WO2019047477A1 - 一种压缩机及其制造方法 - Google Patents

一种压缩机及其制造方法 Download PDF

Info

Publication number
WO2019047477A1
WO2019047477A1 PCT/CN2018/076422 CN2018076422W WO2019047477A1 WO 2019047477 A1 WO2019047477 A1 WO 2019047477A1 CN 2018076422 W CN2018076422 W CN 2018076422W WO 2019047477 A1 WO2019047477 A1 WO 2019047477A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
crankshaft
cylinder head
inner hole
compressor
Prior art date
Application number
PCT/CN2018/076422
Other languages
English (en)
French (fr)
Inventor
沈建芳
周易
赵凤荣
王海军
Original Assignee
上海海立电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海海立电器有限公司 filed Critical 上海海立电器有限公司
Publication of WO2019047477A1 publication Critical patent/WO2019047477A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/14Provisions for readily assembling or disassembling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00

Definitions

  • the present invention relates to the field of air conditioning, and in particular to a compressor and a method of manufacturing the same.
  • a hermetic compressor includes a motor for generating a driving force in an inner space of a sealed casing, and a compression member coupled to the motor for compressing a refrigerant.
  • the main application of air conditioners, refrigerators, communication base stations and other related refrigeration and air conditioning fields is rolling rotor compressors.
  • the compression principle of the rolling rotor compressor mainly utilizes the rotational force of the motor.
  • the motor of the prior art rolling rotor type compressor has a crankshaft through which the rotational force of the motor is transmitted to the compression member.
  • the main structure of a rotary enclosed compressor is as follows:
  • the upper and lower ends of the sealed casing 10' are welded to the upper cover 1' and the lower cover 5', respectively.
  • the motor 20' is placed within a sealed housing 10' which includes a rotor 22' sleeved over the crankshaft 40' and a stator 21' secured to the sealed housing 10'.
  • the rotor 22' is inserted into the stator 21' with a predetermined gap between the rotor 22' and the stator 21', thereby rotating the rotor 22' by interaction with the stator 21'.
  • a crankshaft 40' is coupled to the rotor 22' to transfer the rotational force of the rotor 22' to the compression member.
  • the lower portion of the crankshaft 40' is positioned on the central axis of the sealed casing 10' by means of bearing members (upper cylinder head 32' and lower cylinder head 33').
  • the upper cylinder head 32' constitutes a friction pair with the crankshaft 40' through an internal boss structure (inner cylindrical structure in Fig. 1).
  • the compression member may include a cylinder, a rotary piston and a vane for isolating the high and low pressure chambers in the cylinder, and a plurality of bearing members for cooperating with the cylinder to define a compression space and supporting the crankshaft 40'.
  • the bearing member is typically located on one side of the motor 20' to support the crankshaft 40'.
  • the compressor of the prior art mostly adopts the manner in which the bearing members (the upper cylinder head 32' and the lower cylinder head 33') as shown in FIG. 1 and the crankshaft 40' are directly in contact with each other, and the upper cylinder head 32' and the sealed casing 10' welding.
  • the existing compressor assembly process is to first assemble the pump body of the crankshaft 40', the upper cylinder head 32', the cylinder 31', the lower cylinder head 33', etc., and then pass the pump body and the casing 10' through welding/method. Lan plate and other forms are connected.
  • such a structure and assembly method have the following disadvantages: the deformation of the welding and the offset of the rotor 22' are inevitable in the assembly process, and the offset of the air gap of the fixed rotor 22' cannot be fundamentally avoided. .
  • the air gap between the stator 21' and the rotor 22' is not uniform, which may cause a collision between the rotor 22' and the stator 21', so that the force of the fixed rotor is more uneven, and a large noise is generated.
  • a compressor comprising: a housing having a center shaft; an upper cylinder head, located in the housing, having a first inner bore having an axis parallel to the central shaft; a lower cylinder a cover, located in the housing, having a second inner bore coaxial with the first inner bore; a motor and a cylinder housed in the housing, the cylinder having an axis parallel to the central axis a third inner hole; a crankshaft that transmits a rotational force of the motor to a piston in the cylinder to compress a refrigerant, the crankshaft being inserted into the upper first inner hole, the third inner hole and the second inner hole;
  • the upper cylinder head or the cylinder and the housing are integrated components before the crankshaft is inserted into the first inner hole; or the upper cylinder head or the cylinder and the housing are already Connected to each other.
  • the upper cylinder cover and the housing are integrated components or are connected to the housing, and an inner diameter of the housing and the first The inner diameter of an inner bore is less than 0.5 mm.
  • the cylinder and the housing are integrated components or are connected to the housing, and an inner diameter of the housing and the third inner portion are The coaxiality of the holes is less than 0.5 mm.
  • the housing includes an upper portion and a lower portion divided by the upper cylinder cover, and a height H1 ⁇ h1/5+h2+h3 of the upper portion of the housing on the central shaft, h1 is the motor The stack thickness, h2 is the height of the lower coil of the stator of the motor on the central axis, and h3 is the distance between the bottom of the lower coil and the closest electrical component, h3 is greater than 1 mm.
  • the ratio H of the height H of the housing on the central axis to the outer diameter D of the housing is ⁇ 0.3.
  • the upper cylinder head or the cylinder and the casing are formed by casting, forging, and solid material excavation to form an integrated component.
  • the upper cylinder head or the cylinder and the casing are connected to each other by welding, glue bonding, heat jacketing, cold pressing, bushing brackets and flanges.
  • the upper cylinder head or the cylinder is powder metallurgy or cast iron or steel.
