WO2019038880A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2019038880A1
WO2019038880A1 PCT/JP2017/030316 JP2017030316W WO2019038880A1 WO 2019038880 A1 WO2019038880 A1 WO 2019038880A1 JP 2017030316 W JP2017030316 W JP 2017030316W WO 2019038880 A1 WO2019038880 A1 WO 2019038880A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor unit
temperature
fan
upper limit
heat exchanger
Prior art date
Application number
PCT/JP2017/030316
Other languages
English (en)
French (fr)
Inventor
佳祐 池宮
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/030316 priority Critical patent/WO2019038880A1/ja
Priority to AU2017428640A priority patent/AU2017428640B9/en
Priority to US16/620,998 priority patent/US11378297B2/en
Priority to JP2019537499A priority patent/JP6789399B2/ja
Priority to CN201780094029.2A priority patent/CN111051780B/zh
Priority to EP17922808.5A priority patent/EP3674621B1/en
Publication of WO2019038880A1 publication Critical patent/WO2019038880A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Definitions

  • the present invention relates to an air conditioner that controls the rotational speed of an indoor unit fan provided in an indoor unit.
  • the rotation speed of the indoor unit fan of the indoor unit of the air conditioner is controlled based on the instruction information specified by the user.
  • control is performed to reduce the rotational speed of the indoor unit fan.
  • Patent Document 1 when the average temperature of all areas in the room during heating operation is higher than the set temperature, it is determined that the air conditioning capacity is excessive, and the control for reducing the rotational speed of the compressor and the rotation of the fan in the indoor unit are performed. It is disclosed to perform number drop control.
  • the heat exchanger, the fan, and the control unit are housed in the casing of the indoor unit.
  • the control unit is generally housed in an electrical item box disposed in the indoor unit.
  • the temperature in the electrical component box rises due to the heat radiation from the heat exchanger.
  • heat is generated due to the load current. That is, by operating the fan, in the motor which drives the fan, a loss in which electric energy is replaced by heat energy due to the resistance of the winding, so-called copper loss, is generated to generate heat.
  • the load current of the fan increases and the temperature in the electrical component box rises.
  • the present invention has been made in view of the above, and includes an indoor unit in which an electric component box containing electric components, a heat exchanger, and an indoor unit fan are housed in the same casing, and the electric component box It is an object of the present invention to obtain an air conditioner capable of suppressing the temperature rise of electrical components of the
  • an air conditioner is an indoor unit fan that blows an electrical component box containing an electrical component, an indoor unit heat exchanger and an indoor unit heat exchanger And an indoor unit having the The air conditioner determines the upper limit value of the rotational speed of the indoor unit fan based on the temperature measurement unit that measures the temperature of the indoor unit heat exchanger and the temperature of the indoor unit heat exchanger measured by the temperature measurement unit, And a control unit that performs control to operate the indoor unit fan at a rotation speed equal to or less than the determined upper limit value.
  • the temperature rise of the electric component in the electric component box In the air conditioner according to the present invention, in the indoor unit in which the electric component box containing the electric component, the heat exchanger and the indoor unit fan are housed in the same casing, the temperature rise of the electric component in the electric component box The effect is that it can be suppressed.
  • the block diagram which shows typically the structure of the air conditioner concerning Embodiment 1 of this invention.
  • Refrigerant circuit diagram of air conditioner according to Embodiment 1 of the present invention Functional block diagram related to operation control of the indoor unit fan in the indoor unit of the air conditioner according to the first embodiment of the present invention
  • the figure which shows an example of the data table concerning Embodiment 1 of this invention.
  • the figure which shows an example of the indoor unit heat exchanger concerning Embodiment 1 of this invention.
  • FIG. 1 is a block diagram which shows typically the structure of the air conditioner 1 concerning Embodiment 1 of this invention.
  • FIG. 2 is a refrigerant circuit diagram of the air conditioner 1 according to the first embodiment of the present invention.
  • FIG. 3 is a functional block diagram relating to operation control of the indoor unit fan 16 in the indoor unit 2 of the air conditioner 1 according to the first embodiment of the present invention.
  • the air conditioner 1 includes an indoor unit 2 provided with a housing 2a and installed indoors, and an outdoor unit 3 provided with a housing 3a and installed outdoor.
  • a remote controller 4 for remotely controlling the operation of the air conditioner 1 and a refrigerant pipe 5 for circulating a refrigerant between the indoor unit 2 and the outdoor unit 3 are provided.
  • the outdoor unit 3 can communicate with the indoor unit 2 via the communication line 6.
  • the remote controller may be called a remote controller.
  • the air conditioner 1 includes a compressor 20, a four-way valve 19 that switches the flow direction of the refrigerant, and an outdoor unit heat exchanger 21 mounted on the outdoor unit 3.
  • An expansion valve 25, which is an expansion device, and an indoor unit heat exchanger 14 mounted on the indoor unit 2 are sequentially connected by a refrigerant pipe 5, and provided with a refrigeration cycle for circulating the refrigerant.
  • the four-way valve 19 switches between the heating operation and the cooling operation by switching the flow direction of the refrigerant in the refrigeration cycle.
  • a temperature measurement unit 15 for measuring the temperature of the air conditioner and an indoor unit fan 16 for generating an air flow passing through the indoor unit heat exchanger 14 are provided in the housing 2a.
  • An indoor unit such as an indoor unit fan motor 18, a display unit (not shown) for displaying the operating condition of the air conditioner 1, and a light receiving board (not shown) for performing infrared communication with the remote control 4
  • a control substrate 30 for driving and controlling an actuator provided in the control unit 2 is accommodated.
  • the control board 30 is used for control of the air conditioner 1, a control unit 31 for controlling the operation of the air conditioner 1, a power supply circuit 32 for generating a dedicated power supply for operating the components inside the indoor unit 2, and control of the air conditioner 1.
  • a storage unit 33 for storing various information to be stored, and an indoor unit communication unit 34 are configured.
  • the power supply circuit 32 converts the power supplied from the external power supply 7 outside the indoor unit 2 to generate a dedicated power supply for operating each component in the indoor unit 2.
  • the power supply circuit 32 is connected to each component in the indoor unit 2 by a power supply line. In FIG. 3, some of the power supply lines are omitted.
  • the storage unit 33 stores various types of information used in the air conditioning operation of the air conditioner 1. Further, the storage unit 33 includes a data table storage unit 36 described later and a fan maximum rotation speed setting storage unit 37.
  • the indoor unit communication unit 34 receives the information transmitted from the remote control 4 and transmits the information to the control unit 31, and transmits the information transmitted from the control unit 31 to the remote control 4.
  • a communication method between the indoor unit communication unit 34 and the remote control 4 infrared communication is exemplified.
  • the communication method between the indoor unit communication unit 34 and the remote control 4 is not limited to the infrared communication as long as the indoor unit communication unit 34 and the remote control 4 can mutually communicate with each other.
  • the control unit 31 is a control unit that controls the operation of the air conditioner 1 and controls the operation of the air conditioner 1 by controlling the operations of the indoor unit 2 and the outdoor unit 3.
  • the control unit 31 can transmit information with the remote control 4 via the indoor unit communication unit 34.
  • the control unit 31 is based on various information related to the operation of the air conditioner 1, such as instruction information received from the remote control 4 via the indoor unit communication unit 34 and information stored in advance in the control unit 31 or the storage unit 33. The operation of the air conditioner 1 is controlled.
  • the control unit 31 controls the setting of the air conditioning operation in the indoor unit 2 such as the temperature of the air flow blown out from the indoor unit 2 into the room and the strength and direction of the air flow blown out from the indoor unit 2 into the room. Control.
  • the control unit 31 transmits instruction information to the outdoor unit 3 in order to control each component in the outdoor unit 3.
  • the control unit 31 also includes an indoor unit fan control unit 35 that controls the operation of the indoor unit fan 16.
  • the indoor unit fan control unit 35 is a control unit that controls the operation of the indoor unit fan 16, and performs, for example, inverter control of the indoor unit fan 16.
  • the indoor unit fan control unit 35 performs control to operate the indoor unit fan 16 in a range of rotational speeds equal to or lower than the fan maximum rotational speed, which is the upper limit value of the rotational speed of the indoor unit fan 16 determined by the indoor unit fan control unit 35 .
  • the indoor unit fan control unit 35 selects an indoor unit fan from among the candidates for the upper limit value of the rotation speed of the indoor unit fan 16 determined in advance based on the temperature of the indoor unit heat exchanger 14 measured by the temperature measurement unit 15. Determine the upper limit of 16 rotation speeds. Then, the indoor unit fan control unit 35 operates the indoor unit fan 16 at a rotational speed equal to or lower than the determined upper limit value, and the temperature of the air in the electrical item box 13 is stored in the electrical item box 13 Control is performed to limit the temperature below the lowest temperature rating among components.
  • the control substrate 30 and the temperature measurement unit 15 are connected by lead wires.
  • the indoor unit fan control unit 35 can communicate with the temperature measurement unit 15, and can acquire the temperature of the indoor unit heat exchanger 14 measured by the temperature measurement unit 15, via the temperature measurement unit 15. Therefore, it is possible to monitor the temperature of the indoor unit heat exchanger 14 constantly.
  • the indoor unit fan control unit 35 defines the upper limit value of the rotational speed of the indoor unit fan 16 when the temperature of the indoor unit heat exchanger 14 measured by the temperature measurement unit 15 is equal to or higher than the predetermined first temperature threshold. Determined as the first upper limit. In addition, when the temperature of the indoor unit heat exchanger measured by the temperature measurement unit 15 is less than the first temperature threshold, the indoor unit fan control unit 35 sets the predetermined second upper limit value faster than the first upper limit value. The upper limit value of the rotation speed of the indoor unit fan 16 is determined.
  • the first temperature threshold is a temperature threshold for determining a setting value of the fan maximum rotation speed, which is the upper limit value of the rotation speed of the indoor unit fan 16.
  • the first temperature threshold is determined in advance and stored in the storage unit 33.
  • the first upper limit value is the temperature rise of the air in the electric component box 13 due to the heat radiation of the indoor unit heat exchanger 14 of the indoor unit 2 when the temperature of the indoor unit heat exchanger 14 rises most in the heating operation of the air conditioner 1 So that the temperature of the air in the electrical component box 13 is within the temperature rating of the electrical component, and the temperature of the electrical component in the electrical component box 13 is within the temperature rating of the electrical component, even if The maximum rotational speed of the indoor unit fan 16 is determined in advance. That is, the first upper limit value is the fan maximum rotational speed previously limited by the temperature rating of the electric component and the maximum temperature of the indoor unit heat exchanger 14.
  • the temperature rating of the electrical component here uses the lowest temperature rating among the temperature ratings of the plurality of electrical components in the electrical component box 13.
  • the second upper limit value is a fan maximum rotation speed of the indoor unit fan 16 determined in advance for the case where the operation of the indoor unit fan 16 is performed at a rotation speed faster than the first upper limit value. That is, the second upper limit value is an operation in which the restriction on the rotational speed of the indoor unit fan 16 is relaxed within the range in which the temperature of the air in the electrical component box 13 does not exceed the temperature rating of the electrical components stored in the electrical component box 13 It is a fan maximum rotational speed of the indoor unit fan 16 which is predetermined to be implemented.
  • the first temperature threshold value, the first upper limit value, and the second upper limit value are determined in consideration of various conditions such as the temperature rating of the electric component, the specifications and the capability of the air conditioner 1.
  • the data table storage unit 36 in the storage unit 33 stores a data table 41 in which the relationships among the first temperature threshold value, the first upper limit value, and the second upper limit value are set.
  • the indoor unit fan control unit 35 is based on the temperature of the indoor unit heat exchanger 14 measured by the temperature measurement unit 15 and the first temperature threshold, the first upper limit, and the second upper limit set in the data table 41. Then, the fan maximum rotation speed which is the upper limit value of the rotation speed of the indoor unit fan 16 is determined.
  • the first upper limit value of the fan rotational speed is determined by the result of performing a plurality of temperature rise tests, each of which is performed in a real air conditioner, to measure the temperature rise of the air in the electrical component box 13.
