WO2020165992A1 - 空気調和システム、空気調和装置、運転制御方法およびプログラム - Google Patents

空気調和システム、空気調和装置、運転制御方法およびプログラム Download PDF

Info

Publication number
WO2020165992A1
WO2020165992A1 PCT/JP2019/005272 JP2019005272W WO2020165992A1 WO 2020165992 A1 WO2020165992 A1 WO 2020165992A1 JP 2019005272 W JP2019005272 W JP 2019005272W WO 2020165992 A1 WO2020165992 A1 WO 2020165992A1
Authority
WO
WIPO (PCT)
Prior art keywords
outdoor
unit
units
load
air conditioning
Prior art date
Application number
PCT/JP2019/005272
Other languages
English (en)
French (fr)
Inventor
小坂 忠義
金澤 律子
浦田 和幹
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to JP2019533126A priority Critical patent/JP6854896B2/ja
Priority to PCT/JP2019/005272 priority patent/WO2020165992A1/ja
Publication of WO2020165992A1 publication Critical patent/WO2020165992A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers

Definitions

  • the present invention relates to a system in which one or more indoor units and a plurality of outdoor units are connected, an apparatus, an operation control method, and a program for causing a computer to execute operation control.
  • Air conditioners include devices in which multiple indoor units and outdoor units are connected to a single refrigerant system. This device has a function of adjusting the outputs of a plurality of outdoor units according to a request from the indoor unit and reducing power consumption.
  • the air conditioning efficiency fluctuates depending on the air conditioning load (heat load), and shows the maximum efficiency at any air conditioning load.
  • This maximum efficiency depends on the type of outdoor unit and the operating environment. For this reason, as in the case of the conventional technology, if the output of the outdoor unit is evenly distributed or the number of operating units is simply controlled, it may be operated at a load that is far from the maximum efficiency. There was a problem that was small.
  • the present invention is an air conditioning system in which one or more indoor units and a plurality of outdoor units are connected, Calculation means for calculating a total value of loads required by one or more indoor units;
  • an air conditioning system including: an adjusting unit that adjusts the ratio of the load distributed to each outdoor unit according to the total value of the loads calculated by the calculating unit.
  • the overall power consumption can be greatly reduced.
  • movement of an air conditioning system The figure which illustrated the relationship between the load and efficiency of an outdoor unit, and power consumption.
  • the figure which illustrated the relationship between the efficiency and load of each outdoor unit The figure which illustrated the hardware constitutions of the outdoor unit control board.
  • the block diagram which illustrated the functional composition of the outdoor unit.
  • the flowchart which illustrated the process which adjusts the ratio of the load of each outdoor unit.
  • the figure explaining the refrigerant system of an air conditioning system The figure explaining the 1st method of adjusting the load of an outdoor unit also using the outdoor unit of another system.
  • the air conditioning system includes one or more indoor units provided in the same space and a plurality of outdoor units installed outside the space. Although an air conditioning system will be described here, an air conditioning apparatus including one or more indoor units and a plurality of outdoor units may be used. In FIG. 1, the air conditioning system includes four indoor units 11 installed in the room 10 of a building or the like and four outdoor units 12 installed outdoors.
  • the indoor unit 11 is a ceiling-mounted indoor unit and includes a fan that sucks in and blows out the air in the room 10, a heat exchanger that warms or cools the sucked air, and a control board that controls the fan.
  • the indoor unit 11 includes a temperature sensor that measures a suction temperature (indoor temperature) and a temperature sensor that measures a blowout temperature.
  • the control board of the indoor unit 11 communicates with a remote controller operated by a user, receives or receives a command from the remote controller, operates or stops the indoor unit 11, and sets or changes the operation mode, temperature, air volume, or the like. .. Further, the control board of the indoor unit 11 communicates with the outdoor unit 12 and provides information such as the indoor temperature measured by the temperature sensor, the blowing temperature, the set temperature, and the set air volume.
  • the outdoor unit 12 sucks and blows outside air, a heat exchanger that warms or cools the sucked air, and a compressor that circulates a refrigerant as a heat medium between the indoor unit 11 and the outdoor unit 12.
  • a control board for controlling the fan and the compressor and various sensors are provided.
  • the control board of the outdoor unit 12 receives a command from the remote controller via the indoor unit 11, operates or stops the outdoor unit 12 according to the instruction, and controls the fan and the compressor.
  • Various sensors include a temperature sensor that measures the outside air temperature, a sensor that measures the current supplied to the compressor, a sensor that measures the flow rate of the heat medium, a sensor that measures the pressure of the heat medium, and the like.
  • FIG. 2 is a diagram for explaining the operation of the air conditioning system.
  • the indoor units 11a to 11d inside and the outdoor units 12a to 12d outside are connected by a pipe 13 through which a refrigerant flows, thereby forming one refrigerant system.
  • a pipe 13 through which a refrigerant flows, thereby forming one refrigerant system.
  • FIG. 2 only one pipe 13 is shown, but in reality, the pipe in which the refrigerant medium goes from the indoor units 11a to 11d to the outdoor units 12a to 12d and the outdoor units 12a to 12d to the indoor units 11a to 11d. It consists of two pipes returning to.
  • the number of refrigerant systems is not limited to one and may be two or more.
  • the heat exchangers of the indoor units 11a to 11d and the heat exchangers of the outdoor units 12a to 12d are connected by a pipe 13, and the heat is exchanged between the air and the refrigerant by circulating the refrigerant. Has been done.
  • control boards of the indoor units 11a to 11d and the control boards of the outdoor units 12a to 12d are connected by a communication cable 14 and are configured to exchange information.
  • the communication between the control boards is not limited to wired communication using the communication cable 14, but may be wireless communication using Wi-Fi or the like.
  • the indoor units 11a to 11d repeatedly suck air in the room 10, warm or cool the air, and then blow it out to control the temperature of the room 10 to a set temperature.
  • the work (load) required for the indoor units 11a to 11d to bring the indoor temperature to the set temperature is the current air conditioning load of the indoor units 11a to 11d, and the indoor temperature, the blowout temperature, and the set air volume are used.
  • the specific heat of air can be calculated as 1 (kJ/kg° C.).
  • the outdoor units 12a to 12d operate with the load distributed to each of the total loads required by the indoor units 11a to 11d.
  • One of the outdoor units 12a to 12d for example, the control board 15 of the outdoor unit 12a functions as a control device that controls the air conditioning system, and is used to calculate the load required by the indoor units 11a to 11d.
  • the control board 15 distributes the load to each of the outdoor units 12a to 12d and notifies the load of each of the outdoor units 12a to 12d.
  • Each of the outdoor units 12a to 12d receives the notification from the control board 15 and controls the fan and the compressor so that the notified load is achieved.
  • the refrigerant is adiabatically compressed by the compressor, becomes hot, and is discharged.
  • the high temperature refrigerant discharged from the compressor is supplied to the heat exchangers of the indoor units 11a to 11d.
  • the high temperature refrigerant discharged from the compressor is supplied to the heat exchangers of the outdoor units 12a to 12d and cooled by heat exchange with the outside air. Then, the refrigerant is adiabatically expanded by an expansion valve or the like, and the temperature is further lowered.
  • the refrigerant having a low temperature in this way is supplied to the heat exchangers of the indoor units 11a to 11d.
  • the temperature of the refrigerant changes depending on the compression ratio of the compressor, and the higher the compression ratio, the higher the power consumption of the compressor.
  • the compressor has a large compression ratio and a large power consumption as compared with the fan, and therefore occupies most of the power consumption of the entire system.
  • the indoor units 11a to 11d exchange heat between the supplied refrigerant and the air sucked by the fan in a heat exchanger, and blow out warm air or cooled air into the room 10.
  • the heat-exchanged refrigerant is returned to the outdoor units 12a to 12d through the pipe 13.
  • the refrigerant used for heating is adiabatically expanded by the expansion valves and the like of the outdoor units 12a to 12d to lower the temperature, exchanges heat with the outside air in each heat exchanger, and then is supplied to each compressor.
  • the refrigerant used for cooling is supplied to the compressors of the outdoor units 12a to 12d.
  • the refrigerant circulates between the indoor units 11a to 12d and the outdoor units 12a to 12d thus connected by the pipe 13.
  • the calculation of the total value of the loads required by the indoor units 11a to 11d has been described as being performed by the control board 15 of the outdoor unit 12a, which is one of the outdoor units 12a to 12d, but is not limited to this. Not a thing. Therefore, the above calculation and the like may be performed by the control boards of the outdoor units 12b to 12d other than the outdoor unit 12a, or by the centralized controller when the air conditioning system includes the centralized controller. Further, the above calculation and the like may be performed by a server device or the like connected via a network to which the air conditioning system is connected.
