WO2019026940A1 - 炭素材料、全固体電池用正極、全固体電池用負極、及び全固体電池 - Google Patents

炭素材料、全固体電池用正極、全固体電池用負極、及び全固体電池 Download PDF

Info

Publication number
WO2019026940A1
WO2019026940A1 PCT/JP2018/028787 JP2018028787W WO2019026940A1 WO 2019026940 A1 WO2019026940 A1 WO 2019026940A1 JP 2018028787 W JP2018028787 W JP 2018028787W WO 2019026940 A1 WO2019026940 A1 WO 2019026940A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon material
positive electrode
solid
solid electrolyte
graphite
Prior art date
Application number
PCT/JP2018/028787
Other languages
English (en)
French (fr)
Inventor
裕樹 澤田
増田 浩樹
中壽賀 章
藤原 昭彦
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to US16/634,525 priority Critical patent/US20200176816A1/en
Priority to EP18841524.4A priority patent/EP3667799A4/en
Priority to CN201880036579.3A priority patent/CN110710045A/zh
Priority to JP2018545527A priority patent/JPWO2019026940A1/ja
Priority to KR1020197026228A priority patent/KR20200036805A/ko
Publication of WO2019026940A1 publication Critical patent/WO2019026940A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • C01B32/225Expansion; Exfoliation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a carbon material, and a positive electrode for an all solid battery, a negative electrode for an all solid battery, and an all solid battery using the carbon material.
  • Non-patent Document 1 an all-solid-state battery using an electrolyte composed of an inorganic material or a polymer material, that is, a solid electrolyte, instead of a liquid organic electrolyte, has been developed (for example, Non-patent Document 1) .
  • the electrodes (positive electrode, negative electrode) of the all solid battery form an electron conduction path well in the electrode.
  • carbon black such as ketjen black is used to secure an electron conductive network.
  • Patent Document 1 when carbon black as described in Patent Document 1 is used for an electrode of an all solid battery, it is difficult to form a sufficiently good electron conduction path. As a result, the electrical resistance of the positive electrode and the negative electrode of the all-solid-state battery increases, and there is a problem that battery characteristics such as cycle characteristics particularly deteriorate. Moreover, when carbon black is used, in addition to being disadvantageous to formation of the ion conduction path
  • the object of the present invention is to improve the cycle characteristics during charge and discharge of an all solid battery, a carbon material, a positive electrode for all solid battery using the carbon material, a negative electrode for all solid battery, and an all solid battery. It is to provide.
  • the carbon material according to the present invention is a carbon material contained in a positive electrode and / or a negative electrode for an all solid battery using a group 1 or 2 ion conductive solid electrolyte, and the weight ratio of the carbon material to Si is 1
  • the height a of the highest peak in the range of 24 ° or more and less than 28 °, and 2 ⁇ in the range of 28 ° or more and less than 30 °
  • the ratio a / b to the height b of the highest peak is 0.2 or more and 10.0 or less.
  • the carbon material has a graphene laminated structure.
  • the carbon material has a two-dimensionally expanded shape.
  • the carbon material is a carbon material having a graphite structure and partially exfoliated graphite.
  • the absorbance of a methanol solution of methylene blue at a concentration of 10 mg / L, and the supernatant obtained by centrifuging the carbon material charged in the methanol solution of methylene blue Assuming that the methylene blue adsorption amount ( ⁇ mol / g) per 1 g of the carbon material measured based on the difference in absorbance is y, and the BET specific surface area (m 2 / g) of the carbon material is x, the ratio y / x Is 0.15 or more.
  • the D / G ratio is 0, where the peak intensity ratio between the D band and the G band in the Raman spectrum of the carbon material is D / G ratio. .05 or more and 0.8 or less.
  • the first carbon material further includes a second carbon material different from the first carbon material when the carbon material is a first carbon material,
  • M weight of the carbon material of the above
  • N weight of the second carbon material
  • the positive electrode for an all solid battery according to the present invention comprises a carbon material configured according to the present invention, a positive electrode active material, and a group 1 or 2 group ion conductive solid electrolyte.
  • the ion conductive solid electrolyte is an oxide solid electrolyte or a sulfide solid electrolyte.
  • the negative electrode for an all solid battery according to the present invention comprises the carbon material configured according to the present invention, a negative electrode active material, and a group 1 or 2 group ion conductive solid electrolyte.
  • the ion conductive solid electrolyte is an oxide based solid electrolyte or a sulfide based solid electrolyte.
  • the all-solid battery according to the present invention comprises the positive electrode for the all-solid battery constructed according to the present invention and / or the negative electrode for the all-solid battery constructed according to the present invention.
  • the carbon material of the present invention good electron conduction paths and ion conduction paths can be formed in an electrode such as a positive electrode or a negative electrode of an all solid battery. Therefore, it is possible to improve the cycle characteristics of the all-solid-state battery. Further, according to the carbon material of the present invention, since the useless space in the electrode of the all solid battery can be reduced, the electrode density of the positive electrode and the negative electrode, that is, the energy density of the all solid battery can be improved. It becomes.
  • the carbon material according to the present invention is a carbon material contained in a positive electrode and / or a negative electrode for an all solid battery.
  • the said all-solid-state battery is not specifically limited, A primary battery, a secondary battery, an air primary battery, an air secondary battery etc. are illustrated.
  • a group 1 or 2 group ion conductive solid electrolyte is used.
  • the X-ray diffraction spectrum of the mixture of the carbon material and Si at a weight ratio of 1: 1 the following range is obtained. That is, the ratio a / b between the height a of the highest peak in the range of 24 ° to less than 28 ° and the height b of the highest peak in the range of 28 ° to less than 30 ° Is 0.2 or more and 10.0 or less.
  • the silicon powder of (phi) 100 nm or less can be used, for example.
  • the X-ray diffraction spectrum can be measured by wide-angle X-ray diffraction.
  • a CuK ⁇ ray (wavelength 1.541 ⁇ ) can be used.
  • SmartLab manufactured by Rigaku Corporation
  • Rigaku Corporation can be used as the X-ray diffraction apparatus.
  • the carbon material of the present invention preferably has a graphene laminated structure.
  • require by the peak / 2 ⁇ of 26.4 degree 2 peak vicinity of 26.4 degree.
  • the ratio a / b is 0.2 or more and 10.0 or less, the cycle characteristics at the time of charge and discharge of the all solid battery can be improved.
  • the reason for this can be described as follows, for example, in comparison with conventional carbon black.
  • carbon black is characterized by having a large number of pores, but since the solid electrolyte hardly penetrates into the pores, the pores become a space that does not participate in the battery reaction at all. Therefore, when carbon black is used, in addition to being disadvantageous to formation of the ion conduction path of a solid electrolyte, there also existed a problem that it becomes disadvantageous also to improvement of energy density.
  • the carbon material of the present invention since the ratio a / b is 0.2 or more and 10.0 or less, a good electron conduction path in the electrode such as the positive electrode or the negative electrode of the all solid battery And ion conduction paths can be formed. Therefore, it is possible to improve the cycle characteristics of the all-solid-state battery. Further, according to the carbon material of the present invention, since the useless space in the electrode of the all solid battery can be reduced, the electrode density of the positive electrode and the negative electrode, that is, the energy density of the all solid battery can be improved. It becomes.
  • the carbon material itself has a small amount of graphite structure, it has defects in addition to low electron conductivity, and the resistance value of the positive electrode or negative electrode increases. There is a risk that the battery characteristics may be degraded.
  • the ratio a / b is preferably 0.22 or more, more preferably 0.25 or more, preferably 8.0 or less, from the viewpoint of facilitating formation of an electron conduction path in the electrode of the all solid battery. More preferably, it is 5.0 or less, more preferably 2.5 or less, particularly preferably 1.0 or less, still more preferably 0.9 or less, and most preferably 0.8 or less.
  • the particle diameter of the carbon material is preferably 0.1 ⁇ m or more and 100 ⁇ m or less. Moreover, it is more preferable that they are 0.5 micrometer or more and 50 micrometers or less from a viewpoint of improving a handleability further.
  • the particle size is a value obtained by measuring the size of each particle from an SEM or TEM image and calculating the average particle size.
  • the BET specific surface area of the carbon material is preferably 3 m 2 / g or more because the contact point with the active material can be further sufficiently secured.
  • the BET specific surface area of the carbon material is more preferably 5 m 2 / g or more, and still more preferably 8 m 2 / g or more because the contact point with the active material can be further sufficiently secured.
  • the BET specific surface area of the carbon material is preferably 2500 m 2 / g or less.
  • a shape of the said carbon material It does not specifically limit as a shape of the said carbon material, The shape which spreads in two dimensions, spherical shape, fibrous form, or irregular shape etc. are mentioned. As a shape of the above-mentioned carbon material, it is preferred that it is a shape which has spread in two dimensions. As a shape which spreads in two dimensions, scaly form or plate shape (flat form) is mentioned, for example.
  • carbon black such as conventional carbon black is dotted with carbon black, and it is difficult to move in the solid electrolyte, so it may be difficult to form a conductive path.
  • carbon material has a two-dimensionally spreading shape as described above, an even better conductive path can be formed.
  • the shape of the carbon material is preferably scaly.
  • the carbon material is scaly, in the electrode for a solid battery obtained, the number of contact points with the active material is further increased, and a more favorable conductive path is easily formed.
  • the carbon material examples include graphite such as natural graphite, artificial graphite, expanded graphite and the like, exfoliated graphite and the like.
  • graphite such as natural graphite, artificial graphite, expanded graphite and the like
  • exfoliated graphite examples of the carbon material.
  • a carbon material having a graphite structure and having a structure in which graphite is exfoliated partially is preferable because it is easy to further form a good electron conduction path.
  • the carbon material may be graphene.
  • the exfoliated graphite is obtained by exfoliating the original graphite, and refers to a graphene sheet laminate thinner than the original graphite.
  • the number of stacked graphene sheets in exfoliated graphite may be smaller than that of the original graphite.
  • the number of stacked graphene sheets is preferably 1000 or less, and more preferably 500 or less.
  • the specific surface area can be further increased.
  • “having a structure in which graphite is partially exfoliated” means that in the graphene stack, the graphene layers are open from the edge to some extent inside, that is, part of the graphite exfoliates at the edge Shall be said to In addition, in the central portion, it means that the graphite layer is laminated in the same manner as the original graphite or the primary exfoliated graphite. Moreover, the part in which a part of graphite exfoliates in an edge is continued with the part by the side of a center. Furthermore, the carbon material may include exfoliated and exfoliated graphite at the edge. Therefore, a carbon material having a structure in which graphite is partially exfoliated can also be referred to as partially exfoliated exfoliated graphite.
  • the carbon material having a structure in which graphite is partially exfoliated is conductive because the graphite layer is laminated in the same manner as the original graphite or primary exfoliated graphite in the central portion.
  • the specific surface area is large.
  • the carbon material having a structure in which graphite is exfoliated partially includes graphite or primary exfoliated graphite and a resin, and a composition in which the resin is fixed to the graphite or primary exfoliated graphite by grafting or adsorption It can be obtained by preparing and pyrolyzing the above-mentioned resin. In addition, although it is desirable that the resin contained in the said composition is removed, some resin may remain
  • the thermal decomposition extends the distance between the graphene layers in the graphite or primary exfoliated graphite. More specifically, in a stack of graphene such as graphite or primary exfoliated graphite, the graphene layers are spread from the edge to a certain extent inside. That is, it is possible to obtain a structure in which a part of the graphite is exfoliated, and the graphite layer is laminated in the central portion in the same manner as the original graphite or the primary exfoliated graphite.
  • Graphite is a laminate of a plurality of graphenes. Natural graphite, artificial graphite, expanded graphite and the like can be used as the graphite. Expanded graphite has a larger layer of graphene layers than normal graphite. Therefore, it can peel easily. Therefore, when the expanded graphite is used, the carbon material of the present invention can be obtained more easily.
  • Graphite has a number of stacked layers of graphene of about 100,000 or more and about 1,000,000, and has a specific surface area by BET (BET specific surface area) smaller than 25 m 2 / g. Moreover, since primary exfoliated graphite is obtained by exfoliating graphite, its specific surface area may be larger than that of graphite.
  • BET BET specific surface area
  • the number of graphene layers in a portion in which graphite is partially exfoliated is 5 or more and 3000 or less.
  • the number of layers is more preferably 5 or more and 1000 or less, and still more preferably 5 or more and 500 or less.
  • the number of stacked graphenes is less than the above lower limit, the number of stacked graphenes is small in the part where graphite is exfoliated, so that it may not be possible to connect the active materials in the electrodes of the all solid battery described later. is there. As a result, the electron conduction path in the electrode is broken, and not only the rate characteristics and the cycle characteristics may be degraded, but also the side reaction may easily proceed, and as a result, the solid electrolyte may be easily decomposed.
  • the size of one carbon material may be extremely large, and the distribution of the carbon material in the electrode may be biased. Therefore, the electron conduction path in the electrode may not be developed, and the rate characteristic and the cycle characteristic may not only be deteriorated, but also the side reaction may easily proceed, and as a result, the solid electrolyte may be easily decomposed.
  • the calculation method of the number of graphene layers is not particularly limited, it can be calculated by visual observation with a TEM or the like.
  • the BET specific surface area of the carbon material having a structure in which graphite is partially exfoliated is preferably 25 m 2 / g or more, since the contact point with the active material can be further sufficiently secured.
  • the BET specific surface area of the carbon material is more preferably 35 m 2 / g or more, and still more preferably 45 m 2 / g or more because the contact point with the active material can be further sufficiently secured.
  • the BET specific surface area of the carbon material is preferably 2500 m 2 / g or less.
  • the carbon material having a structure in which graphite is partially exfoliated is first subjected to a step of preparing a composition in which the resin is fixed to the graphite or primary exfoliated graphite by grafting or adsorption, and then the composition is heat-treated. Through the following steps.
  • the resin contained in the composition may be removed, or part of the resin may remain.
  • the resin amount is preferably 1 part by weight or more and 350 parts by weight or less with respect to 100 parts by weight of the carbon material excluding the resin component. Further, the content is more preferably 5 parts by weight or more and 50 parts by weight or less, still more preferably 5 parts by weight or more and 30 parts by weight or less. If the amount of remaining resin is less than the above lower limit, the BET specific surface area may not be secured in some cases. Moreover, when the amount of residual resin is larger than the said upper limit, manufacturing cost may increase.
  • the amount of resin remaining in the carbon material can be calculated, for example, by measuring the weight change associated with the heating temperature by thermogravimetric analysis (hereinafter, TG).
