WO2019031303A1 - 流体供給装置および流体供給方法 - Google Patents

流体供給装置および流体供給方法 Download PDF

Info

Publication number
WO2019031303A1
WO2019031303A1 PCT/JP2018/028601 JP2018028601W WO2019031303A1 WO 2019031303 A1 WO2019031303 A1 WO 2019031303A1 JP 2018028601 W JP2018028601 W JP 2018028601W WO 2019031303 A1 WO2019031303 A1 WO 2019031303A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
fluid supply
pump
supply device
processing chamber
Prior art date
Application number
PCT/JP2018/028601
Other languages
English (en)
French (fr)
Inventor
俊英 吉田
皆見 幸男
篠原 努
Original Assignee
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジキン filed Critical 株式会社フジキン
Priority to US16/634,681 priority Critical patent/US11569101B2/en
Priority to CN201880051985.7A priority patent/CN110998801B/zh
Priority to KR1020207000032A priority patent/KR102312482B1/ko
Priority to JP2019535123A priority patent/JP7243987B2/ja
Publication of WO2019031303A1 publication Critical patent/WO2019031303A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02307Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/67034Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for drying

Definitions

  • the present invention relates to a fluid supply apparatus and a fluid supply method of a fluid used in a drying process of various substrates such as semiconductor substrates, glass substrates for photomasks, and glass substrates for liquid crystal display.
  • the resist is a polymer material that is sensitive to light, X-rays, electron beams and the like, and a chemical solution such as a developer or a rinse liquid is used in the development and rinse cleaning steps, so the drying step is performed after the rinse cleaning step. Is required.
  • the supply of carbon dioxide to the processing chamber of the supercritical fluid condenses and liquefies gaseous carbon dioxide (eg, 20 ° C., 5.0 MPa) from the supply source in a condenser (condenser) and stores it in a tank, Is pumped into the processing chamber (eg, 20 ° C., 20.0 MPa).
  • Liquid carbon dioxide pumped to the processing chamber is heated (eg, 80 ° C., 20.0 MPa) just before the processing chamber or in the processing chamber to become a supercritical fluid.
  • the carbon dioxide in the liquid state pumped is pulsating so that the pressure of the liquid fluctuates significantly. For this reason, the supply amount of carbon dioxide which changes to the supercritical state immediately before or in the processing chamber becomes unstable, and it is difficult to stably supply the supercritical fluid of carbon dioxide.
  • An object of the present invention is to provide a fluid supply apparatus and a fluid supply method capable of stably supplying a supercritical fluid.
  • the fluid supply apparatus is a fluid supply apparatus for supplying a fluid in a liquid state to a processing chamber, which comprises A condenser for condensing and liquefying a gaseous state fluid; A tank for storing fluid condensed and liquefied by the condenser; A pump for pumping the liquefied fluid stored in the tank toward the processing chamber; And a heating means provided in a flow passage communicating with the discharge side of the pump, for partially making the liquid in the flow passage a supercritical fluid.
  • the heat transfer apparatus further comprises an enlarged heat transfer pipe section provided in a flow passage communicating with the discharge side of the pump, the heat transfer area being expanded,
  • the heating means may be provided in the enlarged heat transfer tube portion.
  • the fluid supply method of the present invention is characterized in that the fluid in the liquid state before being changed to the supercritical fluid is supplied toward the processing chamber using the fluid supply device having the above configuration.
  • a semiconductor manufacturing apparatus is characterized in that the substrate is processed using the fluid supply apparatus having the above-described configuration.
  • the liquid in the enlarged heat transfer tube portion is heated by the heating means to rapidly bring the inside of the enlarged heat transfer tube portion into the coexistence state of the liquid and the supercritical fluid, and the pulsation of the liquid utilizing the compressibility of the supercritical fluid Can absorb the supercritical fluid stably to the processing chamber.
  • FIG. 2 is a view showing a state in which liquid is supplied to the processing chamber in the fluid supply device of FIG. 1A. Phase diagram of carbon dioxide.
  • the front view which shows an example of an expansion heat-transfer pipe part.
  • the schematic block diagram which shows other embodiment of an expansion heat-transfer pipe part and a heating means.
  • the schematic block diagram which shows other embodiment of an expansion heat-transfer pipe part and a heating means.
  • the block diagram of the fluid supply apparatus which concerns on other embodiment of this invention.
  • FIGS. 1A and 1B show a fluid supply device according to an embodiment of the present invention.
  • the case of using carbon dioxide as the fluid will be described.
  • 1 is a fluid supply device
  • 10 is an enlarged heat transfer tube
  • 20 is a heating means (for example, a heater)
  • 100 is a CO2 supply source
  • 110 is an on-off valve
  • 120 is a check valve
  • 121 is a filter
  • Reference numeral 130 denotes a condenser
  • 140 denotes a tank
  • 150 denotes a pump
  • 160 denotes an automatic on-off valve
  • 170 denotes a back pressure valve
  • 500 denotes a processing chamber.
  • P in a figure shows a pressure sensor and TC shows a temperature sensor.
  • FIG. 1A shows a state in which the automatic opening / closing valve 160 is closed
  • FIG. 1B shows a state in which the automatic opening / closing valve 160 is opened.
  • the CO 2 supply source 100 supplies gaseous carbon dioxide (eg, 20 ° C., 5.0 MPa) to the main flow path 2.
  • gaseous carbon dioxide eg, 20 ° C., 5.0 MPa
  • carbon dioxide supplied from the CO 2 source 100 is in the state of P1 in FIG. 2.
  • the carbon dioxide in this state is sent to the condenser 130 through the on-off valve 110, the check valve 120, and the filter 121.
  • the condenser 130 cools the supplied gaseous carbon dioxide to liquefy and condense, and the liquefied and condensed carbon dioxide is stored in the tank 140.
  • the carbon dioxide stored in the tank 140 is in a state (3 ° C., 5 MPa) as shown by P2 in FIG.
  • carbon dioxide in a liquid state in the state as P2 in FIG. 2 is sent to the pump 150 and pumped to the discharge side of the pump 150, whereby a liquid state as shown in P3 in FIG. ° C, 20 MPa).
  • an automatic on-off valve 160 is provided in the middle of the main flow path 2 connecting the pump 150 and the processing chamber 500.
  • a branch flow path 3 branches from between the pump 150 of the main flow path 2 and the automatic opening / closing valve 160.
  • the branch flow path 3 branches from the main flow path 2 between the pump 150 and the automatic opening / closing valve 160, and is connected to the main flow path 2 again on the upstream side of the filter 121.
