントの中央角度θ1、ピッチ、及びコイルセグメントの肩部角度θ2等の制御データ、及び多軸制御実行についてのデータ展開を行い、さらに、2次曲げ部5における折り曲げ・プレス等の制御データ、及び多軸制御実行についてのデータ展開を行う。第2のNCコントローラ48は、コイル組立部2におけるコイル配置等の制御データについてデータ展開を行う。PLC46と第1のNCコントローラ47及び第2のNCコントローラ48とにより、線材供給部3、1次曲げ部4、2次曲げ部5及びコイル組立部2を制御する制御部49が構成されている。
 第1のNCコントローラ47は、サーボリンク構成用の光通信ケーブル50を介して、線材供給部3、1次曲げ部4及び2次曲げ部5に接続されている。これら線材供給部3、1次曲げ部4及び2次曲げ部5においては、光通信ケーブル50に複数の増幅及び駆動回路が接続されており、これら複数の増幅及び駆動回路に複数のサーボモータがそれぞれ接続されている。複数の増幅及び駆動回路には、複数のサーボモータに機械的に連結されたエンコーダからの信号線がそれぞれ接続されている。
 本実施形態において、1次曲げ部4は前述したように、5軸制御構成となっており、光通信ケーブル50には、DX方向駆動用のサーボモータ24の増幅及び駆動回路、DY方向駆動用のサーボモータ37Aの増幅及び駆動回路、DZ方向駆動用のサーボモータ37Bの増幅及び駆動回路、DU方向駆動用のサーボモータ31Aの増幅及び駆動回路、並びにDV方向駆動用のサーボモータ31Bの増幅及び駆動回路が接続されている。
 また、2次曲げ部5は、6軸制御構成となっており、光通信ケーブル50には、UX方向駆動用のサーボモータ78の増幅及び駆動回路、UY方向駆動用のサーボモータ68の増幅及び駆動回路、UZ方向駆動用のサーボモータ82の増幅及び駆動回路、UU方向駆動用のサーボモータ72の増幅及び駆動回路、UV方向駆動用のサーボモータ89の増幅及び駆動回路、並びにUW方向駆動用のサーボモータ102の増幅及び駆動回路が接続されている。
 第2のNCコントローラ48は、サーボリンク構成用の光通信ケーブル51を介して、コイル組立部2に接続されている。コイル組立部2においては、光通信ケーブル51に複数の増幅及び駆動回路が接続されており、これら複数の増幅及び駆動回路に複数のサーボモータがそれぞれ接続されている。複数の増幅及び駆動回路には、複数のサーボモータに機械的に連結されたエンコーダからの信号線がそれぞれ接続されている。
 PLC46、第1のNCコントローラ47及び第2のNCコントローラ48は、図12に示すステップに基づいて制御装置全体の動作を制御する。
 まず、PLC46は、製造すべきコイルの複数のコイルセグメントのうち、次に成形及び組立を行うコイルセグメント(以下、被処理コイルセグメントと称する)に関する1次曲げ動作用の制御データ、即ち、線材の長さ、中央角度θ1、渡り部17aの各辺の長さ、肩部角度θ2等を規定する一連の制御データをメモリから読み出し、第1のNCコントローラ47へ出力すると共に、被処理コイルセグメントに関する2次曲げ動作用の制御データ、即ち湾曲形状の成形についての各押圧治具の移動量、段差形成(Z曲げ)についての各押圧治具の移動量等を規定する一連の制御データをメモリから読み出し、第1のNCコントローラ47へ出力する。さらに、被処理コイルセグメントに関するコイル組立動作用の制御データ、即ちコイル組立部2における後述するセグメント配置ドラム105へのコイルセグメントの配置数及び層数、インデックス回転量、離脱防止手段106のアーム139A及び139Bの回動量、ブレード108の突出量、及び押圧リング135の移動量等に関する一連の制御データをメモリから読み出し、第2のNCコントローラ48へ出力する(ステップS1)。
 第1のNCコントローラ47は、これにより、受信した制御データを展開し、指定されたアドレスの駆動機構のNC制御を実行する。まず、線材供給部3における剥離部10及び切断部11により、線材の両端部の絶縁層の剥離及び所定長さへの切断のNC制御を行う(ステップS2)。即ち、線材(被処理コイルセグメント用の線材)6の長さに関する制御データを展開して剥離部10の駆動機構に出力し対象となるサーボモータを駆動して線材の両端部に相当する部分の絶縁層の剥離を実行し、線材(被処理コイルセグメント用の線材)6の長さに関する制御データを展開して切断部11の駆動機構へ出力し対象となるサーボモータを駆動して線材を所定長さに切断する。
 次いで、第1のNCコントローラ47は、図示しない搬送機構により、切断された線材(被処理コイルセグメント用の線材)6を搬送するNC制御を行う(ステップS3)。即ち、搬送のための制御データを展開して搬送機構の駆動機構に出力し対象となるサーボモータを駆動して所定長さに切断された直線状の線材(被処理コイルセグメント用の線材)6を、1次曲げ部4に搬送する。具体的には、線材(被処理コイルセグメント用の線材)6を、1次曲げ部4の初期状態に設定されている治具14A、14B、15A、15B、16A及び16Bまで搬送し、それらの凹溝14A-1、14B-1、15A-1、15B-1、16A-1及び16B-1内に挿入する。
 次いで、第1のNCコントローラ47は、この被処理コイルセグメントに関して、後述する1次曲げ処理を行う(ステップS4)。
 1次曲げ終了後、この被処理コイルセグメントに関する1次曲げ成形体を2次曲げ部5へ搬送し(ステップS5)、この被処理コイルセグメントに関して、後述する2次曲げ処理を行う(ステップS6)。
 2次曲げ終了後、この被処理コイルセグメントに関する2次曲げ成形体をコイル組立部2へ搬送する(ステップS7)。
 次いで、第2のNCコントローラ48は、この被処理コイルセグメントに関する2次曲げ成形体に関して、後述するコイル組立処理を行う(ステップS8)。このように、製造すべきコイルに応じて設定された制御情報に基づいて、各被処理コイルセグメント単位でその被処理コイルセグメントの成形からコイル組立まで一貫して行っているため、作業効率が大幅に向上する。また、成形したコイルセグメントを保管すること、保管したコイルセグメントから必要とするものを選択すること等が不要となるため、コイルセグメントの管理も非常に容易となる。
 次に、上述したステップS4の1次曲げ処理について、図13に基づいて詳細に説明する。
 まず、第1のNCコントローラ47は、駆動機構21により線材6の中央角度の軽度の曲げ加工を開始するNC制御を行う(ステップS41)。即ち、中央角度の軽度の曲げ加工を行うための制御データを展開して駆動機構21に出力し対象となるサーボモータを駆動して線材6の中央角度の折り曲げ動作を開始させる。具体的には、制御データによって駆動機構21のサーボモータが作動し、可動ベース20A及び20Bが旋回してその上の治具14A、14B、15A、15B、16A及び16Bが軽度(例えば角度θ1の50%程度)に回転移動(旋回)し、線材6の中央角度の軽度の折り曲げが行われる。
 第1のNCコントローラ47は、駆動機構21の動作開始から僅かに遅れて(例えばスライダ25が30mm移動した時点で)、駆動機構27A及び27Bによりコイル幅調整のNC制御を行う(ステップS42)。即ち、コイル幅調整のための制御データを展開して駆動機構27A及び27Bへ出力し対象となるサーボモータを駆動してスライドプレート32A及び32Bを直線移動させる。これにより、スライドプレート32A及び32Bがホームポジションから与えられた制御データに応じた距離mを得るための移動量分移動して渡り部の各辺の長さ(コイル幅)の調整がなされる。
 次いで、第1のNCコントローラ47は、駆動機構21により線材6の中央角度が設定角度θ1まで折り曲げ加工するNC制御を行う(ステップS43)。即ち、中央角度を設定角度θ1とする曲げ加工を行うための制御データを展開して駆動機構21に出力し対象となるサーボモータを駆動して線材6の中央角度が設定角度θ1となるまで折り曲げ動作を行う。具体的には、制御データによって駆動機構21のサーボモータが作動し、可動ベース20A及び20Bが旋回してその上の治具14A、14B、15A、15B、16A及び16Bの回転移動(旋回)が行われ、線材6の中央角度が設定角度θ1まで折り曲げられる。
 中央角度が角度θ1まで曲げ終わったタイミングで、第1のNCコントローラ47は、駆動機構28A及び28Bにより線材6の肩部角度を折り曲げ加工するNC制御を行う(ステップS44)。即ち、肩部角度の曲げ加工を行うための制御データを展開して駆動機構28A及び28Bに出力し対象となるサーボモータを駆動して線材6の肩部角度の折り曲げ動作を行う。具体的には、制御データによって駆動機構28A及び28Bのサーボモータが作動し、旋回駆動プレート38A及び38BがDY+方向及びDZ+方向にそれぞれ所定距離移動すると共に旋回プレート34A及び34Bがその旋回中心44を中心にして旋回し、治具16A及び16Bが回転移動(旋回)して肩部角度が角度θ2まで折り曲げられる。
 中央角度θ1及び/又は肩部角度θ2は、スプリングバックを考慮して強めに曲げる観点から設定されている。この種の曲げ加工では、曲げた後に曲げ力を解除すると材質上の弾性で若干元に戻る、いわゆるスプリングバック現象が生じる。このスプリングバックによる戻り量は線材6の材質、フラットワイズ方向の幅d2、エッジワイズ方向の幅w2等のパラメータによって異なる。成形型でプレスする従来方式では、あらかじめスプリングバックの影響を考慮して成形面を設計しても、事後的にスプリングバックの影響が判明した場合には型を作製し直さなければならず、成形型作成費用が高騰してコイルセグメントの成形コスト、ひいては回転電機の製造コストに派生していた。成形型作成のやり直しが複数回となる場合には大幅なコスト上昇を招来していた。本実施形態では、スプリングバックの影響が判明した場合には制御データを補正するだけでやり直すことができるため、成形用部品の作り直しは一切発生せず、制御データの補正だけで迅速に対応できる。スプリングバックの影響を抑制できるデータを上記のパラメータであらかじめ実験により取得して制御テーブルを作成し、入力された線材6の種類に応じてスプリングバックを抑制できる成形条件が自動的に設定されるようにしてもよい。
 肩部角度が角度θ2まで折り曲げ終わった時点で、第1のNCコントローラ47は、移送機構12(図1参照)により、1次曲げが終了した線材である1次曲げ成形体17Aを取り外すNC制御を行う(ステップS45)。即ち、取り外しのための制御データを展開して移送機構12の駆動機構に出力し対象となるサーボモータを駆動して1次曲げ成形体17Aをエアシリンダによる1対のチャック部で把持して、治具14A、14B、15A、15B、16A及び16Bから取り外し(凹溝からの引き上げ)、2次曲げ部5へ移送する(図12のステップS5)。その後、第1のNCコントローラ47は、1次曲げ部4の駆動機構をリセットし、次に処理すべきコイルセグメントの1次曲げに備える。
 第1のNCコントローラ47による2次曲げ部5のNC制御及び第2のNCコントローラ48によるコイル組立部2のNC制御については後述する。
 以下、2次曲げ部5の構成及び曲げ動作について詳細に説明する。
 2次曲げ部5は、図14に示すように、下面に凹状に湾曲した押圧面53A-1を有するブロック状の押圧治具53Aと、上面に押圧面53A-1に対応する凸状に湾曲した押圧面53B-1を有するブロック状の押圧治具53Bと、下面に凹状に湾曲した押圧面54A-1を有するブロック状の押圧治具54Aと、上面に押圧面54A-1に対応する凸状に湾曲した押圧面54B-1を有するブロック状の押圧治具54Bとを有している。1対の押圧治具53A及び53Bは、1次曲げ成形体17が保持されている平面(本実施形態では水平平面)と交差する交差方向(例えば直交する直交方向)で互いに対向するように配置されており、この交差方向に沿って互いに近接移動するように構成されている。1対の押圧治具54A及び54Bも、1次曲げ成形体17が保持されている平面(本実施形態では水平平面)と交差する交差方向(例えば直交する直交方向)で互いに対向するように配置されており、この交差方向に沿って互いに近接移動するように構成されている。1次曲げ成形体17が保持されている平面とは、1次曲げ成形体17が1次曲げ部3で曲げ加工がなされた平面である。即ち、1次曲げ成形体17は1次曲げ部3で曲げ加工された姿勢のまま移送部材12で2次曲げ部5へ移送され、その姿勢で2次曲げ部5の曲げ加工がなされる。
 図14において左上に位置している押圧治具53Aは、後述する支持部材に固定するためのボルト挿通孔53A-2及び53A-3を有しており、同図において右上に位置している押圧治具54Aも、同様に、ボルト挿通孔54A-2及び54A-3を有している。ボルト挿通孔53A-2及び53A-3は、押圧治具54Aに対する押圧治具53Aの水平方向の位置調整、換言すれば、押圧治具53A及び54Aを合わせて形成される1つの凹状に湾曲した押圧面の組み付け時の誤差を吸収するためにそれぞれ長穴形状となっている。
 図14において左下に位置している押圧治具53Bは、後述する支持部材に固定するためのボルト挿通孔53B-2及び53B-3を有しており、同図において右下に位置している押圧治具54Bも、同様に、ボルト挿通孔54B-2及び54B-3を有している。ボルト挿通孔53B-2及び53B-3は、押圧治具54Bに対する押圧治具53Bの水平方向の位置調整、換言すれば、押圧治具53B及び54Bを合わせて形成される1つの凸状に湾曲した押圧面の組み付け時の誤差を吸収するためにそれぞれ長穴形状となっている。
 前述したように、1次曲げ部4でU字形状に曲げ加工された1次曲げ成形体17は、山形形状をなす渡り部17aと、この渡り部17aによって連結され、互いに略平行に延びる1対のスロット挿入部17b及び17cとから構成されている。2次曲げ部5においては、まず、この1次曲げ成形体17の渡り部17aが、この1次曲げ成形体17の平面(本実施形態では水平平面)と交差する交差方向(例えば直交する直交方向)に湾曲状に曲げ加工される。具体的には、押圧治具53A及び54Aが成形すべきコイルセグメントの制御データに基づいて位置付けられることにより、即ち押圧治具53A及び54Aを互いに近接して隣り合う状態に移動させることにより、それらの押圧面53A-1及び54A-1が1つの凹状の湾曲面を構成した状態となり、また、押圧治具53B及び54Bが成形すべきコイルセグメントの制御データに基づいて位置付けられることにより、押圧治具53B及び54Bを互いに近接して隣り合う状態に移動させることにより、それらの押圧面53B-1及び54B-1が1つの凸状湾曲面を構成した状態となる。
 この状態で押圧治具53A及び54Aと押圧治具53B及び54Bとのいずれか一方又は双方が、1次曲げ成形体17の平面(水平平面)と直交する平面(垂直平面)内で上下方向に移動することにより、1次曲げ成形体17の渡り部17aが押圧されて湾曲形状に成形される。この押圧時に渡り部17aの表面に接触する押圧治具53A、53B、54A及び54Bの角部53A-4、53B-4、54A-4及び54B-4は、それぞれ、渡り部17aの絶縁層を傷付けないように面取りされている。
 押圧治具53A及び54Aを一体的なブロックとして構成するのではなく、互いに分割したブロックとして構成しているため、渡り部17aを湾曲形状に成形する曲げ加工工程と、渡り部17aの頂部にクランク形状の段差部を形成する曲げ加工工程とを、この2次曲げ部5で連続的に行うことができる。即ち、1次曲げ成形体17の平面(水平平面)と直交する平面(垂直平面)内で湾曲形状の曲げ加工とクランク形状の段差部の形成との2種類の曲げ加工工程を成形型(押圧治具)の交換をせずに行うことができる。押圧治具53B及び54Bについても同様である。また、これら押圧治具53A、53B、54A及び54Bの移動量をそれぞれ変えることにより、2種類の曲げ加工における制御条件を変化させることができ、これにより、種々のコイルセグメントの成形に対応することができる。