  • the carbon material having a structure in which graphite is partially exfoliated may be removed from the resin after the composite with the active material is formed.
  • a method of removing the resin a method of heat treatment at a temperature higher than the decomposition temperature of the resin and lower than the decomposition temperature of the active material is preferable. This heat treatment may be performed in the air, under an inert gas atmosphere, under a low oxygen atmosphere, or under vacuum.
  • the resin used to prepare the composition in which the resin is fixed to the graphite or primary exfoliated graphite by grafting or adsorption is not particularly limited, but it is preferably a polymer of a radically polymerizable monomer.
  • the polymer of the radically polymerizable monomer may be a copolymer of a plurality of radically polymerizable monomers, or may be a homopolymer of one type of radically polymerizable monomer.
  • Such resins include polypropylene glycol, polyglycidyl methacrylate, polyvinyl acetate, polybutyral, polyacrylic acid or polyethylene glycol.
  • a method for producing a carbon material having a structure in which graphite is partially exfoliated for example, the production method described in WO 2014/034156 can be mentioned. That is, it can be manufactured, for example, through a process of preparing a composition containing graphite or primary exfoliated graphite and a resin, and a process of pyrolyzing the prepared composition (in an open system). .
  • the carbon material of the present invention has a D / G ratio of 0.8 or less when the peak intensity ratio between the D band and the G band in the Raman spectrum obtained by Raman spectroscopy is D / G ratio. Is preferable, and 0.7 or less is more preferable. When the D / G ratio is in this range, the conductivity of the carbon material itself can be further enhanced, and the amount of gas generation can be further reduced. Moreover, it is preferable that D / G ratio is 0.05 or more. In this case, cycle characteristics can be further improved.
  • the ratio y / x is It is preferable that it is 0.15 or more, and it is more preferable that they are 0.15 or more and 1.0 or less.
  • the adsorption of the active material and the carbon material is further facilitated at the time of slurry preparation described later, so 0.2 or more and 0.9 or less are more preferable.
  • the methylene blue adsorption amount ( ⁇ mol / g) is measured as follows. First, the absorbance (blank) of a 10 mg / L solution of methylene blue in methanol is measured. Next, a measurement target (carbon material) is put into a methanol solution of methylene blue, and the absorbance (sample) of the supernatant obtained by centrifugation is measured. Finally, the methylene blue adsorption amount ( ⁇ mol / g) per 1 g is calculated from the difference between the absorbance (blank) and the absorbance (sample).
  • the ratio y / x of the carbon material is preferably 0.15 or more.
  • the ratio y / x is 0.13. Therefore, when the ratio y / x is 0.15 or more, the methylene blue adsorption amount is large while the conventional spherical graphite has the same BET specific surface area. That is, in this case, although it is somewhat condensed in the dry state, in the wet state such as in methanol, the graphene layers or the graphite layers can be spread more than in the dry state.
  • a second carbon material other than the first carbon material is included.
  • the second carbon material is a carbon material different from the first carbon material, and does not have a partially exfoliated graphite structure.
  • the second carbon material is not particularly limited, and examples thereof include graphene, particulate graphite compounds, fibrous graphite compounds, and carbon black.
  • the first carbon material may be a carbon material other than a carbon material having a graphite structure and graphite partially exfoliated.
  • the graphene may be graphene oxide or may be a reduced graphene oxide.
  • the particulate graphite compound is not particularly limited, and natural graphite, artificial graphite, expanded graphite and the like are exemplified.
  • the fibrous graphite compound is not particularly limited, and carbon nanohorns, carbon nanotubes, carbon fibers and the like are exemplified.
  • the carbon black is not particularly limited, and furnace black, ketjen black, or acetylene black may, for example, be mentioned.
  • the first carbon material having a graphite structure, in which graphite is partially exfoliated, and the second carbon material which does not have a structure in which graphite is partially exfoliated are, for example, SEM, TEM, etc. Can be distinguished by
  • Including the first carbon material and the second carbon material means, for example, that the first carbon material and the second carbon material are present in the composite, the positive electrode, or the negative electrode described later.
  • the method of causing the first carbon material and the second carbon material to be present is not particularly limited, but may be a method of mixing at the time of producing the composite, the positive electrode, or the negative electrode described later. Alternatively, a method may be employed in which the other carbon material is added after a composite described later is produced using one of the carbon materials.
  • a functional group may be present on the surface of the second carbon material.
  • a composite, a positive electrode, or a negative electrode, which will be described later, can be produced more easily.
  • the ratio M / N is in the range of 0.01 or more and 100 or less. preferable.
  • the resistance of the electrode in the all solid state battery can be further reduced. Therefore, when it uses for an all-solid-state battery, heat_generation
  • the ratio M / N is preferably 0.05 or more, more preferably 0.1 or more, preferably 20 or less, and more preferably 10 or less from the viewpoint of further reducing the resistance of the electrode in the all solid state battery.
  • the carbon material of the present invention can form good electron conduction paths and ion conduction paths in electrodes such as the positive electrode and the negative electrode of the all solid battery. Therefore, it can be used more suitably as a conductive support agent in the positive electrode of an all-solid-state battery, and a negative electrode.
  • the all-solid-state battery of the present invention can be composed of, for example, a positive electrode, a solid electrolyte, and a negative electrode.
  • a method for producing this all-solid battery a method is preferable in which a positive electrode and a negative electrode are produced, and then a solid electrolyte is sandwiched between the positive electrode and the negative electrode and pressed. Note that after the pressing, heat treatment may be added to promote integration of each interface.
  • the all solid battery of the present invention contains the above-mentioned carbon material of the present invention in the positive electrode and / or the negative electrode, it is possible to form good electron conduction path and ion conduction path in the positive electrode and the negative electrode. Therefore, it is possible to provide an all solid battery excellent in battery characteristics such as cycle characteristics.
  • the positive electrode of the all-solid battery according to the present invention contains at least the following positive electrode active material, a solid electrolyte, and a carbon material.
  • the carbon material of the present invention is included as the carbon material, battery characteristics represented by cycle characteristics and rate characteristics can be improved.
  • the solid electrolyte those described in the section of the solid electrolyte described later can be used.
  • the positive electrode active material may be nobler than the battery reaction potential of the negative electrode active material described later.
  • the battery reaction may involve ions of group 1 or 2 and examples of such ions include H ions, Li ions, Na ions, K ions, Mg ions, Ca ions, or Al ion is mentioned.
  • H ions Li ions, Na ions, K ions, Mg ions, Ca ions, or Al ion is mentioned.
  • examples of the positive electrode active material include lithium metal oxides, lithium sulfides, and sulfur.
  • lithium metal oxides include those having a spinel structure, a layered rock salt structure, or an olivine structure.
  • the surface of these positive electrode active materials may be coated with a Li—Nb oxide or the like to further facilitate the movement of Li ions at the interface between the positive electrode active material and the solid electrolyte.
  • the positive electrode for the all solid battery may be formed of only the positive electrode active material, the carbon material, and the solid electrolyte, but a binder may be contained from the viewpoint of more easily forming the positive electrode.
  • the binder is not particularly limited, and for example, at least one resin selected from the group consisting of polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber, polyimide, and derivatives thereof is used. be able to.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • styrene-butadiene rubber polyimide, and derivatives thereof
  • the positive electrode active material, the carbon material, and the solid electrolyte may be mixed together and then molded, or may be molded, or a solid after producing a positive electrode active material-carbon material composite
  • the electrolyte may be mixed and molded.
  • the carbon material may be mixed and molded.
  • the positive electrode active material-carbon material composite is produced, for example, by the following procedure.
  • a dispersion (hereinafter, a dispersion of a carbon material) in which the carbon material of the present invention is dispersed in a solvent is prepared.
  • a dispersion liquid of a positive electrode active material (hereinafter, a dispersion liquid of a positive electrode active material) in which a positive electrode active material is dispersed in a solvent is prepared.
  • the dispersion of the carbon material and the dispersion of the positive electrode active material are mixed.
  • a composite of the positive electrode active material used for the positive electrode and the carbon material active material-carbon material composite
  • the positive electrode active material may be added to the dispersion of the carbon material, and after the dispersion containing the carbon material and the positive electrode active material is manufactured, the solvent may be removed.
  • a method of mixing a mixture of a carbon material, a positive electrode active material, and a solvent with a mixer, that is, preparation of a slurry of a positive electrode described later and preparation of a composite may be performed.
  • the resin may be removed by heat treatment.
  • the solvent for dispersing the positive electrode active material or the carbon material may be any of aqueous, non-aqueous, mixed solvent of aqueous and non-aqueous, or mixed solvent of different non-aqueous solvents. Further, the solvent used for dispersing the carbon material and the solvent for dispersing the positive electrode active material may be the same or different. When they are different, they are preferably compatible with each other.
  • the non-aqueous solvent is not particularly limited, but for example, an alcohol-based solvent typified by methanol, ethanol and propanol, non-aqueous solvent such as tetrahydrofuran or N-methyl-2-pyrrolidone can be used because of ease of dispersion. .
  • the solvent may contain a dispersant such as a surfactant.
  • the dispersion method is not particularly limited, and dispersion by ultrasonic waves, dispersion by a mixer, dispersion by a jet mill, or dispersion by a stirrer may be mentioned.
  • the concentration of the carbon material in the dispersion liquid is not particularly limited, but when the weight of the carbon material is 1, it is preferable that the weight of the solvent is 1 or more and 1000 or less. From the viewpoint of further enhancing the handleability, when the weight of the carbon material is 1, it is more preferable that the weight of the solvent be 5 or more and 750 or less. Further, from the viewpoint of further enhancing the dispersibility, when the weight of the carbon material is 1, it is more preferable that the weight of the solvent is 5 or more and 500 or less.
  • the carbon material may not be able to be dispersed to a desired dispersed state.
  • the weight of the solvent is larger than the upper limit, the production cost may increase.
  • the concentration of the positive electrode active material in the dispersion liquid is not particularly limited, but when the weight of the positive electrode active material is 1, the weight of the solvent is preferably 0.5 or more and 100 or less. From the viewpoint of further enhancing the handleability, the weight of the solvent is more preferably 1 or more and 75 or less. Further, from the viewpoint of further enhancing the dispersibility, the weight of the solvent is more preferably 5 or more and 50 or less. When the weight of the solvent is less than the above lower limit, the positive electrode active material may not be dispersed to a desired dispersed state. On the other hand, when the weight of the solvent is larger than the upper limit, the production cost may increase.
  • the method of mixing the dispersion of the positive electrode active material and the dispersion of the carbon material is not particularly limited, but the method of mixing the dispersions of each other at one time, or the dispersion of one dispersion in the other dispersion several times The method of dividing and adding is mentioned.
  • a method of adding one dispersion liquid to the other dispersion liquid in multiple times for example, a method of dropping using a dropper such as a droper, a method using a pump, or a method using a dispenser can be mentioned.
  • the method of removing the solvent from the mixture of the carbon material, the positive electrode active material and the solvent is not particularly limited, but a method of removing the solvent by filtration and drying in an oven or the like can be mentioned. It is preferable that the said filtration is suction filtration from a viewpoint of improving productivity further. Moreover, as a drying method, when making it dry by vacuum after making it dry with a ventilation oven, it is preferable from the ability to remove the solvent which remains in the pore.
  • the weight of the carbon material when the weight of the positive electrode active material is 100, the weight of the carbon material is 0.2 or more and 100 or less. Is preferred. From the viewpoint of further improving the rate characteristics, the weight of the carbon material is more preferably 0.3 or more and 80 or less. Further, from the viewpoint of further improving the cycle characteristics, the weight of the carbon material is more preferably 0.5 or more and 50 or less.
  • the composite of the solid electrolyte of the present invention and the positive electrode active material is preferably prepared, for example, by mixing the positive electrode active material and the solid electrolyte with a mixer or the like, or mixing them by mechanical milling or the like.
  • a planetary mixer, a disper, a thin film whirl mixer, a jet mixer, a self-public rotation mixer, etc. are mentioned.
  • Heat treatment may be added to improve the adhesion between the positive electrode active material and the solid electrolyte.
  • Examples of the method for forming the positive electrode include a method in which the positive electrode active material and the solid electrolyte are mixed by a mixer, mechanical milling or the like, and then formed by a press.
  • molding by a press may be only a positive electrode, and you may press together with the below-mentioned solid electrolyte layer and negative electrode.
  • heat treatment may be added after molding.
  • the ratio of the solid electrolyte to the positive electrode active material contained in the positive electrode is preferably such that the weight of the solid electrolyte is 0.1 to 200 with respect to the weight 100 of the positive electrode active material.
  • the energy density of the all-solid-state battery may be reduced.
  • the thickness of the positive electrode for the all solid battery of the present invention is not particularly limited, but is preferably 10 ⁇ m or more and 1000 ⁇ m or less. If the thickness is less than 10 ⁇ m, it may be difficult to obtain a desired capacity. On the other hand, when the thickness is thicker than 1000 ⁇ m, it may be difficult to obtain a desired output density.
  • the positive electrode for the all solid battery of the present invention preferably has an electric capacity of 0.5 mAh or more and 100.0 mAh or less per 1 cm 2 of the positive electrode. If the electrical capacity is less than 0.5 mAh, the volume of the battery of the desired capacity may be increased. On the other hand, when the electrical capacity is larger than 100 mAh, it may be difficult to obtain a desired output density. More preferably, the electric capacity per 1 cm 2 of the positive electrode is 0.8 mAh or more and 50 mAh or less because the battery volume size and the output density have a better relationship. Especially preferably, they are 1.0 mAh or more and 20 mAh or less.
  • the calculation of the electric capacity per 1 cm 2 of the positive electrode may be calculated by preparing a positive electrode for an all solid battery, preparing a half cell using lithium metal as a counter electrode, and measuring the charge and discharge characteristics.
  • the electric capacity per 1 cm 2 of the positive electrode of the positive electrode for the all solid battery is not particularly limited, but can be controlled by the weight of the positive electrode formed per unit area of the current collector.
