WO2019017736A9 - 금속 도핑된 나트륨 이차전지용 양극 활물질, 이의 제조방법, 및 이를 포함하는 나트륨 이차전지 - Google Patents

금속 도핑된 나트륨 이차전지용 양극 활물질, 이의 제조방법, 및 이를 포함하는 나트륨 이차전지 Download PDF

Info

Publication number
WO2019017736A9
WO2019017736A9 PCT/KR2018/008238 KR2018008238W WO2019017736A9 WO 2019017736 A9 WO2019017736 A9 WO 2019017736A9 KR 2018008238 W KR2018008238 W KR 2018008238W WO 2019017736 A9 WO2019017736 A9 WO 2019017736A9
Authority
WO
WIPO (PCT)
Prior art keywords
active material
cathode active
transition metal
secondary battery
metal oxide
Prior art date
Application number
PCT/KR2018/008238
Other languages
English (en)
French (fr)
Other versions
WO2019017736A3 (ko
WO2019017736A2 (ko
Inventor
선양국
황장연
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to US16/632,632 priority Critical patent/US11437617B2/en
Publication of WO2019017736A2 publication Critical patent/WO2019017736A2/ko
Publication of WO2019017736A3 publication Critical patent/WO2019017736A3/ko
Publication of WO2019017736A9 publication Critical patent/WO2019017736A9/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery, and more particularly, to a sodium secondary battery.
  • the secondary battery refers to a battery that can be charged repeatedly as well as discharged.
  • lithium ions contained in the positive electrode active material are transferred to the negative electrode through the electrolyte and then inserted (filled) into the layered structure of the negative electrode active material. Then, lithium ions, which have been inserted into the layered structure of the negative electrode active material, It works through the principle of returning to the anode (discharging).
  • Such a lithium secondary battery is currently commercialized and is being used as a small power source for a cellular phone, a notebook computer, and the like, and it is expected that the lithium secondary battery will also be usable as a large power source such as a hybrid car, and the demand is expected to increase.
  • the composite metal oxide which is mainly used as a cathode active material in a lithium secondary battery, contains a rare metal element such as lithium and may not meet the increase in demand. Accordingly, studies have been made on a sodium secondary battery using sodium, which is rich in supply and low in cost, as a cathode active material.
  • the present invention has been made to solve the above problems, and an object of the present invention is to improve capacity and cycle characteristics of a secondary battery through improvement of a cathode active material used in a sodium secondary battery.
  • a cathode active material for a sodium secondary battery may be represented by the following formula (4).
  • TM is at least one of Ti, Zr, Mg, Al, V, W, Mo, Nb, Zn, or Cr
  • A is N, O, F, or S
  • c is 0 to 0.1.
  • b may be 0.009 to 0.06, specifically, b may be 0.01 to 0.05, and b may be 0.03 to 0.05.
  • the cathode active material for a sodium secondary battery may be represented by the following general formula (5).
  • 0.5? X? 0.9, 0.05? Y? 0.3, and b may be 0.009 to 0.06.
  • the cathode active material for the sodium secondary battery may have a layered structure of O3.
  • the cathode active material for a sodium secondary battery may have a form of secondary particles formed by collecting primary particles. At this time, the TM can be uniformly distributed in the particles.
  • the cathode active material particles for a sodium secondary battery may exhibit a tap density of 1.5 to 1.7 g / ml.
  • Another aspect of the present invention provides a method for producing a cathode active material for a sodium secondary battery.
  • the preparation method comprises mixing a transition metal oxide precursor and a dopant precursor, which is an oxide of a metal not contained in the transition metal oxide precursor, using ball milling to obtain a dopant precursor-transition metal oxide precursor complex.
  • the dopant precursor-transition metal oxide precursor complex and the sodium-containing compound are mixed by ball milling and then heat-treated to obtain a cathode active material.
  • the transition metal oxide precursor and the dopant precursor preferably have a ratio of the number of moles of the metal of the dopant precursor to the total number of moles of the transition metal in the transition metal oxide precursor and the metal in the dopant precursor in the range of 0.9 to 6 mol% mol%, for example, 3 to 5 mol%.
  • the transition metal oxide precursor may be represented by any of the following formulas (1) to (3).
  • the dopant precursor may be TiO 2 or ZrO 2.
  • the sodium secondary battery includes a cathode including a cathode active material represented by Formula 1, a cathode containing a cathode active material, and an electrolyte disposed between the anode and the cathode.
  • the present invention it is possible to improve the physical properties of the anode material itself and stabilize the structure in the charge / discharge process as well as the electrochemical characteristics, thereby improving battery performance, particularly high voltage characteristics and life characteristics.
  • FIG. 1 is a schematic view schematically showing a method of manufacturing a cathode active material according to an embodiment of the present invention.
  • FIGS. 2A and 2B show an X-ray diffraction spectroscopy (XRD) pattern and a scanning electron microscope (SEM) image of the TiO 2 nano powder used in the cathode active material production examples, respectively.
  • XRD X-ray diffraction spectroscopy
  • SEM scanning electron microscope
  • FIG. 3 is a graph showing SEM images of dopant precursor-transition metal oxide precursor composite particles obtained in the course of the cathode active material preparation examples 1 and 2 and inductively coupled plasma (ICP) images obtained from the cathode active material comparison example, Images.
  • ICP inductively coupled plasma
  • FIG. 4 shows SEM images and ICP images of a cathode active material comparison example, and cathode active material preparation examples 1 to 3, in which active material particles are completed.
  • 5A, 5B and 5C are nitrogen isotherm adsorption-desorption graphs for the cathode active material comparison example and the active material particles according to the cathode active material production examples 1 and 2, respectively.
  • FIG. 6A is a graph showing the degree of deformation when a compressive force is applied to the active material particles according to the comparative example of the cathode active material and the cathode active material production examples 1 to 3
  • FIG. 6B is a graph showing the degree of deformation of the particles, Lt; / RTI >
  • FIG. 7 is a graph showing the results of EPMA (electrone probe X-ray microanalyzer) analysis on the cathode active materials according to Comparative Examples of Cathode Active Materials and Production Examples 1 to 3 of Cathode Active Materials.
  • EPMA electrophotographic microanalyzer
  • FIG. 9A is a graph showing charge / discharge characteristics in the first cycle of the half-cells according to the half-cell production examples 1 to 3 and the half-cell comparative example
  • FIG. 5 is a graph showing a change in discharge capacity according to the number of cycles of the secondary batteries according to the comparative example.
  • FIG. 10A is a graph showing charge / discharge characteristics in the first cycle of the half-cells according to the half-cell production examples 1 to 3 and the half-cell comparative example
  • FIG. 10B is a graph showing the charge-
  • FIG. 5 is a graph showing a change in discharge capacity according to the number of cycles of the inverters according to the number of cycles.
  • FIG. 11A is a graph showing the first cycle charging / reversing characteristics of the half-cells according to the half-cell production examples 1 to 3 and the half-cell comparison example under the 0.5C-rate condition, FIG. And charge and discharge characteristics of the 100th cycle in the 0.5C-rate condition of the half-cells according to the half-cell comparative example.
  • FIG. 12 is a graph showing the differential capacities for the voltages in the first cycle, the 50th cycle, and the 100th cycle in the 0.5C-rate condition of the half-cells according to the half-cell production examples 1 to 2 and the half- to be.
  • FIG. 13A is an XRD graph of the cathode active materials after the first cycle operation at the 0.1C-rate condition of the half-cells according to the half-cell preparation examples 1 to 2 and the half-cell comparative example
  • FIG. 13B is an XRD graph of the half- 1 < / RTI > to 2, and a half cycle of the battery according to the comparative example.
  • FIG. 14A is an XRD graph of a cathode active material after a 100th cycle operation in a half cycle of a half cell according to a half cell comparison example
  • FIG. 14B is an XRD graph of a half cell according to the half cell preparation example 2, XRD graph of the cathode active material after the 100th cycle operation.
  • FIG. 1 is a schematic view schematically showing a method of manufacturing a cathode active material according to an embodiment of the present invention.
  • a transition metal oxide precursor powder can be provided.
  • the transition metal oxide precursor powder may have a plurality of transition metal oxide precursor particles 10.
  • the transition metal oxide precursor is a compound containing Ni, Co, Mn, and a combination of two or more of them, and may be represented by any one of the following formulas (1) to (3).
  • the transition metal oxide precursor particles 10 may have a diameter of from about several to several tens of um, for example, from about 8 to about 12 um, as substantially spherical particles.
  • the transition metal oxide precursor particles 10 are secondary particles formed by collecting primary particles 10a.
  • the primary particles have a width of about 10 to 100 nm and a length of 1 to 1.5 um May have an elongated shape.
  • the transition metal oxide precursor particles 10 and the dopant precursor particles 20 may be mixed to obtain the dopant precursor-transition metal oxide precursor complex particles 30.
  • the dopant precursor is an oxide of a metal not contained in the transition metal oxide precursor, specifically, an oxide of a Group 2 to Group 6, Group 12, or Group 13 metal.
  • the oxide include TiO 2 , ZrO 2 , MgO, Al 2 O 3 , V 2 O 5 , WO 3 , MoO 2 , NbO 2 , ZnO 2 , or CrO 2 .
  • the dopant precursor may be TiO 2 or ZrO 2 , an oxide of a Group 4 metal.
  • the dopant precursor particles may be substantially spherical nanoparticles having a diameter of nanometers, for example an average diameter of 10 to 50 nm.
  • the mixing can be carried out using ball milling.
  • the ball milling can be carried out at about 80 to 120 rpm for about 4 to 12 hours at room temperature in an air or oxygen atmosphere.
  • the dopant precursor-transition metal oxide precursor composite particles 30 are substantially spherical particles having a diameter of from several to several tens of um, for example, from 8 to 12 um.
  • the dopant precursor particles 20a may be relatively uniformly distributed on the inside and the surface of the dopant precursor-transition metal oxide precursor composite particle 30.
  • the transition metal oxide precursor particles 10 and the dopant precursor particles 20 may be formed by a combination of the transition metal oxide precursor particles 10 and the metal in the dopant precursor particles 20, More specifically from 0.5 to 7 mol%, more specifically from 1 to 5 mol% or from 2.5 to 5.5 mol%, of the molar number of the metal in the dopant precursor particles 20 is from 0.5 to 10 mol%, specifically from 0.9 to 6 mol% , For example, 2.5 to 3.5 mol% or 3 to 5 mol%.