 図15は2次曲げ部5の各押圧治具の移動方向を示している。同図に示すように、押圧治具54Aの中心軸側(内側)の上下方向の厚さは押圧治具53Aの中心軸側(内側)の上下方向の厚さよりも大きくなるように設定されており、押圧治具53Bの中心軸側(内側)の上下方向の厚さは治具54Bの中心軸側(内側)の上下方向の厚さよりも大きくなるように設定されている。これら押圧治具53A、54A、53B及び54Bは、後述する駆動機構により、垂直平面内で上下方向(UY方向、UX方向、UU方向、及びUZ方向)に別個に移動可能となっている。押圧治具53A、54A、53B及び54Bそれぞれの移動方向及び移動速度を揃えることにより、押圧治具53A及び53Bは1つの押圧治具ユニット55として上下方向(UV方向)に移動可能であり、同様に、押圧治具54A及び54Bは1つの押圧治具ユニット56として上下方向(UW方向)に移動可能である。押圧治具ユニット55は水平方向(H方向)へも移動可能であり、従って上下方向への移動と水平方向への移動とを同時に行うことにより斜め方向(K方向)への移動が可能となる。押圧治具ユニット56は、上下方向の移動の他に、垂直平面内でR方向に回動(旋回)可能となっている。押圧治具ユニット56のこの回転により、1次曲げ成形体17の渡り部17aに湾曲形状(湾曲面)を成形する際のその湾曲面の曲率を可変調整できると共に、スロット挿入部17b及び17c間の幅が異なっている1次曲げ成形体17の渡り部17aに関しても湾曲面を成形することが可能となる。即ち、種々の形状のコイルセグメントに対する2次曲げ加工が可能となる。押圧治具53A、53B、54A及び54Bそれぞれの上下方向の移動、押圧治具ユニット55の水平方向の移動及び斜め方向の移動、並びに押圧治具ユニット56の旋回移動は、設定された移動量のデータ(制御データ)に基づいてそれぞれ数値制御(NC制御)される。なお、図15、図16及び図17においては、各押圧治具53A、53B、54A及び54Bの支持部材に対する固定部分は、図示を省略している。
 次に、図16を参照して、2次曲げ部5における曲げ加工動作の概要を説明する。なお、同図においては、1次曲げ成形体17はその加工対象である渡り部17aのみがハッチングで表わされている。
 図16(a)は押圧治具53A、53B、54A及び54Bが初期位置(ホームポジション)にある状態を示している。即ち、同図は、1次曲げ部4で曲げ加工されて得られた1次曲げ成形体17が移送部材12によって移送され、1次曲げ成形体17の1対のスロット挿入部17b、17cの自由端部が保持部材13によって保持され、その後、移送部材12が退避して2次曲げ部5における曲げ加工を開始可能な状態を示している。このホームポジションにおいては、互いに近接して隣り合う押圧治具53A及び54Aはそれらの上端面が同一面となるように位置しており、押圧治具53B及び54Bはそれらの下端面が同一面となるように位置している。この状態では、押圧治具53A及び54Aによる押圧面53A-1及び54A-1は両者間に段差を有しており、押圧治具53B及び54Bによる押圧面53B-1及び54B-1は両者間に段差を有している。
 図16(b)に示すように、ホームポジション状態から、押圧治具53A及び53Bからなる押圧治具ユニット55が一体的に左斜め下方向に移動され、その結果、押圧治具53Aと押圧治具54Aとの間に隙間gが形成されると共に、押圧治具53A及び54Aによる押圧面53A-1及び54A-1は両者間に段差のない滑らかな1つの凹状の湾曲面を構成しており、押圧治具53B及び54Bによる押圧面53B-1及び54B-1も両者間に段差のない滑らかな1つの凸状の湾曲面を構成している。
 この状態から、図16(c)に示すように、まず、1対の押圧治具53B及び54Bを上昇させて渡り部17aの下面に当接させ、その状態で1対の押圧治具53A及び54Aを下降させて押圧動作を開始する。即ち、1対の押圧治具53A及び54Aの押圧面53A-1及び54A-1による凹状の湾曲面と、1対の押圧治具53B及び54Bの押圧面53B-1及び54B-1による凸状の湾曲面との間に渡り部17aを挟んで押圧動作を行い、渡り部17aをその水平平面に対して垂直の方向に湾曲させる。押圧動作がある程度進行した時点、換言すれば1次曲げ成形体17が位置ずれするおそれのなくなった時点で、保持部材13による保持(エアーシリンダによるチャッキング)が解除される。なお、この押圧動作における押圧治具の移動過程は上述した例に限定されず、1次曲げ成形体17が位置ずれしない範囲で種々の移動過程とすることが可能である。押圧動作の完了によって、渡り部17aの湾曲形状の成形である曲げ加工が終了する。
 渡り部17aの湾曲形状の成形が終了した後、押圧治具53A及び54Aの押圧面53A-1及び54A-1と押圧治具53B及び54Bの押圧面53B-1及び54B-1とが渡り部17aを挟持している状態で、図16(d)に示すように、押圧治具53A及び54Aの上端面が同一面となり、かつし、押圧治具53B及び54Bの下端面が同一面となるように、押圧治具ユニット55(押圧治具53A及び53B)が右斜め上方向に移動される。これにより、渡り部17aの頂部にはクランク形状の段差部57が形成される。即ち、図22(b)に示す押圧治具ユニット55の左斜め下方向への移動による隙間gは、渡り部17aへの湾曲形状の成形とクランク形状の段差部の形成とのために形成されたものである。
 従来技術のように押圧面の形状が固定された成形型を用いれば、渡り部17aに対する湾曲形状の成形とクランク形状の段差部の形成とを1回の押圧動作で同時に行うことは可能である。しかしながら、従来技術のように成形型が所望の湾曲形状及び段差形状をあらかじめ備えている成形方式によると、種々の形状の曲げ加工を行う場合に成形型をその都度を取り替える必要があった。また、成形型によって無理な曲げ加工が行われて線材の両面、場合によっては周面全体が押圧力を受けるため、線材の絶縁層に傷付きが発生するおそれがあった。即ち、曲げ加工精度を上げようとすると成形面のエッジが先鋭化するが、ここに応力が集中して絶縁層が傷付き易かった。また、成形型で押圧する方式では、実際に押圧してみないと絶縁層が傷付くかどうかわからず、不具合があった場合に成形型作製のやり直しが必要となり高コスト化を招来していた。これに対して本実施形態では、湾曲形状の成形とクランク形状の段差部の形成という複数種類の曲げ加工(成形)を別個に行うことにより、各曲げ加工工程(成形工程)を意図的に単純化し、押圧治具の移動によって行っている。このため、成形型を用いることによる上述した問題を解消することができ、湾曲形状の成形工程からクランク形状の段差部の形成工程間の移行も押圧治具の移動量の変更だけであるので迅速に行うことができ、成形型を用いて1工程で成形する従来技術と比べても成形時間にほぼ同じである。さらに、本実施形態では、湾曲形状の成形の曲げ加工では滑らかな湾曲面間に渡り部を挟んで押圧するので線材の絶縁層の傷付きは生じない。また、クランク形状の段差部の形成では、渡り部を挟持している対の押圧治具の位置をずらすだけであり、段差形状を有する成形面を押圧する構成ではないので、同様に絶縁層の傷付きは生じない。
 次に、図17を参照して湾曲形状成形の曲げ加工における湾曲形状の曲率の調整動作について説明する。図17(a)は曲率の調整動作を行う前の初期状態を示している。この状態は図17(c)に示した状態に相当し、曲率半径はR1である。この状態から、図にて右側の押圧治具ユニット56を後述する曲率中心Cの回りを角度θだけ回動させると、図17(b)に示すように、曲率半径がR1からR2(R1<R2)となり、曲率(1/R2)が小さくなる。即ち、押圧治具ユニット56の回動によって渡り部17aの湾曲形状における曲率を変化させることができ、渡り部17aの湾曲形状の曲率が異なる種々のコイルセグメントの曲げ加工を行うことができる。このことは、1次曲げ成形体17のスロット挿入部17b及び17c間の幅が異なる場合にも、曲率を調整して対応する曲げ加工が可能であることを意味する。
 次に、図18~図22を参照し、2次曲げ部5の駆動機構を含む構成について詳細に説明する。
 図18に示すように、2次曲げ部5は、垂直平面(1次曲げ成形体17が保持されている水平平面に直交する平面)と平行に配置され、中央部に開口部58aを有する固定ベース58と、この固定ベース58と平行な左右方向に移動可能に設けられた可動ベース59と、この可動ベース59に固定され、押圧治具53Aを上下方向(UY方向)に移動させる駆動機構60Aと、可動ベース59に固定され、押圧治具53Bを上下方向(UU方向)に移動させる駆動機構60Bと、固定ベース58に固定され、可動ベース59を左右方向(UV方向)に移動させる駆動機構61と、固定ベース58に連結され、垂直平面内で曲率中心Cの回りを回動可能に設けられた回動ベース62と、この回動ベース62に固定され、押圧治具54Aを上下方向(UX方向)に移動させる駆動機構63Aと、回動ベース62に固定され、押圧治具54Bを上下方向(UZ方向)に移動させる駆動機構63Bと、回動ベース62に連結されており、この回動ベース62を上下方向(UW方向)に駆動することにより曲率中心Cの回りを回動させる駆動機構64とを備えている。なお、図25に示すように、この固定ベース58は、長手方向(左右方向)の両側に固定されたL字形状の2つのブラケット94によって垂直に支持されている。
 駆動機構60Aは、上下方向に平行なUY方向の回転軸を有するボールネジ部65と、このボールネジ部65に螺合しておりUY方向に摺動可能なナット部66と、ボールネジ部65に螺合せずに単に回転軸に沿ってUY方向に摺動可能に設けられたスライダ67と、ボールネジ部65を回転駆動するサーボモータ68とを備えている。
 駆動機構60Bは、上下方向に平行なUU方向の回転軸を有するボールネジ部69と、このボールネジ部69に螺合しておりUU方向に摺動可能なナット部70と、ボールネジ部69に螺合せずに単に回転軸に沿ってUU方向に摺動可能に設けられたスライダ71と、ボールネジ部69を回転駆動するサーボモータ72とを備えている。
 駆動機構60Aのナット部66及び駆動機構60Bのスライダ71には押圧治具を支持する部材である移動プレート73が固定されており、移動プレート73の右側下端部には押圧治具53Aが複数のボルトネジで固定されている。従って、駆動機構60Aのサーボモータ68の動作によって押圧治具53AのみをUY方向に移動させることができる。また、駆動機構60Aのスライダ67と駆動機構60Bのナット部70には押圧治具を支持する部材である移動プレート74が固定されており、移動プレート74の図にて右側上端部には押圧治具53Bが複数のボルトネジで固定されている。従って、駆動機構60Bのサーボモータ72の動作によって押圧治具53BのみをUU方向に移動させることができる。移動プレート73及び74は、押圧治具53A及び53Bによる押圧加工精度を確保・維持するための剛性及び安定性を得るために駆動機構60A及び60Bに跨って支持されている。
 駆動機構63Aは、上下方向に平行なUX方向の回転軸を有するボールネジ部75と、このボールネジ部75に螺合しておりUX方向に摺動可能なナット部76と、ボールネジ部75に螺合せずに単に回転軸に沿ってUX方向に摺動可能に設けられたスライダ77と、ボールネジ部75を回転駆動するサーボモータ78とを備えている。
 駆動機構63Bは、上下方向に平行なUZ方向の回転軸を有するボールネジ部79と、このボールネジ部79に螺合しておりUZ方向に摺動可能なナット部80と、ボールネジ部79に螺合せずに単に回転軸に沿ってUZ方向に摺動可能に設けられたスライダ81と、ボールネジ部79を回転駆動するサーボモータ82とを備えている。
 駆動機構63Aのナット部76及び駆動機構63Bのスライダ81には押圧治具を支持する部材である移動プレート83が固定されており、移動プレート83の左側下端部には押圧治具54Aが複数のボルトネジで固定されている。従って、駆動機構63Aのサーボモータ78の動作によって押圧治具54AのみをUX方向に移動させることができる。また、駆動機構63Aのスライダ77と駆動機構63Bのナット部80には押圧治具を支持する部材である移動プレート84が固定されており、移動プレート84の左側上端部には押圧治具54Bが複数のボルトネジで固定されている。従って、駆動機構63Bのサーボモータ82の動作によって押圧治具54BのみをUZ方向に移動させることができる。移動プレート83及び84は、押圧治具54A及び54Bによる押圧加工精度を確保・維持するための剛性及び安定性を得るために駆動機構63A及び63Bに跨って支持されている。
 次に、図18~図20を参照し、駆動機構60A及び60Bを支持する可動ベース59が左右に移動する構成及び可動ベース59を移動させる駆動機構61について説明する。なお、図19は2次曲げ部5の片側部分(正面から見て左側半分)及び駆動機構61の周辺の構成を分解して表しており、図20はこの部分の動作を表している。
 図18及び図19に示すように、固定ベース58に固定された駆動機構61は、上下方向に平行なUV方向の回転軸を有するボールネジ部85と、このボールネジ部85に螺合しておりUV方向に摺動可能なナット部86及び87と、ナット部86及び87に固定されUV方向にスライド可能なスライドプレート88と、ボールネジ部85を回転駆動するサーボモータ89とを備えている。固定ベース58には、左右方向に延びる1対のレール部材90が互いに平行に上下2列で固定されている。可動ベース59の背面には2対の摺動部材91が固定されている。各対の摺動部材91は、各レール部材90に沿って摺動可能にこのレール部材90に係合している。これにより、可動ベース59は、UV方向(図18参照)と直交する左右方向(水平方向)に移動可能に支持されている。
 図19及び図20に示すように、可動ベース59にはその表面から突出するカムフォロア92が設けられており、スライドプレート88の背面にはこのカムフォロア92が係合して摺動する係合溝93がUV方向に対して傾斜して形成されている。図16(c)に示す状態では、係合溝93に係合したカムフォロア92は図20(a)に示す位置にある。駆動機構61のサーボモータ89が動作してスライドプレート88がUV+方向に上昇すると、スライドプレート88が上昇することにより係合溝93が上昇する。これにより、係合溝93内を摺動するカムフォロア92が、図20(b)に示すように、図にて右方向へ案内されることとなり、このカムフォロア92が固定されている可動ベース59が図20(b)に示す寸法Sだけ右方向に移動する。サーボモータ89を逆回転させれば、可動ベース59は逆方向に移動する。係合溝93の傾斜角及び/又は長さを変えることにより、可動ベース59の左右方向の移動量を変えることができる。可動ベース59の左右方向の移動量を変えることにより、渡り部17aに形成するクランク形状又は段差形状や、湾曲形状の曲率を変えることが可能となる。