  • an enlarged heat transfer pipe portion 10 and a back pressure valve 170 are provided in the branch flow path 3, an enlarged heat transfer pipe portion 10 and a back pressure valve 170 are provided.
  • the back pressure valve 170 releases the liquid to the filter 121 side when the pressure of the fluid (liquid) on the discharge side of the pump 150 becomes equal to or higher than a set pressure (for example, 20 MPa). This prevents the pressure of the liquid on the discharge side of the pump 150 from exceeding the set pressure.
  • the automatic open / close valve 160 When the automatic open / close valve 160 is closed, the liquid pumped from the pump 150 returns to the condenser 130 and the tank 140 again through the branch flow path 3 as shown in FIG. 1A.
  • the automatic on-off valve 160 When the automatic on-off valve 160 is opened, carbon dioxide in a liquid state is pumped to the processing chamber 500 as shown in FIG. 1B.
  • the pumped carbon dioxide in the liquid state is heated by a heating means (not shown) provided immediately before or in the processing chamber 500 to obtain a supercritical state (80.degree. C., 20 MPa) such as P5 shown in FIG. Become.
  • the liquid discharged from the pump 150 pulsates not a little.
  • the main flow path 2 is filled with liquid up to the processing chamber 500
  • the branch flow path 3 is also filled with liquid up to the back pressure valve 170. Therefore, when the liquid discharged from the pump 150 pulsates, the pressure of carbon dioxide in the liquid state in the main flow path 2 and the branch flow path 3 periodically fluctuates. Carbon dioxide in the liquid state is poorly compressible. Therefore, when the pressure of carbon dioxide in the liquid state periodically fluctuates, the flow rate of carbon dioxide in the liquid state supplied to the processing chamber 500 also fluctuates accordingly. When the flow rate of carbon dioxide in the liquid state supplied is greatly fluctuated, the amount of carbon dioxide supplied to the supercritical state immediately before or in the processing chamber 500 is also greatly fluctuated.
  • the enlarged heat transfer pipe portion 10 and the heating means 20 are provided in the branch flow path 3.
  • the enlarged heat transfer pipe portion 10 is configured by a spiral pipe (helical pipe) 11 connected in series to the branch flow path 3 in order to expand the heat transfer area per unit volume than a normal straight pipe.
  • the pipe joint 12 and 15 is provided in the lower end part and the upper end part, respectively, and the spiral pipe 11 is connected in series to the branch flow path 3 by these pipe joint 12 and 15, respectively.
  • tube 11 is formed, for example with metal materials, such as stainless steel.
  • the diameter of the pipe 13 is 6.35 mm
  • the total length L of the spiral part 14 is 280 mm
  • the diameter D1 of the spiral part 14 is about 140 mm
  • the number of turns of the spiral part 14 is 22
  • the total length of the pipe 13 is about 9800 mm.
  • the present invention is not limited to this, and other than a spiral tube, a spiral tube, a corrugated tube, and the like.
  • the shape of the spiral or spiral need not be circular, but may be rectangular.
  • the expansion heat transfer tube 10 may be a plate type tube or a multi-tube type tube as well as used in the heat exchanger.
  • the heating means 20 heats the expansion heat transfer tube portion 10, but may be provided so as to cover the entire expansion heat transfer tube portion 10, or even if it is provided so as to cover the outer peripheral surface of the spiral tube 11. Good.
  • the heating means 20 may be configured to be able to heat at least a part of the enlarged heat transfer section 10, that is, a part or all of the spiral tube 11.
  • the inside of the spiral tube 11 of the enlarged heat transfer tube portion 10 is filled with carbon dioxide in a liquid state (state P3 in FIG. 2: 20 ° C., 20 MPa) pumped from the pump 150 when the heating means 20 is not operating. ing.
  • a liquid state state P3 in FIG. 2: 20 ° C., 20 MPa
  • the heating means 20 is operated to heat the liquid in the spiral tube 11
  • the temperature of the liquid is instantaneously increased since the heat transfer area is expanded, and at least a portion of the liquid in the spiral tube 11 is It becomes a supercritical state like P4 (60 ° C., 20 MPa) shown in FIG.
  • the supercritical carbon dioxide is highly compressible, and thus absorbs the pulsation of the liquid discharged from the pump 150.
  • the supercritical fluid can be stably supplied to the processing chamber 500.
  • FIG. 4A shows another embodiment of the enlarged heat transfer tube portion.
  • the spiral pipe 11 is connected in parallel to the branch flow path 3, and an orifice 30 is provided between the branch flow path 3 and the spiral pipe 11.
  • the pulsation (periodical pressure fluctuation) of the liquid discharged from the pump 150 is suppressed as in the first embodiment, and a supercritical state occurs immediately before the processing chamber 500 or in the processing chamber 500.
  • the changed supply of carbon dioxide can be stabilized.
  • FIG. 4B shows still another embodiment of the enlarged heat transfer tube portion.
  • the enlarged heat transfer pipe portion 10C shown in FIG. 4B two spiral pipes 11 are connected in parallel, and these are inserted into the branch flow path 3, and an orifice 30 is interposed between the branch flow path 3 and one spiral pipe 11. It is provided. Also in this configuration, the pulsation (periodical pressure fluctuation) of the liquid discharged from the pump 150 is suppressed as in the first embodiment, and a supercritical state occurs immediately before the processing chamber 500 or in the processing chamber 500. The changed supply of carbon dioxide can be stabilized.
  • FIG. 5 shows a fluid supply device 1A according to another embodiment of the present invention.
  • symbol is used about the component similar to FIG. 1A.
  • the expansion heat transfer tube portion 10 does not exist, and the heating means 20 heats the liquid in the branch flow path 3 to be partially made into a supercritical fluid. According to such a configuration, the enlarged heat transfer pipe portion 10 is unnecessary, and the device configuration can be simplified.
  • the present invention is not limited to this, and the main flow on the discharge side of the pump 150 It is also possible to provide an enlarged heat transfer tube 10 in the middle of the passage 2.
  • carbon dioxide is exemplified as the fluid to be pumped and sent to the processing chamber, but the fluid is not limited to this, and a fluid that can be changed to the supercritical state, for example, water, methane, ethane, propane
  • a fluid that can be changed to the supercritical state for example, water, methane, ethane, propane
  • the present invention is applicable to any of methanol, ethanol and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