  • the transition metal oxide precursor particles 10 have a composition of any one of the above formulas 1 to 3 and the dopant precursor particles 20 are TiO 2 or ZrO 2
  • the transition metal oxide precursor particles The dopant precursor particles are present in an amount of 0.5 to 10 mol%, specifically 0.9 to 6 mol%, more specifically 0.5 to 7 mol%, more specifically 1 to 5 mol% or 2.5 to 10 mol%, based on the total moles of the dopant precursor particles, For example, from 2.5 to 3.5 mol%, or from 3 to 5 mol%.
  • the cathode active material particles 40 can be prepared by mixing the dopant precursor-transition metal oxide precursor composite particles 30 with sodium salt or sodium oxide as a sodium-containing compound, for example, followed by heat treatment.
  • the sodium salt may be one of sodium carbonate, sodium nitrate, sodium acetate, sodium hydroxide, sodium hydroxide hydrate, or a combination thereof.
  • the mixing at this time can be carried out using a ball mill method, and the heat treatment can be carried out under an air or oxygen atmosphere at a temperature of about 600 to 700 ° C.
  • the cathode active material particles 40 may be secondary particles formed by gathering primary particles 40a in the form of bars, which are substantially spherical particles having a diameter of several to several tens of um, for example, 8 to 12 um. At this time, unlike the dopant precursor-transition metal oxide precursor composite particles 30, the primary particles of the metal oxide precursor and the dopant precursor particles are not separately separated and confirmed.
  • cathode active material particles 40 may have a tap density of about 1.5 to 1.7 g / ml, specifically about 1.55 to 1.65 g / ml, more specifically about 1.57 to 1.63 g / ml, Can have a specific surface area of 1.2 m 2 g -1 , specifically about 0.5-1.1 m 2 g -1 , and can have a specific surface area of about 0.004 to 0.007 ccg -1 . Further, the cathode active material particles 40 may have a particle strength of about 70 to 130 MPa.
  • the cathode active material for a sodium secondary battery according to one embodiment of the present invention formed using the above manufacturing method can be represented by the following formula (4).
  • TM is at least one of Ti, Zr, Mg, Al, V, W, Mo, Nb, Zn, or Cr.
  • A is an impurity which may be contained in the cathode active material production process, and may be N, O, F, or S, and c may be 0 to 0.1.
  • a may be one.
  • x and y can satisfy 0.3? x? 0.9 and 0.05? y? 0.4. More specifically, 0.5? X? 0.9 and 0.05? Y? 0.3, for example, x may be 0.6 and y may be 0.2.
  • b may be from 0.005 to 0.07, specifically from 0.009 to 0.06, more specifically from 0.01 to 0.05 or 0.025 to 0.055, and in one example from 0.025 to 0.035 or 0.03 to 0.05.
  • the TM may be Ti or Zr, for example Ti.
  • the cathode active material for a sodium secondary battery may be represented by the following formula (5).
  • x, y, and b may be the same as defined in Formula 4.
  • 0.5? X? 0.9, 0.05? Y? 0.3, and b may be 0.009 to 0.06.
  • the cathode active material for the sodium secondary battery may have a layered structure of O3.
  • the cathode active material particles having the composition represented by the general formula (4) may be secondary particles formed by gathering rod-shaped primary particles, and the TM may be uniformly distributed in the particles.
  • the TM content at the center of the particle may be equal to the TM content at the surface of the particle.
  • the positive electrode active material for sodium secondary battery can improve the tap density and particle strength as an example of physical properties of particles through doping of TM and suppress the change of phase structure or crystal structure which occurs frequently during charging and discharging, It is possible to improve lifetime characteristics and to exhibit an excellent discharge capacity even at a high voltage by preventing loss of chemical characteristics.
  • the positive electrode material can be obtained by mixing the positive electrode active material, the conductive material, and the binder.
  • the cathode active material may be formed using the method described above, and may have a composition represented by Chemical Formula (4).
  • the conductive material may be a carbon material such as natural graphite, artificial graphite, coke, carbon black, carbon nanotube, and graphene.
  • the conductive material may be contained in an amount of 2 to 15 parts by weight, specifically 8 to 12 parts by weight or 5 to 6 parts by weight based on 100 parts by weight of the cathode active material.
  • the binder may be a thermoplastic resin such as polyvinylidene fluoride, polytetrafluoroethylene, tetrafluoroethylene, vinylidene fluoride copolymer, fluorine resin such as propylene hexafluoride, and / or polyolefin resin such as polyethylene or polypropylene .
  • the binder may be contained in an amount of 2 to 9 parts by weight, specifically 4 to 7 parts by weight, more preferably 5 to 6 parts by weight, based on 100 parts by weight of the cathode active material.
  • the positive electrode material can be coated on the positive electrode collector to form the positive electrode.
  • the positive electrode current collector may be a conductive material such as Al, Ni, or stainless steel.
  • the positive electrode material may be applied on the positive electrode collector by a method such as a pressing method using a paste or an organic solvent, applying the paste on a current collector, and pressing and fixing the paste.
  • organic solvent examples include amine-based solvents such as N, N-dimethylaminopropylamine and diethyltriamine; Ethers such as ethylene oxide and tetrahydrofuran; Ketone type such as methyl ethyl ketone; Esters such as methyl acetate; Aprotic polar solvent such as dimethylacetamide, N-methyl-2-pyrrolidone and the like.
  • the paste may be applied on the positive electrode current collector using, for example, a gravure coating method, a slit die coating method, a knife coating method, or a spray coating method.
  • the negative electrode active material may be a metal, a metal alloy, a metal oxide, a metal fluoride, a metal sulfide, and a natural graphite, an artificial graphite, a coke, a carbon black, a carbon nanotube, And a carbon material such as a pin.
  • a negative electrode material can be obtained by mixing a negative electrode active material, a conductive material, and a binder.
  • the conductive material may be a carbon material such as natural graphite, artificial graphite, coke, carbon black, carbon nanotube, and graphene.
  • the binder may be a thermoplastic resin such as polyvinylidene fluoride, polytetrafluoroethylene, tetrafluoroethylene, vinylidene fluoride copolymer, fluorine resin such as propylene hexafluoride, and / or polyolefin resin such as polyethylene or polypropylene .
  • the anode material can be applied on the anode current collector to form the anode.
  • the positive electrode current collector may be a conductive material such as Al, Ni, or stainless steel.
  • the negative electrode material may be applied to the positive electrode current collector by press molding, or by making the paste using an organic solvent or the like, applying the paste to the current collector, and pressing and fixing the paste.
  • organic solvent examples include amine-based solvents such as N, N-dimethylaminopropylamine and diethyltriamine; Ethers such as ethylene oxide and tetrahydrofuran; Ketone type such as methyl ethyl ketone; Esters such as methyl acetate; Aprotic polar solvent such as dimethylacetamide, N-methyl-2-pyrrolidone and the like.
  • the paste may be applied on the negative electrode current collector by, for example, a gravure coating method, a slit die coating method, a knife coating method, or a spray coating method.
  • the electrolyte may be NaClO 4 , NaPF 6 , NaAsF 6 , NaSbF 6 , NaBF 4 , NaCF 3 SO 3 , NaN (SO 2 CF 3 ) 2 , lower aliphatic carboxylic acid sodium salt, NaAlCl 4 , Mixtures may also be used. Among them, it is preferable to use an electrolyte containing fluorine. Further, the electrolyte may be dissolved in an organic solvent and used as a non-aqueous electrolyte.
  • organic solvent examples include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, isopropyl methyl carbonate, vinylene carbonate, 4- Carbonates such as trifluoromethyl-1,3-dioxolan-2-one and 1,2-di (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropylmethylether, 2,2,3,3-tetrafluoropropyldifluoromethylether, tetrahydrofuran, 2-methyltetrahydro Ethers such as furan; Esters such as methyl formate, methyl acetate and?
  • a solid electrolyte may be used.
  • the solid electrolyte may be an organic solid electrolyte such as a polymer compound of a polyethylene oxide system, a polymer compound containing at least one or more of a polyorganosiloxane chain or a polyoxyalkylene chain.
  • a so-called gel type electrolyte in which a non-aqueous electrolyte is supported on the polymer compound may also be used.
  • Na 2 S-SiS 2, Na 2 S-GeS 2, NaTi 2 (PO 4) 3, NaFe 2 (PO 4) 3, Na 2 (SO 4) 3, Fe 2 (SO 4) 2 (PO 4 ), Fe 2 (MoO 4 ) 3, and the like may be used.
  • the safety of the sodium secondary battery can be enhanced by using these solid electrolytes.
  • the solid electrolyte may serve as a separator to be described later, in which case a separator may not be required.
  • a separator may be disposed between the anode and the cathode.
  • a separator may be a material having a form such as a porous film made of a material such as a polyolefin resin such as polyethylene or polypropylene, a fluororesin or a nitrogen-containing aromatic polymer, a nonwoven fabric or a woven fabric.
  • the thickness of the separator is preferably as thin as long as the mechanical strength is maintained in that the volume energy density of the battery is high and the internal resistance is small.
  • the thickness of the separator may generally be about 5 to 200 mu m, and more specifically, 5 to 40 mu m.
  • a negative electrode, a separator, and a negative electrode are laminated in this order to form an electrode group, if necessary, the electrode group is rolled up and stored in a battery can, and a sodium secondary battery can be manufactured by impregnating the electrode group with a non-aqueous electrolyte.
  • the anode, the solid electrolyte, and the cathode may be laminated to form an electrode assembly, and if necessary, the electrode assembly may be rolled up and stored in a battery can to manufacture a sodium secondary battery.
  • Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 powder as a transition metal oxide precursor and TiO 2 powder as a dopant precursor were mixed in an air atmosphere through a ball mill (22 ° C., 100 rpm) for 4 to 12 hours to obtain a dopant precursor- Metal oxide precursor composite particles were obtained. Thereafter, the dopant precursor-transition metal oxide precursor composite particles were mixed with sodium salt NaOH through ball milling and then heat-treated at 670 ° C for 24 hours in an air or oxygen atmosphere to obtain a Ti-doped Na (Ni 0.6 Co 0.2 Mn 0.2 ) O 2 .
  • NaOH was Ni 0.6 Co 0.2 Mn equal to 0.2 (OH) 2 and the total number of moles of TiO 2 It was used as confiscation.