  • All solid battery negative electrode Although the lithium metal or lithium alloy can also be used for the negative electrode of the all-solid-state battery which concerns on this invention, what contains an anode active material, a solid electrolyte, and a carbon material at least can be used.
  • the same one as used in the above-mentioned positive electrode can be used except the following negative electrode active material. Therefore, the manufacturing method and structure of a negative electrode can use the same thing as the above-mentioned positive electrode. Therefore, instead of the composite of the positive electrode active material and the carbon material, a composite of the negative electrode active material and the carbon material can also be used.
  • the negative electrode active material should just be a cell reaction potential of the above-mentioned positive electrode active material.
  • the battery reaction may involve ions of group 1 or 2 and examples of such ions include H ions, Li ions, Na ions, K ions, Mg ions, Ca ions, or Al ion is mentioned.
  • H ions Li ions, Na ions, K ions, Mg ions, Ca ions, or Al ion is mentioned.
  • Examples of the negative electrode active material used in the present invention include lithium metal, lithium metal oxide, carbon material, metal compound, and organic compound.
  • the metal is not limited as long as it can react with lithium ions and can be alloyed, for example, Li, Mg, Ca, Al, Si, Ge, Sn, Pb, As, Sb, Bi, Ag, Au, Zn, Cd, Hg or In is exemplified.
  • Li, Al, Si, Ge, Sn, Ti, Pb, or In is preferable, and Li, Si, Sn, or Ti is more preferable, from the viewpoint of further increasing the volume energy density and the weight energy density.
  • Si or Sn is more preferable because the reactivity with lithium ions is further enhanced.
  • the above metals may be used alone or may be an alloy containing two or more of the above metals. A mixture of two or more of the above metals may be used. Further, in order to further improve the stability, an alloy containing a metal other than the above-described metal, or one doped with a nonmetallic element such as P or B may be used.
  • metal compound examples include metal oxides, metal nitrides and metal sulfides. From the viewpoint of further enhancing the stability, metal oxides are preferred.
  • metal oxide silicon oxide, tin oxide, titanium oxide, tungsten oxide, niobium oxide, or molybdenum oxide is preferable because the reactivity with lithium ions is further higher.
  • the metal oxides may be used alone or may be oxides of alloys composed of two or more types of metals. It may be a mixture of two or more metal oxides. Furthermore, in order to further improve the stability, foreign metals or non-metallic elements such as P and B may be doped.
  • lithium titanate and H 2 Ti 12 O 25 are also included.
  • Examples of the carbon material include artificial graphite and hard carbon.
  • the particle diameter of the negative electrode active material is preferably 0.001 ⁇ m or more and 50 ⁇ m or less. It is more preferable that it is 0.01 micrometer or more and 30 micrometers or less from a viewpoint of improving a handleability further.
  • the particle size is a value obtained by measuring the size of each particle from an SEM or TEM image and calculating the average particle size. The above may be the size of a single crystal or the size of a single crystal granule.
  • organic substances such as polyacene, are illustrated.
  • Solid electrolyte In the solid electrolyte, the battery reaction may be conducted as long as Group 1 or Group 2 ions can be conducted.
  • Examples of such ions include H ions, Li ions, Na ions, K ions, Mg ions, Ca ions, or Al ions. Can be mentioned. Hereinafter, details of a system in which Li ions participate in a cell reaction will be exemplified.
  • solid electrolytes examples include inorganic solid electrolytes and organic solid electrolytes.
  • inorganic solid electrolyte a sulfide-based solid electrolyte or an oxide-based solid electrolyte is exemplified
  • organic solid electrolyte a polymer-based solid electrolyte is exemplified.
  • the sulfide-based solid electrolyte is a compound containing at least lithium and sulfur.
  • Examples of the above compounds include compounds represented by the formula: Li l x m S n .
  • X is one or more elements other than Li and S, and l, m and n are in the range of 0.5 ⁇ l ⁇ 10, 0 ⁇ m ⁇ 10, 1 ⁇ n ⁇ 10 .
  • X in the above formula be included.
  • X is preferably at least one of elements of Groups 12, 13, 14, 15, 16, or 17 elements.
  • X is at least one selected from the group consisting of Zn, Al, Si, P, Ge, Sn, Sb, Cl, and I from the viewpoint of improving the stability of the sulfide-based solid electrolyte itself. Is more preferred.
  • one type may be sufficient as X, and two or more types may be sufficient as it.
  • the conductivity of lithium ions may decrease.
  • 0.5 ⁇ l ⁇ 8 is preferable. Further, in order to further improve the stability of the solid electrolyte itself, it is more preferable that 1 ⁇ m and n ⁇ 6.
  • Li 2 S—P 2 S 5 system LiI—Li 2 S—P 2 S 5 system, LiI—Li 2 S—B 2 S 3 system, LiI—Li 2 S—
  • SiS 2 system or the thiolicicon system is exemplified.
  • the solid electrolyte may contain Na or the like.
  • the oxide-based solid electrolyte is a compound containing at least lithium and oxygen.
  • a phosphoric acid compound having a nasicon type structure or a substituted product in which a part thereof is substituted with another element can be mentioned.
  • a lithium ion conductor having a garnet-type structure or a garnet-type structure such as Li 7 La 3 Zr 2 O 12 -based lithium ion conductor, a perovskite structure such as a Li-La-Ti-O-based lithium ion conductor or the like
  • An oxide-based solid electrolyte having a perovskite-like structure can also be used.
  • the solid electrolyte of the present invention may contain a trace amount of elements other than these elements.
  • polymers such as polyethylene oxide, polypropylene oxide, and polyethylene glycol.
  • polyethylene glycol Sanyo Chemical Industries, Ltd. make, brand name "PG600” was used.
  • the ultrasonic processor is SMT. CO. Model No. “UH-600SR” manufactured by LTD.
  • the homomixer made from TOKUSHU KIKA company, and the model number "TK. HOMO MIXER MARKII” was used.
  • the produced carbon material was heat-treated in order of 400 ° C. for 30 minutes and 350 ° C. for 2 hours to obtain a carbon material having a graphite structure and partially exfoliated graphite.
  • the obtained carbon material contained 12% by weight of resin based on the total weight.
  • the amount of resin was calculated as the amount of resin by using TG (manufactured by Hitachi High-Tech Science, product number “STA7300”) and the weight loss in the range of 200 ° C. to 600 ° C.
  • the BET specific surface area of the obtained carbon material was measured using a specific surface area measurement device (manufactured by Shimadzu Corporation, part number “ASAP-2000”, nitrogen gas) and was 95 m 2 / g.
  • the measurement of the methylene blue adsorption amount was performed as follows. First, a methanol solution of methylene blue (Kanto Chemical Co., special grade reagent) at a concentration of 10.0 mg / L, 5.0 mg / L, 2.5 mg / L, 1.25 mg / L is prepared in a volumetric flask, Each absorbance was measured with a UV-visible spectrophotometer (manufactured by Shimadzu Corporation, product number "UV-1600") to prepare a calibration curve.
  • methylene blue Korean Chemical Co., special grade reagent
  • the carbon material and the supernatant are separated by centrifugation, and the absorbance of the blank of 10 mg / L methylene blue solution and the supernatant is measured with a UV-visible spectrophotometer, and the blank and the supernatant The difference in absorbance with the liquid was calculated.
  • Adsorbed amount of methylene blue (mol / g) ⁇ decreased amount of concentration of methylene blue solution (g / L) x volume of solvent measured (L) ⁇ / ⁇ molecular weight of methylene blue (g / mol) x mass of carbon material used for measurement (G) ⁇ ...
  • the obtained carbon material and silicon powder are mixed in a sample bottle at a weight ratio of 1: 1 to obtain a measurement sample.
  • the mixed powder as was produced.
  • the prepared mixed powder was put in a non-reflective Si sample stand and placed in an X-ray diffractometer (Smart Lab, manufactured by Rigaku Corporation). Thereafter, the X-ray diffraction spectrum was measured by the wide-angle X-ray diffraction method under the conditions of X-ray source: CuK ⁇ (wavelength 1.541 ⁇ ), measurement range: 3 ° to 80 °, and scan speed: 5 ° / min.
  • the height a of was calculated.
  • the ratio of a to b, that is, a / b was calculated.
  • polyethylene glycol Sanyo Chemical Industries, Ltd. make, brand name "PG600” was used.
  • PG600 polyethylene glycol
  • the produced carbon material was subjected to heat treatment at 420 ° C. for 0.5 hours in order to obtain a carbon material having a graphite structure and partially exfoliated graphite.
  • the obtained carbon material contained 0.5% by weight of resin based on the total weight.
  • the amount of resin was calculated as the amount of resin by using TG (manufactured by Hitachi High-Tech Science, product number “STA7300”) and the weight loss in the range of 200 ° C. to 600 ° C.
  • the D / G ratio, the ratio y / x, and the a / b measured in the same manner as in Production Example 1 of the carbon material are respectively the D / G ratio: 0.700, the ratio y / x: 0.53, And the ratio a / b: 0.8.
  • Li 2 S manufactured by Furuuchi Chemical Co., Ltd.
  • P 2 S 5 manufactured by Aldrich
  • the weighed raw materials were put into a zirconia pot together with zirconia balls, and mechanical milling was performed in an argon atmosphere at a rotational speed of 540 rpm for 9 hours .
  • Li 10 Ge 1 P 2 S 12 as a sulfide-based solid electrolyte to be mixed in the electrode layer of each sample was prepared by the following procedure. First, in a glove box (manufactured by Miwa Seisakusho Co., Ltd.) with an argon atmosphere, Li 2 S (manufactured by Furuuchi Chemical Co., Ltd.), P 2 S 5 (manufactured by Aldrich), and GeS 2 (Aldrich) at a molar ratio of 5 : Weighed 1: 1.
  • the weighed raw materials were put into a zirconia pot together with zirconia balls, and mechanical milling was performed in an argon atmosphere at a rotational speed of 540 rpm for 9 hours .
  • ethanol was vaporized and heat treatment was performed at 900 ° C. for 2 hours.
  • the heat-treated sample was charged with a zirconia ball, and ground and mixed in an ethanol solvent.
  • Example 1 Preparation of positive electrode active material-carbon material composite; A composite of the positive electrode active material (LiCoO 2 , CS-5, manufactured by Nippon Chemical Industrial Co., Ltd.) and the carbon material of Production Example 1 was produced by the following procedure.
  • dispersion 1 of the carbon material of Example 1 was prepared.
  • the positive electrode active material was added to 21.6 g of ethanol, and the dispersion liquid of the positive electrode active material of Example 1 was prepared by stirring with a magnetic stirrer at 600 rpm for 10 minutes.
  • the dispersion liquid of the positive electrode active material of Example 1 was dropped onto the dispersion liquid 1 of the carbon material of Example 1 with a dropper.
  • the dispersion liquid 1 of the carbon material of Example 1 continued to be processed by an ultrasonic cleaner (manufactured by ASONE). Then, the liquid mixture of the dispersion liquid 1 of the carbon material of Example 1 and the dispersion liquid of the positive electrode active material dispersion of Example 1 was stirred by a magnetic stirrer for 2 hours.
  • the mixture of the dispersion is suction filtered and vacuum dried at 110 ° C. for 1 hour to obtain a composite of the positive electrode active material of Example 1 and the carbon material (positive electrode active material-carbon material composite) Was produced.
  • the quantity required for preparation of a positive electrode was produced by repeating said process.
  • the positive electrode of this example was produced by the following procedure.
  • the weight ratio of the obtained positive electrode active material-carbon material composite to the sulfide-based solid electrolyte manufactured in Production Example 1 is 80:20 (80% by weight, 20% by weight), respectively. Weighed to Next, these materials were mixed by mechanical milling (planetary ball mill, manufactured by Fritsch, P-6 type, rotation speed: 380 rpm, 1 hour). Finally, the mixed powder (25 mg) of the positive electrode active material-carbon material composite and the sulfide-based solid electrolyte obtained through the above steps is placed on a SUS base material (diameter 10 mm, thickness 0.5 mm) at 360 Mpa The positive electrode of Example 1 was produced by press molding. The steps from weighing of each material to press molding and storage of the positive electrode were performed under an argon atmosphere with a dew point of ⁇ 60 ° C. or less.
  • Dispersion 2 of the carbon material of Production Example 1 (following) , Dispersion 2) of the carbon material of Example 1 was prepared.
  • Example 1 2.4 g of the negative electrode active material (Si powder, manufactured by Aldrich) was added to 21.6 g of ethanol, and the magnetic active material was dispersed in Example 1 by stirring for 10 minutes at 600 rpm with a magnetic stirrer. The solution was prepared.
  • the negative electrode active material Si powder, manufactured by Aldrich
  • the dispersion liquid of the negative electrode active material of Example 1 was dropped onto the dispersion liquid 2 of the carbon material of Example 1 with a dropper.
  • the dispersion 2 of the carbon material of Example 1 was continuously treated with an ultrasonic cleaner (manufactured by ASONE). Thereafter, a mixture of the dispersion 2 of the carbon material of Example 1 and the dispersion of the negative electrode active material of Example 1 was stirred with a magnetic stirrer for 2 hours.
  • the mixed solution of the dispersion is suction filtered, and then vacuum dried at 110 ° C. for 1 hour to obtain a composite of the negative electrode active material of Example 1 and the carbon material (negative electrode active material-carbon material composite) Was produced.
  • the quantity required for preparation of a negative electrode was produced by repeating said process.
  • the negative electrode of this example was produced by the following procedure.
  • the negative electrode active material-carbon material composite and the sulfide-based solid electrolyte were weighed so as to have a weight ratio of 50:50 (50% by weight, 50% by weight), respectively.
  • these materials were mixed by mechanical milling (planetary ball mill, manufactured by Fritsch, P-6 type, rotation speed: 380 rpm, 1 hour).
  • the mixed powder (10 mg) of the negative electrode active material-carbon material composite and the sulfide-based solid electrolyte obtained through the above steps is placed on a SUS substrate (diameter 10 mm, thickness 0.5 mm),
  • the negative electrode of Example 1 was produced by press molding at 360 Mpa. The steps from weighing of each material to press molding and storage of the negative electrode were performed under an argon atmosphere with a dew point of ⁇ 60 ° C. or less.
  • the all-solid-state battery of this example was produced in the following procedure. First, pellets (diameter 10 mm, thickness 500 ⁇ m) of a sulfide-based solid electrolyte were produced as a solid electrolyte layer using the sulfide-based solid electrolyte produced in the production example. Next, the positive electrode, the pellet of the sulfide-based solid electrolyte, and the negative electrode were stacked in this order so that the SUS current collector faced the outer side. Finally, after holding the laminate at a pressure of 50 MPa, each member was fixed to manufacture an all solid battery.
  • Example 2 In Example 2, instead of the sulfide-based solid electrolyte, a powder of the oxide-based solid electrolyte prepared in the above-described production example was used as the solid electrolyte. In addition, pellets were molded at 100 MPa, and the pellets were heat treated at 850 ° C. for 12 hours. Furthermore, after the above-mentioned oxide-based solid electrolyte was formed into a diameter of 10 mm and a thickness of 500 ⁇ m in the solid electrolyte layer, a sintered body produced by heat treatment at 850 ° C. for 12 hours was used. An all-solid-state battery was produced in the same manner as in Example 1 except for the above.
  • Example 3 An all solid battery was produced in the same manner as Example 1, except that the carbon material produced in Production Example 2 was used instead of the carbon material produced in Production Example 1.
  • Example 4 An all solid battery was produced in the same manner as Example 1, except that the sulfide-based electrolyte produced in Production Example 2 was used instead of the sulfide-based solid electrolyte produced in Production Example 1.
  • Example 5 An all solid battery was produced in the same manner as Example 2, except that the carbon material produced in Production Example 2 was used instead of the carbon material produced in Production Example 1.
  • the all-solid-state battery was manufactured.
  • the D / G ratio, the ratio y / x, and the ratio a / b are D / G ratio: 0.790, ratio y / x: 0.35, and ratio a / b: 2.2, respectively.
  • the D / G ratio, the ratio y / x, and the ratio a / b are D / G ratio: 0.790, ratio y / x: 0.35, and ratio a / b: 2.2, respectively.
  • Example 7 An all solid battery was produced in the same manner as in Example 6, except that the sulfide-based electrolyte produced in Production Example 2 was used instead of the sulfide-based solid electrolyte produced in Production Example 1.
  • the all-solid-state battery was manufactured.
  • the D / G ratio, the ratio y / x, and the ratio a / b are D / G ratio: 0.790, ratio y / x: 0.35, and ratio a / b: 2.2, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

