WO2019049395A1 - 分析装置および分析方法 - Google Patents

分析装置および分析方法 Download PDF

Info

Publication number
WO2019049395A1
WO2019049395A1 PCT/JP2018/008048 JP2018008048W WO2019049395A1 WO 2019049395 A1 WO2019049395 A1 WO 2019049395A1 JP 2018008048 W JP2018008048 W JP 2018008048W WO 2019049395 A1 WO2019049395 A1 WO 2019049395A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
analyzed
dilution
test solution
measurement
Prior art date
Application number
PCT/JP2018/008048
Other languages
English (en)
French (fr)
Inventor
和哉 西村
洋介 土居
祐子 福本
詩勤 呉
Original Assignee
アルフレッサファーマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルフレッサファーマ株式会社 filed Critical アルフレッサファーマ株式会社
Priority to EA202090630A priority Critical patent/EA202090630A1/ru
Priority to KR1020207009931A priority patent/KR102593221B1/ko
Priority to US16/645,620 priority patent/US20230152215A1/en
Priority to JP2019540749A priority patent/JP7282035B2/ja
Priority to MX2020002450A priority patent/MX2020002450A/es
Priority to SG11202002072PA priority patent/SG11202002072PA/en
Priority to EP18854378.9A priority patent/EP3680664A4/en
Priority to CN201880058304.XA priority patent/CN111051887B/zh
Priority to CA3075248A priority patent/CA3075248C/en
Publication of WO2019049395A1 publication Critical patent/WO2019049395A1/ja
Priority to JP2022093468A priority patent/JP2022120079A/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/272Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration for following a reaction, e.g. for determining photometrically a reaction rate (photometric cinetic analysis)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5302Apparatus specially adapted for immunological test procedures
    • G01N33/5304Reaction vessels, e.g. agglutination plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/82Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a precipitate or turbidity
    • G01N2021/825Agglutination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/127Calibration; base line adjustment; drift compensation

