WO2019031303A1 - 流体供給装置および流体供給方法 - Google Patents
流体供給装置および流体供給方法 Download PDFInfo
- Publication number
- WO2019031303A1 WO2019031303A1 PCT/JP2018/028601 JP2018028601W WO2019031303A1 WO 2019031303 A1 WO2019031303 A1 WO 2019031303A1 JP 2018028601 W JP2018028601 W JP 2018028601W WO 2019031303 A1 WO2019031303 A1 WO 2019031303A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluid
- fluid supply
- pump
- supply device
- processing chamber
- Prior art date
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 73
- 238000000034 method Methods 0.000 title claims abstract description 8
- 239000007788 liquid Substances 0.000 claims abstract description 42
- 238000010438 heat treatment Methods 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims description 9
- 239000004065 semiconductor Substances 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 238000005086 pumping Methods 0.000 claims description 2
- 230000009466 transformation Effects 0.000 abstract 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 62
- 229910002092 carbon dioxide Inorganic materials 0.000 description 31
- 239000001569 carbon dioxide Substances 0.000 description 29
- 238000010586 diagram Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 230000010349 pulsation Effects 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/6715—Apparatus for applying a liquid, a resin, an ink or the like
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02299—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
- H01L21/02307—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a liquid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67028—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
- H01L21/67034—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for drying
Definitions
- the present invention relates to a fluid supply apparatus and a fluid supply method of a fluid used in a drying process of various substrates such as semiconductor substrates, glass substrates for photomasks, and glass substrates for liquid crystal display.
- the resist is a polymer material that is sensitive to light, X-rays, electron beams and the like, and a chemical solution such as a developer or a rinse liquid is used in the development and rinse cleaning steps, so the drying step is performed after the rinse cleaning step. Is required.
- the supply of carbon dioxide to the processing chamber of the supercritical fluid condenses and liquefies gaseous carbon dioxide (eg, 20 ° C., 5.0 MPa) from the supply source in a condenser (condenser) and stores it in a tank, Is pumped into the processing chamber (eg, 20 ° C., 20.0 MPa).
- Liquid carbon dioxide pumped to the processing chamber is heated (eg, 80 ° C., 20.0 MPa) just before the processing chamber or in the processing chamber to become a supercritical fluid.
- the carbon dioxide in the liquid state pumped is pulsating so that the pressure of the liquid fluctuates significantly. For this reason, the supply amount of carbon dioxide which changes to the supercritical state immediately before or in the processing chamber becomes unstable, and it is difficult to stably supply the supercritical fluid of carbon dioxide.
- An object of the present invention is to provide a fluid supply apparatus and a fluid supply method capable of stably supplying a supercritical fluid.
- the fluid supply apparatus is a fluid supply apparatus for supplying a fluid in a liquid state to a processing chamber, which comprises A condenser for condensing and liquefying a gaseous state fluid; A tank for storing fluid condensed and liquefied by the condenser; A pump for pumping the liquefied fluid stored in the tank toward the processing chamber; And a heating means provided in a flow passage communicating with the discharge side of the pump, for partially making the liquid in the flow passage a supercritical fluid.
- the heat transfer apparatus further comprises an enlarged heat transfer pipe section provided in a flow passage communicating with the discharge side of the pump, the heat transfer area being expanded,
- the heating means may be provided in the enlarged heat transfer tube portion.
- the fluid supply method of the present invention is characterized in that the fluid in the liquid state before being changed to the supercritical fluid is supplied toward the processing chamber using the fluid supply device having the above configuration.
- a semiconductor manufacturing apparatus is characterized in that the substrate is processed using the fluid supply apparatus having the above-described configuration.
- the liquid in the enlarged heat transfer tube portion is heated by the heating means to rapidly bring the inside of the enlarged heat transfer tube portion into the coexistence state of the liquid and the supercritical fluid, and the pulsation of the liquid utilizing the compressibility of the supercritical fluid Can absorb the supercritical fluid stably to the processing chamber.
- FIG. 2 is a view showing a state in which liquid is supplied to the processing chamber in the fluid supply device of FIG. 1A. Phase diagram of carbon dioxide.
- the front view which shows an example of an expansion heat-transfer pipe part.
- the schematic block diagram which shows other embodiment of an expansion heat-transfer pipe part and a heating means.
- the schematic block diagram which shows other embodiment of an expansion heat-transfer pipe part and a heating means.
- the block diagram of the fluid supply apparatus which concerns on other embodiment of this invention.