全固体電池の充放電時におけるサイクル特性を向上させることができる、炭素材料を提供する。 1族若しくは2族のイオン伝導性固体電解質を用いた全固体電池用正極及び/又は負極に含まれる炭素材料であって、炭素材料とSiとの重量比1:1における混合物のX線回折スペクトルを測定したときに、2θが、24°以上、28°未満の範囲における最も高いピークの高さaと、2θが、28°以上、30°未満の範囲における最も高いピークの高さbとの比a/bが、0.2以上、10.0以下である、炭素材料。

Description

炭素材料、全固体電池用正極、全固体電池用負極、及び全固体電池
 本発明は、炭素材料、並びに該炭素材料を用いた全固体電池用正極、全固体電池用負極、及び全固体電池に関する。
 近年、携帯機器、ハイブリッド自動車、電気自動車、及び家庭用蓄電用途等に向けて、非水電解質二次電池の研究開発が盛んに行われており、さらなる高エネルギー密度化が求められている。
 このような非水電解質二次電池の例として、可燃性の有機溶媒にリチウム塩を溶解させてなる液体の有機電解質を用いた構成が知られている。しかしながら、液体の有機電解質を用いた系では、電池からの有機電解質の漏出や、短絡時に発火する等の問題点があり、さらなる安全性の向上が求められている。
 この要望に対応すべく、液体である有機電解質の代わりに、無機材料や高分子材料から構成される電解質、すなわち固体電解質を用いた全固体電池が開発されている(例えば、非特許文献1)。
 全固体電池の電極(正極、負極)は、電極活物質(正極活物質、負極活物質)と固体電解質との良好な接触状態を維持させることに加え、電極内に電子伝導経路を良好に形成させる必要がある。この点に関し、特許文献1では、電子伝導性のネットワークを確保すべく、ケッチェンブラックなどのカーボンブラックが用いられている。
特開2014-29777号公報
リチウム二次電池,第7章,pp.163(2008),オーム社
 しかしながら、特許文献1のようなカーボンブラックを全固体電池の電極に用いた場合、なお十分に良好な電子伝導経路を形成することが困難であった。そのため、全固体電池の正極や負極の電気抵抗が増大し、特にサイクル特性等の電池特性が低下するという問題点があった。また、カーボンブラックを用いた場合、固体電解質のイオン伝導経路の形成に不利であることに加え、エネルギー密度の向上にも不利になるという問題点もあった。
 本発明の目的は、全固体電池の充放電時におけるサイクル特性を向上させることができる、炭素材料、並びに該炭素材料を用いた全固体電池用正極、全固体電池用負極、及び全固体電池を提供することにある。
 本発明に係る炭素材料は、1族若しくは2族のイオン伝導性固体電解質を用いた全固体電池用正極及び/又は負極に含まれる炭素材料であって、前記炭素材料とSiとの重量比1:1における混合物のX線回折スペクトルを測定したときに、2θが、24°以上、28°未満の範囲における最も高いピークの高さaと、2θが、28°以上、30°未満の範囲における最も高いピークの高さbとの比a/bが、0.2以上、10.0以下である。
 本発明に係る炭素材料のある特定の局面では、前記炭素材料が、グラフェン積層構造を有する。
 本発明に係る炭素材料の別の特定の局面では、前記炭素材料が、二次元に広がっている形状を有する。
 本発明に係る炭素材料の他の特定の局面では、前記炭素材料が、グラファイト構造を有し、部分的にグラファイトが剥離されている炭素材料である。
 本発明に係る炭素材料のさらに他の特定の局面では、10mg/L濃度のメチレンブルーのメタノール溶液の吸光度と、該メチレンブルーのメタノール溶液に前記炭素材料を投入し、遠心分離により得られた上澄み液の吸光度との差に基づき測定された前記炭素材料1gあたりのメチレンブルー吸着量(μモル/g)をy、前記炭素材料のBET比表面積(m/g)をxとした場合、比y/xが0.15以上である。
 本発明に係る炭素材料のさらに他の特定の局面では、前記炭素材料のラマンスペクトルにおけるDバンドと、Gバンドとのピーク強度比をD/G比としたとき、前記D/G比が、0.05以上、0.8以下の範囲内にある。
 本発明に係る炭素材料のさらに他の特定の局面では、前記炭素材料を第1の炭素材料としたときに、該第1の炭素材料とは異なる第2の炭素材料をさらに含み、前記第1の炭素材料の重量をMとし、前記第2の炭素材料の重量をNとしたときに、0.01≦M/N≦100を満たしている。
 本発明に係る全固体電池用正極は、本発明に従って構成される炭素材料と、正極活物質と、1族若しくは2族のイオン伝導性固体電解質とを含む。
 本発明に係る全固体電池用正極のある特定の局面では、前記イオン伝導性固体電解質が、酸化物系固体電解質又は硫化物系固体電解質である。
 本発明に係る全固体電池用負極は、本発明に従って構成される炭素材料と、負極活物質と、1族若しくは2族のイオン伝導性固体電解質とを含む。
 本発明に係る全固体電池用負極のある特定の局面では、前記イオン伝導性固体電解質が、酸化物系固体電解質又は硫化物系固体電解質である。
 本発明に係る全固体電池は、本発明に従って構成される全固体電池用正極及び/又は本発明に従って構成される全固体電池用負極を備える。
 本発明の炭素材料によれば、全固体電池の正極や負極などの電極内に良好な電子伝導経路とイオン伝導経路とを形成することができる。そのため、全固体電池のサイクル特性を向上させることが可能となる。また、本発明の炭素材料によれば、全固体電池の電極内の無駄な空間を低減することができるため、正極や負極の電極密度、すなわち、全固体電池のエネルギー密度も向上させることが可能となる。
 以下、本発明の詳細を説明する。
 本発明の範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図されている。
 (炭素材料)
 本発明に係る炭素材料は、全固体電池用の正極及び/又は負極に含まれる炭素材料である。上記全固体電池は、特に限定されないが、一次電池、二次電池、空気一次電池、又は空気二次電池などが例示される。また、上記全固体電池では、1族若しくは2族のイオン伝導性固体電解質が用いられている。
 本発明においては、上記炭素材料とSiとの重量比1:1における混合物のX線回折スペクトルを測定したときに、以下の範囲となる。すなわち、2θが、24°以上、28°未満の範囲における最も高いピークの高さaと、2θが、28°以上、30°未満の範囲における最も高いピークの高さbとの比a/bが、0.2以上、10.0以下である。なお、上記Siとしては、例えば、φ=100nm以下のシリコン粉末を用いることができる。
 X線回折スペクトルは、広角X線回折法によって測定することができる。X線としては、CuKα線(波長1.541Å)を用いることができる。X線回折装置としては、例えば、SmartLab(リガク社製)を用いることができる。
 本発明の炭素材料は、グラフェン積層構造を有していることが好ましい。X線回折スペクトルにおいて、グラファイト構造に代表されるグラフェン積層構造に由来するピークは、2θ=26.4°付近に現れる。一方、シリコン粉末になどのSiに由来するピークは、2θ=28.5°付近に現れる。従って、炭素材料がグラフェン積層構造を有している場合、上記比a/bは、2θ=26.4°付近のピークと2θ=28.5°付近のピークとのピーク高さの比(2θ=26.4°付近のピーク/2θ=28.5°付近のピーク)により求めることができる。
 なお、グラフェン積層構造を有する炭素材料としては、例えば、黒鉛、薄片化黒鉛、後述の部分剥離型薄片化黒鉛などが挙げられる。
 本発明の炭素材料においては、上記比a/bが、0.2以上、10.0以下であるので、全固体電池の充放電時におけるサイクル特性を向上させることができる。この理由については、例えば、従来のカーボンブラックと比較して、以下のように説明することができる。
 従来のカーボンブラックは、粒子であるため、特に、固体電解質を用いた正極及び/又は負極においては、十分に良好な電子伝導経路を形成することが困難であった。そのため、全固体電池の正極や負極の電極材料にカーボンブラックを用いた場合、正極や負極の電気抵抗が増大し、特にサイクル特性等の電池特性が低下するという問題点があった。
 また、カーボンブラックは、多数の空孔を有する特徴があるが、その空孔部分には固体電解質が侵入し難いため、空孔部分が電池反応に全く関与しない空間となる。そのため、カーボンブラックを用いた場合、固体電解質のイオン伝導経路の形成に不利であることに加え、エネルギー密度の向上にも不利になるという問題点もあった。
 これに対して、本発明の炭素材料においては、上記比a/bが、0.2以上、10.0以下であるので、全固体電池の正極や負極などの電極内に良好な電子伝導経路とイオン伝導経路とを形成することができる。そのため、全固体電池のサイクル特性を向上させることが可能となる。また、本発明の炭素材料によれば、全固体電池の電極内の無駄な空間を低減することができるため、正極や負極の電極密度、すなわち、全固体電池のエネルギー密度も向上させることが可能となる。
 なお、上記a/bが0.2未満の場合、炭素材料自身における黒鉛構造の形成が少ないため、電子伝導性が低いことに加え、欠陥を有するので、正極や負極の抵抗値が増大し、電池特性が低下するおそれがある。
 上記a/bが10.0より大きい場合、炭素材料自身が剛直となるため、全固体電池の正極や負極内に分散し難く、また、炭素材料と活物質との接触点が少なくなる。このことから良好な電子伝導経路を形成しにくくなるおそれがある。
 全固体電池の電極内において、電子伝導経路をより一層形成しやすくする観点から、上記比a/bは、好ましくは0.22以上、より好ましくは0.25以上、好ましくは8.0以下、より好ましくは5.0以下、さらに好ましくは2.5以下、特に好ましくは1.0以下、さらに特に好ましくは0.9以下、最も好ましくは0.8以下である。
 a/b比を上記範囲内に調整する方法としては、後述の製造方法における加熱条件、樹脂の種類、樹脂の量及び原料炭素材料の種類を調整することが挙げられる。
 本発明において、炭素材料の粒子径は、0.1μm以上、100μm以下であることが好ましい。また、取り扱い性をより一層高める観点から、0.5μm以上、50μm以下であることがより好ましい。ここで、本明細書において、粒子径(粒径)は、SEM又はTEM像から各粒子の大きさを測定し、平均粒子径を算出した値である。
 本発明において、炭素材料のBET比表面積は、活物質との接触点をより一層十分に確保できることから、3m/g以上が好ましい。活物質との接触点をさらに一層十分に確保できることから、炭素材料のBET比表面積は、5m/g以上がより好ましく、8m/g以上であることがさらに好ましい。また、電極作製時の取り扱い易さをより一層高める観点から、炭素材料のBET比表面積は、2500m/g以下であることが好ましい。
 上記炭素材料の形状としては、特に限定されず、二次元に広がっている形状、球状、繊維状、又は不定形状等が挙げられる。上記炭素材料の形状としては、二次元に広がっている形状であることが好ましい。二次元に広がっている形状としては、例えば、鱗片状又は板状(平板状)が挙げられる。
 固体電解質を用いた場合、従来のカーボンブラックのような炭素材料では、カーボンブラックが点在し、しかも固体電解質中を動き難いため、導電パスの形成が難しい場合がある。これに対して、炭素材料が上記のような二次元的に広がっている形状を有する場合、より一層良好な導電パスを形成することができる。
 なかでも、上記炭素材料の形状としては、鱗片状であることが好ましい。上記炭素材料が、鱗片状であることにより、得られる固体電池用電極において、活物質との接触点がより一層多くなり、より一層良好な導電パスが形成しやすい。
 上記炭素材料は、天然黒鉛、人造黒鉛、膨張黒鉛などの黒鉛や、薄片化黒鉛などが挙げられる。なかでも、良好な電子伝導経路をより一層形成しやすいため、グラファイト構造を有し、部分的にグラファイトが剥離されている構造を有する炭素材料であることが好ましい。もっとも、炭素材料は、グラフェンであってもよい。
 薄片化黒鉛とは、元の黒鉛を剥離処理して得られるものであり、元の黒鉛よりも薄いグラフェンシート積層体をいう。薄片化黒鉛におけるグラフェンシートの積層数は、元の黒鉛より少なければよい。
 薄片化黒鉛において、グラフェンシートの積層数は、好ましくは1000層以下であり、より好ましくは500層以下である。グラフェンシートの積層数が上記上限以下である場合、比表面積をより一層大きくすることができる。
 なお、「部分的にグラファイトが剥離されている構造を有する」とは、グラフェンの積層体において、端縁からある程度内側までグラフェン層間が開いており、すなわち端縁にてグラファイトの一部が剥離していることをいうものとする。また、中央側の部分では、グラファイト層が元の黒鉛又は一次薄片化黒鉛と同様に積層していることをいうものとする。また、端縁にてグラファイトの一部が剥離している部分は、中央側の部分に連なっている。さらに、上記炭素材料には、端縁のグラファイトが剥離され薄片化したものが含まれていてもよい。従って、部分的にグラファイトが剥離されている構造を有する炭素材料は、部分剥離型薄片化黒鉛ということもできる。
 上記のように、部分的にグラファイトが剥離されている構造を有する炭素材料は、中央側の部分において、グラファイト層が元の黒鉛又は一次薄片化黒鉛と同様に積層しているため、導電性に優れている。また、部分的にグラファイトが剥離されている構造を有することから、比表面積が大きい。
 そのため、従来の酸化グラフェンやカーボンブラックより黒鉛化度が高く、導電性により一層優れている。また、部分的にグラファイトが剥離されている構造を有することから、比表面積が大きい。さらに、平板状の形状を有し、2次元的な広がりを有することから、活物質と接触する箇所をより一層増加させることができる。従って、このような炭素材料を、全固体電池の電極に用いたときに、電極内に良好な電子伝導経路を形成することができるので、全固体電池の電池特性をより一層向上させることができる。
 上記部分的にグラファイトが剥離されている構造を有する炭素材料は、黒鉛もしくは一次薄片化黒鉛と、樹脂とを含み、樹脂が黒鉛又は一次薄片化黒鉛にグラフト又は吸着により固定されている組成物を用意し、上記樹脂を熱分解することにより得ることができる。なお、上記組成物中に含まれている樹脂は、除去されていることが望ましいが、樹脂の一部が残存していてもよい。
 上記熱分解により、黒鉛又は一次薄片化黒鉛におけるグラフェン層間の距離が拡げられる。より具体的に、黒鉛又は一次薄片化黒鉛などのグラフェンの積層体において、端縁からある程度内側までグラフェン層間が拡げられる。すなわち、グラファイトの一部が剥離しており、中央側の部分ではグラファイト層が元の黒鉛又は一次薄片化黒鉛と同様に積層している構造を得ることができる。
