WO2019035361A1 - アパタイト体及びその製造方法 - Google Patents

アパタイト体及びその製造方法 Download PDF

Info

Publication number
WO2019035361A1
WO2019035361A1 PCT/JP2018/028960 JP2018028960W WO2019035361A1 WO 2019035361 A1 WO2019035361 A1 WO 2019035361A1 JP 2018028960 W JP2018028960 W JP 2018028960W WO 2019035361 A1 WO2019035361 A1 WO 2019035361A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium carbonate
sintered body
apatite
producing
sintering
Prior art date
Application number
PCT/JP2018/028960
Other languages
English (en)
French (fr)
Inventor
奨大 梅本
正彦 田近
英郎 鵜沼
Original Assignee
株式会社白石中央研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社白石中央研究所 filed Critical 株式会社白石中央研究所
Priority to CN201880053465.XA priority Critical patent/CN111032566A/zh
Priority to EP18845969.7A priority patent/EP3670446A4/en
Priority to US16/637,136 priority patent/US20200369572A1/en
Publication of WO2019035361A1 publication Critical patent/WO2019035361A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • C01B25/322Preparation by neutralisation of orthophosphoric acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/455Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application the coating or impregnating process including a chemical conversion or reaction
    • C04B41/4556Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application the coating or impregnating process including a chemical conversion or reaction coating or impregnating with a product reacting with the substrate, e.g. generating a metal coating by surface reduction of a ceramic substrate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate, hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Definitions