- FIGS. 1A and 1B show a fluid supply device according to an embodiment of the present invention.
- the case of using carbon dioxide as the fluid will be described.
- 1 is a fluid supply device
- 10 is an enlarged heat transfer tube
- 20 is a heating means (for example, a heater)
- 100 is a CO2 supply source
- 110 is an on-off valve
- 120 is a check valve
- 121 is a filter
- Reference numeral 130 denotes a condenser
- 140 denotes a tank
- 150 denotes a pump
- 160 denotes an automatic on-off valve
- 170 denotes a back pressure valve
- 500 denotes a processing chamber.
- P in a figure shows a pressure sensor and TC shows a temperature sensor.
- FIG. 1A shows a state in which the automatic opening / closing valve 160 is closed
- FIG. 1B shows a state in which the automatic opening / closing valve 160 is opened.
- the CO 2 supply source 100 supplies gaseous carbon dioxide (eg, 20 ° C., 5.0 MPa) to the main flow path 2.
- gaseous carbon dioxide eg, 20 ° C., 5.0 MPa
- carbon dioxide supplied from the CO 2 source 100 is in the state of P1 in FIG. 2.
- the carbon dioxide in this state is sent to the condenser 130 through the on-off valve 110, the check valve 120, and the filter 121.
- the condenser 130 cools the supplied gaseous carbon dioxide to liquefy and condense, and the liquefied and condensed carbon dioxide is stored in the tank 140.
- the carbon dioxide stored in the tank 140 is in a state (3 ° C., 5 MPa) as shown by P2 in FIG.
- carbon dioxide in a liquid state in the state as P2 in FIG. 2 is sent to the pump 150 and pumped to the discharge side of the pump 150, whereby a liquid state as shown in P3 in FIG. ° C, 20 MPa).
- an automatic on-off valve 160 is provided in the middle of the main flow path 2 connecting the pump 150 and the processing chamber 500.
- a branch flow path 3 branches from between the pump 150 of the main flow path 2 and the automatic opening / closing valve 160.
- the branch flow path 3 branches from the main flow path 2 between the pump 150 and the automatic opening / closing valve 160, and is connected to the main flow path 2 again on the upstream side of the filter 121.
- an enlarged heat transfer pipe portion 10 and a back pressure valve 170 are provided in the branch flow path 3, an enlarged heat transfer pipe portion 10 and a back pressure valve 170 are provided.
- the back pressure valve 170 releases the liquid to the filter 121 side when the pressure of the fluid (liquid) on the discharge side of the pump 150 becomes equal to or higher than a set pressure (for example, 20 MPa). This prevents the pressure of the liquid on the discharge side of the pump 150 from exceeding the set pressure.
- the automatic open / close valve 160 When the automatic open / close valve 160 is closed, the liquid pumped from the pump 150 returns to the condenser 130 and the tank 140 again through the branch flow path 3 as shown in FIG. 1A.
- the automatic on-off valve 160 When the automatic on-off valve 160 is opened, carbon dioxide in a liquid state is pumped to the processing chamber 500 as shown in FIG. 1B.
- the pumped carbon dioxide in the liquid state is heated by a heating means (not shown) provided immediately before or in the processing chamber 500 to obtain a supercritical state (80.degree. C., 20 MPa) such as P5 shown in FIG. Become.
- the liquid discharged from the pump 150 pulsates not a little.
- the main flow path 2 is filled with liquid up to the processing chamber 500
- the branch flow path 3 is also filled with liquid up to the back pressure valve 170. Therefore, when the liquid discharged from the pump 150 pulsates, the pressure of carbon dioxide in the liquid state in the main flow path 2 and the branch flow path 3 periodically fluctuates. Carbon dioxide in the liquid state is poorly compressible. Therefore, when the pressure of carbon dioxide in the liquid state periodically fluctuates, the flow rate of carbon dioxide in the liquid state supplied to the processing chamber 500 also fluctuates accordingly. When the flow rate of carbon dioxide in the liquid state supplied is greatly fluctuated, the amount of carbon dioxide supplied to the supercritical state immediately before or in the processing chamber 500 is also greatly fluctuated.
- the enlarged heat transfer pipe portion 10 and the heating means 20 are provided in the branch flow path 3.
- the enlarged heat transfer pipe portion 10 is configured by a spiral pipe (helical pipe) 11 connected in series to the branch flow path 3 in order to expand the heat transfer area per unit volume than a normal straight pipe.