  • the cathode active material was prepared in the same manner as in Production Example 1 of Cathode Active Material except that TiO 2 was used in an amount of 3 mol% based on the total mole number of Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 and TiO 2 .
  • the cathode active material was prepared in the same manner as in Production Example 1 of Cathode Material except that TiO 2 was used in an amount of 5 mol% based on the total molar ratio of Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 and TiO 2 .
  • FIGS. 2A and 2B show an X-ray diffraction spectroscopy (XRD) pattern and a scanning electron microscope (SEM) image of the TiO 2 nano powder used in the cathode active material production examples, respectively.
  • XRD X-ray diffraction spectroscopy
  • SEM scanning electron microscope
  • the TiO 2 nanopowder includes crystalline nanoparticles, wherein the crystalline phase is a rutile phase and an anatase phase.
  • the average particle size of the TiO 2 nano powder was found to be 15 to 30 nm.
  • FIG. 3 is a graph showing SEM images of dopant precursor-transition metal oxide precursor composite particles obtained in the course of the cathode active material preparation examples 1 and 2 and inductively coupled plasma (ICP) images obtained from the cathode active material comparison example, Images.
  • FIG. 4 shows SEM images and ICP images of a cathode active material comparison example, and cathode active material preparation examples 1 to 3, in which active material particles are completed.
  • the dopant precursor-transition metal oxide precursor composite particles obtained in the processes of the cathode active material production examples 1 and 2 are composed of elongated Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 primary particles and a substantially round It can be confirmed that it is a spherical secondary particle in which TiO 2 primary particles are gathered.
  • the transition metal oxide precursor particles according to the comparative example of the cathode active material to which the TiO 2 particles are not added are only elongated Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 primary particles.
  • the Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 primary particles have a width of about 10 to 100 nm and a length of about 1 to 1.2 ⁇ m, and the TiO 2 primary particles have a size And has a diameter of about 15 to 30 nm, which is similar. Also, it can be seen that the dopant precursor-transition metal oxide precursor composite particles are spherical particles having a diameter of about 10 ⁇ .
  • the cathode active material particles are spherical particles having a diameter of about 10 ⁇ m, and are identified as secondary particles in which rod-shaped primary particles are gathered.
  • the TiO 2 particles in the primary particles are not separately identified and confirmed. It is also confirmed that as the doping amount of Ti increases, the primary particles are arranged more densely in the secondary particles.
  • 5A, 5B and 5C are nitrogen isotherm adsorption-desorption graphs for the cathode active material comparison example and the active material particles according to the cathode active material production examples 1 and 2, respectively.
  • Table 1 shows the tap density, surface area, and total pore volume of the active material particles according to Comparative Example of Cathode Active Material and Cathode Active Materials Preparation Examples 1 to 3 .
  • the tap density was measured by tapping a total of 3,000 tapes at a constant speed using a tapscondometer.
  • Cathode active material Comparative Example 1 Cathode Active Material Production Example 1 (1 mol% of Ti) Cathode Active Material Production Example 2 (3 mol% of Ti) Cathode Active Material Production Example 3 (5 mol% of Ti) Tap density (g / ml) 1.45 1.595 1.607 1.628 Specific surface area (m 2 g -1 ) 2.657 1.04 0.762 - Total pore volume (cc g -1 ) 0.008 0.00678 0.00572 -
  • FIG. 6A is a graph showing the degree of deformation when a compressive force is applied to the active material particles according to the comparative example of the cathode active material and the cathode active material production examples 1 to 3
  • FIG. 6B is a graph showing the degree of deformation of the particles, Lt; / RTI >
  • FIG. 7 is a graph showing the results of EPMA (electrone probe X-ray microanalyzer) analysis on the cathode active materials according to Comparative Examples of Cathode Active Materials and Production Examples 1 to 3 of Cathode Active Materials.
  • EPMA electrophotographic microanalyzer
  • the cathode active material particles according to Comparative Examples of Cathode Active Materials and Cathode Active Materials Preparation Examples 1 to 3 all have almost uniform composition from the center of the particle to the outer periphery. It can also be seen that the doped Ti in the cathode active material particles according to Production Examples 1 to 3 of the cathode active material was almost uniformly doped from the center of the particle to the outer periphery thereof.
  • the positive electrode active material, the conductive material (Super-P, KS-6), and the binder (polyvinylidene fluoride) prepared in the cathode active material production examples 1 to 3 and the cathode active material comparative example were mixed in an organic solvent N-methyl-2-pyrrolidone (NMP)), coated on an aluminum current collector, and pressed to form a positive electrode.
  • NMP organic solvent N-methyl-2-pyrrolidone
  • FIG. 9A is a graph showing charge / discharge characteristics in the first cycle of the half-cells according to the half-cell production examples 1 to 3 and the half-cell comparative example
  • FIG. 5 is a graph showing a change in discharge capacity according to the number of cycles of the secondary batteries according to the comparative example.
  • charging was performed up to 4.1 V at 0.1 C and discharging was performed up to 1.5 V at 0.1 C.
  • FIG. 9B when measuring the change in discharge capacity according to the number of cycles, charging was performed up to 4.1 V at 0.5 C and discharging was conducted at 100 C for 1.5 C at 0.5 C.
  • the charge / discharge capacity at 0.1 C, the efficiency, the discharge capacity at 0.5 C, and the cycle retention at 0.5 C are shown in Table 2 below.
  • the reversed capacitors according to Examples 1 to 3 of the present invention had a relatively low discharge capacity in the first cycle at 0.1C and 0.5C, It can be seen that the discharge capacity is more excellent after about 20 cycles of operation at 0.5C, and the cycle retention rate at 100C operation at 0.5C is greatly improved. It can be seen from this that the use of the cathode active material doped with Ti in an amount of 1 to 5 mol% in comparison with the case of using the undoped cathode active material improves the life characteristics of the battery.
  • FIG. 10A is a graph showing charge / discharge characteristics in the first cycle of the half-cells according to the half-cell production examples 1 to 3 and the half-cell comparative example
  • FIG. 10B is a graph showing the charge-
  • FIG. 5 is a graph showing a change in discharge capacity according to the number of cycles of the inverters according to the number of cycles.
  • FIG. 10A charging was performed up to 4.1 V at 0.1 C and discharging was performed up to 1.5 V at 0.1 C.
  • FIG. 10B when measuring the change in the discharge capacity according to the number of cycles, charging was performed up to 4.1 V at 0.5 C and discharging was conducted at 100 C for 0.5 C at 1.5 V.
  • Table 3 the charge / discharge capacity and efficiency at 0.1 C, the discharge capacity and efficiency at 0.2 C, the discharge capacity and efficiency at 0.5 C, and the cycle retention at 0.5 C were shown.
  • the evaluation with respect to Figures 9A and 9B differs in that the maximum charging voltage is 4.1 V while the present evaluation is at 4.3 V charging voltage.
  • the reversed capacitors according to the comparative examples and the comparative examples 1 to 3 have comparatively similar discharge capacities in the first cycle at 0.1C. However, it can be seen that the discharge capacity is improved when the first cycle is operated at 0.2C or 0.5C in the case of the secondary batteries according to Examples 1 to 3 of the present invention. These results are shown in the case where the battery is operated at a charging voltage of 4.1 V (see FIGS. 9A, 9B, 9C and Table 2).
  • the half-cells according to Comparative Examples 1 to 3 of the present invention had significantly improved cycle retention when operated at 0.5 C for 100 cycles. It can be seen from this that, in the case of using the cathode active material doped with Ti in an amount of 1 to 5 mol%, the lifetime characteristics of the battery are significantly improved as compared with the case of using the undoped cathode active material.
  • FIG. 11A is a graph showing the first cycle charging / reversing characteristics of the half-cells according to the half-cell production examples 1 to 3 and the half-cell comparison example under the 0.5C-rate condition, FIG. And charge and discharge characteristics of the 100th cycle in the 0.5C-rate condition of the half-cells according to the half-cell comparative example. Both of them were charged up to 4.3V and discharged to 1.5V.
  • 12 is a graph showing the differential capacities for the voltages in the first cycle, the 50th cycle, and the 100th cycle in the 0.5C-rate condition of the half-cells according to the half-cell production examples 1 to 2 and the half- to be. In each case, charging was performed up to 4.3V and discharging was performed up to 1.5V.
  • the discharge capacities of the secondary batteries according to the comparative example of the secondary battery are shown by the cycles of 1.5-4.3V and 0.5C, It can be assumed that sufficient insertion of Na ions into the active material does not occur.
  • the half-cells according to the examples 1 to 3 comprising the Ti-doped cathode active material had a small decrease in the discharge capacity with the progress of the cycle under the condition of 1.5-4.3V, 0.5C, It can be inferred that the insertion of Na ions into the Ti-doped cathode active material occurs smoothly.
  • FIG. 13A is an XRD graph of the cathode active materials after the first cycle operation at the 0.1C-rate condition of the half-cells according to the half-cell preparation examples 1 to 2 and the half-cell comparative example
  • FIG. 13B is an XRD graph of the half- 1 < / RTI > to 2, and an XRD graph for the cathode active materials after the first cycle operation at 0.5C-rate condition of the half-cells according to the half-current comparative example.
  • charging was performed up to 4.3V and discharging was performed up to 1.5V.
  • both the Ti-doped cathode active material and the Ti-doped cathode active material show little change in crystal structure when the first cycle is performed at 0.1C.
  • the positive electrode active material doped with Ti in particular, the positive electrode active material doped with 3 mol% of Ti, shows good sharpness in all of the other peaks including these peaks, so that it is presumed that the change of the crystal structure is small.
  • FIG. 14A is an XRD graph of a cathode active material after a 100th cycle operation in a half cycle of a half cell according to a half cell comparison example
  • FIG. 14B is an XRD graph of a half cell according to the half cell preparation example 2, XRD graph of the cathode active material after the 100th cycle operation.
  • charging was performed up to 4.3V and discharging was performed up to 1.5V.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

양극 활물질인 나트륨 전이금속 산화물 입자 내에 다른 금속을 균일하게 도핑한다. 그 결과, 소재 자체의 물성을 향상시키고 전기화학특성 뿐만 아니라 충/방전 과정에서 구조를 안정화시켜 전지 성능을 향상시킬 수 있다.