Definitions

  • the present invention relates to an analyzer and an analysis method of a test solution containing an immunoreagent using the agglutination method and a component to be analyzed, a diluter and a dilution method, and an immunoreagent used for them.
  • a measuring method using an immune reaction to measure a substance in a biological sample is widely used.
  • an immunoassay method there are many methods such as RIA method, EIA method, immunoturbidimetric method, latex agglutination method, gold colloid agglutination method, immunochromatography method and the like.
  • immunological aggregation methods such as latex aggregation method and gold colloid aggregation method are suitable for automation of measurement and measurement in a short time since separation of reaction solution and washing operation are not required.
  • the prozone phenomenon is a phenomenon in which the reaction is suppressed and it is judged as apparently absent or low concentration because the target component in the actual sample is high concentration.
  • Patent Document 1 a method of suppressing the phenomenon by adding a surfactant or the like without performing dilution
  • Patent Documents 2 and 3 a specific concentration such as serum amyloid A or C reactive protein
  • the measurement range of the target component is generally about 10 to 50 times the reference level, but high concentration samples out of such measurement range are diluted or measured before the measurement.
  • Some complicated and accurate operations have been carried out, such as uniform dilution before and after, and repeated dilution until it can be measured many times.
  • there is a high need for quantitative measurement at clinical sites for components with a very wide concentration range such as fecal calprotectin having a concentration distribution of about 10,000 times, fecal hemoglobin, fecal hemoglobin and fecal lactoferrin etc. .
  • Patent Document 1 Patent No. 3851807
  • Patent Document 2 Patent No. 4413179
  • Patent Document 3 Patent Document No. 2009-85702
  • the present invention refers to the result of measurement of absorbance during the reaction process (also referred to as the amount of change in absorbance, etc.) when measuring a test solution containing an immunoreagent and a sample.
  • the present invention provides an analyzer and an analysis method which predicts the concentration even if it is a high concentration sample that may fall outside the measurement range as it is, using the ratio etc.), and determine the optimal dilution factor to perform measurement.
  • the purpose is
  • An object of the present invention is to provide an analyzer and an analysis method for determining an optimal dilution ratio, performing the dilution and performing measurement (dilution re-examination), and an immunoreagent used therefor.
  • the concentration is predicted even if it is a high concentration sample that may fall outside the measurement range using the absorbance measurement result in the reaction process as it is.
  • the purpose is to determine the optimal dilution ratio and to provide a dilution device and a dilution method for performing the dilution.
  • Another object of the present invention is to provide the above-mentioned analysis device and analysis method, and the above-mentioned dilution device and immunity reagent suitably used for the dilution method.
  • the analyzer of the present invention is An analyzer for a test solution containing an immune reagent and a component to be analyzed using an agglutination method, comprising: A means (A) for detecting a prozone during the measurement of the component to be analyzed, and A means (B) for automatically determining the dilution ratio of the test solution, determining the high concentration region, It is characterized by having.
  • the means (A) for detecting the prozone may be a detection means using a result of absorbance measurement in the reaction process of the component to be analyzed.
  • the detection means may be a detection means for detecting a prozone with reference to a change in absorbance in the reaction process of the sample for calibration of the component to be analyzed measured in advance.
  • the means (B) for determining the high concentration region is a determination means for determining the dilution ratio of the test solution using the absorbance measurement result in the reaction process of the component to be analyzed. May be
  • the determination means is a determination means for determining the dilution ratio of the test solution with reference to a change in absorbance in the reaction process of the calibration sample of the component to be analyzed measured in advance. It is also good.
  • the analyzer according to the present invention may further comprise means (C) for diluting the test solution to the dilution ratio determined by the means (B) for determining the high concentration range.
  • the component to be analyzed may include a component derived from a living body.
  • the analyzer of the present invention is An analyzer for a test solution containing an immune reagent and a component to be analyzed using an agglutination method, comprising: A means (A) for detecting a prozone during the measurement of the component to be analyzed, and A means (D) for outputting the concentration of the component to be analyzed from the result of absorbance measurement in the reaction process of the component to be analyzed without dilution retest; It is characterized by having.
  • the analyzer according to the present invention may have the above means (D) for outputting the concentration of the component to be analyzed using the first time exceeding the threshold value instead of the absorbance measurement result in the above reaction process.
  • the above-mentioned means (D) which performs non-linear fitting on the absorbance measurement result (y) and the reaction time (x) in the reaction process, extracts parameters and outputs the concentration of the component to be analyzed It may have the
  • the non-linear fit is a cumulative distribution function, a unit obtained by adding a proportional constant and / or a constant term to the cumulative distribution function, and outputting the concentration of the component to be analyzed It may have D).
  • the analysis apparatus of the present invention may have the above-mentioned means (D) for outputting the concentration of the component to be analyzed using the mode value of the probability density function obtained by differentiating the cumulative distribution function as a parameter. .
  • the cumulative distribution function may be any of normal distribution, exponential distribution, binomial distribution, logistic distribution, and gamma distribution. It may have the
  • the analysis method of the present invention is A method for analyzing a test solution containing an immune reagent and an analyte component using an agglutination method, comprising: Detecting a prozone during the measurement of the component to be analyzed, (a), A step (b) of automatically determining a dilution ratio of the test solution, and determining a high concentration region; It is characterized by having.
  • prozone detection in the step (a) of detecting the prozone, prozone detection may be performed using a result of absorbance measurement in a reaction process of the component to be analyzed.
  • the prozone is detected with reference to the absorbance measurement result in the reaction process of the sample for calibration of the component to be analyzed measured in advance. It may be
  • the dilution ratio of the test solution is determined using the absorbance measurement result in the reaction process of the component to be analyzed. It is also good.
  • step (b) of determining the high concentration region dilution of the test solution is performed with reference to the absorbance measurement result in the reaction process of the calibration sample of the component to be analyzed measured in advance.
  • the scaling factor may be determined.
  • the analysis method of the present invention may further include the step (c) of diluting the test solution to the dilution ratio determined in the step (b) of determining the high concentration region.
  • the component to be analyzed may include a component derived from a living body.
  • the analysis method of the present invention is A method for analyzing a test solution containing an immune reagent and an analyte component using an agglutination method, comprising: Detecting a prozone during the measurement of the component to be analyzed, (a), Outputting the concentration of the target component from the absorbance measurement result in the reaction process of the target component without dilution retesting, (d) It is characterized by having.
  • the analysis method of the present invention may include the step (d) of outputting the concentration of the component to be analyzed using the first time exceeding the threshold instead of the absorbance measurement result in the reaction process.
  • the step (d) of performing nonlinear fit on the absorbance measurement result (y) and the reaction time (x) in the reaction process, extracting parameters, and outputting the concentration of the component to be analyzed may have the
  • the non-linear fit is a cumulative distribution function
  • the analysis method of the present invention may further include the step (d) of outputting the concentration of the component to be analyzed using the mode value of the probability density function obtained by differentiating the cumulative distribution function as a parameter. .
  • the cumulative distribution function outputs the concentration of the component to be analyzed using any one of a normal distribution, an exponential distribution, a binomial distribution, a logistic distribution, and a gamma distribution (d) It may have the
  • the dilution device of the present invention is An apparatus for diluting a test solution containing an immunoreagent using the agglutination method and a component to be analyzed, A means (A) for detecting prozone during the measurement of the component to be analyzed, A means (B) for automatically determining the dilution ratio of the test solution, a means (B) for determining a high concentration range, and A means (C) for diluting the test solution to a dilution factor determined by the means (B) for determining the high concentration range; It is characterized by having.
  • the dilution method of the present invention is A method for diluting a test solution containing an immunoreagent and an analyte according to the agglutination method, comprising: Detecting a prozone during measurement of the component to be analyzed (a), A step (b) of automatically determining a dilution ratio of the test solution, determining a high concentration range, and Diluting the test solution to the dilution factor determined in the step (b) of determining the high concentration region; (c) It is characterized by having.
  • the immunoreagent of the present invention is the above-mentioned analyzer and analysis method, and the immunoreagent used for the above-mentioned dilution device and dilution method, and in the means (B) or step (b) for determining the high concentration range.
  • the present invention is characterized in that it is an immunoreagent designed so that the upper limit concentration that can be measured without dilution is 0.5 to 1 times the concentration generated by prozone.
  • a component derived from a living body may be used as an antigen or an antibody.
  • the means (A) and step (a) for detecting prozone during measurement of the component to be analyzed, and the dilution factor of the test solution are automatically determined Because it has means (B) for determining the concentration range and step (b), even when measuring a test solution containing a high concentration sample and an immunizing reagent, it is used as it is, using the amount of change in absorbance etc. in the reaction process. In this case, it is possible to predict the concentration even for a high concentration sample that may fall outside the measurement range, determine the optimal dilution factor, and perform the measurement.
  • the high concentration determination may be a function of performing determination as to whether or not to fall within the measurement range by 10-fold dilution when it is detected as a high concentration by prozone detection.
  • the high concentration determination may be a function of performing determination as to whether or not to fall within the measurement range by 10-fold dilution when it is detected as a high concentration by prozone detection.
  • test solution is diluted to the dilution ratio determined by the step (C) of diluting the test solution to the dilution ratio determined by the high concentration region determination unit (B) or the step (b) of determining the high concentration region
  • step (c) even when measuring a test solution containing a high concentration of the sample and the immunizing reagent, using the amount of change in absorbance etc. during the reaction process, it falls outside the measurement range as it is. Even if it is a high concentration sample to be obtained, the concentration can be predicted, the optimal dilution factor can be determined, and the measurement can be performed by performing the dilution.
  • the dilution may be performed by automatically or manually diluting the component to be analyzed to a dilution ratio determined with a dilution solution or the like. Therefore, measurement of a high concentration sample, which has been difficult until now, can be performed quickly and more accurately, without putting a burden on the measurer, and changes in the patient's symptoms can be easily observed and diagnosed. For example, samples from severe patients may have high concentrations, and each follow-up dilution involves a series of dilution operations, which has a drawback in rapidity and accuracy, but this method should be grasped simply and quickly Is possible. In addition, by automating all or part of the dilution means, it is possible to perform an analysis device capable of simpler and quick measurement and analysis.
  • the analyzer and the analysis method of the present invention when measuring the test solution containing the immunoreagent and the sample, using a change in absorbance etc. in the reaction process, a high concentration sample which may fall outside the measurement range as it is Even in this case, output of concentration can be performed without dilution retest.
  • automating all or part of the above means and steps more simple and quick measurement and analysis become possible.
  • the dilution apparatus and the dilution method of the present invention when measuring the test solution containing the immunoreagent and the sample, a high concentration sample which may fall outside the measurement range as it is using the change in absorbance etc. in the reaction process. Even the concentration can be predicted, the optimal dilution factor can be determined, and the dilution can be performed. In addition, by automating all or part of the above means and steps, it is possible to carry out simple and quick measurement and analysis.
  • the upper limit concentration that can be measured without dilution is 0.5 times the concentration generated by prozone Therefore, the above-mentioned analyzer and analysis method, and the above-mentioned dilution apparatus and dilution method can be made simpler and faster.
  • Example 1-1 of the present invention are shown.
  • the measurement results etc. in Example 1-2 of the present invention are shown.
  • the measurement result etc. in Example 2 of this invention are shown.
  • the measurement result etc. in Example 3 of this invention are shown.
  • the measurement results etc. in Example 4 of the present invention and comparative example 1 are shown.
  • the measurement results etc. in Examples 4 to 6 of the present invention are shown.
  • Explanatory drawing regarding calculation of (DELTA) T in Example 7 of this invention is shown.
  • Example 7 of this invention The measurement result etc. in Example 7 of this invention are shown.
  • the explanatory drawing in Example 8 of this invention is shown.
  • the explanatory drawing in Example 8 of this invention is shown.
  • the fitting result by gamma distribution is shown in Example 8 of the present invention.
  • the calculation result of the inflexion point in Example 8 of this invention is shown.
  • the result of the correlation of the inflexion point of high concentration calprotectin in Example 8 of this invention is shown.
  • the concentration of the antigen or antibody in the sample is measured based on the amount of change in absorbance.
  • the absorbance change amount and concentration show a monotonous increase in the measurement range (the region shown as “measurement range” in FIG. 1), the region shown as the “prozone region” in FIG. 1 In the above, the amount of change in absorbance tends to decrease depending on the concentration of the sample.
  • prozone area prozone area
  • FIG. 2 exemplifies an explanatory diagram concerning the initial reaction rate.
  • the absorbance differences (Abs) between the reaction times t a and t b are Abs a and Abs b
  • the initial reaction rate V1 is defined as shown in the equation shown in FIG.
  • the initial reaction rate of the sample for calibration of the component to be analyzed is defined as V1 std .
  • the relative ratio of the initial reaction rate V1 to the initial reaction rate V1 std in the calibration sample is defined as V1 / V1 std as a relative initial reaction rate.
  • FIG. 3 exemplifies an explanatory diagram regarding the reaction rate ratio.
  • the reaction rate ratio R of the initial reaction rate V1 during the reaction time t a , t b to the reaction rate V 2 during the reaction time t c , t d is shown in FIG. It defines as V1).
  • the reaction time t c, the reaction time t a for the reaction rate V2 std between t d, the initial reaction rate between t b in FIG. 3 and the reaction rate ratio R std of V1 std It is defined as the following expression (V2 std / V1 std ).
  • a relative ratio of the reaction rate ratio R to the reaction rate ratio R std in the calibration sample is defined as a relative reaction rate ratio R / R std .
  • FIG. 4 illustrates an explanatory diagram regarding the measurement flow in the present invention.
  • FIG. 4 illustrates a measurement flow including a calibration process using a calibration sample of the component to be analyzed and a measurement process of the component to be analyzed as the measurement flow
  • the present invention is not limited thereto.
  • the reaction between the calibration sample of the analyte component with a clear concentration and the immunoreagent is started, and the reaction is measured until the end of the reaction, and the calibration curve of the absorbance change is created
  • the reaction rate V1 std and the reaction rate ratio R std are calculated.
  • the reaction between the component to be analyzed and the immunoreagent is started, and in the reaction process (until the end of the reaction), whether the sample is prozone or not using the reaction rate V1 std If it is determined that the sample is in the measurement range, the reaction is terminated as it is, and then the measurement result is output or recorded to complete the measurement. . On the other hand, if it is determined that the sample is in the pro zone in the pro zone determination, then it is determined how high the concentration is (high concentration determination). In the high concentration determination, the above reaction rate ratio R std is used. In other words, prozone detection determines whether the sample is to be diluted, and high concentration determination determines the appropriate dilution factor.
  • the appropriate dilution factor is a dilution factor for bringing a high concentration sample into the measurement range.
  • 10-fold dilution is an appropriate dilution factor for a 2000 U / mL sample, and 100-fold for an 20000 U / mL sample.
  • the high concentration determination is a function to estimate the concentration even in a prozone region sample exceeding the upper limit of the measurement range and to determine an appropriate dilution factor.
  • the measurement range can be divided into two steps, that is, the measurement range can be obtained by 10-fold dilution and the measurement range can be obtained by 100-fold dilution, and the measurement range can be determined by 100-fold dilution.
  • An example of performing high concentration determination is shown, but the dilution ratio and the flow after determination are not limited to this, and the dilution ratio may be appropriately set according to the measurement range and reaction behavior of the component to be analyzed and the immune reagent. Can.
  • the dilution re-examination is performed 10-fold dilution, and the reaction between the component to be analyzed and the immunoreagent is started again. After the reaction is finished, the measurement result is output or recorded to complete the measurement.
  • 100-fold dilution is carried out when performing dilution retest. The reaction between the component to be analyzed and the immunoreagent is started again, and the reaction is terminated as it is, and then the measurement result is output or recorded to complete the measurement.
  • the high concentration prepared in advance instead of the above high concentration determination
  • the concentration can be output from the calibration curve. In this case, quantitative evaluation can be performed without performing dilution retest.
  • the time course data was fitted with a mathematical formula in which a correction term was added to the cumulative function of Y distribution, and parameters were extracted. There is a linear relationship between the value obtained by dividing the parameter and the concentration, and can be used as a calibration curve.
  • the analyzer of the present invention is An analyzer for a test solution containing an immune reagent and a component to be analyzed using an agglutination method, comprising: A means (A) for detecting a prozone during the measurement of the component to be analyzed, and A means (B) for automatically determining the dilution ratio of the test solution, determining the high concentration region, It is characterized by having.
  • the analyzer determines the high concentration region, which automatically determines the means (A) for detecting the prozone during the measurement of the component to be analyzed, and the dilution ratio of the test solution.
  • Means (B) and it is possible to fall outside the measurement range as it is, using the amount of change in absorbance etc. during the reaction process, even when measuring a test solution containing a high concentration sample and the immunoreagent.
  • the concentration of the sample is also predicted, the optimum dilution ratio is determined, and an accurate measurement can be performed in a short time.
  • automatizing all or part of the above means it becomes an analyzer capable of simpler and quick measurement and analysis.
  • means (A) for detecting the prozone during the measurement of the component to be analyzed there can be mentioned, for example, a means for calculating the initial reaction rate V1 and making a determination using a preset threshold value.
  • a means for calculating the initial reaction rate V1 and making a determination using a preset threshold value By means of determination based on the velocity of the initial stage after the start of measurement, prozone detection becomes possible even at the initial stage of the reaction. For example, in the measurement flow of 10 minutes or 15 minutes for measurement of one sample, prozone detection can be performed around 1 minute of the reaction start.
  • the means (A) for detecting the prozone may be a detection means using an amount of change in absorbance or the like in the reaction process of the component to be analyzed.
  • the amount of change in absorbance in the present invention may be the amount of change in absorbance at a specific wavelength, or may be the amount of change in the difference between absorbances at two specific wavelengths.
  • a gold colloid reagent it is measured in light of two wavelengths, a main wavelength of 540 nm (the maximum absorption wavelength of gold colloid particles decreasing due to reaction) and a sub wavelength 660 nm (the absorption wavelength of gold colloid particles increasing with reaction)
  • the difference between the absorbances can also be used.
  • the detection means may be a detection means for detecting a prozone with reference to a change in absorbance in the reaction process of the sample for calibration of the component to be analyzed measured in advance.
  • the reaction between the calibration sample and the immunoreagent with a clear concentration etc. is started, the period until the reaction end is measured, the calibration curve such as the absorbance change amount is created, and the initial reaction rate V1 std is calculated.
  • means (B) for automatically determining the dilution ratio of the test solution and determining the high concentration range may, for example, calculate the reaction rate ratio R or R std and determine the high concentration by the value. Means for performing determination (high concentration determination) can be mentioned.
  • the means (B) for determining the high concentration region is a determination means for determining the dilution ratio of the test solution using the change in absorbance etc. in the reaction process of the component to be analyzed. It may be.
  • R ⁇ Rd means for performing 100-fold dilution can be mentioned.
  • the dilution concentration and the number of branched flows after determination are not limited to this, and, for example, dilution ratios such as 2 times, 3 times, 5 times, 7 times, 10 times, 20 times, 30 times, 50 times and 100 times It can be set appropriately according to the component to be analyzed, the immune reagent, the reaction behavior and the like, such as providing a branched flow not only in two steps but in multiple steps as the high concentration determination.
  • the above reaction times t a to t b can be, for example, 0 to 30% from the start, 0 to 5%, 5 to 10%, 10 to 15 %, 15 to 20%, etc.
  • the measurement time of the sample is 10 minutes, it can be 0 to 3 minutes, 0 to 1 minute, 1 to 2 minutes, 2 to 3 minutes, etc. from the start of measurement.
  • the reaction time t c to t d can be, for example, 10 to 40% from the start, when the total reaction time is 100%, 10 to 15%, 15 to 20%, 20 to 25. %, 25 to 30%, etc.
  • the measurement time of the sample is 10 minutes, it can be 1 to 4 minutes, 1 to 2 minutes, 2 to 3 minutes, 3 to 4 minutes, etc. from the start of measurement.