  • the temperature rise test is performed without limiting the rotational speed of the indoor unit fan 16 based on the temperature of the indoor unit heat exchanger 14. That is, in the temperature rise test, the control of the rotational speed of the indoor unit fan 16 based on the temperature of the indoor unit heat exchanger 14 performed by the indoor unit fan control unit 35 in the air conditioner 1 according to the first embodiment is performed. It is carried out without doing.
  • the first upper limit value is set to the rotational speed of the indoor unit fan 16 just before the temperature rating of the electrical component stored in the electrical component box 13 based on the result of the temperature rise test. That is, the first upper limit value is set to a high rotational speed that does not exceed the temperature rating of the electrical component stored in the electrical component box 13 just enough.
  • the temperature rating of the electrical component here uses the lowest temperature rating among the temperature ratings of the plurality of electrical components in the electrical component box 13.
  • the rotational speed of the indoor unit fan 16 is limited by the magnitude of the noise of the indoor unit fan 16. Therefore, in the air conditioner indoor unit having such a specification, the control of the rotational speed of the indoor unit fan 16 based on the temperature of the indoor unit heat exchanger 14 performed by the indoor unit fan control unit 35 of the air conditioner 1 Not subject to application.
  • the second upper limit value is a value required based on the desired capacity of the air conditioner. Since the second upper limit is the rotational speed of the indoor unit fan 16 required to achieve the desired capacity of the air conditioner set in the functional design of the air conditioner, it differs depending on the air conditioner model. Determined by the value.
  • the first temperature threshold is set to the temperature of the indoor unit heat exchanger 14 that can rotate the indoor unit fan 16 without any problem at the second upper limit value based on the result of the temperature rise test.
  • FIG. 4 is a diagram showing an example of the data table 41 according to the first embodiment of the present invention.
  • the first temperature threshold is 45 ° C.
  • the first upper limit is 1600 rpm
  • the second upper limit is 1700 rpm.
  • the first temperature threshold value, the first upper limit value, and the second upper limit value are determined in advance and stored in the data table storage unit 36 of the storage unit 33 as the data table 41.
  • the indoor unit fan control unit 35 sets and stores the fan maximum rotation speed, which is the upper limit value of the determined rotation speed of the indoor unit fan 16, in the fan maximum rotation speed setting storage unit 37 in the storage unit 33. Then, the indoor unit fan control unit 35 performs control to operate the indoor unit fan 16 in a range equal to or less than the fan maximum rotation speed set in the fan maximum rotation speed setting storage unit 37.
  • inverter control unit that performs inverter control of the indoor unit fan 16 according to an instruction signal transmitted from the indoor unit fan control unit 35. Further, control of the operation of the indoor unit fan 16 is not limited to inverter control.
  • the indoor unit heat exchanger 14 has a role of performing heat exchange between the refrigerant flowing in the indoor unit heat exchanger 14 and the indoor air to adjust the temperature of the room.
  • FIG. 5 is a view showing an example of the indoor unit heat exchanger 14 according to the first embodiment of the present invention.
  • the indoor unit heat exchanger 14 is a finned tube type heat exchanger widely used as an evaporator and a condenser of an air conditioner.
  • FIG. 5 the perspective view of the state which cut
  • the indoor unit heat exchanger 14 is composed of a plurality of fins 51 for heat exchangers and a heat transfer tube 52.
  • the indoor unit heat exchanger 14 is provided with a heat transfer pipe 52 in a state where the through holes provided in the fins 51 pass through the plurality of fins 51 arranged at predetermined intervals.
  • the heat transfer pipe 52 is a pipe connected to the refrigerant 5 so that the refrigerant flows therein, and is a part of the refrigerant circuit in the refrigeration cycle of the air conditioner 1.
  • the temperature measurement unit 15 measures the temperature of the indoor unit heat exchanger 14 at a predetermined cycle in order to control the rotation speed of the indoor unit fan 16.
  • the temperature measurement unit 15 measures the heat transfer tube 52 of the indoor unit heat exchanger 14 as the temperature of the indoor unit heat exchanger 14.
  • the temperature measurement unit 15 transmits the measured temperature of the indoor unit heat exchanger 14 to the indoor unit fan control unit 35.
  • the indoor unit fan 16 operates when the indoor propeller 17 is driven by the indoor unit fan motor 18.
  • the rotational speed of the indoor unit fan 16 is controlled by the indoor unit fan control unit 35.
  • the rotational speed of the indoor unit fan 16 can be acquired, for example, by providing the indoor unit fan motor 18 with a rotational speed detection device such as an encoder.
  • control unit 31 is realized, for example, as a processing circuit of the hardware configuration shown in FIG.
  • FIG. 6 is a diagram showing an example of the hardware configuration of the processing circuit according to the first embodiment of the present invention.
  • the control unit 31 is realized, for example, by the processor 101 executing a program stored in the memory 102 shown in FIG.
  • a plurality of processors and a plurality of memories may cooperate to realize the function of the control unit 31.
  • part of the functions of the control unit 31 may be implemented as an electronic circuit, and the other part may be implemented using the processor 101 and the memory 102.
  • the processor 101 executing a program similarly stored in the memory 102.
  • the processor and memory for realizing one or more of power supply circuit 32, storage unit 33 and indoor unit communication unit 34 may be the same as the processor and memory for realizing control unit 31, or separately Processor and memory.
  • the outdoor unit 3 includes a four-way valve 19 that switches the flow direction of the refrigerant, a compressor 20 that compresses the refrigerant, and an outdoor heat exchanger that exchanges heat between the refrigerant and the outdoor air, and the refrigerant pipe 5 is connected
  • the outdoor unit heat exchanger 21 and the outdoor unit fan 22 for generating an air flow passing through the outdoor unit heat exchanger 21 are installed in the housing 3a.
  • the outdoor unit fan 22 operates by the outdoor propeller 23 being driven by the outdoor unit fan motor 24.
  • the remote control 4 sets the information necessary for air conditioning by the air conditioner 1, such as the current time, the set temperature that is the target of the room temperature in air conditioning by the air conditioner 1, and the operation mode, and operates the air conditioner 1 It is an operating device for remote control.
  • the remote control 4 can perform two-way communication of information with each other by wire communication or wireless communication with the indoor unit 2.
  • the remote controller 4 mainly includes a remote controller control unit that controls the operation of the remote controller 4, a remote controller display unit that displays various information related to air conditioning management in the air conditioner 1 and visually notifies the user, and It has a remote controller operation unit, which is an instruction receiving unit for receiving a setting operation to be requested, and a remote controller communication unit that transmits and receives information to and from the indoor unit 2.
  • the components in the remote controller 4 can communicate with each other.
  • the refrigerant in the cooling operation is compressed by the compressor 20 to be a high-temperature, high-pressure gas refrigerant, and flows into the outdoor unit heat exchanger 21 through the four-way valve 19. Then, the gas refrigerant exchanges heat with the outdoor air blown from the outdoor unit fan 22 by the outdoor unit heat exchanger 21, dissipates heat, and becomes a high-pressure liquid refrigerant. Thereafter, the liquid refrigerant is expanded to a predetermined pressure by the expansion valve 25 to be a low pressure gas-liquid two-phase refrigerant, and flows into the indoor unit heat exchanger 14.
  • the gas-liquid two-phase refrigerant that has flowed into the indoor unit heat exchanger 14 exchanges heat with the indoor air blown from the indoor unit fan 16 and absorbs heat, becoming a low-temperature low-pressure gas refrigerant, and the compressor via the four-way valve 19 Return to 20.
  • the refrigerant in the heating operation is compressed by the compressor 20 to be a high temperature / high pressure gas refrigerant in the same manner as described above, and flows into the indoor unit heat exchanger 14 through the four-way valve 19.
  • the gas refrigerant exchanges heat with the indoor air blown from the indoor unit fan 16 by the indoor unit heat exchanger 14 and radiates heat to become a high pressure liquid refrigerant.
  • the liquid refrigerant is expanded to a predetermined pressure by the expansion valve 25 to be a low pressure gas-liquid two-phase refrigerant, and flows into the outdoor unit heat exchanger 21.
  • the gas-liquid two-phase refrigerant that has flowed into the outdoor unit heat exchanger 21 exchanges heat with the outdoor air blown from the outdoor unit fan 22 and absorbs heat, becoming a low-temperature low-pressure gas refrigerant, and the compressor via the four-way valve 19 Return to 20.
  • FIG. 7 is a flowchart showing the procedure of the rotational speed control operation of the indoor unit fan 16 in the indoor unit 2 of the air conditioner 1 according to the first embodiment of the present invention. Below, the case where the rotational speed of the indoor unit fan 16 is controlled using the conditions stored in the data table 41 shown in FIG. 4 will be described.
  • the control unit 31 of the indoor unit 2 of the air conditioner 1 receives from the remote control 4 an infrared signal of the heating start instruction information to instruct the start of the heating operation of the air conditioner 1, the air conditioner at step S10. 1.
  • Start air conditioning control That is, in order to perform the air conditioning operation by the air conditioner 1, the control unit 31 starts control of each component of the indoor unit 2 and the outdoor unit 3 of the air conditioner 1.
  • a signal instructing start of operation of the air conditioner 1 may be transmitted to the control unit 31 of the indoor unit 2 by operating an operation switch (not shown) provided in the indoor unit 2. In this case, the control unit 31 starts air conditioning control of the air conditioner 1 according to the signal transmitted to the control unit 31 by operating the operation switch.
  • the indoor unit fan control unit 35 performs control to start the temperature measurement of the indoor unit heat exchanger 14 with respect to the temperature measurement unit 15. That is, the indoor unit fan control unit 35 transmits, to the temperature measurement unit 15, temperature measurement instruction information for instructing start of temperature measurement of the indoor unit heat exchanger 14.
  • the temperature measurement unit 15 starts temperature measurement of the indoor unit heat exchanger 14 based on the temperature measurement instruction information. That is, the temperature measurement unit 15 measures, as the temperature of the indoor unit heat exchanger 14, the temperature of the heat transfer pipe 52 which is the piping temperature of the indoor unit heat exchanger 14 disposed in the indoor unit 2. The temperature measurement unit 15 measures the temperature of the heat transfer tube 52 at a predetermined cycle, and transmits the measured pipe temperature to the indoor unit fan control unit 35 as the temperature of the indoor unit heat exchanger 14.
  • step S20 the indoor unit fan control unit 35 receives the pipe temperature of the indoor unit heat exchanger 14 transmitted from the temperature measurement unit 15.
  • the indoor unit fan control unit 35 receives the piping temperature of the indoor unit heat exchanger 14, in step S30, the piping temperature is 45 ° C., which is the first temperature threshold stored in the data table 41 of the data table storage unit 36. It is determined whether the pipe temperature of the indoor unit heat exchanger 14 is less than 45.degree. C. which is the first temperature threshold.
  • step S100 When the piping temperature of the indoor unit heat exchanger 14 is 45 ° C. or higher, which is the first temperature threshold, that is, No in step S30, step S100 is performed.
  • the indoor unit fan control unit 35 determines the set value of the fan maximum rotational speed of the indoor unit fan 16 as the first upper limit value 1600 rpm stored in the data table 41, and the fan in the storage unit 33 The maximum rotational speed setting storage unit 37 is set and stored. That is, the indoor unit fan control unit 35 sets the upper limit value of the rotation speed of the indoor unit fan 16 to 1600 rpm.
  • step S110 the indoor unit fan control unit 35 sets the indoor unit at a rotational speed of 1600 rpm or less based on the instruction information transmitted from the remote control 4 and the information set in the fan maximum rotational speed setting storage unit 37. Control to operate the fan 16 is performed. Then, the indoor unit fan control unit 35 returns to step S30.
  • the pipe temperature when the pipe temperature is 45 ° C. or higher, which is the first temperature threshold value, 1600 rpm reduces the heat generation due to the load current of the indoor unit fan 16, and the electricity by the heat release of the indoor unit heat exchanger 14 of the indoor unit 2. Even if the temperature rise of the air in the product box 13 is large, the temperature of the air in the electrical component box 13 falls within the temperature rating of the electrical component, and the temperature of the electrical component in the electrical component box 13 falls within the temperature rating of the electrical component It is a fan maximum rotation speed of the indoor unit fan 16 which is predetermined to be fitted. That is, when the pipe temperature is 45 ° C.
  • the indoor unit fan control unit 35 performs control to set the upper limit value of the fan rotational speed of the indoor unit fan 16 low. Thereby, shortening of the service life of the electrical components in the electrical component box 13 due to the temperature rise of the air in the electrical component box 13 can be prevented.
  • step S40 the indoor unit fan control unit 35 determines the set value of the fan maximum rotation speed of the indoor unit fan 16 to 1700 rpm, which is the second upper limit value stored in the data table 41, and the fan maximum rotation speed setting storage unit Set to 37 for storage.
  • step S50 the indoor unit fan control unit 35 sets the indoor unit at a rotation speed of 1700 rpm or less based on the instruction information transmitted from the remote control 4 and the information set in the fan maximum rotation speed setting storage unit 37. Control to operate the fan 16 is performed. Then, the indoor unit fan control unit 35 proceeds to step S60.