 前述したように、押圧治具53A及び53Bからなる押圧治具ユニット55は駆動機構60A及び60Bによって上下方向に移動可能であるため、駆動機構61による左右方向の移動と駆動機構60A及び60Bによる上下方向の移動とを組み合わせて同時に行うことにより、押圧治具ユニット55の斜め移動が可能となる。例えば、駆動機構61によって可動ベース59を左方向に移動させるのと同時に、駆動機構60A及び60Bによって移動プレート73及び74を下方向に移動させることにより、図16(a)に示すホームポジション状態から図16(b)に示す状態に斜め移動が可能となる。また、駆動機構61によって可動ベース59を右方向に移動させるのと同時に、駆動機構60A及び60Bによって移動プレート73及び74を上方向に移動させることにより、図16(c)に示す状態から図16(d)に示す状態に斜め移動が可能となる。
 次に、図21及び図22を参照し、駆動機構63A及び63Bを支持する回動ベース62が回動する構成及び回動ベース62を回動させる駆動機構64について説明する。なお、図21は2次曲げ部5の片側部分(正面から見て右側半分)及び駆動機構64の周辺の構成を分解して表しており、図22はこの部分の動作を表している。
 これらの図に示すように、固定ベース58には共通の曲率中心Cを有すると共に互いに曲率の異なる円弧形状の1対のレール部材95及び96が左右方向に互いに離隔して固定されており、回動ベース62の背面には1対の摺動部材97及び1つの摺動部材98が固定されている。1対の摺動部材97はレール部材95に沿って摺動可能にこのレール部材95に係合しており、1つの摺動部材98はレール部材96に沿って摺動可能にこのレール部材96に係合している。駆動機構64は、上下方向に平行なUW方向の回転軸を有するボールネジ部99と、このボールネジ部99に螺合しておりUW方向に摺動可能なナット部104と、ナット部104に固定された係合部材101と、ボールネジ部99を回転駆動するサーボモータ102とを備えている。回動ベース62にはその表面から突出するカムフォロア103が設けられており、係合部材101の背面にはこのカムフォロア103が係合する係合溝101a(図21参照)が設けられている。
 駆動機構64のサーボモータ102が動作して係合部材101がUW-方向に移動すると、その係合溝101aに係合しているカムフォロア103が移動することから、摺動部材97及び98がレール部材95及び96に沿って摺動し、回動ベース62は曲率中心Cを中心として反時計回り方向に回動する。即ち、図22(a)に示す状態(中央位置)にある回動ベース62は、図22(b)に示す状態に回動する。この回動部材62には押圧治具54A及び54Bが固定されているため、これらを一体とした押圧治具ユニット56が回動する。この場合、押圧治具53A、53B、54A及び54Bによる渡り部17aに対する湾曲形状成形時の曲率が大きくなる。逆に、回動ベース62を図22(a)に示す中央位置から時計回り方向に回動させると、湾曲形状成形時の曲率を小さくすることができる。1対のレール部材95及び96によって安定に案内される回動ベース62の回動の中心である曲率中心Cは、押圧治具54A及び54Bの左端近傍となっており、これにより渡り部17aに対する湾曲形状成形時の曲率を高精度に変化させることができる。
 次に、2次曲げ部5の電気的構成を説明する。本実施形態において、2次曲げ部5は前述したように、6軸制御構成となっており、光通信ケーブル50には、UX方向駆動用のサーボモータ78の増幅及び駆動回路、UY方向駆動用のサーボモータ68の増幅及び駆動回路、UZ方向駆動用のサーボモータ82の増幅及び駆動回路、UU方向駆動用のサーボモータ72の増幅及び駆動回路、UV方向駆動用のサーボモータ89の増幅及び駆動回路、並びにUW方向駆動用のサーボモータ102の増幅及び駆動回路が接続されている。
 PLC46及び第1のNCコントローラ47は、図12のステップS6の処理に対応する図23のフローチャートに示すステップに基づいて、被処理コイルセグメントに関する1次曲げ成形体17に湾曲形状の成形及びクランク形状の段差部の形成を行う2次曲げ動作を制御する。以下、このフローチャートを用いて、2次曲げ動作を詳細に説明する。なお、以下の説明は、コイル幅が小さい、即ち渡り部の各辺の長さが小さい1次曲げ成形体17に2次曲げを行う場合である。
 第1のNCコントローラ47は、受信したコイル組立動作に関する制御データを展開し、指定されたアドレスの駆動機構のNC制御を実行する。まず、1次曲げ成形体17の寸法(形状)に応じた各押圧治具53A、53B、54A及び54Bの配置移動についてのNC制御を行う(ステップS61)。即ち、押圧治具の移動量に関する制御データを展開して、押圧治具53A及び54Aによる凹状の湾曲面、押圧治具53B及び54Bによる凸状の湾曲面が所定の曲率となるように2次曲げ部5の駆動機構60A、60B、63A及び63Bへ出力し対象となるサーボモータを駆動して押圧治具を移動させる。図16(b)はこの状態を示している。
 次いで、第1のNCコントローラ47は、1次曲げ成形体17の渡り部17aを軽度に押圧する軽度押圧処理(軽度プレス処理)を実行するNC制御を行う(ステップS62)。即ち、押圧処理のための制御データを展開して2次曲げ部5の駆動機構に出力し対象となるサーボモータを駆動して軽度の押圧処理を行い、1次曲げ成形体17が位置ずれしないようにする。
 次いで、第1のNCコントローラ47は、保持部材13による1次曲げ成形体17の保持を解除するNC制御を行う(ステップS63)。即ち、1次曲げ成形体17を保持部材13から解放する制御データを展開して保持部材13の駆動機構に出力し、エアシリンダを駆動してチャックによるスロット挿入部17b及び17cの把持を解除させる。
 次いで、第1のNCコントローラ47は、渡り部17aを湾曲形状に曲げ加工する湾曲成形のNC制御を行う(ステップS64)。即ち、押圧のための制御データを展開して駆動機構60A、60B、63A及び63Bへ出力し対象となるサーボモータを駆動して押圧処理を行う。
 この種の曲げ加工(押圧処理)では、曲げた後に押圧力を解除すると材質上の弾性で若干元に戻る、いわゆるスプリングバック現象が生じる可能性がある。このスプリングバックによる戻り量は線材6の材質、湾曲形状の曲率等のパラメータによって異なる。成形型で押圧して成形する従来方式では、あらかじめスプリングバックの影響を考慮して成形面を設計しても、事後的にスプリングバックの影響が判明した場合には型を作製し直さなければならず、成形型作成費用が高くなりコイルセグメントの成形コスト、ひいては回転電機の製造コスト上昇を招いていた。成形型作成のやり直しが複数回となる場合には大幅なコスト上昇となっていた。本実施形態では、スプリングバックの影響が判明した場合には、例えば押圧時間を長くする、押圧治具の押圧方向への移動量を多めにするなど制御データの補正だけで修正して対応できる。スプリングバックの影響を抑制できるデータを上記のパラメータであらかじめ実験により取得して制御テーブルを作成しても良いし、入力された線材6の種類や1次曲げ成形体17の形状等に応じてスプリングバックを抑制できる成形条件が自動的に設定されるようにしても良い。
 次いで、第1のNCコントローラ47は、駆動機構61により押圧治具ユニット55(押圧治具53A及び53B)を斜めに移動させてクランク形状の段差部を形成するNC制御を行う(ステップS65)。即ち、段差部を形成するための制御データを展開して駆動機構61に出力し、サーボモータ89を駆動して可動ベース59を右方向に移動しつつ、制御データを駆動機構60A及び60Bに出力し、サーボモータ68及び72を駆動して押圧治具53A及び53Bを互いに同期した状態で上方向に移動させることにより、押圧治具53A及び53Bからなる押圧治具ユニット55を右斜め上方に移動させる。
 段差部を形成した後、第1のNCコントローラ47は、押圧状態を一部解除するNC制御を行う(ステップS66)。即ち、左側の押圧治具53A及び53Bを移動させるための制御データを展開して駆動機構60A及び60Bに出力し、サーボモータ68及び72を駆動して押圧治具53A及び53Bが押圧位置から離れるように制御する。
 左側の押圧治具53A及び53Bが押圧位置から離れるタイミングで、第1のNCコントローラ47は、2次曲げが終了した線材である2次曲げ成形体17を把持してコイル組立部2へ移送する準備のためのNC制御を行う(ステップS67)。即ち、移送のための制御データを展開して図示しないローダの駆動機構に出力し、エアシリンダを駆動して2次曲げ成形体17を1対のチャックで把持する。
 その後、第1のNCコントローラ47は、2次曲げ部5の駆動機構をリセットし、次のコイルセグメント(1次曲げ成形体)の2次曲げに備える。
 上述したように本実施形態では、1次曲げ部4の曲げ加工領域と2次曲げ部5の曲げ加工領域とは1つの平面内で重ならず、個別に存在する。即ち、従来のように3次元形状の型を用いて一度にプレス成形する考えを脱却し、敢えて別工程とすることにより、1次曲げ部4と2次曲げ部5における曲げ加工の動き及び構成を単純化し、これによって数値制御による加工を実現したものである。
 なお、上述した2次曲げ加工動作においては、1次曲げ成形体17の渡り部17aの頂部にクランク形状の段差部を形成しているが、レーンチェンジのために1次曲げ成形体17の1対のスロット挿入部を互いにスロットの径方向にずらす「ずれ」であれば、段差に限定されることなく、滑らかなものであっても良いし、いかなる形状のものであっても良い。
 以下、コイル組立部2の構成及び動作について詳細に説明する。
 コイル組立部2は、図25、図26及び図29に示すように、コイルセグメント17Sを順次搬送するセグメント搬送手段110と、図24A~図24F、及び図29に示すように、複数のコイルセグメント17Sを放射方向外側からそれぞれ挿入可能な複数のセグメント保持部109が周方向に沿って円環状に配列されているセグメント配置ドラム105(本発明のセグメント配置体に対応する)と、複数のコイルセグメント17Sを複数のセグメント保持部109にそれぞれ案内して挿入させる1段構成のガイド部材112(本発明のガイド手段に対応する)とを備えている。セグメント配置ドラム105は、その中心軸C(回転軸121)の回りを図示しないインデックス回転駆動機構によって所定角度ずつ回転するように構成されている。ガイド部材112は、セグメント配置ドラム105の上方に配置されており、このセグメント配置ドラム105が第1の所定角度回転する毎に各コイルセグメント17Sの1対のスロット挿入部17b及び17cのうちの一方のスロット挿入部(前脚)17bを1つのセグメント保持部109に案内して挿入させ、この一方のスロット挿入部17bの挿入から第2の所定角度回転した際に、他方のスロット挿入部(後脚)17cを他の1つのセグメント保持部109に案内して挿入させるように構成されている。
 コイル組立部2は、図24A~図24F、及び図29に示すように、セグメント配置ドラム105の複数のセグメント保持部109内に挿入された複数のコイルセグメントがこれら複数のセグメント保持部109から離脱しないように支持する離脱防止手段106を有している。離脱防止手段106は、セグメント配置ドラム105の周面に沿って当接し、セグメント配置ドラム105の回転に伴って連れ回り(従動回転)する柔軟な当接部材としてのゴム製のベルト107(本発明のベルト体に対応する)を備えている。ベルト107は幅が3cm程度の細幅に形成されており、セグメント配置ドラム105の軸方向の複数箇所(ここでは2箇所)において、セグメント配置ドラム105の周方向の一部を覆うようにループ状に配置されている。ただし、ベルト107は、コイルセグメント17Sが案内される、セグメント配置ドラム105の上方には配置されていない。この離脱防止手段106の構成の詳細については後述する。
 セグメント配置ドラム105は、その回転の中心軸Cが水平となり、従って複数のコイルセグメント保持部109が同じく水平となるように配置されている。このセグメント配置ドラム105は、本実施形態では、図24Aにおいて反時計回りに回転可能に支持されている。換言すれば、セグメント配置ドラム105は、その中心軸Cが、2次曲げ部5での曲げ加工が完了した状態のコイルセグメント17Sの軸線方向(スロットへの挿入方向)と略平行となるように水平配置されている。
 セグメント配置ドラム105の内部には軸方向に延びる区画壁である複数のブレード108がセグメント配置ドラム105の周方向に沿って円環状に配列され中心軸Cから放射方向に伸長して設けられており、これら複数のブレード108間に複数のセグメント保持部109がそれぞれ形成されている。複数のブレード108の放射方向の高さは、これらが放射方向に摺動することによって可変となっている。これら複数のブレード108の放射方向の高さ、即ちセグメント配置ドラム105の放射方向外側への突出量は、全てのブレード108について同時に調整できるように構成されている。この調整構造については後述する。離脱防止手段106のベルト107は実質的にブレード108に当接している。
 2次曲げ部5において曲げ加工が完了した被処理コイルセグメント17Sは、セグメント搬送手段110によって2次曲げ部5から平行移動で搬送され、セグメント配置ドラム105のセグメント保持部109に案内及び挿入される。図25に示すように、このセグメント搬送手段110は、コイルセグメント17Sの1対のスロット挿入部17b及び17cのうちの一方のスロット挿入部(後脚)17cを把持するチャック部111を備えており、セグメント搬送手段110全体が上下方向(Z(-)(+)方向)及び水平方向(X(-)(+)方向)に移動可能となっている。X(-)(+)方向は2次曲げ部5とセグメント配置ドラム105との間をセグメント搬送手段110が行き来する方向である。また、チャック部111は垂直面内をR方向に回動可能となっており、コイルセグメント17Sの一方のスロット挿入部(後脚)17cを把持した状態でその姿勢を変化できるように構成されている。
 図25は、2次曲げ部5における曲げ加工が完了し、その押圧治具から解放される前に被処理コイルセグメント17Sがセグメント搬送手段110によって把持されて移動している状態を示している。セグメント搬送手段110のチャック部111は、コイルセグメント17Sのコイル組立部側(セグメント配置ドラム105側)に向って移動する際に後側となる他方のスロット挿入部(後脚)17cを把持している。コイルセグメント17Sがセグメント配置ドラム105に搬送される前に、セグメント搬送手段110のチャック部111が上方(R(+)方向)に回動して前側の一方のスロット挿入部(前脚)17bが斜め下になるようにコイルセグメント17Sの姿勢が傾けられる。
 このセグメント搬送手段110の構成をより詳細に説明すると、セグメント搬送手段110は、図25に示すように、図示しない駆動機構により水平方向(X(-)(+)方向)及び上下方向(Z(-)(+)方向)に移動可能に設けられたベース157と、このベース157に回動可能に取付けられたチャック部111と、チャック部111をR(-)(+)方向に回動させる駆動機構158とを有している。駆動機構158は、X(-)(+)方向に平行な回転軸を有するボールネジ部159と、このボールネジ部159に螺合しておりX(-)(+)方向に摺動可能なナット部160と、ボールネジ部159を回転駆動するサーボモータ161と、ナット部160に固定されており、ボールネジ部159の回転に伴ってX(-)(+)方向に移動するスライダ162とを有している。