 黒鉛とは、複数のグラフェンの積層体である。黒鉛としては、天然黒鉛、人造黒鉛、膨張黒鉛などを用いることができる。膨張黒鉛は、通常の黒鉛よりもグラフェン層の層間が大きい。従って、容易に剥離することができる。そのため、膨張黒鉛を用いた場合、本発明の炭素材料をより一層容易に得ることができる。
 なお、黒鉛は、グラフェン積層数が10万層以上~100万層程度であり、BETによる比表面積(BET比表面積)で25m/gよりも小さい値を有するものである。また、一次薄片化黒鉛は、黒鉛を剥離することにより得られるものであるため、その比表面積は、黒鉛よりも大きいものであればよい。
 本発明では、部分的にグラファイトが剥離されている構造を有する炭素材料において部分的にグラファイトが剥離されている部分のグラフェン積層数が、5層以上、3000層以下であることが好ましい。また、5層以上、1000層以下であることがより好ましく、5層以上、500層以下であることがさらに好ましい。
 グラフェン積層数が上記下限未満の場合は、部分的にグラファイトが剥離されている部分におけるグラフェン積層数が少ないため、後述する全固体電池の電極内の各々の活物質間をつなげることができない場合がある。その結果、電極内の電子伝導経路が断絶され、レート特性及びサイクル特性が低下することがあるだけでなく、副反応が進行しやすくなり、その結果、固体電解質が分解しやすくなることがある。
 グラフェン積層数が上記上限より多い場合は、炭素材料1つの大きさが極端に大きくなり、電極内の炭素材料の分布に偏りが生じる場合がある。そのため、電極内の電子伝導経路が未発達となり、レート特性及びサイクル特性が低下することがあるだけでなく、副反応が進行しやすくなり、その結果、固体電解質が分解しやすくなることがある。
 グラフェン積層数の算出方法は、特に限定されないが、TEM等で目視観察することによって算出することができる。
 部分的にグラファイトが剥離されている構造を有する炭素材料のBET比表面積は、活物質との接触点をより一層十分に確保できることから、25m/g以上が好ましい。活物質との接触点をさらに一層十分に確保できることから、炭素材料のBET比表面積は、35m/g以上であることがより好ましく、45m/g以上であることがさらに好ましい。また、電極作製時の取り扱い易さをより一層高める観点から、炭素材料のBET比表面積は、2500m/g以下であることが好ましい。
 部分的にグラファイトが剥離されている構造を有する炭素材料は、最初に、黒鉛又は一次薄片化黒鉛にグラフト又は吸着により樹脂を固定した組成物を作製する工程を経て、次に、組成物を熱処理する工程を経て得ることができる。なお、組成物中に含まれている樹脂は除去されていてもよく、樹脂の一部が残存していてもよい。
 炭素材料に樹脂が残存している場合の樹脂量は、樹脂分を除く炭素材料100重量部に対し、1重量部以上、350重量部以下であることが好ましい。また、5重量部以上、50量部以下であることがより好ましく、5重量部以上、30重量部以下であることがさらに好ましい。残存樹脂量が上記下限未満では、BET比表面積を確保できない場合がある。また、残存樹脂量が上記上限より多い場合は、製造コストが増大する場合がある。
 なお、炭素材料に残存している樹脂量は、例えば熱重量分析(以下、TG)によって加熱温度に伴う重量変化を測定し、算出することができる。
 部分的にグラファイトが剥離されている構造を有する炭素材料は、活物質との複合体を作製した後に、樹脂を除去してもよい。樹脂を除去する方法としては、樹脂の分解温度以上、活物質の分解温度未満で加熱処理する方法が好ましい。この加熱処理は、大気中、不活性ガス雰囲気下、低酸素雰囲気下、あるいは真空下のいずれで行ってもよい。
 黒鉛あるいは一次薄片化黒鉛に、グラフトあるいは吸着により樹脂を固定した組成物の作製に用いる樹脂は、特に限定されないが、ラジカル重合性モノマーの重合体であることが好ましい。ラジカル重合性モノマーの重合体は、複数種類のラジカル重合性モノマーの共重合体であってもよいし、1種類のラジカル重合性モノマーの単独重合体であってもよい。
 このような樹脂の例としては、ポリプロピレングリコール、ポリグリシジルメタクリレート、ポリ酢酸ビニル、ポリブチラール、ポリアクリル酸又はポリエチレングリコールが挙げられる。
 部分的にグラファイトが剥離されている構造を有する炭素材料の製造方法としては、例えば、国際公開第2014/034156号に記載の製造方法が挙げられる。すなわち、例えば、黒鉛または一次薄片化黒鉛と、樹脂とを含む組成物を作製する工程と、作製した組成物を(開放系にて)熱分解する工程とを経ることにより、製造することができる。
 本発明の炭素材料は、ラマン分光法によって得られるラマンスペクトルにおいて、Dバンドと、Gバンドとのピーク強度比をD/G比としたときに、D/G比が、0.8以下であることが好ましく、0.7以下であることがより好ましい。D/G比がこの範囲の場合、炭素材料そのものの導電性をより一層高めることができ、しかもガス発生量をより一層低減することができる。また、D/G比は、0.05以上であることが好ましい。この場合、サイクル特性をより一層向上させることができる。
 本発明の炭素材料は、炭素材料1gあたりのメチレンブルー吸着量(μモル/g)をyとし、炭素材料のBET比表面積(m/g)をxとしたときに、比y/xが、0.15以上であることが好ましく、0.15以上、1.0以下であることがより好ましい。また、後述のスラリー調製時において活物質と炭素材料との吸着がより一層進行しやすいことから、0.2以上、0.9以下であることがさらに好ましい。
 メチレンブルー吸着量(μモル/g)は、次のようにして測定される。最初に、10mg/L濃度のメチレンブルーのメタノール溶液の吸光度(ブランク)を測定する。次に、メチレンブルーのメタノール溶液に測定対象物(炭素材料)を投入し、遠心分離により得られた上澄み液の吸光度(サンプル)を測定する。最後に、吸光度(ブランク)と吸光度(サンプル)との差から1g当たりのメチレンブルー吸着量(μモル/g)を算出する。
 なお、メチレンブルー吸着量と、炭素材料のBETにより求められた比表面積とには相関が存在する。従来から知られている球状の黒鉛粒子では、BET比表面積(m/g)をx、前記メチレンブルー吸着量(μモル/g)をyとしたとき、y≒0.13xの関係にあった。これは、BET比表面積が大きい程、メチレンブルー吸着量が多くなることを示している。従って、メチレンブルー吸着量は、BET比表面積の代わりの指標となり得るものである。
 本発明では、上述のとおり、炭素材料の比y/xが、0.15以上であることが好ましい。これに対して、従来の球状の黒鉛粒子では、比y/xが0.13である。従って、比y/xが0.15以上である場合、従来の球状の黒鉛とは、同じBET比表面積でありながら、メチレンブルー吸着量が多くなる。すなわち、この場合、乾燥状態では幾分凝縮するものの、メタノール中などの湿式状態では、グラフェン層間又はグラファイト層間を乾燥状態に比べより一層拡げることができる。
 本発明においては、例えば、グラファイト構造を有し、部分的にグラファイトが剥離されている上述の炭素材料を第1の炭素材料としたときに、該第1の炭素材料以外の第2の炭素材料が含まれていてもよい。第2の炭素材料は、第1の炭素材料とは異なる炭素材料であり、部分的にグラファイトが剥離されている構造を有さない。第2の炭素材料としては、特に限定されず、グラフェン、粒状黒鉛化合物、繊維状黒鉛化合物、又はカーボンブラックなどが例示される。なお、第1の炭素材料は、グラファイト構造を有し、部分的にグラファイトが剥離されている炭素材料以外の炭素材料であってもよい。
 グラフェンは、酸化グラフェンであってもよいし、酸化グラフェンを還元したものであってもよい。
 粒状黒鉛化合物としては、特に限定されず、天然黒鉛、人造黒鉛、又は膨張黒鉛などが例示される。
 繊維状黒鉛化合物としては、特に限定されず、カーボンナノホーン、カーボンナノチューブ、又はカーボンファイバーなどが例示される。
 カーボンブラックとしては、特に限定されず、ファーネスブラック、ケッチェンブラック、又はアセチレンブラックなどが例示される。
 グラファイト構造を有し、部分的にグラファイトが剥離されている第1の炭素材料と、部分的にグラファイトが剥離されている構造を有さない第2の炭素材料とは、例えば、SEMやTEMなどで区別することができる。
 第1の炭素材料と第2の炭素材料とを含むとは、例えば、後述の複合体、正極、又は負極に、第1の炭素材料と第2の炭素材料とが存在していることを意味する。第1の炭素材料と第2の炭素材料とを存在させる方法は、特に限定されないが、後述の複合体、正極、又は負極の作製時に混合する方法でもよい。あるいは、どちらか一方の炭素材料で後述の複合体を作製した後に、他方の炭素材料を添加する方法でもよい。
 第2の炭素材料の表面には、官能基が存在していてもよい。この場合、後述の複合体、正極、又は負極がより一層作製しやすくなる。
 本発明においては、第1の炭素材料の重量をMとし、第2の炭素材料の重量をNとしたときに、比M/Nが、0.01以上、100以下の範囲内にあることが好ましい。比M/Nが上記範囲内にある場合、全固体電池における電極の抵抗をより一層小さくすることができる。そのため、全固体電池に用いたときに、大電流での充放電時における発熱をより一層抑制することをできる。
 全固体電池における電極の抵抗をさらに一層小さくする観点から、比M/Nは、好ましくは0.05以上、より好ましくは0.1以上、好ましくは20以下、より好ましくは10以下である。
 本発明の炭素材料は、上述したように、全固体電池の正極や負極などの電極内に良好な電子伝導経路とイオン伝導経路とを形成することができる。そのため、全固体電池の正極や負極における導電助剤としてより好適に用いることができる。
 (全固体電池)
 本発明の全固体電池は、例えば、正極、固体電解質、及び負極で構成することができる。この全固体電池の作製方法としては、正極及び負極を作製した後に、正極及び負極間に固体電解質を挟み、プレスする方法により作製する方法が好ましい。なお、このプレスをした後に、各界面の一体化を促すため、加熱処理を加えてもよい。
 本発明の全固体電池は、正極及び/又は負極に上記本発明の炭素材料を含むので、正極内や負極内に良好な電子伝導経路とイオン伝導経路とを形成することができる。そのため、サイクル特性などの電池特性に優れた全固体電池を提供することができる。
 以下、全固体電池を構成する各部材の詳細を説明する。
 全固体電池の正極;
 本発明に係る全固体電池の正極は、少なくとも、以下の正極活物質と、固体電解質と、炭素材料とを含む。特に、炭素材料として、上記本発明の炭素材料を含むので、サイクル特性やレート特性に代表される電池特性を向上させることができる。なお、固体電解質は、後述の固体電解質の欄で説明するものを用いることができる。
 上記正極活物質は、後述の負極活物質の電池反応電位よりも、貴であればよい。その際、電池反応は、1族若しくは2族のイオンが関与していればよく、そのようなイオンとしては、例えば、Hイオン、Liイオン、Naイオン、Kイオン、Mgイオン、Caイオン、又はAlイオンが挙げられる。以下、Liイオンが電池反応に関与する系について詳細を例示する。
 この場合、上記正極活物質としては、例えば、リチウム金属酸化物、リチウム硫化物、又は硫黄が挙げられる。
 リチウム金属酸化物としては、スピネル構造、層状岩塩構造、又はオリビン構造を有するものが例示される。
 これら正極活物質の表面には、正極活物質と固体電解質との界面におけるLiイオンの移動がより一層しやすくなるために、Li-Nb酸化物等で表面被覆がなされていてもよい。
 全固体電池用正極は、正極活物質、炭素材料、及び固体電解質のみで形成されてもよいが、正極をより一層容易に形成する観点から、バインダーが含まれていてもよい。
 バインダーとしては、特に限定されないが、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム、ポリイミド、及びそれらの誘導体からなる群から選ばれる少なくとも1種の樹脂を用いることができる。
 本発明の全固体電池用正極の作製方法としては、正極活物質、炭素材料、及び固体電解質をまとめて混合した後に成型してもよいし、正極活物質-炭素材料複合体を作製した後に固体電解質を混合して成型してもよい。正極活物質-固体電解質複合体を作製した後に炭素材料を混合して成型してもよい。
 正極活物質-炭素材料複合体は、例えば、次のような手順で作製される。
 最初に、上記本発明の炭素材料を、溶媒に分散させた分散液(以下、炭素材料の分散液)を作製する。続いて、上記分散液とは別に、正極活物質を溶媒に分散させた正極活物質の分散液(以下、正極活物質の分散液)を作製する。次に、炭素材料の分散液と、正極活物質の分散液とを混合する。最後に、上記炭素材料及び正極活物質が含まれる分散液の混合液中の溶媒を除去することによって、正極に用いられる正極活物質と炭素材料との複合体(活物質-炭素材料複合体)が作製される。
 また、上述の作製方法以外にも、炭素材料の分散液に正極活物質を加え、炭素材料及び正極活物質が含まれる分散液を作製した後に、溶媒を除去する方法でもよい。あるいは、炭素材料と、正極活物質と、溶媒との混合物を、ミキサーで混合する方法、すなわち、後述の正極のスラリーの作製と、複合体の作製とを兼ねていてもよい。
 また、炭素材料に樹脂が含まれる場合、加熱処理によって樹脂を除去しても良い。
 正極活物質又は炭素材料を分散させる溶媒は、水系、非水系、水系と非水系との混合溶媒、あるいは異なる非水系溶媒の混合溶媒のいずれでもよい。また、炭素材料の分散に用いる溶媒と、正極活物質を分散させる溶媒は同じでもよいし、異なっていてもよい。異なっている場合は、互いの溶媒に相溶性があることが好ましい。
 非水系溶媒としては、特に限定されないが、例えば分散のしやすさから、メタノール、エタノール、プロパノールに代表されるアルコール系、テトラヒドロフラン又はN-メチル-2-ピロリドンなどの非水系溶媒を用いることができる。また、分散性をより一層向上させるため、上記溶媒に、界面活性剤などの分散剤が含まれてもよい。
 分散方法は、特に限定されないが、超音波による分散、ミキサーによる分散、ジェットミルによる分散、又は攪拌子による分散が挙げられる。
 分散液中における炭素材料の濃度は、特に限定されないが、炭素材料の重量を1とした場合に、溶媒の重量が1以上、1000以下であることが好ましい。取り扱い性をより一層高める観点から、炭素材料の重量を1とした場合に、溶媒の重量が5以上、750以下であることがより好ましい。また、分散性をより一層高める観点から、炭素材料の重量を1とした場合に、溶媒の重量が5以上、500以下であることがさらに好ましい。