  • the present invention relates to an apatite body at least the surface of which is apatized, and a method for producing the same.
  • Apatite is extremely useful as an artificial biomaterial having biocompatibility suitable for bone grafting materials, artificial bones and the like.
  • making the apatite porous makes it easy for the living tissue to infiltrate the living implant material. For this reason, it is required to produce a porous apatite sintered body.
  • Patent Document 1 discloses a method of producing a porous sintered body of hydroxyapatite using a calcium phosphate powder.
  • the porous sintered compact of hydroxyapatite is manufactured using the powder of hydroxyapatite.
  • An object of the present invention is to provide an apatite body which can be easily manufactured and has a stable apatite composition, and a method of manufacturing the same.
  • the apatite body of the present invention is characterized in that at least the surface of the calcium carbonate sintered body is apatitized.
  • the calcium carbonate sintered body may be a porous sintered body.
  • the production method of the present invention comprises the steps of preparing a calcium carbonate sintered body, and reacting the calcium carbonate sintered body with a solution of phosphate or phosphoric acid to apatinate at least the surface of the calcium carbonate sintered body. And manufacturing the apatite body.
  • the step of producing a calcium carbonate sintered body comprises the steps of producing a calcium carbonate sintered compact and the step of producing a calcium carbonate sintered compact by sintering the compact.
  • the compact may be a compact of a mixture of calcium carbonate and a sintering aid.
  • the compression molded body may be a compression molded body of calcium carbonate having a purity of 99.7% by mass or more.
  • the step of producing the calcium carbonate sinter is a step of preparing a dispersion containing calcium carbonate and a gelling agent, A foaming agent is added to the dispersion and then stirred to foam to prepare a foam, a step of gelling the foam, and a step of sintering the gelled foam to produce a porous sintered body.
  • the step of producing the calcium carbonate sintered body comprises the steps of preparing a dispersion containing calcium carbonate, and a foaming agent for the dispersion.
  • the method may include the steps of adding and stirring to foam to prepare a foam, and sintering the foam to produce a porous sintered body.
  • the above-mentioned foam may be freeze-dried and then sintered.
  • an apatite body which can be easily manufactured and has a stable apatite composition, and a method of manufacturing the same.
  • FIG. 1 is a view showing an X-ray diffraction chart of an apatite body in an example of the present invention.
  • FIG. 2 is a scanning electron micrograph (100 ⁇ ) showing the surface of the apatite body one day after immersion in an aqueous solution of phosphate.
  • FIG. 3 is a scanning electron micrograph (5000 ⁇ ) showing the surface of the apatite body one day after immersion in an aqueous solution of phosphate.
  • FIG. 4 is a scanning electron micrograph (12000 ⁇ ) showing the surface of the apatite body one day after immersion in an aqueous solution of phosphate.
  • FIG. 1 is a view showing an X-ray diffraction chart of an apatite body in an example of the present invention.
  • FIG. 2 is a scanning electron micrograph (100 ⁇ ) showing the surface of the apatite body one day after immersion in an aqueous solution of phosphate.
  • FIG. 3 is a
  • FIG. 5 is a scanning electron micrograph (100 ⁇ ) showing the surface of the apatite body 14 days after immersion in an aqueous solution of phosphate.
  • FIG. 6 is a scanning electron micrograph (5000 ⁇ ) showing the surface of the apatite body 14 days after immersion in an aqueous solution of phosphate.
  • FIG. 7 is a scanning electron micrograph (12000 ⁇ ) showing the surface of the apatite body 14 days after immersion in an aqueous solution of phosphate.
  • the calcium carbonate used in the present invention is not particularly limited as long as it can be used for producing a calcium carbonate sintered body. From the viewpoint of being able to prepare and sinter a molded article having a high density, the average particle size (D 50 ) in the particle size distribution measured by transmission electron microscopy is in the range of 0.05 to 0.30 ⁇ m. Calcium carbonate having a 90% particle diameter (D 90 ) in the particle diameter distribution measured by a laser diffraction particle size distribution measurement method of 3 ⁇ m or less and a BET specific surface area of 5 to 25 m 2 / g is preferable.
  • the average particle size (D 50 ) in the particle size distribution measured by transmission electron microscopy is preferably in the range of 0.05 to 0.30 ⁇ m, more preferably in the range of 0.08 to 0.25 ⁇ m. And more preferably in the range of 0.10 to 0.20 ⁇ m.
  • the particle size distribution by transmission electron microscopy can be determined by measuring 1000 or more calcium carbonates to be measured by transmission electron microscopy.
  • the 90% particle diameter (D 90 ) in the particle diameter distribution measured by the laser diffraction particle size distribution measurement method is preferably 3 ⁇ m or less, more preferably 2.5 ⁇ m or less, still more preferably 2.0 ⁇ m or less .
  • the particle size distribution of calcium carbonate aggregates can be determined by determining the particle size distribution by laser diffraction particle size distribution measurement.
  • the average particle size (D 50 ) in the particle size distribution measured by transmission electron microscopy is within the above range, and the 90% particle size (D 90 ) in the particle size distribution measured by laser diffraction particle size distribution measurement is the above Calcium carbonate, which is in the range, has a sharp particle size distribution and is excellent in the packing properties of the powder at the time of molding, so that a high density molded body can be produced, and as a result calcium carbonate sintering with high density Body can be manufactured.
  • the ratio (D 90 / D 10 ) of the 90% particle size (D 90 ) to the 10% particle size (D 10 ) in the particle size distribution measured by transmission electron microscopy is 2.3
  • the following is preferable, 2.2 or less is more preferable, and 2.1 or less is more preferable.
  • the calcium carbonate used in the present invention can be produced, for example, by a carbon dioxide gas combination method in which carbon dioxide gas is blown into and reacted with generally well-known lime milk.
  • particles having an average particle size (D 50 ) exceeding 0.1 ⁇ m can be produced according to the production method of Patent No. 0995926.
  • the BET specific surface area of calcium carbonate used in the present invention is preferably 5 to 25 m 2 / g, more preferably 7 to 20 m 2 / g, and still more preferably 8 to 15 m 2 / g.
  • the BET specific surface area is preferably 5 to 25 m 2 / g, more preferably 7 to 20 m 2 / g, and still more preferably 8 to 15 m 2 / g.
  • the purity of calcium carbonate used in the present invention is preferably 99.0% by mass or more, more preferably 99.5% by mass or more, and still more preferably 99.6% by mass or more.
  • high purity calcium carbonate having a purity of 99.7% by mass or more can be used.
  • the amount of sintering aid required for sintering can be reduced.
  • sintering can also be performed without using a sintering aid.
  • the purity is preferably 99.8% by mass or more, more preferably 99.9% by mass or more, and still more preferably 99.95% by mass or more.
  • Such high purity calcium carbonate can be produced, for example, by the method disclosed in JP 2012-240872 A.
  • the upper limit value of the purity of high purity calcium carbonate is not particularly limited, it is generally 99.9999% by mass.
  • Examples of the calcium carbonate sintered body used in the present invention include porous sintered bodies and bulk sintered bodies. By using a porous sintered body, a porous apatite body can be manufactured.
  • Examples of the method for producing the porous sintered body include the first production method and the second production method described below.
  • the first production method comprises the steps of preparing a dispersion containing calcium carbonate and a gelling agent, adding a foaming agent to the dispersion, stirring after foaming to prepare a foam, and forming a foam gel. And a step of producing a porous sintered body by sintering the gelled foam.
  • the first manufacturing method will be described in detail below.
  • the dispersion contains calcium carbonate and a gelling agent.
  • a gelling agent By including the gelling agent, the strength of the cells in the dispersed foam after foaming can be increased, and the shape of the foam can be stabilized.
  • the gelling agent include polysaccharides such as methyl cellulose and alkali water-soluble polymers of isobutylene-maleic anhydride copolymer.
  • the content of the gelling agent in the dispersion is preferably in the range of 0.1 to 5 parts by mass with respect to 100 parts by mass of calcium carbonate, and more preferably in the range of 0.5 to 3 parts by mass. If the content of the gelling agent is too small, the strength of the cells in the foam may not be increased, and the shape of the foam may not be stabilized. When the content of the gelling agent is too large, the above-mentioned effect in proportion to the content may not be obtained.
  • the dispersion is preferably prepared by dispersing calcium carbonate in a dispersion medium using a device with strong stirring power such as a disper, mixer, ball mill etc. while calcium carbonate is gradually added to a dispersion medium such as water. If a sintering aid is required, it is generally added to the dispersion.
  • the content of calcium carbonate is preferably 30 to 70% by mass in the dispersion. At this time, if necessary, about 0 to 3 parts by mass of a high molecular weight surfactant such as polyacrylate with respect to 100 parts by mass of calcium carbonate may be added as a dispersant.
  • the gelling agent can be added to the dispersion medium before, after or simultaneously with the addition of calcium carbonate.
  • the sintering aid can be used without particular limitation as long as it can sinter calcium carbonate to produce a sintered body.
  • the sintering aid includes, for example, a sintering aid containing at least two carbonates of lithium, sodium and potassium and having a melting point of 600 ° C. or less.
  • the melting point of the sintering aid is preferably 550 ° C. or less, more preferably 530 ° C. or less, and still more preferably in the range of 450 to 520 ° C.
  • the sintering aid is preferably a mixture of potassium carbonate and lithium carbonate.