  • a method of manufacturing a compressor having the structure as described above comprising: providing an integrated housing, the upper cylinder head or the cylinder Integrating with the housing as the integrated housing, the upper cylinder head or the cylinder is coaxial with the housing by less than 0.5 mm; inserting the crankshaft into the upper cylinder head a first inner bore, the crankshaft is disposed coaxially with the first inner bore; a rotor of the motor is sleeved on the crankshaft, the rotor is coaxially disposed with the crankshaft; and the motor is The stator is fixed to the integrated housing, and the stator is transposed to the outside of the rotor, the stator is disposed coaxially with the integrated housing, and an air gap is provided between the stator and the rotor.
  • a method of manufacturing a compressor having the structure as described above comprising: the upper cylinder head or the cylinder and the housing Interconnecting the upper cylinder head or the cylinder with the casing to be less than 0.5 mm; inserting the crankshaft into the first inner hole of the upper cylinder head, the crankshaft and the first An inner bore is coaxially disposed; a rotor of the motor is sleeved on the crankshaft, the rotor is disposed coaxially with the crankshaft; and a stator of the motor is fixed to the integrated housing, and The stator is transposed to the outside of the rotor, the stator is disposed coaxially with the integrated housing, and an air gap is provided between the stator and the rotor.
  • the compressor and the manufacturing method of the present invention realize the unification of the assembly reference and the positioning reference; the compressor is released without stress during the assembly process, effectively reducing the welding deformation and reducing the offset of the stator and rotor, so that The air gap of the stator and rotor is more uniform, and the noise of the compressor is improved.
  • Figure 1 is a cross-sectional view of a prior art compressor
  • Figure 2 is a cross-sectional view showing the integrated housing and upper cylinder head of the first embodiment of the present invention
  • Figure 3 is a cross-sectional view showing the internal assembly of the compressor casing of the first embodiment of the present invention
  • Figure 4 is a cross-sectional view of the crankshaft in the first embodiment of the present invention.
  • Fig. 5 is a cross-sectional view showing the internal assembly of the compressor casing when the casing and the cylinder are integrated according to the second embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the integrated assembly of the casing and the upper cylinder head according to the first embodiment of the present invention
  • FIG. 3 is a cross-sectional view showing the internal assembly of the compressor casing according to the first embodiment of the present invention
  • 4 is a cross-sectional view of the crankshaft in the first embodiment of the present invention.
  • the compressor includes a housing 10, an upper cylinder head 32, a lower cylinder head 33, a motor (reference numeral 20' in Fig. 1), a cylinder 31, and a crankshaft 40.
  • the housing 10 has an accommodation space.
  • the housing 10 is optionally a cylindrical-like housing and has a central shaft 101.
  • the ratio H of the height H of the casing 10 on the central shaft 101 to the outer diameter D of the casing 10 is ⁇ 0.3.
  • the upper cylinder head 32 is located within the housing 10 and has a first inner bore 321 having an axis 322 that is parallel to the central axis 101.
  • the housing 10 includes an upper portion and a lower portion divided by an upper cylinder cover 32, and a height H1 ⁇ h1/5 + h2 + h3 of the upper portion of the housing 10 on the central shaft 101, wherein h1 is the motor
  • h2 is the height of the lower coil of the stator of the motor on the central axis
  • h3 is the distance between the bottom of the lower coil and the closest electrical component
  • h3 is greater than 1 mm.
  • the upper cylinder head 32 and the housing 10 are integral components before the crankshaft 40 is inserted into the first inner bore 321 .
  • the upper cylinder head 32 and the casing 10 form an integral part by a process such as casting, forging, solid material excavation and the like.
  • the integrated component can increase the assembly strength of the compressor, reduce the gap between the components to facilitate miniaturization of the compressor, and before assembly. Integration rather than post-assembly welding prevents thermal deformation of other components caused by welding, which in turn creates problems with misalignment.
  • the upper cylinder head 32 and the housing 10 are connected to each other before the crankshaft 40 is inserted into the first inner bore 321 .
  • the upper cylinder head 32 and the housing 10 are connected to each other by welding, glue bonding, heat jacketing, cold pressing, bushing brackets, flanges, and the like.
  • the assembly of the compressor is more flexible than that of the integrated component, and it is not necessary to make a new mold, and it is also possible to reduce
  • the gap between the components is small to facilitate the miniaturization of the compressor; the joints are not connected to each other prior to assembly, and the welding can prevent thermal deformation of other components caused by welding, thereby causing problems of misalignment.
  • the upper cylinder head 32 is optionally powder metallurgy or cast iron or steel, whereby it can have good hardness both during joining or integral molding.
  • the lower cylinder head 33 is located inside the casing 10, and the lower cylinder head 33 has a second inner hole 331 coaxial with the first inner hole 321.
  • the motor and cylinder 31 are housed within the housing 10.
  • the cylinder 31 has a third inner bore 311 whose axis is parallel to the central axis 101.
  • the crankshaft 40 is inserted into the first inner hole 321, the third inner hole 311, and the second inner hole 331. The crankshaft 40 transmits the rotational force of the motor to the piston in the cylinder 31 to compress the refrigerant.
  • the upper cylinder head 32 and the lower cylinder head 33 serve as upper and lower covers of the cylinder 31.
  • the eccentric portion 402 of the crankshaft 40 is located in a compression space defined by the upper cylinder head 32 and the lower cylinder head 33 together with the cylinder 31 to compress the refrigerant liquid flowing from the accumulator into the cylinder 31.
  • the upper cylinder head 32 is located above the eccentric portion 402 of the crankshaft 40 and supports the long shaft portion 401 of the crankshaft 40.
  • the lower cylinder head 33 is located below the eccentric portion 402 of the crankshaft 40 and supports the short shaft portion 403 of the crankshaft 40, thereby stopping the crankshaft 40.
  • the inner diameter of the housing 10 and the first inner hole 321 are less than 0.5 mm.
  • the concentricity is that the distance between the central axis 101 of the housing 10 and the axis 322 of the first inner bore 321 is less than 0.5 mm.