 このスライダ162は上下方向に伸長する長方形状を有しており、その下端部の裏面には、ブラケット163を介して駆動爪164が固定されている。また、ベース157の裏面側には、図26に示すように、円弧状のレール165が固定されており、チャック部111はレール165に嵌合して旋回する旋回ベース166に支持されている。旋回ベース166にはチャック部111を開閉するエアシリンダ167が設けられている。図25に示すように、旋回ベース166の表面側にはカムフォロア168が設けられており、駆動爪164にはカムフォロア168に係合する凹溝164aが形成されている。駆動機構158のサーボモータ161が動作してスライダ162がX(-)方向に移動すると、チャック部111がR(-)方向に回動し、スライダ162がX(+)方向に移動すると、チャック部111がR(+)方向に回動する。従って、サーボモータ161の動作を制御することにより、コイルセグメント17Sの傾きを変化させることができる。
 図24Aに示すように、セグメント配置ドラム105の上方には、セグメント配置ドラム105の周面に沿ったガイド面112cを有しコイルセグメント17Sをセグメント配置ドラム105の所定のセグメント保持部109に案内するガイド部材112が図示されていないフレームに支持されて設けられている。このガイド部材112は、図29に示すように、セグメント配置ドラム105の軸方向に伸長しており、このセグメント配置ドラム105の周面と間隔をおいて配置されている。ガイド部材112は、図27に示すように、複数(この例では3つ)の細幅のガイド片112aと、これらガイド片112aとを互いに離隔させて支持するブラケット112bとを備えている。ブラケット112bはセグメント配置ドラム105の軸方向に沿って設けられており、ガイド片112aはブラケット112bと直交する方向に伸長している。ブラケット112bは、前述したように、図示しないフレームに固定されている。
 コイルセグメント17Sは、セグメント搬送手段110のチャック部111で把持された状態でその前脚17bが、図27に示すように、ガイド部材112の下側(ガイド部材112とセグメント配置ドラム105との間)を通り、その後脚17cがガイド部材112の上側(ガイド部材112のセグメント配置ドラム105とは反対側)を通るように搬送される。図24Aに示すように、コイルセグメント17Sの前脚17bが基準点であるセグメント保持部109aの上方に達したときにセグメント搬送手段110が下降するように構成されている。本実施形態における基準点は、セグメント配置ドラム105の上部中央に位置するブレード108とセグメント配置ドラム105の回転方向の下流側に隣接するブレード108との間のセグメント保持部109aに設定されているが、基準点はこれに限定されない。セグメント搬送手段110が下降してコイルセグメント17Sの前脚17bがセグメント保持部109a内に挿入されたことが、ガイド部材112の下面に配置された検知センサ170で検知されると、セグメント搬送手段110のチャック部111がコイルセグメント17Sを解放する。これにより、コイルセグメント17Sの後脚17cはガイド部材112の上に載る。
 コイルセグメント17Sの前脚17bがセグメント保持部109a内に挿入されたことが検知されると、セグメント配置ドラム105が1スロット分の第1の所定角度だけ、即ちセグメント保持部109の1つ分の第1の所定角度だけ、図にて反時計回り方向に回転するように制御される(インデックス回転)。コイルセグメント17Sの前脚17bはセグメント保持部109に収容されて拘束されているため、セグメント配置ドラム105が回転すると、そのコイルセグメント17Sの後脚17cはガイド面112cを摺動しながら移動する。セグメント配置ドラム105が1スロット分回転すると、最初の基準点であるセグメント保持部109aの回転方向上流側に隣接するセグメント保持部109bが次に配置されるコイルセグメント17Sの基準点となる。前脚17bが基準点のセグメント保持部109に円滑に挿入されるようにするために、各ブレード108のセグメント配置ドラム105の回転方向における上流側は面取りされてテーパ面108bとなっている。なお、本実施形態においては、1周のスロット数が36であるため、セグメント配置ドラム105の1スロット分の角度、即ち第1の所定角度は10度となる。
 次に、複数のコイルセグメント17Sがセグメント配置ドラム105の周面の複数のセグメント保持部109内に順次挿入されて配置されていく動作を説明する。なお、図においてはコイルセグメント17Sをその前脚及び後脚の端面のみで表示し、前脚は白抜きで、後脚は×でそれぞれ区別して表示している。
 図24Bは、3つのコイルセグメント17Sの前脚17bがそれぞれセグメント配置ドラム105のセグメント保持部109内に挿入され、それぞれの後脚17cがガイド面112c上に載っている状態を示している。図24Bにおいて、符号17b-1、17b-2及び17b-3はそれぞれ1番目から3番目のコイルセグメント17Sの前脚を、17c-1、17c-2及び17c-3はそれぞれ1番目から3番目のコイルセグメント17Sの後脚を示している。
 図24Cは、1番目のコイルセグメント17Sの後脚17c-1がガイド部材112から離れて落下する状態を示している。後脚17c-1がガイド部材112から離れたコイルセグメント17Sは、既にセグメント配置ドラム105のセグメント保持部109内に挿入されている前脚17b-1を支点として重力で回動し、後脚17c-1は制御をしなくても自重で所定のセグメント保持部109内に挿入される。本実施形態では、コイルセグメント17Sの幅により、前脚17b-1が挿入されたセグメント保持部109から数えてセグメント配置ドラム105の回転方向上流側に8番目のセグメント保持部109に後脚17c-1が挿入される。換言すれば、セグメント配置ドラム105が8スロット分の第2の所定角度だけ、即ちセグメント保持部109の8つ分の第2の所定角度だけセグメント配置ドラム105が回転すると、後脚17c-1がセグメント保持部109内に挿入される。なお、セグメント保持部109内に挿入された前脚の、セグメント配置ドラム105の周面に対する姿勢は、インデックス回転が進行するにつれてその相対角度が小さくなっていく、即ちその姿勢が周面と平行に寝ていく。本実施形態においては、1周のスロット数が36であるため、セグメント配置ドラム105の8スロット分の角度、即ち第2の所定角度は80度となる。ただし、この第2の所定角度は、コイルセグメントのコイル幅に応じて異なる。
 図24Dは、1~3番目のコイルセグメント17Sの後脚がセグメント保持部に案内及び挿入されて8~10番目のコイルセグメント17Sの前脚の上に載り、さらに4番目のコイルセグメント17Sの後脚がガイド部材112から離れた状態を示している。図24Dから明らかにように、例えば、1番目のコイルセグメント17Sの後脚17c-1は、8番目のコイルセグメント17Sの前脚17b-8の上に挿入されて配置される。これは、図24Aに示すように、コイルセグメント17Sの渡り部17aに形成された段差17a-1によって後脚17c-1がセグメント配置ドラム105の放射方向外側にずれることによる、いわゆるレーンチェンジが可能であるからである。換言すると、1番目のコイルセグメント17Sの前脚17b-1は1層目に配置され、後脚17c-1は2層目に配置されることになる。
 同様の動作が行われて、全てのコイルセグメント17Sの後脚についての1周目の挿入及び配置が完了すると、図24Eに示すように、コイルセグメント17Sの2層の配置が完了する。全てのコイルセグメント17Sについて1周目の配置が完了すると、図24Fに示すように、2周目の1番目のコイルセグメント17Sの挿入及び配置が始まる。なお、2周目の挿入及び配置が始まる前に各ブレード108がセグメント配置ドラム105の放射方向外側に突出される。ブレード108の突出量は、既に挿入されているコイルセグメントの合計厚さよりも大きくなるように設定される。コイルセグメントの合計厚さに対するブレード108の突出量の裕度(高さYt)は、コイルセグメント17Sの前脚及び後脚を安定して挿入及び配置できかつ新たな挿入を阻害しない範囲であり、例えば、4mmである。
 ブレード108の突出動作が完了した状態で、2周目のコイルセグメント17Sの1番目の前脚17b-1が基準点のセグメント保持部109aに挿入され、後脚17c-1はガイド部材112上に載る。その後、1周目と同じように順次コイルセグメント17Sが挿入されて行き、セグメント配置ドラム105が1回転すると2周目の挿入及び配置が完了し、配置済みのコイルセグメント17Sは4層となる。ブレード108を最初から目的の層の厚みに対応した突出量としておくとセグメント保持部が深くなって円滑な挿入動作が阻害されるため、上記のように層厚みに対応した段階的な突出動作としている。層が増えていくとセグメント配置ドラム105の周面の径が変化するため、ブレード108の突出動作に対応して、後述するように、ブレード108に対するベルト107の当接圧を一定に保つための調節が行われる。
 上述した実施形態においては、コイル組立部2に供給されるコイルセグメントが、図28に示すように、基本的に同じ形状のコイルセグメント17Sを同じパターンで順次並べた配列となっている。即ち、10個のコイルセグメントを単純に配列して展開すると、1番目~3番目のコイルセグメントの後脚が、8番目~10番目のコイルセグメントの前脚の上にそれぞれ配置されることとなる。
 上述べたように、本実施形態によれば、所定の形状に曲げ加工がなされた被処理コイルセグメント17Sを曲げ加工時の水平に寝た状態のまま水平に配置したセグメント配置ドラム105の上方に搬送し、セグメント配置ドラム105を所定角度ずつ回転させながらコイルセグメント17Sをセグメント保持部に連続的に挿入するように構成している。このように、セグメント配置ドラム105を水平状態に配置し、その上方からコイルセグメント17Sを案内しているので、コイルセグメント17Sの前脚だけをセグメント配置ドラム105の所定のセグメント保持部に挿入すれば、後脚は自重で自動的に挿入される。このため、従来に比べて自動化が容易であり、迅速にかつ効率良くコイルを組み立てることができる。
 次に、図25~図27及び図29~図33に基づいて、本実施形態のコイル組立部2の具体的な構成について詳細に説明する。
 図29及び図30に示すように、コイル組立部2は、ベース116と、このベース116上にその回転の中心軸Cである回転軸121が水平となるように配置され、回転可能に支持されたセグメント配置ドラム105と、ベルト107を有する離脱防止手段106と、セグメント配置ドラム105を回転駆動する駆動源であるサーボモータ117と、ブレード108の突出量を変更するブレード調整機構118と、セグメント配置ドラム105の円環状に配列されたセグメント保持部109に挿入され保持された所定数(上述した実施形態では36個)のコイルセグメントからなる組立コイルを、セグメント配置ドラム105の軸方向に押し出す押し出し機構119と、セグメント配置ドラム105を挟んで押し出し機構119の反対側に配置されたワーク支持台120と、前述したセグメント搬送手段110と、1段構成のガイド部材112とを有している。
 セグメント配置ドラム105は、その回転軸121を回転中心として回転可能に支持されている。このセグメント配置ドラム105の組立コイル押し出し方向(P(+)方向)と反対側には、回転軸121を支持する円板状の軸受122が配置されており、さらに、この回転軸121には大径ギア123が同軸に固定されている。この大径ギア123にはサーボモータ117の回転軸に固定された図示しない小径ギアが噛合されている。従って、サーボモータ117が回転すると、回転軸、小径ギア及び大径ギア123を介してセグメント配置ドラム105が回転駆動される。これら小径ギア及び大径ギア123の噛合による減速構造により、サーボモータ117によるセグメント配置ドラム105のインデックス回転の精度を上げることができる。
 軸受122は、ベース116に底部が固定された受け部124に支持されており、これによってセグメント配置ドラム105は片持ち支持されている。ただし、セグメント配置ドラム105のコイルセグメント17Sが配置される部分が前述したように離脱防止手段106で保持されているので、このセグメント配置ドラム105は安定した回転が可能となる。サーボモータ117と、サーボモータ117の回転軸と、この回転軸に固定された小径ギアと、この小径ギアに噛み合う大径ギア123と、サーボモータ117を制御する後述の制御部49とにより、コイルセグメント17Sの前脚17bが配置される毎にセグメント配置ドラム105を所定角度(第1の所定角度)ずつ回転させるインデックス回転機構が構成される。
 ブレード調整機構118は、図30及び図31に示すように、セグメント配置ドラム105の回転軸121と平行な回転軸を有するボールネジ部125と、このボールネジ部125に螺合しており回転軸と平行なP(-)(+)方向に摺動可能なナット部126と、ボールネジ部125を回転駆動するサーボモータ127と、基部がナット部126に固定されており、ボールネジ部125の回転に伴ってP(-)(+)方向に摺動するスライド部材128と、回転軸121に固定され、スライド部材128の先端部の凸部が係合する係合部129と、セグメント配置ドラム105の内部において回転軸121に固定された複数(図示の例では2つ)の中空の円錐カム130(図31参照)とを有している。
 スライド部材128は、ナット部126に固定された基部と、この基部からボールネジ部125に沿って伸長する互いに平行な1対のアーム128a及び128bとを有している。1対のアーム128a及び128bの先端には内側に突出した1対の凸部がそれぞれ形成されており、これら1対の凸部が係合部129の環状溝129aにカムフォロア式に係合されている。これにより、回転軸121と係合部129とが共に回転している場合にも、スライド部材128と係合部129とは低摩擦下で連結された状態となっている。従って、サーボモータ127が回転してボールネジ部125が回転し、これによりナット部126及びスライド部材128がボールネジ部125に沿って摺動すると、その摺動に合わせて回転軸121がその摺動方向に移動することとなる。
 図31に示すように、セグメント配置ドラム105の各ブレード108には斜めに延びる溝108aが形成されており、この溝108aに円錐カム130は摺動可能に挿入されている。従って、サーボモータ127が回転して回転軸121がP(-)方向に移動するとブレード108がセグメント配置ドラム105の放射方向外側に向って突出し、回転軸121がP(+)方向に移動するとブレード108がセグメント配置ドラム105の放射方向内側に向って引込まれることとなる。このように、サーボモータ127の回転量及び回転方向を制御することでブレード108の突出量を調整することができる。
 押し出し機構119は、図29に示すように、回転軸121と平行な回転軸を有するボールネジ部131と、このボールネジ部131に螺合しておりP(-)(+)方向に摺動可能なナット部132と、ボールネジ部131を回転駆動するサーボモータ133と、ナット部132に固定されており、ボールネジ部131の回転に伴ってP(-)(+)方向に移動するスライド部材134と、セグメント配置ドラム105の周面に軸方向(P(-)(+)方向)に摺動可能に配置され、スライド部材134が係合する押圧リング135とを有している。