  • the melting point of the sintering aid can be determined, for example, from a phase diagram, or can be measured by differential thermal analysis (DTA).
  • sintering aids containing at least two fluorides of lithium, sodium and potassium and having a melting point of 600 ° C. or less can be mentioned. It is preferable that such a sintering aid also have the above-mentioned melting point range.
  • Such sintering aids include, for example, mixtures of potassium fluoride, lithium fluoride and sodium fluoride. Specifically, for example, a mixture having a composition range of 10 to 60 mole% of potassium fluoride, 30 to 60 mole% of lithium fluoride, and 0 to 30 mole% of sodium fluoride can be mentioned. By setting it as such a range, it can bake at lower temperature and the calcium carbonate porous sintered compact which has a precise
  • the content ratio of the sintering aid is preferably in the range of 0.1 to 3.0% by mass, more preferably 0.2 to 2.5 mass, with respect to the total of calcium carbonate and the sintering aid. %, More preferably 0.3 to 2.0% by mass. If the content of the sintering aid is too small, calcium carbonate may not be sufficiently sintered. If the content of the sintering aid is too large, the density of the wall portion of the calcium carbonate porous sintered body may not be able to be increased.
  • sintering can also be performed without using a sintering aid.
  • a foaming agent After a foaming agent is added to the above dispersion, a foam is produced by stirring and foaming.
  • the foaming agent include alkyl sulfates such as triethanolamine lauryl sulfate, polyoxyethylene alkyl ether sulfate, polyoxyethylene alkyl ether acetate, alkyl polyglucoside and the like.
  • the foaming agent is preferably added such that the concentration of the foaming agent in the dispersion is about 0.01 to 5% by mass, and more preferably about 0.1 to 3% by mass.
  • Stirring is preferably performed with a hand mixer or a disper. Since the temperature of the dispersion may rise by performing the stirring, if necessary, the dispersion may be stirred while being cooled.
  • the foam produced as described above is gelled.
  • the shape of the foam can be maintained during sintering.
  • the method of gelation include a method of gelation by forming a crosslinked structure with calcium ions in the dispersion, and a method of promoting gelation utilizing temperature characteristics of the gelling agent itself.
  • the gelled foam is preferably dried after drying to remove at least a part of water and then sintered.
  • the drying temperature is preferably in the range of 30 to 200.degree.
  • the temperature for temporary sintering is preferably in the range of 200 to 500 ° C., and more preferably in the range of 300 to 420 ° C.
  • the temperature of the main sintering is preferably equal to or higher than the temperature of the temporary sintering and in the range of 420 to 600 ° C., and more preferably in the range of 450 to 540 ° C.
  • the temperature rising rate at the time of temporary sintering and main sintering be in the range of 2 to 20 ° C./minute.
  • the atmosphere for sintering is preferably in the air.
  • the present invention is not limited to this, and may be sintered in a carbon dioxide gas atmosphere or in an inert gas atmosphere such as nitrogen gas.
  • the second production method includes a step of preparing a dispersion containing calcium carbonate, a step of adding a foaming agent to the dispersion, stirring and foaming to prepare a foam, and sintering the foam, And manufacturing the porous sintered body.
  • the second manufacturing method will be described in detail below.
  • Preparation of dispersion It is preferable to disperse calcium carbonate in the dispersion medium using an apparatus with strong stirring power such as a disper, mixer, ball mill etc. while gradually adding calcium carbonate to the dispersion medium such as water.
  • the content of calcium carbonate is preferably 30 to 70% by mass in the dispersion.
  • a high molecular weight surfactant such as polyacrylate with respect to 100 parts by mass of calcium carbonate may be added as a dispersant.
  • a sintering aid is required, it is generally added to the dispersion.
  • the sintering aid can be used in the same manner as in the first production method, and can be added to the dispersion in the same manner as in the first production method.
  • Excipient An excipient may be added to the above dispersion. By adding the excipient, the strength of the cells in the dispersed foam after foaming can be increased, and the shape of the foam can be stabilized. Excipients include starch, dextrin, polyvinyl alcohol, polypropylene glycol, pectin, algins, sodium salt of carboxycellulose and the like.
  • a foam is produced by stirring and foaming.
  • the foaming agent is preferably added so that the concentration of the foaming agent in the dispersion is about 0.01 to 5% by mass.
  • Stirring is preferably performed with a hand mixer or a disper. Since the temperature of the dispersion may rise by performing the stirring, if necessary, the dispersion may be stirred while being cooled.
  • a foaming agent the thing similar to the foaming agent in a 1st manufacturing method can be used.
  • freeze drying After freeze-drying the foam, it is preferable to sinter. By freeze-drying, the shape of the foam can be easily maintained, and a porous sintered body can be obtained in a good shape.
  • the foam under normal pressure at ⁇ 40 ° C. or less for 2 hours or more, and then gradually raise the temperature while sublimating ice crystals under reduced pressure conditions. 20 Pa or less is preferable and, as for the conditions of pressure reduction, 10 Pa or less is more preferable. It is desirable to gradually increase the temperature while maintaining the reduced pressure within the range in which the ice crystals do not melt, and the temperature is generally controlled in the range of -40 ° C to 60 ° C.
  • a porous sintered body can be produced by sintering the foam obtained as described above in the same manner as in the first production method.
  • the porosity of the calcium carbonate porous sintered body is preferably 50% by volume or more, more preferably 60% by volume or more, still more preferably 70% by volume or more, and 80% by volume or more Is more preferable, and 85% by volume or more is particularly preferable. Thereby, a calcium carbonate porous sintered body can be used also for a living body use etc.
  • the upper limit of the porosity of the calcium carbonate porous sintered body is not particularly limited, but is generally 95% by volume.
  • the apatite on the inner surface can be easily brought into contact with the outside. Therefore, the apatite on the surface can be made to act more efficiently.
  • the purity of the calcium carbonate porous sintered body using high purity calcium carbonate is preferably 99.7% by mass or more, more preferably 99.8% by mass or more, and 99.9% by mass or more.
  • the content is more preferably 99.95% by mass or more, particularly preferably 99.99% by mass or more.
  • a calcium carbonate porous sintered body can be used also for a living body use etc.
  • the upper limit of the purity of the calcium carbonate porous sintered body is not particularly limited, it is generally 99.9999 mass%.
  • the manufacturing method of a bulk-like sintered compact includes the process of producing the calcium carbonate sintered compact, and the process of producing a calcium carbonate sintered compact by sintering a compression compact.
  • the method for producing the bulk sintered body will be described in detail below.
  • a mixture of calcium carbonate powder and a sintering aid, or calcium carbonate powder alone is compression molded to produce a molded body.
  • the compression molding is preferably uniaxial molding.
  • D 50 average particle size
  • a high-purity calcium carbonate sintered body having a high density is produced even when using a uniaxially formed compact. be able to.
  • the present invention is not limited to uniaxial forming, and a formed body may be produced by a known forming method such as isostatic pressing, doctor blade forming, or cast forming.
  • the sintering aid can be used in the same proportion as in the first and second production methods.
  • the amount of sintering aid required for sintering can be reduced.
  • sintering can also be performed without using a sintering aid.
  • the relative density of the molded body is preferably 50% or more, more preferably 55% or more, and still more preferably 58% or more.
  • the relative density of the compact is the value obtained by dividing the bulk density of the compact by the theoretical density of calcium carbonate (2.711 g / cm 3 ).
  • the bulk density of the molded body can be measured by the Archimedes method described later. It is preferable that the relative density of the said molded object is a thing obtained when uniaxial-press molding at the molding pressure of 196.1 Mpa (2000 kgf / cm ⁇ 2 >). By setting the relative density in the above range, a calcium carbonate sintered body with higher density can be obtained.
  • a bulk sintered body is manufactured by sintering the above-mentioned molded body.
  • the atmosphere for sintering is preferably in the air.
  • the present invention is not limited to this, and may be sintered in a carbon dioxide gas atmosphere or in an inert gas atmosphere such as nitrogen gas.
  • D 50 average particle size
  • the sintering temperature is preferably 600 ° C. or less, more preferably 580 ° C. or less, and still more preferably 560 ° C. or less. If the sintering temperature is too high, calcium carbonate is decomposed and calcium oxide is easily formed, which is not preferable.
  • the sintering temperature is preferably 420 ° C. or more, more preferably 430 ° C. or more, and still more preferably 440 ° C. or more. If the sintering temperature is too low, calcium carbonate may not sinter sufficiently.
  • the relative density of the bulk sintered body is preferably 90% or more, more preferably 95% or more, more preferably 97% or more, and still more preferably 98% or more. % Or more is particularly preferred.
  • the purity of the bulk sintered body using high purity calcium carbonate is preferably 99.7% by mass or more, more preferably 99.8% by mass or more, and 99.9% by mass or more Is more preferable, 99.95% by mass or more is further preferable, and 99.99% by mass or more is particularly preferable.
  • the upper limit of the purity is not particularly limited, but is generally 99.9999% by mass.
  • ⁇ Apatite body> The calcium carbonate sintered body obtained as described above is reacted with a solution of phosphate or phosphoric acid to apatinate at least the surface of the calcium carbonate sintered body to produce the apatite body of the present invention. be able to.