Description

금속 도핑된 나트륨 이차전지용 양극 활물질, 이의 제조방법, 및 이를 포함하는 나트륨 이차전지
본 발명은 이차전지에 관한 것으로, 보다 상세하게는 나트륨 이차전지에 관한 것이다.
이차전지는 방전뿐 아니라 충전이 가능하여 반복적으로 사용할 수 있는 전지를 말한다. 이차전지 중 대표적인 리튬 이차전지는 양극활물질에 포함된 리튬이온이 전해질을 거쳐 음극으로 이동한 후 음극활물질의 층상 구조 내로 삽입되며(충전), 이 후 음극활물질의 층상 구조 내로 삽입되었던 리튬 이온이 다시 양극으로 되돌아가는(방전) 원리를 통해 작동한다. 이러한 리튬 이차전지는 현재 상용화되어 휴대전화, 노트북 컴퓨터 등의 소형전원으로 사용되고 있으며, 하이브리드 자동차 등의 대형 전원으로도 사용가능할 것으로 예측되고 있어, 그 수요가 증대될 것으로 예상된다.
그러나, 리튬 이차전지에서 양극활물질로 주로 사용되는 복합금속산화물은 리튬 등의 희소금속원소를 포함하고 있어, 수요증대에 부응하지 못할 염려가 있다. 이에 따라, 공급량이 풍부고 값싼 나트륨을 양극활물질로 사용하는 나트륨 이차전지에 대한 연구가 진행되고 있다. 일 예로서, 대한민국 공개특허 제2012-0133300호는 양극활물질로서 AxMnPO4F(A=Li 또는 Na, 0 < x ≤ 2)을 개시하고 있다.
그러나 여전히 나트륨 이차전지의 용량 향상 및 사이클 특성의 향상이 요구되고 있다.
본 발명이 해결하고자 하는 과제는, 나트륨 이차전지에서 사용되는 양극 활물질의 개선을 통해 이차전지의 용량 향상 및 사이클 특성 향상을 구현함에 있다.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 기술적 과제를 이루기 위하여 본 발명의 일 측면은 나트륨 이차 전지용 양극 활물질을 제공한다. 나트륨 이차 전지용 양극 활물질은 하기 화학식 4로 나타낼 수 있다.
[화학식 4]
Na1+a[(NixCoyMn1-x-y)1-b(TM)b]O2-cAc
상기 화학식 4에서, -0.2≤a≤0.2, 0.005≤b≤0.1, 0.1≤x≤0.9, 0.1≤y≤0.9, 0.1≤1-x-y≤0.9, TM은 Ti, Zr, Mg, Al, V, W, Mo, Nb, Zn, 또는 Cr이고, A는 N,O,F, 또는 S이고, c는 0 내지 0.1이다. 상기 화학식 4에서 b는 0.009 내지 0.06, 구체적으로 b는 0.01 내지 0.05, 일 예로서, b는 0.03 내지 0.05일 수 있다.
상기 나트륨 이차전지용 양극 활물질은 하기 화학식 5로 나타어질 수 있다.
[화학식 5]
Na[(NixCoyMn1-x-y)1-bTib]O2
상기 화학식 5에서, 0.5≤x≤0.9, 0.05≤y≤0.3, 그리고 b는 0.009 내지 0.06일 수 있다.
상기 나트륨 이차전지용 양극 활물질은 O3의 층상구조를 가질 수 있다. 상기 나트륨 이차전지용 양극 활물질은 1차 입자가 모여 형성된 2차 입자의 형태를가질 수 있다. 이 때, 상기 TM은 상기 입자 내에서 균일하게 분포할 수 있다. 또한, 상기 나트륨 이차전지용 양극 활물질 입자들은 1.5 내지 1.7 g/ml의 탭밀도를 나타낼 수 있다.
본 발명의 다른 측면은 나트륨 이차 전지용 양극 활물질의 제조방법을 제공한다. 이 제조방법은 전이금속 산화물 전구체와 상기 전이금속 산화물 전구체에 포함되지 않은 금속의 산화물인 도펀트 전구체를 볼밀링을 사용하여 혼합하여 도펀트 전구체-전이금속 산화물 전구체 복합체를 얻는 것을 포함한다. 상기 도펀트 전구체-전이금속 산화물 전구체 복합체와 나트륨 함유 화합물을 볼밀링을 사용하여 혼합한 후, 열처리하여 양극 활물질을 얻는다.
상기 전이금속 산화물 전구체와 상기 도펀트 전구체는, 상기 전이금속 산화물 전구체 내의 전이금속과 상기 도펀트 전구체 내의 금속의 합계 몰수에 대한 상기 도펀트 전구체의 금속의 몰수의 비가 0.9 내지 6 mol%, 구체적으로 1 내지 5 mol%, 일 예로서 3 내지 5 mol%가 되도록 혼합될 수 있다.
상기 전이금속 산화물 전구체는 하기 화학식 1 내지 3 중 어느 하나로 표시될 수 있다.
[화학식 1] NixCoyMn1-x-y(OH)2,
[화학식 2] NixCoyMn1-x-yC2O4,
[화학식 3] [NixCoyMn1-x-y]3O4
상기 화학식 1 내지 3에서 0.1≤x≤0.9, 0.1≤y≤0.9, 그리고 0.1≤1-x-y≤0.9이다.
상기 도펀트 전구체는 TiO2 또는 ZrO2일 수 있다.
본 발명의 다른 측면은 나트륨 이차 전지를 제공한다. 상기 나트륨 이차 전지는 상기 화학식 1로 나타내어지는 양극활물질을 포함하는 양극, 음극활물질을 함유하는 음극, 및 상기 양극과 상기 음극 사이에 배치된 전해질을 포함한다.
상술한 바와 같이 본 발명에 따르면, 양극 소재 자체의 물성을 향상시키고 전기화학특성 뿐만 아니라 충/방전 과정에서 구조를 안정화시켜 전지 성능, 특히 고전압 특성 및 수명 특성을 향상시킬 수 있다.
그러나, 본 발명의 효과들은 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 양극 활물질 제조방법을 개략적으로 나타낸 개략도이다.
도 2a 및 도 2b는 각각 양극 활물질 제조예들에서 사용된 TiO2 나노 파우더의 XRD (X-ray Diffraction Spectroscopy) 패턴과 SEM (scanning electron microscope) 이미지를 나타낸다.
도 3은 양극 활물질 비교예의 과정 중 얻어진 전이금속 산화물 전구체, 그리고 양극 활물질 제조예들 1 및 2의 과정 중 얻어진 도펀트 전구체-전이금속 산화물 전구체 복합입자들을 촬영한 SEM 이미지들과 ICP (inductively coupled plasma) 이미지들을 나타낸다.
도 4은 양극 활물질 비교예, 그리고 양극 활물질 제조예들 1 내지 3의 과정이 완료된 활물질 입자들을 촬영한 SEM 이미지들과 ICP 이미지들을 나타낸다.
도 5a, 도 5b, 및 도 5c는 각각 양극 활물질 비교예, 그리고 양극 활물질 제조예들 1 및 2에 따른 활물질 입자들에 대한 질소 등온 흡착-탈착 그래프들이다.
도 6a는 양극 활물질 비교예, 그리고 양극 활물질 제조예들 1 내지 3에 따른 활물질 입자들에 대해 압축힘을 가하였을 때 변형정도를 나타낸 그래프이고, 도 6b는 도 6a로부터 계산된 입자강도를 Ti의 도핑농도에 대해 나타낸 그래프이다.
도 7은 양극 활물질 비교예 및 양극 활물질 제조예들 1 내지 3에 따른 양극 활물질들에 대한 EPMA (electrone probe X-ray microanalyzer) 분석 결과를 나타낸 그래프이다.
도 8은 양극 활물질 비교예, 그리고 양극 활물질 제조예들 1 내지 3에서 얻어진 양극 활물질들에 대한 XRD 패턴을 나타낸다.
도 9a는 반전지 제조예들 1 내지 3, 및 반전지 비교예에 따른 반전지들의 첫 번째 사이클에서의 충방전 특성을 나타낸 그래프이고, 도 9b는 반전지 제조예들 1 내지 3, 및 반전지 비교예에 따른 반전지들의 사이클 횟수에 따른 방전용량 변화를 나타낸 그래프이다.
도 10a는 반전지 제조예들 1 내지 3 및 반전지 비교예에 따른 반전지들의 첫 번째 사이클에서의 충방전 특성을 나타낸 그래프이고, 도 10b는 반전지 제조예들 1 내지 3 및 반전지 비교예에 따른 반전지들의 사이클 횟수에 따른 방전용량 변화를 나타낸 그래프이다.
도 11a는 반전지 제조예들 1 내지 3 및 반전지 비교예에 따른 반전지들의 0.5C-rate 조건에서의 첫 번째 사이클 충반전 특성을 나타낸 그래프이고, 도 11b는 반전지 제조예들 1 내지 3 및 반전지 비교예에 따른 반전지들의 0.5C-rate 조건에서의 100 번째 사이클의 충방전 특성을 나타낸 그래프이다.
도 12는 반전지 제조예들 1 내지 2 및 반전지 비교예에 따른 반전지들의 0.5C-rate 조건에서의 첫 번째 사이클, 50 번째 사이클, 그리고 100 번째 사이클에서의 전압에 대한 미분용량을 나타낸 그래프이다.
도 13a은 반전지 제조예들 1 내지 2 및 반전지 비교예에 따른 반전지들의 0.1C-rate 조건에서의 첫 번째 사이클 운전 후의 양극 활물질들에 대한 XRD 그래프이고, 도 13b는 반전지 제조예들 1 내지 2 및 반전지 비교예에 따른 반전지들의 0.5C-rate 조건에서의 첫 번째 사이클을 운전 후의 양극 활물질들에 대한 XRD 그래프이다.
도 14a는 반전지 비교예에 따른 반전지의 0.5C-rate 조건에서의 100 번째 사이클 운전 후의 양극 활물질에 대한 XRD 그래프이고, 도 14b는 반전지 제조예 2에 따른 반전지의 0.5C-rate 조건에서의 100 번째 사이클 운전 후의 양극 활물질에 대한 XRD 그래프이다.
이하, 본 발명을 보다 구체적으로 설명하기 위하여 본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 보다 상세하게 설명한다. 그러나, 본 발명은 여기서 설명되어지는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다.
나트륨 이차 전지용 양극 활물질
도 1은 본 발명의 일 실시예에 따른 양극 활물질 제조방법을 개략적으로 나타낸 개략도이다.