  • the load is distributed with respect to the total value of the loads required by the indoor units 11a to 11d, but in the past, it was distributed evenly.
  • FIG. 3 is a diagram illustrating the relationship between the power consumption of the outdoor unit and the air conditioning work, the power consumption of the outdoor unit and the efficiency of the outdoor unit, and the load and the efficiency.
  • FIG. 3A is a diagram showing the relationship between the power consumption and the air conditioning work
  • FIG. 3B is a diagram showing the relationship between the power consumption and the efficiency of the outdoor unit
  • FIG. 3C is the load. It is a figure showing the relationship with efficiency.
  • the air conditioning work of the outdoor unit is the amount of heat (kW) that the outdoor unit can move per unit time with its power consumption
  • the efficiency of the outdoor unit is obtained by dividing the air conditioning work (kW) by the power consumption (kW). It is a value.
  • the load (kW) of the outdoor unit is the amount of heat treated per unit time imposed on the outdoor unit, and is substantially equivalent to the air conditioning work in FIG.
  • the air conditioning work of the outdoor unit increases as the power consumption increases, as shown in Fig. 3(a), but the rate of increase gradually decreases.
  • the efficiency of the outdoor unit has a peak at a certain power consumption as shown in FIG. 3B, and decreases when the power consumption is exceeded.
  • ⁇ Outdoor units are not necessarily the same models and types of installed outdoor units, and not all are installed in the same place. Different types and types of outdoor units have different cooling and heating capacities (rated capacities) under unified conditions close to maximum load. Therefore, the curve shown in FIG. 3C changes for each outdoor unit.
  • FIG. 4 is a diagram illustrating the relationship between the efficiency of the four outdoor units 1 to 4 and the air conditioning load.
  • the total value of the air conditioning loads required by the indoor units is, for example, 48 kW.
  • 12 kW is distributed to each of the outdoor units 1 to 4 as shown in FIG.
  • the power consumption of the outdoor units 1 to 4 is 3 kW, 3 kW, 4 kW, and 4 kW, respectively, and the total power consumption is 14 kW.
  • the efficiency of the outdoor unit 3 is significantly lower than that of the other outdoor units 1, 2, and 4.
  • the total value of the loads of the operating outdoor units 1 to 4 is the same as the total value of the loads required by the indoor units, and the respective efficiencies are close to the peak. It can be reduced by distributing the load in this way.
  • the load ratio is adjusted so as to increase the efficiencies of the outdoor units 3 and 4, and the respective efficiencies are brought closer to their respective peaks overall.
  • the total power consumption becomes 13 kW, which is smaller than the conventional even distribution.
  • FIG. 5 is a diagram showing a configuration example of the control board 15 provided in the outdoor unit 12a.
  • the control board 15 has a function of communicating with the indoor units 11a to 11d and other outdoor units 12b to 12d, a function of controlling a fan and a compressor included in the outdoor unit 12a, and a total load required by the indoor units 11a to 11d. It has a function of calculating the value and adjusting the load ratio of the outdoor units 12a to 12d.
  • the control board 15 includes a CPU 20, a ROM 21, a RAM 22, a communication unit 23, and a control unit 24, which are similar to those of a general computer, as hardware.
  • the CPU 20 and the like are connected to the bus 25 and exchange information and the like via the bus 25.
  • the ROM 21 stores programs executed by the CPU 20 and various data.
  • the RAM 22 provides the CPU 20 with a work area.
  • the CPU 20 realizes various functions by reading a program stored in the ROM 21 into the RAM 22 and executing the program.
  • the communication unit 23 is connected to the indoor units 11a to 11d and other outdoor units 12b to 12d by a communication I/F, and realizes communication with the indoor units 11a to 11d and other outdoor units 12b to 12d.
  • the control unit 24 is connected to a fan, a compressor, or the like by a control I/F, and realizes control of the motor of the fan or the compressor.
  • FIG. 6 is a block diagram showing an example of functions realized by the control board 15.
  • the control board 15 realizes each function by a functional unit, and includes an acquisition unit 30, a calculation unit 31, an adjustment unit 32, and a control unit 33.
  • the control means 33 gives instructions to the fan 34 and the compressor 35 included in the outdoor units 12a to 12d to control them.
  • the acquisition unit 30 acquires information necessary for control from the indoor units 11a to 11d and the other outdoor units 12b to 12d.
  • the information necessary for control includes the room temperature, the set temperature, the set air volume, etc. for calculating the load on each of the indoor units 11a to 11d.
  • the calculation means 31 uses the information acquired by the acquisition means 30 to calculate the load required by the indoor units 11a to 11d, and calculates the total value thereof.
  • the adjusting unit 32 adjusts the ratio of the load distributed to the outdoor units 12a to 12d according to the total value of the loads calculated by the calculating unit 31.
  • the control means 33 controls the fan 34 and the compressor 35 so that the load is the proportion of its own adjusted by the adjusting means 32.
  • the control unit 33 controls the amount of current supplied to the motors included in the fan 34 and the compressor 35, the direction in which the current flows, the timing, and the like.
  • FIG. 7 is a flowchart illustrating a process of adjusting the load ratio of each of the outdoor units 12a to 12d. This process starts from step S1 when the air conditioning system is activated and the indoor temperature reaches the set temperature.
  • the adjustment process is started after the set temperature is reached, but the present invention is not limited to this, and the adjustment process may be started when the difference between the set temperature and the set temperature reaches almost the set temperature. Good.
  • step S2 the calculation means 31 calculates the load required by the indoor unit and calculates the total value thereof.
  • the load L i (kW) required by the indoor unit includes the suction temperature T i (° C.) and the outlet temperature T b (° C.) measured by the temperature sensor of the indoor unit, and the set air volume B (kg/s) and the like.
  • the total load value L all (kW) can be calculated by the following equation 3. it can.
  • step S3 the adjusting unit 32 adjusts the ratio of the load to be distributed to the outdoor unit according to the total value of the loads calculated by the calculating unit 31.
  • the load distributed to the outdoor units 12a to 12d is w j (kW)
  • the total load is w all (kW)
  • the number of outdoor units is n
  • w all is expressed by the following equation 3. ..
  • each outdoor unit is P j (kW)
  • the total power consumption of the outdoor units is P all (kW)
  • the load dependence function that approximates the efficiency depending on the load of the outdoor unit by a function is f j ( w j )
  • w j is represented by the following equation 4
  • P j is represented by the following equation 5.
  • the adjusting means 32 adjusts the ratio of the loads distributed to the outdoor units 12a to 12d in this way, and the calculated value of each w j is used as the load to be distributed to the outdoor units 12a to 12d of the adjusted ratio. decide.
  • step S4 the control unit 33 controls the outdoor units 12a to 12d so that the loads are determined.
  • the control means 33 controls the amount of current supplied to the fans 34 of the outdoor units 12a to 12d and the motor of the compressor 35. Then, the process returns to step S2 again, and the loads required by the indoor units 11a to 11d are calculated.
  • the load of at least one outdoor unit is generally determined to be different from the loads of other outdoor units.
  • steps S2 to S4 are repeatedly performed, even if the total value of the loads required by the indoor units 11a to 11d changes, the load is distributed to the outdoor units 12a to 12d according to the changed value. It is possible to adjust the load ratio to be applied.
  • the total value of the load changes due to, for example, a change in set temperature or a change in outside temperature.
  • the indoor unit only the device that receives the start command from the remote controller is operated, and the device that receives the stop command is stopped.
  • the outdoor unit may select the outdoor unit to be activated so that the calculated total power consumption value after adjusting the load ratio of each outdoor unit becomes smaller. In that case, the processes of steps S2 to S4 are repeatedly calculated while changing the combination of the outdoor units to be activated.
  • the control board 15 shown in FIG. 5 may use information on efficiency depending on the load of each outdoor unit (load dependency information of efficiency) in order to adjust the load ratio of each outdoor unit and the number of operating units. it can.
  • the load dependency information is information for obtaining the above load dependency function.
  • the load dependency information is stored in the storage unit 36 because it is read and used by the adjustment unit 32 shown in FIG. Therefore, the outdoor unit 12a can further include a storage unit 36 that stores the load dependency information.