  • the reaction time t a , t b and the reaction time t c , t d may overlap in one section, but it is assumed that t a is earlier in time than t c .
  • the analyzer according to the present invention may further comprise means (C) for diluting the test solution to the dilution ratio determined by the means (B) for determining the high concentration range.
  • means (C) for dilution for example, means for adding the solvent of the test solution to the sample to be retested so that the test solution has the dilution ratio can be mentioned.
  • means (C) for diluting the above-mentioned test solution to the dilution ratio determined by the means (B) for determining the high concentration range in the case of measuring the test solution containing the high concentration sample and the immunoreagent.
  • the concentration is changed even if it is a high concentration sample that may fall outside the measurement range as it is, using the amount of change in absorbance etc. in the reaction process, the optimum dilution ratio is determined, and the dilution is performed. It becomes an analyzer that can perform measurement.
  • measurement of high concentration samples which has been difficult until now, can be performed quickly and more accurately, without putting a burden on the measurer, and changes in patient's symptoms can be easily observed and diagnosed. For example, samples from severe patients may have high concentrations, and each follow-up dilution involves a series of dilution operations, which has a drawback in rapidity and accuracy, but this method should be grasped simply and quickly Is possible.
  • automating all or part of the dilution means it is possible to perform an analysis device capable of simpler and quick measurement and analysis.
  • the dilution apparatus of the present invention it is possible to function by connecting the means (C) for diluting the above-mentioned test solution to an analyzer which can have means (B) for determining the high concentration range. Good. It may be preferably a part of the above-mentioned analysis device, and by automatizing all or a part thereof, preferably to the above-mentioned dilution means together with the analysis device, further simple and rapid measurement becomes possible.
  • the analyzer of the present invention is An analyzer for a test solution containing an immune reagent and a component to be analyzed using an agglutination method, comprising: A means (A) for detecting a prozone during the measurement of the component to be analyzed, and A means (D) for outputting the concentration of the component to be analyzed from the amount of change in absorbance or the like in the reaction process of the component to be analyzed without dilution retest; It is characterized by having.
  • the analyzer of the present invention has means (D) for outputting the concentration of the component to be analyzed from the amount of change in absorbance etc. in the reaction process of the component to be analyzed without dilution retest as described above, the immunoreagent At the time of measurement of the test solution containing the sample and the sample, output the concentration without dilution retest even if it is a high concentration sample which may fall outside the measurement range as it is using the change in absorbance etc. in the reaction process It becomes an analysis device that can be In addition, by automatizing all or part of the above means, it becomes an analyzer capable of simpler and quick measurement and analysis.
  • the analyzer according to the present invention may have the above means (D) for outputting the concentration of the component to be analyzed using a time exceeding the threshold instead of the change in absorbance etc. in the above reaction process.
  • the above-mentioned means (D) which performs nonlinear fitting on the reaction time (x) and the amount of change in absorbance etc. in the reaction process, extracts parameters, and outputs the concentration of the component to be analyzed ) May be included.
  • the non-linear fit is a cumulative distribution function, a unit obtained by adding a proportional constant and / or a constant term to the cumulative distribution function, and outputting the concentration of the component to be analyzed It may have D).
  • the analyzer according to the present invention may have the above-described means (D) for outputting the concentration of the component to be analyzed using the mode of the probability density function obtained by differentiating the cumulative distribution function as a parameter. Good.
  • the cumulative distribution function may be any of normal distribution, exponential distribution, binomial distribution, logistic distribution, and gamma distribution. It may have the
  • the analysis method of the present invention is A method for analyzing a test solution containing an immune reagent and an analyte component using an agglutination method, comprising: Detecting a prozone during the measurement of the component to be analyzed, (a), A step (b) of automatically determining a dilution ratio of the test solution, and determining a high concentration region; It is characterized by having.
  • the step (a) of detecting the prozone during the measurement of the component to be analyzed, and the dilution ratio of the test solution automatically determined determines the high concentration region (B), and even when measuring a test solution containing a high concentration sample and an immunizing reagent, the amount of change in absorbance etc. during the reaction process can be used as it is, which can fall outside the measurement range. It is an analysis method that can predict the concentration of the concentration sample, determine the optimal dilution ratio, and measure it. In addition, by automatizing all or part of the above steps, it becomes an analysis method capable of simpler and quick measurement and analysis.
  • step (a) of detecting the prozone during the measurement of the component to be analyzed there can be mentioned, for example, a step of calculating the initial reaction rate V1 and making a determination using a preset threshold value.
  • the determination based on the velocity of the initial stage after the start of the measurement enables prozone detection even at the initial stage of the reaction. For example, in the measurement flow of 10 minutes or 15 minutes for measurement of one sample, prozone detection can be performed around 1 minute of the reaction start.
  • the step (a) of detecting the prozone may be a detection step using a change in absorbance or the like in the reaction process of the component to be analyzed.
  • the detection step may be a detection step of detecting a prozone with reference to a change in absorbance in the reaction process of the sample for calibration of the component to be analyzed measured in advance.
  • the reaction between the calibration sample and the immunoreagent whose concentration etc. is clear starts, and the period until the end of the reaction is measured, and a calibration curve such as the amount of change in absorbance is created, and the reaction rate V1 std is calculated.
  • a threshold with higher accuracy can be obtained as the threshold in the pro zone determination.
  • even when the lot of the immunoreagent differs it is possible to set a common threshold value more appropriately as the threshold value, and it becomes effective for correction of the lot-to-lot error.
  • the reaction rate ratio R or R std is calculated, and the high concentration is determined by the value thereof.
  • the step of determining whether there is any (high concentration determination) can be mentioned. According to the step (b) of performing the high concentration determination, even if it is an analysis target component which has been repeatedly reconsideration and dilution until the sample falls within the measurable range in the related art, it has been repeated until now. Simple and quick measurement and analysis are possible.
  • the step (b) of determining the high concentration region is a determination step of determining the dilution ratio of the test solution using the change in absorbance etc. in the reaction process of the component to be analyzed. It may be.
  • the step of 100-fold dilution can be mentioned.
  • the dilution concentration and the number of branched flows after determination are not limited to this, and, for example, dilution ratios such as 2 times, 3 times, 5 times, 7 times, 10 times, 20 times, 30 times, 50 times and 100 times It can be set appropriately according to the component to be analyzed, the immune reagent, the reaction behavior and the like, such as providing a branched flow not only in two steps but in multiple steps as the high concentration determination.
  • the above reaction times t a to t b can be, for example, 0 to 30% from the start, 0 to 5%, 5 to 10%, 10 to 15 %, 15 to 20%, etc.
  • the measurement time of the sample is 10 minutes, it can be 0 to 3 minutes, 0 to 1 minute, 1 to 2 minutes, 2 to 3 minutes, etc. from the start of measurement.
  • the reaction time t c to t d can be, for example, 10 to 40% from the start, when the total reaction time is 100%, 10 to 15%, 15 to 20%, 20 to 25. %, 25 to 30%, etc.
  • the measurement time of the sample is 10 minutes, it can be 1 to 4 minutes, 1 to 2 minutes, 2 to 3 minutes, 3 to 4 minutes, etc. from the start of measurement.
  • the reaction time t a , t b and the reaction time t c , t d may overlap in one section, but it is assumed that t a is earlier in time than t c .
  • the analysis method of the present invention may further include the step (c) of diluting the test solution to the dilution ratio determined in the step (b) of determining the high concentration region.
  • the step (c) of diluting for example, a step of adding a solvent of the test solution to the sample to be retested so that the test solution has the dilution ratio can be mentioned.
  • step (c) of diluting the above-mentioned test solution to the dilution ratio determined by the step (b) of determining the high concentration range at the time of measurement of the test solution containing the high concentration sample and the immunoreagent Even if the concentration is changed even if it is a high concentration sample that may fall outside the measurement range as it is, using the amount of change in absorbance etc. in the reaction process, the optimum dilution ratio is determined, and the dilution is performed. It becomes an analysis method that can be measured.
  • measurement of high concentration samples which has been difficult until now, can be performed quickly and more accurately, without putting a burden on the measurer, and changes in patient's symptoms can be easily observed and diagnosed. For example, samples from severe patients may have high concentrations, and each follow-up dilution involves a series of dilution operations, which has a drawback in rapidity and accuracy, but this method should be grasped simply and quickly Is possible.
  • the step of determining the test solution by the step (b) of determining the high concentration region is independently performed, and the function is performed by connecting the step (c) of dilution You may Preferably, in combination with the step (b) of determining the high concentration region, by automatizing all or a part, further simple and quick measurement becomes possible.
  • the analysis method of the present invention is A method for analyzing a test solution containing an immune reagent and an analyte component using an agglutination method, comprising: Detecting a prozone during the measurement of the component to be analyzed, (a), A step (d) of outputting the concentration of the component to be analyzed from the amount of change in absorbance or the like in the reaction process of the component to be analyzed without dilution retesting; It is characterized by having.
  • the analysis method apparatus of the present invention is not immune to the case where the step (d) of outputting the concentration of the component to be analyzed from the absorbance change amount in the reaction process of the component to be analyzed without dilution retest.
  • the step (d) of outputting the concentration of the component to be analyzed is not immune to the case where the step (d) of outputting the concentration of the component to be analyzed from the absorbance change amount in the reaction process of the component to be analyzed without dilution retest.
  • the analysis method of the present invention may further include the step (d) of outputting the concentration of the component to be analyzed using a time exceeding the threshold instead of the absorbance change amount in the reaction process.
  • the step (d) of performing non-linear fitting on the reaction time (x) and the amount of change in absorbance etc. in the reaction process, extracting parameters and outputting the concentration of the component to be analyzed ) May be included.
  • the non-linear fit is a cumulative distribution function
  • the analysis method of the present invention may further include the step (d) of outputting the concentration of the component to be analyzed using the mode value of the probability density function obtained by differentiating the cumulative distribution function as a parameter. .
  • the cumulative distribution function outputs the concentration of the component to be analyzed using any one of a normal distribution, an exponential distribution, a binomial distribution, a logistic distribution, and a gamma distribution (d) It may have the
  • the dilution device of the present invention is An apparatus for diluting a test solution containing an immunoreagent using the agglutination method and a component to be analyzed, A means (A) for detecting prozone during the measurement of the component to be analyzed, A means (B) for automatically determining the dilution ratio of the test solution, a means (B) for determining a high concentration range, and A means (C) for diluting the test solution to a dilution factor determined by the means (B) for determining the high concentration range; It is characterized by having.
  • the dilution apparatus of the present invention as described above, means (A) for detecting the prozone during measurement of the component to be analyzed, and means for automatically determining the dilution ratio of the test solution, and means for determining the high concentration region (B) and a means (C) for diluting the test solution to a dilution ratio determined by the means (B) for determining the high concentration range, a test solution containing an immunoreagent and a specimen
  • the concentration is predicted even if it is a high concentration sample that may fall outside the measurement range as it is, the optimal dilution ratio is determined, and the dilution is performed It becomes possible.
  • the dilution method of the present invention is A method for diluting a test solution containing an immunoreagent and an analyte according to the agglutination method, comprising: Detecting a prozone during measurement of the component to be analyzed (a), A step (b) of automatically determining a dilution ratio of the test solution, determining a high concentration range, and Diluting the test solution to the dilution factor determined in the step (b) of determining the high concentration region; (c) It is characterized by having.
  • the concentration is predicted even if it is a high concentration sample that may fall outside the measurement range as it is, the optimal dilution ratio is determined, and the dilution is performed It becomes possible.
  • the immunoreagent of the present invention is the above-mentioned analyzer and analysis method, and the immunoreagent used for the above-mentioned dilution device and dilution method, and in the means (B) or step (b) for determining the high concentration range.
  • the present invention is characterized in that it is an immunoreagent designed so that the upper limit concentration that can be measured without dilution is 0.5 to 1 times the concentration generated by prozone.
  • the immunoreagent of the present invention when configured as described above, can make the above-mentioned analyzer and analysis method, and the above-mentioned diluter and dilution method simpler and faster.
  • the immunoreagent of the present invention is an immunoreagent designed so that the upper limit concentration that can be measured without dilution as described above is 0.5 to 1 times the concentration generated by prozone, Immunization reagent designed to have a concentration of 0.6 to 0.9, Immunization reagent designed to have a concentration of 0.8 to 1 or, or 0.5 times It is good also as an immunity reagent etc. designed so that it might become 0.8 times.
  • the immune reagent using the agglutination method in the present invention refers to an immune reagent capable of measuring the absorbance or transmittance of a specific wavelength by an absorptiometer, and as the immune reagent, a component to be analyzed and an antigen As long as it causes an antibody reaction, it can be used appropriately.
  • the above-mentioned immunoreagent include gold colloid reagent, latex reagent, metal particle reagent, silica particle reagent, immunoturbidimetric reagent and the like. Among them, gold colloid reagents and latex reagents are preferable.
  • the component to be analyzed in the present invention can be used without particular limitation as long as it is a component which can be measured and analyzed by the immune reagent using the agglutination method.
  • the component to be analyzed may include a component derived from a living body.
  • calprotectin, lactoferrin, hemoglobin or transferrin can be suitably measured and analyzed, which is preferable.
  • the analysis apparatus and the analysis method of the present invention it is possible to simply and quickly quantify even an analysis target component for which quick and accurate quantitative determination has been difficult due to a large number of samples in which a wide concentration distribution is mixed. It becomes possible to measure and analyze.
  • a test solution containing an immunoreagent using the agglutination method and a component to be analyzed is used, but in addition to the above immunoreagent and the component to be analyzed, a test is performed unless it interferes with the effects of the present invention.
  • a solvent, an additive and the like necessary for the preparation of the solution may be appropriately contained.
  • the solvent include water, alcohol, physiological saline, diluent, buffer solution and the like.
  • the additive include acids, bases, pH adjusters, inorganic salts, saccharides, amino acids, chelating agents, surfactants, stabilizers, dispersants, dyes and the like.
  • test liquid containing a component derived from a living body for example, a liquid containing blood or bone marrow of human or animal, a stool suspension in which human or animal feces is dispersed, urinalysis or human urine of human or animal, saliva, Nasal fluid, mucous membrane wiping fluid etc. can be raised.
  • the fecal calprotectin gold colloid measurement reagent was composed of the following two liquid reagents: R1 buffer and R2 gold colloid reaction solution.
  • R1 buffer solution 3% sodium chloride, 0.05% surfactant, etc. was added to 100 mM HEPES buffer and polyethylene glycol 20000 was added to obtain R1 buffer.
  • R2 Gold Colloid Reaction Solution Anti-human calprotectin mouse monoclonal antibody was diluted with 10 mM HEPES (pH 7.1) buffer containing 0.05% sodium azide to prepare a concentration of 50 ⁇ g / mL. 100 mL of this solution was added to 1 L of gold colloid solution, and stirred under refrigeration conditions for 2 hours. Next, 110 mL of 10 mM HEPES (pH 7.1) buffer containing 0.5% BSA was added and stirred at 37 ° C. for 90 minutes.
  • the measurement of the absorbance was performed using an automatic analyzer Hemotekt NS-Prime (manufactured by Otsuka Electronics Co., Ltd.). More specifically, the sample, R1 buffer solution, and R2 reaction solution are added at a volume ratio of 1: 14: 5, and the reaction is performed at 37 ° C., and the absorbance during the reaction is 540 nm as a main wavelength (metal which decreases due to reaction) The difference between the absorbances measured for light of two wavelengths, the maximum absorption wavelength of the colloidal particles) and the secondary wavelength of 660 nm (the absorption wavelength of the metal colloid particles that increases with the reaction), is shown as the difference in absorbance in each figure.
  • Hemotekt NS-Prime manufactured by Otsuka Electronics Co., Ltd.
  • Example 1-1 It is a result regarding pro zone detection.
  • four kinds of fecal calprotectin gold colloid measurement reagents LotA, LotB, LotC, LotD having different R1 component concentrations are used as examples of different lots of reagents, respectively.
  • the amount of change in absorbance and the initial reaction rate V1 were measured, and the measurement range (measurement range) and detection of the prozone area and the threshold values of the respective reagents were calculated as they were.
  • each measurement time of the said sample was 6.8 minutes.
  • the threshold values of LotA, LotB, LotC, and LotD are distributed between 0 and 0.4 of the initial reaction velocity V1 value on the vertical axis.
  • Example 1-2 It is a result regarding pro zone detection.
  • the relative initial reaction velocity V1 / V1 std was calculated using the initial reaction velocity V1 std of the calibration sample.
  • the prozone determination and comparison of the relative initial reaction rate V1 / V1 st of each reagent were performed in the same manner as in Example 1-1.
  • threshold values of LotA, LotB, LotC, and LotD were obtained between 0.8 and 1.2 of the relative initial reaction velocity V1 / V1 std value on the vertical axis.
  • Example 2 It is a result regarding prozone detection and high concentration determination using the measurement data of Example 1-1.
  • the high concentration determination and the reaction rate ratio of each reagent were compared, and the measurement range which can be measured as it is, the range which can be measured by 10-fold dilution, and the range which can be measured by 100-fold dilution are as shown in the figure.
  • Example 3 It is the result of performing pro zone detection and high concentration determination. As shown in FIG. 8 and Table 2, in addition to the results of Example 2, a graph relating to the relative reaction rate ratio R / R std was calculated using the reaction rate ratio R std of the calibration sample.
  • the relative reaction rate ratio between the high concentration determination and each reagent is compared with the measurement range which can be measured as it is, the range which can be measured by 10-fold dilution, and the range which can be measured by 100-fold dilution, the results shown in FIG. Relative to the case of Example 2, the relative reaction rate ratio was less likely to be affected by the difference between lots of reagents. Also, it was found that by setting the threshold (Rf) to 0.2, it becomes possible to separate well regardless of the lot. It was found that this Example 3 is less affected by lot-to-lot comparison with Example 2 and therefore, it is a more stable high concentration judgment.
  • Examples 4 to 6 As shown in FIG. 9, tests were conducted on appropriate sensitivity conditions for the immunoreagent suitable for high concentration determination.
  • a reagent with extremely low sensitivity (Comparative Example 1) was prepared, and measurements similar to those of Examples 1 and 3 were performed.
  • the prozone was 4200 U / mL, whereas it was 2180 U / mL in Example 4 (reagent LotA in Example 1).
  • Example 7 It is description regarding the analyzer or analysis method which has a means (D) or process (d) which outputs an analysis object component concentration from the time exceeding the threshold value of the light absorbency change amount in the said reaction process.
  • the abscissa represents the reaction time
  • the ordinate represents the amount of change in absorbance.
  • the time at the intersection of the threshold value set in advance and the reaction curve was taken as ⁇ T.
  • the concentration of the component to be analyzed is output using this ⁇ T as a feature amount.
  • FIG. 12 shows the results of measurement of calprotectin.
  • the abscissa represents the reaction time, and the ordinate represents the change in absorbance.
  • Y aX b
  • FIG. 13 exemplifies an explanatory diagram regarding a method of calculating an inflection point using a cumulative distribution function of gamma distribution.
  • the cumulative distribution function and the probability density function are in a differential-integral relationship.
  • the inflection point (the maximum of the derivative value) of the cumulative distribution function is the mode of the probability density function.
  • the mode value of the probability density function can be calculated mathematically, and by fitting the reaction process with the cumulative distribution function, the inflection point can be easily obtained regardless of measurement variation.
  • the fitting function group shown in FIG. 14 can be used as the fitting function.
  • FIGS. 15 to 17 show the results regarding the output means and process of the component to be analyzed at high concentration in the sample measurement of high concentration calprotectin.
  • the amount of change in absorbance due to the reaction process was fitted using a function obtained by adding a proportional constant and a constant term to the cumulative function of the gamma ( ⁇ ) distribution. The above function was able to fit well at any concentration ( Figure 15). Focusing on the inflection point (the point at which the time derivative is maximum) as a parameter, the time derivative of (the amount of change in absorbance) was plotted against the reaction time. The time derivative value was bell-shaped, and the peak position shifted to a shorter time as the concentration increased (FIG. 16).
  • the (inflection point) ⁇ -0.5 was plotted on the vertical axis, and the linear relationship was obtained. there were.
  • this correlation it can be used as a high concentration calibration curve that outputs concentration even in a region about 20 times the upper concentration limit (1200 U / mL) that outputs concentration based on the amount of change in absorbance after completion of the reaction. all right.
  • the concentration of the component to be analyzed can be output without performing dilution retest.
  • the time derivative corresponds to the probability density function, and the peak position is the mode of the probability density function. It has been found that the calibration curve in the high concentration range can be calculated more easily by using the analyzer and the analysis method of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