  • 1700 rpm is previously determined for performing the operation of the indoor unit fan 16 at a rotational speed faster than the first upper limit value when the pipe temperature is less than 45 ° C., which is the first temperature threshold. It is a fan maximum rotation speed of the indoor unit fan 16.
  • the pipe temperature is less than 45 ° C., which is the first temperature threshold
  • the temperature rise of the air is small.
  • the heat radiation of the indoor unit heat exchanger 14 is an electrical item box compared to the case where the pipe temperature is 45 ° C. or more, which is the first temperature threshold. There is little influence on the temperature rise of the electric parts in 13.
  • the temperature rise of the air in the electric component box 13 and the temperature rise of the electric components can be suppressed, and the indoor unit heat exchanger 14 as described later.
  • the temperature of the electrical component in the electrical component box 13 can be suppressed within the temperature rating by monitoring the temperature of the That is, if the pipe temperature is less than 45 ° C., which is the first temperature threshold, the setting of the fan maximum rotational speed may be a large value as compared to the case where the pipe temperature is 45 ° C. or more, which is the first temperature threshold.
  • the indoor unit fan control unit 35 sets the air volume of the indoor unit fan 16 to 45 ° C., which is the first temperature threshold. It makes it increase more and sets 1700 rpm to fan maximum-rotational-speed setting storage part 37, and it makes it memorize.
  • the air conditioner 1 has an air volume of the indoor unit fan 16 more than when the pipe temperature is 45 ° C., which is the first temperature threshold. It is possible to perform air conditioning with high capacity and high efficiency with a larger air volume than when the pipe temperature is 45 ° C. or higher.
  • the indoor unit fan control unit 35 transmits the temperature of the indoor unit heat exchanger 14 transmitted from the temperature measurement unit 15 in step S60.
  • the pipe temperature is compared with the first temperature threshold 45 ° C. stored in the data table 41 of the data table storage unit 36, and the pipe temperature continues to be 45 ° C., which is the first temperature threshold, for 30 seconds or more It is determined whether it has exceeded. That is, the indoor unit fan control unit 35 determines whether the state in which the pipe temperature transmitted from the temperature measurement unit 15 is equal to or higher than the first temperature threshold is continued for the first threshold time or longer, which is a predetermined threshold time.
  • the first threshold time is a threshold for determining whether the indoor unit fan control unit 35 changes the fan maximum rotation speed from the second upper limit value to the first upper limit value.
  • the first threshold time is determined in advance and stored in the indoor unit fan control unit 35.
  • the first threshold time may be stored in the storage unit 33.
  • step S120 When the pipe temperature does not continuously exceed 45 ° C., which is the first temperature threshold, for 30 seconds or more, that is, in the case of No in step S60, step S120 is performed.
  • the indoor unit fan control unit 35 does not change the upper limit value of the fan rotational speed of the indoor unit fan 16 and performs control to maintain the current fan rotational speed. Then, the indoor unit fan control unit 35 returns to step S60.
  • the electric components mounted on the control board 30 exceed the temperature rating There is nothing to do.
  • the pipe temperature is less than 45 ° C., which is the first temperature threshold, and the fan rotational speed of the indoor unit fan 16 is rotated faster than 1600 rpm, the heat release from the indoor unit heat exchanger 14 and the rotational speed of the indoor unit fan 16
  • the temperature of the air in the electrical component box 13 may rise due to the increase in the load current of the indoor unit fan 16 due to the raising of the temperature, and the temperature rating of the electrical components mounted on the control board 30 may be exceeded. There is.
  • step S70 when the pipe temperature continuously exceeds 45 ° C., which is the first temperature threshold, for 30 seconds or more, that is, in the case of Yes in step S60, step S70 is performed.
  • the indoor unit fan control unit 35 determines the setting of the upper limit value of the fan rotational speed of the indoor unit fan 16 to 1600 rpm, which is the first upper limit value, and sets and stores it in the fan maximum rotational speed setting storage unit 37. .
  • the indoor unit fan control unit 35 determines the setting of the upper limit value of the fan rotational speed of the indoor unit fan 16 to 1600 rpm, which is the first upper limit value, and sets and stores it in the fan maximum rotational speed setting storage unit 37. .
  • step S80 the indoor unit fan control unit 35 determines whether the fan rotational speed of the indoor unit fan 16 is higher than 1600 rpm.
  • step S130 When the fan rotational speed of the indoor unit fan 16 is 1600 rpm or less, that is, No in step S80, step S130 is performed.
  • step S130 the indoor unit fan control unit 35 performs control to maintain the current fan rotational speed. Then, the indoor unit fan control unit 35 returns to step S30.
  • step S90 the indoor unit fan control unit 35 performs control to reduce the fan rotational speed to 1600 rpm. Then, the indoor unit fan control unit 35 returns to step S30. Then, the above control is performed until the control unit 31 receives from the remote control 4 an infrared signal of heating stop instruction information indicating that the heating operation of the air conditioner 1 is stopped. When the control unit 31 receives the heating stop instruction information, the control unit 31 performs control to stop each component of the indoor unit 2 and the outdoor unit 3 including the indoor unit fan 16.
  • the fan rotation of the indoor unit fan 16 is performed again.
  • the step of setting the fan maximum rotational speed, which is the upper limit of the speed, to 1700 rpm, which is the second upper limit, may be performed after step S90 and after step S130.
  • the second threshold time can be set and changed to any value through the remote control 4 depending on conditions such as the specifications and capabilities of the air conditioner 1.
  • the second threshold time may be the same as or different from the first threshold time described above.
  • the temperature threshold in this case does not necessarily have to be 45 ° C., which is the first temperature threshold.
  • step S90 it is determined whether the pipe temperature is lower than 45 ° C., which is the first temperature threshold, for 30 seconds, which is the second threshold time, which is the predetermined threshold time. Then, when the pipe temperature is lower than 45 ° C. for 30 seconds or more, the fan maximum rotation speed which is the upper limit value of the fan rotation speed of the indoor unit fan 16 is determined again to 1700 rpm and the fan maximum rotation speed setting storage unit 37 Set and store. Then, the indoor unit fan control unit 35 operates the indoor unit fan 16 at a rotation speed of 1700 rpm or less based on the instruction information transmitted from the remote control 4 and the information set in the fan maximum rotation speed setting storage unit 37. Control. Then, the indoor unit fan control unit 35 returns to step S60. If the pipe temperature is not lower than 45 ° C. for 30 seconds or more, the determination of whether the pipe temperature is lower than 45 ° C. for 30 seconds or more is repeated.
  • the first temperature threshold and the second temperature threshold which are the temperature thresholds in the control described above, can be made to have hysteresis.
  • hysteresis By giving hysteresis to the temperature threshold, a hunting phenomenon in which the fan rotational speed of the indoor unit fan 16 changes frequently due to the pipe temperature of the indoor unit heat exchanger 14 rising and falling near the temperature threshold It can prevent.
  • the indoor unit fan control unit 35 operates the indoor unit fan 16 at a rotation speed of 1600 rpm or less, which is the first upper limit. Control.
  • the indoor unit fan control unit 35 rotates less than or equal to 1700 rpm of the second upper limit, which is a rotational speed faster than the first upper limit. Control is performed to operate the indoor unit fan 16 in the speed range.
  • the air conditioner 1 controls the rotational speed of the indoor unit fan 16 in response to the temperature of the indoor unit heat exchanger 14, thereby reducing the heat radiation from the indoor unit heat exchanger 14 and reducing the indoor unit heat exchanger. If the temperature of 14 is less than the first temperature threshold, it is possible to raise the upper limit of the rotational speed of the indoor unit fan 16 limited by the temperature rating of the electrical component.
  • the air conditioner 1 can reduce the electrical component box due to the heat dissipation of the indoor unit heat exchanger 14
  • the indoor unit fan 16 is operated at a higher rotational speed than in the case where the temperature rise of the air in 13 is large, and the air volume of the indoor unit fan 16 can be increased to perform air conditioning with high performance and high efficiency.
  • Such an air conditioner 1 suppresses the heat generation due to the load current of the indoor unit fan 16 when the temperature of the indoor unit heat exchanger 14 is equal to or higher than the first temperature threshold, and the temperature rise of the air in the electrical component box 13 Can be suppressed, and the effect that the electrical components in the electrical component box 13 can be prevented from exceeding the temperature rating can be obtained. Further, when the temperature of the indoor unit heat exchanger 14 is less than the first temperature threshold, the air conditioner 1 can perform air conditioning with high performance and high efficiency by increasing the air volume of the indoor unit fan 16. The effect is obtained.
  • the temperature of the electrical components in the electrical component box 13 can be adjusted by adjusting the rotational speed of the indoor unit fan 16 based on the temperature of the indoor unit heat exchanger 14 It can be kept within the rating.
  • the air conditioner 1 can suppress the temperature rise of the electrical component in the electrical component box 13 and shorten the life of the electrical component due to the temperature rise of the air in the electrical component box 13 It is possible to operate the indoor unit fan 16 in which the restriction of the rotational speed of the indoor unit fan 16 is relaxed without causing the temperature of the electrical components mounted on the control board 30 without causing
  • FIG. 8 is a diagram showing an example of the data table 42 according to the second embodiment of the present invention. Similar to the data table 41, the data table 42 is a data table in which the relationships among the first temperature threshold, the first upper limit, and the second upper limit usable in the air conditioner 1 are set.
  • a plurality of different temperature thresholds are stored. That is, in the data table 42 shown in FIG. 8, the first temperature threshold is 45 ° C., the second temperature threshold is 40 ° C., and the third temperature threshold is 35 ° C. in descending order of temperature. Further, in the data table 42 shown in FIG. 8, a first upper limit value and a second upper limit value corresponding to each of a plurality of different temperature threshold values are set. That is, in the data table 42 shown in FIG. 8, the first upper limit corresponding to 45 ° C., which is the first temperature threshold, is 1600 rpm, and the second upper limit is 1700 rpm.
  • the first upper limit corresponding to 40 ° C., which is the second temperature threshold, is 1700 rpm, and the second upper limit is 1800 rpm.
  • the first upper limit corresponding to the third temperature threshold of 35 ° C. is 1800 rpm, and the second upper limit is 1900 rpm.
  • FIGS. 9 to 11 are flowcharts showing the procedure of the rotational speed control operation of the indoor unit fan 16 according to the second embodiment of the present invention.
  • FIGS. 9 and 11 the same steps as the flowchart shown in FIG. 7 described above are assigned the same step numbers as in FIG.
  • control unit 31 of the indoor unit 2 of the air conditioner 1 performs step S10 and step S20 as in the case of the first embodiment.
  • the indoor fan control unit 35 uses the third temperature threshold of 35 ° C. instead of the first temperature threshold of 45 ° C. in the same manner as steps S30 to S90, S120, and S130.
  • Step S230 to step S290, step S320 and step S330 are performed.
  • the first upper limit value in this case is set to 1800 rpm instead of 1600 rpm.
  • the second upper limit value is 1900 rpm instead of 1700 rpm.
  • step S230 is implemented after step S290 and after step S330.
  • the indoor unit fan control unit 35 carries out control according to the procedure of the flowchart shown in FIG. That is, the indoor fan control unit 35 performs the same steps as steps S30 to S90, S120, and S130 except that the second temperature threshold of 40 ° C. is used instead of the first temperature threshold of 45 ° C. Steps S430 to S490, steps S520 and S530 are performed.
  • the first upper limit value in this case is 1700 rpm instead of 1600 rpm. Further, the second upper limit value is set to 1800 rpm instead of 1700 rpm.
  • step S230 is implemented after step S490 and after step S530.
  • step S430 the indoor unit fan control unit 35 carries out control according to the procedure of the flowchart shown in FIG. That is, the indoor unit fan control unit 35 performs steps S30 to S130. Moreover, step S230 is implemented after step S90 and after step S130.
  • the air conditioner 1 causes the first upper limit value and the second upper limit value to be determined to differ depending on the temperature range of the pipe temperature of the indoor unit heat exchanger 14 by performing the above-described control. Can.
  • the air conditioner 1 makes the limitation of the maximum rotation speed of the indoor unit fan 16 due to the temperature rating of the electric components mounted on the control substrate 30 correspond to the temperature range of the piping temperature of the indoor unit heat exchanger 14 Can be more relaxed.
  • the air conditioner 1 can suppress the temperature rise of the air in the electric component box 13 and the electric components, and control the electric components without shortening the life of the electric components due to the temperature increase in the electric component box 13
  • the indoor unit fan 16 can be operated with the restriction on the rotational speed of the indoor unit fan 16 further relaxed without exceeding the temperature rating of the electrical components mounted on the substrate 30.
  • the configuration shown in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and one of the configurations is possible within the scope of the present invention. Parts can be omitted or changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