【課題】超臨界流体を安定的に供給可能な流体供給装置および流体供給方法を提供する。 【解決手段】超臨界流体へ変化させる前の液体状態の流体を処理室に向けて供給する流体供給装置であって、気体状態の流体を凝縮液化するコンデンサ130と、コンデンサ130により凝縮液化された流体を貯留するタンク140と、タンク140に貯留された液化された流体を処理室500へ向けて圧送するポンプ150と、ポンプ150の吐出側と連通する流路に設けられ、当該流路内の液体を部分的に超臨界流体にするための加熱手段20と、を有する。

Description

流体供給装置および流体供給方法
 本発明は、半導体基板、フォトマスク用ガラス基板、液晶表示用ガラス基板などの各種基板の乾燥工程等に用いられる流体の流体供給装置および流体供給方法に関する。
 大規模で高密度、高性能な半導体デバイスは、シリコンウエハ上に成膜したレジストに対して露光、現像、リンス洗浄、乾燥を経てレジストパターンを形成した後、コーティング、エッチング、リンス洗浄、乾燥等のプロセスを経て製造される。特に、レジストは、光、X線、電子線などに感光する高分子材料であり、現像、リンス洗浄工程では現像液、リンス液等の薬液を使用しているため、リンス洗浄工程後は乾燥工程が必須である。
 この乾燥工程において、基板上に形成したレジストパターン間のスペース幅が90nm程度以下になるとパターン間に残存する薬液の表面張力(毛細管力)の作用により、パターン間にラプラス力が作用してパターン倒れが生ずる問題が発生する。そのパターン間に残存する薬液の表面張力の作用によるパターン倒れを防止するために、パターン間に作用する表面張力を軽減する乾燥プロセスとして、二酸化炭素の超臨界流体を用いた方法が知られている(例えば、特許文献1~4)。
特開2014-22520号公報 特開2006-294662号公報 特開2004-335675号公報 特開2002-33302号公報
 二酸化炭素の超臨界流体の処理チャンバへの供給は、供給源からの気体状態の二酸化炭素(例えば、20℃、5.0MPa)をコンデンサ(凝縮器)で凝縮液化してタンクに貯留し、これをポンプで処理チャンバへ圧送される(例えば、20℃、20.0MPa)。処理チャンバに圧送された液体状の二酸化炭素は、処理チャンバの直前又は処理チャンバ内で加熱され(例えば、80℃、20.0MPa)、超臨界流体となる。
 しかしながら、ポンプで圧送される液体状態の二酸化炭素は、脈動するため、液体の圧力が大きく変動する。このため、処理チャンバの直前又は処理チャンバ内で超臨界状態に変化する二酸化炭素の供給量が不安定となり、二酸化炭素の超臨界流体を安定的に供給するのが困難であった。
 本発明の目的は、超臨界流体を安定的に供給可能な流体供給装置および流体供給方法を提供することにある。
 本発明の流体供給装置は、液体状態の流体を処理室に向けて供給する流体供給装置であって、
 気体状態の流体を凝縮液化するコンデンサと、
 前記コンデンサにより凝縮液化された流体を貯留するタンクと、
 前記タンクに貯留された液化された流体を前記処理室へ向けて圧送するポンプと、
 前記ポンプの吐出側と連通する流路に設けられ、当該流路内の液体を部分的に超臨界流体にするための加熱手段と、を有することを特徴とする。
 好適には、前記ポンプの吐出側と連通する流路に設けられた伝熱面積が拡大された拡大伝熱管部をさらに有し、
 前記加熱手段は、前記拡大伝熱管部に設けられている、構成を採用できる。
 本発明の流体供給方法は、上記構成の流体供給装置を用いて、超臨界流体へ変化させる前の液体状態の流体を処理室に向けて供給することを特徴とする。
 本発明の半導体製造装置は、上記構成の流体供給装置を用いて、基体の処理をすることを特徴とする。
 本発明によれば、拡大伝熱管部の液体を加熱手段により加熱して当該拡大伝熱管部内を速やかに液体と超臨界流体の共存状態にし、超臨界流体の圧縮性を利用して液体の脈動を吸収することで、処理チャンバに超臨界流体を安定的に供給することができる。
本発明の一実施形態に係る流体供給装置の構成図であって、流体を循環させている状態の図。 図1Aの流体供給装置において処理チャンバに液体を供給している状態を示す図。 二酸化炭素の状態図。 拡大伝熱管部の一例を示す正面図。 拡大伝熱管部および加熱手段の他の実施形態を示す概略構成図。 拡大伝熱管部および加熱手段のさらに他の実施形態を示す概略構成図。 本発明の他の実施形態に係る流体供給装置の構成図。
 以下、本発明の実施形態について図面を参照して説明する。
第1実施形態
 図1Aおよび図1Bに本発明の一実施形態に係る流体供給装置を示す。本実施形態では、流体として二酸化炭素を使用する場合について説明する。
図1Aおよび図1Bにおいて、1は流体供給装置、10は拡大伝熱管部、20は加熱手段(例えば、ヒータ)、100はCO2供給源、110は開閉弁、120はチェック弁、121はフィルタ、130はコンデンサ、140はタンク、150はポンプ、160は自動開閉弁、170は背圧弁、500は処理チャンバを示す。また、図中のPは圧力センサ、TCは温度センサを示す。図1Aは自動開閉弁160が閉じた状態を示しており、図1Bは自動開閉弁160が開放された状態を示す。
 処理チャンバ500では、シリコンウエハ等の半導体基板の処理が行われる。なお、本実施形態では、処理対象として、シリコンウエハを例示するが、これに限定されるわけではなく、ガラス基板等の他の処理対象でもよい。
 CO2供給源100は、気体状態の二酸化炭素(例えば、20℃、5.0MPa)をメイン流路2へ供給する。図2を参照すると、CO2供給源100から供給される二酸化炭素は、図2のP1の状態にある。この状態の二酸化炭素は、開閉弁110、チェック弁120、フィルタ121を通じてコンデンサ130に送られる。
 コンデンサ130では、供給される気体状態の二酸化炭素を冷却することで、液化凝縮し、液化凝縮された二酸化炭素はタンク140に貯留される。タンク140に貯留された二酸化炭素は、図2のP2のような状態(3℃、5MPa)となる。タンク140の底部から図2のP2のような状態にある液体状態の二酸化炭素がポンプ150に送られ、ポンプ150の吐出側に圧送されることで、図2のP3のような液体状態(20℃、20MPa)となる。