도 1을 참조하면, 전이금속 산화물 전구체 파우더를 제공할 수 있다. 상기 전이금속 산화물 전구체 파우더는 다수의 전이금속 산화물 전구체 입자들(10)을 구비할 수 있다. 상기 전이금속 산화물 전구체는 Ni, Co, Mn, 및 이들 중 둘 이상의 조합을 함유하는 화합물로서, 다음의 화학식 1 내지 3 중 어느 하나로 표시될 수 있다.
[화학식 1] NixCoyMn1-x-y(OH)2,
[화학식 2] NixCoyMn1-x-yC2O4,
[화학식 3] [NixCoyMn1-x-y]3O4
상기 화학식 1 내지 3에서 0.1≤x≤0.9, 0.1≤y≤0.9, 및 0.1≤1-x-y≤0.9일 수 있다. 구체적으로, 0.3≤x≤0.9 및 0.05≤y≤0.4일 수 있다. 더 구체적으로, 0.5≤x≤0.9 및 0.05≤y≤0.3, 일 예로서 x는 0.6이고 y는 0.2일 수 있다.
상기 전이금속 산화물 전구체 입자(10)는 대략 구형의 입자로서 수 내지 수십 um, 일 예로서 8 내지 12um의 직경을 가질 수 있다. 또한, 상기 전이금속 산화물 전구체 입자(10)는 1차 입자들(10a)이 모여서 형성된 2차 입자로서, 상기 1차 입자는 도시된 바와는 달리 폭이 약 10 내지 100nm이면서 길이가 1 내지 1.5um인 길쭉한 형태를 가질 수 있다.
상기 전이금속 산화물 전구체 입자들(10)과 도펀트 전구체 입자들(20)을 혼합하여 도펀트 전구체-전이금속 산화물 전구체 복합체인 입자들(30)을 얻을 수 있다.
상기 도펀트 전구체는 상기 전이금속 산화물 전구체에 포함되지 않은 금속의 산화물, 구체적으로는 2족 내지 6족, 12족, 또는 13족 금속의 산화물 일 예로서, TiO2, ZrO2, MgO, Al2O3, V2O5, WO3, MoO2, NbO2, ZnO2, 또는 CrO2 일 수 있다. 일 실시예에서, 상기 도펀트 전구체는 4족 금속의 산화물인 TiO2 또는 ZrO2일 수 있다. 상기 도펀트 전구체 입자는 나노미터의 직경, 일 예로서 10 내지 50nm의 평균직경을 갖는 대략 구형의 나노입자일 수 있다.
상기 혼합은 볼밀링을 사용하여 수행할 수 있다. 이 때, 볼밀링은 약 80 내지 120의 rpm으로, 상온의 공기 또는 산소 분위기에서 약 4 내지 12시간동안 수행될 수 있다.
상기 도펀트 전구체-전이금속 산화물 전구체 복합입자(30)는 수 내지 수십 um, 일 예로서 8 내지 12um의 직경을 갖는 대략 구형의 입자로서, 상기 전이금속 산화물 전구체의 1차 입자들(10a)과 이들 사이에 배치된 상기 도펀트 전구체 입자들(20a)이 모여 이루어진 2차 입자일 수 있다. 상기 도펀트 전구체 입자들(20a)은 상기 도펀트 전구체-전이금속 산화물 전구체 복합입자(30)의 내부 및 표면에 비교적 균일하게 분포할 수 있다.
상기 전이금속 산화물 전구체 입자들(10)과 도펀트 전구체 입자들(20)은, 상기 전이금속 산화물 전구체 입자들(10) 내의 전이금속과 상기 도펀트 전구체 입자들(20) 내의 금속의 합계 몰수에 대한 상기 도펀트 전구체 입자들(20) 내의 금속의 몰수의 비가 0.5 내지 10 mol%, 구체적으로 0.9 내지 6 mol%, 더 구체적으로 0.5 내지 7 mol%, 더 구체적으로 1 내지 5 mol% 또는 2.5 내지 5.5mol%, 일 예로서, 2.5 내지 3.5mol% 또는 3 내지 5mol%가 되도록 혼합될 수 있다. 일 예로서, 상기 전이금속 산화물 전구체 입자들(10)이 상기 화학식 1 내지 3 중 어느 하나의 조성을 갖고, 상기 도펀트 전구체 입자들(20)이 TiO2 또는 ZrO2인 경우, 상기 전이금속 산화물 전구체 입자들과 상기 도펀트 전구체 입자들의 합계 몰수에 대해 상기 도펀트 전구체 입자들은 0.5 내지 10 mol%, 구체적으로 0.9 내지 6 mol%, 더 구체적으로 0.5 내지 7 mol%, 더 구체적으로 1 내지 5 mol% 또는 2.5 내지 5.5mol%, 일 예로서, 2.5 내지 3.5mol% 또는 3 내지 5mol%가 되도록 혼합될 수 있다.
이 후, 상기 도펀트 전구체-전이금속 산화물 전구체 복합입자들(30)을 나트륨 함유 화합물 일 예로서, 나트륨염 또는 나트륨 산화물과 혼합한 후 열처리하여 양극 활물질 입자들(40)을 제조할 수 있다. 상기 나트륨염은 소듐카보네이트, 소듐나이트레이트, 소듐아세테이트, 수산화소듐, 수산화소듐수화물, 또는 이들의 조합 중 하나일 수 있다. 이 때의 혼합은 볼밀법을 사용하여 수행할 수 있고, 열처리는 공기 또는 산소분위기, 약 600 내지 700℃의 온도조건에서 수행될 수 있다.
상기 양극 활물질 입자들(40)은 수 내지 수십 um, 일 예로서 8 내지 12um의 직경을 갖는 대략 구형의 입자로서, 막대 형태의 1차 입자들(40a)이 모여서 이루어진 2차 입자일 수 있다. 이 때, 상기 도펀트 전구체-전이금속 산화물 전구체 복합입자들(30)과는 달리, 금속 산화물 전구체의 1차 입자와 도펀트 전구체 입자가 별도로 분리되어 확인되지는 않는다. 이러한 양극 활물질 입자들(40)은 약 1.5 내지 1.7 g/ml, 구체적으로 약 1.55 내지 1.65 g/ml, 더 구체적으로는 약 1.57 내지 1.63의 g/ml의 탭밀도를 가질 수 있고, 약 0.3 내지 1.2 m2g-1, 구체적으로 약 0.5 내지 1.1 m2g-1의 비표면적을 가질 수 있고, 약 0.004 내지 0.007 ccg-1의 비표면적을 가질 수 있다. 또한, 양극 활물질 입자들(40)은 약 70 내지 130 MPa의 입자강도를 가질 수 있다.
위의 제조방법을 사용하여 형성된, 본 발명의 일 실시예에 따른 나트륨 이차전지용 양극 활물질은 하기 화학식 4로 나타낼 수 있다.
[화학식 4]
Na1+a[(NixCoyMn1-x-y)1-b(TM)b]O2-cAc
상기 화학식 4에서, -0.2≤a≤0.2, 0.005≤b≤0.1, 0.1≤x≤0.9, 0.1≤y≤0.9, 0.1≤1-x-y≤0.9, TM은 Ti, Zr, Mg, Al, V, W, Mo, Nb, Zn, 또는 Cr일 수 있다. A는 양극 활물질 제조과정에서 함유될 수 있는 불순물로서, N,O,F, 또는 S일 수 있고, c는 0 내지 0.1일 수 있다.
구체적으로, a는 1일 수 있다. x와 y는 0.3≤x≤0.9 및 0.05≤y≤0.4을 만족할 수 있다. 더 구체적으로, 0.5≤x≤0.9 및 0.05≤y≤0.3, 일 예로서 x는 0.6이고 y는 0.2일 수 있다.
b는 0.005 내지 0.07, 구체적으로는 0.009 내지 0.06, 더 구체적으로 0.01 내지 0.05 또는 0.025 내지 0.055, 일 예로서, 0.025 내지 0.035 또는 0.03 내지 0.05일 수 있다. TM은 Ti 또는 Zr, 일 예로서 Ti일 수 있다.
일 예로서, 나트륨 이차전지용 양극 활물질은 하기 화학식 5로 나타낼 수 있다.
[화학식 5]
Na[(NixCoyMn1-x-y)1-bTib]O2
상기 화학식 5에서, x, y, b는 상기 화학식 4에서 정의한 바와 같을 수 있으나, 일 예로서, 0.5≤x≤0.9, 0.05≤y≤0.3, 그리고 b는 0.009 내지 0.06일 수 있다.
상기 나트륨 이차전지용 양극 활물질은 O3의 층상구조를 나타낼 수 있다. 또한, 화학식 4의 조성을 갖는 양극 활물질 입자는 막대 형태의 1차 입자들이 모여서 이루어진 2차 입자일 수 있고, 이 때 TM은 상기 입자 내에서 균일하게 분포할 수 있다. 다시 말해서, 상기 입자의 중심에서 TM의 함량은 상기 입자의 표면에서 TM의 함량과 동일할 수 있다.
이러한 나트륨 이차전지용 양극 활물질은 TM의 도핑을 통해 입자의 물성 일 예로서 탭 밀도와 입자 강도를 향상시킬 수 있고, 충방전 과정에서 발생하는 흔히 일어나는 상전이 현상 또는 결정구조의 변화을 억제하여 전지 구동시 전기화학 특성의 손실이 일어나는 것을 방지함에 따라 수명특성을 향상시킬 수 있고 또한 고전압에서도 우수한 방전용량을 나타낼 수 있다.
나트륨 이차 전지
양극
양극 활물질, 도전재, 및 결합제를 혼합하여 양극재료를 얻을 수 있다.
상기 양극 활물질은 위에서 설명한 방법을 사용하여 형성된 것일 수 있고, 화학식 4로 나타낸 조성을 가질 수 있다.