電気部品が収納された電気品ボックス(13)、室内機熱交換器(14)および室内機熱交換器(14)に送風する室内機ファン(16)を筐体内に有する室内機(2)を備える。空気調和機は、室内機熱交換器(14)の温度を計測する温度計測部(15)と、温度計測部(15)で計測された室内機熱交換器(14)の温度に基づいて室内機ファン(16)の回転速度の上限値を決定し、決定した上限値以下の回転速度で室内機ファン(16)を動作させる制御を行う制御部と、を備える。

Description

空気調和機
 本発明は、室内機に設けられた室内機ファンの回転速度を制御する空気調和機に関する。
 空気調和機の室内機の室内機ファンは、ユーザに指定された指示情報に基づいて回転速度が制御される。また、空気調和機の空調運転時において空調能力の過多状態であると判断された場合には、室内機ファンの回転速度を低下する制御が行われる。特許文献1には、暖房運転時において室内の全エリアの平均温度が設定温度よりも高いときには、空調能力の過多状態であると判断し、圧縮機の回転数低下制御および室内機のファンの回転数低下制御を行うことが開示されている。
 ここで、特許文献1の空気調和機では、室内機のケーシングに熱交換器とファンと制御部とが収納されている。制御部は、一般的に室内機に配置された電気品ボックス内に収納されている。空気調和機の暖房運転中、熱交換器からの放熱の影響で電気品ボックス内の温度は上昇する。また、ファンを運転することで、負荷電流による発熱が生じる。すなわち、ファンを運転することで、ファンを駆動するモータの内部において電気エネルギーが巻線の抵抗によって熱エネルギーにかわる損失、いわゆる銅損が発生して発熱が生じる。そして、暖房能力を上げるためにファンの回転速度を上げてファンの風量を増やすほどファンの負荷電流が増大し、電気品ボックス内の温度が上昇する。
特開2003-194389号公報
 しかしながら、上記特許文献1の空気調和機によれば、空調能力の過多状態であると判断した場合には室内機のファンの回転数を低下する制御が行われるが、室内機の電気品ボックス内の温度上昇を考慮したファンの回転速度の制御は行われていない。このため、電気品ボックス内の電気部品の温度が上昇し、電気部品の温度が温度定格以上の温度まで上昇してしまう可能性があった。
 本発明は、上記に鑑みてなされたものであって、電気部品を収納した電気品ボックスと熱交換器と室内機ファンとが同一の筐体内に収められた室内機を備え、電気品ボックス内の電気部品の温度上昇を抑制可能な空気調和機を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる空気調和機は、電気部品が収納された電気品ボックス、室内機熱交換器および室内機熱交換器に送風する室内機ファンを筐体内に有する室内機を備える。空気調和機は、室内機熱交換器の温度を計測する温度計測部と、温度計測部で計測された室内機熱交換器の温度に基づいて室内機ファンの回転速度の上限値を決定し、決定した上限値以下の回転速度で室内機ファンを動作させる制御を行う制御部と、を備える。
 本発明にかかる空気調和機は、電気部品を収納した電気品ボックスと熱交換器と室内機ファンとが同一の筐体内に収められた室内機において、電気品ボックス内の電気部品の温度上昇を抑制可能である、という効果を奏する。
本発明の実施の形態1にかかる空気調和機の構成を模式的に示す構成図 本発明の実施の形態1にかかる空気調和機の冷媒回路図 本発明の実施の形態1にかかる空気調和機の室内機における室内機ファンの運転制御に関する機能ブロック図 本発明の実施の形態1にかかるデータテーブルの一例を示す図 本発明の実施の形態1にかかる室内機熱交換器の一例を示す図 本発明の実施の形態1にかかる処理回路のハードウェア構成の一例を示す図 本発明の実施の形態1にかかる空気調和機の室内機における室内機ファンの回転速度制御動作の手順を示すフローチャート 本発明の実施の形態2にかかるデータテーブルの一例を示す図 本発明の実施の形態2における室内機ファンの回転速度制御動作の手順を示すフローチャート 本発明の実施の形態2における室内機ファンの回転速度制御動作の手順を示すフローチャート 本発明の実施の形態2における室内機ファンの回転速度制御動作の手順を示すフローチャート
 以下に、本発明の実施の形態にかかる空気調和機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1にかかる空気調和機1の構成を模式的に示す構成図である。図2は、本発明の実施の形態1にかかる空気調和機1の冷媒回路図である。図3は、本発明の実施の形態1にかかる空気調和機1の室内機2における室内機ファン16の運転制御に関する機能ブロック図である。
 図1に示すように、本実施の形態1にかかる空気調和機1は、筐体2aを備えて室内に設置された室内機2、筐体3aを備えて室外に設置された室外機3、空気調和機1の動作を遠隔操作するリモートコントローラー4、および室内機2と室外機3との間で冷媒を循環させるための冷媒管5を備える。室外機3は、通信線6を介して室内機2と通信可能とされている。以下、リモートコントローラーを、リモコンと呼ぶ場合がある。
 図2に示すように、本実施の形態1にかかる空気調和機1は、圧縮機20と、冷媒の流れる方向を切り替える四方弁19と、室外機3に搭載された室外機熱交換器21と、膨張装置である膨張弁25と、室内機2に搭載された室内機熱交換器14とが順次冷媒管5で接続され、冷媒を循環させる冷凍サイクルを備えている。四方弁19は、冷凍サイクル内の冷媒の流れる方向を切り替えることで、暖房運転と冷房運転との切り替えを行う。
 室内機2には主要な構成として、電気部品を収納する電気品ボックス13と、室内側の熱交換器であり冷媒管5が接続された室内機熱交換器14と、室内機熱交換器14の温度を測定するための温度計測部15と、室内機熱交換器14を通過する気流を発生させる室内機ファン16と、が筐体2aの中に設置されている。
 電気品ボックス13の中には、室内機ファンモータ18、空気調和機1の運転状態を表示する図示しない表示器、リモコン4との間で赤外線通信を行うための図示しない受光基板といった、室内機2に設けられたアクチュエータを駆動して制御するための制御基板30が収納されている。
 制御基板30は、空気調和機1の動作を制御する制御部31と、室内機2の内部の構成部を動作させるための専用電源を生成する電源回路32と、空気調和機1の制御に用いられる各種の情報を記憶する記憶部33と、室内機通信部34と、が構成されている。
 電源回路32は、室内機2の外部の外部電源7から供給される電力を変換して室内機2の内部の各構成部を動作させるための専用電源を生成する。電源回路32は、室内機2の内部の各構成部と電源線によって接続されている。なお、図3においては、一部の電源線を省略している。
 記憶部33には、空気調和機1における空調運転動作において用いられる各種の情報が記憶されている。また、記憶部33は、後述するデータテーブル記憶部36とファン最大回転速度設定記憶部37とを有する。
 室内機通信部34は、リモコン4から送信された情報を受信して制御部31に送信し、また制御部31から送信された情報をリモコン4へ送信する。室内機通信部34とリモコン4との通信方法の例としては、赤外線通信が例示される。なお、室内機通信部34とリモコン4との通信方法は、室内機通信部34とリモコン4と互いに通信できるものであればよく、赤外線通信に限定されない。
 制御部31は、空気調和機1の動作を制御する制御部であり、室内機2および室外機3の動作を制御することによって空気調和機1の運転を制御する。制御部31は、室内機通信部34を介してリモコン4と情報の伝送を行うことができる。制御部31は、室内機通信部34を介してリモコン4から受信した指示情報、およびあらかじめ制御部31または記憶部33に記憶している情報といった、空気調和機1の運転に関する各種情報に基づいて空気調和機1の動作を制御する。
 制御部31は、室内機2から室内に吹き出す気流の温度、室内機2から室内に吹き出す気流の強さおよび方向といった室内機2における空気調和運転の設定を制御し、空気調和機1の動作を制御する。制御部31は、室外機3の内部の各構成部を制御するために指示情報を室外機3に送信する。
 また、制御部31は、室内機ファン16の動作を制御する室内機ファン制御部35を有する。室内機ファン制御部35は、室内機ファン16の動作を制御する制御部であり、例えば室内機ファン16をインバータ制御する。室内機ファン制御部35は、室内機ファン制御部35で決定した室内機ファン16の回転速度の上限値であるファン最大回転速度以下の回転速度の範囲で室内機ファン16を動作させる制御を行う。
 室内機ファン制御部35は、温度計測部15で計測された室内機熱交換器14の温度に基づいて、あらかじめ決められている室内機ファン16の回転速度の上限値の候補から、室内機ファン16の回転速度の上限値を決定する。そして、室内機ファン制御部35は、決定した上限値以下の回転速度で室内機ファン16を動作させて、電気品ボックス13内の空気の温度を電気品ボックス13内に収納された複数の電気部品のうち最も低い温度定格以下の温度に制限する制御を行う。制御基板30と温度計測部15とはリード線で接続されている。これにより、室内機ファン制御部35は、温度計測部15と通信可能であり、温度計測部15で計測された室内機熱交換器14の温度を取得することができ、温度計測部15を介して常に室内機熱交換器14の温度を監視することが可能である。
 室内機ファン制御部35は、温度計測部15で計測された室内機熱交換器14の温度が既定の第1温度閾値以上である場合に、室内機ファン16の回転速度の上限値を既定の第1上限値に決定する。また、室内機ファン制御部35は、温度計測部15で計測された室内機熱交換器の温度が第1温度閾値未満である場合に、第1上限値よりも速い既定の第2上限値に、室内機ファン16の回転速度の上限値を決定する。
 第1温度閾値は、室内機ファン16の回転速度の上限値であるファン最大回転速度の設定値を決定するための温度閾値である。第1温度閾値は、あらかじめ決定されて記憶部33に記憶されている。