- the pipe joint 12 and 15 is provided in the lower end part and the upper end part, respectively, and the spiral pipe 11 is connected in series to the branch flow path 3 by these pipe joint 12 and 15, respectively.
- tube 11 is formed, for example with metal materials, such as stainless steel.
- the diameter of the pipe 13 is 6.35 mm
- the total length L of the spiral part 14 is 280 mm
- the diameter D1 of the spiral part 14 is about 140 mm
- the number of turns of the spiral part 14 is 22
- the total length of the pipe 13 is about 9800 mm.
- the present invention is not limited to this, and other than a spiral tube, a spiral tube, a corrugated tube, and the like.
- the shape of the spiral or spiral need not be circular, but may be rectangular.
- the expansion heat transfer tube 10 may be a plate type tube or a multi-tube type tube as well as used in the heat exchanger.
- the heating means 20 heats the expansion heat transfer tube portion 10, but may be provided so as to cover the entire expansion heat transfer tube portion 10, or even if it is provided so as to cover the outer peripheral surface of the spiral tube 11. Good.
- the heating means 20 may be configured to be able to heat at least a part of the enlarged heat transfer section 10, that is, a part or all of the spiral tube 11.
- the inside of the spiral tube 11 of the enlarged heat transfer tube portion 10 is filled with carbon dioxide in a liquid state (state P3 in FIG. 2: 20 ° C., 20 MPa) pumped from the pump 150 when the heating means 20 is not operating. ing.
- a liquid state state P3 in FIG. 2: 20 ° C., 20 MPa
- the heating means 20 is operated to heat the liquid in the spiral tube 11
- the temperature of the liquid is instantaneously increased since the heat transfer area is expanded, and at least a portion of the liquid in the spiral tube 11 is It becomes a supercritical state like P4 (60 ° C., 20 MPa) shown in FIG.
- the supercritical carbon dioxide is highly compressible, and thus absorbs the pulsation of the liquid discharged from the pump 150.
- the supercritical fluid can be stably supplied to the processing chamber 500.
- FIG. 4A shows another embodiment of the enlarged heat transfer tube portion.
- the spiral pipe 11 is connected in parallel to the branch flow path 3, and an orifice 30 is provided between the branch flow path 3 and the spiral pipe 11.
- the pulsation (periodical pressure fluctuation) of the liquid discharged from the pump 150 is suppressed as in the first embodiment, and a supercritical state occurs immediately before the processing chamber 500 or in the processing chamber 500.
- the changed supply of carbon dioxide can be stabilized.
- FIG. 4B shows still another embodiment of the enlarged heat transfer tube portion.
- the enlarged heat transfer pipe portion 10C shown in FIG. 4B two spiral pipes 11 are connected in parallel, and these are inserted into the branch flow path 3, and an orifice 30 is interposed between the branch flow path 3 and one spiral pipe 11. It is provided. Also in this configuration, the pulsation (periodical pressure fluctuation) of the liquid discharged from the pump 150 is suppressed as in the first embodiment, and a supercritical state occurs immediately before the processing chamber 500 or in the processing chamber 500. The changed supply of carbon dioxide can be stabilized.
- FIG. 5 shows a fluid supply device 1A according to another embodiment of the present invention.
- symbol is used about the component similar to FIG. 1A.
- the expansion heat transfer tube portion 10 does not exist, and the heating means 20 heats the liquid in the branch flow path 3 to be partially made into a supercritical fluid. According to such a configuration, the enlarged heat transfer pipe portion 10 is unnecessary, and the device configuration can be simplified.
- the present invention is not limited to this, and the main flow on the discharge side of the pump 150 It is also possible to provide an enlarged heat transfer tube 10 in the middle of the passage 2.