  • the phosphate examples include triammonium phosphate, tripotassium phosphate, trisodium phosphate, disodium ammonium phosphate, sodium diammonium phosphate, ammonium dihydrogenphosphate, potassium dihydrogenphosphate, disodium phosphate Sodium hydrogen, trimagnesium phosphate, ammonium ammonium hydrogen phosphate, diammonium hydrogen phosphate, dipotassium hydrogen phosphate, disodium hydrogen phosphate, trisodium dihydrogen magnesium phosphate hydrogen phosphate, diphenyl phosphate, dimethyl phosphate, phosphorus Acid cellulose, ferrous phosphate, ferric phosphate, tetrabutyl ammonium phosphate, copper phosphate, triethyl phosphate, tricresyl phosphate, tristrimethylsilyl phosphate, triphenyl phosphate, tributyl phosphate, trimethyl phosphate , Guanidine phosphate, edged phosphat
  • phosphates may be used in combination of multiple types.
  • preferred phosphates are primary to tertiary phosphates M 3-x H x PO 4 (where M is Na, K or NH 4 and x is an integer of 0 to 2). is there.
  • M is Na, K or NH 4 and x is an integer of 0 to 2).
  • M is Na, K or NH 4 and x is an integer of 0 to 2.
  • M is Na, K or NH 4
  • x is an integer of 0 to 2
  • primary to tertiary phosphates may be mixed and used.
  • orthophosphoric acid As phosphoric acid, orthophosphoric acid, pyrophosphoric acid, condensed phosphoric acid and the like can be mentioned, and it is preferable to use orthophosphoric acid.
  • the solution of phosphate or phosphoric acid is generally an aqueous solution.
  • the concentration of phosphate or phosphoric acid is preferably in the range of 0.001 to 3 mol / L, more preferably in the range of 0.01 to 2 mol / L, and 0.1 to 1 mol / L. More preferably, it is within the range of
  • the temperature of the solution of phosphate or phosphoric acid is preferably in the range of 10 to 100 ° C., and more preferably in the range of 60 to 90 ° C. Further, in the case of using a pressure resistant container or the like, immersion can be performed even in the range of 100 ° C. to 280 ° C.
  • the calcium carbonate sintered body is reacted with the phosphate or phosphoric acid to apatify the surface of the calcium carbonate sintered body .
  • the method is not limited to this, and any method may be used as long as it can be reacted by bringing the surface of the calcium carbonate sintered body into contact with a solution of phosphate or phosphoric acid.
  • the time for immersing the calcium carbonate sintered body in the solution of phosphate or phosphoric acid is not particularly limited, but for example, it is in the range of 1 hour to 4 weeks, preferably in the range of 3 days to 2 weeks It can be done.
  • the apatite body After immersion, the apatite body is taken out and, if necessary, washing with water, drying and the like are performed.
  • Example 1 (Production of calcium carbonate porous sintered body: second production method) As calcium carbonate, calcium carbonate having a purity of 99.99% by mass, an average particle diameter (D 50 ) of 0.15 ⁇ m, and a BET specific surface area of 10 m 2 / g was used. The purity was derived by the difference method. Specifically, the inductive coupling plasma emission analyzer is used to measure the amount of impurities in the test solution in which the sample of known mass is dissolved, and the sum of the obtained results is used as the impurity content to subtract the impurity content from the whole. The value is taken as the purity.
  • the average particle size (D 50 ) of the calcium carbonate particles to be measured was determined from the particle size distribution by measuring the particle sizes of 1500 particles by transmission electron microscope observation.
  • the BET specific surface area was measured by a one-point method using a Flowsorb 2200 manufactured by Shimadzu Corporation.
  • the dispersion was foamed using a hand mixer to obtain a foam.
  • the obtained foam was poured into a mold and freeze-dried in this state.
  • the conditions for lyophilization were prefreezing at -40.degree. C. for 12 hours under normal pressure and holding at 30.degree. C. for 48 hours under a reduced pressure of 10 Pa.
  • the freeze-dried foam was heated at a temperature of 10 ° C./minute to a temporary sintering temperature (350 ° C.), and temporary sintering was performed for 10 hours after the temperature increase.
  • the temperature was raised to the main sintering temperature (510 ° C.) at the same temperature rising rate, and main sintering was performed for 3 hours after the temperature rise, to obtain a calcium carbonate porous sintered body.
  • the purity of the obtained calcium carbonate porous sintered body was 99.9% by mass, and the porosity was 89.0%.
  • the purity was measured by the above difference method.
  • the porosity is obtained by cutting the sintered body into a rectangular block, obtaining the density from the weight and apparent volume of the block, dividing by the true density of calcium carbonate 2.711 g / cm 3 to obtain the relative density, and the relative density from the whole
  • the porosity is the value obtained by subtracting.
  • the resulting calcium carbonate porous sintered body is apatinated by immersing it in a 1 mol / L aqueous solution of disodium hydrogen phosphate (Na 2 HPO 4 ) aqueous solution maintained at 60 ° C. to produce an apatite by apatifying the surface. did.
  • the immersion time was changed to one day, three days, five days, seven days, and fourteen days, and apatite bodies different in immersion time were manufactured, respectively.
  • FIG. 1 is a view showing an X-ray diffraction chart of each apatite body.
  • FIG. 1 also shows the positions of X-ray diffraction peaks of hydroxyapatite and calcium carbonate (calcite).
  • FIG. 2 (100x), Fig. 3 (5000x) and Fig. 4 (12000x) are scanning electron micrographs showing the apatite body obtained by immersion for one day.
  • FIG. 5 (100 times), FIG. 6 (5000 times), and FIG. 7 (12000 times) are the scanning electron micrographs which show the apatite body obtained by 14-day immersion.
  • whisker-like projections are observed on the surface of the apatite body obtained by immersion for one day.
  • the whisker-like convex portion is not observed in the calcium carbonate porous sintered body whose surface is not apatitized. Therefore, it is considered that the whisker-like convex portion is generated when the surface is apatitized, and it is confirmed that the surface of the apatite body obtained by immersion for one day is apatitized.
  • the absorbance in the case of the calcium carbonate porous sintered body was 0.5984%, while the absorbance in the case of the apatite body was 0.5319%, and the absorbance of the apatite body was smaller. From this, it was confirmed that the apatite body whose surface was apatitized had an increased amount of protein adsorption compared to the calcium carbonate porous sintered body whose surface was not apatitized.
  • the BET specific surface area of these samples was measured, the BET specific surface area of the calcium carbonate porous sintered body was 0.7 m 2 / g, while the BET specific surface area of the apatite body was 3.5 m 2 It was / g.
  • Example 2 (Production of calcium carbonate porous sintered body: first production method) Calcium carbonate having a purity of 99.61% by mass, an average particle size (D 50 ) of 0.15 ⁇ m, and a BET specific surface area of 10 m 2 / g was used as calcium carbonate.
  • a special polycarboxylic acid type polymer surfactant (effective part number: 1.0 parts by mass) 0.32 parts by mass of potassium carbonate and 0.28 parts by mass of lithium carbonate were mixed using a homodisper to obtain a dispersion.
  • Methyl cellulose is a gelling agent
  • the special polycarboxylic acid type polymeric surfactant is a dispersant
  • potassium carbonate and lithium carbonate are sintering aids.
  • the foam was put into a mold made of paper, the mold was transferred to a hot air dryer, and the foam was gelled by heating the foam at 80 ° C. for 0.5 hours in the hot air dryer. The gelled foam was dried by heating at 80 ° C. for 12 hours.
  • the gelled and dried foam was heated to a pre-sintering temperature (400 ° C.) at a temperature rising rate of 5 ° C./min, and pre-sintering was performed for 10 hours after the temperature rise.
  • the main sintering temperature 510.degree. C.
  • main sintering is performed for 3 hours after the temperature increase, and then cooling is performed to room temperature at
  • the calcium carbonate porous sintered body was obtained.
  • the porosity of the obtained calcium carbonate porous sintered body was 82% by volume.
  • the surface of the obtained calcium carbonate porous sintered body is apatitized by immersing it in a 1 mol / L aqueous solution of disodium hydrogen phosphate (Na 2 HPO 4 ) aqueous solution maintained at 60 ° C. for 67 hours to apatite the surface. Manufactured.
  • the obtained apatite body is subjected to a protein adsorption experiment in the same manner as described above, and the apatite body whose surface is apatized has an increase in the amount of adsorbed protein compared to the calcium carbonate porous sintered body whose surface is not apatinated. It was confirmed.
  • Example 3 Manufacture of calcium carbonate bulk sintered body
  • calcium carbonate having a purity of 99.99% by mass, an average particle diameter (D 50 ) of 0.15 ⁇ m, and a BET specific surface area of 10 m 2 / g was used.
  • D 50 average particle diameter
  • BET specific surface area 10 m 2 / g
  • the bulk density b b [g / cm 3 ] of the calcium carbonate sintered body was determined from the Archimedes method, and the obtained bulk density was divided by the theoretical density of calcium carbonate (2.711 g / cm 3 ) to determine its relative density .
  • the bulk density of the calcium carbonate sintered body was determined as follows. First, the dry weight W 1 of the samples of calcium carbonate sintered body was measured, after the sample was allowed to stand for about 10 minutes in paraffin was hot water, cooled to a room temperature extraction. The weight W 2 of the sample containing the paraffin after cooled was measured. Thereafter, the weight W 3 of the sample in water was measured, and the bulk density b b of the sample was determined from the following equation.
  • the surface is apatitized by immersing the obtained calcium carbonate bulk-like sintered body in a 1 mol / L aqueous solution of disodium hydrogen phosphate (Na 2 HPO 4 ) aqueous solution maintained at 60 ° C. for 67 hours to apatite the surface. Manufactured.
  • the obtained apatite body was subjected to a protein adsorption experiment, and it was confirmed that the apatite body whose surface was apatitized had an increased amount of protein adsorption compared to a calcium carbonate bulk-like sintered body whose surface was not apatitized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Veterinary Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Materials For Medical Uses (AREA)