 第1上限値は、空気調和機1の暖房運転において室内機熱交換器14の温度が最も上昇して室内機2の室内機熱交換器14の放熱による電気品ボックス13内の空気の温度上昇が最も大きいと想定される場合においても、電気品ボックス13内の空気の温度が電気部品の温度定格以内に収まり、電気品ボックス13内の電気部品の温度が電気部品の温度定格以内に収まるようにあらかじめ決定された、室内機ファン16のファン最大回転速度である。すなわち、第1上限値は、電気部品の温度定格と、室内機熱交換器14の最大温度とによってあらかじめ制限されたファン最大回転速度である。ここでの電気部品の温度定格は、電気品ボックス13内の複数の電気部品の温度定格のうち、最も温度の低い温度定格を用いる。
 第2上限値は、第1上限値よりも速い回転速度で室内機ファン16の運転を実施する場合のためにあらかじめ決定された、室内機ファン16のファン最大回転速度である。すなわち、第2上限値は、電気品ボックス13内の空気の温度が電気品ボックス13に収納された電気部品の温度定格を越えない範囲で室内機ファン16の回転速度の制限を緩和した運転を実施するためにあらかじめ決定された、室内機ファン16のファン最大回転速度である。第1温度閾値、第1上限値および第2上限値は、電気部品の温度定格、空気調和機1の仕様および能力といった諸条件を考慮して決定される。
 記憶部33におけるデータテーブル記憶部36には、第1温度閾値と第1上限値と第2上限値との関係が設定されたデータテーブル41が記憶されている。室内機ファン制御部35は、温度計測部15で計測された室内機熱交換器14の温度と、データテーブル41に設定された第1温度閾値と第1上限値と第2上限値とに基づいて、室内機ファン16の回転速度の上限値であるファン最大回転速度を決定する。
 ここで、第1温度閾値と第1上限値と第2上限値との決定方法の一例について説明する。ファン回転速度の第1上限値は、空気調和機の実機で実施される、電気品ボックス13内の空気の温度の上昇状態を測定する温度上昇試験を複数回実施した結果によって決定される。温度上昇試験は、室内機熱交換器14の温度に基づいた室内機ファン16の回転速度の制限をかけずに実施される。すなわち、温度上昇試験は、本実施の形態1にかかる空気調和機1において室内機ファン制御部35によって実施される室内機熱交換器14の温度に基づいた室内機ファン16の回転速度の制御を行わずに実施される。
 第1上限値は、温度上昇試験の結果に基づいて、電気品ボックス13に収納された電気部品の温度定格を超える寸前の室内機ファン16の回転速度に設定される。すなわち、第1上限値は、電気品ボックス13に収納された電気部品の温度定格をぎりぎり超えないレベルの速い回転速度に設定される。ここでの電気部品の温度定格は、電気品ボックス13内の複数の電気部品の温度定格のうち、最も温度の低い温度定格を用いる。なお、電気品ボックス13内の空気の温度が電気品ボックス13に収納された電気部品の温度定格を超える前に、室内機ファン16の騒音の大きさが大きすぎる状態になる空気調和機も存在し得る。このような空気調和機は、室内機ファン16の騒音の大きさによって室内機ファン16の回転速度が制限される。したがって、このような仕様の空気調和機室内機は、空気調和機1の室内機ファン制御部35によって実施される室内機熱交換器14の温度に基づいた室内機ファン16の回転速度の制御の適用の対象外となる。
 第2上限値は、空気調和機の所望の能力に基づいて要求される値である。第2上限値は、空気調和機の機能設計において設定された空気調和機の所望の能力を達成するために必要とされる室内機ファン16の回転速度であるため、空気調和機の機種によって異なる値に決定される。
 第1温度閾値は、温度上昇試験の結果に基づいて、第2上限値で室内機ファン16を問題なく回転させることが可能な室内機熱交換器14の温度に設定される。
 図4は、本発明の実施の形態1にかかるデータテーブル41の一例を示す図である。図4に示すデータテーブル41においては、第1温度閾値が45℃であり、第1上限値が1600rpmであり、第2上限値が1700rpmである。第1温度閾値と第1上限値と第2上限値とは、あらかじめ決定されてデータテーブル41として記憶部33のデータテーブル記憶部36に記憶されている。
 また、室内機ファン制御部35は、決定した室内機ファン16の回転速度の上限値であるファン最大回転速度を、記憶部33内のファン最大回転速度設定記憶部37に設定して記憶させる。そして、室内機ファン制御部35は、ファン最大回転速度設定記憶部37に設定したファン最大回転速度以下の範囲で室内機ファン16を動作させる制御を行う。
 なお、室内機ファン制御部35から送信される指示信号に従って室内機ファン16をインバータ制御するインバータ制御部を別個に設けた構成とすることも可能である。また、室内機ファン16の動作の制御はインバータ制御に限定されない。
 室内機熱交換器14は、室内機熱交換器14内を流れる冷媒と室内空気との熱交換を行い、室内の温度を調整する役割を有する。図5は、本発明の実施の形態1にかかる室内機熱交換器14の一例を示す図である。図5において、室内機熱交換器14は、空気調和装置の蒸発器および凝縮器として広く利用されているフィンチューブ式の熱交換器である。図5においては、室内機熱交換器14の一部を切断した状態の斜視図を示している。室内機熱交換器14は、複数の熱交換器用のフィン51と伝熱管52とで構成されている。室内機熱交換器14は、既定の間隔で並べられた複数のフィン51に対して、各フィン51に設けられた貫通穴を貫通した状態に伝熱管52が設けられている。伝熱管52は、冷媒間5に接続されて内部に冷媒が流れる配管であり、空気調和機1の冷凍サイクルにおける冷媒回路の一部となる。
 温度計測部15は、室内機ファン16の回転速度を制御するために室内機熱交換器14の温度を既定の周期で計測する。温度計測部15は、室内機熱交換器14の温度として、室内機熱交換器14の伝熱管52を計測する。温度計測部15は、計測した室内機熱交換器14の温度を、室内機ファン制御部35に送信する。
 室内機ファン16は、室内プロペラ17が室内機ファンモータ18によって駆動されることで動作する。室内機ファン16の回転速度は、室内機ファン制御部35によって制御される。室内機ファン16の回転速度は、たとえば室内機ファンモータ18にエンコーダといった回転速度検出装置を設けることで取得できる。
 また、制御部31は、例えば、図6に示したハードウェア構成の処理回路として実現される。図6は、本発明の実施の形態1にかかる処理回路のハードウェア構成の一例を示す図である。制御部31が図6に示す処理回路により実現される場合、制御部31は、例えば、図6に示すメモリ102に記憶されたプログラムをプロセッサ101が実行することにより、実現される。また、複数のプロセッサおよび複数のメモリが連携して制御部31の機能を実現してもよい。また、制御部31の機能のうちの一部を電子回路として実装し、他の部分をプロセッサ101およびメモリ102を用いて実現するようにしてもよい。
 また、電源回路32、記憶部33および室内機通信部34のうちの1つ以上を、同様にメモリ102に記憶されたプログラムをプロセッサ101が実行することにより、実現されるように構成してもよい。また、電源回路32、記憶部33および室内機通信部34のうちの1つ以上を実現するためのプロセッサおよびメモリは、制御部31を実現するプロセッサおよびメモリと同一であってもよいし、別のプロセッサおよびメモリであってもよい。
 室外機3には、冷媒の流れる方向を切り替える四方弁19と、冷媒を圧縮する圧縮機20と、冷媒と室外の空気との熱交換を行う室外側の熱交換器であり冷媒管5が接続された室外機熱交換器21と、室外機熱交換器21を通過する気流を発生させる室外機ファン22と、が筐体3aの中に設置されている。室外機ファン22は、室外プロペラ23が室外機ファンモータ24によって駆動されることで動作する。
 リモコン4は、現在の時刻、空気調和機1による空調における室内温度の目標となる設定温度、運転モードといった、空気調和機1による空調において必要となる情報を設定して空気調和機1の動作を遠隔操作するための操作装置である。リモコン4は、室内機2との間で有線通信または無線通信によって互いに情報の双方向通信が可能である。
 リモコン4は、主たる構成として、リモコン4の動作を制御するリモートコントローラー制御部と、空気調和機1おける空調管理に関する各種情報を表示してユーザに視覚的に通知するリモートコントローラー表示部と、ユーザの要求する設定操作を受け付ける指示受け付け部であるリモートコントローラー操作部と、室内機2との間で情報の送受信を行うリモートコントローラー通信部と、を有する。リモコン4内における各構成部は、互いに通信可能である。
 ここで、空気調和機1における冷房運転時および暖房運転時の冷媒の流れを説明する。冷房運転時における冷媒は、圧縮機20によって圧縮されて高温高圧のガス冷媒となり、四方弁19を介して室外機熱交換器21へと流れ込む。そして、ガス冷媒は、室外機熱交換器21で室外機ファン22から送風される室外空気と熱交換されて放熱し、高圧の液冷媒となる。その後、液冷媒は、膨張弁25により既定の圧力まで膨張されて低圧の気液二相の冷媒となり、室内機熱交換器14に流入する。室内機熱交換器14に流入した気液二相の冷媒は、室内機ファン16から送風される室内空気と熱交換されて吸熱し、低温低圧のガス冷媒となり、四方弁19を介して圧縮機20へと戻る。
 暖房運転時における冷媒は、前記と同様に圧縮機20によって圧縮されて高温高圧のガス冷媒となり、四方弁19を介して室内機熱交換器14へと流れ込む。ガス冷媒は、室内機熱交換器14で室内機ファン16から送風される室内空気と熱交換されて放熱し、高圧の液冷媒となる。その後、液冷媒は、膨張弁25により既定の圧力まで膨張されて低圧の気液二相の冷媒となり、室外機熱交換器21に流入する。室外機熱交換器21に流入した気液二相の冷媒は、室外機ファン22から送風される室外空気と熱交換されて吸熱し、低温低圧のガス冷媒となり、四方弁19を介して圧縮機20へと戻る。
 つぎに、空気調和機1の暖房運転時における室内機2の室内機ファン16の回転速度制御動作について説明する。図7は、本発明の実施の形態1にかかる空気調和機1の室内機2における室内機ファン16の回転速度制御動作の手順を示すフローチャートである。以下では、図4に示したデータテーブル41に記憶された条件を用いて室内機ファン16の回転速度を制御する場合について説明する。