 ポンプ150と処理チャンバ500とを結ぶメイン流路2の途中には、自動開閉弁160が設けられている。メイン流路2のポンプ150と自動開閉弁160の間からは、分岐流路3が分岐している。分岐流路3は、ポンプ150と自動開閉弁160の間で、メイン流路2から分岐し、フィルタ121の上流側で再びメイン流路2に接続されている。分岐流路3には、拡大伝熱管部10および背圧弁170が設けられている。
 背圧弁170は、ポンプ150の吐出側の流体(液体)の圧力が設定圧力(例えば20MPa)以上になると、フィルタ121側へ液体をリリースする。これにより、ポンプ150の吐出側の液体の圧力が設定圧力を超えるのを防ぐ。
 自動開閉弁160が閉じられた状態では、図1Aに示すように、ポンプ150から圧送される液体は、分岐流路3を通って再びコンデンサ130およびタンク140に戻る。
 自動開閉弁160が開放されると、図1Bに示すように、液体状態の二酸化炭素が処理チャンバ500へ圧送される。圧送された液体状態の二酸化炭素は、処理チャンバ500の直前又は処理チャンバ500内に設けられた図示しない加熱手段により加熱され、図2に示すP5のような超臨界状態(80℃、20MPa)となる。
 ここで、ポンプ150から吐出される液体は少なからず脈動する。
 ポンプ150から吐出される液体を処理チャンバ500へ供給する際に、処理チャンバ500までメイン流路2は液体で充填されているとともに、分岐流路3も背圧弁170まで液体が充填されている。このため、ポンプ150から吐出される液体が脈動すると、メイン流路2および分岐流路3内の液体状態の二酸化炭素の圧力が周期的に変動する。
 液体状態の二酸化炭素は、圧縮性が乏しい。このため、液体状態の二酸化炭素の圧力が周期的に変動すると、処理チャンバ500に供給される液体状態の二酸化炭素の流量もそれに応じて大きく変動する。供給される液体状態の二酸化炭素の流量が大きく変動すると、処理チャンバ500の直前あるいは処理チャンバ500内で超臨界状態に変化させた二酸化炭素の供給量も大きく変動してしまう。
 このため、本実施形態では、分岐流路3に拡大伝熱管部10と加熱手段20を設けている。
 拡大伝熱管部10は、通常のストレート管よりも単位容積当りの伝熱面積を拡大するために、分岐流路3に直列に接続されたスパイラル管(螺旋管)11で構成される。
 スパイラル管11は、下端部および上端部にそれぞれ管継手12,15が設けられており、これらの管継手12,15によりスパイラル管11が分岐流路3に直列に接続される。
 スパイラル管11を構成する管13は、例えば、ステンレス鋼等の金属材料で形成されている。管13の直径は6.35mm、スパイラル部14の全長Lは280mm、スパイラル部14の直径D1が140mm程度、スパイラル部14の巻数は22巻、管13の全長は9800mm程度である。本発明はこれに限定されるわけではなく、スパイラル管以外にも、渦巻形の管、波形の管等である。螺旋や渦巻の形状は、円形である必要はなく、角型であっても良い。また、拡大伝熱管10は、熱交換器で使用されるのと同様に、プレート式や多管式の管であってもよい。
 加熱手段20は、拡大伝熱管部10を加熱するが、拡大伝熱管部10の全体を覆うように設けられていてもよいし、スパイラル管11の外周面を被覆するように設けられていてもよい。要は、加熱手段20は、拡大伝熱部10の少なくとも一部、すなわち、スパイラル管11の一部または全部を加熱できるように構成されればよい。
 拡大伝熱管部10のスパイラル管11内は、加熱手段20が作動していない状態では、ポンプ150から圧送される液体状態(図2のP3の状態:20℃、20MPa)の二酸化炭素で充填されている。ここで、加熱手段20を作動させてスパイラル管11内の液体を加熱すると、伝熱面積が拡大されていることから、液体の温度は瞬時に上昇し、スパイラル管11の液体の少なくとも一部は図2に示すP4(60℃、20MPa)のような超臨界状態となる。超臨界状態の二酸化炭素は圧縮性に富むため、ポンプ150から吐出される液体の脈動を吸収する。この結果、処理チャンバ500に超臨界流体を安定的に供給することができる
第2実施形態
 図4Aに拡大伝熱管部の他の実施形態を示す。
 図4Aに示す拡大伝熱管部10Bは、分岐流路3に対してスパイラル管11を並列に接続し、分岐流路3とスパイラル管11との間にオリフィス30を設けている。
 このような構成としても、第1実施形態と同様に、ポンプ150から吐出される液体の脈動(周期的な圧力変動)が抑制され、処理チャンバ500の直前あるいは処理チャンバ500内で超臨界状態に変化させた二酸化炭素の供給量を安定化させることができる。
第3実施形態
 図4Bに拡大伝熱管部のさらに他の実施形態を示す。
 図4Bに示す拡大伝熱管部10Cは、2つのスパイラル管11を並列に接続し、これらを分岐流路3に挿入するとともに、分岐流路3と一方のスパイラル管11との間にオリフィス30を設けている。
 このような構成としても、第1実施形態と同様に、ポンプ150から吐出される液体の脈動(周期的な圧力変動)が抑制され、処理チャンバ500の直前あるいは処理チャンバ500内で超臨界状態に変化させた二酸化炭素の供給量を安定化させることができる。
 図5に本発明の他の実施形態に係る流体供給装置1Aを示す。なお、図5において、図1Aと同様の構成部分については、同様の符号を使用している。
 流体供給装置1Aでは、拡大伝熱管部10が存在せず、加熱手段20は分岐流路3内の液体を加熱して部分的に超臨界流体にする。
 このような構成によれば、拡大伝熱管部10が不要となり装置構成を簡素化できる。
 上記した両実施形態では、拡大伝熱管部10および加熱手段20を分岐流路3に設けた場合について例示したが、本発明はこれに限定されるわけではなく、ポンプ150の吐出側のメイン流路2の途中に拡大伝熱管部10を設けることも可能である。
 上記実施形態では、ポンプで加圧して処理チャンバへ送る流体として二酸化炭素を例示したが、これに限定されるわけではなく、超臨界状態に変化させ得る流体、例えば、水、メタン、エタン、プロパン、メタノール、エタノールなどであれば、本発明を適用可能である。
1、1A 流体供給装置
2 メイン流路
3 分岐流路
10,10B,10C 拡大伝熱管部
11 スパイラル管
20 加熱手段
30 オリフィス
100 CO2供給源
110 開閉弁
120 チェック弁 
121 フィルタ
130 コンデンサ
140 タンク
150 ポンプ
160 自動開閉弁
170 背圧弁
500 処理チャンバ