免疫試薬と検体とを含む検査液の測定時に、反応過程における吸光度測定結果を用いて、そのままでは測定範囲外に該当し得る高濃度の検体であっても濃度を予測し、最適な希釈倍率を決定して測定を行う分析装置および分析方法等を提供する。本発明として、たとえば、検体の測定中にプロゾーンを検出する手段(A)、および、検査液の希釈倍率を自動的に決定する、高濃度域を判定する手段(B)、を有する分析装置が挙げられる。

Description

分析装置および分析方法
 本発明は、凝集法を用いた免疫試薬と分析対象成分とを含む検査液の分析装置および分析方法、希釈装置および希釈方法、ならびに、それらに用いられる免疫試薬に関するものである。
 近年、臨床検査などの各種検査では自動化および測定時間の短縮が図られている。その検査の方法として、生体試料中の物質を測定するために免疫反応を利用する測定方法が広く用いられている。免疫測定方法としては、RIA法、EIA法、免疫比濁法、ラテックス凝集法、金コロイド凝集法、イムノクロマト法などの多くの方法がある。その中でもラテックス凝集法や金コロイド凝集法などの免疫学的凝集法は、反応液の分離や洗浄操作を必要としないため、測定の自動化や短時間での測定に適している。
 しかしながら、サンプルに含まれる対象成分の濃度が広範囲に存在する場合では、プロゾーン現象の影響によって、目的成分が効率良く正確に測定できない問題が発生する。プロゾーン現象とは、実際のサンプル中の目的成分が高濃度であるために、反応が抑制され、みかけ上存在しないまたは低濃度のように判断される現象である。
 このようなプロゾーンの解決については、例えば希釈を行わずに、界面活性剤等を添加してその現象を抑制させる方法や(特許文献1)、血清アミロイドAやC反応性蛋白質といった特定の濃度範囲の高い目的成分について、抗体を工夫して測定する方法などが考案されてきたが(特許文献2および3)その現象を十分抑制できなかったり、目的成分によっては思うようにそれらの工夫を利用できないことがあった。
 さらに、希釈操作を含む場合では、目的成分の測定範囲は一般にその基準レベルの10~50倍程度であるが、そのような測定範囲を外れる高濃度のサンプルは、測定前に希釈されたり、測定前後に一律の希釈がされたり、測定可能となるまで何度も繰り返し希釈されたりなど、煩雑で正確性の問われる操作が行われてきた。しかし、例えば、1万倍ほどの濃度分布をもつ便中カルプロテクチン、あるいは便中ヘモグロビン、さらには便中ラクトフェリン等といった非常に広い濃度幅をもつ成分についての臨床現場による定量測定はニーズが高い。プロゾーン現象の影響を受ける可能性の高いサンプル中に含まれる目的成分を、迅速に正確に測定するには、最適な割合で希釈ができることが望ましい。
  特許文献1:特許第3851807号
  特許文献2:特許第4413179号
  特許文献3:特開2009-85702号 
 上述のように、従来、凝集法を用いた免疫試薬を使用する測定等において、たとえば、測定対象が広い幅をもつ便中ヘモグロビン、便中カルプロテクチン、および、便中ラクトフェリン等といった項目の測定において、測定範囲外の高濃度のサンプルの場合、一連の測定後に測定範囲外の濃度であったことが判明し、たとえばその後再度希釈して再測定しては、適切な濃度域に入るまで希釈や測定作業を繰り返す必要があった。凝集法を用いた免疫反応を利用する測定方法等においては、分析対象成分の濃度が高い場合に発生するプロゾーン現象の問題があり、迅速かつ正確に濃度や挙動解析を行うことが困難であった。
 本発明は、このような事情に照らし、免疫試薬と検体とを含む検査液の測定時に、反応過程における吸光度測定結果(あるいは吸光度変化量等とも呼び、吸光度変化量、吸光度、吸光度差、吸光度変化率などを指す)を用いて、そのままでは測定範囲外に該当し得る高濃度の検体であっても濃度を予測し、最適な希釈倍率を決定して測定を行う分析装置および分析方法を提供することを目的とする。
 また、本発明は、免疫試薬と検体とを含む検査液の測定時に、反応過程における吸光度測定結果を用いて、そのままでは測定範囲外に該当し得る高濃度の検体であっても濃度を予測し、最適な希釈倍率を決定し、当該希釈を行って測定(希釈再検)を行う分析装置および分析方法、ならびに、それらに用いられる免疫試薬を提供することを目的とする。
 さらに、本発明は、免疫試薬と検体とを含む検査液の測定時に、反応過程における吸光度測定結果を用いて、そのままでは測定範囲外に該当し得る高濃度の検体であっても希釈再検を伴わずに濃度の出力を行う分析装置および分析方法を提供することを目的とする。
 また、本発明は、免疫試薬と検体とを含む検査液の測定時に、反応過程における吸光度測定結果を用いて、そのままでは測定範囲外に該当し得る高濃度の検体であっても濃度を予測し、最適な希釈倍率を決定し、当該希釈を行う希釈装置および希釈方法を提供することを目的とする。
 また、本発明は、上記分析装置および分析方法、ならびに、上記希釈装置および希釈方法に好適に用いられる免疫試薬を提供することを目的とする。
 本発明者らは、上記課題を解決するため鋭意検討した結果、以下に示す分析装置および分析方法ならびにそれに用いられる免疫試薬を見出し、上記装置等により上記目的を達成できることを見出して、本発明を完成するに至った。
 本発明の分析装置は、
 凝集法を用いた免疫試薬と分析対象成分とを含む検査液の分析装置であって、
 上記分析対象成分の測定中にプロゾーンを検出する手段(A)、および、
 上記検査液の希釈倍率を自動的に決定する、高濃度域を判定する手段(B)、
を有することを特徴とする。
 また、本発明の分析装置において、上記プロゾーンを検出する手段(A)は、上記分析対象成分の反応過程における吸光度測定結果を用いた検出手段であってもよい。
 また、本発明の分析装置において、上記検出手段は、あらかじめ測定した上記分析対象成分の校正用試料の反応過程における吸光度変化を参照して、プロゾーンを検出する検出手段であってもよい。
 また、本発明の分析装置において、上記高濃度域を判定する手段(B)は、上記分析対象成分の反応過程における吸光度測定結果を用いて、上記検査液の希釈倍率を決定する判定手段であってもよい。
 また、本発明の分析装置において、上記判定手段は、あらかじめ測定した上記分析対象成分の校正用試料の反応過程における吸光度変化を参照して、上記検査液の希釈倍率を決定する判定手段であってもよい。
 また、本発明の分析装置において、さらに、上記検査液を、高濃度域を判定する手段(B)により決定された希釈倍率に希釈する手段(C)を有することができる。
 また、本発明の分析装置において、上記分析対象成分は、生体由来の成分を含んでいてもよい。
 また、本発明の分析装置は、
 凝集法を用いた免疫試薬と分析対象成分とを含む検査液の分析装置であって、
 上記分析対象成分の測定中にプロゾーンを検出する手段(A)、および、
 希釈再検を伴わずに、上記分析対象成分の反応過程における吸光度測定結果から分析対象成分の濃度を出力する手段(D)、
を有することを特徴とする。
 本発明の分析装置において、上記反応過程における吸光度測定結果の代わりに閾値を超える初めの時間を用いて分析対象成分濃度を出力する上記手段(D)を有するものであってもよい。
 また、本発明の分析装置において、上記反応過程における吸光度測定結果(y)と反応時間(x)に対して非線形フィットを行い、パラメータを抽出し、分析対象成分濃度を出力する上記手段(D)を有するものであってもよい。
 また、本発明の分析装置において、上記非線形フィットは、累積分布関数、累積分布関数に比例定数と定数項のいずれかもしくは両方を加えた関数を用いた、分析対象成分濃度を出力する上記手段(D)を有するものであってもよい。
 また、本発明の分析装置において、上記累積分布関数を微分して得られる確率密度関数の最頻値をパラメータとして、分析対象成分濃度を出力する上記手段(D)を有するものであってもよい。
 また、本発明の分析装置において、上記累積分布関数は、正規分布、指数分布、二項分布、ロジスティック分布、ガンマ分布のいずれか1つを用いた分析対象成分濃度を出力する上記手段(D)を有するものであってもよい。
 一方、本発明の分析方法は、
 凝集法を用いた免疫試薬と分析対象成分とを含む検査液の分析方法であって、
 上記分析対象成分の測定中にプロゾーンを検出する工程(a)、および、
 上記検査液の希釈倍率を自動的に決定する、高濃度域を判定する工程(b)、
を有することを特徴とする。
 本発明の分析方法において、上記プロゾーンを検出する工程(a)において、上記分析対象成分の反応過程における吸光度測定結果を用いてプロゾーン検出を行うものであってもよい。
 また、本発明の分析方法において、上記プロゾーンを検出する工程(a)において、あらかじめ測定した上記分析対象成分の校正用試料の反応過程における吸光度測定結果を参照して、プロゾーンを検出するものであってもよい。
 また、本発明の分析方法において、上記高濃度域を判定する工程(b)において、上記分析対象成分の反応過程における吸光度測定結果を用いて、上記検査液の希釈倍率を決定するものであってもよい。
 また、本発明の分析方法において、上記高濃度域を判定する工程(b)において、あらかじめ測定した上記分析対象成分の校正用試料の反応過程における吸光度測定結果を参照して、上記検査液の希釈倍率を決定するものであってもよい。
 また、本発明の分析方法において、さらに、上記検査液を、上記高濃度域を判定する工程(b)により決定された希釈倍率に希釈する工程(c)を有するものであってもよい。
 また、本発明の分析方法において、上記分析対象成分は、生体由来の成分を含むものであってもよい。
 また、本発明の分析方法は、
 凝集法を用いた免疫試薬と分析対象成分とを含む検査液の分析方法であって、
 上記分析対象成分の測定中にプロゾーンを検出する工程(a)、および、
 希釈再検を伴わずに、上記分析対象成分の反応過程における吸光度測定結果から分析対象成分の濃度を出力する工程(d)、
を有することを特徴とする。
 本発明の分析方法において、上記反応過程における吸光度測定結果の代わりに閾値を超える初めの時間を用いて分析対象成分濃度を出力する上記工程(d)を有するものであってもよい。
 また、本発明の分析方法において、上記反応過程における吸光度測定結果(y)と反応時間(x)に対して非線形フィットを行い、パラメータを抽出し、分析対象成分濃度を出力する上記工程(d)を有するものであってもよい。
 また、本発明の分析方法において、上記非線形フィットは、累積分布関数、累積分布関数に比例定数と定数項のいずれかもしくは両方を加えた関数を用いた、分析対象成分濃度を出力する上記工程(d)を有するものであってもよい。
 また、本発明の分析方法において、上記累積分布関数を微分して得られる確率密度関数の最頻値をパラメータとして、分析対象成分濃度を出力する上記工程(d)を有するものであってもよい。
 また、本発明の分析方法において、上記累積分布関数は、正規分布、指数分布、二項分布、ロジスティック分布、ガンマ分布のいずれか1つを用いた分析対象成分濃度を出力する上記工程(d)を有するものであってもよい。
 他方、本発明の希釈装置は、
 凝集法を用いた免疫試薬と分析対象成分とを含む検査液の希釈装置であって、
 上記分析対象成分の測定中にプロゾーンを検出する手段(A)、
 上記検査液の希釈倍率を自動的に決定する、高濃度域を判定する手段(B)、および、
 上記検査液を、上記高濃度域を判定する手段(B)により決定された希釈倍率に希釈する手段(C)、
を有することを特徴とする。
 また、本発明の希釈方法は、
 凝集法を用いた免疫試薬と分析対象成分とを含む検査液の希釈方法であって、
 上記分析対象成分の測定中にプロゾーンを検出する工程(a)、
 上記検査液の希釈倍率を自動的に決定する、高濃度域を判定する工程(b)、および、
 上記検査液を、上記高濃度域を判定する工程(b)により決定された希釈倍率に希釈する工程(c)、
を有することを特徴とする。
 さらに、本発明の免疫試薬は、上記分析装置および分析方法、ならびに、上記希釈装置および希釈方法に用いられる免疫試薬であって、上記高濃度域を判定する手段(B)または工程(b)において、希釈せずに測定できる上限濃度がプロゾーンの発生する濃度に対して0.5倍から1倍となるように設計された免疫試薬であること特徴とする。
 また、本発明の免疫試薬において、生体由来の成分を抗原あるいは抗体とするものであってもよい。
 本発明の分析装置および分析方法によると、上記分析対象成分の測定中にプロゾーンを検出する手段(A)および工程(a)、ならびに、上記検査液の希釈倍率を自動的に決定する、高濃度域を判定する手段(B)および工程(b)を有するため、高濃度の検体と免疫試薬とを含む検査液の測定時であっても、反応過程における吸光度変化量等を用いて、そのままでは測定範囲外に該当し得る高濃度の検体についても濃度を予測し、最適な希釈倍率を決定し、測定を行うことが可能となる。高濃度判定は、プロゾーン検出により高濃度であると検出された場合に、10倍希釈で測定範囲に入るか否かという判定を行う機能であってもよい。また、上記手段や工程の全部または一部を自動化することで、より簡易迅速な測定、分析が可能となる。
 また、上記検査液を、高濃度域を判定する手段(B)により決定された希釈倍率に希釈する手段(C)または上記高濃度域を判定する工程(b)により決定された希釈倍率に希釈する工程(c)を有する場合には、高濃度の検体と免疫試薬とを含む検査液の測定時であっても、反応過程における吸光度変化量等を用いて、そのままでは測定範囲外に該当し得る高濃度の検体であっても濃度を予測し、最適な希釈倍率を決定し、当該希釈を行って測定を行うことが可能となる。当該希釈は、分析対象成分を、希釈液等で決定された希釈倍率に、自動であるいは手動で希釈を行ってもよい。よって、これまで困難であった高濃度検体の測定が迅速でより正確に、測定者に負担をかけることなく行うことができ、患者の症状の変化も容易に観察、診断することができる。たとえば、重度の患者の検体は高濃度であることがあり、経過観察する上で毎回の希釈操作を伴っており迅速性と正確性に欠点があったが、本手段により簡易迅速に把握することが可能となる。また、上記希釈する手段までその全部または一部を自動化することで、さらに簡易迅速な測定、分析が可能な分析装置となる。
 さらに、本発明の分析装置および分析方法によると、免疫試薬と検体とを含む検査液の測定時に、反応過程における吸光度変化量等を用いて、そのままでは測定範囲外に該当し得る高濃度の検体であっても希釈再検を伴わずに濃度の出力を行うことが可能となる。また、上記手段や工程の全部または一部を自動化することで、より簡易迅速な測定、分析が可能となる。
 また、本発明の希釈装置および希釈方法によると、免疫試薬と検体とを含む検査液の測定時に、反応過程における吸光度変化量等を用いて、そのままでは測定範囲外に該当し得る高濃度の検体であっても濃度を予測し、最適な希釈倍率を決定し、当該希釈を行うことが可能となる。また、上記手段や工程の全部または一部を自動化することで、さらに簡易迅速な測定、分析が可能となる。
 また、本発明の免疫試薬によると、上記高濃度域を判定する手段(B)または工程(b)において、希釈せずに測定できる上限濃度がプロゾーンの発生する濃度に対して0.5倍から1倍となるように設計された免疫試薬であるため、上記分析装置および分析方法、ならびに、上記希釈装置および希釈方法をより簡易迅速なものとすることができる。
免疫測定法における抗原濃度とプロゾーンに関する説明図の一例を示す。 初期反応速度に関する説明図の一例を示す。 反応速度比に関する説明図を例示する。 本発明における測定フローに関する説明図の一例を示す。 本発明の実施例1-1における測定結果等を示す。 本発明の実施例1-2における測定結果等を示す。 本発明の実施例2における測定結果等を示す。 本発明の実施例3における測定結果等を示す。 本発明の実施例4および比較例1における測定結果等を示す。 本発明の実施例4~6における測定結果等を示す。 本発明の実施例7におけるΔTの算出に関する説明図を示す。 本発明の実施例7における測定結果等を示す。 本発明の実施例8における説明図を示す。 本発明の実施例8における説明図を示す。 本発明の実施例8にガンマ分布によるフィッティング結果を示す。 本発明の実施例8における変曲点の算出結果を示す。 本発明の実施例8における高濃度カルプロテクチンの変曲点の相関性の結果を示す。
 以下、本発明の実施の形態について詳細に説明する。
 まず、図1に例示した抗原濃度とプロゾーンに関する説明図を用いて、抗原濃度(検体濃度、分析対象成分濃度)とプロゾーンの関係について説明する。凝集法等の免疫試薬を用いた測定においては、吸光度変化量を基準にサンプル中にある抗原や抗体濃度を測定する。しかしながら、測定範囲(図1中で「測定範囲」と示した領域)では吸光度変化量と濃度には単調増加がみられるものの、高濃度域(図1中で「プロゾーン域」と示した領域)では検体の濃度により吸光度変化量が減少傾向にある。この領域を「プロゾーン領域」(プロゾーン域)といい、正確に濃度を算出することが非常に困難である。従来では、一旦測定した後、このプロゾーンを検出した場合に、再度、測定者が希釈倍率あるいはサンプル量の増減をして適正な測定範囲に入るまで繰り返し測定を行っている。
 次に、本発明の測定フローに関する説明を行う。まず、図2には、初期反応速度に関する説明図を例示している。図2に示すように、反応時間t、tの間における各吸光度差(Abs)をAbsおよびAbsとするとき、初期反応速度V1を図2中に示す式のように規定する。同様に、分析対象成分の校正用試料における初期反応速度をV1stdと規定する。併せて、校正用試料における初期反応速度V1stdに対する初期反応速度V1の相対比を、相対初期反応速度としてV1/V1stdと規定する。
 図3には、反応速度比に関する説明図を例示している。図3に示すように、反応時間t、tの間における反応速度V2に対する反応時間t、tの間における初期反応速度V1の反応速度比Rを図3中に示す式(V2/V1)のように規定する。同様に、校正用試料における、反応時間t、tの間における反応速度V2stdに対する反応時間t、tの間における初期反応速度をV1stdの反応速度比Rstdを図3中に示す式(V2std/V1std)のように規定する。併せて、校正用試料における反応速度比Rstdに対する反応速度比Rの相対比を、相対反応速度比としてR/Rstdと規定する。
 図4には、本発明における測定フローに関する説明図を例示する。図4では、測定フローとして、分析対象成分の校正用試料を用いた校正プロセスと、分析対象成分の測定プロセスとを含む測定フローを例示しているが、これに限られるものではない。まず、校正用試料を用いた校正プロセスにおいて、濃度が明確な分析対象成分の校正用試料と免疫試薬との反応を開始し、反応終了までの間を測定し、吸光度変化量の検量線を作成するとともに、反応速度V1stdおよび反応速度比Rstdを算出する。