 まず、空気調和機1の室内機2の制御部31は、空気調和機1の暖房運転の開始を指示する旨の暖房開始指示情報の赤外線信号をリモコン4から受信すると、ステップS10において空気調和機1の空調制御を開始する。すなわち、制御部31は、空気調和機1による空調運転を行うために、空気調和機1の室内機2および室外機3の各構成部の制御を開始する。なお、室内機2に設けられた図示しない運転スイッチが操作されることで、空気調和機1の運転開始を指示する信号が室内機2の制御部31に送信される構成とされてもよい。この場合、制御部31は、運転スイッチが操作されることで制御部31に送信された信号に従って空気調和機1の空調制御を開始する。
 そして、室内機ファン制御部35が、室内機熱交換器14の温度計測を開始させる制御を温度計測部15に対して行う。すなわち、室内機ファン制御部35は、室内機熱交換器14の温度計測の開始を指示する温度計測指示情報を温度計測部15に送信する。
 温度計測部15は、温度計測指示情報を受信すると、温度計測指示情報に基づいて室内機熱交換器14の温度計測を開始する。すなわち、温度計測部15は、室内機熱交換器14の温度として、室内機2内に配設されている室内機熱交換器14の配管温度である伝熱管52の温度を計測する。温度計測部15は、既定の周期で伝熱管52の温度を計測して、計測した配管温度を室内機熱交換器14の温度として室内機ファン制御部35に送信する。
 ステップS20において室内機ファン制御部35は、温度計測部15から送信された室内機熱交換器14の配管温度を受信する。室内機ファン制御部35は、室内機熱交換器14の配管温度を受信すると、ステップS30において、データテーブル記憶部36のデータテーブル41に記憶された第1温度閾値である45℃と、配管温度とを比較して、室内機熱交換器14の配管温度が第1温度閾値である45℃未満であるか否かを判定する。
 室内機熱交換器14の配管温度が第1温度閾値である45℃以上である場合、すなわちステップS30においてNoの場合は、ステップS100が実施される。ステップS100において、室内機ファン制御部35は、室内機ファン16のファン最大回転速度の設定値を、データテーブル41に記憶された第1上限値である1600rpmに決定し、記憶部33内のファン最大回転速度設定記憶部37に設定して記憶させる。すなわち、室内機ファン制御部35は、室内機ファン16の回転速度の上限値を1600rpmに設定する。
 そして、ステップS110において、室内機ファン制御部35は、リモコン4から送信される指示情報、およびファン最大回転速度設定記憶部37に設定した情報に基づいて、1600rpm以下の回転速度の範囲で室内機ファン16を動作させる制御を行う。そして、室内機ファン制御部35は、ステップS30に戻る。
 ここで、1600rpmは、配管温度が第1温度閾値である45℃以上である場合に室内機ファン16の負荷電流による発熱を少なくして、室内機2の室内機熱交換器14の放熱による電気品ボックス13内の空気の温度上昇が大きい場合でも電気品ボックス13内の空気の温度が電気部品の温度定格以内に収まり、電気品ボックス13内の電気部品の温度が電気部品の温度定格以内に収まるようにあらかじめ決定された、室内機ファン16のファン最大回転速度である。すなわち、配管温度が第1温度閾値である45℃以上である場合には、1600rpm以下の回転速度の範囲で室内機ファン16を動作させることで、後述するようにファン最大回転速度が1700rpmのときに比べて室内機ファン16の負荷電流による発熱を少なくすることができる。これにより、室内機2の室内機熱交換器14の放熱による影響が大きくても電気品ボックス13内の空気の温度上昇を抑制することができ、電気品ボックス13内の電気部品の温度を温度定格以内に抑えることができる。これにより、電気品ボックス13内の電気部品が温度定格を超えた温度に上昇することに起因した電気部品の寿命の短寿命化を防止することができる。
 したがって、室内機2の室内機熱交換器14の温度が第1温度閾値を超えた場合には、室内機2の電気品ボックス13内の空気の温度および電気部品の温度も上昇していると考えられるため、室内機ファン制御部35は、室内機ファン16のファン回転速度の上限値を低く設定する制御を行う。これにより、電気品ボックス13内の空気の温度上昇に起因した電気品ボックス13内の電気部品の寿命の短寿命化を防止することができる。
 一方、室内機熱交換器14の配管温度が第1温度閾値である45℃未満である場合、すなわちステップS30においてYesの場合は、ステップS40が実施される。ステップS40において室内機ファン制御部35は、室内機ファン16のファン最大回転速度の設定値を、データテーブル41に記憶された第2上限値である1700rpmに決定し、ファン最大回転速度設定記憶部37に設定して記憶させる。
 そして、ステップS50において、室内機ファン制御部35は、リモコン4から送信される指示情報、およびファン最大回転速度設定記憶部37に設定した情報に基づいて、1700rpm以下の回転速度の範囲で室内機ファン16を動作させる制御を行う。そして、室内機ファン制御部35は、ステップS60に進む。
 ここで、1700rpmは、配管温度が第1温度閾値である45℃未満である場合に第1上限値よりも速い回転速度で室内機ファン16の運転を実施する場合のためにあらかじめ決定された、室内機ファン16のファン最大回転速度である。配管温度が第1温度閾値である45℃未満である場合は、配管温度が第1温度閾値である45℃以上である場合に比べて、室内機熱交換器14の放熱による電気品ボックス13内の空気の温度上昇が少ない。すなわち、配管温度が第1温度閾値である45℃未満である場合は、配管温度が第1温度閾値である45℃以上である場合に比べて、室内機熱交換器14の放熱が電気品ボックス13内の電気部品の温度上昇に及ぼす影響が少ない。
 このため、室内機ファン16の負荷電流による発熱が増えても、電気品ボックス13内の空気の温度上昇および電気部品の温度上昇を抑制することができ、後述するように室内機熱交換器14の温度を監視することで電気品ボックス13内の電気部品の温度を温度定格以内に抑えることが可能である。すなわち、配管温度が第1温度閾値である45℃未満である場合は、配管温度が第1温度閾値である45℃以上である場合に比べて、ファン最大回転速度の設定を大きな値にしても、室内機熱交換器14の温度を監視することで電気品ボックス13内の電気部品の温度を温度定格以内に抑えることが可能である。
 したがって、配管温度が第1温度閾値である45℃未満である場合には、室内機ファン制御部35は、室内機ファン16の風量を配管温度が第1温度閾値である45℃以上である場合よりも増加させて、1700rpmをファン最大回転速度設定記憶部37に設定して記憶させる。これにより、空気調和機1は、配管温度が第1温度閾値である45℃未満である場合に、室内機ファン16の風量を配管温度が第1温度閾値である45℃以上である場合よりも増加させて、配管温度が45℃以上である場合よりも大風量で、高能力かつ高効率での空調を行うことが可能となる。
 つぎに、ファン最大回転速度が1700rpmに設定されている状態で空調動作を続けたときに、ステップS60において室内機ファン制御部35は、温度計測部15から送信される室内機熱交換器14の配管温度と、データテーブル記憶部36のデータテーブル41に記憶された第1温度閾値である45℃と、を比較して、配管温度が第1温度閾値である45℃を30秒以上継続して越えたか否かを判定する。すなわち、室内機ファン制御部35は、温度計測部15から送信される配管温度が第1温度閾値以上である状態が既定の閾値時間である第1閾値時間以上継続されたか否かを判定する。
 第1閾値時間は、室内機ファン制御部35がファン最大回転速度を第2上限値から第1上限値に変更するか否かを決定するための閾値である。第1閾値時間は、あらかじめ決定されて室内機ファン制御部35に記憶されている。なお、第1閾値時間は、記憶部33に記憶されていてもよい。
 配管温度が第1温度閾値である45℃を30秒以上継続して越えていない場合、すなわちステップS60においてNoの場合は、ステップS120が実施される。ステップS120において室内機ファン制御部35は、室内機ファン16のファン回転速度の上限値を変更せず、また現状のファン回転速度を維持する制御を行う。そして、室内機ファン制御部35は、ステップS60に戻る。
 配管温度が第1温度閾値である45℃未満であり、1600rpmを回転速度の上限値として室内機ファン16を運転させた場合には、制御基板30に実装されている電気部品が温度定格を超えることはない。しかしながら、配管温度が第1温度閾値である45℃未満で室内機ファン16のファン回転速度を1600rpmよりも速く回転させた場合、室内機熱交換器14からの放熱と室内機ファン16の回転速度を上げたことによる室内機ファン16の負荷電流の増大との影響で電気品ボックス13内の空気の温度が上昇し、制御基板30に実装されている電気部品の温度定格を超えてしまう可能性がある。
 そこで、配管温度が第1温度閾値である45℃を30秒以上継続して越えた場合、すなわちステップS60においてYesの場合は、ステップS70が実施される。ステップS70において室内機ファン制御部35は、室内機ファン16のファン回転速度の上限値の設定を第1上限値である1600rpmに決定し、ファン最大回転速度設定記憶部37に設定して記憶させる。このように、室内機ファン16のファン回転速度の上限値を1600rpmに下げることで室内機ファン16の負荷電流による発熱を少なくして、電気部品の温度定格を超えることを未然に防ぐことができる。
 つぎに、ステップS80において室内機ファン制御部35は、室内機ファン16のファン回転速度が1600rpmより高速であるか否かを判定する。
 室内機ファン16のファン回転速度が1600rpm以下である場合、すなわちステップS80においてNoの場合は、ステップS130が実施される。ステップS130において室内機ファン制御部35は、現状のファン回転速度を維持する制御を行う。そして、室内機ファン制御部35は、ステップS30に戻る。