  • the air conditioning system can be tested in advance to acquire the load dependency information, store it in the storage means 36, and read it out to use it when adjusting the ratio of the load distributed to each outdoor unit and the number of operating units. However, even if the air conditioning system does not hold the load dependency information, it acquires the information necessary for adjusting the load ratio and the number of operating units during operation, and uses that information to calculate the load ratio and You may adjust the number of operating.
  • Requirement information includes total power consumption, total current consumption, or parameter value for calculating total power consumption when changing the power consumption ratio of the outdoor unit during operation.
  • the total power consumption is direct information to search for the minimum total power consumption.
  • the total current consumption if the voltage and the power factor are known, the total power consumption can be calculated.
  • Examples of parameter values for calculating the total power consumption include voltage and power factor.
  • the power factor is the ratio of the actually consumed power (active power) and the apparent power represented by the product of the AC voltage and current, including the power not actually consumed (reactive power).
  • the adjusting unit 32 changes the load ratio of each outdoor unit so as not to change the total load of the outdoor unit in operation, the control unit 33 controls each outdoor unit, and changes the ratio of power consumption of each outdoor unit.
  • the acquisition unit 30 acquires power consumption, current consumption, parameter values, and the like from the control board of each outdoor unit.
  • the calculation means 31 calculates the total value of the power consumption from the acquired power consumption and the like.
  • the adjusting unit 32 changes the ratio of power consumption, and searches for the load ratio of each outdoor unit in which the calculated total value of power consumption is the smallest.
  • the air conditioning system When the air conditioning system is configured by one refrigerant system, the load required by the indoor unit is calculated as described above, the total value thereof is calculated, and the outdoor unit in operation is calculated according to the total value. By adjusting the ratio of the load distributed to the machines, the total power consumption can be reduced.
  • the air conditioning system is not limited to one refrigerant system, but is composed of two or more refrigerant systems, and an indoor unit of one refrigerant system can be connected to an outdoor unit of another refrigerant system to reduce total power consumption. You can
  • FIG. 8 is a diagram showing a configuration example of an air conditioning system including two or more refrigerant systems.
  • Each refrigerant system includes at least one indoor unit and at least one outdoor unit.
  • Each refrigerant system is connected by a pipe, and a valve serving as a switching unit is provided in the pipe so that it can be connected to any refrigerant system.
  • the system shown in Fig. 8 is composed of two refrigerant systems.
  • the first system 40 is composed of two indoor units 41 and 42 and one outdoor unit 43
  • the second system 50 is two indoor units 51 and 52 and one outdoor unit 53. It consists of Although two refrigerant systems are used here for ease of explanation, the invention is not limited to this, and three or more heat medium systems may be used. Further, one refrigerant system is not limited to one constituted by two indoor units and one outdoor unit, and both may be one each, or one indoor unit and an outdoor unit. May be two, or both may be three or more.
  • the indoor units 41 and 42 and the outdoor unit 43 are connected by a pipe 45 via a valve 44.
  • the indoor units 51 and 52 and the outdoor unit 53 are connected by a pipe 55 via a valve 54.
  • the first system 40 and the second system 50 are connected by a pipe 60, and the pipe 60 is provided with a valve 61.
  • valves 44 and 54 When operating each of the first system 40 and the second system 50, the valves 44 and 54 are opened and the valve 61 is closed.
  • the calculation means 31 calculates the total value of the loads required by the indoor units 41, 42.
  • the adjusting unit 32 adjusts the load ratio of the outdoor unit according to the calculated total value of the loads.
  • the adjusting unit 32 also functions as a selecting unit and determines whether to operate only the outdoor unit 43 or to connect the outdoor unit 53 and operate both the outdoor units 43 and 53 based on the load dependency information. select.
  • the adjusting unit 32 refers to the load dependency information of the outdoor units 43 and 53, and uses the calculating unit 31 to connect the power consumption when only the outdoor unit 43 is operated with the outdoor unit 53. Then, the minimum total power consumption when the load ratios of the outdoor units 43 and 53 are adjusted is calculated, and the power consumptions are compared. The adjusting means 32 selects the one with the smaller power consumption as a result of the comparison.
  • the adjusting means 32 is described as functioning as the selecting means, but the present invention is not limited to this, and the selecting means may be provided separately from the adjusting means 32.
  • FIG. 9 is a diagram showing a first example in which the outdoor unit 53 of the second system 50 is connected to the first system 40. Based on the total value of the loads required by the indoor units 41 and 42 calculated by the computing unit 31 and the load dependency information of the outdoor units 43 and 53, it is preferable to operate the two outdoor units 43 and 53 for power consumption. When the number of units decreases, the outdoor unit 53 is connected.
  • control board 15 opens the closed valve 61 indicated by V2 in order to connect the outdoor unit 53 to the first system 40.
  • the valves 44, 54, 61 are electromagnetic valves connected to the communication cable 14, and are opened/closed by a control signal from the control board 15.
  • FIG. 10 is a diagram illustrating the relationship between efficiency and load when operating only with the outdoor unit 43, and the relationship between efficiency and load when operating with two outdoor units 43 and 53.
  • the efficiency is greatly reduced from the peak due to the operation with an overload. Only one outdoor unit operates, but the efficiency is low and it consumes a relatively large amount of electric power.
  • FIG. 11 is a diagram showing a second example in which the outdoor unit 53 of the second system 50 is connected to the first system 40.
  • the outdoor unit 53 is connected to the first system 40 by the pipe 60.
  • the pipe 60 since the pipe 60 is long and includes the valve 61 in the middle, pressure loss occurs and heat is generated.
  • the medium may be difficult to flow to the outdoor unit 53. Then, it is impossible to operate with the load as distributed, and it becomes impossible to reduce the power consumption as expected.
  • FIG. 12 is a diagram showing a third example in which the outdoor unit 53 of the second system 50 is connected to the first system 40.
  • the first system 40 includes two indoor units 41 and 42 and two outdoor units 43 and 46
  • the second system 50 also includes two indoor units 51 and 52. It is composed of two outdoor units 53 and 56.
  • the outdoor units 43 and 46 are operating, and in the second system 50, only the outdoor unit 56 is operating. Therefore, the valves 44 and 48 provided in the pipes that connect the indoor units 41 and 42 and the outdoor units 43 and 46 are opened and provided in the pipes that connect the outdoor units 43 and 46 and the second system 50. The valves 47 and 49 are closed. Further, the valve 54 provided in the pipe connecting the indoor units 51 and 52 and the outdoor units 53 and 56 is closed, and the valve 58 is opened to connect the outdoor units 53 and 56 and the first system 40. The valves 57 and 59 provided in the connecting pipes are closed.
  • the control board 15 detects a failure by communicating with the outdoor unit 43.
  • the control board 15 further includes a detection unit for detecting a failure.
  • the detection means periodically communicates with the outdoor unit, and detects that a failure has occurred in the outdoor unit, for example, when there is no response from the outdoor unit within a certain period of time.
  • the adjusting unit 32 Upon receiving the detection of the failure of the outdoor unit 43, the adjusting unit 32 closes the valve 44 provided in the pipe connecting the indoor units 41, 42 and the outdoor unit 43 and disconnects it from the first system 40.
  • the valve 54 provided on the pipe connecting the indoor units 51 and 52 and the outdoor unit 53 and the valve 57 provided on the pipe connecting the first system 40 and the second system 50 are closed. ..
  • the adjusting means 32 opens the closed valve 57 to connect the outdoor unit 53 that is not used to the first system 40.
  • the outdoor unit 53 can be connected to the first system 40 by opening 57.
  • FIG. 13 is a diagram showing a fourth example in which the outdoor unit 53 of the second system 50 is connected to the first system 40.
  • the cumulative operating time of the outdoor units 43 and 53 is, for example, 10000 hours for the outdoor unit 43 and 3000 hours for the outdoor unit 53.
  • the second system 50 is not used, there is a difference in cumulative operating time. It is possible to switch from 43 to the outdoor unit 53.
  • the control board 15 causes the storage unit 36 to store the information on the cumulative operating time of the outdoor units 43 and 53, and selects whether to switch to the adjusting unit 32 functioning as the selecting unit based on the information on the cumulative operating time. Can be made.
  • the control board 15 opens the closed valve 61. As a result, the cumulative operating time can be leveled and the life of the outdoor unit can be extended.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