- carbon dioxide is exemplified as the fluid to be pumped and sent to the processing chamber, but the fluid is not limited to this, and a fluid that can be changed to the supercritical state, for example, water, methane, ethane, propane
- a fluid that can be changed to the supercritical state for example, water, methane, ethane, propane
- the present invention is applicable to any of methanol, ethanol and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
Description
この乾燥工程において、基板上に形成したレジストパターン間のスペース幅が90nm程度以下になるとパターン間に残存する薬液の表面張力(毛細管力)の作用により、パターン間にラプラス力が作用してパターン倒れが生ずる問題が発生する。そのパターン間に残存する薬液の表面張力の作用によるパターン倒れを防止するために、パターン間に作用する表面張力を軽減する乾燥プロセスとして、二酸化炭素の超臨界流体を用いた方法が知られている(例えば、特許文献1~4)。
しかしながら、ポンプで圧送される液体状態の二酸化炭素は、脈動するため、液体の圧力が大きく変動する。このため、処理チャンバの直前又は処理チャンバ内で超臨界状態に変化する二酸化炭素の供給量が不安定となり、二酸化炭素の超臨界流体を安定的に供給するのが困難であった。
気体状態の流体を凝縮液化するコンデンサと、
前記コンデンサにより凝縮液化された流体を貯留するタンクと、
前記タンクに貯留された液化された流体を前記処理室へ向けて圧送するポンプと、
前記ポンプの吐出側と連通する流路に設けられ、当該流路内の液体を部分的に超臨界流体にするための加熱手段と、を有することを特徴とする。
前記加熱手段は、前記拡大伝熱管部に設けられている、構成を採用できる。
第1実施形態
図1Aおよび図1Bに本発明の一実施形態に係る流体供給装置を示す。本実施形態では、流体として二酸化炭素を使用する場合について説明する。
図1Aおよび図1Bにおいて、1は流体供給装置、10は拡大伝熱管部、20は加熱手段(例えば、ヒータ)、100はCO2供給源、110は開閉弁、120はチェック弁、121はフィルタ、130はコンデンサ、140はタンク、150はポンプ、160は自動開閉弁、170は背圧弁、500は処理チャンバを示す。また、図中のPは圧力センサ、TCは温度センサを示す。図1Aは自動開閉弁160が閉じた状態を示しており、図1Bは自動開閉弁160が開放された状態を示す。
CO2供給源100は、気体状態の二酸化炭素(例えば、20℃、5.0MPa)をメイン流路2へ供給する。図2を参照すると、CO2供給源100から供給される二酸化炭素は、図2のP1の状態にある。この状態の二酸化炭素は、開閉弁110、チェック弁120、フィルタ121を通じてコンデンサ130に送られる。
コンデンサ130では、供給される気体状態の二酸化炭素を冷却することで、液化凝縮し、液化凝縮された二酸化炭素はタンク140に貯留される。タンク140に貯留された二酸化炭素は、図2のP2のような状態(3℃、5MPa)となる。タンク140の底部から図2のP2のような状態にある液体状態の二酸化炭素がポンプ150に送られ、ポンプ150の吐出側に圧送されることで、図2のP3のような液体状態(20℃、20MPa)となる。
背圧弁170は、ポンプ150の吐出側の流体(液体)の圧力が設定圧力(例えば20MPa)以上になると、フィルタ121側へ液体をリリースする。これにより、ポンプ150の吐出側の液体の圧力が設定圧力を超えるのを防ぐ。
自動開閉弁160が開放されると、図1Bに示すように、液体状態の二酸化炭素が処理チャンバ500へ圧送される。圧送された液体状態の二酸化炭素は、処理チャンバ500の直前又は処理チャンバ500内に設けられた図示しない加熱手段により加熱され、図2に示すP5のような超臨界状態(80℃、20MPa)となる。
ポンプ150から吐出される液体を処理チャンバ500へ供給する際に、処理チャンバ500までメイン流路2は液体で充填されているとともに、分岐流路3も背圧弁170まで液体が充填されている。このため、ポンプ150から吐出される液体が脈動すると、メイン流路2および分岐流路3内の液体状態の二酸化炭素の圧力が周期的に変動する。
液体状態の二酸化炭素は、圧縮性が乏しい。このため、液体状態の二酸化炭素の圧力が周期的に変動すると、処理チャンバ500に供給される液体状態の二酸化炭素の流量もそれに応じて大きく変動する。供給される液体状態の二酸化炭素の流量が大きく変動すると、処理チャンバ500の直前あるいは処理チャンバ500内で超臨界状態に変化させた二酸化炭素の供給量も大きく変動してしまう。
拡大伝熱管部10は、通常のストレート管よりも単位容積当りの伝熱面積を拡大するために、分岐流路3に直列に接続されたスパイラル管(螺旋管)11で構成される。
スパイラル管11は、下端部および上端部にそれぞれ管継手12,15が設けられており、これらの管継手12,15によりスパイラル管11が分岐流路3に直列に接続される。
スパイラル管11を構成する管13は、例えば、ステンレス鋼等の金属材料で形成されている。管13の直径は6.35mm、スパイラル部14の全長Lは280mm、スパイラル部14の直径D1が140mm程度、スパイラル部14の巻数は22巻、管13の全長は9800mm程度である。本発明はこれに限定されるわけではなく、スパイラル管以外にも、渦巻形の管、波形の管等である。螺旋や渦巻の形状は、円形である必要はなく、角型であっても良い。また、拡大伝熱管10は、熱交換器で使用されるのと同様に、プレート式や多管式の管であってもよい。