 一方、室内機ファン16のファン回転速度が1600rpmより大である場合、すなわちステップS80においてYesの場合は、ステップS90が実施される。ステップS90において室内機ファン制御部35は、ファン回転速度を1600rpmまで低減する制御を行う。そして、室内機ファン制御部35は、ステップS30に戻る。そして、空気調和機1の暖房運転の停止を指示する旨の暖房停止指示情報の赤外線信号を制御部31がリモコン4から受信するまで、上記の制御が実施される。制御部31が暖房停止指示情報を受信した場合には、制御部31は、室内機ファン16を含む、室内機2および室外機3の各構成部を停止させる制御を実施する。
 なお、図7のフローチャートに示した制御方法において、配管温度が第1温度閾値である45℃を既定の閾値時間である第2閾値時間以上下回った場合に、再度、室内機ファン16のファン回転速度の上限値であるファン最大回転速度を第2上限値である1700rpmに設定するステップをステップS90の後およびステップS130の後に実施してもよい。第2閾値時間は、空気調和機1の仕様および能力といった諸条件によって、リモコン4を介して任意の値に設定および変更が可能である。第2閾値時間は、上述した第1閾値時間と同じ時間であってもよく、異なる時間であってもよい。また、この場合の温度閾値は、必ずしも第1温度閾値である45℃である必要はない。
 たとえば、ステップS90においてファン回転速度を1600rpmまで低減した後に配管温度が第1温度閾値である45℃を既定の閾値時間である第2閾値時間である30秒間以上下回ったか否かを判定する。そして、配管温度が45℃を30秒間以上下回った場合に、再度、室内機ファン16のファン回転速度の上限値であるファン最大回転速度を1700rpmに決定し、ファン最大回転速度設定記憶部37に設定して記憶させる。そして、室内機ファン制御部35は、リモコン4から送信される指示情報、およびファン最大回転速度設定記憶部37に設定した情報に基づいて、1700rpm以下の回転速度の範囲で室内機ファン16を動作させる制御を行う。そして、室内機ファン制御部35は、ステップS60に戻る。配管温度が45℃を30秒間以上下回っていない場合には、配管温度が45℃を30秒間以上下回ったか否かの判定を繰り返す。
 また、上述した制御における温度閾値である第1温度閾値および第2温度閾値にヒステリシス性を持たせることもできる。温度閾値にヒステリシス性を持たせることで、室内機熱交換器14の配管温度が温度閾値付近で上下することに起因して室内機ファン16のファン回転速度が頻繁に変化するようなハンチング現象を防ぐことができる。
 上述したように、本実施の形態1にかかる空気調和機1では、室内機熱交換器14の温度が第1温度閾値以上の場合には電気品ボックス13内の空気の温度および電気部品の温度も上昇しているとの推測に基づいて、室内機ファン16のファン回転速度の上限値を決定して室内機ファン16の回転速度の制御を行う。すなわち、室内機ファン制御部35は、室内機熱交換器14の配管温度が第1温度閾値以上の場合には、第1上限値である1600rpm以下の回転速度の範囲で室内機ファン16を動作させる制御を行う。また、室内機ファン制御部35は、室内機熱交換器14の配管温度が第1温度閾値未満の場合には、第1上限値よりも速い回転速度である第2上限値の1700rpm以下の回転速度の範囲で室内機ファン16を動作させる制御を行う。
 すなわち、空気調和機1は、室内機熱交換器14の温度に対応して、室内機ファン16の回転速度を制御することで、室内機熱交換器14からの放熱が少なく室内機熱交換器14の温度が第1温度閾値未満の場合には、電気部品の温度定格によって制限される室内機ファン16の回転速度の上限を引き上げることができる。これにより、空気調和機1は、室内機2の室内機熱交換器14の放熱による電気品ボックス13内の空気の温度上昇が小さい場合には、室内機熱交換器14の放熱による電気品ボックス13内の空気の温度上昇が大きい場合よりも速い回転速度で室内機ファン16を動作させて、室内機ファン16の風量を増加させて、高能力かつ高効率での空調を行うことができる。
 このような空気調和機1は、室内機熱交換器14の温度が第1温度閾値以上の場合には室内機ファン16の負荷電流による発熱を抑制して電気品ボックス13内の空気の温度上昇を抑制することができ、電気品ボックス13内の電気部品が温度定格を超えることを防止できるという効果が得られる。また、空気調和機1は、室内機熱交換器14の温度が第1温度閾値未満の場合には室内機ファン16の風量を増加させて、高能力かつ高効率での空調を行うことができるという効果が得られる。また、室内機ファン16の風量を増加させた場合も、室内機熱交換器14の温度に基づいて室内機ファン16の回転速度を調整することで電気品ボックス13内の電気部品の温度を温度定格以内に抑えることができる。
 したがって、本実施の形態1にかかる空気調和機1は、電気品ボックス13内の電気部品の温度上昇を抑制可能であり電気品ボックス13内の空気の温度上昇に起因した電気部品の短寿命化を起こすことなく、また制御基板30に実装されている電気部品の温度定格を超えない範囲で室内機ファン16の回転速度の制限を緩和した室内機ファン16の運転が可能となる。
実施の形態2.
 上述した実施の形態1では、室内機ファン16のファン回転速度の上限値であるファン最大回転速度が1600rpmおよび1700rpmの2つの値のうちの1つに設定される場合について示したが、3つ以上の候補からファン最大回転速度を選択することも可能である。図8は、本発明の実施の形態2にかかるデータテーブル42の一例を示す図である。データテーブル42は、データテーブル41と同様に空気調和機1において使用可能な第1温度閾値と第1上限値と第2上限値との関係が設定されたデータテーブルである。
 図8に示すデータテーブル42においては、異なる複数の温度閾値が記憶されている。すなわち、図8に示すデータテーブル42においては、温度の高い順に、第1温度閾値が45℃であり、第2温度閾値が40℃であり、第3温度閾値が35℃である。また、図8に示すデータテーブル42においては、異なる複数の温度閾値の各々に対応する第1上限値と第2上限値とが設定されている。すなわち、図8に示すデータテーブル42においては、第1温度閾値である45℃に対応する第1上限値が1600rpmであり、第2上限値が1700rpmである。第2温度閾値である40℃に対応する第1上限値が1700rpmであり、第2上限値が1800rpmである。第3温度閾値である35℃に対応する第1上限値が1800rpmであり、第2上限値が1900rpmである。
 つぎに、空気調和機1が図8に示したデータテーブル42に記憶された条件を用いて室内機ファン16の回転速度を制御する場合について説明する。図9から図11は、本発明の実施の形態2における室内機ファン16の回転速度制御動作の手順を示すフローチャートである。なお、図9および図11において、上述した図7に示したフローチャートと同じステップには、図7と同じステップ番号を付している。
 まず、空気調和機1の室内機2の制御部31が、実施の形態1の場合と同様にステップS10およびステップS20を実施する。
 つぎに、室内機ファン制御部35が、第1温度閾値の45℃の代わりに第3温度閾値である35℃を用いること以外はステップS30からステップS90、ステップS120およびステップS130と同様にして、ステップS230からステップS290、ステップS320およびステップS330を実施する。この場合の第1上限値は、1600rpmの代わりに1800rpmとされる。また、第2上限値は、1700rpmの代わりに1900rpmとされる。また、ステップS290の後およびステップS330の後には、ステップS230が実施される。
 ここで、ステップS230においてNoの場合は、室内機ファン制御部35は、図10に示すフローチャートの手順で制御を実施する。すなわち、室内機ファン制御部35は、第1温度閾値の45℃の代わりに第2温度閾値である40℃を用いること以外はステップS30からステップS90、ステップS120およびステップS130と同様にして、ステップS430からステップS490、ステップS520およびステップS530を実施する。この場合の第1上限値は、1600rpmの代わりに1700rpmとされる。また、第2上限値は、1700rpmの代わりに1800rpmとされる。また、ステップS490の後およびステップS530の後には、ステップS230が実施される。
 ここで、ステップS430においてNoの場合は、室内機ファン制御部35は、図11に示すフローチャートの手順で制御を実施する。すなわち、室内機ファン制御部35は、ステップS30からステップS130を実施する。また、ステップS90の後およびステップS130後には、ステップS230が実施される。
 本実施の形態2では、空気調和機1は、上述した制御を行うことによって、決定する第1上限値と第2上限値とを室内機熱交換器14の配管温度の温度帯によって異ならせることができる。これにより、空気調和機1は、制御基板30に実装されている電気部品の温度定格による室内機ファン16の最大回転速度の制限を、室内機熱交換器14の配管温度の温度帯に対応させて、より緩和することができる。したがって、空気調和機1は、電気品ボックス13内の空気および電気部品の温度上昇を抑制可能であり電気品ボックス13内の温度上昇に起因した電気部品の短寿命化を起こすことなく、また制御基板30に実装されている電気部品の温度定格を超えない範囲で室内機ファン16の回転速度の制限をより緩和した室内機ファン16の運転が可能となる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 空気調和機、2 室内機、2a,3a 筐体、3 室外機、4 リモートコントローラー、5 冷媒管、6 通信線、7 外部電源、13 電気品ボックス、14 室内機熱交換器、15 温度計測部、16 室内機ファン、17 室内プロペラ、18 室内機ファンモータ、19 四方弁、20 圧縮機、21 室外機熱交換器、22 室外機ファン、23 室外プロペラ、24 室外機ファンモータ、25 膨張弁、30 制御基板、31 制御部、32 電源回路、33 記憶部、34 室内機通信部、35 室内機ファン制御部、36 データテーブル記憶部、37 ファン最大回転速度設定記憶部、41,42 データテーブル、51 フィン、52 伝熱管、101 プロセッサ、102 メモリ。