全体の消費電力を大きく低減できるシステム、装置、方法およびプログラムを提供する。このシステムは、1以上の室内機と複数の室外機が接続されたシステムで、1以上の室内機が必要とする負荷の合計値を計算する演算手段31と、演算手段31により計算された負荷の合計値に応じて、各室外機に分配する負荷の割合を調整する調整手段32とを含む。

Description

空気調和システム、空気調和装置、運転制御方法およびプログラム
 本発明は、1以上の室内機と複数の室外機が接続されたシステム、装置、運転制御方法および運転制御をコンピュータに実行させるためのプログラムに関する。
 空気調和装置には、1つの冷媒系統に複数の室内機や室外機が接続された装置がある。この装置は、室内機からの要請により複数の室外機の出力を調整し、消費電力を低減させる機能を有している。
 このような複数の室外機の出力を調整する技術としては、空調負荷に応じて室外機の出力を均等分配する技術(例えば、特許文献1~3参照)や、空調負荷に応じて室外機の運転台数を制御する技術(例えば、特許文献4、5参照)等が知られている。
特開平9-287845号公報 特開2007-292406号公報 特許第4667496号公報 特開2013-24465号公報 特開2017-187213号公報
 一般に、空調効率(冷暖房効率)は、空調負荷(熱負荷)によって変動し、任意の空調負荷のときに最大効率を示す。この最大効率は、室外機の種類や動作環境によって異なる。このため、従来の技術のように、室外機の出力を均等分配したり、運転台数を制御するだけでは、最大効率から大きく離れた負荷で運転される場合があり、全体の消費電力の低減幅が小さいという問題があった。
 本発明は、上記課題に鑑み、1以上の室内機と複数の室外機が接続された空気調和システムであって、
 1以上の室内機が必要とする負荷の合計値を計算する演算手段と、
 演算手段により計算された負荷の合計値に応じて、各室外機に分配する負荷の割合を調整する調整手段とを含む、空気調和システムが提供される。
 本発明によれば、全体の消費電力を大きく低減できる。
空気調和システムの構成例を示した図。 空気調和システムの動作を説明する図。 室外機の負荷および効率と消費電力との関係を例示した図。 各室外機の効率と負荷との関係を例示した図。 室外機制御基板のハードウェア構成を例示した図。 室外機の機能構成を例示したブロック図。 各室外機の負荷の割合を調整する処理を例示したフローチャート。 空気調和システムの冷媒系統について説明する図。 室外機の負荷を別系統の室外機も使用して調整する第1の方法について説明する図。 室外機の負荷を調整した結果を例示した図。 室外機の負荷を別の冷媒系統の室外機も使用して調整する第2の方法について説明する図。 室外機の負荷を別の冷媒系統の室外機も使用して調整する第3の方法について説明する図。 室外機の負荷を別の冷媒系統の室外機も使用して調整する第4の方法について説明する図。
 図1は、空気調和システムの構成例を示した図である。空気調和システムは、同一空間内に設けられる1以上の室内機と、その空間の外部に設置される複数の室外機とを含んで構成される。ここでは、空気調和システムとして説明するが、1以上の室内機と、複数の室外機とを含む空気調和装置であってもよい。図1では、空気調和システムが、ビル等の室内10に設置された4台の室内機11と、室外に設置された4台の室外機12とから構成されている。
 室内機11は、天井設置型の室内機で、室内10の空気を吸い込み、吹き出すファンと、吸い込んだ空気を温め、または冷却する熱交換器と、ファンを制御する制御基板とを備えている。また、室内機11は、吸い込み温度(室内温度)を計測する温度センサと、吹き出し温度を計測する温度センサとを備えている。
 室内機11の制御基板は、ユーザが操作するリモートコントローラと通信を行い、リモートコントローラからの指令を受けて、室内機11を運転または停止し、運転モード、温度、風量等の設定や変更を行う。また、室内機11の制御基板は、室外機12と通信を行い、温度センサにより計測された室内温度や吹き出し温度、設定温度、設定風量等の情報を提供する。
 室外機12は、外気を吸い込み、吹き出すファンと、吸い込んだ空気を温め、または冷却する熱交換器と、室内機11と室外機12との間で熱媒体としての冷媒を循環する圧縮機と、ファンおよび圧縮機を制御する制御基板と、各種のセンサとを備えている。
 室外機12の制御基板は、リモートコントローラからの指令を、室内機11を介して受け付け、その指示により室外機12を運転または停止し、ファンおよび圧縮機を制御する。各種のセンサは、外気温を計測する温度センサ、圧縮機に供給する電流を計測するセンサ、熱媒体の流量を計測するセンサ、熱媒体の圧力を計測するセンサ等を含む。
 図2は、空気調和システムの動作を説明する図である。空気調和システムは、室内の室内機11a~11dと室外の室外機12a~12dとが、内部を冷媒が流れる配管13により接続され、1つの冷媒系統を構成している。図2では、1本の配管13のみが示されているが、実際には、冷媒媒体が室内機11a~11dから室外機12a~12dへ向かう配管と室外機12a~12dから室内機11a~11dへ戻る配管の2本から構成される。冷媒系統は、1つに限られるものではなく、2以上であってもよい。
 室内機11a~11dの熱交換器と、室外機12a~12dの熱交換器とは、配管13により繋がっており、冷媒が循環することにより空気と冷媒との間で熱交換を行うように構成されている。
 また、室内機11a~11dの制御基板と、室外機12a~12dの制御基板とは、通信ケーブル14により接続され、情報のやりとりを行うように構成されている。なお、制御基板間の通信は、通信ケーブル14を使用した有線での通信に限られるものではなく、Wi-Fi等を使用した無線通信であってもよい。
 室内機11a~11dは、室内10の空気を吸い込み、空気を温め、または冷却した後、吹き出すことを繰り返し、室内10の温度が設定温度になるように制御する。室内機11a~11dが室内温度を設定温度にするために必要とする仕事(負荷)は、室内機11a~11dの現在の空調負荷であり、室内温度と、吹き出し温度と、設定風量とを用い、空気の比熱を1(kJ/kg℃)として計算することができる。
 室外機12a~12dは、室内機11a~11dが必要とする負荷の合計値に対して、それぞれに分配された負荷で運転する。室外機12a~12dのうちの1つ、例えば室外機12aの制御基板15は、空気調和システムを制御する制御装置として機能し、室内機11a~11dが必要とする負荷を計算するために使用され、室内機11a~11dの制御基板と通信し、室内温度と、吹き出し温度と、設定風量の情報を取得する。そして、制御基板15は、室内機11a~11dが必要とする負荷を計算し、その合計値を計算する。
 制御基板15は、各室外機12a~12dに負荷を分配し、各室外機12a~12dが負担する負荷を通知する。各室外機12a~12dは、制御基板15からの通知を受けて、通知された負荷となるようにファンや圧縮機を制御する。