상기 도전재는 천연 흑연, 인조 흑연, 코크스류, 카본 블랙, 탄소 나노튜브, 그라핀 등의 탄소 재료일 수 있다. 상기 도전재는 상기 양극활물질 100 중량부에 대해 2 내지 15 중량부 구체적으로는 8 내지 12 중량부 또는 5 내지 6 중량부로 함유될 수 있다. 결합제는 열가소성 수지 예를 들어, 폴리불화비닐리덴, 폴리테트라플루오로에틸렌, 사불화에틸렌, 불화비닐리덴계 공중합체, 육불화프로필렌 등의 불소 수지, 및/또는 폴리에틸렌, 폴리프로필렌 등의 폴리올레핀 수지를 포함할 수 있다. 상기 결합제는 상기 양극활물질 100 중량부에 대해 2 내지 9 중량부 구체적으로는 4 내지 7 중량부 더 구체적으로는 5 내지 6 중량부로 함유될 수 있다.
양극재료를 양극 집전체 상에 도포하여 양극을 형성할 수 있다. 양극 집전체는 Al, Ni, 스테인레스 등의 도전체일 수 있다. 양극재료를 양극 집전체 상에 도포하는 것은 가압 성형, 또는 유기 용매등을 사용하여 페이스트를 만든 후 이 페이스트를 집전체 상에 도포하고 프레스하여 고착화하는 방법을 사용할 수 있다. 유기 용매는 N,N-디메틸아미노프로필아민, 디에틸트리아민 등의 아민계; 에틸렌옥시드, 테트라히드로푸란 등의 에테르계; 메틸에틸케톤 등의 케톤계; 아세트산메틸 등의 에스테르계; 디메틸아세트아미드, N-메틸-2-피롤리돈 등의 비양성자성 극성 용매 등일 수 있다. 페이스트를 양극 집전체 상에 도포하는 것은 예를 들면, 그라비아 코팅법, 슬릿다이 코팅법, 나이프 코팅법, 스프레이 코팅법을 사용하여 수행할 수 있다.
음극
음극활물질은 Na 이온을 탈삽입하거나 변환(conversion) 반응을 일으킬 수 있는 금속, 금속합금, 금속산화물, 금속불화물, 금속황화물, 및 천연 흑연, 인조흑연, 코크스류, 카본 블랙, 탄소나노튜브, 그라핀 등의 탄소 재료 등을 사용하여 형성할 수도 있다.
음극활물질, 도전재, 및 결합제를 혼합하여 음극재료를 얻을 수 있다. 이 때, 도전재는 천연 흑연, 인조 흑연, 코크스류, 카본 블랙, 탄소 나노튜브, 그라핀 등의 탄소 재료일 수 있다. 결합제는 열가소성 수지 예를 들어, 폴리불화비닐리덴, 폴리테트라플루오로에틸렌, 사불화에틸렌, 불화비닐리덴계 공중합체, 육불화프로필렌 등의 불소 수지, 및/또는 폴리에틸렌, 폴리프로필렌 등의 폴리올레핀 수지를 포함할 수 있다.
음극재료를 양극 집전체 상에 도포하여 양극을 형성할 수 있다. 양극 집전체는 Al, Ni, 스테인레스 등의 도전체일 수 있다. 음극재료를 양극 집전체 상에 도포하는 것은 가압 성형, 또는 유기 용매등을 사용하여 페이스트를 만든 후 이 페이스트를 집전체 상에 도포하고 프레스하여 고착화하는 방법을 사용할 수 있다. 유기 용매는 N,N-디메틸아미노프로필아민, 디에틸트리아민 등의 아민계; 에틸렌옥시드, 테트라히드로푸란 등의 에테르계; 메틸에틸케톤 등의 케톤계; 아세트산메틸 등의 에스테르계; 디메틸아세트아미드, N-메틸-2-피롤리돈 등의 비양성자성 극성 용매 등일 수 있다. 페이스트를 음극 집전체 상에 도포하는 것은 예를 들면, 그라비아 코팅법, 슬릿다이 코팅법, 나이프 코팅법, 스프레이 코팅법을 사용하여 수행할 수 있다.
전해질
전해질은 NaClO4, NaPF6, NaAsF6, NaSbF6, NaBF4, NaCF3SO3, NaN(SO2CF3)2, 저급 지방족 카르복실산나트륨염, NaAlCl4 등일 수 있고, 이들의 2종 이상의 혼합물을 사용할 수도 있다. 이들 중에서도 불소를 포함하는 전해질을 사용하는 것이 바람직하다. 또한, 전해질을 유기 용매에 용해시켜 비수전해액으로서 이용할 수 있다. 유기 용매로는, 예를 들면 프로필렌카르보네이트, 에틸렌카르보네이트, 디메틸카르보네이트, 디에틸카르보네이트, 에틸메틸카르보네이트, 이소프로필메틸카르보네이트, 비닐렌카르보네이트, 4-트리플루오로메틸-1,3-디옥솔란-2-온, 1,2-디(메톡시카르보닐옥시)에탄 등의 카르보네이트류; 1,2-디메톡시에탄, 1,3-디메톡시프로판, 펜타플루오로프로필메틸에테르, 2,2,3,3-테트라플루오로프로필디플루오로메틸에테르, 테트라히드로푸란, 2-메틸테트라히드로푸란 등의 에테르류; 포름산메틸, 아세트산메틸, γ-부티로락톤 등의 에스테르류; 아세토니트릴, 부티로니트릴 등의 니트릴류; N,N-디메틸포름아미드, N,N-디메틸아세트아미드 등의 아미드류; 3-메틸-2-옥사졸리돈 등의 카르바메이트류; 술포란, 디메틸술폭시드, 1,3-프로판술톤 등의 황 함유 화합물; 또는 상기한 유기 용매에 추가로 불소 치환기를 도입한 것을 사용할 수 있다.
이와는 달리, 고체 전해질을 이용할 수도 있다. 고체 전해질로는 폴리에틸렌옥시드계의 고분자 화합물, 폴리오르가노실록산쇄 또는 폴리옥시알킬렌쇄 중 적어도 1종 이상을 포함하는 고분자 화합물 등의 유기계 고체 전해질일 수 있다. 또한, 고분자 화합물에 비수전해액을 담지한, 이른바 겔 타입의 전해질을 이용할 수도 있다. 한편, Na2S-SiS2, Na2S-GeS2, NaTi2(PO4)3, NaFe2(PO4)3, Na2(SO4)3, Fe2(SO4)2(PO4), Fe2(MoO4)3 등의 무기계 고체 전해질을 이용할 수도 있다. 이들 고체 전해질을 이용하여 나트륨 이차 전지의 안전성을 보다 높일 수 있는 경우가 있다. 또한, 고체 전해질이 후술하는 세퍼레이터의 역할을 하는 경우도 있고, 그 경우에는 세퍼레이터를 필요로 하지 않는 경우도 있다.
세퍼레이터
양극과 음극 사이에 세퍼레이터가 배치될 수 있다. 이러한 세퍼레이터는 폴리에틸렌, 폴리프로필렌 등의 폴리올레핀 수지, 불소 수지, 질소 함유 방향족 중합체 등의 재질로 이루어지는 다공질 필름, 부직포, 직포 등의 형태를 가지는 재료일 수 있다. 세퍼레이터의 두께는, 전지의 부피 에너지 밀도가 높아지고, 내부 저항이 작아진다는 점에서, 기계적 강도가 유지되는 한 얇을수록 바람직하다. 세퍼레이터의 두께는, 일반적으로 5 내지 200 ㎛ 정도일 수 있고, 더 구체적으로는 5 내지 40 ㎛일 수 있다.
나트륨 이차 전지의 제조 방법
양극, 세퍼레이터, 및 음극을 순서대로 적층하여 전극군을 형성한 후 필요하다면 전극군을 말아서 전지캔에 수납하고, 전극군에 비수전해액을 함침시킴으로써 나트륨 이차 전지를 제조할 수 있다. 이와는 달리, 양극, 고체 전해질, 및 음극을 적층하여 전극군을 형성한 후 필요하다면 전극군을 말아서 전지캔에 수납하여 나트륨 이차 전지를 제조할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실험예(example)를 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다.
<양극 활물질 제조예 1>
전이금속 산화물 전구체로서 Ni0.6Co0.2Mn0.2(OH)2 파우더와 도펀트 전구체인 TiO2 파우더를 공기 분위기에서 4 내지 12시간 동안 볼밀링(22 ℃, 100 rpm)을 통해 혼합하여, 도펀트 전구체-전이금속 산화물 전구체 복합입자들을 얻었다. 이 후, 상기 도펀트 전구체-전이금속 산화물 전구체 복합입자들을 나트륨염인 NaOH와 볼밀링을 통해 혼합 후, 공기 또는 산소 분위기에서 670℃ 24시간 동안 열처리하여 양극 활물질으로서 Ti가 도핑된 Na(Ni0.6Co0.2Mn0.2)O2 를 얻었다. 이 때, Ni0.6Co0.2Mn0.2(OH)2와 TiO2의 합계 몰수 대비 TiO2는 1 mol%로 사용되었고, NaOH는 Ni0.6Co0.2Mn0.2(OH)2와 TiO2의 합계 몰수와 동일한 몰수로 사용되었다.
<양극 활물질 제조예 2>
Ni0.6Co0.2Mn0.2(OH)2와 TiO2의 합계 몰수 대비 TiO2는 3 mol%로 사용된 것을 제외하고는 양극 활물질 제조예 1과 동일한 방법을 사용하여 양극 활물질을 제조하였다.
<양극 활물질 제조예 3>
Ni0.6Co0.2Mn0.2(OH)2와 TiO2의 합계 몰수 대비 TiO2는 5 mol%로 사용된 것을 제외하고는 양극 활물질 제조예 1과 동일한 방법을 사용하여 양극 활물질을 제조하였다.
<양극 활물질 비교예>
전이금속 산화물 전구체로서 Ni0.6Co0.2Mn0.2(OH)2와 나트륨염으로서 NaOH와 1 대 1의 몰비로 볼밀링을 통해 혼합 후, 공기 분위기에서 670℃ 24시간 동안 열처리하여 양극활물질으로서 Na(Ni0.6Co0.2Mn0.2)O2 를 얻었다.
도 2a 및 도 2b는 각각 양극 활물질 제조예들에서 사용된 TiO2 나노 파우더의 XRD (X-ray Diffraction Spectroscopy) 패턴과 SEM (scanning electron microscope) 이미지를 나타낸다.
도 2a를 참조하면, TiO2 나노 파우더는 결정성 나노입자들을 포함하며, 이 때의 결정상은 루틸상과 아나타제상인 것으로 나타났다.
도 2b를 참조하면, TiO2 나노 파우더의 입자 평균 크기는 15 내지 30nm인 것으로 나타났다.