 次に、分析対象成分の測定プロセスにおいて、分析対象成分と免疫試薬との反応を開始し、その反応過程(反応終了前まで)において上記反応速度V1stdを用いて当該サンプルがプロゾーンか否かの判定(プロゾーンを検出するプロゾーン判定)を行い、当該サンプルは測定範囲にあると判定された場合には、そのまま当該反応を終了した後、測定結果を出力または記録して測定を終了する。一方、プロゾーン判定において、当該サンプルはプロゾーンにあると判定された場合には、次いでどの程度の高濃度であるかの判定(高濃度判定)を行う。高濃度判定においては、上記反応速度比Rstdを用いる。いいかえると、プロゾーン検出により、希釈をすべき試料であるか判定を行い、高濃度判定により、適切な希釈倍率を判定する。適切な希釈倍率とは、高濃度試料を測定範囲に収めるための希釈倍率である。例えば測定範囲50~1000U/mLの測定系において、2000U/mLの試料では、10倍希釈が適切な希釈倍率であり、20000U/mLの試料では100倍が適切な希釈倍率となる。高濃度判定は測定範囲の上限を超えるプロゾーン領域の試料であっても濃度を推定し、適切な希釈倍率を決定する機能である。
 図4では、10倍希釈で測定範囲とすることができる場合と100倍希釈で測定範囲とすることができる場合との2段階に分け、100倍希釈で測定範囲とすることができる場合を判定する、高濃度判定を行う例を示しているが、希釈倍率や判定後のフローはこの限りではなく、分析対象成分や免疫試薬の測定範囲や反応挙動などに応じて希釈倍率を適宜設定することができる。
 上記高濃度判定において、10倍希釈で測定範囲とすることができると判定した場合には、希釈再検を行う際に10倍希釈して再度当該分析対象成分と免疫試薬との反応を開始し、そのまま当該反応を終了した後、測定結果を出力または記録して測定を終了する。一方、上記高濃度判定において、100倍希釈で測定範囲とすることができると判定した場合(10倍希釈では測定範囲に入らないという判定)には、希釈再検を行う際に100倍希釈して再度当該分析対象成分と免疫試薬との反応を開始し、そのまま当該反応を終了した後、測定結果を出力または記録して測定を終了する。
 他方、希釈再検を伴わずに、上記分析対象成分の反応過程における吸光度変化量等から分析対象成分の濃度を出力する場合には、上記高濃度判定に代えて、あらかじめ作成しておいた高濃度検量線から濃度を出力することができる。この場合、希釈再検を行わずに、定量評価が可能となる。
 高濃度判定で用いる式では、濃度によって、たとえば高濃度では感度が非常に悪くなり、濃度の予測は困難な場合もあり得るところ、実施例7および8においては、高濃度の領域での検量線を作成する方法例を示した。
 より具体的な方法としては、タイムコースデータをY分布の累積関数に補正項を入れた数式でフィットし、パラメータを抽出した。パラメータを割り算した値と濃度に線形関係にあり、検量線として使用可能である。
 以下、本発明における各構成、要素等についてより詳細に説明する。
 本発明の分析装置は、
 凝集法を用いた免疫試薬と分析対象成分とを含む検査液の分析装置であって、
 上記分析対象成分の測定中にプロゾーンを検出する手段(A)、および、
 上記検査液の希釈倍率を自動的に決定する、高濃度域を判定する手段(B)、
を有することを特徴とする。
 本発明の分析装置は、上述のように、上記分析対象成分の測定中にプロゾーンを検出する手段(A)、ならびに、上記検査液の希釈倍率を自動的に決定する、高濃度域を判定する手段(B)を有するため、高濃度の検体と免疫試薬とを含む検査液の測定時であっても、反応過程における吸光度変化量等を用いて、そのままでは測定範囲外に該当し得る高濃度の検体についても濃度を予測し、最適な希釈倍率を決定し、短時間で正確な測定を行うことが可能な分析装置となる。また、上記手段の全部または一部を自動化することで、より簡易迅速な測定、分析が可能な分析装置となる。
 上記分析対象成分の測定中にプロゾーンを検出する手段(A)として、たとえば、初期反応速度V1を計算し、あらかじめ設定しておいた閾値を用いて判定する手段をあげることができる。測定開始後の初期段階の速度に基づき判定する手段により、反応初期の段階でもプロゾーン検出が可能となる。たとえば、1サンプルの測定時間が10分や15分の測定フローにおいて、反応開始1分前後でのプロゾーン検出が可能となる。
 また、本発明の分析装置において、上記プロゾーンを検出する手段(A)は、上記分析対象成分の反応過程における吸光度変化量等を用いた検出手段であってもよい。
 なお、本発明における吸光度変化量とは、ある特定の波長における吸光度の変化量であってもよく、2点の特定波長における吸光度同士の差の変化量であってもよい。たとえば、金コロイド試薬を用いる場合、主波長540nm(反応により減少する金コロイド粒子の最大吸収波長)および副波長660nm(反応に伴い増加する金コロイド粒子の吸収波長)の2波長の光において測定された吸光度同士の差を用いることもできる。
 また、本発明の分析装置において、上記検出手段は、あらかじめ測定した上記分析対象成分の校正用試料の反応過程における吸光度変化を参照して、プロゾーンを検出する検出手段であってもよい。校正プロセスにおいて、濃度等が明確な校正用試料と免疫試薬との反応を開始し、反応終了までの間を測定し、吸光度変化量等の検量線を作成するとともに、初期反応速度V1stdを算出しておくことで、当該校正用試料での上限の初期反応速度と対比して、プロゾーン判定における閾値として、より精度の高い閾値を得ることができる。また、免疫試薬のロットが異なる場合であっても、当該閾値としてより適切な共通の閾値の設定が可能となり、ロット間誤差の補正に有効となる。
 また、検査液の希釈倍率を自動的に決定する、高濃度域を判定する手段(B)とは、たとえば、上記反応速度比RやRstdを算出し、その値によりどの程度の高濃度であるかの判定(高濃度判定)を行う手段をあげることができる。上記高濃度判定を行う手段(B)により、従来であれば、当該サンプルが測定可能範囲に入るまで勘頼みや試行錯誤を繰り返して再測定と希釈を繰り返していた分析対象成分であっても、より簡易迅速で正確な測定、分析が可能となる。
 また、本発明の分析装置において、上記高濃度域を判定する手段(B)は、上記分析対象成分の反応過程における吸光度変化量等を用いて、上記検査液の希釈倍率を決定する判定手段であってもよい。たとえば、図3、7に示すように、反応時間t、tの間における反応速度V2(図7ではA2)に対する反応時間t、tの間における初期反応速度V1(図7ではA1)の反応速度比R(=V2/V1(A2/A1))を図3中に示す式のように規定し、閾値(Rd)を設定した上で、R≧Rdの場合には10倍希釈を行い、R<Rdの場合には100倍希釈を行う手段をあげることができる。また、希釈濃度や判定後の分岐フロー数はこの限りではなく、たとえば、2倍、3倍、5倍、7倍、10倍、20倍、30倍、50倍、100倍等の希釈倍率や、高濃度判定として2段階のみならず複数段階の分岐フローを設ける等、分析対象成分や免疫試薬、反応挙動などに応じて適宜設定することができる。
 また、上記反応時間t~tは、全反応時間を100%とした場合に、たとえば、開始から0~30%とすることができ、0~5%、5~10%、10~15%、15~20%等であってもよい。たとえば、当該サンプルの測定時間が10分間である場合、測定開始から0~3分、0~1分、1~2分、2~3分等とすることができる。
 また、上記反応時間t~tは、全反応時間を100%とした場合に、たとえば、開始から10~40%とすることができ、10~15%、15~20%、20~25%、25~30%等であってもよい。たとえば、当該サンプルの測定時間が10分間である場合、測定開始から1~4分、1~2分、2~3分、3~4分等とすることができる。なお、反応時間t、tと反応時間t、tはその一区間が重複していてもよいが、tはtよりも時間的に先であるものとする。
 また、本発明の分析装置において、上記判定手段は、あらかじめ測定した上記分析対象成分の校正用試料の反応過程における吸光度変化を参照して、上記検査液の希釈倍率を決定する判定手段であってもよい。たとえば、図3、8に示すように、反応時間t、tの間における反応速度V2に対する反応時間t、tの間における反応速度V1の反応速度比R(=V2/V1)と、校正用試料における同様の反応速度比Rstd(=V2std/V1std)とを用い、図3中に示す式のように相対反応速度比R/Rstdに基づき、閾値(Rf)を設定した上で、(R/Rstd)≧Rfの場合には10倍希釈を行い、(R/Rstd)<Rfの場合には100倍希釈を行う手段をあげることができる。校正プロセスにおいて、濃度等が明確な校正用試料と免疫試薬との反応を開始し、反応終了までの間を測定し、吸光度変化量等の検量線を作成するとともに、反応速度比Rstdを算出し、相対反応速度比R/Rstdを用いることで、当該校正用試料での上限の反応速度比と対比して、高濃度判定における閾値(Rf)として、より精度の高い閾値を得ることができる。また、免疫試薬のロットが異なる場合であっても、当該閾値としてより適切な共通の閾値の設定が可能となり、ロット間誤差の補正に有効となる。
 また、本発明の分析装置において、さらに、上記検査液を、高濃度域を判定する手段(B)により決定された希釈倍率に希釈する手段(C)を有することができる。上記希釈する手段(C)として、たとえば、希釈再検する試料に検査液が当該希釈倍率になるように検査液の溶媒を添加する手段をあげることができる。上記検査液を、高濃度域を判定する手段(B)により決定された希釈倍率に希釈する手段(C)を有する場合には、高濃度の検体と免疫試薬とを含む検査液の測定時であっても、反応過程における吸光度変化量等を用いて、そのままでは測定範囲外に該当し得る高濃度の検体であっても濃度を予測し、最適な希釈倍率を決定し、当該希釈を行って測定を行うことが可能な分析装置となる。また、これまで困難であった高濃度検体の測定が迅速でより正確に、測定者に負担をかけることなく行うことができ、患者の症状の変化も容易に観察、診断することができる。たとえば、重度の患者の検体は高濃度であることがあり、経過観察する上で毎回の希釈操作を伴っており迅速性と正確性に欠点があったが、本手段により簡易迅速に把握することが可能となる。また、上記希釈する手段までその全部または一部を自動化することで、さらに簡易迅速な測定、分析が可能な分析装置となる。
 加えて、本発明の希釈装置において、上記検査液を、高濃度域を判定する手段(B)を有することができる分析装置に、上記希釈する手段(C)を接続することによって機能してもよい。好ましくは上記の分析装置の一部になってもよく、分析装置と一体となって好ましくは上記希釈する手段までその全部または一部を自動化することで、さらに簡易迅速な測定が可能となる。
 また、本発明の分析装置は、
 凝集法を用いた免疫試薬と分析対象成分とを含む検査液の分析装置であって、
 上記分析対象成分の測定中にプロゾーンを検出する手段(A)、および、
 希釈再検を伴わずに、上記分析対象成分の反応過程における吸光度変化量等から分析対象成分の濃度を出力する手段(D)、
を有することを特徴とする。
 本発明の分析装置は、上述のように、希釈再検を伴わずに、上記分析対象成分の反応過程における吸光度変化量等から分析対象成分の濃度を出力する手段(D)を有する場合、免疫試薬と検体とを含む検査液の測定時に、反応過程における吸光度変化量等を用いて、そのままでは測定範囲外に該当し得る高濃度の検体であっても希釈再検を伴わずに濃度の出力を行うことが可能な分析装置となる。また、上記手段の全部または一部を自動化することで、より簡易迅速な測定、分析が可能な分析装置となる。
 本発明の分析装置において、上記反応過程における吸光度変化量等の代わりに閾値を超える時間を用いて分析対象成分濃度を出力する上記手段(D)を有するものであってもよい。
 また、本発明の分析装置において、上記反応過程における吸光度変化量等(y)と反応時間(x)に対して非線形フィットを行い、パラメータを抽出し、分析対象成分濃度を出力する上記手段(D)を有するものであってもよい。
 また、本発明の分析装置において、上記非線形フィットは、累積分布関数、累積分布関数に比例定数と定数項のいずれかもしくは両方を加えた関数を用いた、分析対象成分濃度を出力する上記手段(D)を有するものであってもよい。
 また、本発明の分析装置において、上記累積分布関数を微分して得られる確率化密度関数の最頻値をパラメータとして、分析対象成分濃度を出力する上記手段(D)を有するものであってもよい。
 また、本発明の分析装置において、上記累積分布関数は、正規分布、指数分布、二項分布、ロジスティック分布、ガンマ分布のいずれか1つを用いた分析対象成分濃度を出力する上記手段(D)を有するものであってもよい。
 上記関数として、たとえば、以下に記載のものを適宜用いることができる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 一方、本発明の分析方法は、
 凝集法を用いた免疫試薬と分析対象成分とを含む検査液の分析方法であって、
 上記分析対象成分の測定中にプロゾーンを検出する工程(a)、および、
 上記検査液の希釈倍率を自動的に決定する、高濃度域を判定する工程(b)、
を有することを特徴とする。
 本発明の分析方法は、上述のように、上記分析対象成分の測定中にプロゾーンを検出する工程(a)、ならびに、上記検査液の希釈倍率を自動的に決定する、高濃度域を判定する工程(b)を有するため、高濃度の検体と免疫試薬とを含む検査液の測定時であっても、反応過程における吸光度変化量等を用いて、そのままでは測定範囲外に該当し得る高濃度の検体についても濃度を予測し、最適な希釈倍率を決定し、測定を行うことが可能な分析方法となる。また、上記工程の全部または一部を自動化することで、より簡易迅速な測定、分析が可能な分析方法となる。
 上記分析対象成分の測定中にプロゾーンを検出する工程(a)として、たとえば、初期反応速度V1を計算し、あらかじめ設定しておいた閾値を用いて判定する工程をあげることができる。測定開始後の初期段階の速度に基づき判定する工程により、反応初期の段階でもプロゾーン検出が可能となる。たとえば、1サンプルの測定時間が10分や15分の測定フローにおいて、反応開始1分前後でのプロゾーン検出が可能となる。
 また、本発明の分析方法において、上記プロゾーンを検出する工程(a)は、上記分析対象成分の反応過程における吸光度変化量等を用いた検出工程であってもよい。
 また、本発明の分析方法において、上記検出工程は、あらかじめ測定した上記分析対象成分の校正用試料の反応過程における吸光度変化を参照して、プロゾーンを検出する検出工程であってもよい。校正プロセスにおいて、濃度等が明確な校正用試料と免疫試薬との反応を開始し、反応終了までの間を測定し、吸光度変化量等の検量線を作成するとともに、反応速度V1stdを算出しておくことで、当該校正用試料での上限の初期反応速度と対比して、プロゾーン判定における閾値として、より精度の高い閾値を得ることができる。また、免疫試薬のロットが異なる場合であっても、当該閾値としてより適切な共通の閾値の設定が可能となり、ロット間誤差の補正に有効となる。
 また、検査液の希釈倍率を自動的に決定する、高濃度域を判定する工程(b)とは、たとえば、上記反応速度比RやRstdを算出し、その値によりどの程度の高濃度であるかの判定(高濃度判定)を行う工程をあげることができる。上記高濃度判定を行う工程(b)により、従来であれば、当該サンプルが測定可能範囲に入るまで勘頼みや試行錯誤を繰り返して再測定と希釈を繰り返していた分析対象成分であっても、より簡易迅速な測定、分析が可能となる。
 また、本発明の分析方法において、上記高濃度域を判定する工程(b)は、上記分析対象成分の反応過程における吸光度変化量等を用いて、上記検査液の希釈倍率を決定する判定工程であってもよい。たとえば、図3、7に示すように、反応時間t、tの間における反応速度V2(図7ではA2)に対する反応時間t、tの間における初期反応速度V1(図7ではA1)の反応速度比R(=V2/V1(A2/A1))を図3中に示す式のように規定し、閾値(Rd)を設定した上で、R≧Rdの場合には10倍希釈を行い、R<Rdの場合には100倍希釈を行う工程をあげることができる。また、希釈濃度や判定後の分岐フロー数はこの限りではなく、たとえば、2倍、3倍、5倍、7倍、10倍、20倍、30倍、50倍、100倍等の希釈倍率や、高濃度判定として2段階のみならず複数段階の分岐フローを設ける等、分析対象成分や免疫試薬、反応挙動などに応じて適宜設定することができる。
 また、上記反応時間t~tは、全反応時間を100%とした場合に、たとえば、開始から0~30%とすることができ、0~5%、5~10%、10~15%、15~20%等であってもよい。たとえば、当該サンプルの測定時間が10分間である場合、測定開始から0~3分、0~1分、1~2分、2~3分等とすることができる。
 また、上記反応時間t~tは、全反応時間を100%とした場合に、たとえば、開始から10~40%とすることができ、10~15%、15~20%、20~25%、25~30%等であってもよい。たとえば、当該サンプルの測定時間が10分間である場合、測定開始から1~4分、1~2分、2~3分、3~4分等とすることができる。なお、反応時間t、tと反応時間t、tはその一区間が重複していてもよいが、tはtよりも時間的に先であるものとする。
 また、本発明の分析方法において、上記判定工程は、あらかじめ測定した上記分析対象成分の校正用試料の反応過程における吸光度変化を参照して、上記検査液の希釈倍率を決定する判定工程であってもよい。たとえば、図3、8に示すように、反応時間t、tの間における反応速度V2に対する反応時間t、tの間における反応速度V1の反応速度比R(=V2/V1)と、校正用試料における同様の反応速度比Rstd(=V2std/V1std)とを用い、図3中に示す式のように相対反応速度比R/Rstdに基づき、閾値(Rf)を設定した上で、(R/Rstd)≧Rfの場合には10倍希釈を行い、(R/Rstd)<Rfの場合には100倍希釈を行う工程をあげることができる。校正プロセスにおいて、濃度等が明確な校正用試料と免疫試薬との反応を開始し、反応終了までの間を測定し、吸光度変化量等の検量線を作成するとともに、反応速度比Rstdを算出し、相対反応速度比R/Rstdを用いることで、当該校正用試料での上限の反応速度比と対比して、高濃度判定における閾値(Rf)として、より精度の高い閾値を得ることができる。また、免疫試薬のロットが異なる場合であっても、当該閾値としてより適切な共通の閾値の設定が可能となり、ロット間誤差の補正に有効となる。