図4Aに拡大伝熱管部の他の実施形態を示す。
図4Aに示す拡大伝熱管部10Bは、分岐流路3に対してスパイラル管11を並列に接続し、分岐流路3とスパイラル管11との間にオリフィス30を設けている。
このような構成としても、第1実施形態と同様に、ポンプ150から吐出される液体の脈動(周期的な圧力変動)が抑制され、処理チャンバ500の直前あるいは処理チャンバ500内で超臨界状態に変化させた二酸化炭素の供給量を安定化させることができる。
図4Bに拡大伝熱管部のさらに他の実施形態を示す。
図4Bに示す拡大伝熱管部10Cは、2つのスパイラル管11を並列に接続し、これらを分岐流路3に挿入するとともに、分岐流路3と一方のスパイラル管11との間にオリフィス30を設けている。
このような構成としても、第1実施形態と同様に、ポンプ150から吐出される液体の脈動(周期的な圧力変動)が抑制され、処理チャンバ500の直前あるいは処理チャンバ500内で超臨界状態に変化させた二酸化炭素の供給量を安定化させることができる。
流体供給装置1Aでは、拡大伝熱管部10が存在せず、加熱手段20は分岐流路3内の液体を加熱して部分的に超臨界流体にする。
このような構成によれば、拡大伝熱管部10が不要となり装置構成を簡素化できる。
2 メイン流路
3 分岐流路
10,10B,10C 拡大伝熱管部
11 スパイラル管
20 加熱手段
30 オリフィス
100 CO2供給源
110 開閉弁
120 チェック弁
121 フィルタ
130 コンデンサ
140 タンク
150 ポンプ
160 自動開閉弁
170 背圧弁
500 処理チャンバ
Claims (8)
- 液体状態の流体を処理室に向けて供給する流体供給装置であって、
気体状態の流体を液化するコンデンサと、
前記コンデンサにより液化された流体を貯留するタンクと、
前記タンクに貯留された液化された流体を前記処理室へ向けて圧送するポンプと、
前記ポンプの吐出側と連通する流路に設けられ、当該流路内の液体を部分的に超臨界流体にするための加熱手段と、を有することを特徴とする流体供給装置。 - 前記ポンプの吐出側と連通する流路に設けられた伝熱面積が拡大された拡大伝熱管部をさらに有し、
前記加熱手段は、前記拡大伝熱管部に設けられている、ことを特徴とする請求項1に記載の流体供給装置。 - 前記加熱手段および前記拡大伝熱管部は、前記ポンプと前記ポンプの吐出側から前記処理室に至る流路の途中に設けられた開閉弁との間で分岐した流路に設けられており、前記分岐した流路は、前記ポンプから吐出された液体を前記コンデンサに戻すための流路であることを特徴とする請求項2に記載の流体供給装置。
- 前記加熱手段および前記拡大伝熱管部を前記ポンプと前記処理室を結ぶメイン流路の途中に設けたことを特徴とする請求項2に記載の流体供給装置。
- 前記拡大伝熱管部は、スパイラル管、渦巻形の管、波形の管、プレート式の管および多管式の管のいずれか、またはこれらの組み合わせを含む、ことを特徴とする請求項2なし4のいずれかに記載の流体供給装置。
- 前記流体は、超臨界状態に変化させ得る流体である、ことを特徴とする請求項1ないし5のいずれかに記載の流体供給装置。
- 請求項1ないし6のいずれかに記載の流体供給装置を用いて、液体状態の流体を処理室に向けて供給することを特徴とする流体供給方法。
- 請求項1ないし6のいずれかに記載の流体供給装置供給される流体を用いて基体の処理をすることを特徴とする半導体製造装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/634,681 US11569101B2 (en) | 2017-08-10 | 2018-07-31 | Fluid supply device and fluid supply method |
CN201880051985.7A CN110998801B (zh) | 2017-08-10 | 2018-07-31 | 流体供给装置和流体供给方法 |
KR1020207000032A KR102312482B1 (ko) | 2017-08-10 | 2018-07-31 | 유체공급 장치 및 유체공급 방법 |
JP2019535123A JP7243987B2 (ja) | 2017-08-10 | 2018-07-31 | 流体供給装置および流体供給方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017156193 | 2017-08-10 | ||
JP2017-156193 | 2017-08-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019031303A1 true WO2019031303A1 (ja) | 2019-02-14 |
Family
ID=65271545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/028601 WO2019031303A1 (ja) | 2017-08-10 | 2018-07-31 | 流体供給装置および流体供給方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11569101B2 (ja) |
JP (1) | JP7243987B2 (ja) |
KR (1) | KR102312482B1 (ja) |
CN (1) | CN110998801B (ja) |
TW (1) | TWI677661B (ja) |