 溶媒の重量が上記下限未満の場合は、炭素材料を所望の分散状態まで分散させることができない場合がある。一方、溶媒の重量が上記上限より大きい場合は、製造費用が増大する場合がある。
 分散液中における正極活物質の濃度は、特に限定されないが、正極活物質の重量を1とした場合に、溶媒の重量が0.5以上、100以下であることが好ましい。取り扱い性をより一層高める観点から、溶媒の重量は、1以上、75以下であることがより好ましい。また、分散性をより一層高める観点から、溶媒の重量は、5以上、50以下であることがさらに好ましい。なお、溶媒の重量が上記下限未満の場合は、正極活物質を所望の分散状態まで分散させることができない場合がある。一方、溶媒の重量が上記上限より大きい場合は、製造費用が増大する場合がある。
 正極活物質の分散液と、炭素材料の分散液とを混合する方法は、特に限定されないが、互いの分散液を一度に混合する方法や、一方の分散液を他方の分散液に複数回に分けて加える方法が挙げられる。
 一方の分散液を他方の分散液に複数回に分けて加える方法としては、例えば、スポイドなどの滴下の器具を用いて滴下する方法や、ポンプを用いる方法、あるいはディスペンサーを用いる方法が挙げられる。
 炭素材料、正極活物質及び溶媒の混合物から、溶媒を除去する方法としては、特に限定されないが、ろ過により溶媒を除去した後に、オーブン等で乾燥させる方法が挙げられる。上記ろ過は、生産性をより一層高める観点から、吸引ろ過であることが好ましい。また、乾燥方法としては、送風オーブンで乾燥させた後に、真空で乾燥させた場合、細孔に残存している溶媒を除去できることから好ましい。
 本発明において、活物質-炭素材料複合体における、正極活物質と炭素材料との比率は、正極活物質の重量を100とした場合に、炭素材料の重量が、0.2以上、100以下であることが好ましい。レート特性をより一層向上させる観点からは、炭素材料の重量が、0.3以上、80以下であることがより好ましい。また、サイクル特性をより一層向上させる観点からは、炭素材料の重量が、0.5以上、50以下であることがさらに好ましい。
 本発明の固体電解質と正極活物質との複合体の作製は、例えば、正極活物質と固体電解質とをミキサー等で混合する方法やメカニカルミリング等で混合する方法を用いることが好ましい。
 混合に用いられるミキサーとしては、特に限定されないが、プラネタリミキサー、ディスパー、薄膜旋回型ミキサー、ジェットミキサー、又は自公回転型ミキサー等が挙げられる。
 混合に用いられるメカニカルミリング方法としては、ボールミル、ビーズミル、ロータリーキルン等が挙げられる。
 正極活物質と固体電解質との密着性を向上させるために、加熱処理を加えてもよい。
 正極の成型方法としては、例えば、正極活物質と固体電解質とをミキサーやメカニカルミリング等で混合した後に、プレスで成型する方法が挙げられる。プレスによる成型は、正極のみでもよいし、後述の固体電解質層及び負極と併せてプレスしてもよい。
 また、固体電解質の成型性をより一層向上させるため、特に酸化物系固体電解質を用いた場合は、成型後に加熱処理を加えてもよい。
 正極に含まれる固体電解質と正極活物質との比率は、正極活物質の重量100に対して、固体電解質の重量は0.1~200であることが好ましい。
 0.1未満の場合は、電子伝導経路の形成や、リチウムイオン伝導経路の形成が困難となる場合がある。一方、200より多い場合は、全固体電池のエネルギー密度が低下する場合がある。
 本発明の全固体電池用正極の厚みは、特に限定されないが、10μm以上、1000μm以下であることが好ましい。厚みが10μm未満では、所望の容量を得ることが難しい場合がある。一方、厚みが1000μmより厚い場合は、所望の出力密度を得ることが難しい場合がある。
 本発明の全固体電池用正極は、正極1cm当たりの電気容量が、0.5mAh以上、100.0mAh以下であることが好ましい。電気容量が0.5mAh未満である場合は、所望する容量の電池の体積が大きくなる場合がある。一方、電気容量が100mAhより大きい場合は、所望の出力密度を得ることが難しくなる場合がある。電池の体積の大きさ及び出力密度の関係性がよりよいことから、より好ましくは、正極1cm当たりの電気容量が、0.8mAh以上、50mAh以下である。特に好ましくは、1.0mAh以上、20mAh以下である。なお、正極1cm当たりの電気容量の算出は、全固体電池用正極作製後、リチウム金属を対極とした半電池を作製し、充放電特性を測定することによって算出してもよい。
 全固体電池用正極の正極1cm当たりの電気容量は、特に限定されないが、集電体単位面積あたりに形成させる正極の重量で制御することができる。
 全固体電池の負極;
 本発明に係る全固体電池の負極は、リチウム金属又はリチウム合金を用いることもできるが、少なくとも、負極活物質と、固体電解質と、炭素材料とを含むものを用いることができる。
 本発明に係る全固体電池の負極には、以下の負極活物質以外は前述の正極に用いたものと同様のものを用いることができる。従って、負極の製造方法や構成は、上述の正極と同じものを用いることができる。従って、正極活物質と炭素材料の複合体の代わりに、負極活物質と炭素材料の複合体も用いることができる。
 負極活物質は、上述の正極活物質の電池反応電位よりも、卑であればよい。その際、電池反応は、1族若しくは2族のイオンが関与していればよく、そのようなイオンとしては、例えば、Hイオン、Liイオン、Naイオン、Kイオン、Mgイオン、Caイオン、又はAlイオンが挙げられる。以下、Liイオンが電池反応に関与する系について詳細を例示する。
 本発明で用いる負極活物質は、例えば、リチウム金属、リチウム金属酸化物、炭素材料、金属化合物、又は有機化合物が挙げられる。
 上記金属としては、例えば、リチウムイオンと反応し、合金化できるものであれば限定されず、Li、Mg、Ca、Al、Si、Ge、Sn、Pb、As、Sb、Bi、Ag、Au、Zn、Cd、Hg、又はInが例示される。これらのなかでも、体積エネルギー密度及び重量エネルギー密度をより一層高める観点から、Li、Al、Si、Ge、Sn、Ti、Pb又はInが好ましく、Li、Si、Sn又はTiがより好ましい。また、リチウムイオンとの反応性がより一層高いことから、Si又はSnがさらに好ましい。
 上記金属は、単独で用いてもよいし、上記金属が2種類以上含まれる合金でもよい。2種類以上の上記金属を混合したものでもよい。また、安定性をより一層向上させるために、上記金属以外の金属を含む合金や、PやBなどの非金属元素がドープされたものでもよい。
 上記金属化合物としては、金属酸化物、金属窒化物又は金属硫化物が例示される。安定性をより一層高める観点から、金属酸化物が好ましい。金属酸化物としては、リチウムイオンとの反応性がより一層高いことから、シリコン酸化物、スズ酸化物、チタン酸化物、タングステン酸化物、ニオブ酸化物、又はモリブデン酸化物が好ましい。
 上記金属酸化物は、単独で用いてもよいし、2種類以上の金属で構成される合金の酸化物であってもよい。2種類以上の金属酸化物を混合したものであってもよい。さらに、安定性をより一層向上させるために、異種金属や、PやBなどの非金属元素がドープされていてもよい。
 上記チタン酸化物の場合は、チタン酸リチウム、HTi1225も含まれる。
 上記炭素材料としては、人造黒鉛、ハードカーボン等が例示される。
 負極活物質の粒子径は、0.001μm以上、50μm以下であることが好ましい。取り扱い性をより一層高める観点から、0.01μm以上、30μm以下であることがより好ましい。粒子径は、SEM又はTEM像から各粒子の大きさを測定し、平均粒子径を算出した値である。なお、上記は、単結晶の大きさでもよいし、あるいは単結晶の造粒体の大きさでもよい。
 上記有機物としては、ポリアセンなどの有機物が例示される。
 固体電解質;
 固体電解質において、電池反応は、1族若しくは2族のイオンが伝導できればよく、そのようなイオンとしては、例えば、Hイオン、Liイオン、Naイオン、Kイオン、Mgイオン、Caイオン、又はAlイオンが挙げられる。以下、Liイオンが電池反応に関与する系について詳細を例示する。
 固体電解質としては、無機系固体電解質や、有機系固体電解質が例示される。無機系固体電解質としては、硫化物系固体電解質又は酸化物系固体電解質が例示され、有機系固体電解質としては、高分子系固体電解質が例示される。
 硫化物系固体電解質としては、少なくともリチウム及び硫黄を含む化合物である。上記化合物としては、式:Liで表される化合物が例示される。なお、Xは、Li及びS以外の1種類以上の元素であり、l、m、及びnは、0.5≦l≦10、0≦m≦10、1≦n≦10の範囲内にある。
 硫化物系固体電解質そのものの安定性及びリチウムイオン伝導度向上のより一層の効果があることから、上記式中におけるXが含まれる方が好ましい。この場合、Xは、12族、13族、14族、15族、16族、又は17族の元素のうち少なくとも1種類が好ましい。また、Xは、硫化物系固体電解質そのものの安定性の向上の観点から、Zn、Al、Si、P、Ge、Sn、Sb、Cl、及びIからなる群から選択される少なくとも1種類であることがより好ましい。なお、Xは、1種類でもよいし、2種類以上でもよい。
 l<0.5の場合、及びl>10の場合は、リチウムイオンの伝導度が低下する場合がある。
 リチウムイオンの伝導度のより一層向上することから、0.5≦l≦8であることが好ましい。また、固体電解質自身の安定性がより一層向上することから、1≦m,n≦6であることがより好ましい。
 このような硫化物固体電解質としては、LiS-P系、LiI-LiS-P系、LiI-LiS-B系、LiI-LiS-SiS系、又はチオリシコン系が例示される。
 また、リチウムイオン伝導度が高い、Li10+δ1+δ2-δ12(0≦δ≦0.35、M=Ge、Si、Sn)、Li9.541.741.4411.7Cl0.3(M=Ge、Si、Sn)に代表されるLGPS型、あるいは、Li7-σPS6-σClσ(0<σ<1.8)に代表されるアルジロダイト型も例示される。
 硫化物固体電解質のなかでも、安定性及びリチウムイオン伝導度がより一層高いことに加え、電極の作製のしやすさから、(A)LiS-(1-A)GeS、(A)LiS-(B)GeS-(1-A-B)ZnS、(A)LiS-(1-A)Ga、(A)(B)LiS-(C)GeS-(1-A-B-C)Ga、(A)LiS-(B)GeS-(1-A-B)P、(A)LiS-(B)GeS-(1-A-B)Sb、(A)LiS-(B)GeS-(1-A-B)Al、(A)LiS-(1-A)SiS、(A)LiS-(1-A)P、(A)LiS-(1-A)Al、(A)LiS-(B)SiS-(1-A-B)Al、又は(A)LiS-(B)SiS-(1-A-B)P、Li10+δ1+δ2-δ12(0≦δ≦0.35、M=Ge、Si、Sn)、Li9.541.741.4411.7Cl0.3(M=Ge、Si、Sn)、あるいは、Li7-σPS6-σClσ(0<σ<1.8)が好ましい。なお、A、B、及びCは、0≦A、B、C<1、かつA+B+C<1を満たす整数である。
 LiS-P、LiS-GeS、LiS-SiS、または、Li10+δ1+δ2-δ12(0≦δ≦0.35、M=Ge、Si、Sn)、Li9.541.741.4411.7Cl0.3(M=Ge、Si、Sn)、あるいは、Li7-σPS6-σClσ(0<σ<1.8)は、固体電解質の中でも、安定性及びリチウムイオン伝導度がより一層高いことに加え、電極の作製のしやすさから特に好ましい。
 また、固体電解質には、Naなどが含まれていてもよい。
 酸化物系固体電解質は、少なくともリチウム及び酸素を含む化合物である。該化合物としては、例えばナシコン型構造を有するリン酸化合物又はその一部を他の元素で置換した置換体が挙げられる。また、LiLaZr12系リチウムイオン伝導体等のガーネット型構造又はガーネット型類似の構造を有するリチウムイオン伝導体、Li-La-Ti-O系リチウムイオン伝導体等のペロブスカイト構造又はペロブスカイト類似の構造を有する酸化物系固体電解質を用いることもできる。
 酸化物固体電解質としては、LiLaZr12、LiLaZr2-kNb12、LiLaZr2-kTa12、LiLaTa12、Li0.33La0.55TiO、Li1.5Al0.5Ge1.512、Li1.3Al0.3Ti1.712、LiPO、LiSiO-LiPO、LiSiO、又はLiBOが例示される。この場合、安定性及びリチウムイオン伝導度がより一層高いことに加え、電極が作製しやすい。上記式中kは、0<k<2である。
 また、本発明の固体電解質には、これら元素以外の元素が微量含まれていてもよい。
 高分子系固体電解質としては、ポリエチレンオキシド、ポロプロピレンオキシド、あるいはポリエチレングリコールなどの高分子が例示される。
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更可能である。
 (炭素材料の製造例1)
 最初に、膨張化黒鉛16gと、カルボキシメチルセルロース0.48gと、水530gとの混合物に、超音波処理装置で5時間超音波を照射した後に、ポリエチレングリコール80gを加え、ホモミクサーで30分間混合することによって、原料組成物を作製した。
 なお、膨張化黒鉛は、東洋炭素社製、商品名「PFパウダー8F」(BET比表面積=22m/g)を用いた。カルボキシメチルセルロースは、アルドリッチ社製のもの(平均分子量=250,000)を用いた。ポリエチレングリコールは、三洋化成工業社製、商品名「PG600」を用いた。超音波処理装置は、SMT.CO.,LTD社製、型番「UH-600SR」を用いた。また、ホモミクサーは、TOKUSHU KIKA社製、型番「T.K.HOMOMIXER MARKII」を用いた。
 次に、作製した原料組成物を150℃で加熱処理することによって、水を除去した。その後、水を除去した組成物を、380℃の温度で、1時間加熱処理することよって、ポリエチレングリコールの一部が残存している炭素材料を作製した。
 最後に、作製した炭素材料を400℃で30分、350℃で2時間の順に加熱処理することによって、グラファイト構造を有し、部分的にグラファイトが剥離されている、炭素材料を得た。得られた炭素材料においては、全重量に対して12重量%樹脂が含まれていた。なお、樹脂量は、TG(日立ハイテクサイエンス社製、品番「STA7300」)を用いて、200℃~600℃の範囲で重量減少した分を樹脂量として算出した。
 得られた炭素材料のラマンスペクトルのDバンドと、Gバンドとのピーク強度比であるD/G比を測定した結果、0.234であった。
 得られた炭素材料のBET比表面積を、比表面積測定装置(島津製作所社製、品番「ASAP-2000」、窒素ガス)を用いて測定した結果、95m/gであった。