 

Claims (8)

  1.  液体状態の流体を処理室に向けて供給する流体供給装置であって、
     気体状態の流体を液化するコンデンサと、
     前記コンデンサにより液化された流体を貯留するタンクと、
     前記タンクに貯留された液化された流体を前記処理室へ向けて圧送するポンプと、
     前記ポンプの吐出側と連通する流路に設けられ、当該流路内の液体を部分的に超臨界流体にするための加熱手段と、を有することを特徴とする流体供給装置。
  2.  前記ポンプの吐出側と連通する流路に設けられた伝熱面積が拡大された拡大伝熱管部をさらに有し、
     前記加熱手段は、前記拡大伝熱管部に設けられている、ことを特徴とする請求項1に記載の流体供給装置。
  3.  前記加熱手段および前記拡大伝熱管部は、前記ポンプと前記ポンプの吐出側から前記処理室に至る流路の途中に設けられた開閉弁との間で分岐した流路に設けられており、前記分岐した流路は、前記ポンプから吐出された液体を前記コンデンサに戻すための流路であることを特徴とする請求項2に記載の流体供給装置。
  4.  前記加熱手段および前記拡大伝熱管部を前記ポンプと前記処理室を結ぶメイン流路の途中に設けたことを特徴とする請求項2に記載の流体供給装置。
  5.  前記拡大伝熱管部は、スパイラル管、渦巻形の管、波形の管、プレート式の管および多管式の管のいずれか、またはこれらの組み合わせを含む、ことを特徴とする請求項2なし4のいずれかに記載の流体供給装置。
  6.  前記流体は、超臨界状態に変化させ得る流体である、ことを特徴とする請求項1ないし5のいずれかに記載の流体供給装置。
  7.  請求項1ないし6のいずれかに記載の流体供給装置を用いて、液体状態の流体を処理室に向けて供給することを特徴とする流体供給方法。
  8.  請求項1ないし6のいずれかに記載の流体供給装置供給される流体を用いて基体の処理をすることを特徴とする半導体製造装置。
     

     
     
PCT/JP2018/028601 2017-08-10 2018-07-31 流体供給装置および流体供給方法 WO2019031303A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/634,681 US11569101B2 (en) 2017-08-10 2018-07-31 Fluid supply device and fluid supply method
CN201880051985.7A CN110998801B (zh) 2017-08-10 2018-07-31 流体供给装置和流体供给方法
KR1020207000032A KR102312482B1 (ko) 2017-08-10 2018-07-31 유체공급 장치 및 유체공급 방법
JP2019535123A JP7243987B2 (ja) 2017-08-10 2018-07-31 流体供給装置および流体供給方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017156193 2017-08-10
JP2017-156193 2017-08-10

Publications (1)

Publication Number Publication Date
WO2019031303A1 true WO2019031303A1 (ja) 2019-02-14

Family

ID=65271545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028601 WO2019031303A1 (ja) 2017-08-10 2018-07-31 流体供給装置および流体供給方法

Country Status (6)