WO (1) | WO2019031303A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020053518A (ja) * | 2018-09-26 | 2020-04-02 | 東京エレクトロン株式会社 | 基板処理システムおよび処理流体供給方法 |
WO2021157951A1 (ko) * | 2020-02-05 | 2021-08-12 | 주식회사 테스 | 기판처리장치 |
JP2022132400A (ja) * | 2018-09-26 | 2022-09-08 | 東京エレクトロン株式会社 | 処理流体供給方法 |
CN115540527A (zh) * | 2022-09-29 | 2022-12-30 | 浙江大学 | 超临界流体干燥系统及干燥方法 |
WO2024085014A1 (ja) * | 2022-10-21 | 2024-04-25 | 東京エレクトロン株式会社 | 処理流体供給装置および処理流体供給方法 |
JP7525231B2 (ja) | 2020-12-24 | 2024-07-30 | 東京エレクトロン株式会社 | 基板処理装置及び基板処理方法 |
TWI854933B (zh) | 2018-09-26 | 2024-09-01 | 日商東京威力科創股份有限公司 | 處理流體供給方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7562403B2 (ja) * | 2020-12-24 | 2024-10-07 | 東京エレクトロン株式会社 | 基板処理装置及び基板処理方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012087983A (ja) * | 2010-10-19 | 2012-05-10 | Tokyo Electron Ltd | 流体加熱装置及び基板処理装置 |
JP2013077610A (ja) * | 2011-09-29 | 2013-04-25 | Tokyo Electron Ltd | 基板処理装置 |
JP2013159499A (ja) * | 2012-02-02 | 2013-08-19 | Japan Organo Co Ltd | 液化炭酸ガス製造装置及びその洗浄方法 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0650492A (ja) | 1992-07-31 | 1994-02-22 | Japan Tobacco Inc | 高圧流体供給管路における脈動防止方法 |
JP2000106358A (ja) * | 1998-09-29 | 2000-04-11 | Mitsubishi Electric Corp | 半導体製造装置および半導体基板の処理方法 |
US6612317B2 (en) * | 2000-04-18 | 2003-09-02 | S.C. Fluids, Inc | Supercritical fluid delivery and recovery system for semiconductor wafer processing |
JP4392568B2 (ja) * | 2000-01-18 | 2010-01-06 | 株式会社エスア−ル開発 | 超臨界流体攪拌機構とこれを組み込んだ超臨界流体洗浄、抽出、反応装置 |
US20040025908A1 (en) * | 2000-04-18 | 2004-02-12 | Stephen Douglas | Supercritical fluid delivery system for semiconductor wafer processing |
JP3962533B2 (ja) | 2000-07-18 | 2007-08-22 | 株式会社神戸製鋼所 | 薄膜構造体の超臨界乾燥法及び超臨界乾燥装置 |
KR20020033302A (ko) | 2000-10-30 | 2002-05-06 | 박종섭 | 에스램셀의 제조 방법 |
JP3782366B2 (ja) * | 2002-03-20 | 2006-06-07 | 日本電信電話株式会社 | 超臨界処理方法及び超臨界処理装置 |
US7169540B2 (en) * | 2002-04-12 | 2007-01-30 | Tokyo Electron Limited | Method of treatment of porous dielectric films to reduce damage during cleaning |
US7267727B2 (en) * | 2002-09-24 | 2007-09-11 | Air Products And Chemicals, Inc. | Processing of semiconductor components with dense processing fluids and ultrasonic energy |
JP2004183730A (ja) | 2002-12-02 | 2004-07-02 | Sato Jushi Kogyo Kk | 流体脈動緩和方法及び装置 |
JP3965693B2 (ja) | 2003-05-07 | 2007-08-29 | 株式会社日立ハイテクサイエンスシステムズ | 微細構造乾燥処理法とその装置及びその高圧容器 |
US7069742B2 (en) * | 2004-01-19 | 2006-07-04 | Air Products And Chemicals, Inc. | High-pressure delivery system for ultra high purity liquid carbon dioxide |
JP4546314B2 (ja) | 2005-04-06 | 2010-09-15 | 株式会社日立ハイテクノロジーズ | 微細構造乾燥処理法及びその装置 |