 得られた炭素材料のメチレンブルー吸着量は、下記の手順にて測定した結果、69.7μmol/gであった。また、前述のBET比表面積をx、メチレンブルー吸着量をyとしたとき、比y/xは、0.733であった。
 メチレンブルー吸着量の測定は、次の通りに実施した。最初に、メスフラスコに、10.0mg/L、5.0mg/L、2.5mg/L、1.25mg/Lの濃度のメチレンブルー(関東化学社製、特級試薬)のメタノール溶液を調製し、各々の吸光度を紫外可視分光光度計(島津製作所社製、品番「UV-1600」)で測定し、検量線を作成した。次に、10mg/Lのメチレンブルーを調製し、100mLのナスフラスコに測定対象の炭素材料(0.005~0.05g、試料のBET値によって変更)、メチレンブルー溶液(10mg/L、50mL)、及びスターラーバーを加えた。そして、15分間超音波洗浄機(ASONE社製)で処理した後に、冷却バス(25℃)中で60分撹拌した。さらに、吸着平衡に達した後、遠心分離により炭素材料と上澄み液とを分離し、ブランクの10mg/Lのメチレンブルー溶液、及び上記上澄み液の吸光度を紫外可視分光光度計で測定し、ブランクと上澄み液との吸光度の差を算出した。
 メチレンブルー吸着量(mol/g)={メチレンブルー溶液の濃度の減少量(g/L)×測定溶媒の体積(L)}/{メチレンブルーの分子量(g/mol)×測定に用いた炭素材料の質量(g)}…式
 また、得られた炭素材料とシリコン粉末(Nano Powder、純度≧98%、粒径≦100nm、アルドリッチ社製)とを重量比1:1の割合でサンプル瓶中にて混合することにより、測定試料としての混合粉末を作製した。作製した混合粉末を無反射Si試料台にいれ、X線回折装置(Smart Lab、リガク社製)に設置した。その後に、X線源:CuKα(波長1.541Å)、測定範囲:3°~80°、スキャンスピード:5°/分の条件で、広角X線回折法によりX線回折スペクトルを測定した。得られた測定結果から、2θ=28°以上、30°未満の範囲における最も高いピークの高さbを1として規格化し、そのときの2θ=24°以上、28℃未満の範囲における最も高いピークの高さaを算出した。最後にaとbとの比、すなわち、a/bを算出した。
 その結果、2θ=24°以上、28℃未満の範囲における最も高いピークの高さaと、2θ=28°以上、30°未満の範囲における最も高いピークの高さbとの比a/bは、0.647であった。
 (炭素材料の製造例2)
 最初に、膨張化黒鉛の粉末(東洋炭素社製、商品名「PFパウダー8F」、BET比表面積=22m/g、平均粒子径=10μm)6gと、カルボキシメチルセルロースナトリウム塩0.2gと、水200gと、ポリエチレングリコール6gとを、ホモミクサーで30分間混合することによって、原料組成物を作製した。
 なお、カルボキシメチルセルロースナトリウム塩は、アルドリッチ社製のもの(平均分子量=250,000)を用いた。ポリエチレングリコールは、三洋化成工業社製、商品名「PG600」を用いた。ホモミクサーは、TOKUSHU KIKA社製、型番「T.K.HOMOMIXER MARKII」を用いた。
 次に、作製した原料組成物を150℃で加熱処理することによって、水を除去した。その後、水を除去した組成物を、370℃の温度で、1時間加熱処理することよって、ポリエチレングリコールの一部が残存している炭素材料を作製した。
 最後に、作製した炭素材料を420℃で0.5時間の順に加熱処理することによって、グラファイト構造を有し、部分的にグラファイトが剥離されている、炭素材料を得た。得られた炭素材料においては、全重量に対して0.5重量%の樹脂が含まれていた。なお、樹脂量は、TG(日立ハイテクサイエンス社製、品番「STA7300」)を用いて、200℃~600℃の範囲で重量減少した分を樹脂量として算出した。
 また、炭素材料の製造例1と同様にして測定したD/G比、比y/x、及びa/bは、それぞれ、D/G比:0.700、比y/x:0.53、及び比a/b:0.8であった。
 (硫化物系固体電解質の粉末の製造例1)
 各サンプルの電極層に混合する硫化物系固体電解質としての0.8LiS-0.2Pは、以下の手順により作製した。
 最初に、アルゴン雰囲気のグローブボックス(美和製作所社製)中で、LiS(フルウチ化学社製)と、P(アルドリッチ社製)とを、モル比80:20で秤量した。
 次に、遊星型ボールミル(フリッチュ社製、P-6型)を用いて、秤量した原料をジルコニアポット内にジルコニアボールと共に投入し、アルゴン雰囲気中、回転数540rpmで9時間、メカニカルミリングを行った。
 最後に、ジルコニアボールと分離することによって、本発明の実施例に用いる硫化物系固体電解質である0.8LiS-0.2Pの粉末を作製した。
 (硫化物系固体電解質の粉末の製造例2)
 各サンプルの電極層に混合する硫化物系固体電解質としてのLi10Ge12は、以下の手順で作製した。最初に、アルゴン雰囲気のグローブボックス(美和製作所社製)中で、LiS(フルウチ化学社製)と、P(アルドリッチ社製)と、GeS(アルドリッチ社)を、モル比5:1:1で秤量した。
 次に、遊星型ボールミル(フリッチュ社製、P-6型)を用いて、秤量した原料をジルコニアポット内にジルコニアボールと共に投入し、アルゴン雰囲気中、回転数540rpmで9時間、メカニカルミリングを行った。
 さらに、ペレットにした後、550℃で8時間加熱処理したのち、室温まで徐冷し、粉砕することによって、硫化物系固体電解質であるLi10Ge12の粉末を作製した。
 (酸化物系固体電解質の粉末の製造例)
 各サンプルの電極層に混合する酸化物系リチウムイオン伝導性固体電解質としてのLi1.5Al0.5Ge1.5(POの粉末は、以下の手順により作製した。
 最初に、GeO(関東化学社製)、LiCO(和光純薬社製)、(NHHPO(キシダ化学社製)、及びAl(高純度化学社製)を、モル比でLi:Al:Ge:PO=1.5:0.5:1.5:3となるように秤量した。
 次に、これらをアルミナポット内にジルコニアボールと共に投入し、エタノール溶媒中で粉砕混合した。
 さらに、エタノールを気化させて900℃、2時間にて熱処理を行った。この熱処理後の試料にジルコニアボールと共に投入し、エタノール溶媒中で粉砕混合した。
 最後に、粉砕混合後の試料を乾燥してエタノールを気化させ、酸化物系リチウムイオン伝導性固体電解質であるLi1.5Al0.5Ge1.5(POの粉末を得た。
 (実施例1)
 正極活物質-炭素材料複合体の作製;
 正極活物質(LiCoO、CS-5、日本化学工業社製)と製造例1の炭素材料との複合体は、次の手順で作製した。
 最初に、製造例1で作製した炭素材料0.6gに、エタノール59.4gを加え、2時間、超音波洗浄機(ASONE社製)で処理し、製造例1で作製した炭素材料の分散液1(以下、実施例1の炭素材料の分散液1)を調製した。
 次に、エタノール21.6gに、正極活物質2.4gを加え、マグネチックスターラーにて600rpmで10分攪拌することによって、実施例1の正極活物質の分散液を調製した。
 続いて、実施例1の炭素材料の分散液1に、実施例1の正極活物質の分散液をスポイトで滴下した。なお、滴下時において、実施例1の炭素材料の分散液1は、超音波洗浄機(ASONE社製)で処理し続けた。その後、実施例1の炭素材料の分散液1及び実施例1の正極活物質の分散液の混合液を、マグネチックスターラーで2時間攪拌した。
 最後に、分散液の混合液を吸引ろ過した後に、110℃で1時間、真空乾燥することによって、実施例1の正極活物質と炭素材料との複合体(正極活物質-炭素材料複合体)を作製した。なお、正極の作製に必要な量は、上記の工程を繰り返すことによって作製した。
 正極の作製;
 本実施例の正極は、次の手順で作製した。
 最初に、得られた正極活物質-炭素材料複合体と、製造例1で製造した硫化物系固体電解質との重量比が、それぞれ、80:20(80重量%、20重量%)となるように秤量した。つぎに、これらの材料をメカニカルミリング(遊星ボールミル、フリッチュ社製、P-6型、回転数380rpm、1時間)で混合した。最後に、上記工程を経て得た、正極活物質-炭素材料複合体と硫化物系固体電解質との混合粉末(25mg)を、SUS基材(直径10mm、厚み0.5mm)に置き、360Mpaでプレス成形することによって、実施例1の正極を作製した。なお、各材料の秤量から、プレス成型までの工程、正極の保管は、露点-60℃以下のアルゴン雰囲気下でおこなった。
 負極活物質-炭素材料複合体の作製;
 負極活物質と前述の製造例1で作製した炭素材料との複合体は、次の手順で作製した。
 最初に、製造例1で作製した炭素材料0.015gに、エタノール1.5gを加え、2時間超音波洗浄機(ASONE社製)で処理し、製造例1の炭素材料の分散液2(以下、実施例1の炭素材料の分散液2)を調製した。
 次に、エタノール21.6gに負極活物質(Si powder、アルドリッチ社製)2.4gを加え、マグネチックスターラーにて、600rpmで、10分間攪拌することによって、実施例1の負極活物質の分散液を調製した。
 続いて、実施例1の炭素材料の分散液2に、実施例1の負極活物質の分散液をスポイトで滴下した。なお、滴下時において、実施例1の炭素材料の分散液2は、超音波洗浄機(ASONE社製)で処理し続けた。その後、実施例1の炭素材料の分散液2及び実施例1の負極活物質の分散液の混合液を、マグネチックスターラーで、2時間攪拌した。
 最後に、分散液の混合液を吸引ろ過した後に、110℃で、1時間真空乾燥することによって、実施例1の負極活物質と炭素材料との複合体(負極活物質-炭素材料複合体)を作製した。なお、負極の作製に必要な量は、上記の工程を繰り返すことによって作製した。
 負極の作製;
 本実施例の負極は、次の手順で作製した。
 最初に、負極活物質-炭素材料複合体と、硫化物系固体電解質とを重量比が、それぞれ、50:50(50重量%、50重量%)となるように秤量した。つぎに、これらの材料をメカニカルミリング(遊星ボールミル、フリッチュ社製、P-6型、回転数380rpm、1時間)で混合した。最後に、上記の工程を経て得た、負極活物質-炭素材料複合体と、硫化物系固体電解質との混合粉末(10mg)を、SUS基材(直径10mm、厚み0.5mm)に置き、360Mpaでプレス成形することによって、実施例1の負極を作製した。なお、各材料の秤量から、プレス成型までの工程、負極の保管は、露点-60℃以下のアルゴン雰囲気下でおこなった。
 全固体電池の作製;
 本実施例の全固体電池は、次の手順で作製した。最初に、固体電解質層として、製造例で作製した硫化物系固体電解質を用いて、硫化物系固体電解質のペレット(直径10mm、厚さ500μm)を作製した。次に、SUS集電体が外側に面するように、正極、硫化物系固体電解質のペレット、及び負極の順に積層した。最後に、50MPaの圧力で積層体を挟持したのちに、各部材を固定して全固体電池を作製した。
 (実施例2)
 実施例2では、固体電解質として、硫化物系固体電解質の代わりに、上述の製造例で作製した酸化物系固体電解質の粉末を用いた。また、100MPaでペレット成型し、ペレットを850℃、12時間にて熱処理した。さらに、固体電解質層に上述の酸化物系固体電解質を直径10mm、厚さ500μmに成型した後に、850℃、12時間にて熱処理することによって作製した焼結体を用いた。その他の点は、実施例1と同様にして全固体電池を作製した。
 (実施例3)
 製造例1で作製した炭素材料の代わりに、製造例2で作製した炭素材料を用いたこと以外は、実施例1と同様にして全固体電池を作製した。
 (実施例4)
 製造例1で作製した硫化物系固体電解質の代わりに、製造例2で作製した硫化物系電解質を用いたこと以外は、実施例1と同様にして全固体電池を作製した。
 (実施例5)
 製造例1で作製した炭素材料の代わりに、製造例2で作製した炭素材料を用いたこと以外は、実施例2と同様にして全固体電池を作製した。
 (実施例6)
 製造例1で作製した炭素材料の代わりに、膨張化黒鉛(東洋炭素社製、商品名「PFパウダー8F」、BET表面積=22m/g)を用いたこと以外は、実施例1と同様にして全固体電池を作製した。
 なお、D/G比、比y/x、及び比a/bは、それぞれ、D/G比:0.790、比y/x:0.35、及び比a/b:2.2であった。
 (実施例7)
 製造例1で作製した硫化物系固体電解質の代わりに、製造例2で作製した硫化物系電解質を用いたこと以外は、実施例6と同様にして全固体電池を作製した。
 (実施例8)
 製造例1で作製した炭素材料の代わりに、膨張化黒鉛(東洋炭素社製、商品名「PFパウダー8F」、BET表面積=22m/g)を用いたこと以外は、実施例2と同様にして全固体電池を作製した。
 なお、D/G比、比y/x、及び比a/bは、それぞれ、D/G比:0.790、比y/x:0.35、及び比a/b:2.2であった。
 (比較例1)
 製造例1で作製した炭素材料の代わりに、アセチレンブラックを用いたこと以外は、実施例1と同様にして全固体電池を作製した。なお、アセチレンブラックのラマンスペクトルのDバンドと、Gバンドとのピーク強度比であるD/G比は、0.95であった。アセチレンブラックのBET比表面積をx、メチレンブルー吸着量をyとしたとき、比y/xは、0.12であった。また、アセチレンブラックのX線回折スペクトルを実施例1と同様の方法で測定した。その結果、2θ=24°以上、28℃未満の範囲における最も高いピークの高さaと、2θ=28°以上、30°未満の範囲における最も高いピークの高さbとの比a/bは、0.09であった。
 (比較例2)
 製造例1で作製した炭素材料の代わりに、比較例1と同じアセチレンブラックを用いたこと以外は、実施例2と同様にして全固体電池を作製した。
 (非水電解質二次電池のサイクル特性評価)
 サイクル特性の評価は次の方法で行った。最初に、実施例1~8及び比較例1~2の全固体電池を、25℃の恒温槽に入れ、充放電装置(HJ1005SD8、北斗電工社製)に接続した。次に、定電流定電圧充電(電流値:1mA、充電終止電圧:4.25V、定電圧放電電圧:4.25V、定電圧放電終止条件:3時間経過、あるいは電流値0.1mA)、定電流放電(電流値:1mA、放電終止電圧:2.5V)を100回繰り返すサイクル運転を行った。最後に、1回目の放電容量を100としたときの、100回目の放電容量の割合を算出することによって放電容量の維持率(サイクル特性)とした。
 サイクル特性の結果を表1にまとめた。なお、表1における合否の判定は以下の評価基準で行った。
 [評価基準]
 ○…上記割合(サイクル特性)が80%以上
 ×…上記割合(サイクル特性)が80%未満
 この結果から明らかなとおり、本発明の実施例1~8の全固体電池は、比較例1~2の全固体電池よりもサイクル特性が全て良好であることが確認できた。
Figure JPOXMLDOC01-appb-T000001