Country Link
US (1) US11569101B2 (ja)
JP (1) JP7243987B2 (ja)
KR (1) KR102312482B1 (ja)
CN (1) CN110998801B (ja)
TW (1) TWI677661B (ja)
WO (1) WO2019031303A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020053518A (ja) * 2018-09-26 2020-04-02 東京エレクトロン株式会社 基板処理システムおよび処理流体供給方法
WO2021157951A1 (ko) * 2020-02-05 2021-08-12 주식회사 테스 기판처리장치
JP2022132400A (ja) * 2018-09-26 2022-09-08 東京エレクトロン株式会社 処理流体供給方法
CN115540527A (zh) * 2022-09-29 2022-12-30 浙江大学 超临界流体干燥系统及干燥方法
WO2024085014A1 (ja) * 2022-10-21 2024-04-25 東京エレクトロン株式会社 処理流体供給装置および処理流体供給方法
JP7525231B2 (ja) 2020-12-24 2024-07-30 東京エレクトロン株式会社 基板処理装置及び基板処理方法
TWI854933B (zh) 2018-09-26 2024-09-01 日商東京威力科創股份有限公司 處理流體供給方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7562403B2 (ja) * 2020-12-24 2024-10-07 東京エレクトロン株式会社 基板処理装置及び基板処理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087983A (ja) * 2010-10-19 2012-05-10 Tokyo Electron Ltd 流体加熱装置及び基板処理装置
JP2013077610A (ja) * 2011-09-29 2013-04-25 Tokyo Electron Ltd 基板処理装置
JP2013159499A (ja) * 2012-02-02 2013-08-19 Japan Organo Co Ltd 液化炭酸ガス製造装置及びその洗浄方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650492A (ja) 1992-07-31 1994-02-22 Japan Tobacco Inc 高圧流体供給管路における脈動防止方法
JP2000106358A (ja) * 1998-09-29 2000-04-11 Mitsubishi Electric Corp 半導体製造装置および半導体基板の処理方法
US6612317B2 (en) * 2000-04-18 2003-09-02 S.C. Fluids, Inc Supercritical fluid delivery and recovery system for semiconductor wafer processing
JP4392568B2 (ja) * 2000-01-18 2010-01-06 株式会社エスア−ル開発 超臨界流体攪拌機構とこれを組み込んだ超臨界流体洗浄、抽出、反応装置
US20040025908A1 (en) * 2000-04-18 2004-02-12 Stephen Douglas Supercritical fluid delivery system for semiconductor wafer processing
JP3962533B2 (ja) 2000-07-18 2007-08-22 株式会社神戸製鋼所 薄膜構造体の超臨界乾燥法及び超臨界乾燥装置
KR20020033302A (ko) 2000-10-30 2002-05-06 박종섭 에스램셀의 제조 방법
JP3782366B2 (ja) * 2002-03-20 2006-06-07 日本電信電話株式会社 超臨界処理方法及び超臨界処理装置
US7169540B2 (en) * 2002-04-12 2007-01-30 Tokyo Electron Limited Method of treatment of porous dielectric films to reduce damage during cleaning
US7267727B2 (en) * 2002-09-24 2007-09-11 Air Products And Chemicals, Inc. Processing of semiconductor components with dense processing fluids and ultrasonic energy
JP2004183730A (ja) 2002-12-02 2004-07-02 Sato Jushi Kogyo Kk 流体脈動緩和方法及び装置
JP3965693B2 (ja) 2003-05-07 2007-08-29 株式会社日立ハイテクサイエンスシステムズ 微細構造乾燥処理法とその装置及びその高圧容器
US7069742B2 (en) * 2004-01-19 2006-07-04 Air Products And Chemicals, Inc. High-pressure delivery system for ultra high purity liquid carbon dioxide
JP4546314B2 (ja) 2005-04-06 2010-09-15 株式会社日立ハイテクノロジーズ 微細構造乾燥処理法及びその装置
CN101198723A (zh) * 2005-04-15 2008-06-11 高级技术材料公司 用于超临界流体去除或沉积工艺的装置和方法