Claims (5)

  1.  電気部品が収納された電気品ボックス、室内機熱交換器および前記室内機熱交換器に送風する室内機ファンを筐体内に有する室内機を備えた空気調和機であって、
     前記室内機熱交換器の温度を計測する温度計測部と、
     前記温度計測部で計測された前記室内機熱交換器の温度に基づいて前記室内機ファンの回転速度の上限値を決定し、前記決定した上限値以下の回転速度で前記室内機ファンを動作させる制御を行う制御部と、
     を備えることを特徴とする空気調和機。
  2.  前記制御部は、
     前記室内機熱交換器の温度が既定の温度閾値以上である場合に、前記上限値を既定の第1上限値に決定し、
     前記室内機熱交換器の温度が前記温度閾値未満である場合に、前記上限値を、前記第1上限値よりも速い既定の第2上限値に決定すること、
     を特徴とする請求項1に記載の空気調和機。
  3.  前記制御部は、前記上限値を前記第2上限値に決定した後に、前記室内機熱交換器の温度が前記温度閾値以上である状態が既定の閾値時間以上継続された場合に、前記上限値を前記第1上限値に決定すること、
     を特徴とする請求項2に記載の空気調和機。
  4.  前記温度閾値と、前記第1上限値と、前記第2上限値との関係が設定されたデータテーブルを有すること、
     を特徴とする請求項2または3に記載の空気調和機。
  5.  前記データテーブルは、異なる複数の前記温度閾値と、前記異なる複数の温度閾値の各々に対応する前記第1上限値と前記第2上限値とが設定されていること、
     を特徴とする請求項4に記載の空気調和機。
PCT/JP2017/030316 2017-08-24 2017-08-24 空気調和機 WO2019038880A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2017/030316 WO2019038880A1 (ja) 2017-08-24 2017-08-24 空気調和機
AU2017428640A AU2017428640B9 (en) 2017-08-24 2017-08-24 Air conditioner
US16/620,998 US11378297B2 (en) 2017-08-24 2017-08-24 Air conditioner
JP2019537499A JP6789399B2 (ja) 2017-08-24 2017-08-24 空気調和機
CN201780094029.2A CN111051780B (zh) 2017-08-24 2017-08-24 空调机
EP17922808.5A EP3674621B1 (en) 2017-08-24 2017-08-24 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/030316 WO2019038880A1 (ja) 2017-08-24 2017-08-24 空気調和機

Publications (1)

Publication Number Publication Date
WO2019038880A1 true WO2019038880A1 (ja) 2019-02-28

Family

ID=65438469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030316 WO2019038880A1 (ja) 2017-08-24 2017-08-24 空気調和機

Country Status (6)

Country Link
US (1) US11378297B2 (ja)
EP (1) EP3674621B1 (ja)
JP (1) JP6789399B2 (ja)
CN (1) CN111051780B (ja)
AU (1) AU2017428640B9 (ja)
WO (1) WO2019038880A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021025690A (ja) * 2019-08-02 2021-02-22 ヒューグル開発株式会社 機器
WO2021233468A1 (zh) * 2020-10-30 2021-11-25 青岛海尔空调电子有限公司 吸风式空调器的控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112815407B (zh) * 2021-01-20 2022-05-27 珠海格力电器股份有限公司 散热控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194389A (ja) 2001-12-28 2003-07-09 Daikin Ind Ltd 空気調和機
JP2005061736A (ja) * 2003-08-18 2005-03-10 Matsushita Electric Ind Co Ltd 空気調和機の制御方法
JP2007315641A (ja) * 2006-05-24 2007-12-06 Matsushita Electric Ind Co Ltd 空気調和機
JP2013137120A (ja) * 2011-12-28 2013-07-11 Mitsubishi Electric Corp 空気調和装置
JP2016070574A (ja) * 2014-09-30 2016-05-09 株式会社富士通ゼネラル 空気調和装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265199A (ja) * 1993-03-15 1994-09-20 Matsushita Seiko Co Ltd 空気調和機の送風制御装置
JPH11294871A (ja) * 1998-04-14 1999-10-29 Toshiba Corp 空気調和機
DE60335092D1 (de) * 2002-03-29 2011-01-05 Daikin Ind Ltd Klimaanlage
US7340910B2 (en) * 2004-06-02 2008-03-11 Thompson Thomas W System and method of increasing efficiency of heat pumps
WO2013001829A1 (ja) * 2011-06-29 2013-01-03 パナソニック株式会社 冷却装置およびそれを備えた空気調和機
CN104006485B (zh) * 2013-02-21 2017-02-08 广东美的制冷设备有限公司 空调器在制热模式下的室内风机转速的控制方法
JP6282208B2 (ja) * 2014-09-26 2018-02-21 三菱電機株式会社 室外機および空気調和装置
JP6378997B2 (ja) * 2014-09-30 2018-08-22 三菱重工サーマルシステムズ株式会社 室外機ユニット
WO2016166875A1 (ja) * 2015-04-16 2016-10-20 三菱電機株式会社 空気調和機の室内機
JP6401658B2 (ja) * 2015-05-08 2018-10-10 日立ジョンソンコントロールズ空調株式会社 空気調和機
CN105135622B (zh) * 2015-09-15 2017-11-28 广东美的制冷设备有限公司 家用空调的控制方法及家用空调
CN106524400B (zh) * 2016-10-24 2019-08-23 广东美的暖通设备有限公司 空调器的控制方法、控制装置及空调器
JP6447693B1 (ja) * 2017-09-26 2019-01-09 株式会社富士通ゼネラル 空気調和機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194389A (ja) 2001-12-28 2003-07-09 Daikin Ind Ltd 空気調和機
JP2005061736A (ja) * 2003-08-18 2005-03-10 Matsushita Electric Ind Co Ltd 空気調和機の制御方法
JP2007315641A (ja) * 2006-05-24 2007-12-06 Matsushita Electric Ind Co Ltd 空気調和機
JP2013137120A (ja) * 2011-12-28 2013-07-11 Mitsubishi Electric Corp 空気調和装置
JP2016070574A (ja) * 2014-09-30 2016-05-09 株式会社富士通ゼネラル 空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3674621A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021025690A (ja) * 2019-08-02 2021-02-22 ヒューグル開発株式会社 機器
JP7399448B2 (ja) 2019-08-02 2023-12-18 ヒューグル開発株式会社 機器
WO2021233468A1 (zh) * 2020-10-30 2021-11-25 青岛海尔空调电子有限公司 吸风式空调器的控制方法

Also Published As

Publication number Publication date
EP3674621A4 (en) 2020-09-02
AU2017428640B9 (en) 2021-06-24
CN111051780A (zh) 2020-04-21
EP3674621A1 (en) 2020-07-01
JP6789399B2 (ja) 2020-11-25
US20200200424A1 (en) 2020-06-25
JPWO2019038880A1 (ja) 2019-11-21
AU2017428640A1 (en) 2020-01-16
US11378297B2 (en) 2022-07-05
AU2017428640B2 (en) 2021-06-10
EP3674621B1 (en) 2021-10-27
CN111051780B (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
JP6642379B2 (ja) 空調機
CN105135622B (zh) 家用空调的控制方法及家用空调
CN108006890B (zh) 空调散热控制方法、空调散热控制装置和空调
JP6789399B2 (ja) 空気調和機
JP2010078272A (ja) 空調冷凍システム
JP2013257089A (ja) 冷凍装置
JP2015140957A (ja) 空気調和装置
JP6141217B2 (ja) 圧縮機劣化診断装置及び圧縮機劣化診断方法
JP6653588B2 (ja) 冷房機、及び、空気調和機
JP2018004104A (ja) 空気調和機
JP6890727B1 (ja) 空気調和システムおよび制御方法
WO2020165992A1 (ja) 空気調和システム、空気調和装置、運転制御方法およびプログラム
JP2010190484A (ja) 電子機器冷却装置
CN217712853U (zh) 一种冷却系统
WO2020035942A1 (ja) フリークーリングシステム
JP2016070619A (ja) 室外機ユニット
KR20190138059A (ko) 공기조화기
WO2018179366A1 (ja) 冷凍サイクルシステムおよび通信トラフィック調整方法
JP6042024B2 (ja) 空気調和装置
JP6124851B2 (ja) 空気調和装置
US9759468B2 (en) System for controlling operation of an HVAC system having tandem compressors
WO2013172196A1 (ja) 空気調和装置
JP2020153600A (ja) 冷凍サイクル装置
US12066207B2 (en) Blower and with controller controlling a motor
JP7086276B2 (ja) 空気調和装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019537499

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017428640

Country of ref document: AU

Date of ref document: 20170824

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017922808

Country of ref document: EP

Effective date: 20200324