 また、本発明の分析方法において、さらに、上記検査液を、高濃度域を判定する工程(b)により決定された希釈倍率に希釈する工程(c)を有することができる。上記希釈する工程(c)として、たとえば、希釈再検する試料に検査液が当該希釈倍率になるように検査液の溶媒を添加する工程をあげることができる。上記検査液を、高濃度域を判定する工程(b)により決定された希釈倍率に希釈する工程(c)を有する場合には、高濃度の検体と免疫試薬とを含む検査液の測定時であっても、反応過程における吸光度変化量等を用いて、そのままでは測定範囲外に該当し得る高濃度の検体であっても濃度を予測し、最適な希釈倍率を決定し、当該希釈を行って測定を行うことが可能な分析方法となる。また、これまで困難であった高濃度検体の測定が迅速でより正確に、測定者に負担をかけることなく行うことができ、患者の症状の変化も容易に観察、診断することができる。たとえば、重度の患者の検体は高濃度であることがあり、経過観察する上で毎回の希釈操作を伴っており迅速性と正確性に欠点があったが、本手段により簡易迅速に把握することが可能となる。
 加えて、本発明の希釈する希釈方法において、上記検査液を、高濃度域を判定する工程(b)により決定する工程を独立して行い、上記希釈する工程(c)を接続することによって機能してもよい。好ましくは、高濃度域を判定する工程(b)と一体となって、全部または一部を自動化することで、さらに簡易迅速な測定が可能となる。
 また、本発明の分析方法は、
 凝集法を用いた免疫試薬と分析対象成分とを含む検査液の分析方法であって、
 上記分析対象成分の測定中にプロゾーンを検出する工程(a)、および、
 希釈再検を伴わずに、上記分析対象成分の反応過程における吸光度変化量等から分析対象成分の濃度を出力する工程(d)、
を有することを特徴とする。
 本発明の分析方法装置は、上述のように、希釈再検を伴わずに、上記分析対象成分の反応過程における吸光度変化量等から分析対象成分の濃度を出力する工程(d)を有する場合、免疫試薬と検体とを含む検査液の測定時に、反応過程における吸光度変化量等を用いて、そのままでは測定範囲外に該当し得る高濃度の検体であっても希釈再検を伴わずに濃度の出力を行うことが可能な分析方法となる。また、上記工程の全部または一部を自動化することで、より簡易迅速な測定、分析が可能な分析方法となる。
 また、本発明の分析方法において、上記反応過程における吸光度変化量等の代わりに閾値を超える時間を用いて分析対象成分濃度を出力する上記工程(d)を有するものであってもよい。
 また、本発明の分析方法において、上記反応過程における吸光度変化量等(y)と反応時間(x)に対して非線形フィットを行い、パラメータを抽出し、分析対象成分濃度を出力する上記工程(d)を有するものであってもよい。
 また、本発明の分析方法において、上記非線形フィットは、累積分布関数、累積分布関数に比例定数と定数項のいずれかもしくは両方を加えた関数を用いた、分析対象成分濃度を出力する上記工程(d)を有するものであってもよい。
 また、本発明の分析方法において、上記累積分布関数を微分して得られる確率密度関数の最頻値をパラメータとして、分析対象成分濃度を出力する上記工程(d)を有するものであってもよい。
 また、本発明の分析方法において、上記累積分布関数は、正規分布、指数分布、二項分布、ロジスティック分布、ガンマ分布のいずれか1つを用いた分析対象成分濃度を出力する上記工程(d)を有するものであってもよい。
 上記関数として、たとえば、以下に記載のものを適宜用いることができる。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 他方、本発明の希釈装置は、
 凝集法を用いた免疫試薬と分析対象成分とを含む検査液の希釈装置であって、
 上記分析対象成分の測定中にプロゾーンを検出する手段(A)、
 上記検査液の希釈倍率を自動的に決定する、高濃度域を判定する手段(B)、および、
 上記検査液を、上記高濃度域を判定する手段(B)により決定された希釈倍率に希釈する手段(C)、
を有することを特徴とする。
 本発明の希釈装置は、上述のように、上記分析対象成分の測定中にプロゾーンを検出する手段(A)、上記検査液の希釈倍率を自動的に決定する、高濃度域を判定する手段(B)、および、上記検査液を、上記高濃度域を判定する手段(B)により決定された希釈倍率に希釈する手段(C)を有することにより、免疫試薬と検体とを含む検査液の測定時に、反応過程における吸光度変化量等を用いて、そのままでは測定範囲外に該当し得る高濃度の検体であっても濃度を予測し、最適な希釈倍率を決定し、当該希釈を行うことが可能となる。また、上記手段の全部または一部を自動化することで、さらに簡易迅速な測定、分析が可能な分析装置となる。また、上記手段(A)、(B)および(C)ならびに試薬等の各構成については、上述と同様の手段を適宜用いることができる。
 また、本発明の希釈方法は、
 凝集法を用いた免疫試薬と分析対象成分とを含む検査液の希釈方法であって、
 上記分析対象成分の測定中にプロゾーンを検出する工程(a)、
 上記検査液の希釈倍率を自動的に決定する、高濃度域を判定する工程(b)、および、
 上記検査液を、上記高濃度域を判定する工程(b)により決定された希釈倍率に希釈する工程(c)、
を有することを特徴とする。
 本発明の希釈方法は、上述のように、上記分析対象成分の測定中にプロゾーンを検出する工程(a)、上記検査液の希釈倍率を自動的に決定する、高濃度域を判定する工程(b)、および、上記検査液を、上記高濃度域を判定する工程(b)により決定された希釈倍率に希釈する工程(c)を有することにより、免疫試薬と検体とを含む検査液の測定時に、反応過程における吸光度変化量等を用いて、そのままでは測定範囲外に該当し得る高濃度の検体であっても濃度を予測し、最適な希釈倍率を決定し、当該希釈を行うことが可能となる。また、上記工程の全部または一部を自動化することで、さらに簡易迅速な測定、分析が可能な分析方法となる。また、上記工程(a)、(b)および(c)ならびに試薬等の各構成は、上述と同様の工程を適宜用いることができる。
 さらに、本発明の免疫試薬は、上記分析装置および分析方法、ならびに、上記希釈装置および希釈方法に用いられる免疫試薬であって、上記高濃度域を判定する手段(B)または工程(b)において、希釈せずに測定できる上限濃度がプロゾーンの発生する濃度に対して0.5倍から1倍となるように設計された免疫試薬であること特徴とする。
 本発明の免疫試薬は、上記構成とすることにより、上記分析装置および分析方法、ならびに、上記希釈装置および希釈方法をより簡易迅速なものとすることができる。
 本発明の免疫試薬は、上述のように希釈せずに測定できる上限濃度がプロゾーンの発生する濃度に対して0.5倍から1倍となるように設計された免疫試薬であるが、上記濃度が0.6倍から0.9倍となるように設計された免疫試薬、上記濃度が0.8倍から1倍となるように設計された免疫試薬、または、上記濃度が0.5倍から0.8倍となるように設計された免疫試薬等としてもよい。
 また、本発明における凝集法を用いた免疫試薬とは、吸光光度計により特定の波長の吸光度または透過率等を測定することが可能な免疫試薬をいい、免疫試薬としては、分析対象成分と抗原抗体反応を起こすものであれば適宜用いることができ得る。上記免疫試薬として、たとえば、金コロイド試薬、ラテックス試薬、金属粒子試薬、シリカ粒子試薬、免疫比濁試薬などをあげることができる。なかでも、金コロイド試薬、ラッテクス試薬であることが好ましい。
 また、本発明における分析対象成分とは、凝集法を用いた免疫試薬で測定、分析可能な成分であれば特に限定せず用いることができる。上記分析対象成分は、生体由来の成分を含んでいてもよい。上記分析対象成分として、たとえば、カルプロテクチン、ラクトフェリン、ヘモグロビン、トランスフェリン、免疫グロブリン、C反応タンパク質、アルブミン、マクロアルブミン、フェリチン、αフェトプロテイン、シスタチンC、ヒト絨毛ゴナドトロピン、黄体形成ホルモン、卵胞刺激ホルモン、または前立腺特異抗原などをあげることができる。なかでも、カルプロテクチン、ラクトフェリン、ヘモグロビンまたはトランスフェリンであっても好適に測定、分析が可能であり好ましい。本発明の分析装置および分析方法を用いることにより、従来は幅広い濃度分布が混在する検体が多いために迅速で正確な定量が困難であった分析対象成分であっても、簡易迅速に定量的な測定、分析を行うことが可能となる。
 また、本発明において、凝集法を用いた免疫試薬と分析対象成分とを含む検査液が用いられるが、上記免疫試薬と上記分析対象成分のほか、本発明の作用効果の妨げとならない限り、検査液の調整に必要な溶媒や添加剤等を適宜含んでいてもよい。上記溶媒として、たとえば、水、アルコール、生理食塩水、希釈液、緩衝液等をあげることができる。上記添加剤として、たとえば、酸、塩基、pH調整剤、無機塩、糖類、アミノ酸類、キレート剤、界面活性剤、安定化剤、分散剤、色素等をあげることができる。また、生体由来の成分を含む検査液として、たとえば、人や動物の血液や骨髄等を含む液、人や動物の糞便が分散した便懸濁液、人や動物の検尿あるいは畜尿、唾液、鼻汁、粘膜拭い液等をあげることができる。
 また、本発明の分析装置および分析方法、ならびに、上記希釈装置および希釈方法において、その他の手段、工程等の各構成については公知のものを適宜用いることができる。
 以下、本発明の構成と効果を具体的に示す実施例等について説明する。なお、実施例等における評価項目は下記のようにして測定を行った。
 <測定試薬の調製>
 便中カルプロテクチン金コロイド測定試薬は下記のR1緩衝液およびR2金コロイド反応液の2種類の液状の試薬から構成した。
 ・R1緩衝液
 3% 塩化ナトリウム、0.05% 界面活性剤、等を100mM HEPES緩衝液に、ポリエチレングリコール20000を添加したものをR1緩衝液とした。
 ・R2金コロイド反応液
 抗ヒトカルプロテクチンマウスモノクローナル抗体を、0.05%アジ化ナトリウムを含む10mM HEPES(pH7.1)緩衝液で希釈して50μg/mLの濃度に調製した。この液100mLを金コロイド溶液1Lに加え、冷蔵条件化で2時間撹拌した。次いで、0.5%BSAを含む10mM HEPES(pH7.1)緩衝液110mL添加し、37℃で90分間撹拌した。12000Gで40分間遠心分離を行い、上清を除去した後、0.1%BSAを含む10mM HEPES(pH7.5)緩衝液を1L加え抗体感作金コロイドを分散させた後、再度12000Gで40分間遠心分離を行い、上清を除去し、0.1%BSAを含む10mM HEPES(pH7.5)緩衝液で抗体結合金コロイドを分散させ全量160mLとし、抗カプテクチン抗体結合金コロイド試薬とした。抗体結合金コロイド試薬を安定化剤等の入った緩衝液で希釈し、540nmの吸光度が10となるように調製しR2金コロイド反応液とした。
 <検体の調製>
 便溶解液に、ヒト白血球由来のカルプロテクチンを添加し、高濃度カルプロテクチン検体とした。高濃度カルプロテクチン検体を、1、0.8、0.6、0.4、0.2、0.1、0.08、0.06、0.04、0.02、0.01、0.008、0、006、0.004、および0.002倍に便溶解液で希釈して検体とした。
 <吸光度の測定>
 吸光度の測定は、自動分析機 ヘモテクトNS-Prime(大塚電子社製)を用いて行った。より詳細には、検体、R1緩衝液、およびR2反応液を液量比1:14:5で加え、37℃で反応を行い、反応中の吸光度を、主波長として540nm(反応により減少する金属コロイド粒子の最大吸収波長)および副波長として660nm(反応に伴い増加する金属コロイド粒子の吸収波長)の2波長の光において測定された吸光度同士の差を、各図の吸光度差として示した。
 〔実施例1-1〕
 プロゾーン検出に関する結果である。
 0.002~1倍に希釈した検体に対し、R1の成分濃度の異なる4種類の便中カルプロテクチン金コロイド測定試薬LotA、LotB、LotC、LotDをロットの異なる試薬の例として用いて、各々の吸光度変化量や初期反応速度V1を測定し、そのまま測定可能な範囲(測定範囲)とプロゾーン域の検出および各試薬での閾値を算出した。なお、当該サンプルの各測定時間は6.8分であった。4種類の測定試薬の中でもっともプロゾーンが低濃度でプロゾーンが確認できたのはLotDで、プロゾーンが1300U/mLから確認された。一方で4種類の測定試薬の中でもっともプロゾーンが高濃度でプロゾーンが確認できたのはLotAで、2180U/mLから確認された(図表なし)。LotDで得られた結果を用いてプロゾーン域として、図5に示すように、プロゾーン判定と各試薬の初期反応速度V1の比較を行った。
 この場合、LotA、LotB、LotC、LotDの各閾値が縦軸の初期反応速度V1値の0~0.4の間に分布している結果となった。
 〔実施例1-2〕
 プロゾーン検出に関する結果である。
 図6に示すように、実施例1-1で得られた結果に加えて、校正用試料の初期反応速V1stdを用いて、相対初期反応速度V1/V1stdに算出した。実施例1-1と同様にプロゾーン判定と各試薬の相対初期反応速度V1/V1stの比較を行った。この場合、縦軸の相対初期反応速度V1/V1std値の0.8~1.2の間にLotA、LotB、LotC、LotDの閾値が得られる結果となった。実施例1-1ではロットによってプロゾーン判定に関する閾値を個々に設定する必要があるが、実施例1-2の場合ではロットによらず共通の閾値を用いることができることがわかった。
 〔実施例2〕
 実施例1-1の測定データを用いたプロゾーン検出と高濃度判定に関する結果である。図7および表1に示すように、LotA、LotB、LotC、LotDを用いて、各々の反応時間1~2分の間における反応速度A2に対する、反応時間0~1の間における反応速度A1の反応速度比R(=A2/A1)を算出した。高濃度判定と各試薬の反応速度比の比較を行い、そのままで測定可能な測定範囲、10倍希釈で測定できる範囲、100倍希釈で測定できる範囲は図のような結果となった。反応速度比にはロット間差があったが、10倍希釈で測定できる範囲と100倍希釈で測定できる範囲とは重なりがあり、閾値(Rd)を1.0に設定することで、全てのロットにおいて適切な希釈倍率の判定(高濃度判定)を実施できた。
Figure JPOXMLDOC01-appb-T000011
 〔実施例3〕
 プロゾーン検出と高濃度判定とを実施した結果である。図8および表2に示すにように、実施例2の結果に加え、校正用試料の反応速度比Rstdを用いて相対反応速度比R/Rstdに関するグラフを算出した。高濃度判定と各試薬の相対反応速度比とそのままで測定可能な測定範囲、10倍希釈で測定できる範囲、100倍希釈で測定できる範囲を比較すると図8のような結果となった。実施例2の場合よりも、相対反応速度比は試薬のロット間格差の影響を受けにくい分布結果となった。また、閾値(Rf)を0.2に設定することで、ロットによらずにうまく切り分けすることが可能となることがわかった。この実施例3は実施例2に比較してロット間の影響が受けにくいため、より安定した高濃度判定であることが分かった。
Figure JPOXMLDOC01-appb-T000012
 〔実施例4~6〕
 図9に示すように、高濃度判定に適した免疫試薬に関して、適した感度条件について試験を行った。実施例1の結果に加え、感度が極端に小さい試薬(比較例1)を調製し、実施例1および3と同様の測定を行った。比較例1の試薬を用いると、プロゾーンは4200U/mLであるのに対して、実施例4(実施例1における試薬LotA)では、2180U/mLであった。
 図10に示すように、実施例4に加えて、2種類の試薬(実施例1における試薬ロットLotC、LotD)を用いて本発明の高濃度判定の比較を行った。より具体的には、図10に示すように感度の違う4種類の免疫試薬でプロゾーンの発生域と高濃度判定(相対反応速度比)を比較したところ、比較例1では相対反応速度比は極端に大きな値となった。また、この際、使用した各免疫試薬のプロゾーン域の下限を示した。実施例4~6においては、プロゾーン域の下限が測定範囲(1200)に近い(1~2倍)となっていたのに対して、比較例1においては、プロゾーン域の下限が測定範囲との乖離(4倍)となっていた。この結果から、免疫試薬の適した感度条件は、プロゾーン域の下限が測定範囲の1~2倍程度であるといえる。
 〔実施例7〕
 上記反応過程における吸光度変化量の閾値を超える時間から、分析対象成分濃度を出力する手段(D)または工程(d)を有する分析装置または分析方法に関する説明である。図11に示すように、横軸に反応時間、縦軸に吸光度変化量をプロットした。あらかじめ設定した閾値と反応曲線との交点における時間をΔTとした。このΔTを特徴量として、分析対象成分濃度を出力した。
 図12は、カルプロテクチンを測定した結果である。横軸に反応時間、縦軸に吸光度変化量をプロットした。閾値を0.1にしたところ、ΔTと濃度の関係は両対数プロットで線形関係にあり、分析対象成分濃度とΔTには累乗関数(Y=aX)の関係にあることが分かった。この相関を用いた、高濃度の検量線を使用することにより、希釈を行わすに分析対象物の濃度を出力することができる。
 〔実施例8〕
 まず、図13において、ガンマ分布の累積分布関数を用いた変曲点算出方法に関する説明図を例示した。累積分布関数と確率密度関数は微分積分の関係である。累積分布関数の変曲点(微分値の極大)は、確率密度関数の最頻値となる。確率密度関数の最頻値は数学的に計算可能であり、反応過程を累積分布関数でフィットすることで、測定のばらつきによらずに変曲点を容易に取得が可能である。また実際には累積分布関数に対して比例定数および定数項を加えた場合も変局点には影響がないため、図14に示すフィティング関数群をフィティング関数に用いることができる。
 図15~17には、高濃度カルプロテクチンの試料測定において、高濃度での分析対象成分の出力手段および工程に関する結果を示した。反応過程による吸光度変化量を、ガンマ(γ)分布の累積関数に比例定数および定数項を加えた関数でフィッティングを行った。上記の関数では、どの濃度でも、うまくフィッティングを行うことができた(図15)。パラメータとして変曲点(時間微分の最大となる点)に着目し、反応時間に対して(吸光度変化量)の時間微分をプロットした。時間微分値は釣鐘型になっており、濃度が増加するにつれてピーク位置は時間が短い方にシフトした(図16)。
 また、図17に示すように、サンプル濃度と変曲点の関係を調べたところ、濃度に対して、(変曲点)^‐0.5を縦軸にプロットを行ったときに線形関係にあった。この相関関係を用いることによって、反応終了後の吸光度変化量に基づき、濃度を出力する濃度上限(1200U/mL)の20倍程度の領域でも濃度を出力する高濃度検量線として用いることができることがわかった。これにより、希釈再検を行わずしても分析対象成分の濃度を出力することができる。また、この過程において時間微分は確率密度関数にあたり、ピーク位置は確率密度関数の最頻値となる。本発明の分析装置および分析方法等を用いることによって、高濃度域での検量線がより簡便に計算できることがわかった。