JP4499604B2 (ja) * 2005-04-22 2010-07-07 エヌ・ティ・ティ・アドバンステクノロジ株式会社 超臨界処理方法
CN1990126A (zh) * 2005-12-30 2007-07-04 财团法人工业技术研究院 超临界二氧化碳清洗系统与方法
CN101740342B (zh) * 2008-11-26 2011-08-31 中国科学院微电子研究所 二氧化碳超临界流体半导体清洗设备
JP5450494B2 (ja) * 2011-03-25 2014-03-26 株式会社東芝 半導体基板の超臨界乾燥方法
WO2012157648A1 (ja) * 2011-05-18 2012-11-22 オルガノ株式会社 高純度液化炭酸ガス製造方法及び装置
JP5458314B2 (ja) * 2011-06-30 2014-04-02 セメス株式会社 基板処理装置及び超臨界流体排出方法
JP5716710B2 (ja) 2012-07-17 2015-05-13 東京エレクトロン株式会社 基板処理装置、流体の供給方法及び記憶媒体
KR102037844B1 (ko) * 2013-03-12 2019-11-27 삼성전자주식회사 초임계 유체를 이용하는 기판 처리 장치, 이를 포함하는 기판 처리 시스템, 및 기판 처리 방법
EP2779222B1 (en) * 2013-03-12 2017-08-16 Samsung Electronics Co., Ltd. Substrate treatment systems using supercritical fluid
AU2021217228A1 (en) * 2020-02-08 2022-09-01 Brilliant Light Power, Inc. Magnetohydrodynamic hydrogen electrical power generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087983A (ja) * 2010-10-19 2012-05-10 Tokyo Electron Ltd 流体加熱装置及び基板処理装置
JP2013077610A (ja) * 2011-09-29 2013-04-25 Tokyo Electron Ltd 基板処理装置
JP2013159499A (ja) * 2012-02-02 2013-08-19 Japan Organo Co Ltd 液化炭酸ガス製造装置及びその洗浄方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11735439B2 (en) 2018-09-26 2023-08-22 Tokyo Electron Limited Substrate processing system and method for supplying processing fluid
TWI831834B (zh) * 2018-09-26 2024-02-11 日商東京威力科創股份有限公司 基板處理系統及處理流體供給方法
US11482427B2 (en) 2018-09-26 2022-10-25 Tokyo Electron Limited Substrate processing system and method for supplying processing fluid
KR102469166B1 (ko) 2018-09-26 2022-11-18 도쿄엘렉트론가부시키가이샤 기판 처리 시스템 및 처리 유체 공급 방법
TWI854933B (zh) 2018-09-26 2024-09-01 日商東京威力科創股份有限公司 處理流體供給方法
KR20200035357A (ko) * 2018-09-26 2020-04-03 도쿄엘렉트론가부시키가이샤 기판 처리 시스템 및 처리 유체 공급 방법
JP7109328B2 (ja) 2018-09-26 2022-07-29 東京エレクトロン株式会社 基板処理システム
JP2022132400A (ja) * 2018-09-26 2022-09-08 東京エレクトロン株式会社 処理流体供給方法
CN110957239A (zh) * 2018-09-26 2020-04-03 东京毅力科创株式会社 基片处理系统和处理流体供给方法
CN110957239B (zh) * 2018-09-26 2024-10-11 东京毅力科创株式会社 基片处理系统和处理流体供给方法
JP7285992B2 (ja) 2018-09-26 2023-06-02 東京エレクトロン株式会社 処理流体供給方法
JP2020053518A (ja) * 2018-09-26 2020-04-02 東京エレクトロン株式会社 基板処理システムおよび処理流体供給方法
KR102341891B1 (ko) * 2020-02-05 2021-12-21 주식회사 테스 기판처리장치
KR20210099981A (ko) * 2020-02-05 2021-08-13 주식회사 테스 기판처리장치
WO2021157951A1 (ko) * 2020-02-05 2021-08-12 주식회사 테스 기판처리장치
JP7525231B2 (ja) 2020-12-24 2024-07-30 東京エレクトロン株式会社 基板処理装置及び基板処理方法
CN115540527A (zh) * 2022-09-29 2022-12-30 浙江大学 超临界流体干燥系统及干燥方法
CN115540527B (zh) * 2022-09-29 2024-02-27 浙江大学 超临界流体干燥系统及干燥方法
WO2024085014A1 (ja) * 2022-10-21 2024-04-25 東京エレクトロン株式会社 処理流体供給装置および処理流体供給方法