 スライド部材134は、ナット部132に固定された基部と、この基部からボールネジ部131に沿って伸長する互いに平行な1対のアーム134a及び134bとを有している。1対のアーム134a及び134bの先端には内側に突出した1対の凸部がそれぞれ形成されており、これら1対の凸部が押圧リング135の環状溝135aにカムフォロア式に係合されている。これにより、押圧リング135がセグメント配置ドラム105の周面との摩擦で回転してもスライド部材134と押圧リング135とは低摩擦下で連結された状態となっている。従って、サーボモータ133が回転してボールネジ部131が回転し、これによりナット部132及びスライド部材134がボールネジ部131に沿って摺動すると、その摺動に合わせてセグメント配置ドラム105がその摺動方向に移動することとなる。
 ワーク支持台120は、ベース136と、このベース136に支柱137を介して固定されたV字状の凹部138aを有するワーク載置部138と、ベース136の上面両側に形成された一対のレール136aとを有している。
 離脱防止手段106は、図32及び図33に示すように、セグメント配置ドラム105の放射方向の側部にこのセグメント配置ドラム105を挟んで互いに対向して配置されかつ上下方向に伸長する1対のアーム139A及び139Bを有している。これら1対のアーム139A及び139Bは、それぞれの略中央部に設けられた軸140をアーム支点として回動可能に支持されており、それらの上端部がセグメント配置ドラム105の周面に接離できるように構成されている。アーム139Aの下端部はP(-)(+)方向と直交する方向に摺動するラック部材141Aにカムフォロアを介して連結されており、アーム139Bの下端部はP(-)(+)方向と直交する方向に摺動するラック部材141Bにカムフォロア連結されている。ラック部材141A及びラック部材141Bは共にピニオンギア142に噛合しており、このピニオンギア142を介して連結されている。ラック部材141Aはサーボモータ143に連結されており、このサーボモータ143が回動することにより、ラック部材141Aのみならずラック部材141Bも摺動し、その結果、1対のアーム139A及び139Bが同期して回動する。
 1対のアーム139A及び139Bの上部にはこれら1対のアームに垂直に交わるようにそれぞれ固定された1対の水平バー144が設けられている。これら1対の水平バー144の各々の両端部には、1対のホルダ145がそれぞれ固定されている。従って、1対の水平バー144の両端部に、計2対のホルダ145が設けられていることとなる。これら2対のホルダ145には、それぞれ、ベルト用の2対の可動プーリ146が回転自在に支持固定されている。離脱防止手段106のフレームには、2つの固定プーリ147が回転自在に支持固定されており、2つの小径の固定プーリ148が回転自在に支持固定されており、さらに、テンションプーリ149がこれら固定プーリ148間に回転自在に支持固定されている。これら2つの固定プーリ147、2つの小径の固定プーリ148、及びテンションプーリ149は、2対の可動プーリ146に対応して、もう1組設けられている。
 セグメント配置ドラム105の軸方向に並んで配置された1対のベルト107のうちの一方のベルトは、ホルダ145に固定された可動プーリ146と、2つの固定プーリ147と、2つの小径の固定プーリ148と、テンションプーリ149とに掛けまわされ、セグメント配置ドラム105の下側周面を覆うように構成されている。テンションプーリ149は、その支持軸150を介してエアシリンダ151に接続されている。エアシリンダ151の動作でテンションプーリ149が上下方向に変位することでセグメント配置ドラム105の周面に対するベルト107の当接圧を可変調整することができる。1対のベルト107の他方のベルトも同様の構成を有しており、同様の動作が行われるように構成されている。
 1対のアーム139A及び139Bの各々には、上下方向に離隔して複数のネジ孔139aが2列で形成されており、これによって水平バー144の上下方向の固定位置を調整できるように構成されている。図33に示すように、水平バー144の各々には、上下方向に延びる長穴形状の2つの固定用孔144aが形成されており、これら固定用孔144aを挿通するネジ144bによって、水平バー144は、上下方向に微調整可能にアーム139A又は139Bに固定される。水平バー144の上下方向の固定位置調整を行うことによって、セグメント配置ドラム105の径の変化に対応することができる。なお、1対のベルト107のセグメント配置ドラム105の周面に対する当接圧調整は、各ベルト毎に独立して調整可能である。
 次に、本実施形態の回転電機の製造装置において、セグメント配置ドラム105で組み立てられたコイルをコア152内に挿入する構成及び動作について説明する。
 コイル組立部2においては、上述したように、セグメント配置ドラム105の周面に複数のコイルセグメント17Sが配置されてコイルの組み立てが行われる。次いで、組み立てられたコイルが回転電機のコア152内に挿入される。その場合、まず、コア152をセットしたワーク支持台120が、コイル組立部2のベース116に連結される。図34は、ワーク支持台120にコア152をセットし、セグメント配置ドラム105上の組立コイルをコア152内に挿入できるようにワーク支持台120をベース116に連結した状態を示している。即ち、ワーク支持台120をベース116から離隔させた状態でワーク載置部138にコア152を載置し、挿入ガイドユニット153を支持するカフスサポータ154をワーク支持台120のP(-)方向からレール136aを介して移動させてリング形状をなす挿入ガイドユニット153とコア152とを連結する。その後、セグメント配置ドラム105に挿入ガイドユニット153が対向するように、コイル組立部2のベース116にワーク支持台120を連結する。なお、図34においては、ガイド部材112は図示を省略している。
 挿入ガイドユニット153は、図35に示すように、セグメント配置ドラム105と対向する側にカフスサポータ154を有し、反対側にコア152と嵌合する凹部153aを有している。カフスサポータ154は、コア152の各スロットに挿入された絶縁紙のカフス部155を保護するためのものであり、周方向に沿って放射状に配置された複数の突起154a間に、コア152のカフス部155が挿入されるように構成されている。複数の突起154aは、図示されていない駆動機構によって放射方向に同時に摺動できるように構成されている。
 セグメント配置ドラム105において、所定数のコイルセグメント17Sによる所定数層の挿入が行われてコイル組立が完了すると、押し出し機構119のサーボモータ133が回動し、スライド部材134がP(+)方向に移動して押圧リング135がセグメント配置ドラム105の周面に沿ってP(+)方向に移動する。押圧リング135のP(+)側には、組立コイルのコイルエンド部(渡り部)側を周方向全体に亘って収容する凹部が設けられている(図示無し)。この凹部にコイルエンド部が収容された組立コイルは、セグメント配置ドラム105の周面に沿って移動し、図36に示すように、組立コイルのコイルエンド部(渡り部)が挿入ガイドユニット153に挿入される。即ち各コイルセグメント17Sの前脚及び後脚の端部が挿入ガイドユニット153の各突起154a間に入り込む。セグメント配置ドラム105のブレード108に組立コイルのコイルエンド部(渡り部)が干渉する直前のタイミング、又は押圧リング135が離脱防止手段106に突き当たる直前のタイミングでサーボモータ133がその回転動作を停止し、押圧リング135の移動が停止する。
 組立コイルのコイルエンド部(渡り部)が挿入ガイドユニット153に挿入されていることにより、セグメント配置ドラム105は両持ち支持の状態となる。この両持ち支持状態で、ブレード調整機構118のサーボモータ117が回転動作し、スライド部材128(図30参照)がP(+)方向に移動してブレード108がセグメント配置ドラム105の周面から突出しない状態、即ち押圧リング135の移動を妨げない位置に退避する。また、離脱防止手段106のサーボモータ143(図32参照)が回転動作して2対のアーム139A及び139Bがセグメント配置ドラム105の周面から放射方向外側に離れるように開き、セグメント配置ドラム105に対するベルト107の当接状態が解除される。その後、押圧リング135の移動に邪魔にならないように、離脱防止手段106が下降せしめられる。
 離脱防止手段106が下降した後、押圧リング135がP(+)方向に移動されて組立コイルのコア152への挿入が進行する。図37に示すように、組立コイルのコイルエンド部(渡り部)がカフスサポータ154に当接する直前に押圧リング135の移動が停止され、図38に示すように、カフスサポータ154の全ての突起154aを放射方向外側に移動されることにより、カフスサポータ154が外側に開かれる。
 その後、押圧リング135を所定位置まで前進させ、組立コイルのコイルエンド部(渡り部)がカフスサポータ154に当接する手前でこの押圧リング135の移動を停止させる。この押圧リング135の移動停止のタイミング、及びカフスサポータ154が開いた後に押圧リング135を所定距離前進させて停止させる移動停止のタイミングは、制御手段49のメモリにあらかじめ記憶されている数値に基づいて行われる。挿入完了後、押し出し機構119の動作により押圧リング135は元の位置(初期位置)に戻される。図38は、コア152に組立コイルの挿入が完了した状態を示している。
 以上述べたように、本実施形態のコイル組立部2によれば、セグメント配置ドラム105上に複数のコイルセグメントを配置して組み立てられた組立コイルをセグメント配置ドラム105の軸方向に押し出すことでコア152への挿入ができる。従って、治具からセグメント組立体を引き抜いた後、治具とコアとを交換してからセグメント組立体をそのコアに挿入するような手順が不要であり、回転電機の製造における作業効率を大幅に向上させることができる。即ち、本実施形態の構成によれば、コイルセグメントの組立が完了したらそのままの状態で直ちにコア152に挿入する動作に移行することができ、治具とコアとを交換する等の不要な時間を省略することができる。
 次に、コイル組立部2の電気的構成を説明する。本実施形態において、コイル組立部2は、セグメント配置ドラム105のインデックス回転駆動機構、離脱防止手段106、セグメント搬送手段110、ブレード調整機構118及び押し出し機構119を備えており、光通信ケーブル51には、インデックス回転駆動機構のサーボモータ117の増幅及び駆動回路、離脱防止手段106の1対のアーム139A及び139Bを開閉するためのサーボモータ143の増幅及び駆動回路、セグメント搬送手段110のチャック部111を回動させるためのサーボモータ161の増幅及び駆動回路、ブレード108の突出量を調整するためのサーボモータ127の増幅及び駆動回路、組立コイルを押し出すためのサーボモータ133の増幅及び駆動回路、エアシリッダ151及び167の駆動回路が接続されている。複数のサーボモータの増幅及び駆動回路には、複数のサーボモータに機械的に連結されたエンコーダからの信号線がそれぞれ接続されている。
 PLC46及び第2のNCコントローラ48は、図12のステップS1及びステップS8、並びに図39のフローチャートに示すステップに基づいてコイル組立部2におけるコイルセグメントの挿入動作及び組立コイルのコア152への挿入動作を制御する。以下、図12及び図39のフローチャートを用いて、コイル組立部2における動作を詳細に説明する。
 前述したように、PLC46は、図12のステップS1において、セグメント配置ドラム105へのコイルセグメントの配置数及び層数、インデックス回転量、離脱防止手段106のアーム139A及び139Bの回動量、ブレード108の突出量、及び押圧リング135の移動量等に関する一連の制御データをメモリから読み出し、第2のNCコントローラ48へ出力する。
 第2のNCコントローラ48は、これにより受信した制御データを展開し、指定されたアドレスの駆動機構のNC制御を実行する。本実施形態において、重要なポイントは、線材供給部3における切断及び被覆絶縁層剥離、1次曲げ部4における1次曲げ、2次曲げ部5における2次曲げ、並びにコイル組立部2における組立が、設定されている制御情報に基づいて各コイルセグメント単位で行われる点にある。即ち、ある被処理コイルセグメントに関して、設定されている制御情報に従って切断及び絶縁層剥離が行われ、その同じ被処理コイルセグメントに関して、設定されている制御情報に従って1次曲げが行われ、その同じ被処理コイルセグメントに関して、設定されている制御情報に従って2次曲げが行われ、その同じ被処理コイルセグメントに関して、設定されている制御情報に従ってコイル組立が行われるのである。これにより、線材の切断及び剥離、コイルセグメントの成形からコイル組立まで一貫して行うことが可能となるため、作業効率が大幅に向上する。また、成形したコイルセグメントを保管すること、保管したコイルセグメントから必要とするものを選択すること等が不要となるため、管理が非常に容易となる。
 コイル組立においては、まず、セグメント配置ドラム105の周面にコイルセグメント17Sを配置させるためのインデックス制御を行う(図12のステップS8)。被処理コイルセグメントである1番目のコイルセグメント17Sがセグメント搬送手段110で搬送され、その前脚がセグメント配置ドラム105の基準点のセグメント保持部109a内に挿入されたことが検知センサ170で検知され、その信号がPLC46から送信された場合、サーボモータ117を回転駆動して1スロット分(本実施形態では10度)だけセグメント配置ドラム105を図24Aに示す反時計回り方向に回転させる。この動作を順次繰り返し、所定周分のコイルセグメント17Sの配置が完了した際にサーボモータ127を回転駆動してブレード108を所定量突出させる(図39のステップS11)。
 本実施形態における検知センサ170は、レーザ等を用いた距離判別センサであることが望ましい。即ち、図24Aに示すように、ガイド部材112の下面にレーザ発光部とレーザ受光部と配置し、発光部から基準点のセグメント保持部へレーザ光を照射し、レーザ受光部でその反射光を受光することにより距離を判別する。PLC46は判別した距離から1周目のコイルセグメントが挿入されたか、2周目以降のコイルセグメントが挿入されたかを判別することができ、その結果を第2のNCコントローラ48へ送信する。また、この距離判別センサと共に、例えばカラー光を発光及び受光するセンサを設けても良い。即ち、ガイド部材112の下面に、距離判別センサと並べて、セグメント配置ドラム105の軸方向に伸長したライン形状の発光部と受光部とを備えたカラー光センサを配置し、その発光部から基準点のセグメント保持部へ光を照射し、受光部でその反射光を受光する。PLC46は検知センサ170から出力された反射光のスペクトル光強度を計算し、得られた光強度をあらかじめ記憶されている基準スペクトル光強度範囲と比較する。検出して計算されたスペクトル光強度が設定された許容範囲にある場合は、前脚が正常に挿入されて配置されたと判断し、第2のNCコントローラ48へ送信する。コイルセグメント17Sは一般に銅色でありブレード108やセグメント配置ドラム105の周面の色とは異なるので、前脚以外からの反射光とを区別することができる。なお、前脚が正常に配置されたか否かの判断は、カラーセンサ等の光電センサと、電荷結合素子(CCD)や相補型金属酸化物半導体素子(CMOS)等の撮像素子との組み合わせで行ってもよい。検知方式が異なるセンサの組み合わせによれば、検知誤差を低減することができる。