Claims (30)

  1.  凝集法を用いた免疫試薬と分析対象成分とを含む検査液の分析装置であって、
     前記分析対象成分の測定中にプロゾーンを検出する手段(A)、および、
     前記検査液の希釈倍率を自動的に決定する、高濃度域を判定する手段(B)、
    を有する分析装置。
  2.  前記プロゾーンを検出する手段(A)は、前記分析対象成分の反応過程における吸光度測定結果を用いた検出手段である、請求項1に記載の分析装置。
  3.  前記検出手段は、あらかじめ測定した前記分析対象成分の校正用試料の反応過程における吸光度測定結果を参照して、プロゾーンを検出する検出手段である、請求項2に記載の分析装置。
  4.  前記高濃度域を判定する手段(B)は、前記分析対象成分の反応過程における吸光度測定結果を用いて、前記検査液の希釈倍率を決定する判定手段である、請求項1~3のいずれかに記載の分析装置。
  5.  前記判定手段は、あらかじめ測定した前記分析対象成分の校正用試料の反応過程における吸光度測定結果を参照して、前記検査液の希釈倍率を決定する判定手段である、請求項4に記載の分析装置。
  6.  さらに、前記検査液を、高濃度域を判定する手段(B)により決定された希釈倍率に希釈する手段(C)を有する、請求項1~5のいずれかに記載の分析装置。
  7.  前記分析対象成分は、生体由来の成分を含む、請求項1~6のいずれかに記載の分析装置。
  8.  凝集法を用いた免疫試薬と分析対象成分とを含む検査液の分析装置であって、
     前記分析対象成分の測定中にプロゾーンを検出する手段(A)、および、
     希釈再検を伴わずに、前記分析対象成分の反応過程における吸光度測定結果から分析対象成分の濃度を出力する手段(D)、
    を有する分析装置。
  9.  前記反応過程における吸光度測定結果の代わりに閾値を超える時間を用いて分析対象成分濃度を出力する前記手段(D)を有する、請求項8に記載の分析装置。
  10.  前記反応過程における吸光度測定結果(y)と反応時間(x)に対して非線形フィットを行い、パラメータを抽出し、分析対象成分濃度を出力する前記手段(D)を有する、請求項8に記載の分析装置。
  11.  前記非線形フィットは、累積分布関数、累積分布関数に比例定数と定数項のいずれかもしくは両方を加えた関数を用いた、分析対象成分濃度を出力する前記手段(D)を有する、請求項10に記載の分析装置。
  12.  前記累積分布関数を微分して得られる確率密度関数の最頻値をパラメータとして、分析対象成分濃度を出力する前記手段(D)を有する、請求項11に記載の分析装置。
  13.  前記累積分布関数は、正規分布、指数分布、二項分布、ロジスティック分布、ガンマ分布のいずれか1つを用いた分析対象成分濃度を出力する前記手段(D)を有する、請求項11に記載の分析装置。
  14.  凝集法を用いた免疫試薬と分析対象成分とを含む検査液の分析方法であって、
     前記分析対象成分の測定中にプロゾーンを検出する工程(a)、および、
     前記検査液の希釈倍率を自動的に決定する、高濃度域を判定する工程(b)、
    を有する分析方法。
  15.  前記プロゾーンを検出する工程(a)において、前記分析対象成分の反応過程における吸光度測定結果を用いてプロゾーン検出を行う、請求項14に記載の分析方法。
  16.  前記プロゾーンを検出する工程(a)において、あらかじめ測定した前記分析対象成分の校正用試料の反応過程における吸光度測定結果を参照して、プロゾーンを検出する、請求項15に記載の分析方法。
  17.  前記高濃度域を判定する工程(b)において、前記分析対象成分の反応過程における吸光度測定結果を用いて、前記検査液の希釈倍率を決定する、請求項14~16のいずれかに記載の分析方法。
  18.  前記高濃度域を判定する工程(b)において、あらかじめ測定した前記分析対象成分の校正用試料の反応過程における吸光度測定結果を参照して、前記検査液の希釈倍率を決定する、請求項17に記載の分析方法。
  19.  さらに、前記検査液を、前記高濃度域を判定する工程(b)により決定された希釈倍率に希釈する工程(c)を有する、請求項14~18のいずれかに記載の分析方法。
  20.  前記分析対象成分は、生体由来の成分を含む、請求項14~19のいずれかに記載の分析方法。
  21.  凝集法を用いた免疫試薬と分析対象成分とを含む検査液の分析方法であって、
     前記分析対象成分の測定中にプロゾーンを検出する工程(a)、および、
     希釈再検を伴わずに、前記分析対象成分の反応過程における吸光度測定結果から分析対象成分の濃度を出力する工程(d)、
    を有する分析方法。
  22.  前記反応過程における吸光度測定結果の代わりに閾値を超える時間を用いて分析対象成分濃度を出力する前記工程(d)を有する、請求項21に記載の分析方法。
  23.  前記反応過程における吸光度測定結果(y)と反応時間(x)に対して非線形フィットを行い、パラメータを抽出し、分析対象成分濃度を出力する前記工程(d)を有する、請求項21に記載の分析方法。
  24.  前記非線形フィットは、累積分布関数、累積分布関数に比例定数と定数項のいずれかもしくは両方を加えた関数を用いた、分析対象成分濃度を出力する前記工程(d)を有する、請求項23に記載の分析方法。
  25.  前記累積分布関数を微分して得られる確率密度関数の最頻値をパラメータとして、分析対象成分濃度を出力する前記工程(d)を有する、請求項24に記載の分析方法。
  26.  前記累積分布関数は、正規分布、指数分布、二項分布、ロジスティック分布、ガンマ分布のいずれか1つを用いた分析対象成分濃度を出力する前記工程(d)を有する、請求項24に記載の分析方法。
  27.  凝集法を用いた免疫試薬と分析対象成分とを含む検査液の希釈装置であって、
     前記分析対象成分の測定中にプロゾーンを検出する手段(A)、
     前記検査液の希釈倍率を自動的に決定する、高濃度域を判定する手段(B)、および、
     前記検査液を、前記高濃度域を判定する手段(B)により決定された希釈倍率に希釈する手段(C)、
    を有する検査液の希釈装置。
  28.  凝集法を用いた免疫試薬と分析対象成分とを含む検査液の希釈方法であって、
     前記分析対象成分の測定中にプロゾーンを検出する工程(a)、
     前記検査液の希釈倍率を自動的に決定する、高濃度域を判定する工程(b)、および、
     前記検査液を、前記高濃度域を判定する工程(b)により決定された希釈倍率に希釈する工程(c)、
    を有する検査液の希釈方法。
  29.  請求項1~13に記載の分析装置または請求項27に記載の希釈装置、もしくは、請求項14~26に記載の分析方法または請求項28に記載の希釈方法に用いられる免疫試薬であって、
     前記高濃度域を判定する手段(B)または前記高濃度域を判定する工程(b)において、希釈せずに測定できる上限濃度がプロゾーンの発生する濃度に対して0.5倍から1倍となるように設計された免疫試薬。
  30.  生体由来の成分を抗原あるいは抗体とする、請求項29に記載の免疫試薬。
PCT/JP2018/008048 2017-09-08 2018-03-02 分析装置および分析方法 WO2019049395A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EA202090630A EA202090630A1 (ru) 2017-09-08 2018-03-02 Устройство для анализа и способ анализа
KR1020207009931A KR102593221B1 (ko) 2017-09-08 2018-03-02 분석 장치 및 분석 방법
US16/645,620 US20230152215A1 (en) 2017-09-08 2018-03-02 Analysis device and analysis method
JP2019540749A JP7282035B2 (ja) 2017-09-08 2018-03-02 分析装置および分析方法
MX2020002450A MX2020002450A (es) 2017-09-08 2018-03-02 Dispositivo de analisis y metodo de analisis.
SG11202002072PA SG11202002072PA (en) 2017-09-08 2018-03-02 Analysis device and analysis method
EP18854378.9A EP3680664A4 (en) 2017-09-08 2018-03-02 ANALYSIS DEVICE AND ANALYSIS METHOD
CN201880058304.XA CN111051887B (zh) 2017-09-08 2018-03-02 分析装置和分析方法
CA3075248A CA3075248C (en) 2017-09-08 2018-03-02 Analysis device and analysis method
JP2022093468A JP2022120079A (ja) 2017-09-08 2022-06-09 分析装置および分析方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-173405 2017-09-08
JP2017173405 2017-09-08