  • the stator of the motor can be directly fixedly mounted on the inner circumference of the casing 10.
  • the inner circumference of the casing 10 serves as the positioning reference of the motor stator
  • the first inner hole 321 serves as a positioning reference for the rotor of the motor
  • the inner circumference of the first inner hole 321 and the inner circumference of the casing 10 is less than 0.1 mm.
  • the rotor and the stator can be ensured to be substantially coaxial, and an excellent clearance fit effect is achieved between the two to reduce wear and noise.
  • FIG. 5 is a cross-sectional view showing the internal assembly of the compressor casing when the casing and the cylinder are integrated according to the second embodiment of the present invention.
  • the compressor includes a housing 10, an upper cylinder head 32, a lower cylinder head 33, a motor (reference numeral 20' in Fig. 1), a cylinder 31, and a crankshaft 40.
  • the housing 10 has an accommodation space.
  • the upper cylinder head 32 is located within the housing 10 and has a first inner bore 321 having an axis 322 that is parallel to the central axis 101.
  • the lower cylinder head 33 is located inside the casing 10, and the lower cylinder head 33 has a second inner hole 331 coaxial with the first inner hole 321.
  • the motor and cylinder 31 are housed within the housing 10.
  • the cylinder 31 has a third inner bore 311 whose axis is parallel to the central axis 101.
  • the crankshaft 40 is inserted into the first inner hole 321, the third inner hole 311, and the second inner hole 331. The crankshaft 40 transmits the rotational force of the motor to the piston in the cylinder 31 to compress the refrigerant.
  • the cylinder 31 and the housing 10 are integral components before the crankshaft 40 is inserted into the first inner bore 321, the cylinder 31 and the housing 10 are integral components.
  • the integrated component can increase the assembly strength of the compressor, reduce the gap between the components to facilitate miniaturization of the compressor, and integrate before assembly. Welding, rather than post-assembly, prevents thermal deformation of other components caused by welding, which in turn creates problems with misalignment.
  • the cylinder 31 and the housing 10 are connected to each other before the crankshaft 40 is inserted into the first inner bore 321 .
  • the assembly of the compressor is more flexible than that of the integrated component, and it is not necessary to make a new mold, and it can also be reduced.
  • the gap between the components facilitates miniaturization of the compressor; soldering to each other prior to assembly rather than after assembly prevents thermal deformation of other components caused by soldering, thereby causing problems of misalignment.
  • the cylinder 31 is optionally powder metallurgy or cast iron or steel, whereby it can have good hardness both during joining or integral molding.
  • the inner diameter of the housing 10 and the third inner hole 331 are less than 0.5 mm.
  • the concentricity is that the distance between the central axis 101 of the housing 10 and the axis of the third inner bore 331 is less than 0.5 mm. Since the upper cylinder head 32 is connected to the cylinder 31 and can be used as a positioning reference by the axis of the cylinder, when the crankshaft 40 is inserted into the first inner hole 321, it can be substantially maintained at the central axis of the casing 10, when the rotor and stator of the motor are sleeved.
  • the phase of the rotor and stator assembly reference and the positioning reference can be unified, and the stator and rotor offset can be reduced, so that the air gap of the stator and rotor is more uniform, and the noise of the compressor is improved.
  • the stator of the motor can be directly fixedly mounted on the inner circumference of the casing 10.
  • the third inner hole 321 serves as a positioning reference for the rotor of the motor, and the inner circumference of the third inner hole 321 and the inner circumference of the casing 10 is less than 0.5 mm.
  • the rotor and the stator can be ensured to be substantially coaxial, and an excellent clearance fit effect is achieved between the two to reduce wear and noise.
  • the present invention also provides a method of manufacturing a compressor having any of the structures described above.
  • the manufacturing method includes: providing an integrated housing, the upper cylinder head or the cylinder being integrated with the housing as the integrated housing, the upper cylinder head or the cylinder and the housing
  • the coaxiality is less than 0.5 mm;
  • the crankshaft is inserted into the first inner hole of the upper cylinder head, the crankshaft is coaxially disposed with the first inner hole;
  • the rotor of the motor is sleeved in the On the crankshaft, the rotor is disposed coaxially with the crankshaft; and the stator of the motor is fixed to the integrated housing and mounted on the outside of the rotor, the stator being coaxial with the integrated housing It is provided that there is an air gap between the stator and the rotor.
  • the present invention also provides another manufacturing method of the above compressor, the manufacturing method comprising: interconnecting the upper cylinder head or the cylinder with the housing to make the upper cylinder head or the cylinder and the shell
  • the coaxiality of the body is less than 0.5 mm; the crankshaft is inserted into the first inner hole of the upper cylinder head, the crankshaft is coaxially disposed with the first inner hole; and the rotor of the motor is sleeved On the crankshaft, the rotor is disposed coaxially with the crankshaft; and the stator of the motor is fixed to the integrated housing and assembled outside the rotor, the stator and the integrated housing Coaxially disposed, an air gap is provided between the stator and the rotor.
  • the compressor and the manufacturing method of the present invention realize the unification of the assembly reference and the positioning reference; the compressor is released without stress during the assembly process, effectively reducing the welding deformation and reducing the offset of the stator and rotor, so that The air gap of the stator and rotor is more uniform, and the noise of the compressor is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种压缩机及其制造方法,该压缩机包括:壳体(10),具有一中心轴(101);上缸盖(32),位于壳体(10)内,具有一轴线(322)平行于中心轴(101)的第一内孔(321);下缸盖(33),位于壳体(10)内,具有一与第一内孔(321)同轴的第二内孔(331);电机和气缸(31),容置于壳体(10)内,气缸(31)具有一轴线平行于中心轴(101)的第三内孔(311);曲轴(40),将电机的旋转力传递给气缸(31)中的活塞,以压缩制冷剂,曲轴(40)插入第一内孔(321)、第三内孔(311)及第二内孔(331);其中,在曲轴(40)插入第一内孔(321)前,上缸盖(32)或者气缸(31)与壳体(10)为一体化部件,或者上缸盖(32)或者气缸(31)与壳体(10)相互连接。该压缩机及其制造方法能够减少压缩机的磨损,降低噪音。