Abstract

容易に製造することができ、かつ安定したアパタイト組成を有するアパタイト体及びその製造方法を提供する。 炭酸カルシウム焼結体の少なくとも表面をアパタイト化したことを特徴としており、炭酸カルシウム焼結体は、多孔質焼結体であってもよい。

Description

アパタイト体及びその製造方法
 本発明は、少なくとも表面がアパタイト化されたアパタイト体及びその製造方法に関する。
 アパタイトは、骨補填材、人工骨等に好適な生体親和性を有する人工生体材料として極めて有用である。生体にアパタイトを埋植する場合、アパタイトを多孔質にすることにより、生体組織が生体埋植材料に滲入しやすくなる。このため、多孔質のアパタイト焼結体を製造することが求められている。
 特許文献1においては、リン酸カルシウム系粉体を用いてハイドロキシアパタイトの多孔質焼結体を製造する方法が開示されている。特許文献1の実施例では、ハイドロキシアパタイトの粉末を用いてハイドロキシアパタイトの多孔質焼結体が製造されている。
特開2004-115297号公報
 しかしながら、アパタイトの粉末を用いてアパタイトの焼結体を製造する場合、製造工程が複雑となり、また焼結などの際にアパタイトの組成が変化してしまい、所望の組成のアパタイト焼結体を得ることができないおそれがあるなどの問題があった。
 本発明の目的は、容易に製造することができ、かつ安定したアパタイト組成を有するアパタイト体及びその製造方法を提供することにある。
 本発明のアパタイト体は、炭酸カルシウム焼結体の少なくとも表面をアパタイト化したことを特徴としている。
 本発明において、炭酸カルシウム焼結体は、多孔質焼結体であってもよい。
 本発明の製造方法は、炭酸カルシウム焼結体を作製する工程と、炭酸カルシウム焼結体にリン酸塩またはリン酸の溶液を反応させて、炭酸カルシウム焼結体の少なくとも表面をアパタイト化する工程とを備えることを特徴とするアパタイト体の製造方法である。
 本発明の製造方法において、炭酸カルシウム焼結体を作製する工程は、炭酸カルシウムの圧縮成形体を作製する工程と、圧縮成形体を焼結することにより、炭酸カルシウム焼結体を作製する工程とを含むものであってもよい。この場合、圧縮成形体は、炭酸カルシウムと焼結助剤の混合物の圧縮成形体であってもよい。また、圧縮成形体は、純度99.7質量%以上の炭酸カルシウムの圧縮成形体であってもよい。
 本発明の製造方法において、炭酸カルシウム焼結体が多孔質焼結体である場合、炭酸カルシウム焼結体を作製する工程は、炭酸カルシウムとゲル化剤とを含む分散液を調製する工程と、分散液に発泡剤を添加した後撹拌して泡立て、発泡体を作製する工程と、発泡体をゲル化する工程と、ゲル化した発泡体を焼結することにより、多孔質焼結体を製造する工程とを含むものであってもよい。
 本発明の製造方法において、炭酸カルシウム焼結体が多孔質焼結体である場合、炭酸カルシウム焼結体を作製する工程は、炭酸カルシウムを含む分散液を調製する工程と、分散液に発泡剤を添加した後撹拌して泡立て、発泡体を作製する工程と、発泡体を焼結することにより、多孔質焼結体を製造する工程とを含むものであってもよい。この場合、上記発泡体を凍結乾燥した後、焼結してもよい。
 本発明によれば、容易に製造することができ、かつ安定したアパタイト組成を有するアパタイト体及びその製造方法を提供することができる。
図1は、本発明の実施例におけるアパタイト体のX線回折チャートを示す図である。 図2は、リン酸塩水溶液浸漬1日後のアパタイト体の表面を示す走査型電子顕微鏡写真(100倍)である。 図3は、リン酸塩水溶液浸漬1日後のアパタイト体の表面を示す走査型電子顕微鏡写真(5000倍)である。 図4は、リン酸塩水溶液浸漬1日後のアパタイト体の表面を示す走査型電子顕微鏡写真(12000倍)である。 図5は、リン酸塩水溶液浸漬14日後のアパタイト体の表面を示す走査型電子顕微鏡写真(100倍)である。 図6は、リン酸塩水溶液浸漬14日後のアパタイト体の表面を示す走査型電子顕微鏡写真(5000倍)である。 図7は、リン酸塩水溶液浸漬14日後のアパタイト体の表面を示す走査型電子顕微鏡写真(12000倍)である。
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。
 <炭酸カルシウム>
 本発明において用いる炭酸カルシウムは、炭酸カルシウム焼結体の製造に用いることができるものであれば特に限定されない。密度の高い成形体を作製して焼結することができるという観点からは、透過型電子顕微鏡観察により測定した粒子径分布における平均粒子径(D50)が0.05~0.30μmの範囲内であり、レーザー回折式粒度分布測定法により測定した粒子径分布における90%粒子径(D90)が3μm以下であり、BET比表面積が5~25m/gである炭酸カルシウムが好ましい。
 透過型電子顕微鏡観察により測定した粒子径分布における平均粒子径(D50)は、0.05~0.30μmの範囲内であることが好ましく、より好ましくは0.08~0.25μmの範囲内であり、さらに好ましくは0.10~0.20μmの範囲内である。平均粒子径(D50)をこのような範囲内にすることにより、密度の高い成形体を作製することができ、密度の高い炭酸カルシウム焼結体を製造することができる。透過型電子顕微鏡観察による粒子径分布は、測定対象である炭酸カルシウムを透過型電子顕微鏡観察で1000個以上測定することにより求めることができる。
 レーザー回折式粒度分布測定法により測定した粒子径分布における90%粒子径(D90)が3μm以下であることが好ましく、より好ましくは2.5μm以下であり、さらに好ましくは2.0μm以下である。レーザー回折式粒度分布測定法で粒子径分布を求めることにより、炭酸カルシウムの凝集体の粒子径分布を求めることができる。透過型電子顕微鏡観察により測定した粒子径分布における平均粒子径(D50)が上記範囲内であり、レーザー回折式粒度分布測定法により測定した粒子径分布における90%粒子径(D90)が上記範囲である炭酸カルシウムは、粒子径分布がシャープであり、成形時の粉体のパッキング性に優れているので、高い密度の成形体を作製することができ、その結果密度の高い炭酸カルシウム焼結体を製造することができる。
 また、本発明においては、透過型電子顕微鏡観察により測定した粒子径分布における10%粒子径(D10)に対する90%粒子径(D90)の比(D90/D10)が、2.3以下であることが好ましく、2.2以下であることがより好ましく、2.1以下であることがさらに好ましい。D90/D10がこのような範囲となることにより、粒子径分布がさらにシャープとなり、成形体及び炭酸カルシウム焼結体の密度をさらに高めることができる。
 本発明において用いる炭酸カルシウムは、例えば、一般的に良く知られた石灰乳に炭酸ガスを吹き込んで反応させる炭酸ガス化合法により製造することができる。特に平均粒子径(D50)が0.1μmを超える粒子については特許第0995926号の製造方法に従い製造することができる。
 本発明において用いる炭酸カルシウムのBET比表面積は、5~25m/gであることが好ましく、7~20m/gであることがより好ましく、8~15m/gであることがさらに好ましい。BET比表面積を上記の範囲内にすることにより、炭酸カルシウムの焼結性を高めることができる。このため、密度の高い炭酸カルシウム焼結体を製造することができる。
 本発明において用いる炭酸カルシウムの純度は、99.0質量%以上であることが好ましく、99.5質量%以上であることがより好ましく、99.6質量%以上であることがさらに好ましい。
 本発明においては、純度が99.7質量%以上である高純度炭酸カルシウムを用いることができる。高純度炭酸カルシウム用いることにより、焼結に必要な焼結助剤の量を少なくすることができる。また、焼結助剤を用いることなく、焼結することもできる。純度は、99.8質量%以上であるものが好ましく、99.9質量%以上であるものがより好ましく、99.95質量%以上であるものがさらに好ましい。このような高純度炭酸カルシウムは、例えば、特開2012-240872号公報に開示された方法で製造することができる。
 なお、高純度炭酸カルシウムの純度の上限値は特に限定されるものではないが、一般には、99.9999質量%である。
 <炭酸カルシウム焼結体>
 本発明において用いる炭酸カルシウム焼結体としては、多孔質焼結体及びバルク状焼結体が挙げられる。多孔質焼結体を用いることにより、多孔質のアパタイト体を製造することができる。
 多孔質焼結体の製造方法としては、例えば、以下に説明する第1の製造方法及び第2の製造方法が挙げられる。
 <多孔質焼結体の第1の製造方法>
 第1の製造方法は、炭酸カルシウムとゲル化剤とを含む分散液を調製する工程と、分散液に発泡剤を添加した後撹拌して泡立て、発泡体を作製する工程と、発泡体をゲル化する工程と、ゲル化した発泡体を焼結することにより、多孔質焼結体を製造する工程とを含む。第1の製造方法について、以下詳細に説明する。
 (分散液の調製)
 分散液には、炭酸カルシウムとゲル化剤が含まれる。ゲル化剤を含むことにより、発泡後の分散発泡体中の気泡の強度が上がり、発泡体の形状を安定化することができる。ゲル化剤としては、メチルセルロースなどの多糖類や、イソブチレン―無水マレイン酸共重合体のアルカリ水溶性ポリマーなどが挙げられる。
 分散液中のゲル化剤の含有量は、炭酸カルシウム100質量部に対して0.1~5質量部の範囲が好ましく、0.5~3質量部の範囲がより好ましい。ゲル化剤の含有量が少なすぎると、発泡体中の気泡の強度が上がらず、発泡体の形状を安定化することができない場合がある。ゲル化剤の含有量が多くなりすぎると、含有量に比例した上記効果を得ることができない場合がある。
 分散液は、水などの分散媒に炭酸カルシウムを徐々に添加しながら、ディスパー、ミキサー、ボールミル等の攪拌力の強い装置を用いて、炭酸カルシウムを分散媒に分散させて調製することが好ましい。焼結助剤が必要な場合には、一般に、分散液に添加する。炭酸カルシウムの含有量は、一般に、分散液中において30~70質量%であることが好ましい。このとき、必要であれば炭酸カルシウム100質量部に対して0~3質量部程度のポリアクリル酸塩などの高分子界面活性剤を分散剤として添加してもよい。
 ゲル化剤は、炭酸カルシウムの添加前、添加後、あるいは炭酸カルシウムの添加と同時に、分散媒に添加することができる。
 (焼結助剤)
 焼結助剤は、炭酸カルシウムを焼結させて焼結体を製造することが可能なものであれば、特に限定されることなく用いることができる。焼結助剤としては、例えば、リチウム、ナトリウム及びカリウムの内の少なくとも2種の炭酸塩を含み、かつ融点が600℃以下である焼結助剤が挙げられる。焼結助剤の融点は、550℃以下であることが好ましく、530℃以下であることがより好ましく、450~520℃の範囲であることがさらに好ましい。焼結助剤の融点を上記範囲にすることにより、より低温で焼成して炭酸カルシウム焼結体を製造することができる。焼結の際には、炭酸カルシウムに添加して使用することから、実際の融点は上記の温度よりさらに低くなるため焼結助剤として十分に機能する。焼結助剤は、炭酸カリウム及び炭酸リチウムの混合物であることが好ましい。焼結助剤の融点は、例えば、相図から求めることができるし、示差熱分析(DTA)により測定することも可能である。
 また、リチウム、ナトリウム及びカリウムの内の少なくとも2種のフッ化物を含み、かつ融点が600℃以下である焼結助剤が挙げられる。このような焼結助剤も、上記の融点の範囲を有するものであることが好ましい。このような焼結助剤として、例えば、フッ化カリウム、フッ化リチウム及びフッ化ナトリウムの混合物が挙げられる。具体的には、例えば、フッ化カリウム10~60モル%、フッ化リチウム30~60モル%、及びフッ化ナトリウム0~30モル%の組成範囲を有する混合物が挙げられる。このような範囲とすることにより、より低い温度で焼成し、緻密な壁部を有する炭酸カルシウム多孔質焼結体を製造することができる。