 冷媒は、圧縮機により断熱圧縮されて高温になり、吐出される。暖房として使用する場合、圧縮機から出る高温の冷媒が、室内機11a~11dの熱交換器へ供給される。冷房として使用する場合、圧縮機から出る高温の冷媒は、室外機12a~12dの熱交換器へ供給され、外気との熱交換により冷却される。その後、冷媒は、膨張弁等により断熱膨張され、温度がさらに下げられる。このようにして低温となった冷媒が、室内機11a~11dの熱交換器へ供給される。
 冷媒の温度は、圧縮機の圧縮比により変化し、圧縮比が大きくなるほど高くなり、圧縮機の消費電力も大きくなる。圧縮機は、ファンに比較して圧縮比が大きく、消費電力も大きいため、システム全体の消費電力の多くを占める。
 室内機11a~11dは、供給された冷媒とファンにより吸い込まれた空気とを熱交換器で熱交換を行い、温かい空気または冷却した空気を室内10に吹き出す。熱交換された冷媒は、配管13を通して再び室外機12a~12dへ戻される。暖房に使用された冷媒は、室外機12a~12dの各膨張弁等で断熱膨張されて温度が下げられ、各熱交換器で外気と熱交換された後、各圧縮機へ供給される。冷房に使用された冷媒は、室外機12a~12dの各圧縮機へ供給される。冷媒は、このように配管13で結ばれた室内機11a~12dと室外機12a~12dとの間を循環する。
 ここでは、室内機11a~11dが必要とする負荷の合計値の計算等を、室外機12a~12dの1つである室外機12aの制御基板15が行うものとして説明したが、これに限られるものではない。したがって、上記の計算等は、室外機12a以外の他の室外機12b~12dの制御基板が行ってもよいし、空気調和システムが集中コントローラを備える場合、集中コントローラが行ってもよい。また、上記の計算等は、空気調和システムが繋がるネットワークを介して接続されたサーバ装置等が行ってもよい。
 室外機12a~12dは、室内機11a~11dが必要とする負荷の合計値に対して、負荷が分配されるが、従来では、均等に分配されていた。
 図3は、室外機の消費電力と空調仕事、室外機の消費電力と室外機の効率、負荷と効率の関係を例示した図である。図3(a)が消費電力と空調仕事との関係を表した図で、図3(b)が消費電力と室外機の効率との関係を表した図で、図3(c)が負荷と効率との関係を表した図である。室外機の空調仕事は、室外機がその消費電力で単位時間あたりに移動できる熱量(kW)であり、室外機の効率は、空調仕事(kW)を消費電力(kW)で除算して得られる値である。室外機の負荷(kW)は、室外機に課せられた単位時間あたりの処理熱量であり、図3(a)における空調仕事と略等価である。
 室外機の空調仕事は、図3(a)に示すように消費電力が大きくなるにつれて増加するが、徐々に増加する割合が小さくなる。室外機の効率は、図3(b)に示すようにある消費電力のときにピークを示し、それを超えると低下する。図3(b)のように室外機に割り当てられる負荷を横軸に、効率を縦軸にとったグラフでも同様に、ある負荷のときにピークを示す。
 室外機は、設置する室外機の全てが同じ機種やタイプとは限らず、全てが同じ場所に設置されるとは限らない。室外機は、機種やタイプが異なれば、最大負荷に近い統一した条件での冷暖房能力(定格能力)が異なる。このため、図3(c)に示す曲線は、室外機ごとに変わってくる。
 図4は、4台の室外機1~4の効率と空調負荷との関係を例示した図である。室外機1~4がそれぞれ異なる曲線を示す特性を有する場合において、室内機が必要とする空調負荷の合計値が、例えば48kWとする。従来の均等分配では、図4(a)に示すように室外機1~4のそれぞれに12kWずつ分配される。このとき、室外機1~4の消費電力は、それぞれ3kW、3kW、4kW、4kWとなり、合計消費電力が14kWとなる。この場合、室外機3の効率が他の室外機1、2、4と比較して大幅に低くなっている。
 室外機1~4の合計消費電力は、動作中の室外機1~4の負荷の合計値が、室内機が必要とする負荷の合計値と同じであって、それぞれの効率がピークに近くなるように負荷を分配することで小さくすることができる。
 そこで、室外機1、2の効率は多少低下するが、室外機3、4の効率を上げるように負荷の割合を調整し、それぞれの効率をそれぞれのピークに全体的に近づける。これにより、合計消費電力は、従来の均等分配より小さい13kWとなる。このように、室内機が必要とする負荷の合計値に応じて、室外機1~4に分配する負荷の割合を調整することで、システム全体の消費電力を従来の均等分配に比較して低減させることができる。
 図5は、室外機12aに設けられる制御基板15の構成例を示した図である。制御基板15は、室内機11a~11dや他の室外機12b~12dと通信を行う機能、室外機12aが備えるファンや圧縮機を制御する機能、室内機11a~11dが必要とする負荷の合計値を計算し、室外機12a~12dの負荷の割合を調整する機能を有する。これらの機能を実現するために、制御基板15は、一般的なコンピュータと同様のCPU20と、ROM21と、RAM22と、通信部23と、制御部24とをハードウェアとして含む。CPU20等は、バス25に接続され、バス25を介して情報等のやりとりを行う。
 ROM21は、CPU20により実行されるプログラムや各種のデータ等を格納する。RAM22は、CPU20に対して作業領域を提供する。CPU20は、ROM21に格納されたプログラムをRAM22に読み出し実行することで、各種の機能を実現する。
 通信部23は、通信I/Fで、室内機11a~11dや他の室外機12b~12dと接続し、室内機11a~11dや他の室外機12b~12dとの通信を実現する。制御部24は、制御I/Fで、ファンや圧縮機等と接続し、ファンや圧縮機のモータの制御を実現する。
 図6は、制御基板15により実現される機能の一例を示したブロック図である。制御基板15は、各機能を機能手段により実現し、取得手段30と、演算手段31と、調整手段32と、制御手段33とを備える。制御手段33は、室外機12a~12dが備えるファン34および圧縮機35に指示を与えて制御する。
 取得手段30は、室内機11a~11dや他の室外機12b~12dから制御に必要な情報を取得する。制御に必要な情報としては、各室内機11a~11dの負荷を計算するための室内温度、設定温度、設定風量等が挙げられる。
 演算手段31は、取得手段30により取得された情報を用い、室内機11a~11dが必要とする負荷を計算し、その合計値を計算する。調整手段32は、演算手段31により計算された負荷の合計値に応じて、室外機12a~12dに分配する負荷の割合を調整する。
 制御手段33は、調整手段32により調整された自己の割合の負荷となるようにファン34および圧縮機35を制御する。制御手段33は、ファン34や圧縮機35が備えるモータに供給する電流量、電流を流す方向、タイミング等を制御する。
 図7は、各室外機12a~12dの負荷の割合を調整する処理を例示したフローチャートである。この処理は、空気調和システムを起動し、室内温度が設定温度に達したことによりステップS1から開始する。ここでは、設定温度に達した後に調整処理を開始しているが、これに限られるものではなく、設定温度との差が所定の範囲内等のほぼ設定温度になった段階で開始してもよい。