CN101198723A (zh) * | 2005-04-15 | 2008-06-11 | 高级技术材料公司 | 用于超临界流体去除或沉积工艺的装置和方法 |
JP4499604B2 (ja) * | 2005-04-22 | 2010-07-07 | エヌ・ティ・ティ・アドバンステクノロジ株式会社 | 超臨界処理方法 |
CN1990126A (zh) * | 2005-12-30 | 2007-07-04 | 财团法人工业技术研究院 | 超临界二氧化碳清洗系统与方法 |
CN101740342B (zh) * | 2008-11-26 | 2011-08-31 | 中国科学院微电子研究所 | 二氧化碳超临界流体半导体清洗设备 |
JP5450494B2 (ja) * | 2011-03-25 | 2014-03-26 | 株式会社東芝 | 半導体基板の超臨界乾燥方法 |
WO2012157648A1 (ja) * | 2011-05-18 | 2012-11-22 | オルガノ株式会社 | 高純度液化炭酸ガス製造方法及び装置 |
JP5458314B2 (ja) * | 2011-06-30 | 2014-04-02 | セメス株式会社 | 基板処理装置及び超臨界流体排出方法 |
JP5716710B2 (ja) | 2012-07-17 | 2015-05-13 | 東京エレクトロン株式会社 | 基板処理装置、流体の供給方法及び記憶媒体 |
KR102037844B1 (ko) * | 2013-03-12 | 2019-11-27 | 삼성전자주식회사 | 초임계 유체를 이용하는 기판 처리 장치, 이를 포함하는 기판 처리 시스템, 및 기판 처리 방법 |
EP2779222B1 (en) * | 2013-03-12 | 2017-08-16 | Samsung Electronics Co., Ltd. | Substrate treatment systems using supercritical fluid |
AU2021217228A1 (en) * | 2020-02-08 | 2022-09-01 | Brilliant Light Power, Inc. | Magnetohydrodynamic hydrogen electrical power generator |
-
2018
- 2018-07-31 JP JP2019535123A patent/JP7243987B2/ja active Active
- 2018-07-31 KR KR1020207000032A patent/KR102312482B1/ko active IP Right Grant
- 2018-07-31 CN CN201880051985.7A patent/CN110998801B/zh active Active
- 2018-07-31 WO PCT/JP2018/028601 patent/WO2019031303A1/ja active Application Filing
- 2018-07-31 US US16/634,681 patent/US11569101B2/en active Active
- 2018-08-08 TW TW107127528A patent/TWI677661B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012087983A (ja) * | 2010-10-19 | 2012-05-10 | Tokyo Electron Ltd | 流体加熱装置及び基板処理装置 |
JP2013077610A (ja) * | 2011-09-29 | 2013-04-25 | Tokyo Electron Ltd | 基板処理装置 |
JP2013159499A (ja) * | 2012-02-02 | 2013-08-19 | Japan Organo Co Ltd | 液化炭酸ガス製造装置及びその洗浄方法 |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11735439B2 (en) | 2018-09-26 | 2023-08-22 | Tokyo Electron Limited | Substrate processing system and method for supplying processing fluid |
TWI831834B (zh) * | 2018-09-26 | 2024-02-11 | 日商東京威力科創股份有限公司 | 基板處理系統及處理流體供給方法 |
US11482427B2 (en) | 2018-09-26 | 2022-10-25 | Tokyo Electron Limited | Substrate processing system and method for supplying processing fluid |
KR102469166B1 (ko) | 2018-09-26 | 2022-11-18 | 도쿄엘렉트론가부시키가이샤 | 기판 처리 시스템 및 처리 유체 공급 방법 |
TWI854933B (zh) | 2018-09-26 | 2024-09-01 | 日商東京威力科創股份有限公司 | 處理流體供給方法 |
KR20200035357A (ko) * | 2018-09-26 | 2020-04-03 | 도쿄엘렉트론가부시키가이샤 | 기판 처리 시스템 및 처리 유체 공급 방법 |
JP7109328B2 (ja) | 2018-09-26 | 2022-07-29 | 東京エレクトロン株式会社 | 基板処理システム |
JP2022132400A (ja) * | 2018-09-26 | 2022-09-08 | 東京エレクトロン株式会社 | 処理流体供給方法 |