 焼結助剤の含有割合は、炭酸カルシウムと焼結助剤の合計に対し、0.1~3.0質量%の範囲内であることが好ましく、より好ましくは0.2~2.5質量%の範囲内であり、さらに好ましくは0.3~2.0質量%の範囲内である。焼結助剤の含有割合が少なすぎると、炭酸カルシウムが十分に焼結しない場合がある。焼結助剤の含有割合が多すぎると、炭酸カルシウム多孔質焼結体の壁部の密度を高めることができない場合がある。
 なお、上記のように、高純度炭酸カルシウム用いることにより、焼結に必要な焼結助剤の量を少なくすることができる。また、焼結助剤を用いることなく、焼結することもできる。
 (発泡体の作製)
 上記分散液に発泡剤を添加した後撹拌し泡立てることにより発泡体を作製する。発泡剤としては、ラウリル硫酸トリエタノールアミンなどのアルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、ポリオキシエチレンアルキルエーテル酢酸塩、アルキルポリグルコシドなどが挙げられる。
 発泡剤は、分散液中の発泡剤の濃度が0.01~5質量%程度となるように添加することが好ましく、0.1~3質量%程度となるように添加することがより好ましい。攪拌は、ハンドミキサーやディスパーなどで行うことが好ましい。撹拌を行うことで分散液の温度が上昇することがあるため、必要であれば、分散液を冷却しながら撹拌を行ってもよい。
 (発泡体のゲル化)
 上記のようにして作製した発泡体をゲル化する。発泡体をゲル化することにより、焼結の際に発泡体の形状を保持することができる。ゲル化させる方法としては、分散液中のカルシウムイオンで架橋構造を作ることによりゲル化させる方法、ゲル化剤自身の温度特性を利用してゲル化を促進させる方法などが挙げられる。
 ゲル化した発泡体は、乾燥させて少なくとも一部の水分を除去した後、焼結することが好ましい。乾燥温度は、30~200℃の範囲であることが好ましい。
 (発泡体の焼結)
 ゲル化した発泡体を焼結することにより、炭酸カルシウム多孔質焼結体を製造する。本発明においては、仮焼結した後、本焼結することが好ましい。これにより、発泡体中に含まれている有機分が残存、炭化して黒ずんだり、有機分が急激に分解を起こすことで、焼結体にヒビの発生を生じることを防ぐことができる。
 仮焼結の温度は200~500℃の範囲内であることが好ましく、300~420℃の範囲内であることがより好ましい。本焼結の温度は、仮焼結の温度以上で、かつ420~600℃の範囲内であることが好ましく、450~540℃の範囲内であることがより好ましい。
 また、仮焼結及び本焼結の際の昇温速度は、2~20℃/分の範囲内であることが好ましい。これにより、有機分が急激に分解を起こすことで、焼結体にヒビの発生を生じることを防ぐことができる。
 焼結の際の雰囲気は、空気中であることが好ましい。しかしながら、本発明はこれに限定されるものではなく、炭酸ガス雰囲気中、あるいは窒素ガスなどの不活性ガス雰囲気中で焼結してもよい。
 <多孔質焼結体の第2の製造方法>
 第2の製造方法は、炭酸カルシウムを含む分散液を調製する工程と、分散液に発泡剤を添加した後撹拌して泡立て、発泡体を作製する工程と、発泡体を焼結することにより、多孔質焼結体を製造する工程とを含む。第2の製造方法について、以下詳細に説明する。
 (分散液の調製)
 水などの分散媒に炭酸カルシウムを徐々に添加しながら、ディスパー、ミキサー、ボールミル等の攪拌力の強い装置を用いて、炭酸カルシウムを分散媒に分散することが好ましい。炭酸カルシウムの含有量は、一般に、分散液中において30~70質量%であることが好ましい。このとき、必要であれば炭酸カルシウム100質量部に対して0~3質量部程度のポリアクリル酸塩などの高分子界面活性剤を分散剤として添加してもよい。
 焼結助剤が必要な場合には、一般に、分散液に添加する。焼結助剤は、第1の製造方法と同様のものを用いることができ、第1の製造方法と同様にして分散液に添加することができる。
 (賦形剤)
 上記分散液に賦形剤を添加してもよい。賦形剤を添加することにより発泡後の分散発泡体中の気泡の強度が上がり、発泡体の形状を安定化することができる。賦形剤としては、デンプン、デキストリン、ポリビニルアルコール、ポリプロピレングリコール、ペクチン、アルギン酸類、カルボキシセルロースのナトリウム塩などが挙げられる。
 (発泡体の作製)
 上記分散液に発泡剤を添加した後撹拌し泡立てることにより発泡体を作製する。発泡剤は、分散液中の発泡剤の濃度が0.01~5質量%程度となるように添加することが好ましい。攪拌は、ハンドミキサーやディスパーなどで行うことが好ましい。撹拌を行うことで分散液の温度が上昇することがあるため、必要であれば、分散液を冷却しながら撹拌を行ってもよい。発泡剤としては、第1の製造方法における発泡剤と同様のものを用いることができる。
 (凍結乾燥)
 上記発泡体を凍結乾燥した後、焼結することが好ましい。凍結乾燥することにより、発泡体の形状を容易に維持することができ、多孔質焼結体を良好な形状で得ることができる。
 具体的には、発泡体を常圧下に-40℃以下で2時間以上予備凍結を行い、次に減圧条件下において氷晶を昇華させながら、徐々に温度を上げていくことが好ましい。減圧の条件は、20Pa以下が好ましく、10Pa以下がより好ましい。温度は、氷晶が融解をしない範囲で減圧を維持しながら徐々に高くしていくことが望ましく、一般的には-40℃~60℃の範囲で制御を行う。
 (発泡体の焼結)
 上記のようにして得られた発泡体を、第1の製造方法と同様にして焼結することにより多孔質焼結体を製造することができる。
 <炭酸カルシウム多孔質焼結体>
 炭酸カルシウム多孔質焼結体の気孔率は、50体積%以上であることが好ましく、60体積%以上であることがより好ましく、70体積%以上であることがより好ましく、80体積%以上であることがさらに好ましく、85体積%以上であることが特に好ましい。これにより、炭酸カルシウム多孔質焼結体を、生体用途などにも用いることができる。なお、炭酸カルシウム多孔質焼結体の気孔率の上限値は特に限定されるものではないが、一般には、95体積%である。
 炭酸カルシウム多孔質焼結体は、焼結体の外部に至る連通孔が形成されていることが好ましい。このような炭酸カルシウム多孔質焼結体の表面をアパタイト化した多孔質アパタイト体では、内部表面のアパタイトを外部と容易に接触させることができる。従って、表面のアパタイトをより効率良く作用させることができる。
 高純度炭酸カルシウムを用いた炭酸カルシウム多孔質焼結体の純度は、99.7質量%以上であることが好ましく、99.8質量%以上であることがより好ましく、99.9質量%以上であることがより好ましく、99.95質量%以上であることがさらに好ましく、99.99質量%以上であることが特に好ましい。これにより、炭酸カルシウム多孔質焼結体を、生体用途などにも用いることができる。なお、炭酸カルシウム多孔質焼結体の純度の上限値は特に限定されるものではないが、一般には、99.9999質量%である。
 <バルク状焼結体の製造方法>
 バルク状焼結体の製造方法は、炭酸カルシウムの圧縮成形体を作製する工程と、圧縮成形体を焼結することにより、炭酸カルシウム焼結体を作製する工程とを含む。バルク状焼結体の製造方法について、以下詳細に説明する。
 (圧縮成形体の作製)
 炭酸カルシウム粉末と焼結助剤の混合物、または炭酸カルシウム粉末単体を圧縮成形して成形体を作製する。圧縮成形は、一軸成形であることが好ましい。平均粒子径(D50)が0.05~0.30μmの範囲内の炭酸カルシウムを用いることにより、一軸成形による成形体を用いても、高い密度を有する高純度炭酸カルシウム焼結体を製造することができる。しかしながら、本発明においては、一軸成形に限定されるものではなく、静水圧プレス成形、あるいはドクターブレード成形、鋳込み成形など他に知られた成形方法により成形体を作製してもよい。
 焼結助剤は、第1及び第2の製造方法と同様のものを、同様の割合で用いることができる。高純度炭酸カルシウム用いることにより、焼結に必要な焼結助剤の量を少なくすることができる。また、焼結助剤を用いることなく、焼結することもできる。
 成形体の相対密度は、50%以上であることが好ましく、55%以上であることがより好ましく、58%以上であることがさらに好ましい。成形体の相対密度は、成形体のかさ密度を、炭酸カルシウムの理論密度(2.711g/cm)で割った値である。成形体のかさ密度は、後述するアルキメデス法により測定することができる。上記成形体の相対密度は、196.1Mpa(2000kgf/cm)の成形圧で、一軸プレス成形したときに得られるものであることが好ましい。上記範囲の相対密度にすることにより、より高い密度の炭酸カルシウム焼結体を得ることができる。
 (圧縮成形体の焼結)
 上記の成形体を焼結することにより、バルク状焼結体を製造する。より簡易な工程で焼結するという観点からは、焼結の際の雰囲気は、空気中であることが好ましい。しかしながら、本発明はこれに限定されるものではなく、炭酸ガス雰囲気中、あるいは窒素ガスなどの不活性ガス雰囲気中で焼結してもよい。平均粒子径(D50)が0.05~0.30μmの範囲内の炭酸カルシウムを用いることにより、空気中で焼結させても、高い密度を有するバルク状焼結体を製造することができる。
 焼結温度は、600℃以下であることが好ましく、より好ましくは580℃以下であり、さらに好ましくは560℃以下である。焼結温度が高すぎると、炭酸カルシウムが分解し酸化カルシウムが生成しやすくなるため好ましくない。焼結温度は、420℃以上であることが好ましく、より好ましくは430℃以上であり、さらに好ましくは440℃以上である。焼結温度が低すぎると、炭酸カルシウムが十分に焼結しない場合がある。
 バルク状焼結体の相対密度は、90%以上であることが好ましく、95%以上であることがより好ましく、97%以上であることがより好ましく、98%以上であることがさらに好ましく、99%以上であることが特に好ましい。
 高純度炭酸カルシウムを用いたバルク状焼結体の純度は、99.7質量%以上であることが好ましく、99.8質量%以上であることがより好ましく、99.9質量%以上であることがより好ましく、99.95質量%以上であることがさらに好ましく、99.99質量%以上であることが特に好ましい。なお、純度の上限値は特に限定されるものではないが、一般には、99.9999質量%である。
 <アパタイト体>
 上記のようにして得られた炭酸カルシウム焼結体にリン酸塩またはリン酸の溶液を反応させて、炭酸カルシウム焼結体の少なくとも表面をアパタイト化することにより、本発明のアパタイト体を製造することができる。
 リン酸塩としては、例えば、リン酸三アンモニウム、リン酸三カリウム、リン酸三ナトリウム、リン酸二ナトリウムアンモニウム、リン酸ナトリウム二アンモニウム、リン酸二水素アンモニウム、リン酸二水素カリウム、リン酸二水素ナトリウム、リン酸三マグネシウム、リン酸水素アンモニウムナトリウム、リン酸水素二アンモニウム、リン酸水素二カリウム、リン酸水素二ナトリウム、リン酸水素マグネシウムリン酸三ジアセチル、リン酸ジフェニル、リン酸ジメチル、リン酸セルロース、リン酸第一鉄、リン酸第二鉄、リン酸テトラブチルアンモニウム、リン酸銅、リン酸トリエチル、リン酸トリクレジル、リン酸トリストリメチルシリル、リン酸トリフェニル、リン酸トリブチル、リン酸トリメチル、リン酸グアニジン、リン酸コバルトなどが挙げられる。これらのリン酸塩は、複数の種類を併用して用いてもよい。これらの中でも好ましいリン酸塩は、第1~第3リン酸塩M3-xPO(MはNa、K、またはNHであり、xは0~2の整数である。)である。pHを調整するため、第1~第3リン酸塩を混合して用いてもよい。
 リン酸としては、オルトリン酸、ピロリン酸、縮合リン酸などが挙げられるが、オルトリン酸を用いることが好ましい。
 リン酸塩またはリン酸の溶液は、一般には、水溶液が用いられる。リン酸塩またはリン酸の濃度は、0.001~3mol/Lの範囲内であることが好ましく、0.01~2mol/Lの範囲内であることがより好ましく、0.1~1mol/Lの範囲内であることがさらに好ましい。リン酸塩またはリン酸の溶液の温度は、10~100℃の範囲内であることが好ましく、60~90℃の範囲内であることがより好ましい。また、耐圧容器などを使用する場合は、100℃~280℃の範囲でも浸漬を行うことができる。
 一般には、炭酸カルシウム焼結体をリン酸塩またはリン酸の溶液に浸漬することにより、炭酸カルシウム焼結体をリン酸塩またはリン酸と反応させて炭酸カルシウム焼結体の表面をアパタイト化する。しかしながら、これに限定されるものではなく、炭酸カルシウム焼結体の表面をリン酸塩またはリン酸の溶液に接触させて反応することができる方法であればよい。
 炭酸カルシウム焼結体をリン酸塩またはリン酸の溶液に浸漬する時間は、特に限定されるものではないが、例えば、1時間~4週間の範囲、好ましくは3日~2週間の範囲で浸漬させることができる。
 浸漬後、アパタイト体を取り出し、必要に応じて、水洗、乾燥等を行う。
 以下、本発明に従う具体的な実施例を説明するが、本発明はこれらの実施例に限定されるものではない。
 <実施例1>
 (炭酸カルシウム多孔質焼結体の製造:第2の製造方法)
 炭酸カルシウムとして、純度99.99質量%、平均粒子径(D50)0.15μm、BET比表面積10m/gである炭酸カルシウムを用いた。純度は、差分法により導出した。具体的には、誘導結合プラズマ発光分析装置を用いて、質量既知の試料を溶解した測定検液中の不純物量を測定し、得られた結果の和を不純物含量として、全体から不純物含量を引いた値を純度とした。平均粒子径(D50)は、測定対象である炭酸カルシウム粒子について、透過型電子顕微鏡観察により1500個の粒子径を測定し、粒子径分布から求めた。BET比表面積は、島津製作所製のフローソーブ2200を用いて、1点法により測定した。
 適量のジルコニアボールが入ったポリエチレン瓶に純水を入れ、39体積%になるように上記炭酸カルシウムを純水に添加した。次に、炭酸カルシウム100質量部に対して、賦形剤としてのポリビニルアルコールを0.8質量部、分散剤としての高分子界面活性剤(花王株式会社製、特殊ポリカルボン酸型高分子界面活性剤、商品名「ポイズ520」)を2.5質量部添加した後、ポッドミルを用いて12時間湿式混合を行った。得られたスラリーに、スラリー10gあたり2mlとなるように、発泡剤としてのポリオキシエチレンアルキルエーテル19質量%水溶液を添加して分散液とした。
 上記分散液をハンドミキサーを用いて発泡し、発泡体を得た。得られた発泡体を型枠に流し込み、この状態で凍結乾燥を行った。凍結乾燥の条件は、常圧下に-40℃で12時間の予備凍結を行い、10Paの減圧下で30℃48時間保持した。
 凍結乾燥した発泡体を、仮焼結温度(350℃)まで毎分10℃で昇温させ、昇温後10時間仮焼結を行った。冷却した後、同様の昇温速度で本焼結温度(510℃)まで昇温させ、昇温後3時間本焼結を行い、炭酸カルシウム多孔質焼結体を得た。
 得られた炭酸カルシウム多孔質焼結体の純度は99.9質量%であり、気孔率は89.0%であった。純度は、上記の差分法により測定した。気孔率は、焼結体を直方体ブロック状に切出し、ブロックの重量と見かけの体積から密度を求め、炭酸カルシウムの真密度2.711g/cmで除し、相対密度を求め、全体から相対密度を引いた値を気孔率とした。
 (アパタイト体の製造)
 得られた炭酸カルシウム多孔質焼結体を、60℃に保持した濃度1mol/Lのリン酸水素二ナトリウム(NaHPO)水溶液中に浸漬することにより、表面をアパタイト化してアパタイト体を製造した。浸漬時間を、1日、3日、5日、7日、14日と変化させ、浸漬時間の異なるアパタイト体をそれぞれ製造した。
 図1は、各アパタイト体のX線回折チャートを示す図である。図1には、ハイドロキシアパタイト及び炭酸カルシウム(カルサイト)のX線回折ピークの位置を併せて示している。
 図1に示すように、7日浸漬して得られたアパタイト体及び14日浸漬して得られたアパタイト体は、炭酸カルシウムのピークが小さくなり、ハイドロキシアパタイトのピークが大きくなっており、炭酸カルシウム多孔質焼結体の多くの部分がアパタイト化されていることがわかる。
 図2(100倍)、図3(5000倍)及び図4(12000倍)は、1日浸漬して得られたアパタイト体を示す走査型電子顕微鏡写真である。また、図5(100倍)、図6(5000倍)及び図7(12000倍)は、14日浸漬して得られたアパタイト体を示す走査型電子顕微鏡写真である。
 図3及び図4に示されるように、1日浸漬して得られたアパタイト体の表面には、ひげ状の凸部が観察される。このひげ状の凸部は、表面をアパタイト化していない炭酸カルシウム多孔質焼結体では観察されないものである。従って、ひげ状の凸部は表面がアパタイト化することにより発生するものであると考えられ、1日浸漬して得られたアパタイト体の表面がアパタイト化していることが確認された。
 (タンパク質吸着実験)
 試料として、上記の炭酸カルシウム多孔質焼結体、及び上記と同様のリン酸水素二ナトリウム水溶液に67時間浸漬してアパタイト化したアパタイト体を用いた。これらの試料について、以下の手順でタンパク質吸着実験を行った。なお、試料は、乳鉢で粉砕して用いた。
 (1)試料10mgをポリプロピレン製チューブにはかり取る。
 (2)チューブに濃度1mg/mlのリゾチーム溶液を1ml添加する。
 (3)タッチミキサーで撹拌したのちに、振とう機で1時間振とうする。
 (4)振とうしたチューブを遠心分離によって試料を沈降させ、上澄み液80マイクロリットルを別のチューブに分取する。
 (5)タンパク質定量用の溶液4ml(BioRad社製プロテインアッセイ)を加え、タッチミキサーで混合後に静置する。
 (6)静置後に、分光光度セルに入れて、595nmの波長における吸光度を測定する。この時、試料の上澄み液中に含まれているタンパク質は定量用の溶液と反応することで、呈色反応をおこし、595nm付近の波長域での吸光度が大きくなる。
 炭酸カルシウム多孔質焼結体の場合の吸光度は0.5984%であるのに対して、アパタイト体の場合の吸光度は0.5319%であり、アパタイト体の方が吸光度が小さくなっていた。このことから、表面をアパタイト化したアパタイト体は、表面をアパタイト化していない炭酸カルシウム多孔質焼結体に比べ、タンパク質の吸着量が増加することが確認された。
 また、これらの試料についてBET比表面積を測定したところ、炭酸カルシウム多孔質焼結体のBET比表面積は0.7m/gであったのに対し、アパタイト体のBET比表面積は3.5m/gであった。
 <実施例2>
 (炭酸カルシウム多孔質焼結体の製造:第1の製造方法)
 炭酸カルシウムとして、純度99.61質量%、平均粒子径(D50)0.15μm、BET比表面積10m/gである炭酸カルシウムを用いた。
 イオン交換水55質量部と、上記炭酸カルシウム100質量部と、メチルセルロース0.55質量部と、特殊ポリカルボン酸型高分子界面活性剤2.5質量部(有効部数1.0質量部)と、炭酸カリウム0.32質量部と、炭酸リチウム0.28質量部とをホモディスパーを用いて混合し、分散液を得た。メチルセルロースはゲル化剤であり、特殊ポリカルボン酸型高分子界面活性剤は分散剤であり、炭酸カリウム及び炭酸リチウムは焼結助剤である。
 得られた分散液に、発泡剤としてのラウリル硫酸トリエタノールアミン0.97質量部(有効部数0.39質量部)を添加し、ハンドミキサーで、1000rpm、10分間撹拌して泡立て、発泡体を作製した。
 発泡体を紙で作製した成形型に入れ、成形型を熱風乾燥機に移し、熱風乾燥機内で発泡体を80℃、0.5時間加熱することにより、発泡体をゲル化させた。ゲル化した発泡体を、80℃、12時間加熱することにより、乾燥させた。
 ゲル化して乾燥させた発泡体を、仮焼結温度(400℃)まで5℃/分の昇温速度で昇温させ、昇温後10時間仮焼結を行った。次に、400℃から、同様の昇温速度で本焼結温度(510℃)まで昇温させ、昇温後3時間本焼結を行い、その後、10℃/分の速度で室温まで冷却し、炭酸カルシウム多孔質焼結体を得た。得られた炭酸カルシウム多孔質焼結体の気孔率は、82体積%であった。
 (アパタイト体の製造)
 得られた炭酸カルシウム多孔質焼結体を、60℃に保持した濃度1mol/Lのリン酸水素二ナトリウム(NaHPO)水溶液中に67時間浸漬することにより、表面をアパタイト化してアパタイト体を製造した。
 得られたアパタイト体について、上記と同様にしてタンパク質吸着実験を行い、表面をアパタイト化したアパタイト体は、表面をアパタイト化していない炭酸カルシウム多孔質焼結体に比べ、タンパク質の吸着量が増加することを確認した。
 <実施例3>
 (炭酸カルシウムバルク状焼結体の製造)
 炭酸カルシウムとして、純度99.99質量%、平均粒子径(D50)0.15μm、BET比表面積10m/gである炭酸カルシウムを用いた。この炭酸カルシウムを用いて、以下のようにして、炭酸カルシウムバルク状焼結体を製造した。
 (成形体の作製)
 炭酸カルシウムを適量のジルコニアボールが入ったポリエチレン瓶に入れ、一晩乾式混合を行い、原料粉末とした。この原料粉末を円筒状の金型内に入れ、プレス機を用いて一軸プレス成形した。98Mpa(1000kgf/cm)の成形圧で1分間予備プレス成形した後、196.1Mpa(2000kgf/cm)の成形圧で1分間プレス成形した。
 (成形体の焼成)
 得られた成形体を、空気中で540℃の焼成温度で3時間焼成し焼結させた。なお、焼成温度に達するまで毎分10℃で昇温させた。この焼成により、炭酸カルシウムバルク状焼結体を得た。
 (炭酸カルシウムバルク状焼結体の相対密度の測定)
 アルキメデス法より炭酸カルシウム焼結体のかさ密度ρb[g/cm]を求め、得られたかさ密度を炭酸カルシウムの理論密度(2.711g/cm)で割り、その相対密度を求めた。炭酸カルシウム焼結体のかさ密度は、次のように求めた。先ず、炭酸カルシウム焼結体の試料の乾燥重量Wを測定し、湯煎したパラフィン中にその試料を10分程度静置した後、取り出して常温になるまで冷やした。冷めた後にパラフィンを含有した試料の重量Wを測定した。その後、その試料の水中重量Wを測定し、下記の式より試料のかさ密度ρbを求めた。
 かさ密度ρb[g/cm]=WρW/(W2-W3
 ρW:水の密度[g/cm
 W:試料の乾燥重量[g]
 W:パラフィンを含有した試料の重量[g]
 W:試料の水中重量[g]
 炭酸カルシウム焼結体の相対密度は、97.0%であった。
 (炭酸カルシウムバルク状焼結体の純度の測定)
 上記の差分法により導出した炭酸カルシウム焼結体の純度は、99.99%であった。
 (アパタイト体の製造)
 得られた炭酸カルシウムバルク状焼結体を、60℃に保持した濃度1mol/Lのリン酸水素二ナトリウム(NaHPO)水溶液中に67時間浸漬することにより、表面をアパタイト化してアパタイト体を製造した。
 得られたアパタイト体について、タンパク質吸着実験を行い、表面をアパタイト化したアパタイト体は、表面をアパタイト化していない炭酸カルシウムバルク状焼結体に比べ、タンパク質の吸着量が増加することを確認した。

Claims (9)

  1.  炭酸カルシウム焼結体の少なくとも表面をアパタイト化したことを特徴とするアパタイト体。
  2.  前記炭酸カルシウム焼結体が多孔質焼結体である、請求項1に記載のアパタイト体。
  3.  炭酸カルシウム焼結体を作製する工程と、
     前記炭酸カルシウム焼結体にリン酸塩またはリン酸の溶液を反応させて、前記炭酸カルシウム焼結体の少なくとも表面をアパタイト化する工程と、
    を備えることを特徴とするアパタイト体の製造方法。
  4.  前記炭酸カルシウム焼結体を作製する工程が、
     炭酸カルシウムの圧縮成形体を作製する工程と、
     前記圧縮成形体を焼結することにより、前記炭酸カルシウム焼結体を作製する工程とを含む、請求項3に記載のアパタイト体の製造方法。
  5.  前記圧縮成形体が、炭酸カルシウムと焼結助剤の混合物の圧縮成形体である、請求項4に記載のアパタイト体の製造方法。
  6.  前記圧縮成形体が、純度99.7質量%以上の炭酸カルシウムの圧縮成形体である、請求項4に記載のアパタイト体の製造方法。
  7.  前記炭酸カルシウム焼結体が多孔質焼結体であって、
     前記炭酸カルシウム焼結体を作製する工程が、
     炭酸カルシウムとゲル化剤とを含む分散液を調製する工程と、
     前記分散液に発泡剤を添加した後撹拌して泡立て、発泡体を作製する工程と、
     前記発泡体をゲル化する工程と、
     前記ゲル化した発泡体を焼結することにより、前記多孔質焼結体を製造する工程とを含む、請求項4~6のいずれか一項に記載のアパタイト体の製造方法。
  8.  前記炭酸カルシウム焼結体が多孔質焼結体であって、
     前記炭酸カルシウム焼結体を作製する工程が、
     炭酸カルシウムを含む分散液を調製する工程と、
     前記分散液に発泡剤を添加した後撹拌して泡立て、発泡体を作製する工程と、
     前記発泡体を焼結することにより、前記多孔質焼結体を製造する工程とを含む、請求項4~6のいずれか一項に記載のアパタイト体の製造方法。
  9.  前記発泡体を凍結乾燥した後、焼結する、請求項8に記載のアパタイト体の製造方法。
PCT/JP2018/028960 2017-08-17 2018-08-02 アパタイト体及びその製造方法 WO2019035361A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880053465.XA CN111032566A (zh) 2017-08-17 2018-08-02 磷灰石体及其制造方法
EP18845969.7A EP3670446A4 (en) 2017-08-17 2018-08-02 APATITE BODY AND ITS PREPARATION METHOD
US16/637,136 US20200369572A1 (en) 2017-08-17 2018-08-02 Apatite body and preparing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-157578 2017-08-17
JP2017157578A JP6788166B2 (ja) 2017-08-17 2017-08-17 アパタイト体の製造方法

Publications (1)

Publication Number Publication Date
WO2019035361A1 true WO2019035361A1 (ja) 2019-02-21

Family

ID=65362421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028960 WO2019035361A1 (ja) 2017-08-17 2018-08-02 アパタイト体及びその製造方法

Country Status (5)

Country Link
US (1) US20200369572A1 (ja)
EP (1) EP3670446A4 (ja)
JP (1) JP6788166B2 (ja)
CN (1) CN111032566A (ja)
WO (1) WO2019035361A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242415A (ja) * 1994-03-02 1995-09-19 Inax Corp 炭酸カルシウムの常圧焼結法
JPH0995926A (ja) 1995-09-29 1997-04-08 Kuraray Plast Kk 舗装道路用導水管およびそれを用いた舗装道路
JPH11180705A (ja) * 1997-12-24 1999-07-06 Murakashi Sekkai Kogyo Kk 多孔質アパタイトを少なくとも表層に有する固体物質の製造方法
JPH11240782A (ja) * 1998-02-27 1999-09-07 Nobuyuki Sekizawa 金属含浸ハイドロオキシアパタイトの製造方法
JP2004115297A (ja) 2002-09-25 2004-04-15 Shiraishi Kogyo Kaisha Ltd ハイドロキシアパタイト多孔質燒結体の製造方法
JP2005112712A (ja) * 2003-09-18 2005-04-28 Univ Nihon リン酸カルシウム系化合物もしくは炭酸カルシウムの多孔質焼結体およびその製造法
JP2012240872A (ja) 2011-05-18 2012-12-10 Shiraishi Chuo Kenkyusho:Kk 高純度炭酸カルシウムの製造方法
CN104030718A (zh) * 2014-05-20 2014-09-10 广州医科大学 一种掺杂痕量元素的多孔碳酸钙陶瓷及其制备方法和应用
JP2015065970A (ja) * 2013-09-26 2015-04-13 オリンパス株式会社 骨形成材とその製造方法
WO2017038360A1 (ja) * 2015-08-31 2017-03-09 株式会社ジーシー 炭酸カルシウムを含有する多孔質体の製造方法、炭酸アパタイトを含有する多孔質体の製造方法
JP2018140890A (ja) * 2017-02-27 2018-09-13 株式会社白石中央研究所 炭酸カルシウム多孔質焼結体の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004027730D1 (de) * 2003-06-24 2010-07-29 Univ Kyushu Medizinisches knochenprothesematerial und verfahren zu seiner herstellung
US9925299B2 (en) * 2012-10-26 2018-03-27 Tufts University Silk-based fabrication techniques to prepare high strength calcium phosphate ceramic scaffolds

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242415A (ja) * 1994-03-02 1995-09-19 Inax Corp 炭酸カルシウムの常圧焼結法
JPH0995926A (ja) 1995-09-29 1997-04-08 Kuraray Plast Kk 舗装道路用導水管およびそれを用いた舗装道路
JPH11180705A (ja) * 1997-12-24 1999-07-06 Murakashi Sekkai Kogyo Kk 多孔質アパタイトを少なくとも表層に有する固体物質の製造方法
JPH11240782A (ja) * 1998-02-27 1999-09-07 Nobuyuki Sekizawa 金属含浸ハイドロオキシアパタイトの製造方法
JP2004115297A (ja) 2002-09-25 2004-04-15 Shiraishi Kogyo Kaisha Ltd ハイドロキシアパタイト多孔質燒結体の製造方法
JP2005112712A (ja) * 2003-09-18 2005-04-28 Univ Nihon リン酸カルシウム系化合物もしくは炭酸カルシウムの多孔質焼結体およびその製造法
JP2012240872A (ja) 2011-05-18 2012-12-10 Shiraishi Chuo Kenkyusho:Kk 高純度炭酸カルシウムの製造方法
JP2015065970A (ja) * 2013-09-26 2015-04-13 オリンパス株式会社 骨形成材とその製造方法
CN104030718A (zh) * 2014-05-20 2014-09-10 广州医科大学 一种掺杂痕量元素的多孔碳酸钙陶瓷及其制备方法和应用
WO2017038360A1 (ja) * 2015-08-31 2017-03-09 株式会社ジーシー 炭酸カルシウムを含有する多孔質体の製造方法、炭酸アパタイトを含有する多孔質体の製造方法
JP2018140890A (ja) * 2017-02-27 2018-09-13 株式会社白石中央研究所 炭酸カルシウム多孔質焼結体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3670446A4 *

Also Published As

Publication number Publication date
US20200369572A1 (en) 2020-11-26
JP2019034869A (ja) 2019-03-07
EP3670446A4 (en) 2021-04-21
EP3670446A1 (en) 2020-06-24
CN111032566A (zh) 2020-04-17
JP6788166B2 (ja) 2020-11-25

Similar Documents

Publication Publication Date Title
JP4070951B2 (ja) 多孔質リン酸カルシウム系セラミックス焼結体の製造方法
JP3362267B2 (ja) 生体インプラント材料及びその製造方法
US11097987B2 (en) Production method of calcium carbonate porous sintered body
US10016457B2 (en) Composites of hydroxyapatite and calcium carbonate and related methods of preparation and use
US20090191111A1 (en) Preparation method of calcium phosphate-based ceramic powder and compact thereof
JP7048055B2 (ja) 高純度炭酸カルシウム焼結体及びその製造方法、並びに高純度炭酸カルシウム多孔質焼結体及びその製造方法
WO2019035361A1 (ja) アパタイト体及びその製造方法
JP4443077B2 (ja) 多孔質リン酸カルシウム系セラミックス焼結体の製造方法及び多孔質リン酸カルシウム系セラミックス焼結体
Safina et al. Calcium phosphate based ceramic with a resorbable phase and low sintering temperature
US20220153604A1 (en) Calcium carbonate sintered body and method for producing same, and bone grafting material
Bignon et al. Effect of ball milling on the processing of bone substitutes with calcium phosphate powders
WO2017209096A1 (ja) 炭酸カルシウム焼結体の製造方法
JP4279077B2 (ja) 焼結体の製造方法および焼結体
WO2023013551A1 (ja) 焼結体原料炭酸カルシウム、炭酸カルシウム多孔質焼結体、炭酸カルシウム緻密質焼結体ならびにそれらの製造方法
JP2696345B2 (ja) リン酸カルシウム系セラミックス焼結体
JP2008279008A (ja) リン酸カルシウム成形体の製造方法
JP2892092B2 (ja) 燐酸カルシウム化合物成形体およびその製造方法
JP2003286073A (ja) 焼結体の製造方法および焼結体
Tolouei et al. Manufacturing Porous BCP Body by Negative Polymer Replica as a Bone Tissue Engineering Scaffold
JPH02258663A (ja) リン酸カルシウム系物質およびその製法方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018845969

Country of ref document: EP

Effective date: 20200317