Claims (12)

  1.  1族若しくは2族のイオン伝導性固体電解質を用いた全固体電池用正極及び/又は負極に含まれる炭素材料であって、
     前記炭素材料とSiとの重量比1:1における混合物のX線回折スペクトルを測定したときに、2θが、24°以上、28°未満の範囲における最も高いピークの高さaと、2θが、28°以上、30°未満の範囲における最も高いピークの高さbとの比a/bが、0.2以上、10.0以下である、炭素材料。
  2.  前記炭素材料が、グラフェン積層構造を有する、請求項1に記載の炭素材料。
  3.  前記炭素材料が、二次元に広がっている形状を有する、請求項1又は2に記載の炭素材料。
  4.  前記炭素材料が、グラファイト構造を有し、部分的にグラファイトが剥離されている炭素材料である、請求項1~3のいずれか1項に記載の炭素材料。
  5.  10mg/L濃度のメチレンブルーのメタノール溶液の吸光度と、該メチレンブルーのメタノール溶液に前記炭素材料を投入し、遠心分離により得られた上澄み液の吸光度との差に基づき測定された前記炭素材料1gあたりのメチレンブルー吸着量(μモル/g)をy、前記炭素材料のBET比表面積(m/g)をxとした場合、比y/xが0.15以上である、請求項1~4のいずれか1項に記載の炭素材料。
  6.  前記炭素材料のラマンスペクトルにおけるDバンドと、Gバンドとのピーク強度比をD/G比としたとき、前記D/G比が、0.05以上、0.8以下の範囲内にある、請求項1~5のいずれか1項に記載の炭素材料。
  7.  前記炭素材料を第1の炭素材料としたときに、該第1の炭素材料とは異なる第2の炭素材料をさらに含み、
     前記第1の炭素材料の重量をMとし、前記第2の炭素材料の重量をNとしたときに、0.01≦M/N≦100を満たしている、請求項1~6のいずれか1項に記載の炭素材料。
  8.  請求項1~7のいずれか1項に記載の炭素材料と、正極活物質と、1族若しくは2族のイオン伝導性固体電解質とを含む、全固体電池用正極。
  9.  前記イオン伝導性固体電解質が、酸化物系固体電解質又は硫化物系固体電解質である、請求項8に記載の全固体電池用正極。
  10.  請求項1~7のいずれか1項に記載の炭素材料と、負極活物質と、1族若しくは2族のイオン伝導性固体電解質とを含む、全固体電池用負極。
  11.  前記イオン伝導性固体電解質が、酸化物系固体電解質又は硫化物系固体電解質である、請求項10に記載の全固体電池用負極。
  12.  請求項8若しくは9に記載の全固体電池用正極及び/又は請求項10若しくは11に記載の全固体電池用負極を備える、全固体電池。
PCT/JP2018/028787 2017-08-04 2018-08-01 炭素材料、全固体電池用正極、全固体電池用負極、及び全固体電池 WO2019026940A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/634,525 US20200176816A1 (en) 2017-08-04 2018-08-01 Carbon material, positive electrode for all-solid-state batteries, negative electrode for all-solid-state batteries, and all-solid-state battery
EP18841524.4A EP3667799A4 (en) 2017-08-04 2018-08-01 CARBONATED MATERIAL, POSITIVE ELECTRODE FOR ALL SOLID BATTERIES, NEGATIVE ELECTRODE FOR ALL SOLID BATTERIES, AND ALL SOLID BATTERY
CN201880036579.3A CN110710045A (zh) 2017-08-04 2018-08-01 碳材料、全固态电池用正极、全固态电池用负极以及全固态电池
JP2018545527A JPWO2019026940A1 (ja) 2017-08-04 2018-08-01 炭素材料、全固体電池用正極、全固体電池用負極、及び全固体電池
KR1020197026228A KR20200036805A (ko) 2017-08-04 2018-08-01 탄소 재료, 전고체 전지용 정극, 전고체 전지용 부극, 및 전고체 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017151828 2017-08-04
JP2017-151828 2017-08-04

Publications (1)

Publication Number Publication Date
WO2019026940A1 true WO2019026940A1 (ja) 2019-02-07

Family

ID=65232826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028787 WO2019026940A1 (ja) 2017-08-04 2018-08-01 炭素材料、全固体電池用正極、全固体電池用負極、及び全固体電池

Country Status (7)

Country Link
US (1) US20200176816A1 (ja)
EP (1) EP3667799A4 (ja)
JP (1) JPWO2019026940A1 (ja)
KR (1) KR20200036805A (ja)
CN (1) CN110710045A (ja)
TW (1) TW201910260A (ja)
WO (1) WO2019026940A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020194845A (ja) * 2019-05-27 2020-12-03 旭化成株式会社 正極前駆体
JP2021057142A (ja) * 2019-09-27 2021-04-08 マクセルホールディングス株式会社 全固体電池用正極および全固体電池
WO2021176834A1 (ja) * 2020-03-06 2021-09-10 Tdk株式会社 全固体電池
WO2021176832A1 (ja) * 2020-03-06 2021-09-10 Tdk株式会社 全固体電池
JP2021140973A (ja) * 2020-03-06 2021-09-16 Fdk株式会社 固体電池及び固体電池の製造方法
JP2023517545A (ja) * 2020-03-06 2023-04-26 三星エスディアイ株式会社 固体電解質、それを含む電気化学電池、及び固体電解質の製造方法
WO2023140311A1 (ja) 2022-01-21 2023-07-27 マクセル株式会社 全固体電池用正極、並びに全固体電池およびその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3751647A4 (en) * 2018-02-09 2021-10-06 Sekisui Chemical Co., Ltd. CARBON MATERIAL, ELECTRODE FOR ELECTRICITY STORAGE DEVICES, ELECTRICITY STORAGE DEVICE, AND SECONDARY BATTERY WITH AN ANYHERIC ELECTROLYTE
CN109888378B (zh) * 2019-04-17 2022-02-22 宁波容百新能源科技股份有限公司 一种基于液相法的高离子电导率硫化物固态电解质及其制备方法
CN111430808B (zh) * 2020-03-23 2022-07-29 广东东邦科技有限公司 一种具有掺杂物的含锂硫银锗矿固态电解质及其制备方法
US20240103186A1 (en) * 2021-02-25 2024-03-28 Northwestern University Lithium-containing thiostannate spinels for thermal neutron and alpha-particle detection

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243645A (ja) * 2011-05-20 2012-12-10 Sumitomo Electric Ind Ltd 電極、および全固体型非水電解質電池
JP2014029777A (ja) 2012-07-31 2014-02-13 Ngk Spark Plug Co Ltd 全固体電池
WO2014034156A1 (ja) 2012-08-27 2014-03-06 積水化学工業株式会社 薄片化黒鉛・樹脂複合材料及びその製造方法
JP2016139482A (ja) * 2015-01-26 2016-08-04 三星電子株式会社Samsung Electronics Co.,Ltd. 固体電解質シート、及び全固体二次電池
WO2016181952A1 (ja) * 2015-05-14 2016-11-17 積水化学工業株式会社 炭素質材料、炭素質材料-活物質複合体、リチウムイオン二次電池用電極材及びリチウムイオン二次電池
WO2018043481A1 (ja) * 2016-08-31 2018-03-08 積水化学工業株式会社 蓄電デバイス用電極材料、蓄電デバイス用電極及び蓄電デバイス
WO2018062285A1 (ja) * 2016-09-30 2018-04-05 積水化学工業株式会社 炭素材料、キャパシタ用電極シート及びキャパシタ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8119288B2 (en) * 2007-11-05 2012-02-21 Nanotek Instruments, Inc. Hybrid anode compositions for lithium ion batteries
JP6121645B2 (ja) * 2010-09-16 2017-04-26 三菱化学株式会社 非水電解液二次電池用負極材及びこれを用いた負極並びに非水電解液二次電池
JP5788590B2 (ja) * 2011-05-12 2015-09-30 ノースウェスタン ユニバーシティ ランダムに分布した二次元構造欠陥を有するグラフェン材料
EP2966038A4 (en) * 2013-03-06 2016-11-23 Sekisui Chemical Co Ltd METHOD FOR MANUFACTURING GIC WITH RANDOM STRUCTURE, METHOD FOR MANUFACTURING FLOCK GRAPHITE DISPERSION, FLAKE GRAPHITE DISPERSION, AND FLAKE GRAPHITE
WO2016152869A1 (ja) * 2015-03-24 2016-09-29 積水化学工業株式会社 活物質-薄片化黒鉛複合体、リチウムイオン二次電池用負極材及びリチウムイオン二次電池
JPWO2017090553A1 (ja) * 2015-11-27 2018-09-13 積水化学工業株式会社 キャパシタ用電極材及びキャパシタ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243645A (ja) * 2011-05-20 2012-12-10 Sumitomo Electric Ind Ltd 電極、および全固体型非水電解質電池
JP2014029777A (ja) 2012-07-31 2014-02-13 Ngk Spark Plug Co Ltd 全固体電池
WO2014034156A1 (ja) 2012-08-27 2014-03-06 積水化学工業株式会社 薄片化黒鉛・樹脂複合材料及びその製造方法
JP2016139482A (ja) * 2015-01-26 2016-08-04 三星電子株式会社Samsung Electronics Co.,Ltd. 固体電解質シート、及び全固体二次電池
WO2016181952A1 (ja) * 2015-05-14 2016-11-17 積水化学工業株式会社 炭素質材料、炭素質材料-活物質複合体、リチウムイオン二次電池用電極材及びリチウムイオン二次電池
WO2018043481A1 (ja) * 2016-08-31 2018-03-08 積水化学工業株式会社 蓄電デバイス用電極材料、蓄電デバイス用電極及び蓄電デバイス
WO2018062285A1 (ja) * 2016-09-30 2018-04-05 積水化学工業株式会社 炭素材料、キャパシタ用電極シート及びキャパシタ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Lithium Secondary Battery", 2008, OHMSHA, LTD., pages: 163
See also references of EP3667799A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020194845A (ja) * 2019-05-27 2020-12-03 旭化成株式会社 正極前駆体
JP2021057142A (ja) * 2019-09-27 2021-04-08 マクセルホールディングス株式会社 全固体電池用正極および全固体電池
JP7267163B2 (ja) 2019-09-27 2023-05-01 マクセル株式会社 全固体電池用正極および全固体電池
WO2021176834A1 (ja) * 2020-03-06 2021-09-10 Tdk株式会社 全固体電池
WO2021176832A1 (ja) * 2020-03-06 2021-09-10 Tdk株式会社 全固体電池
JP2021140973A (ja) * 2020-03-06 2021-09-16 Fdk株式会社 固体電池及び固体電池の製造方法
JP2023517545A (ja) * 2020-03-06 2023-04-26 三星エスディアイ株式会社 固体電解質、それを含む電気化学電池、及び固体電解質の製造方法
JP7430546B2 (ja) 2020-03-06 2024-02-13 Fdk株式会社 固体電池及び固体電池の製造方法
JP7451746B2 (ja) 2020-03-06 2024-03-18 三星エスディアイ株式会社 固体電解質、それを含む電気化学電池、及び固体電解質の製造方法
EP4117071A4 (en) * 2020-03-06 2024-06-26 Samsung SDI Co., Ltd. SOLID ELECTROLYTE, ELECTROCHEMICAL CELL COMPRISING IT AND METHOD FOR MANUFACTURING SAID SOLID ELECTROLYTE
WO2023140311A1 (ja) 2022-01-21 2023-07-27 マクセル株式会社 全固体電池用正極、並びに全固体電池およびその製造方法
KR20240113593A (ko) 2022-01-21 2024-07-22 맥셀 주식회사 전고체전지용 정극, 및 전고체전지 및 그 제조 방법

Also Published As

Publication number Publication date
US20200176816A1 (en) 2020-06-04
TW201910260A (zh) 2019-03-16
CN110710045A (zh) 2020-01-17
EP3667799A4 (en) 2021-07-21
JPWO2019026940A1 (ja) 2020-06-25
KR20200036805A (ko) 2020-04-07
EP3667799A1 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
WO2019026940A1 (ja) 炭素材料、全固体電池用正極、全固体電池用負極、及び全固体電池
JP6061139B2 (ja) 全固体型リチウム硫黄電池の正極合材の製造方法
KR101313350B1 (ko) 개방 다공성 전기 전도성 나노복합체 물질
CN102142536B (zh) 导电纳米复合材料及由其制成的开口多孔纳米复合物
JP6380883B2 (ja) 正極合材及びその製造方法、並びに、全固体型リチウム硫黄電池
JP7397788B2 (ja) 全固体電池用活物質、全固体電池用電極及び全固体電池
EP3012887B1 (en) Positive electrode mixture and all-solid-state lithium sulfur cell
JP5445809B1 (ja) 正極合材及び全固体型リチウム硫黄電池
JP2010219047A (ja) 犠牲ナノ粒子を含む電気伝導性ナノ複合材料およびそれから生成される開放多孔質ナノ複合材
TW201505240A (zh) 電極組合物、電化學電池及電化學電池之製造方法
JP6108267B2 (ja) 正極合材及び全固体型リチウム硫黄電池
Chen et al. Bottom-up, hard template and scalable approaches toward designing nanostructured Li 2 S for high performance lithium sulfur batteries
JP6674072B1 (ja) 全固体電池用集電層、全固体電池、及び炭素材料
TW201628236A (zh) 電極組成物、電化學電池及製造電化學電池之方法
JP7555033B2 (ja) 電池材料の製造方法
JP6292436B2 (ja) 正極合材及び全固体型リチウム硫黄電池
JP2019091586A (ja) 非水電解質二次電池用正極及び非水電解質二次電池
JP2023079177A (ja) 二次電池用負極材料、二次電池用負極層、固体二次電池およびその充電方法
WO2024086622A2 (en) Electrodes for energy storage device comprising binders having hydrophilic functionality
JP2023162796A (ja) 炭素材料-硫黄複合材料、蓄電デバイス用電極材料、及び蓄電デバイス

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018545527

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018841524

Country of ref document: EP

Effective date: 20200304