Description

一种压缩机及其制造方法 技术领域
本发明涉及空调领域,具体地,涉及一种压缩机及其制造方法。
背景技术
通常而言,封闭式压缩机包括用于在密封外壳的内部空间产生驱动力的电机,以及联接到所述电机用于压缩制冷剂的压缩部件。空调器、电冰箱、通讯基站等相关制冷空调领域中主要应用的是滚动转子式压缩机。该滚动转子式压缩机的压缩原理主要是利用电机的旋转力。
现有技术的滚动转子式压缩机的电机具有一根曲轴,通过曲轴将电机的旋转力传递到压缩部件。例如,如图1所示,旋转式封闭压缩机的主要结构如下:
密封外壳10′的上、下两端分别焊接上盖1′和下盖5′。电机20′置于密封外壳10′内,电机20′包括套设于曲轴40′上的转子22′和固定在密封外壳10′上的定子21′。转子22′插置于定子21′中,在该转子22′与定子21′之间具有预定间隙,进而通过与定子21′的相互作用而旋转该转子22′。曲轴40′联接到所述转子22′以将转子22′的旋转力传递到压缩部件。曲轴40′的下部依靠轴承构件(上缸盖32′和下缸盖33′)定位于密封外壳10′的中轴线。上缸盖32′通过内部凸台结构(图1中的内类圆柱结构)与曲轴40′构成摩擦副。
压缩部件可以包括:气缸,转动活塞和用于在气缸中隔绝高低压腔的叶片,以及多个用于与所述气缸共同限定压缩空间并支撑曲轴40′的轴承构件。轴承构件通常位于电机20′的一侧以支撑曲轴40′。
现有技术的压缩机多采用如图1所示的轴承构件(上缸盖32′和下缸盖33′)和曲轴40′直接接触配合的方式,并且上缸盖32′与密封外壳10′焊接。现有压缩机装配流程皆是先把曲轴40′、上缸盖32′、气缸31′、下缸盖33′等泵体部分装配完成后,再将泵体与壳体10′通过焊接/法兰盘等形式进行连接。经发明人研究发现,这样的结构及装配方式存在如下弊端:装配过程中不可避免的会发生焊接的变形与转子22′的偏移,始终无法从根本上避免定转子22′气隙的偏移。而定子21′、转子22′之间气隙不均匀,可能会造成转子22′与定子21′之间的发生碰撞,使得定转子受力更加不均匀,会产生较大噪音。
发明内容
针对现有技术中的缺陷,本发明的目的在于提供一种压缩机及其制造方法,能够改善压缩机的噪音。
根据本发明的一方面,提供一种压缩机,包括:壳体,具有一中心轴;上缸盖,位于 所述壳体内,具有一轴线平行于所述中心轴的第一内孔;下缸盖,位于所述壳体内,具有一与所述第一内孔同轴的第二内孔;电机和气缸,容置于所述壳体内,所述气缸具有一轴线平行于所述中心轴的第三内孔;曲轴,将所述电机的旋转力传递给所述气缸中的活塞,以压缩制冷剂,所述曲轴插入所述上第一内孔、第三内孔及第二内孔;其中,在所述曲轴插入所述第一内孔前,所述上缸盖或者所述气缸与所述壳体为一体化部件;或者所述上缸盖或者所述气缸与所述壳体已经相互连接。
可选地,在所述曲轴插入所述第一内孔前,所述上缸盖与所述壳体为一体化部件或者与所述壳体相互连接,所述壳体的内径与所述第一内孔的同轴度小于0.5mm。
可选地,在所述曲轴插入所述第一内孔前,所述气缸与所述壳体为一体化部件或者与所述壳体相互连接,所述壳体的内径与所述第三内孔的同轴度小于0.5mm。
可选地,所述壳体包括由所述上缸盖划分的上部和下部,所述壳体上部在所述中心轴上的高度H1≥h1/5+h2+h3,h1为所述电机的叠厚,h2为所述电机的定子下侧线圈在所述中心轴上的高度,h3为下侧线圈底部至距离最近的部件的安全电器距离,h3大于1mm。
可选地,所述壳体在所述中心轴上的高度H与所述壳体的外径D的比值H/D≥0.3。
可选地,所述上缸盖或者所述气缸与所述壳体通过浇铸、锻造、实心材料挖出除料形成一体化部件。
可选地,所述上缸盖或者所述气缸与所述壳体通过焊接、胶水粘结、热套、冷压、衬套托架、法兰盘相互连接。
可选地,所述上缸盖或者所述气缸为粉末冶金或铸铁或钢。
根据本发明的又一方面,还提供一种压缩机的制造方法,所述压缩机具有如上所述的结构,所述制造方法包括:提供一体化壳体,所述上缸盖或者所述气缸与所述壳体一体化为所述一体化壳体,所述上缸盖或者所述气缸与所述壳体的同轴度小于0.5mm;将所述曲轴插入所述上缸盖的所述第一内孔,所述曲轴与所述第一内孔同轴设置;将所述电机的转子套接于所述曲轴上,所述转子与所述曲轴同轴设置;以及将所述电机的定子与所述一体化壳体固定,并将所述定子转配于所述转子外侧,所述定子与所述一体化壳体同轴设置,所述定子和所述转子之间具有气隙。