CN110957239A (zh) * | 2018-09-26 | 2020-04-03 | 东京毅力科创株式会社 | 基片处理系统和处理流体供给方法 |
CN110957239B (zh) * | 2018-09-26 | 2024-10-11 | 东京毅力科创株式会社 | 基片处理系统和处理流体供给方法 |
JP7285992B2 (ja) | 2018-09-26 | 2023-06-02 | 東京エレクトロン株式会社 | 処理流体供給方法 |
JP2020053518A (ja) * | 2018-09-26 | 2020-04-02 | 東京エレクトロン株式会社 | 基板処理システムおよび処理流体供給方法 |
KR102341891B1 (ko) * | 2020-02-05 | 2021-12-21 | 주식회사 테스 | 기판처리장치 |
KR20210099981A (ko) * | 2020-02-05 | 2021-08-13 | 주식회사 테스 | 기판처리장치 |
WO2021157951A1 (ko) * | 2020-02-05 | 2021-08-12 | 주식회사 테스 | 기판처리장치 |
JP7525231B2 (ja) | 2020-12-24 | 2024-07-30 | 東京エレクトロン株式会社 | 基板処理装置及び基板処理方法 |
CN115540527A (zh) * | 2022-09-29 | 2022-12-30 | 浙江大学 | 超临界流体干燥系统及干燥方法 |
CN115540527B (zh) * | 2022-09-29 | 2024-02-27 | 浙江大学 | 超临界流体干燥系统及干燥方法 |
WO2024085014A1 (ja) * | 2022-10-21 | 2024-04-25 | 東京エレクトロン株式会社 | 処理流体供給装置および処理流体供給方法 |
Also Published As
Publication number | Publication date |
---|---|
TWI677661B (zh) | 2019-11-21 |
US20210125840A1 (en) | 2021-04-29 |
JP7243987B2 (ja) | 2023-03-22 |
KR20200014404A (ko) | 2020-02-10 |
US11569101B2 (en) | 2023-01-31 |
TW201910707A (zh) | 2019-03-16 |
KR102312482B1 (ko) | 2021-10-14 |
CN110998801A (zh) | 2020-04-10 |
CN110998801B (zh) | 2023-10-31 |
JPWO2019031303A1 (ja) | 2020-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019031303A1 (ja) | 流体供給装置および流体供給方法 | |
JP5912596B2 (ja) | 流体二酸化炭素の供給装置及び供給方法 | |
JP5843638B2 (ja) | 液化炭酸ガス製造装置及びその洗浄方法 | |
KR20190001753A (ko) | 초임계유체 가열장치 및 이를 포함하는 기판처리장치 | |
JP2006234254A (ja) | 熱交換器及びそれを用いたヒートポンプ式給湯装置 | |
JP2007017097A (ja) | 蒸気発生方法、その装置及び蒸気処理装置並びに蒸気発生用記録媒体 | |
US9892939B2 (en) | Substrate treating apparatus and chemical recycling method | |
JP7146283B2 (ja) | 流体供給装置および流体供給方法 | |
JP5912597B2 (ja) | 流体二酸化炭素の供給装置及び供給方法 | |
KR20200110045A (ko) | 유체 공급 장치 | |
JP2006250417A (ja) | ヒートポンプ給湯機 | |
KR102227726B1 (ko) | 유체공급 장치 및 이 장치에 있어서의 액체배출 방법 | |
CN105953598B (zh) | 冷凝水汽化换热系统 | |
KR20190070130A (ko) | 초임계유체 공급장치 | |
JPS6287787A (ja) | 低沸点作動流体の注入方法 | |
JP2016205683A (ja) | 熱交換器、給湯システム、及び熱交換器の製造方法 | |
JP6604469B2 (ja) | 蛇管式熱交換器 | |
JP5860945B2 (ja) | 液化炭酸ガスの気化方法及び気化装置 | |
KR200374263Y1 (ko) | 히트파이프를 이용한 온돌용 폐회로 난방장치 | |
JP2015020108A (ja) | 真空洗浄装置 | |
JPH09150001A (ja) | 減圧蒸留再生装置 | |
KR20100056261A (ko) | 반도체 제조공정용 감광액의 온도유지를 위한 보관장치 | |
JP2005090769A (ja) | 純粋蒸気発生装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18844272 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019535123 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20207000032 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18844272 Country of ref document: EP Kind code of ref document: A1 |