 コイルセグメント17Sがセグメント配置ドラム105に所定層数配置されて組立コイルが形成された場合に、第2のNCコントローラ48は、その組立コイルをコア152に挿入するNC制御を開始する(図39のステップ12)。即ち、組立コイルをコア152に挿入する制御データを展開して押し出し機構119、ブレード調整機構118、及び離脱防止手段106に出力し、対象となるサーボモータを回転駆動する挿入動作を開始する。
 まず、第2のNCコントローラ48は、押し出し機構119のサーボモータ133を回転駆動して押圧リング135をP(+)方向に移動させ、組立コイルのスロット挿入部の端部を挿入ガイドユニット153に挿入させる(図39のステップ13)。この移動は、組立コイルのコイルエンド部(渡り部)がブレード108に干渉する直前、又は押圧リング135が離脱防止手段106に当接する直前で停止させる。これにより、セグメント配置ドラム105は両持ち支持状態となる。図36がこの状態を表している。
 次いで、第2のNCコントローラ48は、ブレード調整機構118のサーボモータ127を回転駆動してセグメント配置ドラム105の周面からブレード108が突出しないように後退させると共に、離脱防止手段106のサーボモータ143を回転駆動してベルト107をセグメント配置ドラム105の周面から離隔させかつ離脱防止手段106を下降させる(図39のステップ14)。
 次いで、第2のNCコントローラ48は、押し出し機構119のサーボモータ133を回転駆動して押圧リング135をP(+)方向に前進させ、組立コイルのコイルエンド部(渡り部)がカフスサポータ154に当接する直前で停止させる(図39のステップ15)。図37がこの状態を表している。
 次いで、第2のNCコントローラ48は、図示しない駆動機構を制御してカフスサポータ154の全ての突起154aを放射方向外側に移動させ、カフスサポータ154を開く(図39のステップ16)。
 次いで、第2のNCコントローラ48は、押し出し機構119のサーボモータ133を回転駆動して押圧リング135を所定の位置まで前進させ、これによりコア152への組立コイルの挿入、即ちコア152のスロットにおけるコイルセグメントの円環状の挿入、が完了する(図39のステップ17)。挿入後、押圧リング135は元の位置に戻される。図38がこの状態を表している。
 次に、本発明の他の実施形態に係る回転電機の製造装置について、図40A~図41を参照して説明する。本実施形態においては、図40A~図40D、及び図41に示すように、コイル組立部のガイド手段が2段構成となっており、コイルセグメントの渡り部形状及びコイル幅が互いに異なる2種類のコイルセグメントについても組立できる構成となっている。本実施形態におけるその他の部分の構成、動作及び作用効果は、上述した実施形態の場合と同様であるため、説明は省略すると共に、同じ構成要素については同じ参照符号を用いて説明する。
 図40A及び図41に示すように、本実施形態におけるガイド手段113は、外側ガイド部材114と、この外側ガイド部材114よりセグメント配置ドラム105の中心軸Cに近い側に位置する内側ガイド部材115とからなる2段構成を有している。これら外側ガイド部材114及び内側ガイド部材115は、セグメント配置ドラム105の上方に配置されている。外側ガイド部材114及び内側ガイド部材115の各々の構成は、基本的には、図27に示した実施形態におけるガイド部材112の構成と同様である。即ち、複数(この例では3つ)の細幅のガイド片と、これらガイド片とを互いに離隔させて支持するブラケット114b及び115bとを備えており、ブラケット114b及び115bはセグメント配置ドラム105の軸方向に沿って設けられており、ガイド片はブラケット114b及び115bと直交する方向にそれぞれ伸長している。ブラケット114b及び115bは、図示しないフレームに固定されている。ただし、外側ガイド部材114は、スロット挿入部17b及び17c間の距離が大きい、コイル幅大のコイルセグメント17Sを案内するために設けられており、内側ガイド部材115は、スロット挿入部17d及び17e間の距離が小さい、コイル幅小のコイルセグメント17SSを案内するために設けられている。
 内側ガイド部材115はそのガイド面115cの周方向の長さが、外側ガイド部材114のガイド面114cの周方向長さよりも短くなるように構成されている。コイル幅大のコイルセグメント17Sは、セグメント搬送手段110のチャック部111で把持された状態で前脚17bが内側ガイド部材115の下側を通り、後脚17cが外側ガイド部材114の上側を通るように搬送される。セグメント配置ドラム105が回転し、前脚17bがセグメント配置ドラム105の上方の基準点のセグメント保持部に達すると下降させられる。コイル幅小のコイルセグメント17SSは、セグメント搬送手段110のチャック部111で把持された状態で前脚17dが内側ガイド部材115の下側を通り、後脚17eが内側ガイド部材115の上側を通るように搬送される。前脚17dは、セグメント配置ドラム105がインデックス回転し、基準点のセグメント保持部に達すると、下降させられる。ガイド部材が2段構成の場合には、検知センサ170は内側ガイド部材115の下面に配置され、コイルセグメント17SSの前脚17dを検知するように構成されている。
 なお、本実施形態においては、コイル幅大のコイルセグメント17Sとコイル幅小のコイルセグメント17SSとが交互に供給されてコイル組立が行われる。図40Bは、1番目のコイル幅大のコイルセグメント17Sの前脚17b-1がセグメント配置ドラム105の所定のセグメント保持部109に挿入されかつその後脚17c-1が外側ガイド部材114上に載り、2番目のコイルセグメント17SSの前脚17d-1がセグメント配置ドラム105の次のセグメント保持部109に挿入されかつその後脚17e-1が内側ガイド部材115上に載り、3番目のコイル幅大のコイルセグメント17Sの前脚17b-2がセグメント配置ドラム105のその次のセグメント保持部109に挿入されかつその後脚17c-2が外側ガイド部材114上に載った状態を示している。
 コイル幅大のコイルセグメント17Sとコイル幅小のコイルセグメント17SSの交互の配置が進行していくと、図40Cに示すように、2番目のコイル幅小のコイルセグメント17SSの後脚17e-1が、1番目のコイル幅大のコイルセグメント17Sの後脚17c-1よりも先に落下して配置される。後脚の落下がこのようなタイミングで生じるように外側ガイド部材114と内側ガイド部材115との周方向の長さが設定されている。
 図40Dは、1周目の配置が完了した状態を示している。ガイド部材を3段以上の構成とし、さらに複雑な配置パターンに対応できるようにすることも可能である。
 前述したように、本実施形態においては、コイル組立部2に供給されるコイルセグメントが、図41に示すように、コイル幅大のコイルセグメント17Sとコイル幅小のコイルセグメント17SSとが交互配列されている。この場合、1番目、3番目に配置するコイル幅大のコイルセグメント17Sの後脚(1)、(3)よりも2番目、4番目に配置するコイル幅小のコイルセグメント17SSの後脚(2)、(4)が先に配置されるような非単純パターンとなる。即ち、10個のコイルセグメント17S及び17SSを配列して展開すると、2番目のコイルセグメント17SS、1番目のコイルセグメント17S、4番目のコイルセグメント17SS、及び3番目のコイルセグメント17Sの後脚が、7番目のコイルセグメント17SS、8番目のコイルセグメント17S、9番目のコイルセグメント17SS、及び10番目のコイルセグメント17Sの前脚の上にそれぞれ配置されることとなる。
 図42及び図43は本発明の回転電機の製造装置のシステム構成例を概略的に示している。
 図42に示す製造システムは、回転電機の一例である複数のステータのコアが収容されているステータコアパレット180と、コア搬送ライン181と、このコア搬送ライン181のステータコアパレット180の下流側にあり、コアの位置決めやマーキングを行うレーザマーカ182と、コア搬送ライン181のレーザマーカ182の下流側にあり、ステータコアのスロットに絶縁紙を挿入する複数の絶縁紙インサータ183と、コア搬送ライン181の下流に位置しているステータ搬送ライン184と、このステータ搬送ライン184に交差(直交)して配置され、線材の切断、絶縁層剥離、1次曲げ成型、2次曲げ成形、コイル組立、及びコアへのコイル挿入を一貫してユニット化したコイル供給ラインである単一の回転電機の製造装置100とを備えている。
 図示されていないが、回転電機の製造装置100より下流側のステータ搬送ライン184には、コイルセグメント自由端側(スロット挿入部端側)を捩じるコイルツイスト部、ツイストした部分を溶接して全てのコイルセグメントが電気的に導通状態となるようにする溶接部等が配置されている。
 コイル供給ライン(回転電機の製造装置100)は、前述したように、両端部の絶縁層が剥離された所定長さの直線状の線材を供給する線材供給部3と、互いに略平行に延びる1対のスロット挿入部とこれら1対のスロット挿入部を連結する渡り部とからなるU字形状に同一平面内で1次曲げ加工する1次曲げ部4と、1次曲げ部4で曲げ加工がなされた1次曲げ成形体を上述の同一平面と交差する方向に2次曲げする2次曲げ部5と、2次曲げ部5での曲げ加工を終えたコイルセグメントを円環状に配列してコイルを組み立てるコイル組立部2と、コイル組立部2で組み立てられたコイルを押し出してステータコアのスロットに挿入する押し出し機構119とがユニット化されている。製造設備を構築する初期においては、このシステム構成例のように、単一のコイル供給ラインのみを設けて製造装置の規模を小型に構築し、初期投資を少なくすることができる。
 図43に示す製造システムは、ユニット化されたコイル供給ライン(回転電機の製造装置100)が複数(この例では6つ)ステータ搬送ライン184に交差(直交)して配置されている。製造設備構築の初期においては、図42に示したシステム構成例のように、単一のコイル供給ラインのみを設けて初期投資を少なくすることができるが、ステータの需要増に応じて、ユニット化されたコイル供給ラインの数を増やし製造規模を拡大するという効率的な設備投資を行うことが可能となる。これらコイル供給ライン(回転電機の製造装置100)はユニット化されて同じスペックであるため、最初の単一のコイル供給ラインについて生産能力の検証ができれば、後の増設では検証の必要がない。
 回転電機の製造においてどの程度の需要があるか明確に把握できない状態での設備投資は難しくリスクも大きく、想定した需要と実際の需要との間にギャップがある場合には設備の過剰投資となる。しかしながら、上述のごとく、ユニット化された同一スペックのコイル供給ラインを回転電機の需要に応じて増やしていく製造システムによれば、最小限の設備投資から回転電機の製造を実施することができ、需要の増大に応じて段階的に増産のための設備を増やすことができるので、無駄のない(リスクの少ない)設備投資が可能となる。
 以上、本発明の好ましい実施形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、上述の説明で特に限定しない限り、特許請求の範囲に記載された本発明の趣旨の範囲内において、種々の変形・変更が可能である。本発明の実施形態に記載された効果は、本発明から生じる最も好適な効果を例示したにすぎず、本発明による効果は、本発明の実施形態に記載されたものに限定されるものではない。
 1 コイルセグメント成形部
 2 コイル組立部
 3 線材供給部
 4 1次曲げ部
 5 2次曲げ部
 6 線材
 7 ボビン
 8 供給方向転換部
 9a、9b ローラ対
 10 剥離部
 11 切断部
 12 移送機構
 13 保持部材
 14A、14B、15A、15B、16A、16B 治具
 17a、17a′ 渡り部
 17b、17c スロット
 17A 1次曲げ成形体
 14A-1、14B-1、15A-1、15B-1、16A-1、16B-1 凹溝
 14A-2、14B-2、15A-2、15B-2、16A-2、16B-2 エッジ部分
 14A-3、14B-3、15A-3、15B-3、16A-3、16B-3 面取り部
 18 固定ベース
 19A、19B ガイドレール
 20A、20B、59 可動ベース
 21、27A、27B、28A、28B、60A、60B、61、63A、63B、64 駆動機構
 22、29A、29B、35A、35B、65、75、79、85、99、125、131、159 ボールネジ部
 23、30A、30B、36A、36B、66、76、80、86、87、014、126、132、160 ナット部
 24、31A、37A、31B、68、72、78、82、89、102、117、127、133、161 サーボモータ
 25、71、77、81 スライダ
 26A、26B、128a、128b、134a、134b、139A、139B アーム
 32A、32B、88 スライドプレート
 33A、33B、92、103、168 カムフォロア
 34A、34B 旋回プレート
 38A、38B 旋回駆動プレート
 39A、39B 係合凹部
 41、44 旋回中心
 45 HMI
 46 PLC
 47 第1のNCコントローラ
 48 第2のNCコントローラ
 49 制御部
 50、51 光通信ケーブル
 53A、53B、54A、54B 押圧治具
 53A―1、53-B、54A-1、54B-1 押圧面
 53A-2、53A-3、53B-2、53B-3、54A-2、54A-3 ボルト挿通孔
 53A-4、53B-4、54A-4、54B-4 角部
 55、56 押圧治具ユニット
 58 固定ベース
 58a 開口部
 62 回動ベース
 73、74、83、84 移動プレート
 90、95、96 レール部材
 91、97、98 摺動部材
 93、101a 係合溝
 94 ブラケット
 100 回転電機の製造装置
 101 係合部材
 105 セグメント配置ドラム
 106 離脱防止手段
 107 ベルト
 108 ブレード
 108a 溝
 108b テーパ面
 109、109a セグメント保持部
 110 セグメント搬送手段
 111 チャック部
 112、113 ガイド部材
 112a ガイド片
 112b、114b、115b、163 ブラケット
 112c、114c、115c ガイド面
 113 ガイド手段
 114 外側ガイド部材
 115 内側ガイド部材
 116、136、157 ベース
 118 ブレード調整機構
 119 押し出し機構
 120 ワーク支持台
 121 回転軸
 122 軸受
 123 大径ギア
 124 受け部
 128、134 スライド部材
 129 係合部
 129a 環状溝
 130 円錐カム
 135 押圧リング
 136a、165 レール
 137 支柱
 138 ワーク載置部
 138a 凹部
 140 軸
 141A、141B ラック部材
 142 ピニオンギア
 144 水平バー
 145 ホルダ
 146 可動プーリ
 147、148 固定プーリ
 149 テンションプーリ
 150 支持軸
 151、167 エアシリンダ
 152 コア
 153 挿入ガイドユニット
 154 カフスサポータ
 154a 突起
 155 カフス部
 158 駆動機構
 162 スライダ
 164 駆動爪
 164a 凹溝
 166 旋回ベース
 170 検知センサ
 180 ステータコアパレット
 181 コア搬送ライン
 182 レーザマーカ
 183 絶縁紙インサータ
 184 ステータ搬送ライン
 C 折り曲げ中心線