Publications (1)

Publication Number Publication Date
WO2019049395A1 true WO2019049395A1 (ja) 2019-03-14

Family

ID=65634940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008048 WO2019049395A1 (ja) 2017-09-08 2018-03-02 分析装置および分析方法

Country Status (10)

Country Link
US (1) US20230152215A1 (ja)
EP (1) EP3680664A4 (ja)
JP (2) JP7282035B2 (ja)
KR (1) KR102593221B1 (ja)
CN (1) CN111051887B (ja)
CA (1) CA3075248C (ja)
EA (1) EA202090630A1 (ja)
MX (1) MX2020002450A (ja)
SG (1) SG11202002072PA (ja)
WO (1) WO2019049395A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022205600A1 (zh) * 2021-03-29 2022-10-06 深圳市科曼医疗设备有限公司 高浓度样本的检测和时序调用方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116298324A (zh) * 2023-05-25 2023-06-23 武汉大学人民医院(湖北省人民医院) β2-微球蛋白的检测方法、装置、设备及可读存储介质

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163848A (en) * 1982-03-02 1982-10-08 Teikoku Hormone Mfg Co Ltd Reaction recorder
JPH06109740A (ja) * 1992-09-30 1994-04-22 Shimadzu Corp 免疫比濁分析方法
JPH06289026A (ja) * 1993-03-31 1994-10-18 Shimadzu Corp 免疫比濁分析方法
JPH0894620A (ja) * 1994-09-28 1996-04-12 Bio U Kk 抗原−抗体反応による微量物質の定量法
JPH08292192A (ja) * 1995-04-24 1996-11-05 Sekisui Chem Co Ltd 免疫測定法
JPH10282099A (ja) * 1997-04-10 1998-10-23 Hitachi Ltd 自動分析装置
JPH11264821A (ja) * 1998-03-18 1999-09-28 Olympus Optical Co Ltd プロゾーン現象判定方法
JP2000275246A (ja) * 1999-03-25 2000-10-06 Jsr Corp 診断薬用粒子および診断薬用試薬
WO2002052265A1 (fr) * 2000-12-26 2002-07-04 Matsushita Electric Industrial Co., Ltd. Procede d'analyse de liaison specifique et dispositif d'analyse de liaison specifique correspondant
WO2003029822A1 (fr) * 2001-09-28 2003-04-10 Matsushita Electric Industrial Co., Ltd. Dispositif d'analyse de liaison specifique et methode d'analyse de liaison specifique
JP2006119044A (ja) * 2004-10-22 2006-05-11 Sysmex Corp 生体試料分析装置および方法
JP3851807B2 (ja) 2001-11-07 2006-11-29 アルフレッサファーマ株式会社 免疫反応におけるプロゾーン現象抑制方法及び免疫反応測定用試薬
WO2007058129A1 (ja) * 2005-11-18 2007-05-24 Nitto Boseki Co., Ltd. 抗原の測定法およびそれに用いるキット
WO2007074860A1 (ja) * 2005-12-28 2007-07-05 Sekisui Medical Co., Ltd. 凝集測定用試薬及び凝集測定方法
JP2007286053A (ja) * 2006-04-13 2007-11-01 Olympus Life & Material Science Europa Gmbh 免疫測定方法
JP2009085702A (ja) 2007-09-28 2009-04-23 Fujifilm Corp 免疫反応試薬
JP4413179B2 (ja) 2005-09-26 2010-02-10 栄研化学株式会社 免疫学的粒子凝集反応方法
US20120094394A1 (en) * 2009-04-15 2012-04-19 Beckman Coulter, Inc. Homogeneous agglutination immunoassay method and kit for such method
JP2012193959A (ja) * 2011-03-14 2012-10-11 Shino Test Corp 試料中の総プロテインsタンパク質量の測定試薬及び測定方法
JP2016031334A (ja) * 2014-07-30 2016-03-07 株式会社日立ハイテクノロジーズ 分析方法及び自動分析装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157871A (en) * 1976-06-02 1979-06-12 Beckman Instruments, Inc. System for rate immunonephelometric analysis
JPH0617914B2 (ja) * 1983-03-18 1994-03-09 三菱化成株式会社 抗原抗体反応の測定方法
US5019999A (en) * 1988-09-30 1991-05-28 Technicon Instruments Corporation Immunoanalysis method for discriminating between antigen excess and antibody excess conditions
JP3168633B2 (ja) * 1991-09-30 2001-05-21 株式会社島津製作所 抗原抗体反応におけるプロゾーン判定方法及び分析方法
JP3127611B2 (ja) * 1992-09-10 2001-01-29 株式会社島津製作所 抗原抗体反応におけるプロゾーン判定方法及び分析方法
US6284472B1 (en) * 1998-10-05 2001-09-04 Dade Behring Inc. Method for extending the range of an immunoassay
EP1460414B1 (en) * 2001-12-27 2018-09-19 ARKRAY, Inc. Concentration measuring method
JP2008286053A (ja) * 2007-05-16 2008-11-27 Toyota Motor Corp 動弁系の制御装置
ITUD20080162A1 (it) * 2008-07-08 2010-01-09 Alifax Spa Procedimento e relativa apparecchiatura per l'esecuzione di analisi diagnostiche
RU2620922C2 (ru) * 2011-01-21 2017-05-30 Теранос, Инк. Системы и методы оптимизации использования образца
JP5932540B2 (ja) * 2012-07-24 2016-06-08 株式会社日立ハイテクノロジーズ 自動分析装置
EP2837937A1 (en) * 2013-08-15 2015-02-18 Roche Diagniostics GmbH Method for the detection of the prozone effect of photometric assays

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163848A (en) * 1982-03-02 1982-10-08 Teikoku Hormone Mfg Co Ltd Reaction recorder
JPH06109740A (ja) * 1992-09-30 1994-04-22 Shimadzu Corp 免疫比濁分析方法
JPH06289026A (ja) * 1993-03-31 1994-10-18 Shimadzu Corp 免疫比濁分析方法
JPH0894620A (ja) * 1994-09-28 1996-04-12 Bio U Kk 抗原−抗体反応による微量物質の定量法
JPH08292192A (ja) * 1995-04-24 1996-11-05 Sekisui Chem Co Ltd 免疫測定法
JPH10282099A (ja) * 1997-04-10 1998-10-23 Hitachi Ltd 自動分析装置
JPH11264821A (ja) * 1998-03-18 1999-09-28 Olympus Optical Co Ltd プロゾーン現象判定方法
JP2000275246A (ja) * 1999-03-25 2000-10-06 Jsr Corp 診断薬用粒子および診断薬用試薬
WO2002052265A1 (fr) * 2000-12-26 2002-07-04 Matsushita Electric Industrial Co., Ltd. Procede d'analyse de liaison specifique et dispositif d'analyse de liaison specifique correspondant
WO2003029822A1 (fr) * 2001-09-28 2003-04-10 Matsushita Electric Industrial Co., Ltd. Dispositif d'analyse de liaison specifique et methode d'analyse de liaison specifique
JP3851807B2 (ja) 2001-11-07 2006-11-29 アルフレッサファーマ株式会社 免疫反応におけるプロゾーン現象抑制方法及び免疫反応測定用試薬
JP2006119044A (ja) * 2004-10-22 2006-05-11 Sysmex Corp 生体試料分析装置および方法
JP4413179B2 (ja) 2005-09-26 2010-02-10 栄研化学株式会社 免疫学的粒子凝集反応方法
WO2007058129A1 (ja) * 2005-11-18 2007-05-24 Nitto Boseki Co., Ltd. 抗原の測定法およびそれに用いるキット
WO2007074860A1 (ja) * 2005-12-28 2007-07-05 Sekisui Medical Co., Ltd. 凝集測定用試薬及び凝集測定方法
JP2007286053A (ja) * 2006-04-13 2007-11-01 Olympus Life & Material Science Europa Gmbh 免疫測定方法
JP2009085702A (ja) 2007-09-28 2009-04-23 Fujifilm Corp 免疫反応試薬
US20120094394A1 (en) * 2009-04-15 2012-04-19 Beckman Coulter, Inc. Homogeneous agglutination immunoassay method and kit for such method
JP2012193959A (ja) * 2011-03-14 2012-10-11 Shino Test Corp 試料中の総プロテインsタンパク質量の測定試薬及び測定方法
JP2016031334A (ja) * 2014-07-30 2016-03-07 株式会社日立ハイテクノロジーズ 分析方法及び自動分析装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022205600A1 (zh) * 2021-03-29 2022-10-06 深圳市科曼医疗设备有限公司 高浓度样本的检测和时序调用方法

Also Published As

Publication number Publication date
EP3680664A4 (en) 2021-08-25
EP3680664A1 (en) 2020-07-15
JP7282035B2 (ja) 2023-05-26
CN111051887B (zh) 2023-12-29
MX2020002450A (es) 2020-07-20
CA3075248C (en) 2022-06-21
SG11202002072PA (en) 2020-04-29
KR102593221B1 (ko) 2023-10-24
US20230152215A1 (en) 2023-05-18
JP2022120079A (ja) 2022-08-17
CA3075248A1 (en) 2019-03-14
KR20200051732A (ko) 2020-05-13
CN111051887A (zh) 2020-04-21
EA202090630A1 (ru) 2020-07-09
JPWO2019049395A1 (ja) 2020-10-29

Similar Documents

Publication Publication Date Title
Lamchiagdhase et al. Urine sediment examination: a comparison between the manual method and the iQ200 automated urine microscopy analyzer
EP3033620B1 (en) Method for the detection of the prozone effect of photometric assays
Kang et al. Comparison of ABO antibody titers on the basis of the antibody detection method used
CN105738617B (zh) 一种胱抑素c胶乳增强比浊检测试剂盒及其用途
JP2022120079A (ja) 分析装置および分析方法
JP5006441B2 (ja) 全血分析
EP1845373A1 (en) An immunoassay method
JP2009109196A (ja) 希釈倍率導出方法、定量方法、及び分析装置
CN112485438B (zh) 一种特定蛋白反应检测方法和装置
JP2016521353A (ja) サンプル分析のための方法、機器、及びシステム
Jasensky et al. Evaluation of three different point‐of‐care tests for quantitative measurement of canine C‐reactive protein
CN106324251A (zh) 小片段BMG抗体的制备方法及β2‑微球蛋白检测试剂盒
NO149864B (no) Immunologisk reagens.
Karam et al. Whole-blood validation of a new point-of-care equine serum amyloid A assay
WO2022065398A1 (ja) フェリチン測定試薬
Strzelak et al. An immunoprecipitation assay in the multicommutated flow analysis format
EP1176424A2 (en) Whole blood immunoassay
CN113484244A (zh) 一种基于免疫比浊法的凝血分析仪试剂定标方法
JP2010117290A (ja) 液体試料成分の分析装置および分析方法
EA045031B1 (ru) Устройство для анализа и способ анализа
Avguštin et al. Determination of red blood cells in urinary sediment: Do pH and specific gravity of urine matter?
CN108152177B (zh) 一种快速检测血细胞压积的方法
JP3496684B2 (ja) 金コロイド粒子を用いた比色分析法
JPH0658935A (ja) 免疫学的測定方法及びその試薬
JPH0921808A (ja) 過剰の抗原によって影響されない比濁分析および濁度分析によるタンパク質の定量

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854378

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540749

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3075248

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018330943

Country of ref document: AU

Date of ref document: 20180302

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207009931

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018854378

Country of ref document: EP

Effective date: 20200408