 ステップS2では、演算手段31が、室内機が必要とする負荷を計算し、その合計値を計算する。室内機が必要とする負荷L(kW)は、室内機の温度センサにより計測された吸い込み温度T(℃)および吹き出し温度T(℃)と、設定風量B(kg/s)等とを用い、次の式1により計算することができる。式1は、負荷が冷房負荷か、暖房負荷かによって符号が変わるので、絶対値として計算される式となっている。
Figure JPOXMLDOC01-appb-M000001
 負荷の合計値Lall(kW)は、各室内機が必要とする空調負荷をL(kW)とし、動作中の室内機の数をm台とすると、次の式3により計算することができる。
Figure JPOXMLDOC01-appb-M000002
 ステップS3では、調整手段32が、演算手段31により計算された負荷の合計値に応じて、室外機に分配する負荷の割合を調整する。室外機12a~12dに分配する負荷をw(kW)とし、負荷の合計をwall(kW)とし、室外機の数をn台とすると、wallは、次の式3により表される。
Figure JPOXMLDOC01-appb-M000003
 各室外機の消費電力をP(kW)とし、室外機の消費電力の合計をPall(kW)とし、室外機の負荷に依存する効率を関数で近似した負荷依存性関数をf(w)とすると、wは次の式4で表され、Pは次の式5で表される。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 室外機の消費電力の合計Pall(kW)が最小となる状態を解析する問題として、最適化問題がある。最適化問題では、Pall(kW)を最小化する関数を目的関数とし、変数である負荷wが守るべき条件を制約条件とし、wが実数全体の集合Rに含まれるものとして、制約条件の下で、目的関数の値が最小となるwを算出する。目的関数は、式6で与えられ、制約条件は、式7で与えられる。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 調整手段32は、このようにして各室外機12a~12dに分配する負荷の割合を調整し、算出した各wの値を、調整された割合の各室外機12a~12dに分配する負荷として決定する。
 ステップS4では、制御手段33が、決定された各負荷になるように、各室外機12a~12dを制御する。制御手段33は、各室外機12a~12dのファン34や圧縮機35のモータに供給する電流量等を制御する。そして、再びステップS2へ戻り、室内機11a~11dが必要とする負荷を計算する。
 室外機12a~12dの負荷は、各室外機12a~12dにつき決定されるため、概して、少なくとも1台の室外機の負荷が他の室外機の負荷とは異なるように決定される。
 また、ステップS2~ステップS4の処理を繰り返して実施するため、室内機11a~11dが必要とする負荷の合計値が変化しても、変化した値に応じて、各室外機12a~12dに分配する負荷の割合を調整することができる。負荷の合計値は、例えば設定温度の変更や外気温の変化等により変化する。
 これまで4台の室内機11a~11dと4台の室外機12a~12dの全てを運転するものとして説明してきたが、室内機や室外機は、負荷に応じて運転台数を変更することができる。室内機は、リモートコントローラにより起動指令を受けた機器のみが運転され、停止指令を受けた機器は運転が停止される。室外機は、各室外機の負荷の割合を調整後の合計消費電力計算値がより小さくなるように、起動する室外機の選択をしてもよい。その場合にはステップS2~ステップS4の処理を、起動する室外機の組み合わせを変えながら繰り返し計算する。
 図5に示した制御基板15は、各室外機の負荷の割合や運転台数を調整するために、各室外機の負荷に依存する効率に関する情報(効率の負荷依存性情報)を使用することができる。負荷依存性情報は、上記の負荷依存性関数を求めるための情報である。負荷依存性情報は、図6に示す調整手段32が読み出して使用するため、記憶手段36に記憶される。したがって、室外機12aは、負荷依存性情報を記憶する記憶手段36をさらに備えることができる。
 空気調和システムは、予め試験を行って負荷依存性情報を取得し、記憶手段36に記憶させ、各室外機に分配する負荷の割合や運転台数を調整する際に読み出して使用することができる。しかしながら、空気調和システムは、負荷依存性情報を保持していなくても、運転中に負荷の割合や運転台数を調整するために必要な情報を取得し、その情報を使用して負荷の割合や運転台数を調整してもよい。
 必要な情報としては、運転中の室外機の消費電力の割合を変化させた場合の合計の消費電力、合計の消費電流、または合計の消費電力を計算するためのパラメータ値等が挙げられる。
 合計の消費電力は、最小の合計消費電力を探索する直接的な情報である。合計の消費電流は、電圧と力率が既知であれば、合計の消費電力を計算することができる。合計の消費電力を計算するためのパラメータ値としては、例えば電圧や力率等を挙げることができる。力率は、実際に消費される電力(有効電力)と、実際に消費されない電力(無効電力)を含めた、交流の電圧と電流の積で表される皮相電力との比である。
 調整手段32は、運転中の室外機の合計負荷を変えないように各室外機の負荷の割合を変化させ、制御手段33が各室外機を制御し、各室外機の消費電力の割合を変化させる。取得手段30は、各室外機の制御基板から消費電力、消費電流、またはパラメータ値等を取得する。演算手段31は、取得された消費電力等から消費電力の合計値を計算する。調整手段32は、消費電力の割合を変化させ、計算された消費電力の合計値が最も小さくなる各室外機の負荷の割合を探索する。
 空気調和システムは、1つの冷媒系統で構成される場合、上記のようにして、室内機が必要とする負荷を計算し、その合計値を計算し、その合計値に応じて、動作中の室外機に分配する負荷の割合を調整することで、合計の消費電力を低減させることができる。空気調和システムは、1つの冷媒系統のみに限らず、2以上の冷媒系統で構成され、ある冷媒系統の室内機を、合計消費電力を低減するために別の冷媒系統の室外機と接続できるようにしてもよい。
 図8は、2以上の冷媒系統で構成される空気調和システムの構成例を示した図である。各冷媒系統は、少なくとも1台の室内機と、少なくとも1台の室外機とを含む。各冷媒系統は、配管により接続され、配管には切替手段としての弁が設けられ、いずれの冷媒系統にも繋ぎ換えることができるようになっている。
 図8に示すシステムは、2つの冷媒系統で構成されている。第1系統40は、2台の室内機41、42と、1台の室外機43とから構成され、第2系統50は、2台の室内機51、52と、1台の室外機53とから構成されている。ここでは説明を容易にするために2つの冷媒系統としているが、これに限られるものではなく、3以上の熱媒系統であってもよい。また、1つの冷媒系統は、2台の室内機と1台の室外機とから構成されるものに限らず、両方が1台ずつであってもよいし、室内機が1台で、室外機が2台であってもよいし、両方が3台以上であってもよい。
 第1系統40は、室内機41、42と、室外機43とが弁44を介して配管45により接続される。第2系統50は、室内機51、52と、室外機53とが弁54を介して配管55により接続される。
 第1系統40と第2系統50とは、配管60により接続され、配管60には、弁61が設けられる。