Claims (16)

  1.  所定長さの直線状の線材を、互いに略平行に延びる1対のスロット挿入部と該1対のスロット挿入部を連結する渡り部とからなる所定の形状に成形するコイルセグメント成形部と、前記コイルセグメント成形部で成形されたコイルセグメントを円環状に配列してコイルを組み立てるコイル組立部とを備えており、前記コイルセグメント成形部及び前記コイル組立部は、製造すべきコイルに応じて設定された制御情報に基づき、成形及び組立を各コイルセグメント単位で連続して行うように構成されていることを特徴とする回転電機の製造装置。
  2.  前記コイルセグメント成形部が、前記線材を同一平面内で1次曲げ加工する1次曲げ部と、該1次曲げ部で曲げ加工がなされた1次曲げ成形体を前記同一平面と交差する方向に2次曲げ加工する2次曲げ部とを有しており、前記1次曲げ部及び前記2次曲げ部は、前記設定された制御情報に基づき、1次曲げ加工及び2次曲げ加工を各コイルセグメント単位で連続して行うように構成されていることを特徴とする請求項1に記載の回転電機の製造装置。
  3.  所定長さの直線状の線材を供給する線材供給部をさらに備えており、該線材供給部、前記コイルセグメント成形部及び前記コイル組立部は、前記設定された制御情報に基づき、コイルセグメントの供給、成形及び組立を各コイルセグメント単位で連続して行うように構成されていることを特徴とする請求項1に記載の回転電機の製造装置。
  4.  前記コイル組立部で組み立てられた組立コイルを、該組立コイルの軸心方向に押し出し、前記組立コイルと同軸に配置されたコアのスロット内に挿入するコイル挿入機構をさらに備えていることを特徴とする請求項1から3のいずれか1項に記載の回転電機の製造装置。
  5.  コアを有するステータ又はロータを供給するワーク供給ラインと、該ワーク供給ラインに接続されており、前記コイルセグメント成形部、前記コイル組立部及び前記コイル挿入機構を有するコイル供給ラインとが設けられており、該コイル供給ラインの前記コイル挿入機構が前記ワーク供給ラインから供給された前記コアのスロット内に前記組立コイルを挿入するように構成されていることを特徴とする請求項4に記載の回転電機の製造装置。
  6.  前記コイル供給ラインがユニット化されており、該コイル供給ラインのユニットが回転電機の需要に応じて複数設けられていることを特徴とする請求項5に記載の回転電機の製造装置。
  7.  前記1次曲げ部は、前記同一平面内に配置され前記線材を支持する複数の治具と、前記複数の治具を、成形すべきコイルセグメントの形状条件に応じてそれぞれ設定された移動量に基づいて前記線材が前記所定の形状となるように前記同一平面内でそれぞれ移動させる複数の1次曲げ駆動機構とを有していることを特徴とする請求項2に記載の回転電機の製造装置。
  8.  前記複数の1次曲げ駆動機構が、設定された移動量のデータに基づいて前記複数の治具をそれぞれ旋回又は直線移動させるように構成されていることを特徴とする請求項7に記載の回転電機の製造装置。
  9.  前記2次曲げ部は、前記同一平面と交差する方向で互いに対向して配置されておりかつ前記渡り部を挟持して押圧する複数対の押圧治具と、前記複数対の押圧治具を、成形すべきコイルセグメントの形状条件に応じてそれぞれ設定された移動量に基づいて前記同一平面と交差する方向にそれぞれ移動させる複数の2次曲げ駆動機構とを有していることを特徴とする請求項2に記載の回転電機の製造装置。
  10.  前記複数の2次曲げ駆動機構が、設定された移動量のデータに基づいて前記複数対の押圧治具をそれぞれ移動させるように構成されていることを特徴とする請求項9に記載の回転電機の製造装置。
  11.  前記複数の2次曲げ駆動機構が、前記複数対の押圧治具を前記同一平面と直交する方向及び/又は該同一平面に対して斜めの方向に移動させて前記渡り部に前記同一平面と交差する方向のずれを形成するように構成されていることを特徴とする請求項9に記載の回転電機の製造装置。
  12.  前記コイル組立部が、前記コイルセグメントを放射方向外側からそれぞれ挿入可能な複数のセグメント保持部が周方向に沿って円環状に配列されており、中心軸の回りを回転可能なセグメント配置体と、前記セグメント配置体が第1の所定角度回転する毎に前記複数のコイルセグメントの各々の前記1対のスロット挿入部のうちの一方のスロット挿入部を前記複数のセグメント保持部の1つのセグメント保持部に案内して挿入させ、該一方のスロット挿入部の挿入から第2の所定角度回転した際に、前記1対のスロット挿入部のうちの他方のスロット挿入部を前記複数のセグメント保持部の他の1つのセグメント保持部に案内して挿入させるように構成されたガイド手段とを備えていることを特徴とする請求項1に記載の回転電機の製造装置。
  13.  所定長さの直線状の線材を、互いに略平行に延びる1対のスロット挿入部と該1対のスロット挿入部を連結する渡り部とからなる所定の形状に成形するコイルセグメント成形工程と、前記成形工程で成形されたコイルセグメントを円環状に配列してコイルを組み立てるコイル組立工程とを備えており、前記コイルセグメント成形工程及び前記コイル組立工程は、製造すべきコイルに応じて設定された制御情報に基づき、各コイルセグメント単位で連続して成形及び組立を行うことを特徴とする回転電機の製造方法。
  14.  前記コイルセグメント成形工程が、前記線材を同一平面内で1次曲げ加工する1次曲げ工程と、該1次曲げ工程で曲げ加工がなされた1次曲げ成形体を前記同一平面と交差する方向に2次曲げ加工する2次曲げ工程とを備えており、前記1次曲げ工程及び前記2次曲げ工程は、前記設定された制御情報に基づき、1次曲げ加工及び2次曲げ加工を各コイルセグメント単位で連続して行うことを特徴とする請求項13に記載の回転電機の製造方法。
  15.  所定長さの直線状の線材を供給する線材供給工程をさらに備えており、該線材供給工程、前記コイルセグメント成形工程及び前記コイル組立工程は、前記設定された制御情報に基づき、コイルセグメントの供給、成形及び組立を各コイルセグメント単位で連続して行うことを特徴とする請求項13に記載の回転電機の製造方法。
  16.  前記コイル組立工程で組み立てられた組立コイルを、該組立コイルの軸心方向に押し出し、前記組立コイルと同軸に配置されたコアのスロット内に挿入するコイル挿入工程をさらに備えていることを特徴とする請求項13に記載の回転電機の製造方法。
PCT/JP2018/019045 2017-09-11 2018-05-17 回転電機の製造装置及び製造方法 WO2019049432A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880003530.8A CN109792196B (zh) 2017-09-11 2018-05-17 旋转电机的制造装置以及制造方法
EP18853175.0A EP3503361B1 (en) 2017-09-11 2018-05-17 Rotary electric machine manufacturing device and manufacturing method
US16/281,461 US11018563B2 (en) 2017-09-11 2019-02-21 Manufacturing apparatus and manufacturing method of electrical rotating machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-173985 2017-09-11
JP2017173985A JP6458105B1 (ja) 2017-09-11 2017-09-11 回転電機の製造システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/281,461 Continuation US11018563B2 (en) 2017-09-11 2019-02-21 Manufacturing apparatus and manufacturing method of electrical rotating machine