도 3은 양극 활물질 비교예의 과정 중 얻어진 전이금속 산화물 전구체, 그리고 양극 활물질 제조예들 1 및 2의 과정 중 얻어진 도펀트 전구체-전이금속 산화물 전구체 복합입자들을 촬영한 SEM 이미지들과 ICP (inductively coupled plasma) 이미지들을 나타낸다. 도 4은 양극 활물질 비교예, 그리고 양극 활물질 제조예들 1 내지 3의 과정이 완료된 활물질 입자들을 촬영한 SEM 이미지들과 ICP 이미지들을 나타낸다.
도 3을 참조하면, 양극 활물질 제조예들 1 및 2의 과정 중 얻어진 도펀트 전구체-전이금속 산화물 전구체 복합입자는 길쭉한 형태인 Ni0.6Co0.2Mn0.2(OH)2 1차 입자와 실질적으로 둥근 형태인 TiO2 1차 입자가 모여 이루어진 구형의 2차 입자인 것을 확인할 수 있다. 한편, TiO2 입자를 넣지 않은 양극 활물질 비교예에 따른 전이금속 산화물 전구체 입자는 길쭉한 형태인 Ni0.6Co0.2Mn0.2(OH)2 1차 입자만 확인될 뿐이다. 이 때, Ni0.6Co0.2Mn0.2(OH)2 1차 입자는 그 폭이 약 10 내지 100nm이고 그 길이가 약 1 내지 1.2 um 정도의 크기를 갖고, TiO2 1차 입자는 도 2b에서 나타낸 바와 유사한 약 15 내지 30 nm의 직경을 갖는 것을 알 수 있다. 또한, 도펀트 전구체-전이금속 산화물 전구체 복합입자는 약 10 um 정도의 직경을 갖는 구형 입자인 것을 알 수 있다.
한편, 도 4를 참조하면, 양극 활물질 입자들은 약 10 um 정도의 직경을 갖는 구형 입자들로서, 막대 형태의 1차 입자들이 모여서 이루어진 2차 입자로 확인된다. 이 때, 1차 입자들에서 TiO2 입자는 별도로 분리되어 확인되지 않음을 알 수 있다. 또한, Ti의 도핑량이 증가할수록 2차 입자 내에서 1차 입자들이 보다 조밀하게 배치되는 것을 확인할 수 있다.
도 5a, 도 5b, 및 도 5c는 각각 양극 활물질 비교예, 그리고 양극 활물질 제조예들 1 및 2에 따른 활물질 입자들에 대한 질소 등온 흡착-탈착 그래프들이다. 또한, 하기 표 1은 양극 활물질 비교예, 그리고 양극 활물질 제조예들 1 내지 3에 따른 활물질 입자들의 탭 밀도(tap density), 표면적(surface area), 및 총 기공 부피(total pore volume)를 나타내었다. 여기서, 탭 밀도는 탭 덴시티 미터를 사용하여, 시료를 표준 눈금 cylinder에 채워 일정 속도로 총 3000회의 tapping을 통하여 측정하였다.
양극활물질비교예 1 양극활물질제조예 1(Ti 1 mol%) 양극활물질제조예 2(Ti 3 mol%) 양극활물질제조예 3(Ti 5 mol%)
탭 밀도(g/㎖) 1.45 1.595 1.607 1.628
비표면적(m2g-1) 2.657 1.04 0.762 -
총 기공부피 (cc g-1) 0.008 0.00678 0.00572 -
도 5a, 도 5b, 도 5c, 및 표 1을 참조하면, Ti가 도핑되지 않은 비교예 1에 따른 양극 활물질 대비 Ti가 도핑된 제조예들 1 내지 3에 따른 양극 활물질의 경우, 탭 밀도는 증가하였고 비표면적과 총 기공 부피는 줄어들었으며, 또한, Ti의 도핑량이 증가할수록 탭 밀도는 증가하였고 비표면적과 총 기공 부피는 줄어드는 것을 확인할 수 있다.
도 6a는 양극 활물질 비교예, 그리고 양극 활물질 제조예들 1 내지 3에 따른 활물질 입자들에 대해 압축힘을 가하였을 때 변형정도를 나타낸 그래프이고, 도 6b는 도 6a로부터 계산된 입자강도를 Ti의 도핑농도에 대해 나타낸 그래프이다.
도 6a 및 도 6b를 참조하면, Ti의 도핑농도가 증가할수록 입자강도는 향상되는 것을 알 수 있다.
도 7은 양극 활물질 비교예 및 양극 활물질 제조예들 1 내지 3에 따른 양극 활물질들에 대한 EPMA (electrone probe X-ray microanalyzer) 분석 결과를 나타낸 그래프이다.
도 7을 참조하면, 양극 활물질 비교예 및 양극 활물질 제조예들 1 내지 3에 따른 양극 활물질 입자들은 모두 입자 중심에서 외곽에 이르기까지 거의 균일한 조성을 가지고 있는 것으로 보인다. 또한, 양극 활물질 제조예들 1 내지 3에 따른 양극 활물질 입자들에서 도핑된 Ti 또한 입자 중심에서 외곽에 이르기까지 거의 균일하게 도핑된 것을 확인할 수 있다.
도 8은 양극 활물질 비교예, 그리고 양극 활물질 제조예들 1 내지 3에서 얻어진 양극 활물질들에 대한 XRD 패턴을 나타낸다.
도 8을 참조하면, Ti가 도핑되더라도 활물질의 결정상에는 변화가 거의 없는 것으로 보인다.
반전지 제조예들
양극 활물질 제조예들 1 내지 3 및 양극 활물질 비교예에서 제조된 양극 활물질, 도전재(Super-P, KS-6), 및 결합제(Poly vinylidene fluoride)를 85:10:5의 중량비로 유기 용매(NMP(N-Methyl-2-Pyrrolidone)) 내에서 혼합한 후, 알루미늄 집전체 상에 코팅한 후 프레스하여 양극을 형성하였다.
이 후, 금속 나트륨을 음극으로 사용하였고, 유리 필터를 분리막으로 사용하고, 프로필렌 카보네이트(PC, 98vol.%)와 플루오로에틸렌 카보네이트(FEC, 2vol.%)의 혼합 유기용매 내에 전해질 NaPF6(0.5M)을 함유하는 비수전해액을 사용하여 반전지를 제조하였다.
하기에서 양극 활물질 제조예들 1 내지 3에서 얻어진 양극 활물질을 사용한 반전지는 각각 반전지 제조예들 1 내지 3, 그리고 양극 활물질 비교예에서 얻어진 양극 활물질을 사용한 반전지는 반전지 비교예로 명명하였다.
도 9a는 반전지 제조예들 1 내지 3, 및 반전지 비교예에 따른 반전지들의 첫 번째 사이클에서의 충방전 특성을 나타낸 그래프이고, 도 9b는 반전지 제조예들 1 내지 3, 및 반전지 비교예에 따른 반전지들의 사이클 횟수에 따른 방전용량 변화를 나타낸 그래프이다.
도 9a와 관련하여, 충전은 0.1C로 4.1V까지, 방전은 0.1C로 1.5V까지 행하였다. 도 9b와 관련하여, 사이클 횟수에 따른 방전용량 변화를 측정할 때에는, 충전은 0.5C로 4.1V까지, 방전은 0.5C로 1.5V까지 100 사이클 진행하였다. 또한, 하기 표 2에 0.1C에서의 충방전 용량, 효율, 0.5C에서의 방전 용량, 및 0.5C에서의 사이클 유지율을 나타내었다.
0.1C 충전(mAh/g) 0.1C 방전(mAh/g) 1st 효율(%) 0.5C 방전(mAh/g) 0.5C 사이클 유지율(%)
반전지 비교예 162.5 151.6 93.3 142.0 55.4(78.6 mAh/g @100th cycle)
반전지 제조예 1(NCM 622,Ti 1mol% 도핑) 161.1 151.3 93.9 143.4 68.7(98.5 mAh/g @100th cycle)
반전지 제조예 2(NCM 622,Ti 3mol% 도핑) 151.6 141.8 93.5 138.4 86.8(120.2 mAh/g @100th cycle)
반전지 제조예 3(NCM 622,Ti 5mol% 도핑) 137.3 131.9 96.1 132.5 87.1(115.4 mAh/g @100th cycle)
도 9a, 도 9b, 및 표 2를 참조하면, 반전지 비교예에 따른 반전지 대비 반전지 제조예들 1 내지 3에 따른 반전지들은 0.1C 및 0.5C에서 첫번째 사이클에서의 방전용량은 비교적 낮으나, 0.5C로 약 20 사이클 진행한 이후부터는 방전용량이 더 우수하며 또한 0.5C에서 100 사이클 운전하였을 때의 사이클 유지율이 크게 향상되는 것을 알 수 있다. 이로부터, 도핑되지 않은 양극 활물질을 사용하는 경우 대비, Ti가 1 내지 5 mol% 도핑된 양극 활물질을 사용하는 경우가 전지의 수명특성이 크게 향상되는 것을 알 수 있다.
또한, Ti가 1 mol% 도핑된 양극 활물질을 사용한 반전지 제조예 1에 따른 반전지 대비 Ti가 3 또는 5 mol% 도핑된 양극 활물질을 사용한 반전지 제조예 3 또는 5에 따른 반전지들이 더 우수한 사이클 유지율을 나타내는 것을 알 수 있다.
도 10a는 반전지 제조예들 1 내지 3 및 반전지 비교예에 따른 반전지들의 첫 번째 사이클에서의 충방전 특성을 나타낸 그래프이고, 도 10b는 반전지 제조예들 1 내지 3 및 반전지 비교예에 따른 반전지들의 사이클 횟수에 따른 방전용량 변화를 나타낸 그래프이다.
도 10a와 관련하여, 충전은 0.1C로 4.1V까지, 방전은 0.1C로 1.5V까지 행하였다. 도 10b와 관련하여, 사이클 횟수에 따른 방전용량 변화를 측정할 때에는, 충전은 0.5C로 4.1V까지, 방전은 0.5C로 1.5V까지 100 사이클 진행하였다. 또한, 하기 표 3에 0.1C에서의 충방전 용량, 효율, 0.2C에서의 방전 용량 및 효율, 0.5C에서의 방전 용량 및 효율, 및 0.5C에서의 사이클 유지율을 나타내었다. 도 9a 및 도 9b와 관련한 평가는 최대 충전 전압이 4.1V인 반면 본 평가는 충전 전압이 4.3V인 것에 차이가 있다.