 第1系統40、第2系統50の系統ごとに運転する場合、弁44、54を開にし、弁61を閉にする。
 第2系統50の室内機51、52が停止している場合、室外機43のみを運転してもよいし、第1系統40に室外機53を接続し、室外機43、53の2台を運転することを選択してもよい。
 この場合、演算手段31は、室内機41、42が必要とする負荷の合計値を計算する。調整手段32は、計算された負荷の合計値に応じて、室外機の負荷の割合を調整する。その際、調整手段32は、選択手段としても機能し、負荷依存性情報に基づき、室外機43のみを運転するか、室外機53を接続し、室外機43、53の両方を運転するかを選択する。
 具体的には、調整手段32は、室外機43、53の負荷依存性情報を参照し、演算手段31を使用して、室外機43のみを運転した場合の消費電力と、室外機53を接続し、室外機43、53の負荷の割合を調整した場合の最小の合計消費電力とを求め、消費電力を比較する。調整手段32は、比較した結果でより小さい消費電力となるほうを選択する。
 ここでは、調整手段32を選択手段として機能させるものとして説明したが、これに限られるものではなく、調整手段32とは別に選択手段を設けてもよい。
 図9は、第1系統40に第2系統50の室外機53を接続する第1の例を示した図である。演算手段31が計算した室内機41、42が必要とする負荷の合計値と、室外機43、53の負荷依存性情報とに基づき、室外機43、53の2台で運転したほうが、消費電力が少なくなる場合、室外機53を接続する。
 そこで、制御基板15は、第1系統40に室外機53を接続するために、V2で示される閉じられた弁61を開く。弁44、54、61は、通信ケーブル14に接続された電磁弁とされ、制御基板15からの制御信号により開閉する。
 図10は、室外機43のみで運転する場合の効率と負荷の関係、室外機43、53の2台で運転する場合の効率と負荷の関係を例示した図である。室外機43のみで運転する場合、過負荷での運転で、効率がピークから大きく低下している。室外機は1台のみの運転であるが、効率が低く、比較的多くの電力を消費する。
 これに対し、室外機43、53の2台で運転すると、負荷が分配され、効率がピーク近くになる。室外機は2台の運転となるが、効率が高く、合計の消費電力は、1台のみの運転の場合に比較して低減させることができる。
 図11は、第1系統40に第2系統50の室外機53を接続する第2の例を示した図である。図9に示す例では、第1系統40に室外機53を配管60により接続しているが、配管60のみでは、配管60が長く、途中に弁61を含むことから、圧力損失が生じ、熱媒体が室外機53へ流れにくい場合がある。すると、分配した通りの負荷で運転することができず、期待した通りに消費電力を低減させることができなくなる。
 そこで、系統間を繋ぐ配管62と、配管62の途中に弁63を設け、室外機53への熱媒体の流れを制御することができる。また、室外機43、53の能力が異なり、室外機53の能力が大きい場合、室外機53へ熱媒体が多く流れようとし、1本の配管では負担がかかり過ぎるため、2本の配管60、62で分担し、負担を平準化することができる。
 図12は、第1系統40に第2系統50の室外機53を接続する第3の例を示した図である。図12に示す例では、第1系統40が、2台の室内機41、42と、2台の室外機43、46で構成され、第2系統50も、2台の室内機51、52と、2台の室外機53、56で構成されている。
 第1系統40では、室外機43、46を運転し、第2系統50では、室外機56のみを運転している。このため、室内機41、42と、室外機43、46とを繋ぐ配管に設けられた弁44、48は、開とされ、室外機43、46と第2系統50とを繋ぐ配管に設けられた弁47、49は、閉とされている。また、室内機51、52と、室外機53、56とを繋ぐ配管に設けられた弁54は、閉とされ、弁58は、開とされ、室外機53、56と第1系統40とを繋ぐ配管に設けられた弁57、59は、閉とされている。
 例えば、室外機43が、ファン、圧縮機のモータや制御基板に異常が発生し、作動しなくなった場合、制御基板15は、室外機43との通信により故障を検知する。このため、制御基板15は、故障を検知するための検知手段をさらに備える。検知手段は、室外機と定期的に通信を行い、例えば一定時間内に室外機から応答がない場合、その室外機に故障が発生したことを検知する。
 調整手段32は、室外機43の故障の検知を受けて、室内機41、42と室外機43とを繋ぐ配管に設けられた弁44を閉じ、第1系統40から切り離す。
 第2系統50では、室外機56のみが使用され、室外機53は使用されていない。このため、室内機51、52と室外機53とを繋ぐ配管に設けられた弁54と、第1系統40と第2系統50とを繋ぐ配管に設けられた弁57は、閉とされている。調整手段32は、第1系統40に、使用されていない室外機53を接続するべく、閉じられた弁57を開く。
 このときも、室外機46のみの運転と、室外機46と室外機53の2台での運転とで、消費電力が、どちらが小さいかを確認し、2台での運転のほうが小さい場合、弁57を開き、室外機53を第1系統40に接続することができる。
 図13は、第1系統40に第2系統50の室外機53を接続する第4の例を示した図である。室外機43、53の累積運転時間が、例えば室外機43は10000時間、室外機53は3000時間で、第2系統50が不使用である場合、累積運転時間に差があることから、室外機43から室外機53へ切り替えることができる。
 このため、制御基板15は、記憶手段36に各室外機43、53の累積運転時間の情報を記憶させ、累積運転時間の情報に基づき、選択手段として機能する調整手段32に切り替えるかどうかを選択させることができる。制御基板15は、切り替える場合、閉じている弁61を開く。これにより、累積運転時間を平準化させ、室外機の寿命を延ばすことができる。
 以上のようにして、各室外機に分配する負荷の割合を調整することで、従来の均等分配に比較して、全体の消費電力を低減させることができ、その結果、全体の消費電力の低減幅を大きくすることができる。
 これまで本発明の空気調和システム、装置、方法およびプログラムについて上述した実施形態をもって詳細に説明してきたが、本発明は、上述した実施形態に限定されるものではなく、他の実施形態や、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。したがって、上記のプログラムが記録された記録媒体等のプログラム製品も、本発明の範囲に含まれるものである。
10…室内
11、11a~11d…室内機
12、12a~12d…室外機
13…配管
14…通信ケーブル
15…制御基板
20…CPU
21…ROM
22…RAM
23…通信部
24…制御部
25…バス
30…取得手段
31…演算手段
32…調整手段
33…制御手段
34…ファン
35…圧縮機
36…記憶手段
40…第1系統
41、42…室内機
43、46…室外機
44、47~49…弁
45…配管
50…第2系統
51、52…室内機
53、56…室外機
54、57~59…弁
55…配管
60、62…配管
61、63…弁