Publications (1)

Publication Number Publication Date
WO2019049432A1 true WO2019049432A1 (ja) 2019-03-14

Family

ID=65037003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019045 WO2019049432A1 (ja) 2017-09-11 2018-05-17 回転電機の製造装置及び製造方法

Country Status (5)

Country Link
US (1) US11018563B2 (ja)
EP (1) EP3503361B1 (ja)
JP (1) JP6458105B1 (ja)
CN (1) CN109792196B (ja)
WO (1) WO2019049432A1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6430599B1 (ja) * 2017-08-04 2018-11-28 株式会社小田原エンジニアリング コイルセグメント成形装置、コイルセグメント成形方法及び回転電機の製造装置
JP6779527B2 (ja) * 2017-08-04 2020-11-04 株式会社小田原エンジニアリング コイル組立装置、コイル組立方法及び回転電機の製造装置
JP6570100B1 (ja) * 2017-11-14 2019-09-04 株式会社小田原エンジニアリング コイル形成装置及びコイル形成方法
IT201800006494A1 (it) * 2018-06-20 2019-12-20 Apparato e metodo per il modellamento di hairpin
AT521580A1 (de) * 2018-09-12 2020-03-15 Miba Ag Verfahren zum Bereitstellen von Formstäben
DE102019120262A1 (de) * 2019-07-26 2021-01-28 Grob-Werke Gmbh & Co. Kg Kranzanordnungsvorrichtung und Kranzanordnungsverfahren
DE102019211859A1 (de) * 2019-08-07 2021-02-11 Felsomat Gmbh & Co. Kg Fertigungssystem und Verfahren zum Fertigen eines Stators mit Stableitern
KR20210041331A (ko) * 2019-10-07 2021-04-15 현대자동차주식회사 헤어핀 타입 고정자 코일 성형장치 및 성형방법
US11218060B2 (en) * 2019-11-07 2022-01-04 GM Global Technology Operations LLC Manual wire forming press for bar wound electric motor assembly
KR20210075530A (ko) * 2019-12-13 2021-06-23 현대자동차주식회사 헤어핀 타입 고정자 코일 성형 시스템용 코일 밴딩 장치
DE102019219587A1 (de) * 2019-12-13 2021-06-17 Otto Bihler Handels-Beteiligungs-Gmbh Maschine und Verfahren zum Herstellen von gebogenen Drahtbauteilen
JP6947807B2 (ja) * 2019-12-27 2021-10-13 本田技研工業株式会社 コイル成形装置
CN111082610B (zh) * 2020-01-01 2021-11-19 广东纵奇自动化股份有限公司 一种方便换模的定子线圈整型机
JP7042294B2 (ja) * 2020-03-18 2022-03-25 本田技研工業株式会社 ワイヤ位置修正方法及びワイヤ位置修正装置
CN111509926B (zh) * 2020-04-10 2021-10-26 安徽巨一科技股份有限公司 一种扁线发卡插入定子的定位导向装置
CN115461963A (zh) * 2020-05-13 2022-12-09 日立安斯泰莫株式会社 电动机的定子以及电动机的定子制造方法
KR102235661B1 (ko) * 2020-06-03 2021-04-02 (주)디케이텍인더스트리 헤어핀 제조 장치
KR102235668B1 (ko) * 2020-06-03 2021-04-02 (주)디케이텍인더스트리 헤어핀 제조 장치
KR102235674B1 (ko) * 2020-06-03 2021-04-02 (주)디케이텍인더스트리 헤어핀 제조 장치
KR102263180B1 (ko) * 2020-09-16 2021-06-10 (주)디케이텍인더스트리 듀얼 cnc 타입 헤어핀 제조 장치
JP7222007B2 (ja) * 2021-03-08 2023-02-14 本田技研工業株式会社 コイル成形装置及びコイル成形方法
DE102021108432A1 (de) * 2021-04-01 2022-10-06 Aumann Beelen Gmbh Verfahren und Biegevorrichtung zum Biegen eines Drahtabschnitts für ein Spulenelement einer Drahtspule für eine elektrische Maschine
CN113145389B (zh) * 2021-05-07 2022-05-03 潘登 一种无刷直流电机的线圈生产浸漆装置
IT202100017636A1 (it) 2021-07-05 2023-01-05 Tecnomatic Spa Metodo e apparato di assemblaggio di un avvolgimento di hairpin
CN113726111B (zh) * 2021-08-23 2022-09-16 浙江德浔科技有限公司 一种绑线整形一体机
CN114669690B (zh) * 2022-03-03 2022-11-22 三谷科技(东莞)有限公司 一种无刷电机绕组线径的计算装置
IT202200006170A1 (it) 2022-03-29 2023-09-29 Tecnomatic Spa Sistema e procedimento di assemblaggio di un avvolgimento statorico o rotorico
DE102022206997A1 (de) * 2022-07-08 2024-01-11 Felsomat Gmbh & Co. Kg Sortiermaschine und Fertigungsanlage sowie Sortierverfahren für Stableiter
CN116846170A (zh) * 2023-06-30 2023-10-03 深圳市金岷江智能装备有限公司 移线装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06284651A (ja) * 1993-12-27 1994-10-07 Mitsubishi Electric Corp 電動機のコイルの製造方法
JP2006149049A (ja) * 2004-11-18 2006-06-08 Denso Corp 車両用回転電機
JP2012151996A (ja) * 2011-01-19 2012-08-09 Toyota Motor Corp コイルセグメント環状配列方法、コイルセグメント環状配列装置、及びステータ
JP2015061390A (ja) * 2013-09-18 2015-03-30 本田技研工業株式会社 配置装置および配置方法
JP2016063588A (ja) * 2014-09-17 2016-04-25 株式会社デンソー 固定子コイルの製造方法及びその製造方法に用いる仮組み装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU612351A1 (ru) * 1976-03-31 1978-06-25 Специальное Конструкторское Бюро N3 Устройство дл изготовлени и укладки одновитковых секций
JPH0687644B2 (ja) * 1986-06-25 1994-11-02 三菱電機株式会社 電動機のコイルの製造方法
JP2000166192A (ja) * 1998-12-01 2000-06-16 Sadamichi Kumada 電動機のコイル形成装置
JP3791426B2 (ja) * 2001-02-20 2006-06-28 日産自動車株式会社 コイル挿入方法および装置
JP2003324911A (ja) * 2002-04-30 2003-11-14 Toyota Motor Corp コイルセグメントの環状配列装置およびコイルセグメントの環状配列方法
JP2004072839A (ja) * 2002-08-02 2004-03-04 Toyota Motor Corp コイルセグメントの環状整列治具および環状整列方法
JP3975891B2 (ja) * 2002-11-18 2007-09-12 トヨタ自動車株式会社 コイルセグメントの円環整列方法、および円環整列装置
JP2009011116A (ja) * 2007-06-29 2009-01-15 Hitachi Ltd 渡り導体部がクランク形状の波巻きコイルを備えた回転電機、分布巻固定子並びにそれらの成形方法及び成形装置
JP4600487B2 (ja) * 2008-02-13 2010-12-15 株式会社デンソー 周方向展開ステータコイルの製造方法及びこの周方向展開ステータコイルを用いたモータ
JP4506895B2 (ja) * 2008-04-07 2010-07-21 株式会社デンソー 波巻きステータコイルの製造方法
JP5641635B2 (ja) * 2009-04-24 2014-12-17 日特エンジニアリング株式会社 巻線機及びそれを用いる連続コイルの製造方法
JP5699928B2 (ja) * 2011-04-28 2015-04-15 株式会社デンソー ステータコイルの成形装置および成形方法
WO2013046316A1 (ja) * 2011-09-27 2013-04-04 トヨタ自動車株式会社 セグメントコイル製造方法、セグメントコイル製造装置、及びそれを用いたセグメントコイル
JP2014007793A (ja) * 2012-06-21 2014-01-16 Denso Corp ステータコイルの製造装置
JP5936270B2 (ja) * 2012-09-20 2016-06-22 日特エンジニアリング株式会社 巻線装置及び巻線方法
JP6166046B2 (ja) * 2013-01-11 2017-07-19 トヨタ自動車株式会社 セグメント製造方法、及びセグメント製造装置
JP2014180138A (ja) * 2013-03-14 2014-09-25 Toshiba Corp 回転電機の組立機、および回転電機の製造方法
JP5749772B2 (ja) * 2013-09-18 2015-07-15 本田技研工業株式会社 挿入方法および挿入装置
DE112014006245T5 (de) * 2014-01-23 2016-10-06 Mitsubishi Electric Corporation Herstellungsverfahren für eine Statorwicklungsspule
JP6288266B2 (ja) * 2014-06-05 2018-03-07 アイシン・エィ・ダブリュ株式会社 ステータの組立方法およびステータの組立装置
CN105790528B (zh) * 2016-03-28 2017-12-05 河北工业大学 嵌线机
CN106059217B (zh) * 2016-06-28 2018-09-14 江苏东旭亿泰智能装备有限公司 线圈涨形机
CN106558950B (zh) * 2016-11-22 2018-07-13 常州金康精工机械股份有限公司 电机定子线圈整形模具以及双动力整形装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06284651A (ja) * 1993-12-27 1994-10-07 Mitsubishi Electric Corp 電動機のコイルの製造方法
JP2006149049A (ja) * 2004-11-18 2006-06-08 Denso Corp 車両用回転電機
JP2012151996A (ja) * 2011-01-19 2012-08-09 Toyota Motor Corp コイルセグメント環状配列方法、コイルセグメント環状配列装置、及びステータ
JP2015061390A (ja) * 2013-09-18 2015-03-30 本田技研工業株式会社 配置装置および配置方法
JP2016063588A (ja) * 2014-09-17 2016-04-25 株式会社デンソー 固定子コイルの製造方法及びその製造方法に用いる仮組み装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3503361A4 *

Also Published As

Publication number Publication date
JP2019050677A (ja) 2019-03-28
JP6458105B1 (ja) 2019-01-23
US20190190359A1 (en) 2019-06-20
EP3503361A1 (en) 2019-06-26
US11018563B2 (en) 2021-05-25
EP3503361A4 (en) 2020-06-10
CN109792196A (zh) 2019-05-21
CN109792196B (zh) 2022-03-22
EP3503361B1 (en) 2022-11-30

Similar Documents

Publication Publication Date Title
JP6458105B1 (ja) 回転電機の製造システム
JP6423931B1 (ja) コイルセグメント成形装置、コイルセグメント成形方法及び回転電機の製造装置
JP6430599B1 (ja) コイルセグメント成形装置、コイルセグメント成形方法及び回転電機の製造装置
EP3664264B1 (en) Coil assembling device, coil assembling method, and rotating electric machine manufacturing device
KR102209191B1 (ko) 전기 기계의 회전자 또는 고정자를 제조하기 위한 방법 및 장치
WO2019093515A1 (ja) コイルセグメント加工方法、コイルセグメント加工装置及びコイルセグメントの接続構造
JP6570100B1 (ja) コイル形成装置及びコイル形成方法
EP3868006A1 (en) Apparatus and method for manufacturing a stator
US4296543A (en) Method of and apparatus for fabricating stator assemblies of electrical machines
US7334445B2 (en) Method for producing an end lug of a spring member formed of a strand of wire, and apparatus for manufacturing same
EP3546105B1 (en) Plant for and method of manufacturing electro-welded metal meshes
JP7401507B2 (ja) 導体成形装置及び波巻コイルの製造方法
EP4279199A1 (en) Apparatus for providing chains and/or cables for jewelry
KR20230091117A (ko) 와이어 가공 센터
JP2023179738A (ja) ヘアピンコンダクタの製造装置及び製造方法
JP2023182797A (ja) ヘアピンコンダクタの製造装置及び製造方法
JPH11345565A (ja) 電子銃のリード組付け方法及びその装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018853175

Country of ref document: EP

Effective date: 20190321

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE