WO2019036030A1 - Lipides destinés à être utilisés dans des formulations de nanoparticules lipidiques - Google Patents

Lipides destinés à être utilisés dans des formulations de nanoparticules lipidiques Download PDF

Info

Publication number
WO2019036030A1
WO2019036030A1 PCT/US2018/000317 US2018000317W WO2019036030A1 WO 2019036030 A1 WO2019036030 A1 WO 2019036030A1 US 2018000317 W US2018000317 W US 2018000317W WO 2019036030 A1 WO2019036030 A1 WO 2019036030A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
independently
alkyl
composition
lipid
Prior art date
Application number
PCT/US2018/000317
Other languages
English (en)
Inventor
Xinyao Du
Original Assignee
Acuitas Therapeutics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acuitas Therapeutics, Inc. filed Critical Acuitas Therapeutics, Inc.
Priority to US16/638,731 priority Critical patent/US11524932B2/en
Publication of WO2019036030A1 publication Critical patent/WO2019036030A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/06Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/06Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton
    • C07C229/10Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
    • C07C229/16Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings to carbon atoms of hydrocarbon radicals substituted by amino or carboxyl groups, e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/28Steroids, e.g. cholesterol, bile acids or glycyrrhetinic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/543Lipids, e.g. triglycerides; Polyamines, e.g. spermine or spermidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/24Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having more than one carboxyl group bound to the carbon skeleton, e.g. aspartic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific

Definitions

  • Embodiments of the present invention generally relate to novel lipids that can be used in combination with other lipid components, such as neutral lipids, cholesterol and polymer conjugated lipids, to form lipid nanoparticles for delivery of therapeutic agents, such as nucleic acids (e.g., oligonucleotides, messenger RNA), both in vitro and in vivo.
  • lipid components such as neutral lipids, cholesterol and polymer conjugated lipids
  • therapeutic agents such as nucleic acids (e.g., oligonucleotides, messenger RNA), both in vitro and in vivo.
  • nucleic acid based therapeutics have enormous potential but there remains a need for more effective delivery of nucleic acids to appropriate sites within a cell or organism in order to realize this potential.
  • Therapeutic nucleic acids include, e.g., messenger RNA (mRNA), antisense
  • nucleic acids such as mRNA or plasmids
  • mRNA or plasmids can be used to effect expression of specific cellular products as would be useful in the treatment of, for example, diseases related to a deficiency of a protein or enzyme.
  • the therapeutic applications of translatable nucleotide delivery are extremely broad as constructs can be synthesized to produce any chosen protein sequence, whether or not indigenous to the system.
  • the expression products of the nucleic acid can augment existing levels of protein, replace missing or non-functional versions of a protein, or introduce new protein and associated functionality in a cell or organism.
  • nucleic acids such as miRNA inhibitors
  • miRNA inhibitors can be used to effect expression of specific cellular products that are regulated by miRNA as would be useful in the treatment of, for example, diseases related to deficiency of protein or enzyme.
  • the therapeutic applications of miRNA inhibition are extremely broad as constructs can be synthesized to inhibit one or more miRNA that would in turn regulate the expression of mRNA products.
  • the inhibition of endogenous miRNA can augment its downstream target endogenous protein expression and restore proper function in a cell or organism as a means to treat disease associated to a specific miRNA or a group of miRNA.
  • nucleic acids can down-regulate intracellular levels of specific mRNA and, as a result, down-regulate the synthesis of the corresponding proteins through processes such as RNA interference (RNAi) or complementary binding of antisense RNA.
  • RNA interference RNA interference
  • the therapeutic applications of antisense oligonucleotide and RNAi are also extremely broad, since oligonucleotide constructs can be synthesized with any nucleotide sequence directed against a target mRNA.
  • Targets may include mRNAs from normal cells, mRNAs associated with disease-states, such as cancer, and mRNAs of infectious agents, such as viruses.
  • antisense oligonucleotide constructs have shown the ability to specifically down-regulate target proteins through degradation of the cognate mRNA in both in vitro and in vivo models.
  • antisense oligonucleotide constructs are currently being evaluated in clinical studies.
  • RNAs are susceptible to nuclease digestion in plasma.
  • free RNAs have limited ability to gain access to the intracellular compartment where the relevant translation machinery resides.
  • Lipid nanoparticles formed from lipids formulated with other lipid components, such as neutral lipids, cholesterol, PEG, PEGylated lipids, and oligonucleotides have been used to block degradation of the RNAs in plasma and facilitate the cellular uptake of the oligonucleotides.
  • these lipid nanoparticles would provide optimal drug:lipid ratios, protect the nucleic acid from degradation and clearance in serum, be suitable for syslemic or local delivery, and provide intracellular delivery of the nucleic acid.
  • these lipid-nucleic acid particles should be well-tolerated and provide an adequate therapeutic index, such that patient treatment at an effective dose of the nucleic acid is not associated with unacceptable toxicity and/or risk to the patient.
  • the present invention provides these and related advantages.
  • embodiments of the present invention provide lipid compounds, including stereoisomers, pharmaceutically acceptable salts, prodrugs or tautomers thereof, which can be used alone or in combination with other lipid components such as neutral lipids, charged lipids, steroids (including for example, all sterols) and/or their analogs, and/or polymer conjugated lipids to form lipid nanoparticles for the delivery of therapeutic agents.
  • the lipid nanoparticles are used to deliver nucleic acids such as antisense and/or messenger RNA.
  • Methods for use of such lipid nanoparticles for treatment of various diseases or conditions, such as those caused by infectious entities and/or insufficiency of a protein, are also provided.
  • compositions comprising one or more of the foregoing compounds of structure (I) and a therapeutic agent are also provided.
  • lipid nanoparticles comprising one or more compounds of structure (I).
  • the pharmaceutical compositions and/or LNPs further comprise one or more components selected from neutral lipids, charged lipids, steroids and polymer conjugated lipids.
  • the disclosed compositions are useful for formation of lipid nanoparticles for the delivery of the therapeutic agent.
  • the present invention provides a method for administering a therapeutic agent to a patient in need thereof, the method comprising preparing a composition of lipid nanoparticles comprising the compound of structure (I) and a therapeutic agent and delivering the composition to the patient.
  • the method for administering a therapeutic agent to a patient in need thereof comprises administering an LNP comprising one or more compounds of structure (I) and the therapeutic agent to the patient.
  • Embodiments of the present invention are based, in part, upon the discovery of novel lipids that provide advantages when used in lipid nanoparticles for the in vivo delivery of an active or therapeutic agent such as a nucleic acid into a cell of a mammal.
  • the present invention provides nucleic acid-lipid nanoparticle compositions comprising one or more of the novel lipids described herein that provide increased activity of the nucleic acid and improved tolerability of the compositions in vivo, resulting in a significant increase in the therapeutic index as compared to nucleic acid-lipid nanoparticle compositions previously described.
  • embodiments provide a lipid nanoparticle comprising one or more compounds of structure (I).
  • the present invention provides novel lipids that enable the formulation of improved compositions for the in vitro and in vivo delivery of mRNA and/or other oligonucleotides.
  • these improved lipid nanoparticle compositions are useful for expression of protein encoded by mRNA.
  • these improved lipid nanoparticles compositions are useful for uprcgulation of endogenous protein expression by delivering miRNA inhibitors targeting one specific miRNA or a group of miRNA regulating one target mRNA or several mRNA.
  • these improved lipid nanoparticle compositions are useful for down-regulating (e.g., silencing) the protein levels and/or mRNA levels of target genes.
  • the lipid nanoparticles are also useful for delivery of mRNA and plasmids for expression of transgenes.
  • the lipid nanoparticle compositions are useful for inducing a pharmacological effect resulting from expression of a protein, e.g., increased production of red blood cells through the delivery of a suitable erythropoietin mRNA, or protection against infection through delivery of mRNA encoding for a suitable antigen or antibody.
  • lipid nanoparticles and compositions of embodiments of the present invention may be used for a variety of purposes, including the delivery of encapsulated or associated (e.g., complexed) therapeutic agents such as nucleic acids to cells, both in vitro and in vivo. Accordingly, embodiments of the present invention provide methods of treating or preventing diseases or disorders in a subject in need thereof by contacting the subject with a lipid nanoparticle that encapsulates or is associated with a suitable therapeutic agent, wherein the lipid nanoparticle comprises one or more of the novel lipids described herein.
  • embodiments of the lipid nanoparticles of the present invention are particularly useful for the delivery of nucleic acids, including, e.g., mRNA, antisense oligonucleotide, plasmid DNA, microRNA (miRNA), miRNA inhibitors (antagomirs/antimirs), messenger-RNA-interfering complementary RNA (micRNA), DNA, multivalent RNA, dicer substrate RNA, complementary DNA (cDNA), etc.
  • nucleic acids including, e.g., mRNA, antisense oligonucleotide, plasmid DNA, microRNA (miRNA), miRNA inhibitors (antagomirs/antimirs), messenger-RNA-interfering complementary RNA (micRNA), DNA, multivalent RNA, dicer substrate RNA, complementary DNA (cDNA), etc.
  • the lipid nanoparticles and compositions of embodiments of the present invention may be used to induce expression of a desired protein both in vitro and in vivo by contacting cells with a lipid nanoparticle comprising one or more novel lipids described herein, wherein the lipid nanoparticle encapsulates or is associated with a nucleic acid that is expressed to produce the desired protein (e.g., a messenger RNA or plasmid encoding the desired protein) or inhibit processes that terminate expression of mRNA (e.g., miRNA inhibitors).
  • a desired protein e.g., a messenger RNA or plasmid encoding the desired protein
  • miRNA inhibitors e.g., miRNA inhibitors
  • the lipid nanoparticles and compositions of embodiments of the present invention may be used to decrease the expression of target genes and proteins both in vitro and in vivo by contacting cells with a lipid nanoparticle comprising one or more novel lipids (e.g., a compound of structure (I)) described herein, wherein the lipid nanoparticle encapsulates or is associated with a nucleic acid that reduces target gene expression (e.g., an antisense oligonucleotide or small interfering RNA (siRNA)).
  • a nucleic acid that reduces target gene expression
  • siRNA small interfering RNA
  • the lipid nanoparticles and compositions of embodiments of the present invention may also be used for co-delivery of different nucleic acids (e.g., mRNA and plasmid DNA) separately or in combination, such as may be useful to provide an effect requiring colocalization of different nucleic acids (e.g., mRNA encoding for a suitable gene modifying enzyme and DNA segment(s) for incorporation into the host genome).
  • nucleic acids e.g., mRNA and plasmid DNA
  • Nucleic acids for use with embodiments of this invention may be prepared according to any available technique.
  • the primary methodology of preparation is, but not limited to, enzymatic synthesis (also termed in vitro transcription) which currently represents the most efficient method to produce long sequence-specific mRNA.
  • In vitro transcription describes a process of template- directed synthesis of RNA molecules from an engineered DNA template comprised of an upstream bacteriophage promoter sequence (e.g., including but not limited to that from the T7, T3 and SP6 coliphage) linked to a downstream sequence encoding the gene of interest.
  • an upstream bacteriophage promoter sequence e.g., including but not limited to that from the T7, T3 and SP6 coliphage
  • Template DNA can be prepared for in vitro transcription from a number of sources with appropriate techniques which are well known in the art including, but not limited to, plasmid DNA and polymerase chain reaction amplification (see Linpinsel, J.L and Conn, G.L., General protocols for preparation of plasmid DNA template and Bowman, J.C., Azizi, B., Lenz, T.K., Ray, P., and Williams, L.D. in RNA in vitro transcription and RNA purification by denaturing PAGE in Recombinant and in vitro RNA syntheses Methods v. 941 Conn G.L. (ed), New York, N.Y. Humana Press, 2012)
  • RNA polymerase adenosine, guanosine, uridine and cytidine ribonucleoside triphosphates (rNTPs) under conditions that support polymerase activity while minimizing potential degradation of the resultant mRNA transcripts.
  • rNTPs ribonucleoside triphosphates
  • In vitro transcription can be performed using a variety of commercially available kits including, but not limited to RiboMax Large Scale RNA Production System (Promega), MegaScript Transcription kits (Life Technologies) as well as with commercially available reagents including RNA polymerases and rNTPs.
  • the methodology for in vitro transcription of mRNA is well known in the art.
  • the desired in vitro transcribed mRNA is then purified from the undesired components of the transcription or associated reactions (including
  • RNA in vitro transcription and RNA purification by denaturing PAGE in Recombinant and in vitro RNA syntheses Methods v. 941 Conn G.L. (ed), New York, N.Y. Humana Press, 2012).
  • Purification can be performed using a variety of commercially available kits including, but not limited to SV Total Isolation System (Promega) and In Vitro Transcription Cleanup and Concentration Kit (Norgen Biotek).
  • RNA impurities associated with undesired polymerase activity which may need to be removed from the full-length mRNA preparation.
  • RNA impurities include short RNAs that result from abortive transcription initiation as well as double-stranded RNA (dsRNA) generated by RNA-dependent RNA polymerase activity, RNA-primed transcription from RNA templates and self- complementary 3' extension. It has been demonstrated that these contaminants with dsRNA structures can lead to undesired immunostimulatory activity through interaction with various innate immune sensors in eukaryotic cells that function to recognize specific nucleic acid structures and induce potent immune responses.
  • dsRNA double-stranded RNA
  • Endogenous eukaryotic mRNA typically contain a cap structure on the 5'- end of a mature molecule which plays an important role in mediating binding of the mRNA Cap Binding Protein (CBP), which is in turn responsible for enhancing mRNA stability in the cell and efficiency of mRNA translation. Therefore, highest levels of protein expression are achieved with capped mRNA transcripts.
  • CBP mRNA Cap Binding Protein
  • the 5 '-cap contains a 5 '-5 '-triphosphate linkage between the 5 '-most nucleotide and guanine nucleotide.
  • the conjugated guanine nucleotide is methylated at the N7 position.
  • modifications include methylation of the ultimate and penultimate most 5 '-nucleotides on the 2'-hydroxyl group.
  • 5 '-capping of synthetic mRNA can be performed co- transcriptionally with chemical cap analogs (i.e. capping during in vitro transcription).
  • the Anti-Reverse Cap Analog (ARC A) cap contains a 5 '-5 '-triphosphate guanine-guanine linkage where one guanine contains an N7 methyl group as well as a 3'-0-methyl group.
  • ARC A Anti-Reverse Cap Analog
  • the synthetic cap analog is not identical to the 5 '-cap structure of an authentic cellular mRNA, potentially reducing translatability and cellular stability.
  • synthetic mRNA molecules may also be enzymatically capped post-transcriptionally. These may generate a more authentic 5 '-cap structure that more closely mimics, either structurally or functionally, the endogenous 5 '-cap which have enhanced binding of cap binding proteins, increased half-life, reduced susceptibility to 5' endonucleases, and/or reduced 5' decapping. Numerous synthetic 5 '-cap analogs have been developed and are known in the art to enhance mRNA stability and translatability (see, e.g., .Grudzien-Nogalska, E., Kowalska, J., Su, W., Kuhn, A.N.,
  • poly- A tail On the 3 '-terminus, a long chain of adenine nucleotides (poly- A tail) is normally added to mRNA molecules during RNA processing. Immediately after transcription, the 3' end of the transcript is cleaved to free a 3' hydroxyl to which poly- A polymerase adds a chain of adenine nucleotides to the RNA in a process called polyadenylation.
  • the poly-A tail has been extensively shown to enhance both translational efficiency and stability of mRNA (see Bernstein, P. and Ross, J., 1989, Poly (A), poly (A) binding protein and the regulation of mRNA stability, Trends Bio Sci v. 14 373-377; Guhaniyogi, J.
  • Poly (A) tailing of in vitro transcribed mRNA can be achieved using various approaches including, but not limited to, cloning of a poly (T) tract into the DNA template or by post-transcriptional addition using Poly (A) polymerase.
  • the first case allows in vitro transcription of mRNA with poly (A) tails of defined length, depending on the size of the poly (T) tract, but requires additional manipulation of the template.
  • poly (A) tail to in vitro transcribed mRNA using poly (A) polymerase which catalyzes the incorporation of adenine residues onto the 3 'termini of RNA, requiring no additional manipulation of the DNA template, but results in mRNA with poly(A) tails of heterogeneous length.
  • 5'- capping and 3 '-poly (A) tailing can be performed using a variety of commercially available kits including, but not limited to Poly (A) Polymerase Tailing kit (EpiCenter), mMESSAGE mMACHINE T7 Ultra kit and Poly (A) Tailing kit (Life Technologies) as well as with commercially available reagents, various ARCA caps, Poly (A)
  • modified nucleosides into in vitro transcribed mRNA can be used to prevent recognition and activation of RNA sensors, thus mitigating this undesired immunostimulatory activity and enhancing translation capacity (see e.g. Kariko, K. And Weissman, D.
  • modified nucleosides and nucleotides used in the synthesis of modified RNAs can be prepared monitored and utilized using general methods and procedures known in the art.
  • nucleoside modifications are available that may be incorporated alone or in combination with other modified nucleosides to some extent into the in vitro transcribed mRNA (see e.g.US2012/0251618). In vitro synthesis of nucleoside-modified mRNA have been reported to have reduced ability to activate immune sensors with a concomitant enhanced translational capacity.
  • mRNA which can be modified to provide benefit in terms of translatability and stability
  • 5' and 3' untranslated regions include the 5' and 3' untranslated regions (UTR). Optimization of the UTRs (favorable 5' and 3' UTRs can be obtained from cellular or viral RNAs), either both or independently, have been shown to increase mRNA stability and translational efficiency of in vitro transcribed mRNA (see e.g. Pardi, N.,
  • nucleic acid payloads may be used for embodiments of this invention.
  • methods of preparation include but are not limited to chemical synthesis and enzymatic, chemical cleavage of a longer precursor, in vitro transcription as described above, etc. Methods of synthesizing DNA and RNA nucleotides are widely used and well known in the art (see, e.g. Gait, M. J. (ed.) Oligonucleotide synthesis: a practical approach, Oxford [Oxfordshire],
  • plasmid DNA preparation for use with embodiments of this invention commonly utilizes but is not limited to expansion and isolation of the plasmid DNA in vitro in a liquid culture of bacteria containing the plasmid ot interest.
  • a gene in the plasmid of interest that encodes resistance to a particular antibiotic penicillin, kanamycin, etc.
  • isolating plasmid DNA are widely used and well known in the art (see, e.g. Heilig, J., Elbing, K. L. and Brent, R (2001) Large-Scale Preparation of Plasmid DNA. Current Protocols in Molecular Biology.
  • Plasmid isolation can be performed using a variety of commercially available kits including, but not limited to Plasmid Plus (Qiagen),
  • lipids of the present invention lipid nanoparticles and compositions comprising the same, and their use to deliver active (e.g. therapeutic agents), such as nucleic acids, to modulate gene and protein expression, are described in further detail below.
  • active e.g. therapeutic agents
  • nucleic acids such as nucleic acids
  • a test sample e.g. a sample of cells in culture expressing the desired protein
  • a test mammal e.g. a mammal such as a human or an animal model such as a rodent (e.g. mouse) or a non-human primate (e.g., monkey) model
  • a nucleic acid e.g. nucleic acid in combination with a lipid of the present invention.
  • expression of the desired protein in the test sample or test animal is compared to expression of the desired protein in a control sample (e.g.
  • a sample of cells in culture expressing the desired protein or a control mammal (e.g., a mammal such as a human or an animal model such as a rodent (e.g. mouse) or non-human primate (e.g. monkey) model) that is not contacted with or administered the nucleic acid.
  • a control mammal e.g., a mammal such as a human or an animal model such as a rodent (e.g. mouse) or non-human primate (e.g. monkey) model
  • the expression of a desired protein in a control sample or a control mammal may be assigned a value of 1.0.
  • inducing expression of a desired protein is achieved when the ratio of desired protein expression in the test sample or the test mammal to the level of desired protein expression in the control sample or the control mammal is greater than 1 , for example, about 1.1 , 1.5, 2.0. 5.0 or 10.0.
  • inducing expression of a desired protein is achieved when any measurable level of the desired protein in the test sample or the test mammal is detected.
  • the phrase "inhibiting expression of a target gene” refers to the ability of a nucleic acid to silence, reduce, or inhibit the expression of a target gene.
  • a test sample e.g. a sample of cells in culture expressing the target gene
  • a test mammal e.g. a mammal such as a human or an animal model such as a rodent (e.g. mouse) or a non-human primate (e.g. monkey) model
  • a nucleic acid that silences, reduces, or inhibits expression of the target gene.
  • Expression of the target gene in the test sample or test animal is compared to expression of the target gene in a control sample (e.g.
  • a sample of cells in culture expressing the target gene or a control mammal (e.g. a mammal such as a human or an animal model such as a rodent (e.g. mouse) or non-human primate (e.g. monkey) model) that is not contacted with or administered the nucleic acid.
  • a control mammal e.g. a mammal such as a human or an animal model such as a rodent (e.g. mouse) or non-human primate (e.g. monkey) model
  • the expression of the target gene in a control sample or a control mammal may be assigned a value of 100%.
  • silencing, inhibition, or reduction of expression of a target gene is achieved when the level of target gene expression in the test sample or the test mammal relative to the level of target gene expression in the control sample or the control mammal is about 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 5%, or 0%.
  • the nucleic acids are capable of silencing, reducing, or inhibiting the expression of a target gene by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% in a test sample or a test mammal relative to the level of target gene expression in a control sample or a control mammal not contacted with or administered the nucleic acid.
  • Suitable assays for determining the level of target gene expression include, without limitation, examination of protein or mRNA levels using techniques known to those of skill in the art, such as, e.g., dot blots, northern blots, in situ hybridization, ELISA, immunoprecipitation, enzyme function, as well as phenotypic assays known to those of skill in the art.
  • an “effective amount” or “therapeutically effective amount” of an active agent or therapeutic agent such as a therapeutic nucleic acid is an amount sufficient to produce the desired effect, e.g. an increase or inhibition of expression of a target sequence in comparison to the normal expression level detected in the absence of the nucleic acid.
  • An increase in expression of a target sequence is achieved when any measurable level is detected in the case of an expression product that is not present in the absence of the nucleic acid.
  • an in increase in expression is achieved when the fold increase in value obtained with a nucleic acid such as mRNA relative to control is about 1.05, 1.1, 1.2, 1.3, 1.4, 1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 75, 100, 250, 500, 750, 1000, 5000, 10000 or greater.
  • Inhibition of expression of a target gene or target sequence is achieved when the value obtained with a nucleic acid such as antisense oligonucleotide relative to the control is about 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 5%, or 0%.
  • Suitable assays for measuring expression of a target gene or target sequence include, e.g., examination of protein or RNA levels using techniques known to those of skill in the art such as dot blots, northern blots, in situ hybridization, ELISA, immunoprecipitation, enzyme function, fluorescence or luminescence of suitable reporter proteins, as well as phenotypic assays known to those of skill in the art.
  • nucleic acid refers to a polymer containing at least two deoxyribonucleotides or ribonucleotides in either single- or double-stranded form and includes DNA, RNA, and hybrids thereof.
  • DNA may be in the form of antisense molecules, plasmid DNA, cDNA, PCR products, or vectors.
  • RNA may be in the form of small hairpin RNA (shRNA), messenger RNA (mRNA), antisense RNA, miRNA, micRNA, multivalent RNA, dicer substrate RNA or viral RNA (vRNA), and combinations thereof.
  • Nucleic acids include nucleic acids containing known nucleotide analogs or modified backbone residues or linkages, which are synthetic, naturally occurring, and non-naturally occurring, and which have similar binding properties as the reference nucleic acid. Examples of such analogs include, without limitation, phosphorothioates, phosphoramidates, methyl phosphonates, chiral-methyl
  • nucleic acids Unless specifically limited, the term encompasses nucleic acids containing known analogues of natural nucleotides that have similar binding properties as the reference nucleic acid. Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions), alleles, orthologs, single nucleotide polymorphisms, and complementary sequences as well as the sequence explicitly indicated.
  • degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (Batzer et al., Nucleic Acid Res., 19:5081 (1991); Ohtsuka et al., J. Biol.
  • Nucleotides contain a sugar deoxyribose (DNA) or ribose (RNA), a base, and a phosphate group. Nucleotides are linked together through the phosphate groups.
  • Bases include purines and pyrimidines, which further include natural compounds adenine, thymine, guanine, cytosine, uracil, inosine, and natural analogs, and synthetic derivatives of purines and pyrimidines, which include, but are not limited to, modifications which place new reactive groups such as, but not limited to, amines, alcohols, thiols, carboxylates, and alkylhalides.
  • gene refers to a nucleic acid (e.g., DNA or R A) sequence that comprises partial length or entire length coding sequences necessary for the production of a polypeptide or precursor polypeptide.
  • Gene product refers to a product of a gene such as an RNA transcript or a polypeptide.
  • lipid refers to a group of organic compounds that include, but are not limited to, esters of fatty acids and are generally characterized by being poorly soluble in water, but soluble in many organic solvents. They are usually divided into at least three classes: (1) “simple lipids,” which include fats and oils as well as waxes; (2) “compound lipids,” which include phospholipids and glycolipids; and (3) “derived lipids” such as steroids.
  • a "steroid” is a following carbon skeleton:
  • Non-limiting examples of steroids include cholesterol, and the like.
  • a "cationic lipid” refers to a lipid capable of being positively charged.
  • Exemplary cationic lipids include one or more amine group(s) which bear the positive charge.
  • Preferred cationic lipids are ionizable such that they can exist in a positively charged or neutral form depending on pH. The ionization of the cationic lipid affects the surface charge of the lipid nanoparticle under different pH conditions. This charge state can influence plasma protein absorption, blood clearance and tissue distribution (Semple, S.C., et al., Adv.
  • polymer conjugated lipid refers to a molecule comprising both a lipid portion and a polymer portion.
  • An example of a polymer conjugated lipid is a pegylated lipid.
  • pegylated lipid refers to a molecule comprising both a lipid portion and a polyethylene glycol portion. Pegylated lipids are known in the art and include 1 -(monomethoxy-polyethyleneglycol)-2,3-dimyristoylglycerol
  • neutral lipid refers to any of a number of lipid species that exist either in an uncharged or neutral zwitterionic form at a selected pH.
  • such lipids include, but are not limited to, phosphotidylcholines such as l ,2-Distearoyl-s/?-glycero-3-phosphocholine (DSPC), l ,2-Dipalmitoyl-s «-glycero-3- phosphocholine (DPPC), l,2-Dimyristoyl-s «-glycero-3-phosphocholine (DMPC), 1- Palmitoyl-2-oleoyl-5 «-glycero-3-phosphocholine (POPC), l ,2-dioleoyl-sn-glycero-3- phosphocholine (DOPC), phophatidylethanolamines such as l,2-Dioleoyl-5 , «-glycero-3- phosphoethanolamine (DOPE), sphingomyelins (SM), ceramides, steroids such as sterols and their derivatives.
  • Neutral lipids may be synthetic or naturally derived
  • charged lipid refers to any of a number of lipid species that exist in either a positively charged or negatively charged form independent of the pH within a useful physiological range e.g. pH ⁇ 3 to pH ⁇ 9.
  • Charged lipids may be synthetic or naturally derived. Examples of charged lipids include phosphatidylserines, phosphatidic acids, phosphatidylglycerols, phosphatidylinositols, sterol hemisuccinates, dialkyl trimethylammonium-propanes, (e.g. DOTAP, DOTMA), dialkyl
  • dimethylaminopropanes ethyl phosphocholines, dimethylaminoethane carbamoyl sterols (e.g. DC-Choi).
  • lipid nanoparticle refers to particles having at least one dimension on the order of nanometers (e.g., 1-1 ,000 nm) which include one or more of the compounds of structure (I) or other specified cationic lipids.
  • lipid nanoparticles are included in a formulation that can be used to deliver an active agent or theiapeulic agent, such as a nucleic acid (e.g., m A) to a target site of interest (e.g., cell, tissue, organ, tumor, and the like).
  • a nucleic acid e.g., m A
  • the lipid nanoparticles of the invention comprise a nucleic acid.
  • Such lipid nanoparticles typically comprise a compound of structure (I) and one or more excipient selected from neutral lipids, charged lipids, steroids and polymer conjugated lipids.
  • the active agent or therapeutic agent such as a nucleic acid, may be encapsulated in the lipid portion of the lipid nanoparticle or an aqueous space enveloped by some or all of the lipid portion of the lipid nanoparticle, thereby protecting it from enzymatic degradation or other undesirable effects induced by the mechanisms of the host organism or cells e.g. an adverse immune response.
  • the lipid nanoparticles have a mean diameter of from about 30 nm to about 150 nm, from about 40 nm to about 150 nm, from about 50 nm to about 150 nm, from about 60 nm to about 130 nm, from about 70 nm to about 1 10 nm, from about 70 nm to about 100 nm, from about 80 nm to about 100 nm, from about 90 nm to about 100 nm, from about 70 to about 90 nm, from about 80 nm to about 90 nm, from about 70 nm to about 80 nm, or about 30 nm, 35 nm, 40 nm, 45 nm, 50 nm, 55 nm, 60 nm, 65 nm, 70 nm, 75 nm, 80 nm, 85 nm, 90 nm, 95 nm, 100 nm, 105 nm, 1 10 nm, 1 15 nm, 120
  • nucleic acids when present in the lipid nanoparticles, are resistant in aqueous solution to degradation with a nuclease.
  • Lipid nanoparticles comprising nucleic acids and their method of preparation are disclosed in, e.g., U.S. Patent Publication Nos. 2004/0142025, 2007/0042031 and PCT Pub. Nos. WO 2017/004143, WO 2015/199952, WO 2013/016058 and WO
  • lipid encapsulated refers to a lipid nanoparticle that provides an active agent or therapeutic agent, such as a nucleic acid (e.g., mRNA), with full encapsulation, partial encapsulation, or both.
  • a nucleic acid e.g., mRNA
  • the nucleic acid is fully encapsulated in the lipid nanoparticle.
  • aqueous solution refers to a composition comprising water.
  • “Serum-stable” in relation to nucleic acid-lipid nanoparticles means that the nucleotide is not significantly degraded after exposure to a serum or nuclease assay that would significantly degrade free DNA or RNA.
  • Suitable assays include, for example, a standard serum assay, a DNAse assay, or an RNAse assay.
  • Systemic delivery refers to delivery of a therapeutic product that can result in a broad exposure of an active agent within an organism. Some techniques of administration can lead to the systemic delivery of certain agents, but not others. Systemic delivery means that a useful, preferably therapeutic, amount of an agent is exposed to most parts of the body.
  • Systemic delivery of lipid nanoparticles can be by any means known in the art including, for example, intravenous, intraarterial, subcutaneous, and intraperitoneal delivery. In some embodiments, systemic delivery of lipid nanoparticles is by intravenous delivery.
  • Local delivery refers to delivery of an active agent directly to a target site within an organism.
  • an agent can be locally delivered by direct injection into a disease site such as a tumor, other target site such as a site of inflammation, or a target organ such as the liver, heart, pancreas, kidney, and the like.
  • Local delivery can also include topical applications or localized injection techniques such as intramuscular, subcutaneous or intradermal injection. Local delivery does not preclude a systemic pharmacological effect.
  • Alkyl refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, which is saturated, having, for example, from one to twenty- four carbon atoms (Ci-C 24 alkyl), six to twenty-four carbon atoms (C 6 -C 24 alkyl), four to twenty carbon atoms (C 4 -C 20 alkyl), six to sixteen carbon atoms (C 6 -Ci 6 alkyl), six to nine carbon atoms (C6-C9 alkyl), one to fifteen carbon atoms (C 1 -C15 alkyl),one to twelve carbon atoms (Ci-Ci 2 alkyl), one to eight carbon atoms (Ci-C 8 alkyl) or one to six carbon atoms (Ci-C 6 alkyl) and which is attached to the rest of the molecule by a single bond, e.g., methyl, ethyl, n-propyl, 1 methylethyl (iso
  • Alkenyl refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, which contains one or more carbon- carbon double bonds, and having, for example, from two to twenty-four carbon atoms (C 2 -C 24 alkenyl), six to twenty-four carbon atoms (C 6 -C 24 alkenyl), four to twenty carbon atoms (C 4 -C 20 alkenyl), six to sixteen carbon atoms (C 6 -Ci 6 alkenyl), six to nine carbon atoms (C 6 -C 9 alkenyl), two to fifteen carbon atoms (C 2 -C
  • Alkylene or “alkylene chain” refers to a straight or branched divalent hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of carbon and hydrogen, which is saturated, and having, for example, from one to twenty-four carbon atoms (C]-C 24 alkylene), one to fifteen carbon atoms (C
  • alkylene chain is attached to the rest of the molecule through a single bond and to the radical group through a single bond.
  • the points of attachment of the alkylene chain to the rest of the molecule and to the radical group can be through one carbon or any two carbons within the chain. Unless stated otherwise specifically in the specification, an alkylene chain may be optionally substituted.
  • Alkenylene or “alkenylene chain” refers to a straight or branched divalent hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of carbon and hydrogen, which contains one or more carbon-carbon double bonds, and having, for example, from two to twenty-four carbon atoms (C 2 -C 24 alkenylene), two to fifteen carbon atoms (C 2 -Ci 5 alkenylene), two to twelve carbon atoms (C2-C 12 alkenylene), two to eight carbon atoms (C 2 -C 8 alkenylene), two to six carbon atoms (C 2 -C 6 alkenylene) or two to four carbon atoms (C 2 -C 4 alkenylene), e.g., ethenylene, propenylene, «-butenylene, and the like.
  • the alkenylene chain is attached to the rest of the molecule through a single or double bond and to the radical group through a single or double bond.
  • the points of attachment of the alkenylene chain to the rest of the molecule and to the radical group can be through one carbon or any two carbons within the chain.
  • an alkenylene chain may be optionally substituted.
  • Heteroalkylene refers to an alkylene as defined herein, wherein at least one carbon-carbon bond within the alkylene is replaced by a carbon-heteoratom-carbon bond. Heteroatoms include O, N and S.
  • An exemplary heteroalkylene is
  • aminylheteroalkylene which is a heteroalkylene wherein the heteroatom is N (e.g., -NR-, wherein R is H or C1-C12 alkyl).
  • heteroalkylenes include alkylene oxides, such as ethylene oxides and polyethylene oxides.
  • Heteroalkylenes include one to twenty-four carbon atoms (Ci-C 24 heteroalkylene), one to fifteen carbon atoms (C 1 -C15 heteroalkylene),one to twelve carbon atoms (Ci-C] 2 heteroalkylene), one to eight carbon atoms (C]-Cg heteroalkylene), one to six carbon atoms (Ci-C 6 heteroalkylene), two to four carbon atoms (heteroalkylene), one to two carbon atoms (Ci-C 2
  • heteroalkylene and the like.
  • the heteroalkylene chain is attached to the rest of the molecule through a single bond and to the radical group through a single bond.
  • the points of attachment of the heteroalkylene chain to the rest of the molecule and to the radical group can be through one carbon or any two carbons within the chain. Unless stated otherwise specifically in the specification, a heteroalkylene chain may be optionally substituted.
  • Heteroalkenylene is a heteroalkylene as defined herein, comprising at least on carbon-carbon double bond. Heteroalkenylenes include from two to twenty- four carbon atoms (C 2 -C 24 heteroalkenylene), two to fifteen carbon atoms (C 2 -Cis heteroalkenylene), two to twelve carbon atoms (C 2 -Ci 2 heteroalkenylene), two to eight carbon atoms (C 2 -C 8 heteroalkenylene), two to six carbon atoms (C 2 -C 6
  • heteroalkenylene or two to four carbon atoms (C 2 -C 4 heteroalkenylene), and the like.
  • the heteroalkenylene chain is attached to the rest of the molecule through a single or double bond and to the radical group through a single or double bond.
  • the points of attachment of the heteroalkenylene chain to the rest of the molecule and to the radical group can be through one carbon or any two carbons within the chain. Unless stated otherwise specifically in the specification, a heteroalkenylene chain may be optionally substituted.
  • the substituent is a C
  • the substituent is a carboxyl group. In other embodiments, the substituent is an amine group(-NR R ).
  • Optional or “optionally substituted” means that the subsequently described event of circumstances may or may not occur, and that the description includes instances where said event or circumstance occurs and instances in which it does not.
  • optionally substituted alkyl means that the alkyl radical may or may not be substituted and that the description includes both substituted alkyl radicals and alkyl radicals having no substitution.
  • Prodrug is meant to indicate a compound that may be converted under physiological conditions or by solvolysis to a biologically active compound of structure (I).
  • prodrug refers to a metabolic precursor of a compound of structure (I) that is pharmaceutically acceptable.
  • a prodrug may be inactive when administered to a subject in need thereof, but is converted in vivo to an active compound of structure (I).
  • Prodrugs are typically rapidly transformed in vivo to yield the parent compound of structure (I), for example, by hydrolysis in blood.
  • the prodrug compound often offers advantages of solubility, tissue compatibility or delayed release in a mammalian organism (see, Bundgard, H., Design of Prodrugs (1985), pp.
  • prodrugs are provided in Higuchi, T., et al., A.C.S. Symposium Series, Vol. 14, and in Bioreversible Carriers in Drug Design, Ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987.
  • prodrug is also meant to include any covalently bonded carriers, which release the active compound of structure (I) in vivo when such prodrug is administered to a mammalian subject.
  • Prodrugs of a compound of structure (I) may be prepared by modifying functional groups present in the compound of structure (I) in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compound of structure (I).
  • Prodrugs include compounds of structure (I) wherein a hydroxy, amino or mercapto group is bonded to any group that, when the prodrug of the compound of structure (I) is administered to a mammalian subject, cleaves to form a free hydroxy, free amino or free mercapto group, respectively.
  • prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol or amide derivatives of amine functional groups in the
  • Embodiments of the invention disclosed herein are also meant to encompass all pharmaceutically acceptable compounds of the compound of structure (I) being isotopically-labelled by having one or more atoms replaced by an atom having a different atomic mass or mass number.
  • isotopes that can be incorporated into the disclosed compounds include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine, chlorine, and iodine, such as 2 H, 3 H, 1 'C, 13 C, l4 C, l 3 N, l 5 N, 15 0, 17 0, , 8 0, 3 I P, 32 P, 35 S, , 8 F, 36 C1, l23 I, and 125 I, respectively.
  • radiolabeled compounds could be useful to help determine or measure the effectiveness of the compounds, by characterizing, for example, the site or mode of action, or binding affinity to pharmacologically important site of action.
  • Certain isotopically-labelled compounds of structure (I) or (II), for example, those incorporating a radioactive isotope, are useful in drug and/or substrate tissue distribution studies.
  • the radioactive isotopes tritium, i.e., 3 H, and carbon-14, i.e., 14 C, are particularly useful for this purpose in view of their ease of incorporation and ready means of detection.
  • substitution with heavier isotopes such as deuterium, i.e., 2 H, may afford certain therapeutic advantages resulting from greater metabolic stability, for example, increased in vivo half-life or reduced dosage requirements, and hence may be preferred in some circumstances.
  • Isotopically-labeled compounds of structure (I) can generally be prepared by conventional techniques known to those skilled in the art or by processes analogous to those described in the Preparations and Examples as set out below using an appropriate isotopically-labeled reagent in place of the non-labeled reagent previously employed.
  • Embodiments of the invention disclosed herein are also meant to encompass the in vivo metabolic products of the disclosed compounds. Such products may result from, for example, the oxidation, reduction, hydrolysis, amidation, esterification, and the like of the administered compound, primarily due to enzymatic processes. Accordingly, embodiments of the invention include compounds produced by a process comprising administering a compound of this invention to a mammal for a period of time sufficient to yield a metabolic product thereof.
  • Such products are typically identified by administering a radiolabeled compound of structure (I) in a detectable dose to an animal, such as rat, mouse, guinea pig, monkey, or to human, allowing sufficient time for metabolism to occur, and isolating its conversion products from the urine, blood or other biological samples.
  • an animal such as rat, mouse, guinea pig, monkey, or to human
  • Solid compound and “stable structure” are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.
  • “Mammal” includes humans and both domestic animals such as laboratory animals and household pets (e.g., cats, dogs, swine, cattle, sheep, goats, horses, rabbits), and non-domestic animals such as wildlife and the like.
  • “Pharmaceutically acceptable carrier, diluent or excipient” includes without limitation any adjuvant, carrier, excipient, glidant, sweetening agent, diluent, preservative, dye/colorant, flavor enhancer, surfactant, wetting agent, dispersing agent, suspending agent, stabilizer, isotonic agent, solvent, or emulsifier which has been approved by the United States Food and Drug Administration as being acceptable for use in humans or domestic animals.
  • “Pharmaceutically acceptable salt” includes both acid and base addition salts.
  • “Pharmaceutically acceptable acid addition salt” refers to those salts which retain the biological effectiveness and properties of the free bases, which are not biologically or otherwise undesirable, and which are formed with inorganic acids such as, but are not limited to, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as, but not limited to, acetic acid, 2,2-dichloroacetic acid, adipic acid, alginic acid, ascorbic acid, aspartic acid, benzenesulfonic acid, benzoic acid, 4-acetamidobenzoic acid, camphoric acid, camphor- 10-sulfonic acid, capric acid, caproic acid, caprylic acid, carbonic acid, cinnamic acid, citric acid, cyclamic acid, dodecylsulfuric acid, ethane- 1 , 2 -disulfonic acid, ethanesulfonic acid, 2-hydroxyethane
  • naphthalene- 1,5-disulfonic acid naphthalene-2-sulfonic acid, l-hydroxy-2-naphthoic acid, nicotinic acid, oleic acid, orotic acid, oxalic acid, palmitic acid, pamoic acid, propionic acid, pyroglutamic acid, pyruvic acid, salicylic acid, 4-aminosalicylic acid, sebacic acid, stearic acid, succinic acid, tartaric acid, thiocyanic acid, /?-toluenesulfonic acid, trifluoroacetic acid, undecylenic acid, and the like.
  • “Pharmaceutically acceptable base addition salt” refers to those salts which retain the biological effectiveness and properties of the free acids, which are not biulugically or otherwise undesirable. These salts are prepared from addition of an inorganic base or an organic base to the free acid. Salts derived from inorganic bases include, but are not limited to, the sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Preferred inorganic salts are the ammonium, sodium, potassium, calcium, and magnesium salts.
  • Salts derived from organic bases include, but are not limited to, salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as ammonia, isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, diethanolamine, ethanolamine, deanol, 2-dimethylaminoethanol,
  • 2-diethylaminoethanol dicyclohexylamine, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, benethamine, benzathine, ethylenediamine, glucosamine, methylglucamine, theobromine, triethanolamine, tromethamine, purines, piperazine, piperidine, N-ethylpiperidine, polyamine resins and the like.
  • Particularly preferred organic bases are isopropylamine, diethylamine, ethanolamine,
  • solvate refers to an aggregate that comprises one or more molecules of a compound of structure (I) with one or more molecules of solvent.
  • the solvent may be water, in which case the solvate may be a hydrate.
  • the sol vent may be an organic solvent.
  • the compounds of the present invention may exist as a hydrate, including a monohydrate, dihydrate, hemihydrate, sesquihydrate, trihydrate, tetrahydrate and the like, as well as the corresponding solvated forms.
  • the compound of structure (I) may exist as a true solvate, while in other cases, the compound of structure (I) may merely retain adventitious water or be a mixture of water plus some adventitious solvent.
  • a “pharmaceutical composition” refers to a formulation of a compound of structure (I) and a medium generally accepted in the art for the delivery of the biologically active compound to mammals, e.g., humans.
  • a medium includes all pharmaceutically acceptable carriers, diluents or excipients therefor.
  • Effective amount refers to that amount uf a compound of structure (I) which, when administered to a mammal, preferably a human, is sufficient to effect treatment in the mammal, preferably a human.
  • the amount of a lipid nanoparticle of embodiments the invention which constitutes a “therapeutically effective amount” will vary depending on the compound, the condition and its severity, the manner of administration, and the age of the mammal to be treated, but can be determined routinely by one of ordinary skill in the art having regard to his own knowledge and to this disclosure.
  • Treating covers the treatment of the disease or condition of interest in a mammal, preferably a human, having the disease or condition of interest, and includes:
  • disease and “condition” may be used interchangeably or may be different in that the particular malady or condition may not have a known causative agent (so that etiology has not yet been worked out) and it is therefore not yet recognized as a disease but only as an undesirable condition or syndrome, wherein a more or less specific set of symptoms have been identified by clinicians.
  • the compounds of structure (I), or their pharmaceutically acceptable salts may contain one or more asymmetric centers and may thus give rise to
  • Optically active (+) and (-), R)- and (5)-, or (D)- and (L)- isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques, for example, chromatography and fractional crystallization.
  • stereoisomer refers to a compound made up of the same atoms bonded by the same bonds but having different three-dimensional structures, which are not interchangeable.
  • the present invention contemplates various stereoisomers and mixtures thereof and includes “enantiomers”, which refers to two stereoisomers whose molecules are nonsuperimposeable mirror images of one another.
  • a “tautomer” refers to a proton shift from one atom of a molecule to another atom of the same molecule.
  • the present invention includes tautomers of any said compounds.
  • the invention provides novel lipid compounds which are capable of combining with other lipid components such as neutral lipids, charged lipids, steroids and/or polymer conjugated-lipids to form lipid nanoparticles with
  • oligonucleotides are lipid nanoparticles shield oligonucleotides from degradation in the serum and provide for effective delivery of oligonucleotides to cells in vitro and in vivo.
  • the compounds have the following structure (I):
  • X is N, and Y is absent; or X is CR, and Y is NR;
  • G 1 and G 2 are each independently C 2 -C] 2 alkylene or C 2 -C
  • G 3 is C
  • R a , R b , R d and R e are each independently H or C i-C 12 alkyl or C 1 -C12 alkenyl;
  • R c and R f are each independently Ci -Ci 2 alkyl or C 2 -Ci 2 alkenyl;
  • each R is independently H or C i -C i 2 alkyl
  • R', R 2 and R 3 are each independently C i-C 24 alkyl or C 2 -C 24 alkenyl; and x is 0, 1 or 2, and
  • each alkyl, alkenyl, alkylene, alkenylene, heteroalkylene and heteroalkenylene is independently substituted or unsubstituted unless otherwise specified.
  • X is N, and Y is absent; or X is CR, and Y is NR;
  • G 1 and G 2 are each independently C 2 -Ci 2 alkylene or C 2 -C
  • G 3 is Ci-C 24 alkylene, C 2 -C 24 alkenylene, C i-C 24 heteroalkylene or C 2 - C 24 heteroalkenylene when X is CR, and Y is NR; and
  • G 3 is C
  • R" are each independently H or C i-C )2 alkyl or C i-C )2 alkenyl;
  • R° and R f are each independently C i-C )2 alkyl or C 2 -Ci 2 alkenyl;
  • each R is independently H or C 1 -C 12 alkyl
  • R 1 , R 2 and R 3 are each independently Ci-C 24 alkyl or C 2 -C 2 alkenyl; and x is 0, 1 or 2, and wherein each alkyl, alkenyl, alkylene, alkenylene, heteroalkylene and heteroalkenylene is independently substituted or unsubstituted unless otherwise specified.
  • X is N and Y is absent, or X is CR and Y is NR;
  • G 1 and G 2 are each independently C 2 -Ci 2 alkylene or C 2 -Ci 2 alkenylene;
  • G 3 is Ci -C 24 alkylene, C 2 -C 24 alkenylene, Ci -C 24 heteroalkylene or C 2 - C 24 heteroalkenylene;
  • R a , R b , R d and R e are each independently H or C t -Ci 2 alkyl or Ci -C t 2 alkenyl;
  • R c and R f are each independently Ci-C
  • each R is independently H or C1-C12 alkyl
  • R', R 2 and R 3 are each independently branched C 6 -C 24 alkyl or branched
  • x 0, 1 or 2
  • each alkyl, alkenyl, alkylene, alkenylene, heteroalkylene and heteroalkenylene is independently substituted or unsubstituted unless otherwise specified.
  • G 3 is unsubstituted.
  • G 3 is C 2 -Ci 2 alkylene, tor example, in some embodiments G 3 is C 3 -C 7 alkylene or in other embodiments G is C 3 -C
  • G 3 is Ci-C) 2 heteroalkylene, for example C
  • X is N and Y is absent. In other embodiments,
  • X is CR and Y is NR, for example in some of these embodiments R is H.
  • the compound has one of the follo
  • G and G are each independently C 2 -C
  • R , R and R are each, independently branched C 6 -C 24 alkyl.
  • R 1 , R 2 and R 3 each, independently have the following structure:
  • R 7a and R 7b are, at each occurrence, independently H or Ci-Ci 2 alkyl; and a is an integer from 2 to 12, wherein R 7a , R 7b and a are each selected such that R 1 and R 2 each independently comprise from 6 to 20 carbon atoms.
  • a is an integer ranging from 5 to 9 or from 8 to 12.
  • At least one occurrence of R 7a is H.
  • R 7a is H at each occurrence.
  • at least one occurrence of R 7b is Ci-C 8 alkyl.
  • Ci-C 8 alkyl is methyl, ethyl, n-propyl, iso-propyl, n- butyl, iso-butyl, tert-butyl, n-hexyl or n-octyl.
  • X is CR
  • Y is NR
  • R 3 is C
  • R 1 and R 2 are each independently branched C 6 -C 24 alkyl.
  • R , R and R each, independently have one of the following structures:
  • R and R and R are each, independently, branched C 6 -C 24 alkyl and R 3 is C 1 -C24 alkyl or C 2 -C 24 alkenyl.
  • R b , R c , R e and R f are each independently C 3 -Ci 2 alkyl.
  • R b , R c , R e and R f are n-hexyl and in other embodiments R b , R c , R e and R f are n-octyl.
  • the compound has one of the structures set forth in Table 1 below. Table 1
  • compositions comprising any one or more of the compounds of structure (I) and a therapeutic agent are provided.
  • a lipid nanoparticle comprising one or more compounds of structure (I).
  • the compositions comprise any of the compounds of structure (I) and a therapeutic agent and one or more excipient selected from neutral lipids, steroids and polymer conjugated lipids.
  • excipients and/or carriers are also included in various embodiments of the
  • the neutral lipid is selected from DSPC, DPPC, DMPC, DOPC, POPC, DOPE and SM. In some embodiments, the neutral lipid is DSPC. In various embodiments, the molar ratio of the compound to the neutral lipid ranges from about 2 : 1 to about 8: 1.
  • compositions further comprise a steroid or steroid analogue.
  • the steroid or steroid analogue is cholesterol.
  • the molar ratio of the compound to cholesterol ranges from about 5: 1 to 1 : 1.
  • the polymer conjugated lipid is a pegylated lipid.
  • some embodiments include a pegylated diacylglycerol (PEG-DAG) such as l-(monomethoxy-polyethyleneglycol)-2,3-dimyristoylglycerol (PEG-DMG), a pegylated phosphatidylethanoloamine (PEG-PE), a PEG succinate diacylglycerol (PEGS-DAG) such as 4-0-(2',3'-di(tetradecanoyloxy)propyl-l -0-(co- methoxy(polyethoxy)ethyl)butanedioate (PEG-S-DMG), a pegylated ceramide (PEG- cer), or a PEG dialkoxypropylcarbamate such as -methoxy(polyethoxy)ethyl-N-(2,3- di
  • the composition comprises a pegylated lipid having the following structure (II):
  • R 8 and R 9 are each independently a straight or branched, alkyl, alkenyl or alkynyl containing from 10 to 30 carbon atoms, wherein the alkyl, alkenyl or alkynyl is optionally interrupted by one or more ester bonds;
  • w has a mean value ranging from 30 to 60.
  • R and R are each independently straight alkyl containing from 12 to 16 carbon atoms.
  • w has a mean value ranging from 43 to 53. In other embodiments, the average w is about 45. In other different embodiments, the average w is about 49.
  • lipid nanoparticles comprising any one or more of the compounds of structure (I) and a therapeutic agent are provided.
  • the LNPs comprise any of the compounds of structure (I) and a therapeutic agent and one or more excipient selected from neutral lipids, steroids and polymer conjugated lipids.
  • the neutral lipid is selected from DSPC, DPPC, DMPC, DOPC, POPC, DOPE and SM. In some embodiments, the neutral lipid is DSPC. In various embodiments, the molar ratio of the compound to the neutral lipid ranges from about 2: 1 to about 8: 1.
  • the compositions further comprise a steroid or steroid analogue.
  • the steroid or steroid analogue is cholesterol.
  • the molar ratio of the compound to cholesterol ranges from about 5: 1 to 1 : 1.
  • the polymer conjugated lipid is a pegylated lipid.
  • some embodiments include a pegylated diacylglycerol (PEG-DAG) such as l-(monomethoxy-polyethyleneglycol)-2,3-dimyristoylglycerol (PEG-DMG), a pegylated phosphatidylethanoloamine (PEG-PE), a PEG succinate diacylglycerol (PEG-S-DAG) such as 4-0-(2',3'-di(tetradecanoyloxy)propyl-l-0-(co- methoxy(polyethoxy)ethyl)butanedioate (PEG-S-DMG), a pegylated ceramide (PEG- cer), or a PEG dialkoxypropylcarbamate such as Q-methoxy(polyethoxy)ethyl-N
  • PEG-DAG pegy
  • R and R are each independently a straight or branched, alkyl, alkenyl or alkynyl containing from 10 to 30 carbon atoms, wherein the alkyl, alkenyl or alkynyl is optionally interrupted by one or more ester bonds;
  • w has a mean value ranging from 30 to 60.
  • R 8 and R 9 are each independently straight alkyl containing from 12 to 16 carbon atoms.
  • w has a mean value ranging from 43 to 53. In other embodiments, the average w is about 45. In other different embodiments, the average w is about 49.
  • the therapeutic agent comprises a nucleic acid.
  • the nucleic acid is selected from antisense and messenger RNA.
  • the invention is directed to a method for administering a therapeutic agent to a patient in need thereof, the method comprising preparing or providing any of the foregoing compositions and administering the composition to the patient
  • compositions of embodiments of the present invention comprise a compound of structure (I) (e.g., as a component in an LNP) and one or more pharmaceutically acceptable carrier, diluent or excipient.
  • the compound of structure (I) is present in the composition in an amount which is effective to form a lipid nanoparticle and deliver the therapeutic agent, e.g., for treating a particular disease or condition of interest. Appropriate concentrations and dosages can be readily determined by one skilled in the art.
  • compositions and/or LNPs of embodiments of the invention can be carried out via any of the accepted modes of administration of agents for serving similar utilities.
  • the pharmaceutical compositions of embodiments of the invention may be formulated into preparations in solid, semi-solid, liquid or gaseous forms, such as tablets, capsules, powders, granules, ointments, solutions, suspensions, suppositories, injections, inhalants, gels, microspheres, and aerosols.
  • Typical routes of administering such pharmaceutical compositions include, without limitation, oral, topical, transdermal, inhalation, peritoneal, sublingual, buccal, rectal, vaginal, and intranasal.
  • compositions of the invention are formulated so as to allow the active ingredients contained therein to be bioavailable upon administration of the composition to a patient.
  • Compositions that will be administered to a subject or patient take the form of one or more dosage units, where for example, a tablet may be a single dosage unit, and a container of a compound of structure (I) in aerosol form may hold a plurality of dosage units.
  • Actual methods of preparing such dosage forms are known, or will be apparent, to those skilled in this art; for example, see Remington: The Science and Practice of Pharmacy, 20th Edition (Philadelphia College of Pharmacy and Science, 2000).
  • composition to be administered will, in any event, contain a therapeutically effective amount of a compound of structure (I), or a pharmaceutically acceptable salt Lhereof, for treatment of a disease or condition ot interest in accordance with the teachings of embodiments of this invention.
  • a pharmaceutical composition of embodiments of the invention may be in the form of a solid or liquid.
  • the carrier(s) are particulate, so that the compositions are, for example, in tablet or powder form.
  • the carrier(s) may be liquid, with the compositions being, for example, oral syrup, injectable liquid or an aerosol, which is useful in, for example, inhalatory administration.
  • the pharmaceutical composition When intended for oral administration, the pharmaceutical composition is preferably in either solid or liquid form, where semi-solid, semi-liquid, suspension and gel forms are included within the forms considered herein as either solid or liquid.
  • the pharmaceutical composition may be formulated into a powder, granule, compressed tablet, pill, capsule, chewing gum, wafer or the like form.
  • a solid composition will typically contain one or more inert diluents or edible carriers.
  • binders such as carboxymethylcellulose, ethyl cellulose,
  • microcrystalline cellulose, gum tragacanth or gelatin excipients such as starch, lactose or dextrins, disintegrating agents such as alginic acid, sodium alginate, Primogel, corn starch and the like; lubricants such as magnesium stearate or Sterotex; glidants such as colloidal silicon dioxide; sweetening agents such as sucrose or saccharin; a flavoring agent such as peppermint, methyl salicylate or orange flavoring; and a coloring agent.
  • excipients such as starch, lactose or dextrins, disintegrating agents such as alginic acid, sodium alginate, Primogel, corn starch and the like
  • lubricants such as magnesium stearate or Sterotex
  • glidants such as colloidal silicon dioxide
  • sweetening agents such as sucrose or saccharin
  • a flavoring agent such as peppermint, methyl salicylate or orange flavoring
  • a coloring agent e.g., pepper
  • the pharmaceutical composition when in the form of a capsule, for example, a gelatin capsule, it may contain, in addition to materials of the above type, a liquid carrier such as polyethylene glycol or oil.
  • a liquid carrier such as polyethylene glycol or oil.
  • the pharmaceutical composition may be in the form of a liquid, for example, an elixir, syrup, solution, emulsion or suspension.
  • the liquid may be for oral administration or for delivery by injection, as two examples.
  • preferred composition contain, in addition to the present compounds or LNPs, one or more of a sweetening agent, preservatives, dye/colorant and flavor enhancer.
  • a surfactant, preservative, wetting agent, dispersing agent, suspending agent, buffer, stabilizer and Isotonic agent may be included.
  • the liquid pharmaceutical compositions of embodiments of the invention may include one or more of the following adjuvants: sterile diluents such as water for injection, saline solution, preferably physiological saline, Ringer's solution, isotonic sodium chloride, fixed oils such as synthetic mono or diglycerides which may serve as the solvent or suspending medium, polyethylene glycols, glycerin, propylene glycol or other solvents; antibacterial agents such as benzyl alcohol or methyl paraben; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose; agents to act as cryoprotectants such as sucrose or trehalose.
  • the peritoneal preparation can be enclosed in ampoules, disposable syringes or multiple dose vial
  • a liquid pharmaceutical composition of embodiments of the invention intended for either peritoneal or oral administration should contain an amount of a compound of structure (I) such that a suitable LNP will be obtained.
  • the pharmaceutical composition of embodiments of the invention may be intended for topical administration, in which case the carrier may suitably comprise a solution, emulsion, ointment or gel base.
  • the base for example, may comprise one or more of the following: petrolatum, lanolin, polyethylene glycols, bee wax, mineral oil, diluents such as water and alcohol, and emulsifiers and stabilizers.
  • Thickening agents may be present in a pharmaceutical composition for topical administration.
  • the composition may include a transdermal patch or iontophoresis device.
  • compositions of embodiments of the invention may be intended for rectal administration, in the form, for example, of a suppository, which will melt in the rectum and release the drug.
  • the composition for rectal administration may contain an oleaginous base as a suitable nonirritating excipient.
  • bases include, without limitation, lanolin, cocoa butter and polyethylene glycol.
  • the pharmaceutical composition of embodiments of the invention may include various materials, which modify the physical form ol a solid or liquid dosage unit.
  • the composition may include materials that form a coating shell around the active ingredients.
  • the materials that form the coating shell are typically inert, and may be selected from, for example, sugar, shellac, and other enteric coating agents.
  • the active ingredients may be encased in a gelatin capsule.
  • the pharmaceutical composition of embodiments of the invention in solid or liquid form may include an agent that binds to the compound of structure (I) and thereby assists in the delivery of the compound. Suitable agents that may act in this capacity include a monoclonal or polyclonal antibody, or a protein.
  • the pharmaceutical composition of embodiments of the invention may consist of dosage units that can be administered as an aerosol.
  • aerosol is used to denote a variety of systems ranging from those of colloidal nature to systems consisting of pressurized packages. Delivery may be by a liquefied or compressed gas or by a suitable pump system that dispenses the active ingredients. Aerosols of compounds of structure (I) may be delivered in single phase, bi -phasic, or tri-phasic systems in order to deliver the active ingredient(s). Delivery of the aerosol includes the necessary container, activators, valves, sub-containers, and the like, which together may form a kit. One skilled in the art, without undue experimentation may determine preferred aerosols.
  • compositions of embodiments of the invention may be prepared by methodology well known in the pharmaceutical art.
  • a pharmaceutical composition intended to be administered by injection can be prepared by combining the lipid nanoparticles of the invention with sterile, distilled water or other carrier so as to form a solution.
  • a surfactant may be added to facilitate the formation of a homogeneous solution or suspension.
  • Surfactants are compounds that non-covalently interact with the compound of structure (I) so as to facilitate dissolution or homogeneous suspension of the compound in the aqueous delivery system.
  • compositions of embodiments of the invention, or their pharmaceutically acceptable salts are administered in a therapeutically effective amount, which will vary depending upon a variety of factors including the activity of the specific therapeutic agent employed; the metabolic stability and length of action of the therapeutic agent; the age, body weight, general health, sex, and diet of the patient; the mode and time of administration; the rate of excretion; the drug combination; the severity of the particular disorder or condition; and the subject undergoing therapy.
  • compositions of embodiments of the invention may also be administered simultaneously with, prior to, or after administration of one or more other therapeutic agents.
  • combination therapy includes administration of a single pharmaceutical dosage formulation of a composition of embodiments of the invention and one or more additional active agents, as well as administration of the composition of the invention and each active agent in its own separate pharmaceutical dosage formulation.
  • a composition of embodiments of the invention and the other active agent can be administered to the patient together in a single oral dosage composition such as a tablet or capsule, or each agent administered in separate oral dosage formulations.
  • the compounds of structure (I) and one or more additional active agents can be administered at essentially the same time, i.e., concurrently, or at separately staggered times, i.e., sequentially; combination therapy is understood to include all these regimens.
  • Suitable protecting groups include hydroxy, amino, mercapto and carboxylic acid.
  • Suitable protecting groups for hydroxy include trialkylsilyl or diarylalkylsilyl (for example, t-butyldimethylsilyl, t-butyldiphenylsilyl or trimethylsilyl), tetrahydropyranyl, benzyl, and the like.
  • Suitable protecting groups for amino, amidino and guanidino include t-butoxycarbonyl, benzyloxycarbonyl, and the like.
  • Suitable protecting groups for mercapto include -C(0)-R" (where R" is alkyl, aryl or arylalkyl),/»-methoxybenzyl, trityl and the like.
  • Suitable protecting groups for carboxylic acid include alkyl, aryl or arylalkyl esters.
  • Protecting groups may be added or removed in accordance with standard techniques, which are known to one skilled in the art and as described herein. The use of protecting groups is described in detail in Green, T.W. and P.G.M. Wutz, Protective Groups in Organic Synthesis (1 99), 3rd Ed., Wiley.
  • the protecting group may also be a polymer resin such as a Wang resin, Rink resin or a 2-chlorotrityl-chloride resin.
  • the compounds of structure (I), and lipid nanoparticles comprising the same can be prepared according to methods known or derivable by one of ordinary skill in the art, for example methods analogous to those disclosed in PCT Pub. No. WO 2015/199952, WO 2017/004143 and WO 2017/075531 , each of which is incorporated herein by reference in their entireties.
  • L', L , L J , G', G" and G J are as defined herein. It is understood that one skilled in the art may be able to make these compounds by similar methods or by combining other methods known to one skilled in the art. It is also understood that one skilled in the art would be able to make, in a similar manner as described below, other compounds of structure (I) not specifically illustrated below by using the appropriate starting components and modifying the parameters of the synthesis as needed. In general, starling components may be obtained from sources such as Sigma Aldrich, Lancaster Synthesis, Inc., Maybridge, Matrix Scientific, TCI, and Fluorochem USA, etc.
  • Embodiments of the compound of structure (I) can be prepared according to General Reaction Scheme 1 ("Method A"), wherein each R
  • compounds of structure A-1 can be purchased from commercial sources or prepared according to methods familiar to one of ordinary skill in the art.
  • a mixture of A-1 , A-2 and DMAP is treated with DCC to give the bromide A-3.
  • a mixture of the bromide A-3, a base (e.g., N,N-diisopropylethylamine) and A-4 is heated at a temperature and time sufficient to produce A-5 after any necessary workup and or purification step.
  • Protecting group strategies or alternative order of synthetic steps may be employed to avoid unwanted side reactions with the L 3 moiety as needed.
  • Embodiments of the compound of structure (I) can be prepared according to General Reaction Scheme 2 ("Method B"), wherein each R independently represents R or R , and each n is independently an integer from 2 to 12.
  • Method B General Reaction Scheme 2
  • compounds of structure B-1 can be purchased from commercial sources or prepared according to methods familiar to one of ordinary skill in the art.
  • a solution of B-1 (1 equivalent) is treated with acid chloride B-2 (1 equivalent) and a base (e.g., triethylamine).
  • the crude product is treated with an oxidizing agent (e.g., pyridinum chlorochromate) and intermediate product B-3 is recovered.
  • an oxidizing agent e.g., pyridinum chlorochromate
  • a solution of crude B-3, an acid (e.g., acetic acid), and A-4 is then treated with a reducing agent (e.g., sodium triacetoxyborohydride) to obtain B-5 after any necessary work up and/or purification.
  • a reducing agent e.g., sodium triacetoxyborohydride
  • Protecting group strategies or alternative order of synthetic steps may be employed to avoid unwanted side reactions with the L 3 moiety as needed.
  • Embodiments of the compound of structure (I) can be prepared according to General Reaction Scheme 3 ("Method C"), wherein each G independently
  • starting materials A-l and B-1 are depicted above as including only saturated methylene carbons, starting materials which include carbon-carbon double bonds may also be employed for preparation of compounds which include carbon-carbon double bonds.
  • a lipid of structure (I), DSPC, cholesterol and PEG-lipid were solubilized in ethanol at a molar ratio of 50: 10:38.5: 1.5 or 47.5:10:40.8: 1.7.
  • Lipid nanoparticles (LNP) were prepared at a total lipid to mRNA weight ratio of
  • the mRNA was diluted to 0.2 mg/mL in 10 to 50 mM citrate buffer, pH 4. Syringe pumps were used to mix the ethanolic lipid solution with the mRNA aqueous solution at a ratio of about 1 :5 to 1 :3 (vol/vol) with total flow rates above 15 mL/min. The ethanol was then removed and the external buffer replaced with PBS by dialysis. Finally, the lipid nanoparticles were filtered through a 0.2 ⁇ pore sterile filter.
  • Liver and spleen were collected in pre- weighed tubes, weights determined, immediately snap frozen in liquid nitrogen and stored at -80 °C until processing for analysis.
  • liver tissue approximately 50 mg was dissected for analyses in a 2 mL FastPrep tubes (MP Biomedicals, Solon OH). 1 ⁇ 4" ceramic sphere (MP Biomedicals) was added to each tube and 500 of Glo Lysis Buffer - GLB (Promega, Madison WI) equilibrated to room temperature was added to liver tissue. Liver tissues were homogenized with the FastPrep24 instrument (MP Biomedicals) at 2 ⁇ 6.0 m/s for 15 seconds. Homogenate was incubated at room temperature for 5 minutes prior to a 1 :4 dilution in GLB and assessed using SteadyGlo Luciferase assay system (Promega).
  • the FLuc mRNA (L-6107 or L-7602) from Trilink Biotechnologies will express a luciferase protein, originally isolated from the firefly, photinus pyralis. FLuc is commonly used in mammalian cell culture to measure both gene expression and cell viability. It emits bioluminescence in the presence of the substrate, luciferin. This capped and polyadenylated mRNA is fully substituted with 5-methylcytidine and pseudouridine.
  • the pKa of formulated lipids is correlated with the effectiveness of LNPs for delivery of nucleic acids ⁇ see Jayaraman et al,
  • the preferred range of pKa is ⁇ 5 to ⁇ 7.
  • the pK a of representative lipids was determined in lipid
  • Lipid nanoparticles using an assay based on fluorescence of 2-(p-toluidino)-6-napthalene sulfonic acid (TNS). Lipid nanoparticles comprising compound of structure
  • Lipid nanoparticle particle size was approximately 55-95 nm diameter, and in some instances approximately 70-90 nm diameter as determined by quasi-elastic light scattering using a Malvern Zetasizer Nano ZS (Malvern, UK). The diameters given are intensity weighted means. Encapsulation was determined using a fluorescent intercalating dye based assay (Ribogreen).
  • Lipid nanoparticles may be formulated using the following molar ratio: 50% Cationic lipid / 10% distearoylphosphatidylcholine (DSPC) / 38.5% Cholesterol / 1.5% PEG lipid ("PEG-DMG", i.e.,
  • cationic lipid, DSPC, cholesterol and PEG-lipid are formulated at a molar ratio of approximately 47.5: 10:40.8: 1.7.
  • Relative activity was determined by measuring luciferase expression in the liver 4 hours following administration via tail vein injection as described in Example 1. The activity was compared at a dose of 0.3 and 1.0 mg mRNA/kg and expressed as ng luciferase/g liver measured 4 hours after administration, as described in Example 1.
  • the pad was washed with a mixture of hexane- EtOAc-Et3N (80:20: 1). The washing was concentrated to give the crude product.
  • the crude product was purified by flash dry column chromatography on silica gel (MeOH in chloroform, 0 to 5%). The desired product was obtained as colorless oil (1 1 1 mg, 0.1 1 mmol, 32%).
  • the extract was dried over sodium sulfate and filtered through a pad of silica gel.
  • the pad was washed with a mixture of hexane-EtOAc-Et3N (80:20: 1). The washing was concentrated to give the crude product.
  • the crude product was purified by flash dry column chromatography on silica gel (MeOH in chloroform, 0 to 5%). The desired product was obtained as colorless oil (169 mg, 0.18 mmol, 52%).

Abstract

L'invention concerne des composés répondant à la structure (I) suivante ou un sel pharmaceutiquement acceptable, un tautomère ou stéréoisomère de ceux-ci, où X, Y, L1, L2, L3, G1, G2 et G3 sont tels que définis dans la description. L'utilisation desdits composés à titre de constituant dans des formulations de nanoparticules lipidiques pour l'administration d'un agent thérapeutique, des compositions comprenant lesdits composés et des procédés pour leur utilisation et leur préparation sont en outre décrits.
PCT/US2018/000317 2017-08-17 2018-08-17 Lipides destinés à être utilisés dans des formulations de nanoparticules lipidiques WO2019036030A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/638,731 US11524932B2 (en) 2017-08-17 2018-08-17 Lipids for use in lipid nanoparticle formulations

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762547043P 2017-08-17 2017-08-17
US62/547,043 2017-08-17

Publications (1)

Publication Number Publication Date
WO2019036030A1 true WO2019036030A1 (fr) 2019-02-21

Family

ID=63787994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2018/000317 WO2019036030A1 (fr) 2017-08-17 2018-08-17 Lipides destinés à être utilisés dans des formulations de nanoparticules lipidiques

Country Status (2)

Country Link
US (1) US11524932B2 (fr)
WO (1) WO2019036030A1 (fr)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020061426A2 (fr) 2018-09-21 2020-03-26 Acuitas Therapeutics, Inc. Systèmes et procédés pour la fabrication de nanoparticules lipidiques et de liposomes
WO2020255007A1 (fr) 2019-06-18 2020-12-24 Janssen Sciences Ireland Unlimited Company Combinaison de vaccins contre le virus de l'hépatite b (vhb) et d'arni ciblant le virus de l'hépatite b
WO2020255014A1 (fr) 2019-06-18 2020-12-24 Janssen Sciences Ireland Unlimited Company Construction de l'interleukine 12 recombinante et ses utilisations
WO2020255062A1 (fr) 2019-06-20 2020-12-24 Janssen Sciences Ireland Unlimited Company Administration de nanoparticules lipidiques ou de liposomes de vaccins contre le virus de l'hépatite b (vhb)
WO2020255010A1 (fr) 2019-06-18 2020-12-24 Janssen Sciences Ireland Unlimited Company Combinaison d'une construction d'interleukine 12 recombinante et de vaccins contre le virus de l'hépatite b (vhb)
WO2020255009A2 (fr) 2019-06-18 2020-12-24 Janssen Sciences Ireland Unlimited Company Combinaison de vaccins contre le virus de l'hépatite b (vhb) et d'anticorps anti-pd-1
WO2020255011A1 (fr) 2019-06-18 2020-12-24 Janssen Sciences Ireland Unlimited Company Combinaison de vaccins contre le virus de l'hépatite b (vhb) et d'anticorps anti-pd-1 ou anti-pd-l1
WO2021061707A1 (fr) 2019-09-23 2021-04-01 Omega Therapeutics, Inc. Compositions et procédés pour moduler l'expression génique de l'apolipoprotéine b (apob)
WO2021061815A1 (fr) 2019-09-23 2021-04-01 Omega Therapeutics, Inc. Compositions et procédés de modulation de l'expression génique du facteur nucléaire hépatocytaire 4-alpha (hnf4α)
WO2021183720A1 (fr) 2020-03-11 2021-09-16 Omega Therapeutics, Inc. Compositions et procédés de modulation de l'expression génique de forkhead box p3 (foxp3)
US20220010243A1 (en) * 2020-07-13 2022-01-13 Advansix Resins & Chemicals Llc Branched amino acid surfactants for cleaning products
US20220008305A1 (en) * 2020-07-13 2022-01-13 Advansix Resins & Chemicals Llc Branched amino acid surfactants for personal care and cosmetic products
WO2022008613A1 (fr) 2020-07-08 2022-01-13 Janssen Sciences Ireland Unlimited Company Vaccins à base de réplicon d'arn contre le vhb
WO2022010744A1 (fr) * 2020-07-09 2022-01-13 Advansix Resins & Chemicals Llc Tensioactifs d'acides aminés ramifiés
WO2022010743A1 (fr) * 2020-07-09 2022-01-13 Advansix Resins & Chemicals Llc Tensioactifs acides aminés ramifiés
WO2022015675A1 (fr) * 2020-07-13 2022-01-20 Advansix Resins & Chemicals Llc Tensioactifs à base d'acides amines destinés à être utilisés dans des produits de soins de santé
CN114393579A (zh) * 2022-01-04 2022-04-26 南京航空航天大学 一种基于自适应模糊虚拟模型的机器人控制方法及装置
WO2022133230A1 (fr) 2020-12-18 2022-06-23 Janssen Pharmaceuticals, Inc. Polythérapie pour le traitement d'une infection par le virus de l'hépatite b
WO2022146654A1 (fr) 2020-12-28 2022-07-07 Janssen Pharmaceuticals, Inc. Nucléases effectrices de type activateur de transcription (talens) ciblant le vhb
EP4046629A1 (fr) 2021-02-19 2022-08-24 ModernaTX, Inc. Compositions de nanoparticules lipidiques et leurs procédés de formulation
WO2022204288A1 (fr) * 2021-03-24 2022-09-29 Modernatx, Inc. Composés lipidiques à queue ramifiée et compositions pour l'administration intracellulaire d'agents thérapeutiques
WO2023283359A2 (fr) 2021-07-07 2023-01-12 Omega Therapeutics, Inc. Compositions et procédés de modulation de l'expression génique de la protéine 1 du récepteur frizzled secrété (sfrp1)
US11597698B2 (en) 2019-09-19 2023-03-07 Modernatx, Inc. Branched tail lipid compounds and compositions for intracellular delivery of therapeutic agents
WO2023031394A1 (fr) 2021-09-03 2023-03-09 CureVac SE Nouvelles nanoparticules lipidiques pour l'administration d'acides nucléiques
WO2023069498A1 (fr) 2021-10-22 2023-04-27 Senda Biosciences, Inc. Composition de vaccin à base d'arnm
WO2023073228A1 (fr) 2021-10-29 2023-05-04 CureVac SE Arn circulaire amélioré pour exprimer des protéines thérapeutiques
CN116063205A (zh) * 2023-01-04 2023-05-05 上海桢曜生物科技合伙企业(有限合伙) 一种含烷基化氨基甲酸酯键的脂质化合物及其应用
WO2023096858A1 (fr) 2021-11-23 2023-06-01 Senda Biosciences, Inc. Composition lipidique dérivée de bactéries et son utilisation
WO2023122080A1 (fr) 2021-12-20 2023-06-29 Senda Biosciences, Inc. Compositions comprenant de l'arnm et des paquets de messagers végétaux reconstruits lipidiques
WO2023144330A1 (fr) 2022-01-28 2023-08-03 CureVac SE Inhibiteurs de facteurs de transcription codés par un acide nucleique
WO2023177904A1 (fr) 2022-03-18 2023-09-21 Modernatx, Inc. Filtration stérile de nanoparticules lipidiques et analyse de filtration de celles-ci pour des applications biologiques
US11787967B2 (en) 2020-07-13 2023-10-17 Advansix Resins & Chemicals Llc Branched amino acid surfactants for inks, paints, and adhesives
WO2023218420A1 (fr) 2022-05-13 2023-11-16 Janssen Pharmaceuticals, Inc. Compositions d'arnm pour induire une inversion latente du vih-1
WO2023227608A1 (fr) 2022-05-25 2023-11-30 Glaxosmithkline Biologicals Sa Vaccin à base d'acide nucléique codant pour un polypeptide antigénique fimh d'escherichia coli
WO2023233290A1 (fr) 2022-05-31 2023-12-07 Janssen Sciences Ireland Unlimited Company Agents d'arni ciblant pd-l1
WO2024044147A1 (fr) 2022-08-23 2024-02-29 Modernatx, Inc. Procédés de purification de lipides ionisables

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE061564T2 (hu) 2015-10-28 2023-07-28 Acuitas Therapeutics Inc Új lipidek és lipid nanorészecske készítmények nukleinsavak bevitelére
US11357856B2 (en) 2017-04-13 2022-06-14 Acuitas Therapeutics, Inc. Lipids for delivery of active agents
CN116693411A (zh) 2017-04-28 2023-09-05 爱康泰生治疗公司 用于递送核酸的新型羰基脂质和脂质纳米颗粒制剂
US11639329B2 (en) 2017-08-16 2023-05-02 Acuitas Therapeutics, Inc. Lipids for use in lipid nanoparticle formulations
WO2019036028A1 (fr) 2017-08-17 2019-02-21 Acuitas Therapeutics, Inc. Lipides destinés à être utilisés dans des formulations nanoparticulaires lipidiques
AU2022337090A1 (en) 2021-09-03 2024-02-15 Glaxosmithkline Biologicals Sa Substitution of nucleotide bases in self-amplifying messenger ribonucleic acids
WO2023154451A1 (fr) 2022-02-10 2023-08-17 Christiana Care Gene Editing Institute, Inc. Méthodes d'administration de système crispr/cas par nanoparticules lipidiques
WO2023242817A2 (fr) 2022-06-18 2023-12-21 Glaxosmithkline Biologicals Sa Molécules d'arn recombinant comprenant des régions ou des segments non traduits codant pour une protéine de spicule à partir de la souche omicron de coronavirus 2 du syndrome respiratoire aigu sévère

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197553B1 (en) 1994-07-15 2001-03-06 Merck & Co., Inc. Method for large scale plasmid purification
US20040142025A1 (en) 2002-06-28 2004-07-22 Protiva Biotherapeutics Ltd. Liposomal apparatus and manufacturing methods
US20070042031A1 (en) 2005-07-27 2007-02-22 Protiva Biotherapeutics, Inc. Systems and methods for manufacturing liposomes
WO2010062322A2 (fr) * 2008-10-27 2010-06-03 Massachusetts Institute Of Technology Modulation de la réponse immunitaire
WO2012068176A1 (fr) * 2010-11-15 2012-05-24 Life Technologies Corporation Réactifs de transfection aminés et procédés de fabrication et d'utilisation associés
US20120251618A1 (en) 2011-03-31 2012-10-04 modeRNA Therapeutics Delivery and formulation of engineered nucleic acids
WO2013016058A1 (fr) 2011-07-22 2013-01-31 Merck Sharp & Dohme Corp. Nouveaux lipides cationiques contenant du bis-azote pour administration d'oligonucléotide
WO2013086373A1 (fr) 2011-12-07 2013-06-13 Alnylam Pharmaceuticals, Inc. Lipides pour l'administration d'agents actifs
WO2014028487A1 (fr) * 2012-08-13 2014-02-20 Massachusetts Institute Of Technology Lipidoïdes contenant des amines et leurs utilisations
CN104876831A (zh) * 2015-04-03 2015-09-02 苏州圣诺生物医药技术有限公司 脂质修饰精胺衍生物及利用该衍生物制备的脂质体
WO2015199952A1 (fr) 2014-06-25 2015-12-30 Acuitas Therapeutics Inc. Nouveaux lipides et formulations nanoparticulaires lipidiques pour l'administration d'acides nucléiques
WO2017004143A1 (fr) 2015-06-29 2017-01-05 Acuitas Therapeutics Inc. Formulations de lipides et de nanoparticules de lipides pour l'administration d'acides nucléiques
WO2017075531A1 (fr) 2015-10-28 2017-05-04 Acuitas Therapeutics, Inc. Nouveaux lipides et nouvelles formulations de nanoparticules de lipides pour l'administration d'acides nucléiques
WO2017112865A1 (fr) * 2015-12-22 2017-06-29 Modernatx, Inc. Composés et compositions pour l'administration intracellulaire d'agents thérapeutiques et/ou prophylactiques

Family Cites Families (191)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2856420A (en) 1955-12-15 1958-10-14 Minnesota Mining & Mfg Perfluoro- and perfluorochlorocarboxylic acid esters of amino alcohols
US3340299A (en) 1964-03-27 1967-09-05 Air Reduction Tetrasubstituted ethylene diamines
GB1277947A (en) 1968-08-22 1972-06-14 Armour Ind Chem Co Compositions and method for controlling insect pests
US4491583A (en) 1970-08-07 1985-01-01 Pfizer Inc. Interferon induction in animals by amines
US3729564A (en) 1970-12-16 1973-04-24 Pfizer N-secondary alkyl alkanediamines and derivatives thereof as anti-inflammatory agents
JPS5122416B2 (fr) 1972-11-11 1976-07-09
JPS5718088B2 (fr) 1972-06-22 1982-04-14
DE2633615C3 (de) 1976-07-27 1981-08-13 Bayer Ag, 5090 Leverkusen Verfahren zum Färben von synthetischen Polyamid-Fasermaterialien
DE3050800C2 (fr) 1979-03-22 1989-06-22 Continental Pharma Inc., Bruessel/Bruxelles, Be
US4883751A (en) 1986-05-28 1989-11-28 New York University Specific immunoassay for heparin
US6077509A (en) 1990-03-30 2000-06-20 Autoimmune, Inc. Peptide fragments of myelin basic protein
JP2588339B2 (ja) 1992-06-02 1997-03-05 花王株式会社 新規ジアミノジエステル及びその製造法
FR2727679B1 (fr) 1994-12-05 1997-01-03 Rhone Poulenc Rorer Sa Nouveaux agents de transfection et leurs applications pharmaceutiques
EP0832271B8 (fr) 1995-06-07 2005-03-02 INEX Pharmaceuticals Corp. Particules d'acides nucleiques et de lipides preparees au moyen d'un intermediaire de complexe hydrophobe d'acides nucleiques et de lipides et utilisation pour transferer des genes
US5981501A (en) 1995-06-07 1999-11-09 Inex Pharmaceuticals Corp. Methods for encapsulating plasmids in lipid bilayers
US7422902B1 (en) 1995-06-07 2008-09-09 The University Of British Columbia Lipid-nucleic acid particles prepared via a hydrophobic lipid-nucleic acid complex intermediate and use for gene transfer
US5705385A (en) 1995-06-07 1998-01-06 Inex Pharmaceuticals Corporation Lipid-nucleic acid particles prepared via a hydrophobic lipid-nucleic acid complex intermediate and use for gene transfer
NZ313839A (en) 1995-07-21 1998-12-23 Genta Inc Amide-based cationic lipids
DE19605175A1 (de) 1996-02-13 1997-08-14 Sourovoi Andrej Dr Lipidverbindungen und deren Verwendung
JPH103643A (ja) 1996-06-12 1998-01-06 Fuji Photo Film Co Ltd ディスク状磁気記録媒体
WO1998016599A1 (fr) 1996-10-11 1998-04-23 Infineum Holdings Bv Compositions de carburant
CA2217550A1 (fr) 1996-10-22 1998-04-22 F. Hoffmann-La Roche Ag Lipides cationiques pour therapie genique
US6884430B1 (en) 1997-02-10 2005-04-26 Aventis Pharma S.A. Formulation of stabilized cationic transfection agent(s) /nucleic acid particles
US5965542A (en) 1997-03-18 1999-10-12 Inex Pharmaceuticals Corp. Use of temperature to control the size of cationic liposome/plasmid DNA complexes
US5756785A (en) 1997-03-21 1998-05-26 Lambent Technologies, Inc. Guerbet betaines
FR2763943B1 (fr) 1997-05-28 1999-07-09 Rhone Poulenc Rorer Sa Composes, leur preparation et leur utilisation pour le transfert d'acides nucleiques dans les cellules
US6395713B1 (en) 1997-07-23 2002-05-28 Ribozyme Pharmaceuticals, Inc. Compositions for the delivery of negatively charged molecules
CA2315695A1 (fr) 1997-12-23 1999-07-08 Inex Pharmaceuticals Corporation Oligomeres polyamidiques
US6410328B1 (en) 1998-02-03 2002-06-25 Protiva Biotherapeutics Inc. Sensitizing cells to compounds using lipid-mediated gene and compound delivery
US6986902B1 (en) 1998-04-28 2006-01-17 Inex Pharmaceuticals Corporation Polyanionic polymers which enhance fusogenicity
US6013813A (en) 1998-06-17 2000-01-11 Hansotech Inc Guerbet based sorbitan esters
US6333433B1 (en) 1998-11-09 2001-12-25 Council Of Scientific Industrial Research Process for synthesis of novel cationic amphiphiles containing N-hydroxyalkl group for intracellular delivery of biologically active molecules
US6656498B1 (en) 1998-11-25 2003-12-02 Vanderbilt University Cationic liposomes for gene transfer
US5919743A (en) 1998-12-28 1999-07-06 Petroferm Inc. Guerbet branched quaternary compounds in personal care applications
US7112337B2 (en) 1999-04-23 2006-09-26 Alza Corporation Liposome composition for delivery of nucleic acid
US6211140B1 (en) 1999-07-26 2001-04-03 The Procter & Gamble Company Cationic charge boosting systems
EP1818409A1 (fr) 1999-09-09 2007-08-15 CureVac GmbH Transfer de mARN à l'aide de composés polycationiques
GB9930533D0 (en) 1999-12-23 2000-02-16 Mitsubishi Tokyo Pharm Inc Nucleic acid delivery
JP2001338416A (ja) 2000-05-25 2001-12-07 Sony Corp ディスク状磁気記録媒体
US20040142474A1 (en) 2000-09-14 2004-07-22 Expression Genetics, Inc. Novel cationic lipopolymer as a biocompatible gene delivery agent
JP4111856B2 (ja) 2002-04-12 2008-07-02 昭和電工株式会社 安定化されたアスコルビン酸誘導体
DE10229872A1 (de) 2002-07-03 2004-01-29 Curevac Gmbh Immunstimulation durch chemisch modifizierte RNA
US6620794B1 (en) 2002-07-08 2003-09-16 Colonial Chemical Inc. Guerbet functionalized phospholipids
JP4004976B2 (ja) 2003-03-03 2007-11-07 独立行政法人科学技術振興機構 フラーレン誘導体
ES2559828T3 (es) 2003-07-16 2016-02-16 Protiva Biotherapeutics Inc. ARN de interferencia encapsulado en lípidos
DE10335833A1 (de) 2003-08-05 2005-03-03 Curevac Gmbh Transfektion von Blutzellen mit mRNA zur Immunstimulation und Gentherapie
JP4842821B2 (ja) 2003-09-15 2011-12-21 プロチバ バイオセラピューティクス インコーポレイティッド ポリエチレングリコール修飾脂質化合物およびその使用
JP2007512367A (ja) 2003-11-26 2007-05-17 エートン ファーマ インコーポレーティッド ジアミンおよびイミノ二酢酸ヒドロキサム酸誘導体
ATE450251T1 (de) 2004-05-17 2009-12-15 Tekmira Pharmaceuticals Corp Liposomale formulierungen mit dihydrosphingomyelin und verfahren zu ihrer verwendung
WO2005121348A1 (fr) 2004-06-07 2005-12-22 Protiva Biotherapeutics, Inc. Arn interferant encapsule dans des lipides
WO2005120152A2 (fr) 2004-06-07 2005-12-22 Protiva Biotherapeutics, Inc. Lipides cationiques et leurs procedes d'utilisation
DE102004042546A1 (de) 2004-09-02 2006-03-09 Curevac Gmbh Kombinationstherapie zur Immunstimulation
KR100699279B1 (ko) 2005-04-28 2007-03-23 학교법인 포항공과대학교 당 또는 당 유사체를 골격으로 하는 분자 수송체 및 그의제조방법
JP5777846B2 (ja) 2005-06-15 2015-09-09 マサチューセッツ インスティテュート オブ テクノロジー アミン含有脂質およびその使用
EP4174179A3 (fr) 2005-08-23 2023-09-27 The Trustees of the University of Pennsylvania Arn contenant des nucléosides modifiées et leurs procédés d'utilisation
JP4681425B2 (ja) 2005-11-15 2011-05-11 花王株式会社 毛髪弾性改善剤
DE102006035618A1 (de) 2006-07-31 2008-02-07 Curevac Gmbh Nukleinsäure der Formel (I): GlXmGn, insbesondere als immunstimulierendes Adjuvanz
CA2665225C (fr) 2006-10-03 2015-06-30 Alnylam Pharmaceuticals, Inc. Formulations contenant un lipide
DE102007001370A1 (de) 2007-01-09 2008-07-10 Curevac Gmbh RNA-kodierte Antikörper
WO2009030254A1 (fr) 2007-09-04 2009-03-12 Curevac Gmbh Complexes d'arn et de peptides cationiques pour transfection et immunostimulation
WO2009046739A1 (fr) 2007-10-09 2009-04-16 Curevac Gmbh Composition pour traiter le cancer de la prostate (pca)
EP2229186A2 (fr) 2007-12-04 2010-09-22 Alnylam Pharmaceuticals Inc. Conjugués glucidiques utilisés en tant qu'agents d'administration pour des oligonucléotides
AU2008347251A1 (en) 2008-01-02 2009-07-16 Tekmira Pharmaceuticals Corporation Liver screening method
AU2008347250A1 (en) 2008-01-02 2009-07-16 Tekmira Pharmaceuticals Corporation Screening method for selected amino lipid-containing compositions
EP2548960B1 (fr) 2008-01-31 2018-01-31 CureVac AG Acides nucléiques de formule (NuGIXmGnNv)a et dérivés associés en tant que agent/adjuvant de stimulation immunitaire
CA2721183C (fr) 2008-04-11 2019-07-16 Alnylam Pharmaceuticals, Inc. Delivrance specifique a un site d'acides nucleiques en combinant des ligands de ciblage avec des composants endosomolytiques
DK2279254T3 (en) 2008-04-15 2017-09-18 Protiva Biotherapeutics Inc PRESENT UNKNOWN LIPID FORMS FOR NUCLEIC ACID ADMINISTRATION
WO2009132131A1 (fr) 2008-04-22 2009-10-29 Alnylam Pharmaceuticals, Inc. Formulation lipidique améliorée à base d'amino lipide
WO2010037408A1 (fr) 2008-09-30 2010-04-08 Curevac Gmbh Composition comprenant un arnm complexé et un arnm nu pour déclencher ou augmenter une réponse immunostimulante chez un mammifère et utilisations de ladite composition
ES2475065T3 (es) 2008-10-09 2014-07-10 Tekmira Pharmaceuticals Corporation Aminol�pidos mejorados y métodos para la administración de ácidos nucleicos
WO2010048536A2 (fr) 2008-10-23 2010-04-29 Alnylam Pharmaceuticals, Inc. Procédés de préparation de lipides
KR102459839B1 (ko) 2008-11-10 2022-10-27 알닐람 파마슈티칼스 인코포레이티드 치료제 운반용 신규 지질 및 조성물
WO2010054384A1 (fr) 2008-11-10 2010-05-14 Alnylam Pharmaceuticals, Inc. Lipides et compositions pour l’administration d’agents thérapeutiques
CA2742838A1 (fr) 2008-11-17 2010-05-20 Enzon Pharmaceuticals, Inc. Lipides-polymeres liberables pour systemes de delivrance d'acides nucleiques
EP3243504A1 (fr) 2009-01-29 2017-11-15 Arbutus Biopharma Corporation Formulation lipidique améliorée
AU2010245933B2 (en) 2009-05-05 2016-06-16 Arbutus Biopharma Corporation Methods of delivering oligonucleotides to immune cells
KR20210031549A (ko) 2009-05-05 2021-03-19 알닐람 파마슈티칼스 인코포레이티드 지질 조성물
SI3431076T1 (sl) 2009-06-10 2022-04-29 Arbutus Biopharma Corporation Izboljšana lipidna formulacija
WO2010147992A1 (fr) 2009-06-15 2010-12-23 Alnylam Pharmaceuticals, Inc. Procédés pour augmenter l'efficacité d'arnsi dans une formulation lipidique
US9018187B2 (en) 2009-07-01 2015-04-28 Protiva Biotherapeutics, Inc. Cationic lipids and methods for the delivery of therapeutic agents
IL292615B2 (en) 2009-07-01 2023-11-01 Protiva Biotherapeutics Inc Nucleic acid-lipid particles, preparations containing them and their uses
WO2011000106A1 (fr) 2009-07-01 2011-01-06 Protiva Biotherapeutics, Inc. Lipides cationiques et procédés améliorés pour l'administration d'agents thérapeutiques
US20110300205A1 (en) 2009-07-06 2011-12-08 Novartis Ag Self replicating rna molecules and uses thereof
WO2011036557A1 (fr) 2009-09-22 2011-03-31 The University Of British Columbia Compositions et procédés pour améliorer la capture cellulaire et la délivrance intracellulaire de particules lipidiques
CN107028886A (zh) 2009-11-04 2017-08-11 不列颠哥伦比亚大学 含有核酸的脂质粒子及相关的方法
EP2506879A4 (fr) 2009-12-01 2014-03-19 Protiva Biotherapeutics Inc Préparations de snalp contenant des antioxydants
CA3044884A1 (fr) 2009-12-07 2011-06-16 Arbutus Biopharma Corporation Compositions utilisees pour l'administration d'acides nucleiques
NZ600725A (en) 2009-12-18 2015-08-28 Univ British Colombia Methods and compositions for delivery of nucleic acids
CN102884041B (zh) 2010-04-28 2015-04-15 协和发酵麒麟株式会社 阳离子性脂质
WO2011136369A1 (fr) 2010-04-28 2011-11-03 協和発酵キリン株式会社 Lipide cationique
WO2011143230A1 (fr) 2010-05-10 2011-11-17 Alnylam Pharmaceuticals Procédés et compositions pour la distribution d'agents actifs
WO2011141703A1 (fr) 2010-05-12 2011-11-17 Protiva Biotherapeutics Inc. Compositions et procédés pour réduire au silence l'apolipoprotéine b
US20130123338A1 (en) 2010-05-12 2013-05-16 Protiva Biotherapeutics, Inc. Novel cationic lipids and methods of use thereof
WO2011149733A2 (fr) 2010-05-24 2011-12-01 Merck Sharp & Dohme Corp. Nouveaux lipides cationiques alcools aminés pour l'administration d'oligonucléotides
KR101967411B1 (ko) 2010-06-03 2019-04-10 알닐람 파마슈티칼스 인코포레이티드 활성제의 전달을 위한 생분해성 지질
WO2012000104A1 (fr) 2010-06-30 2012-01-05 Protiva Biotherapeutics, Inc. Systèmes non liposomaux pour une administration d'acide nucléique
WO2012016184A2 (fr) 2010-07-30 2012-02-02 Alnylam Pharmaceuticals, Inc. Procédés et compositions pour la délivrance d'agents actifs
WO2012019630A1 (fr) 2010-08-13 2012-02-16 Curevac Gmbh Acide nucléique comprenant ou codant pour une tige-boucle d'histone et une séquence poly(a) ou un signal de polyadénylation pour augmenter l'expression d'une protéine codée
US8466122B2 (en) 2010-09-17 2013-06-18 Protiva Biotherapeutics, Inc. Trialkyl cationic lipids and methods of use thereof
WO2012089225A1 (fr) 2010-12-29 2012-07-05 Curevac Gmbh Combinaison de vaccination et d'inhibition de la présentation des antigènes restreinte par le cmh de classe i
WO2012116715A1 (fr) 2011-03-02 2012-09-07 Curevac Gmbh Vaccination chez des nouveaux-nés et des enfants en bas âge
WO2012113413A1 (fr) 2011-02-21 2012-08-30 Curevac Gmbh Composition de vaccin comprenant des acides nucléiques immunostimulateurs complexés et des antigènes emballés avec des conjugués de polyéthylèneglycol/peptide à liaison disulfure
WO2012116714A1 (fr) 2011-03-02 2012-09-07 Curevac Gmbh Vaccination chez des patients âgés
WO2012133737A1 (fr) 2011-03-31 2012-10-04 公益財団法人地球環境産業技術研究機構 Composé amine réticulable, membrane polymère utilisant un composé amine réticulable, et procédé de production de membrane polymère
US8691750B2 (en) 2011-05-17 2014-04-08 Axolabs Gmbh Lipids and compositions for intracellular delivery of biologically active compounds
WO2013014073A1 (fr) 2011-07-22 2013-01-31 Universite De Strasbourg Conjugués de phospholipide-détergent et leurs utilisations
US9126966B2 (en) 2011-08-31 2015-09-08 Protiva Biotherapeutics, Inc. Cationic lipids and methods of use thereof
SG11201400707TA (en) 2011-09-21 2014-04-28 Sangamo Biosciences Inc Methods and compositions for regulation of transgene expression
JP6250543B2 (ja) 2011-09-27 2017-12-20 アルニラム・ファーマシューティカルズ・インコーポレーテッド ジ脂肪族置換peg化脂質
HUE057604T2 (hu) 2011-10-18 2022-06-28 Dicerna Pharmaceuticals Inc Amin-kationos lipidek és felhasználásuk
KR102272498B1 (ko) 2011-10-27 2021-07-06 메사추세츠 인스티튜트 오브 테크놀로지 약물 캡슐화 마이크로스피어를 형성할 수 있는, n-말단 상에 관능화된 아미노산 유도체
JP2013095755A (ja) 2011-11-02 2013-05-20 Kyowa Hakko Kirin Co Ltd カチオン性脂質
WO2013086322A1 (fr) 2011-12-07 2013-06-13 Alnylam Pharmaceuticals, Inc. Lipides biodégradables ramifiés à terminaisons alkyle et cycloalkyle destinés à l'administration d'agents actifs
EP2788006A1 (fr) 2011-12-07 2014-10-15 Alnylam Pharmaceuticals, Inc. Lipides biodégradables pour l'administration d'agents actifs
WO2013090648A1 (fr) 2011-12-16 2013-06-20 modeRNA Therapeutics Nucléoside, nucléotide, et compositions d'acide nucléique modifiés
WO2013113326A1 (fr) 2012-01-31 2013-08-08 Curevac Gmbh Composition pharmaceutique comprenant un complexe support polymère - charge et au moins un antigène de protéine ou de peptide
WO2013113325A1 (fr) 2012-01-31 2013-08-08 Curevac Gmbh Complexes chargés négativement comprenant des acides nucléiques pour l'immunostimulation
EP2623121A1 (fr) 2012-01-31 2013-08-07 Bayer Innovation GmbH Composition pharmaceutique comportant un complexe de chargement de porteur polymérique et un antigène
WO2013120499A1 (fr) 2012-02-15 2013-08-22 Curevac Gmbh Acide nucléique comprenant ou codant pour une tige-boucle d'histone et une séquence poly(a) ou un signal de polyadénylation pour augmenter l'expression d'un antigène pathogène codé
WO2013120497A1 (fr) 2012-02-15 2013-08-22 Curevac Gmbh Acide nucléique comprenant ou codant pour une tige-boucle d'histone et une séquence poly(a) ou un signal de polyadénylation pour l'augmentation de l'expression d'une protéine thérapeutique codée
WO2013120498A1 (fr) 2012-02-15 2013-08-22 Curevac Gmbh Acide nucléique comprenant ou codant pour une tige-boucle d'histone et une séquence poly(a) ou un signal de polyadénylation pour augmenter l'expression d'un autoantigène auto-immun ou d'un antigène allergène codé
CN102604115B (zh) 2012-02-22 2013-07-10 天津大学 羧甲基壳聚糖季铵盐/pamam核壳纳米粒及制备方法
EP3988104A1 (fr) 2012-02-24 2022-04-27 Arbutus Biopharma Corporation Lipides cationiques de trialkyle et leurs procédés d'utilisation
WO2013143555A1 (fr) 2012-03-26 2013-10-03 Biontech Ag Formulation d'arn pour immunothérapie
CA2859452C (fr) 2012-03-27 2021-12-21 Curevac Gmbh Molecules d'acide nucleique artificielles pour une expression proteique ou peptidique amelioree
SG10201607962RA (en) 2012-03-27 2016-11-29 Curevac Ag Artificial nucleic acid molecules
SG11201405545XA (en) 2012-03-27 2014-11-27 Curevac Gmbh Artificial nucleic acid molecules comprising a 5'top utr
CA2867323C (fr) 2012-03-27 2020-07-07 Sirna Therapeutics, Inc. Lipides cationiques biodegradables a base de diether pour l'administration de petit arni
US20150306249A1 (en) 2012-05-25 2015-10-29 Curevac Gmbh Reversible immobilization and/or controlled release of nucleic acid containing nanoparticles by (biodegradable) polymer coatings
US9415109B2 (en) 2012-07-06 2016-08-16 Alnylam Pharmaceuticals, Inc. Stable non-aggregating nucleic acid lipid particle formulations
CA2891911C (fr) 2012-12-07 2023-03-07 Alnylam Pharmaceuticals, Inc. Formulations de particules lipidiques d'acide nucleique ameliorees
SG11201506052PA (en) 2013-02-22 2015-09-29 Curevac Gmbh Combination of vaccination and inhibition of the pd-1 pathway
US20160032316A1 (en) 2013-03-14 2016-02-04 The Trustees Of The University Of Pennsylvania Purification and Purity Assessment of RNA Molecules Synthesized with Modified Nucleosides
WO2014160284A1 (fr) 2013-03-14 2014-10-02 The Trustees Of The University Of Pennsylvania Compositions et procédés de traitement de l'attaque
CA3120574A1 (fr) 2013-03-14 2014-09-25 Dicerna Pharmaceuticals, Inc. Procede de formulation d'un agent anionique
SG11201510751YA (en) 2013-08-21 2016-03-30 Curevac Ag Composition and vaccine for treating prostate cancer
WO2015024669A1 (fr) 2013-08-21 2015-02-26 Curevac Gmbh Vaccin combiné
JP6648019B2 (ja) 2013-08-21 2020-02-14 キュアバック アーゲー Rnaコードされたタンパク質の発現を促進するための医薬的組成物、医薬的組成物の製造のための修飾rnaの使用、および、医薬的組成物を含むパーツキット
SG11201510746WA (en) 2013-08-21 2016-03-30 Curevac Ag Respiratory syncytial virus (rsv) vaccine
CA2915712A1 (fr) 2013-08-21 2015-02-26 Margit SCHNEE Vaccin antirabique
ES2806575T3 (es) 2013-11-01 2021-02-18 Curevac Ag ARN modificado con propiedades inmunoestimuladoras disminuidas
CN105873902B (zh) 2013-11-18 2019-03-08 阿克丘勒斯治疗公司 用于rna递送的可电离的阳离子脂质
ES2712092T3 (es) 2013-12-30 2019-05-09 Curevac Ag Moléculas de ácido nucleico artificiales
JP6584414B2 (ja) 2013-12-30 2019-10-02 キュアバック アーゲー 人工核酸分子
WO2015123576A2 (fr) 2014-02-17 2015-08-20 The Brigham And Women's Hospital, Inc. Compositions de nanoparticules ciblées et leurs méthodes d'utilisation pour traiter l'obésité
WO2015130584A2 (fr) 2014-02-25 2015-09-03 Merck Sharp & Dohme Corp. Adjuvants de vaccins sous forme de nanoparticules lipidiques et systèmes d'administration d'antigènes
CA2936286A1 (fr) 2014-04-01 2015-10-08 Curevac Ag Complexe cargo de support polymere a utiliser comme agent immunostimulant ou comme adjuvant
EP3981437A1 (fr) 2014-04-23 2022-04-13 ModernaTX, Inc. Vaccins à base d'acide nucléique
US10309541B2 (en) 2014-05-22 2019-06-04 Flowserve S.R.L. Guide element for a valve actuator and actuator provided with said guide element
EP3169309B1 (fr) 2014-07-16 2023-05-10 Novartis AG Procédé d'encapsulation d'un acide nucléique dans une nanoparticule lipidique hôte
JP6339884B2 (ja) 2014-07-17 2018-06-06 富士フイルム株式会社 イミダゾール化合物およびそれを含有するリポソーム
WO2016014794A1 (fr) 2014-07-25 2016-01-28 Sangamo Biosciences, Inc. Procédés et compositions pour moduler l'ingénierie génomique médiée par les nucléases dans des cellules souches hématopoïétiques
EP3230458B1 (fr) 2014-12-12 2020-02-19 CureVac AG Molécules d'acides nucléiques artificielles destinées à améliorer l'expression de protéines
WO2016097065A1 (fr) 2014-12-16 2016-06-23 Curevac Ag Vaccins contre le virus ebola et le virus marburg
BR112017009835A2 (pt) 2014-12-30 2017-12-26 Curevac Ag moléculas de ácido nucleico artificiais
EP4353257A2 (fr) 2015-04-13 2024-04-17 CureVac Manufacturing GmbH Procédé de production de compositions d'arn
WO2016176330A1 (fr) 2015-04-27 2016-11-03 The Trustees Of The University Of Pennsylvania Arn à nucléoside modifié destiné à induire une réponse immunitaire adaptative
JP6893177B2 (ja) 2015-05-15 2021-06-23 キュアバック アーゲー 少なくとも1つのmRNAコンストラクトの投与を含むプライムブーストレジメン(PRIME−BOOST REGIMENS)
WO2016203025A1 (fr) 2015-06-17 2016-12-22 Curevac Ag Composition de vaccin
WO2017021546A1 (fr) 2015-08-05 2017-02-09 Curevac Ag Vaccin d'arnm épidermique
US20190024096A1 (en) 2015-08-07 2019-01-24 Curevac Ag Process for the in vivo production of rna in a host cell
SG10201913629VA (en) 2015-08-28 2020-03-30 Curevac Ag Artificial nucleic acid molecules
WO2017048770A1 (fr) 2015-09-15 2017-03-23 Regulus Therapeutics, Inc. Systèmes, compositions et procédés de formulation de compositions d'acides nucléiques
EP3350157B1 (fr) 2015-09-17 2022-01-05 Modernatx, Inc. Composés et compositions pour l'administration intracellulaire d'agents thérapeutiques
WO2018081480A1 (fr) 2016-10-26 2018-05-03 Acuitas Therapeutics, Inc. Formulations de nanoparticules lipidiques
EP3373965A1 (fr) 2015-11-09 2018-09-19 CureVac AG Vaccins contre les rotavirus
US20180312545A1 (en) 2015-11-09 2018-11-01 Curevac Ag Optimized nucleic acid molecules
WO2017117528A1 (fr) 2015-12-30 2017-07-06 Acuitas Therapeutics, Inc. Lipides et formulations de nanoparticules de lipides pour la libération d'acides nucléiques
MX2018009917A (es) 2016-02-17 2019-08-14 Curevac Ag Vacuna contra el virus del zika.
US20170266292A1 (en) 2016-03-21 2017-09-21 The Research Foundation For The State University Of New York Lipidic compound-telodendrimer hybrid nanoparticles and methods of making and uses thereof
AU2017244143A1 (en) 2016-03-30 2018-10-11 Intellia Therapeutics, Inc. Lipid nanoparticle formulations for CRISPR/Cas components
US20190343942A1 (en) 2016-04-22 2019-11-14 Curevac Ag Rna encoding a tumor antigen
US20180126003A1 (en) 2016-05-04 2018-05-10 Curevac Ag New targets for rna therapeutics
ES2871537T3 (es) 2016-05-09 2021-10-29 Astrazeneca Ab Nanopartículas lipídicas que comprenden agentes antiinflamatorios lipófilos y métodos de uso de las mismas
WO2017201332A1 (fr) 2016-05-18 2017-11-23 Modernatx, Inc. Polynucléotides codant pour l'acyl-coa déshydrogénase, à très longue chaîne pour le traitement de l'insuffisance en acyl-coa déshydrogénase à très longue chaîne
SG11201903460QA (en) 2016-10-26 2019-05-30 Curevac Ag Lipid nanoparticle mrna vaccines
EP3532097A1 (fr) 2016-10-27 2019-09-04 The Trustees Of The University Of Pennsylvania Arn à nucléoside modifié destiné à induire une réponse immunitaire adaptative
US20180185516A1 (en) 2016-12-09 2018-07-05 Sangamo Therapeutics, Inc. Delivery of target specific nucleases
CN110381994A (zh) 2017-01-11 2019-10-25 宾夕法尼亚大学理事会 用于诱导针对寨卡病毒的免疫应答的核苷修饰的rna
US11357856B2 (en) 2017-04-13 2022-06-14 Acuitas Therapeutics, Inc. Lipids for delivery of active agents
WO2018191719A1 (fr) 2017-04-13 2018-10-18 Acuitas Therapeutics, Inc. Administration lipidique d'agents thérapeutiques au tissu adipeux
CN116693411A (zh) 2017-04-28 2023-09-05 爱康泰生治疗公司 用于递送核酸的新型羰基脂质和脂质纳米颗粒制剂
US20210069336A1 (en) 2017-07-31 2021-03-11 Ohio State Innovation Foundation Biomimetic nanomaterials and uses thereof
US11639329B2 (en) 2017-08-16 2023-05-02 Acuitas Therapeutics, Inc. Lipids for use in lipid nanoparticle formulations
WO2019036028A1 (fr) 2017-08-17 2019-02-21 Acuitas Therapeutics, Inc. Lipides destinés à être utilisés dans des formulations nanoparticulaires lipidiques
JP7461872B2 (ja) 2017-08-17 2024-04-04 アクイタス セラピューティクス インコーポレイテッド 脂質ナノ粒子製剤における使用のための脂質
WO2019089828A1 (fr) 2017-10-31 2019-05-09 Acuitas Therapeutics, Inc. Nanoparticules lipidiques lamellaires
JP2022505234A (ja) 2018-10-18 2022-01-14 アクイタス セラピューティクス インコーポレイテッド 活性剤の脂質ナノ粒子送達のための脂質
CN113474328A (zh) 2019-01-11 2021-10-01 爱康泰生治疗公司 用于脂质纳米颗粒递送活性剂的脂质
GB2600859B (en) 2019-08-14 2024-04-03 Acuitas Therapeutics Inc Improved lipid nanoparticles for delivery of nucleic acids
WO2022016070A1 (fr) 2020-07-16 2022-01-20 Acuitas Therapeutics, Inc. Lipides cationiques destinés à être utilisés dans des nanoparticules lipidiques

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197553B1 (en) 1994-07-15 2001-03-06 Merck & Co., Inc. Method for large scale plasmid purification
US20040142025A1 (en) 2002-06-28 2004-07-22 Protiva Biotherapeutics Ltd. Liposomal apparatus and manufacturing methods
US20070042031A1 (en) 2005-07-27 2007-02-22 Protiva Biotherapeutics, Inc. Systems and methods for manufacturing liposomes
WO2010062322A2 (fr) * 2008-10-27 2010-06-03 Massachusetts Institute Of Technology Modulation de la réponse immunitaire
WO2012068176A1 (fr) * 2010-11-15 2012-05-24 Life Technologies Corporation Réactifs de transfection aminés et procédés de fabrication et d'utilisation associés
US20120251618A1 (en) 2011-03-31 2012-10-04 modeRNA Therapeutics Delivery and formulation of engineered nucleic acids
WO2013016058A1 (fr) 2011-07-22 2013-01-31 Merck Sharp & Dohme Corp. Nouveaux lipides cationiques contenant du bis-azote pour administration d'oligonucléotide
WO2013086373A1 (fr) 2011-12-07 2013-06-13 Alnylam Pharmaceuticals, Inc. Lipides pour l'administration d'agents actifs
WO2014028487A1 (fr) * 2012-08-13 2014-02-20 Massachusetts Institute Of Technology Lipidoïdes contenant des amines et leurs utilisations
WO2015199952A1 (fr) 2014-06-25 2015-12-30 Acuitas Therapeutics Inc. Nouveaux lipides et formulations nanoparticulaires lipidiques pour l'administration d'acides nucléiques
CN104876831A (zh) * 2015-04-03 2015-09-02 苏州圣诺生物医药技术有限公司 脂质修饰精胺衍生物及利用该衍生物制备的脂质体
WO2017004143A1 (fr) 2015-06-29 2017-01-05 Acuitas Therapeutics Inc. Formulations de lipides et de nanoparticules de lipides pour l'administration d'acides nucléiques
WO2017075531A1 (fr) 2015-10-28 2017-05-04 Acuitas Therapeutics, Inc. Nouveaux lipides et nouvelles formulations de nanoparticules de lipides pour l'administration d'acides nucléiques
WO2017112865A1 (fr) * 2015-12-22 2017-06-29 Modernatx, Inc. Composés et compositions pour l'administration intracellulaire d'agents thérapeutiques et/ou prophylactiques

Non-Patent Citations (34)

* Cited by examiner, † Cited by third party
Title
"Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 5th edition", December 2000, WILEY
"Remington: The Science and Practice of Pharmacy, 20th Edition", 2000, PHILADELPHIA COLLEGE OF PHARMACY AND SCIENCE
BATZER ET AL., NUCLEIC ACID RES., vol. 19, 1991, pages 5081
BECKERT, B.; MASQUIDA, B.: "Synthesis of RNA by In Vitro Transcription in RNA in Methods in Molecular Biology", vol. 703, 2010, HUMANA PRESS
BERNSTEIN, P.; ROSS, J.: "Poly (A), poly (A) binding protein and the regulation of mRNA stability", TRENDS BIO SCI, vol. 14, 1989, pages 373 - 377, XP023669459, DOI: doi:10.1016/0968-0004(89)90011-X
BOWMAN, J.C.; AZIZI, B.; LENZ, T.K.; RAY, P.; WILLIAMS, L.D.: "RNA in vitro transcription and RNA purification by denaturing PAGE in Recombinant and in vitro RNA syntheses Methods", vol. 941, 2012, HUMANA PRESS
BRUNELLE, J.L.; GREEN, R.: "Methods in Enzymology", vol. 530, 2013, article "In vitro transcription from plasmid or PCR-amplified DNA", pages: 101 - 114
BUNDGARD, H.: "Design of Prodrugs", 1985, ELSEVIER, pages: 7 - 24
DATABASE CAPLUS [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; ZHANG, LIXIA ET AL: "Lipid -modified spermine derivatives and liposome prepared with said derivatives", XP002786789, retrieved from STN Database accession no. 2015:1437089 *
DREYFUS, M.; REGNIER, P.: "The poly (A) tail of mRNAs: Bodyguard in eukaryotes, scavenger in bacteria", CELL, vol. l11, 2002, pages 611 - 613
GAIT, M. J.: "Oligonucleotide synthesis: a practical approach, Oxford [Oxfordshire", 1984, IRL PRESS
GREEN, T.W.; P.G.M. WUTZ: "Protective Groups in Organic Synthesis, 3rd Ed.,", 1999, WILEY
GRUDZIEN-NOGALSKA, E.; KOWALSKA, J.; SU, W.; KUHN, A.N.; SLEPENKOV, S.V.; DARYNKIEWICZ, E.; SAHIN, U.; JEMIELITY, J.; RHOADS, R.E.: "Synthetic mRNAs with superior translation and stability properties in Synthetic Messenger RNA and Cell Metabolism Modulation in Methods in Molecular Biology", vol. 969, 2013
GUHANIYOGI, J.; BREWER, G: "Regulation of mRNA stability in mammalian cells", GENE, vol. 265, 2001, pages 11 - 23, XP004230718, DOI: doi:10.1016/S0378-1119(01)00350-X
HAFEZ, I.M. ET AL., GENE THER, vol. 8, 2001, pages 1188 - 1196
HEILIG, J.; ELBING, K. L.; BRENT, R: "Large-Scale Preparation of Plasmid DNA", CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, vol. 41, 2001
HERDEWIJN, P.: "Methods in Molecular Biology", vol. 288, 2005, HUMANA PRESS, article "Oligonucleotide synthesis: methods and applications"
HIGUCHI, T. ET AL.: "A.C.S. Symposium Series, Vol. 14, and in Bioreversible Carriers in Drug Design", vol. 14, 1987, AMERICAN PHARMACEUTICAL ASSOCIATION AND PERGAMON PRESS
JAYARAMAN ET AL., ANGEWANDTE CHEMIE, INTERNATIONAL EDITION, vol. 51, no. 34, 2012, pages 8529 - 8533
KAMAKAKA, R. T.; KRAUS, W. L.: "In Vitro Transcription", CURRENT PROTOCOLS IN CELL BIOLOGY, vol. 2, no. 11.6, 2001
KARIKO, K.; MURAMATSU, H.; LUDWIG, J.; WEISSMAN, D.: "Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA", NUCL ACID RES, vol. 39, 2011, pages el42
KARIKO, K.; MURAMATSU, H.; WELSH, F.A.; LUDWIG, J.; KATO, H.; AKIRA, S.; WEISSMAN, D.: "Incorporation of Pseudouridine Into mRNA Yields Superior Nonimmunogenic Vector With Increased Translational Capacity and Biological Stability", MOL THER, vol. 16, 2008, pages 1833 - 1840
KARIKO, K.; WEISSMAN, D.: "Naturally occurring nucleoside modifications suppress the immunostimulatory activity of RNA: implication for therapeutic RNA development", CURR OPIN DRUG DISCOV DEVEL, vol. 10, 2007, pages 523 - 532, XP009154595
KERRY P. MAHON ET AL: "Combinatorial Approach to Determine Functional Group Effects on Lipidoid-Mediated siRNA Delivery", BIOCONJUGATE CHEMISTRY, vol. 21, no. 8, 18 August 2010 (2010-08-18), pages 1448 - 1454, XP055208103, ISSN: 1043-1802, DOI: 10.1021/bc100041r *
LOSICK, R.: "In vitro transcription", ANN REV BIOCHEM, vol. 41, 1972, pages 409 - 46
LUKAVSKY, P.J.; PUGLISI, J.D.: "Large-scale preparation and purification of polyacrylamide-free RNA oligonucleotides, RNA", vol. 10, 2004, pages: 889 - 893
OHTSUKA ET AL., J. BIOL. CHEM., vol. 260, 1985, pages 2605 - 2608
PARDI, N.; MURAMATSU, H.; WEISSMAN, D.; KARIKO, K.: "In vitro transcription of long RNA containing modified nucleosides in Synthetic Messenger RNA and Cell Metabolism Modulation in Methods in Molecular Biology", vol. 969, 2013
ROSSOLINI ET AL., MOL. CELL. PROBES, vol. 8, 1994, pages 91 - 98
ROZKOV, A.; LARSSON, B.; GILLSTROM, S.; BJΔRNESTEDT, R.; SCHMIDT, S. R.: "Large-scale production of endotoxin-free plasmids for transient expression in mammalian cell culture", BIOTECHNOL. BIOENG., vol. 99, 2008, pages 557 - 566
SEMPLE ET AL., NATURE BIOTECHNOLOGY, vol. 28, 2010, pages 172 - 176
SEMPLE, S.C. ET AL., ADV. DRUG DELIV REV, vol. 32, 1998, pages 3 - 17
WEISSMAN, D.; PARDI, N.; MURAMATSU, H.; KARIKO, K., HPLC PURIFICATION OF IN VITRO TRANSCRIBED LONG RNA IN SYNTHETIC MESSENGER RNA AND CELL METABOLISM MODULATION IN METHODS IN MOLECULAR BIOLOGY, vol. 969, 2013
XINFU ZHANG ET AL: "Biodegradable Amino-Ester Nanomaterials for Cas9 mRNA Delivery in Vitro and in Vivo", ACS APPLIED MATERIALS & INTERFACES, vol. 9, no. 30, 2 August 2017 (2017-08-02), US, pages 25481 - 25487, XP055526064, ISSN: 1944-8244, DOI: 10.1021/acsami.7b08163 *

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020061426A2 (fr) 2018-09-21 2020-03-26 Acuitas Therapeutics, Inc. Systèmes et procédés pour la fabrication de nanoparticules lipidiques et de liposomes
WO2020255007A1 (fr) 2019-06-18 2020-12-24 Janssen Sciences Ireland Unlimited Company Combinaison de vaccins contre le virus de l'hépatite b (vhb) et d'arni ciblant le virus de l'hépatite b
WO2020255014A1 (fr) 2019-06-18 2020-12-24 Janssen Sciences Ireland Unlimited Company Construction de l'interleukine 12 recombinante et ses utilisations
WO2020255010A1 (fr) 2019-06-18 2020-12-24 Janssen Sciences Ireland Unlimited Company Combinaison d'une construction d'interleukine 12 recombinante et de vaccins contre le virus de l'hépatite b (vhb)
WO2020255009A2 (fr) 2019-06-18 2020-12-24 Janssen Sciences Ireland Unlimited Company Combinaison de vaccins contre le virus de l'hépatite b (vhb) et d'anticorps anti-pd-1
WO2020255011A1 (fr) 2019-06-18 2020-12-24 Janssen Sciences Ireland Unlimited Company Combinaison de vaccins contre le virus de l'hépatite b (vhb) et d'anticorps anti-pd-1 ou anti-pd-l1
WO2020255062A1 (fr) 2019-06-20 2020-12-24 Janssen Sciences Ireland Unlimited Company Administration de nanoparticules lipidiques ou de liposomes de vaccins contre le virus de l'hépatite b (vhb)
US11597698B2 (en) 2019-09-19 2023-03-07 Modernatx, Inc. Branched tail lipid compounds and compositions for intracellular delivery of therapeutic agents
WO2021061707A1 (fr) 2019-09-23 2021-04-01 Omega Therapeutics, Inc. Compositions et procédés pour moduler l'expression génique de l'apolipoprotéine b (apob)
WO2021061815A1 (fr) 2019-09-23 2021-04-01 Omega Therapeutics, Inc. Compositions et procédés de modulation de l'expression génique du facteur nucléaire hépatocytaire 4-alpha (hnf4α)
WO2021183720A1 (fr) 2020-03-11 2021-09-16 Omega Therapeutics, Inc. Compositions et procédés de modulation de l'expression génique de forkhead box p3 (foxp3)
WO2022008613A1 (fr) 2020-07-08 2022-01-13 Janssen Sciences Ireland Unlimited Company Vaccins à base de réplicon d'arn contre le vhb
CN116057041A (zh) * 2020-07-09 2023-05-02 艾德凡斯化学公司 支链氨基酸表面活性剂
WO2022010744A1 (fr) * 2020-07-09 2022-01-13 Advansix Resins & Chemicals Llc Tensioactifs d'acides aminés ramifiés
WO2022010743A1 (fr) * 2020-07-09 2022-01-13 Advansix Resins & Chemicals Llc Tensioactifs acides aminés ramifiés
CN116057044A (zh) * 2020-07-09 2023-05-02 艾德凡斯化学公司 分支氨基酸表面活性剂
US11897834B2 (en) 2020-07-09 2024-02-13 Advansix Resins & Chemicals Llc Branched amino acid surfactants
TWI799906B (zh) * 2020-07-09 2023-04-21 美商艾德凡斯化學公司 分支胺基酸界面活性劑
US11857515B2 (en) 2020-07-13 2024-01-02 Advansix Resins & Chemicals Llc Branched amino acid surfactants for use in healthcare products
US20220008305A1 (en) * 2020-07-13 2022-01-13 Advansix Resins & Chemicals Llc Branched amino acid surfactants for personal care and cosmetic products
US20220010243A1 (en) * 2020-07-13 2022-01-13 Advansix Resins & Chemicals Llc Branched amino acid surfactants for cleaning products
US11787967B2 (en) 2020-07-13 2023-10-17 Advansix Resins & Chemicals Llc Branched amino acid surfactants for inks, paints, and adhesives
WO2022015675A1 (fr) * 2020-07-13 2022-01-20 Advansix Resins & Chemicals Llc Tensioactifs à base d'acides amines destinés à être utilisés dans des produits de soins de santé
WO2022133230A1 (fr) 2020-12-18 2022-06-23 Janssen Pharmaceuticals, Inc. Polythérapie pour le traitement d'une infection par le virus de l'hépatite b
WO2022146654A1 (fr) 2020-12-28 2022-07-07 Janssen Pharmaceuticals, Inc. Nucléases effectrices de type activateur de transcription (talens) ciblant le vhb
EP4046629A1 (fr) 2021-02-19 2022-08-24 ModernaTX, Inc. Compositions de nanoparticules lipidiques et leurs procédés de formulation
WO2022204288A1 (fr) * 2021-03-24 2022-09-29 Modernatx, Inc. Composés lipidiques à queue ramifiée et compositions pour l'administration intracellulaire d'agents thérapeutiques
WO2023283359A2 (fr) 2021-07-07 2023-01-12 Omega Therapeutics, Inc. Compositions et procédés de modulation de l'expression génique de la protéine 1 du récepteur frizzled secrété (sfrp1)
WO2023031394A1 (fr) 2021-09-03 2023-03-09 CureVac SE Nouvelles nanoparticules lipidiques pour l'administration d'acides nucléiques
WO2023069498A1 (fr) 2021-10-22 2023-04-27 Senda Biosciences, Inc. Composition de vaccin à base d'arnm
WO2023073228A1 (fr) 2021-10-29 2023-05-04 CureVac SE Arn circulaire amélioré pour exprimer des protéines thérapeutiques
WO2023096858A1 (fr) 2021-11-23 2023-06-01 Senda Biosciences, Inc. Composition lipidique dérivée de bactéries et son utilisation
WO2023122080A1 (fr) 2021-12-20 2023-06-29 Senda Biosciences, Inc. Compositions comprenant de l'arnm et des paquets de messagers végétaux reconstruits lipidiques
CN114393579A (zh) * 2022-01-04 2022-04-26 南京航空航天大学 一种基于自适应模糊虚拟模型的机器人控制方法及装置
CN114393579B (zh) * 2022-01-04 2023-09-22 南京航空航天大学 一种基于自适应模糊虚拟模型的机器人控制方法及装置
WO2023144330A1 (fr) 2022-01-28 2023-08-03 CureVac SE Inhibiteurs de facteurs de transcription codés par un acide nucleique
WO2023177904A1 (fr) 2022-03-18 2023-09-21 Modernatx, Inc. Filtration stérile de nanoparticules lipidiques et analyse de filtration de celles-ci pour des applications biologiques
WO2023218420A1 (fr) 2022-05-13 2023-11-16 Janssen Pharmaceuticals, Inc. Compositions d'arnm pour induire une inversion latente du vih-1
WO2023227608A1 (fr) 2022-05-25 2023-11-30 Glaxosmithkline Biologicals Sa Vaccin à base d'acide nucléique codant pour un polypeptide antigénique fimh d'escherichia coli
WO2023233290A1 (fr) 2022-05-31 2023-12-07 Janssen Sciences Ireland Unlimited Company Agents d'arni ciblant pd-l1
WO2024044147A1 (fr) 2022-08-23 2024-02-29 Modernatx, Inc. Procédés de purification de lipides ionisables
CN116063205B (zh) * 2023-01-04 2024-02-02 上海桢曜生物科技合伙企业(有限合伙) 一种含烷基化氨基甲酸酯键的脂质化合物及其应用
CN116063205A (zh) * 2023-01-04 2023-05-05 上海桢曜生物科技合伙企业(有限合伙) 一种含烷基化氨基甲酸酯键的脂质化合物及其应用

Also Published As

Publication number Publication date
US11524932B2 (en) 2022-12-13
US20210122703A1 (en) 2021-04-29

Similar Documents

Publication Publication Date Title
US11524932B2 (en) Lipids for use in lipid nanoparticle formulations
US11542225B2 (en) Lipids for use in lipid nanoparticle formulations
US11639329B2 (en) Lipids for use in lipid nanoparticle formulations
AU2016343803B2 (en) Novel lipids and lipid nanoparticle formulations for delivery of nucleic acids
US11453639B2 (en) Lipids for lipid nanoparticle delivery of active agents
US11357856B2 (en) Lipids for delivery of active agents
AU2016285852B2 (en) Lipids and lipid nanoparticle formulations for delivery of nucleic acids
EP3867225A1 (fr) Lipides pour l'administration de nanoparticules lipidiques d'agents actifs
US20200172472A1 (en) Lipids for use in lipid nanoparticle formulations
CA3189338A1 (fr) Lipides cationiques destines a etre utilises dans des nanoparticules lipidiques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18782816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18782816

Country of ref document: EP

Kind code of ref document: A1