Also Published As

Publication number Publication date
TWI677661B (zh) 2019-11-21
US20210125840A1 (en) 2021-04-29
JP7243987B2 (ja) 2023-03-22
KR20200014404A (ko) 2020-02-10
US11569101B2 (en) 2023-01-31
TW201910707A (zh) 2019-03-16
KR102312482B1 (ko) 2021-10-14
CN110998801A (zh) 2020-04-10
CN110998801B (zh) 2023-10-31
JPWO2019031303A1 (ja) 2020-07-02

Similar Documents

Publication Publication Date Title
WO2019031303A1 (ja) 流体供給装置および流体供給方法
JP5912596B2 (ja) 流体二酸化炭素の供給装置及び供給方法
JP5843638B2 (ja) 液化炭酸ガス製造装置及びその洗浄方法
KR20190001753A (ko) 초임계유체 가열장치 및 이를 포함하는 기판처리장치
JP2006234254A (ja) 熱交換器及びそれを用いたヒートポンプ式給湯装置
JP2007017097A (ja) 蒸気発生方法、その装置及び蒸気処理装置並びに蒸気発生用記録媒体
US9892939B2 (en) Substrate treating apparatus and chemical recycling method
JP7146283B2 (ja) 流体供給装置および流体供給方法
JP5912597B2 (ja) 流体二酸化炭素の供給装置及び供給方法
KR20200110045A (ko) 유체 공급 장치
JP2006250417A (ja) ヒートポンプ給湯機
KR102227726B1 (ko) 유체공급 장치 및 이 장치에 있어서의 액체배출 방법
CN105953598B (zh) 冷凝水汽化换热系统
KR20190070130A (ko) 초임계유체 공급장치
JPS6287787A (ja) 低沸点作動流体の注入方法
JP2016205683A (ja) 熱交換器、給湯システム、及び熱交換器の製造方法
JP6604469B2 (ja) 蛇管式熱交換器
JP5860945B2 (ja) 液化炭酸ガスの気化方法及び気化装置
KR200374263Y1 (ko) 히트파이프를 이용한 온돌용 폐회로 난방장치
JP2015020108A (ja) 真空洗浄装置
JPH09150001A (ja) 減圧蒸留再生装置
KR20100056261A (ko) 반도체 제조공정용 감광액의 온도유지를 위한 보관장치
JP2005090769A (ja) 純粋蒸気発生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019535123

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207000032

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18844272

Country of ref document: EP

Kind code of ref document: A1