根据本发明的又一方面,还提供一种压缩机的制造方法,所述压缩机具有如上所述的结构,所述制造方法包括:将所述上缸盖或者所述气缸与所述壳体相互连接使所述上缸盖或者所述气缸与所述壳体的同轴度小于0.5mm;将所述曲轴插入所述上缸盖的所述第一内孔,所述曲轴与所述第一内孔同轴设置;将所述电机的转子套接于所述曲轴上,所述转子与所述曲轴同轴设置;以及将所述电机的定子与所述一体化壳体固定,并将所述定子转配于所述转子外侧,所述定子与所述一体化壳体同轴设置,所述定子和所述转子之间具有 气隙。
由于使用了以上技术,本发明的压缩机及制造方法实现了装配基准和定位基准的相统一;压缩机在装配过程中,无应力释放,有效减小焊接变形,降低定转子偏移量,使得定转子气隙更加均匀,压缩机整机噪声有所改善。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为现有技术的压缩机的剖视图;
图2为本发明的第一实施例的壳体和上缸盖一体化的剖视图;
图3为本发明中第一实施例的压缩机壳体内部装配的剖视图;
图4为本发明第一实施例中曲轴的剖面剖视图;
图5为本发明第二实施例的壳体和气缸一体化时压缩机壳体内部装配的剖视图。
具体实施方式
以下将对本发明的实施例给出详细的说明。尽管本发明将结合一些具体实施方式进行阐述和说明,但需要注意的是本发明并不仅仅只局限于这些实施方式。相反,对本发明进行的修改或者等同替换,均应涵盖在本发明的权利要求范围当中。
另外,为了更好的说明本发明,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员将理解,没有这些具体细节,本发明同样可以实施。在另外一些实例中,对于大家熟知的结构和部件未作详细描述,以便于凸显本发明的主旨。
第一实施例
如图2至图4,图2为本发明的第一实施例的壳体和上缸盖一体化的剖视图;图3为本发明中第一实施例的压缩机壳体内部装配的剖视图;图4为本发明第一实施例中曲轴的剖面剖视图。
压缩机包括壳体10、上缸盖32、下缸盖33、电机(如图1中标号20′)、气缸31、曲轴40。壳体10具有一容置空间。壳体10可选地为类圆柱形外壳,并具有一中心轴101。壳体10在中心轴101上的高度H与壳体10的外径D的比值H/D≥0.3。在立式压缩机的实施例中,由于各部件轴向连接,因此,壳体10需要有足够的高度来容纳这些部件。上缸盖32位于壳体10内,具有一轴线322平行于中心轴101的第一内孔321。在本实施例中,壳体10包括由上缸盖32划分的上部和下部,壳体10的上部在中心轴101上的高度H1≥h1/5+h2+h3,其中,h1为所述电机的叠厚,h2为所述电机的定子下部线圈在所述中心轴上的高度,h3为下部线圈底部至距离最近的部件的安全电器距离,h3大于1mm。由此,可保证各部件的安装高度,并减少各部件在运行时产生摩擦进而产生的机械磨损。
在本实施例中,在曲轴40插入第一内孔321前,上缸盖32与壳体10为一体化部件。例如,在制作壳体10的过程中,通过浇铸、锻造、实心材料挖出除料等工艺形式使上缸盖32与壳体10形成一体化部件。在上缸盖32与壳体10为一体化部件的实施例中,该一体化部件可以增加压缩机的装配强度,减小了部件之间的间隙以利于压缩机的小型化,且在装配前一体化而非装配后焊接可防止由焊接造成的其他部件的热变形,进而产生对位不准的问题。在本实施例的一个变化例中,在曲轴40插入第一内孔321前,上缸盖32与壳体10相互连接。例如,上缸盖32与壳体10通过焊接、胶水粘结、热套、冷压、衬套托架、法兰盘等方式相互连接。在上缸盖32与壳体10在曲轴40插入第一内孔321前相互连接的实施例中,相比一体化部件,压缩机的装配更加灵活,且无需制作新的模具,同时也可以减小了部件之间的间隙以利于压缩机的小型化;在装配前相互连接而非装配后焊接可防止由焊接造成的其他部件的热变形,进而产生对位不准的问题。上缸盖32可选地为为粉末冶金或铸铁或钢,由此无论在连接或一体化成型的过程中都可具有良好硬度。
下缸盖33位于壳体10内,下缸盖33具有一与第一内孔321同轴的第二内孔331。电机和气缸31容置于壳体10内。气缸31具有一轴线平行于中心轴101的第三内孔311。曲轴40插入上第一内孔321、第三内孔311及第二内孔331。曲轴40将电机的旋转力传递给气缸31中的活塞,以压缩制冷剂。
具体而言,上缸盖32和下缸盖33作为气缸31的上下盖。曲轴40的偏心部402位于上缸盖32和下缸盖33与气缸31共同限定的压缩空间中,以压缩从储液器中流入气缸31制冷液。上缸盖32位于曲轴40的偏心部402上方,支撑曲轴40的长轴部401。下缸盖33位于曲轴40的偏心部402下方,支撑曲轴40的短轴部403,从而止推曲轴40。
此外,在本实施例中,壳体10的内径与第一内孔321的同轴度小于0.5mm。同轴度也就是于壳体10的中心轴101与第一内孔321的轴线322之间的距离小于0.5mm。由此,当曲轴40插入第一内孔321时,可大致保持在壳体10的中心轴处,当电机的转子和定子套设于曲轴40上时,可实现转子和定子装配基准和定位基准的相统一,同时降低定转子偏移量,使得定转子气隙更加均匀,压缩机整机噪声有所改善。具体而言,电机的定子可以直接固定装设于壳体10的内周圆上。这样,由于壳体10的内周圆作为电机定子的定位基准,第一内孔321作为电机转子的定位基准,,第一内孔321和壳体10内周圆同轴度小于0.1mm,从而可以保证转子与定子基本同轴,两者之间达到极佳的间隙配合效果,减小磨耗和噪音。
第二实施例
参见图5,图5为本发明第二实施例的壳体和气缸一体化时压缩机壳体内部装配的剖视图。
压缩机包括壳体10、上缸盖32、下缸盖33、电机(如图1中标号20′)、气缸31、曲轴40。壳体10具有一容置空间。上缸盖32位于壳体10内,具有一轴线322平行于中 心轴101的第一内孔321。
下缸盖33位于壳体10内,下缸盖33具有一与第一内孔321同轴的第二内孔331。电机和气缸31容置于壳体10内。气缸31具有一轴线平行于中心轴101的第三内孔311。曲轴40插入上第一内孔321、第三内孔311及第二内孔331。曲轴40将电机的旋转力传递给气缸31中的活塞,以压缩制冷剂。
在本实施例中,在曲轴40插入第一内孔321前,气缸31与壳体10为一体化部件。在气缸31与壳体10为一体化部件的实施例中,该一体化部件可以增加压缩机的装配强度,减小了部件之间的间隙以利于压缩机的小型化,且在装配前一体化而非装配后焊接可防止由焊接造成的其他部件的热变形,进而产生对位不准的问题。在本实施例的一个变化例中,在曲轴40插入第一内孔321前,气缸31与壳体10相互连接。在气缸31与壳体10在曲轴40插入第一内孔321前相互连接的实施例中,相比一体化部件,压缩机的装配更加灵活,且无需制作新的模具,同时也可以减小了部件之间的间隙以利于压缩机的小型化;在装配前相互连接而非装配后焊接可防止由焊接造成的其他部件的热变形,进而产生对位不准的问题。气缸31可选地为为粉末冶金或铸铁或钢,由此无论在连接或一体化成型的过程中都可具有良好硬度。
此外,在本实施例中,壳体10的内径与第三内孔331的同轴度小于0.5mm。同轴度也就是于壳体10的中心轴101与第三内孔331的轴线之间的距离小于0.5mm。由于上缸盖32与气缸31连接,并可由气缸的轴线作为定位基准,当曲轴40插入第一内孔321时,可大致保持在壳体10的中心轴处,当电机的转子和定子套设于曲轴40上时,可实现转子和定子装配基准和定位基准的相统一,同时降低定转子偏移量,使得定转子气隙更加均匀,压缩机整机噪声有所改善。具体而言,电机的定子可以直接固定装设于壳体10的内周圆上。这样,由于壳体10的内周圆作为电机定子的定位基准,第三内孔321作为电机转子的定位基准,,第三内孔321和壳体10内周圆同轴度小于0.5mm,从而可以保证转子与定子基本同轴,两者之间达到极佳的间隙配合效果,减小磨耗和噪音。
对应于上述第一实施例和第二实施例,本发明还提供一种压缩机的制造方法,压缩机具有如上所述的任一种结构。该制造方法包括:提供一体化壳体,所述上缸盖或者所述气缸与所述壳体一体化为所述一体化壳体,所述上缸盖或者所述气缸与所述壳体的同轴度小于0.5mm;将所述曲轴插入所述上缸盖的所述第一内孔,所述曲轴与所述第一内孔同轴设置;将所述电机的转子套接于所述曲轴上,所述转子与所述曲轴同轴设置;以及将所述电机的定子与所述一体化壳体固定,并装配在所述转子外侧,所述定子与所述一体化壳体同轴设置,所述定子和所述转子之间具有气隙。本发明还提供了另一种上述压缩机的制造方法,制造方法包括:将所述上缸盖或者所述气缸与所述壳体相互连接使所述上缸盖或者所述气缸与所述壳体的同轴度小于0.5mm;将所述曲轴插入所述上缸盖的所述第一内孔,所述曲轴与所述第一内孔同轴设置;将所述电机的转子套接于所述曲轴上,所述转子与所述曲轴同轴设置;以及将所述电机的定子与所述一体化壳体固定,并装配在所述转子外侧, 所述定子与所述一体化壳体同轴设置,所述定子和所述转子之间具有气隙。
由于使用了以上技术,本发明的压缩机及制造方法实现了装配基准和定位基准的相统一;压缩机在装配过程中,无应力释放,有效减小焊接变形,降低定转子偏移量,使得定转子气隙更加均匀,压缩机整机噪声有所改善。
以上具体地示出和描述了本发明的示例性实施方式。应该理解,本发明不限于所公开的实施方式,相反,本发明意图涵盖包含在所附权利要求范围内的各种修改和等效置换。

Claims (10)

  1. 一种压缩机,其特征在于,包括:
    壳体,具有一中心轴;
    上缸盖,位于所述壳体内,具有一轴线平行于所述中心轴的第一内孔;
    下缸盖,位于所述壳体内,具有一与所述第一内孔同轴的第二内孔;
    电机和气缸,容置于所述壳体内,所述气缸具有一轴线平行于所述中心轴的第三内孔;
    曲轴,将所述电机的旋转力传递给所述气缸中的活塞,以压缩制冷剂,所述曲轴插入所述上第一内孔、第三内孔及第二内孔;
    其中,在所述曲轴插入所述第一内孔前,
    所述上缸盖或者所述气缸与所述壳体为一体化部件;或者
    所述上缸盖或者所述气缸与所述壳体已经相互连接。
  2. 如权利要求1所述的压缩机,其特征在于,在所述曲轴插入所述第一内孔前,所述上缸盖与所述壳体为一体化部件或者与所述壳体相互连接,
    所述壳体的内径与所述第一内孔的同轴度小于0.5mm。
  3. 如权利要求1所述的压缩机,其特征在于,在所述曲轴插入所述第一内孔前,所述气缸与所述壳体为一体化部件或者与所述壳体相互连接,
    所述壳体的内径与所述第三内孔的同轴度小于0.5mm。
  4. 如权利要求1所述的压缩机,其特征在于,所述壳体包括由所述上缸盖划分的上部和下部,所述壳体上部在所述中心轴上的高度H1≥h1/5+h2+h3,
    其中,h1为所述电机的叠厚,h2为所述电机的定子下侧线圈在所述中心轴上的高度,h3为所述下侧线圈至距离最近的部件的安全电器距离,h3大于1mm。
  5. 如权利要求1所述的压缩机,其特征在于,所述壳体在所述中心轴上的高度H与所述壳体的外径D的比值H/D≥0.3。
  6. 如权利要求1至5任一项所述的压缩机,其特征在于,所述上缸盖或者所述气缸与所述壳体通过浇铸、锻造、实心材料挖出除料形成一体化部件。
  7. 如权利要求1至5任一项所述的压缩机,其特征在于,所述上缸盖或者所述气缸与所述壳体通过焊接、胶水粘结、热套、冷压、衬套托架、法兰盘相互连接。
  8. 如权利要求1至5任一项所述的压缩机,其特征在于,所述上缸盖或者所述气缸为粉末冶金或铸铁或钢。
  9. 一种压缩机的制造方法,所述压缩机具有如权利要求1至8任一项所述的结构,其特征在于,所述制造方法包括:
    提供一体化壳体,所述上缸盖或者所述气缸与所述壳体一体化为所述一体化壳体,所述上缸盖或者所述气缸与所述壳体的同轴度小于0.5mm;
    将所述曲轴插入所述上缸盖的所述第一内孔,所述曲轴与所述第一内孔同轴设置;
    将所述电机的转子套接于所述曲轴上,所述转子与所述曲轴同轴设置;以及
    将所述电机的定子与所述一体化壳体固定,并安装在所述转子外侧,所述定子与所述一体化壳体同轴设置,所述定子和所述转子之间具有气隙。
  10. 一种压缩机的制造方法,所述压缩机具有如权利要求1至8任一项所述的结构,其特征在于,所述制造方法包括:
    将所述上缸盖或者所述气缸与所述壳体相互连接使所述上缸盖或者所述气缸与所述壳体的同轴度小于0.5mm;
    将所述曲轴插入所述上缸盖的所述第一内孔,所述曲轴与所述第一内孔同轴设置;
    将所述电机的转子套接于所述曲轴上,所述转子与所述曲轴同轴设置;以及
    将所述电机的定子与所述一体化壳体固定,并安装在所述转子外侧,所述定子与所述一体化壳体同轴设置,所述定子和所述转子之间具有气隙。
PCT/CN2018/076422 2017-09-05 2018-02-12 一种压缩机及其制造方法 WO2019047477A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710792695.5A CN109424515B (zh) 2017-09-05 2017-09-05 一种压缩机及其制造方法
CN201710792695.5 2017-09-05

Publications (1)

Publication Number Publication Date
WO2019047477A1 true WO2019047477A1 (zh) 2019-03-14

Family

ID=65513517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076422 WO2019047477A1 (zh) 2017-09-05 2018-02-12 一种压缩机及其制造方法

Country Status (2)

Country Link
CN (1) CN109424515B (zh)
WO (1) WO2019047477A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112855535A (zh) * 2019-11-27 2021-05-28 上海海立电器有限公司 压缩机气缸及包括其的压缩机
CN113803254B (zh) * 2021-08-30 2022-07-08 广州市德善数控科技有限公司 一种压缩机及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200363A (ja) * 2005-01-18 2006-08-03 Fujitsu General Ltd 密閉型圧縮機
CN2816419Y (zh) * 2005-08-18 2006-09-13 乐金电子(天津)电器有限公司 压缩机的上部轴承与壳体的固定结构
CN102477984A (zh) * 2010-11-26 2012-05-30 上海日立电器有限公司 定转子间隙均匀的转子式压缩机结构
CN102536831A (zh) * 2012-03-13 2012-07-04 西安庆安制冷设备股份有限公司 旋转式压缩机的气缸固定机构
CN103511277A (zh) * 2013-07-22 2014-01-15 广东美芝制冷设备有限公司 旋转式压缩机
CN203500008U (zh) * 2013-09-03 2014-03-26 广东美芝制冷设备有限公司 旋转式压缩机及具有该旋转式压缩机的制冷系统
CN104948568A (zh) * 2014-03-31 2015-09-30 珠海凌达压缩机有限公司 曲轴和压缩机及装配方法
CN105114314A (zh) * 2015-08-03 2015-12-02 广东美芝制冷设备有限公司 旋转式压缩机及其装配方法
JP2017053229A (ja) * 2015-09-07 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド スクロール圧縮機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101070844A (zh) * 2006-05-12 2007-11-14 乐金电子(天津)电器有限公司 改进的压缩机
CN101782069B (zh) * 2010-02-25 2012-07-04 西安庆安制冷设备股份有限公司 密闭型转子式压缩机及制造方法
CN104747449A (zh) * 2013-12-30 2015-07-01 上海日立电器有限公司 一种制造装配双支撑压缩机的方法
CN105464980A (zh) * 2014-08-28 2016-04-06 上海日立电器有限公司 一种压缩机及其制造方法
CN204357704U (zh) * 2014-12-18 2015-05-27 上海日立电器有限公司 一种旋转式双缸压缩机
CN107120285A (zh) * 2017-06-30 2017-09-01 广东美芝制冷设备有限公司 压缩机及其支撑轴承的装配方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200363A (ja) * 2005-01-18 2006-08-03 Fujitsu General Ltd 密閉型圧縮機
CN2816419Y (zh) * 2005-08-18 2006-09-13 乐金电子(天津)电器有限公司 压缩机的上部轴承与壳体的固定结构
CN102477984A (zh) * 2010-11-26 2012-05-30 上海日立电器有限公司 定转子间隙均匀的转子式压缩机结构
CN102536831A (zh) * 2012-03-13 2012-07-04 西安庆安制冷设备股份有限公司 旋转式压缩机的气缸固定机构
CN103511277A (zh) * 2013-07-22 2014-01-15 广东美芝制冷设备有限公司 旋转式压缩机
CN203500008U (zh) * 2013-09-03 2014-03-26 广东美芝制冷设备有限公司 旋转式压缩机及具有该旋转式压缩机的制冷系统
CN104948568A (zh) * 2014-03-31 2015-09-30 珠海凌达压缩机有限公司 曲轴和压缩机及装配方法
CN105114314A (zh) * 2015-08-03 2015-12-02 广东美芝制冷设备有限公司 旋转式压缩机及其装配方法
JP2017053229A (ja) * 2015-09-07 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド スクロール圧縮機

Also Published As

Publication number Publication date
CN109424515B (zh) 2020-12-08
CN109424515A (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
JP4928978B2 (ja) 電動圧縮機
US8899947B2 (en) Compressor
US8915725B2 (en) Compressor in which a shaft center of a suction pipe is disposed to not correspond to a shaft center of a refrigerant suction passage of a stationary shaft and an upper end of the stationary shaft protrudes higher than a bottom of an accumulator chamber
CN102562598B (zh) 封闭式压缩机
CN102220978A (zh) 封闭式压缩机
WO2019047477A1 (zh) 一种压缩机及其制造方法
JP2011236908A (ja) 密閉型圧縮機及びその製造方法
JP2005201114A (ja) 圧縮機
TW538198B (en) Scroll machine, scroll member and method for manufacture a scroll member
WO2018173877A1 (ja) 圧縮機
JP6151324B2 (ja) 密閉型電動圧縮機
JP2014155324A (ja) 電動機、圧縮機、及び冷凍サイクル装置
CN107218223A (zh) 旋转式压缩机
US3897177A (en) Compressor construction
JP2012127256A (ja) 回転式流体機械
CN206972542U (zh) 旋转式压缩机
KR20120104566A (ko) 냉동압축기의 편심축용 장착 장치
JP3096628B2 (ja) 密閉型回転圧縮機
JP2015214944A (ja) 密閉型電動圧縮機
JPH01285687A (ja) 密閉形電動圧縮機
JPWO2019123531A1 (ja) 固定子及びその固定子を備えた電動機
JP2011074814A (ja) ロータリコンプレッサ及びその製造方法
JPH01177473A (ja) 密閉形電動圧縮機
JP2013079653A (ja) 密閉型電動圧縮機
JPH02248667A (ja) 電動圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18853573

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18853573

Country of ref document: EP

Kind code of ref document: A1