Claims (10)

  1.  1以上の室内機と複数の室外機が接続された空気調和システムであって、
     前記1以上の室内機の負荷の合計値を計算する演算手段と、
     前記演算手段により計算された前記負荷の合計値に応じて、前記各室外機に分配する負荷の割合を調整する調整手段と
    を含む、空気調和システム。
  2.  前記調整手段は、前記負荷の合計値に応じて、前記室内機の運転台数を調整する、請求項1に記載の空気調和システム。
  3.  各室外機の負荷に依存する効率の情報を記憶する記憶手段を含み、
     前記調整手段は、前記負荷の合計値と前記記憶手段に記憶された前記効率の情報とを用いて、前記各室外機に分配する負荷の割合と前記運転台数とを調整する、請求項2に記載の空気調和システム。
  4.  前記各室外機の消費電力の割合を変化させる制御手段と、
     前記制御手段により変化させた前記割合で動作する複数の室外機の合計消費電力、もしくは該複数の室外機へ供給された合計電流、または該合計消費電力を計算するためのパラメータを取得する取得手段と
    を含み、
     前記調整手段は、前記取得手段により取得された前記合計消費電力、もしくは前記合計電流、または前記パラメータを用いて、前記複数の室外機の合計消費電力が最小となる前記負荷の割合を探索する、請求項1~3のいずれか1項に記載の空気調和システム。
  5.  前記複数の室外機は、それぞれ定格能力が異なる、請求項1~4のいずれか1項に記載の空気調和システム。
  6.  少なくとも1つの室内機と少なくとも1つの室外機とから構成される系統を2以上有し、
     前記各室外機の負荷に依存する効率の情報に基づき、前記各室外機を前記2以上の系統のいずれに接続するかを選択する選択手段を含む、請求項1~5のいずれか1項に記載の空気調和システム。
  7.  前記各室外機が接続される系統を切り替えるための複数の切替手段を含み、
     前記切替手段は、前記室外機に異常が発生した場合、該室外機を前記系統から切り離し、正常に動作する室外機を該系統に接続する、請求項6に記載の空気調和システム。
  8.  1以上の室内機と複数の室外機とから構成される空気調和装置であって、
     前記1以上の室内機の負荷の合計値を計算する演算手段と、
     前記演算手段により計算された前記負荷の合計値に応じて、前記各室外機に分配する負荷の割合を調整する調整手段と
    とを含む、空気調和装置。
  9.  1以上の室内機と複数の室外機が接続された空気調和システムの運転を制御装置により制御する方法であって、
     前記制御装置が前記1以上の室内機の負荷の合計値を計算するステップと、
     計算された前記負荷の合計値に応じて、前記制御装置が前記各室外機に分配する負荷の割合を調整するステップと
    を含む、運転制御方法。
  10.  請求項9に記載の運転制御方法に含まれる各ステップをコンピュータに実行させるためのプログラム。
PCT/JP2019/005272 2019-02-14 2019-02-14 空気調和システム、空気調和装置、運転制御方法およびプログラム WO2020165992A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019533126A JP6854896B2 (ja) 2019-02-14 2019-02-14 空気調和システム、空気調和装置、運転制御方法およびプログラム
PCT/JP2019/005272 WO2020165992A1 (ja) 2019-02-14 2019-02-14 空気調和システム、空気調和装置、運転制御方法およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/005272 WO2020165992A1 (ja) 2019-02-14 2019-02-14 空気調和システム、空気調和装置、運転制御方法およびプログラム

Publications (1)

Publication Number Publication Date
WO2020165992A1 true WO2020165992A1 (ja) 2020-08-20

Family

ID=72044737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005272 WO2020165992A1 (ja) 2019-02-14 2019-02-14 空気調和システム、空気調和装置、運転制御方法およびプログラム

Country Status (2)

Country Link
JP (1) JP6854896B2 (ja)
WO (1) WO2020165992A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022193529A1 (zh) * 2021-03-19 2022-09-22 青岛海信日立空调系统有限公司 一种多联机空调系统
EP4160121A1 (en) * 2021-09-29 2023-04-05 Ariston S.P.A. Efficiency control algorithm for a cascade system of heat pumps

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112235A (ja) * 2009-11-24 2011-06-09 Mitsubishi Electric Corp 台数制御装置、台数制御方法及び流体供給システム
WO2011114368A1 (ja) * 2010-03-16 2011-09-22 三菱電機株式会社 空気調和装置
JP2012207866A (ja) * 2011-03-30 2012-10-25 Hitachi Appliances Inc 空気調和機
JP2013036631A (ja) * 2011-08-04 2013-02-21 Mitsubishi Electric Corp 空気調和機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5029913B2 (ja) * 2008-07-04 2012-09-19 株式会社日立プラントテクノロジー 空調システム及びその制御方法
JP5312286B2 (ja) * 2009-10-21 2013-10-09 三菱電機株式会社 空気調和機の制御装置、冷凍装置の制御装置
CN104246384B (zh) * 2012-03-26 2016-12-07 三菱电机株式会社 空气调节机控制装置和空气调节机控制方法
JP6504956B2 (ja) * 2015-07-24 2019-04-24 トヨタホーム株式会社 冷暖房機器選定支援システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112235A (ja) * 2009-11-24 2011-06-09 Mitsubishi Electric Corp 台数制御装置、台数制御方法及び流体供給システム
WO2011114368A1 (ja) * 2010-03-16 2011-09-22 三菱電機株式会社 空気調和装置
JP2012207866A (ja) * 2011-03-30 2012-10-25 Hitachi Appliances Inc 空気調和機
JP2013036631A (ja) * 2011-08-04 2013-02-21 Mitsubishi Electric Corp 空気調和機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022193529A1 (zh) * 2021-03-19 2022-09-22 青岛海信日立空调系统有限公司 一种多联机空调系统
EP4160121A1 (en) * 2021-09-29 2023-04-05 Ariston S.P.A. Efficiency control algorithm for a cascade system of heat pumps

Also Published As

Publication number Publication date
JPWO2020165992A1 (ja) 2021-02-18
JP6854896B2 (ja) 2021-04-07

Similar Documents

Publication Publication Date Title
US11994308B2 (en) Multi-factor furnace and heat pump control system
WO2010073579A1 (ja) 負荷処理バランス設定装置
EP2362164A2 (en) Heat pump system and control method thereof
JP4905939B2 (ja) 空調システムの運転制御方法
JP5204987B2 (ja) 空調システムおよび空調システムの制御方法
CN105953369B (zh) 一种变频空调控制方法及装置
US20060123810A1 (en) Method for operating air conditioner
US10941951B2 (en) Systems and methods for temperature and humidity control
JP5404556B2 (ja) 空気調和機の制御装置および冷凍装置の制御装置
JP4166051B2 (ja) 空調システム
WO2020165992A1 (ja) 空気調和システム、空気調和装置、運転制御方法およびプログラム
JP2021036197A (ja) 熱源水制御方法及び熱源水制御装置
KR101991561B1 (ko) 공기 조화 시스템의 제어 방법 및 장치
CA3177379A1 (en) Inverter system for a heating, ventilation, and air-conditioning system
WO2019038880A1 (ja) 空気調和機
JP6890727B1 (ja) 空気調和システムおよび制御方法
JP5062555B2 (ja) 省エネ空調制御システム
KR20140112681A (ko) 공기 조화기의 제어방법
CN112781186A (zh) 空调器控制方法、空调器以及可读存储介质
US11619409B2 (en) Control system for a heating, ventilation, and air-conditioning system
JP7068537B1 (ja) 空気調和装置および制御方法
JP7086276B2 (ja) 空気調和装置
KR20050074664A (ko) 멀티 공기조화기 및 그 제어방법
CN114623522A (zh) 空调机组及其控制方法
KR100738343B1 (ko) 복합 공기조화 시스템의 제어방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019533126

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914770

Country of ref document: EP

Kind code of ref document: A1