0.1C 충전(mAh/g) 0.1C 방전(mAh/g) 1st 효율(%) 0.5C 방전(mAh/g)(효율) 0.5C 사이클 유지율(%)
반전지 비교예 197.2 158.3 80.3 140.5 70(101.6 mAh/g @50th cycle)
반전지 제조예 1(NCM 622,Ti 1mol% 도핑) 195.0 157.6 80.8 148.7 80(117.6 mAh/g @50th cycle)
반전지 제조예 2(NCM 622,Ti 3mol% 도핑) 194.9 161.1 82.6 154.8 83(129.1 mAh/g @50th cycle)
반전지 제조예 3(NCM 622,Ti 5mol% 도핑) 183.2 154.8 84.4 148.5 85(122.5 mAh/g@ 50th)
도 10a, 도 10b, 도 10c, 및 표 3을 참조하면, 반전지 비교예 및 반전지 제조예들 1 내지 3에 따른 반전지들은 0.1C에서의 첫번째 사이클에서의 방전용량은 비교적 유사하다. 그러나, 반전지 비교예에 따른 반전지 대비 반전지 제조예들 1 내지 3에 따른 반전지들은 0.2C 또는 0.5C에서 첫번째 사이클을 운전한 경우 방전용량이 향상되는 것을 알 수 있다. 이러한 결과를, 전지를 4.1V의 충전전압으로 운전한 경우(도 9a, 도 9b, 도 9c, 및 표 2 참조) 반전지 비교예에 따른 반전지 대비 반전지 제조예들 1 내지 3에 따른 반전지들이 0.5C의 첫번째 사이클에서 운전한 경우 방전용량이 오히려 감소한 것과 비교하면, 도핑되지 않은 양극 활물질을 사용하는 경우 대비 Ti가 1 내지 5 mol% 도핑된 양극 활물질을 사용하는 경우, 전지의 고전압 용량특성이 향상되는 것을 알 수 있다.
또한, 반전지 비교예에 따른 반전지 대비 반전지 제조예들 1 내지 3에 따른 반전지들은 0.5C에서 100 사이클 운전하였을 때의 사이클 유지율이 크게 향상되는 것을 알 수 있다. 이로부터, 도핑되지 않은 양극 활물질을 사용하는 경우 대비, Ti가 1 내지 5 mol% 도핑된 양극 활물질을 사용하는 경우, 전지의 수명특성 또한 크게 향상되는 것을 알 수 있다.
이에 더하여, Ti가 1 mol% 도핑된 양극 활물질을 사용한 반전지 제조예 1에 따른 반전지 대비 Ti가 3 또는 5 mol% 도핑된 양극 활물질을 사용한 반전지 제조예 3 또는 5에 따른 반전지들이 더 우수한 사이클 유지율을 나타내는 것을 알 수 있다.
도 11a는 반전지 제조예들 1 내지 3 및 반전지 비교예에 따른 반전지들의 0.5C-rate 조건에서의 첫 번째 사이클 충반전 특성을 나타낸 그래프이고, 도 11b는 반전지 제조예들 1 내지 3 및 반전지 비교예에 따른 반전지들의 0.5C-rate 조건에서의 100 번째 사이클의 충방전 특성을 나타낸 그래프이다. 둘 모두 충전은 4.3V까지, 방전은 1.5V까지 행하였다. 도 12는 반전지 제조예들 1 내지 2 및 반전지 비교예에 따른 반전지들의 0.5C-rate 조건에서의 첫 번째 사이클, 50 번째 사이클, 그리고 100 번째 사이클에서의 전압에 대한 미분용량을 나타낸 그래프이다. 각 경우 충전은 4.3V까지, 방전은 1.5V까지 행하였다.
도 11a, 도 11b, 및 도 12를 참조하면, 반전지 비교예에 따른 반전지들은 1.5-4.3V, 0.5C 조건에서 사이클을 진행할수록 방전용량의 감소가 나타나는데, 이는 방전과정에서 Ti 도핑되지 않은 양극활물질로의 Na 이온의 충분한 삽입(insertion)이 일어나지 않는 것에 기인하는 것으로 추측할 수 있다.
한편, Ti가 도핑된 양극활물질을 구비하는 반전지 제조예들 1 내지 3에 따른 반전지들은 1.5-4.3V, 0.5C 조건에서 사이클 진행에 따른 방전용량의 감소 정도가 적은 것을 알 수 있는데, 이는 방전과정에서 Ti 도핑된 양극활물질로의 Na 이온의 삽입이 원활히 일어나는 것에 기인하는 것으로 추측할 수 있다.
도 13a은 반전지 제조예들 1 내지 2 및 반전지 비교예에 따른 반전지들의 0.1C-rate 조건에서의 첫 번째 사이클 운전 후의 양극 활물질들에 대한 XRD 그래프이고, 도 13b는 반전지 제조예들 1 내지 2 및 반전지 비교예에 따른 반전지들의 0.5C-rate 조건에서의 첫 번째 사이클을 운전 후의 양극 활물질들에 대한 XRD 그래.프이다. 각 경우 충전은 4.3V까지, 방전은 1.5V까지 행하였다.
도 13a 및 도 13b를 참조하면, Ti가 도핑되지 않은 양극 활물질과 Ti가 도핑된 양극 활물질들 모두는 0.1C에서 첫번째 사이클을 진행한 경우 결정구조의 변화가 거의 없는 것으로 보인다. 그러나, 0.5C에서 첫번째 사이클을 진행한 경우에는, Ti가 도핑되지 않은 양극 활물질은 (101), (006), (102) 피크들이 거의 사라지거나 혹은 날카로운 정도(sharpness)가 낮아져 결정구조가 일부분 붕괴되는 현상을 나타내는 반면, Ti가 도핑된 양극 활물질 특히, Ti가 3 mol% 도핑된 양극 활물질은 이들 피크들을 비롯한 다른 피크들 모두 양호한 날카로움을 나타내어 결정구조의 변화가 적은 것으로 추정할 수 있다.
도 14a는 반전지 비교예에 따른 반전지의 0.5C-rate 조건에서의 100 번째 사이클 운전 후의 양극 활물질에 대한 XRD 그래프이고, 도 14b는 반전지 제조예 2에 따른 반전지의 0.5C-rate 조건에서의 100 번째 사이클 운전 후의 양극 활물질에 대한 XRD 그래프이다. 각 경우 충전은 4.3V까지, 방전은 1.5V까지 행하였다.
도 14a를 참조하면, Ti가 도핑되지 않은 양극 활물질은 100 번째 사이클을 진행한 후, 대부분의 XRD 피크들이 거의 사라지거나, 날카로운 정도(sharpness)가 크게 낮아지거나, 혹은 세기가 낮아지는 등 결정구조가 거의 붕괴되는 현상을 나타내는 것을 알 수 있다.
반면, 도 14b를 참조하면, Ti가 3 mol% 도핑된 양극 활물질은 100 번째 사이클을 진행한 후에도 거의 모든 피크들이 양호한 날카로움을 나타내어 결정구조의 변화가 적은 것으로 추정할 수 있다.
이상, 본 발명을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 사상 및 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러가지 변형 및 변경이 가능하다.

Claims (15)

  1. 하기 화학식 4로 나타낸 나트륨 이차 전지용 양극 활물질:
    [화학식 4]
    Na1+a[(NixCoyMn1-x-y)1-b(TM)b]O2-cAc
    상기 화학식 4에서, -0.2≤a≤0.2, 0.005≤b≤0.1, 0.1≤x≤0.9, 0.1≤y≤0.9, 0.1≤1-x-y≤0.9, TM은 Ti, Zr, Mg, Al, V, W, Mo, Nb, Zn, 또는 Cr이고, A는 N,O,F, 또는 S이고, c는 0 내지 0.1이다.
  2. 청구항 1에서,
    b는 0.009 내지 0.06인 나트륨 이차 전지용 양극 활물질.
  3. 청구항 2에서,
    b는 0.01 내지 0.05인 나트륨 이차 전지용 양극 활물질.
  4. 청구항 3에서,
    b는 0.03 내지 0.05인 나트륨 이차 전지용 양극 활물질.
  5. 청구항 1에서,
    상기 나트륨 이차전지용 양극 활물질은 하기 화학식 5로 나타어지는 나트륨 이차 전지용 양극 활물질:
    [화학식 5]
    Na[(NixCoyMn1-x-y)1-bTib]O2
    상기 화학식 5에서, 0.5≤x≤0.9, 0.05≤y≤0.3, 그리고 b는 0.009 내지 0.06이다.
  6. 청구항 1에서,
    상기 나트륨 이차전지용 양극 활물질은 O3의 층상구조를 갖는 나트륨 이차 전지용 양극 활물질.
  7. 청구항 1에서,
    상기 나트륨 이차전지용 양극 활물질은 1차 입자가 모여 형성된 2차 입자의 형태를 갖고,
    상기 TM은 상기 입자 내에서 균일하게 분포하는 나트륨 이차 전지용 양극 활물질.
  8. 청구항 1에서,
    상기 나트륨 이차전지용 양극 활물질은 1차 입자가 모여 형성된 2차 입자의 형태를 갖고,
    상기 나트륨 이차전지용 양극 활물질 입자들은 1.5 내지 1.7 g/ml의 탭밀도를 나타내는 나트륨 이차 전지용 양극 활물질.
  9. 전이금속 산화물 전구체와 상기 전이금속 산화물 전구체에 포함되지 않은 금속의 산화물인 도펀트 전구체를 볼밀링을 사용하여 혼합하여 도펀트 전구체-전이금속 산화물 전구체 복합체를 얻는 단계; 및
    상기 도펀트 전구체-전이금속 산화물 전구체 복합체와 나트륨 함유 화합물을 볼밀링을 사용하여 혼합한 후, 열처리하여 양극 활물질을 얻는 단계를 포함하는 나트륨 이차 전지용 양극 활물질 제조방법.
  10. 청구항 9에서,
    상기 전이금속 산화물 전구체와 상기 도펀트 전구체는, 상기 전이금속 산화물 전구체 내의 전이금속과 상기 도펀트 전구체 내의 금속의 합계 몰수에 대한 상기 도펀트 전구체의 금속의 몰수의 비가 0.9 내지 6 mol%가 되도록 혼합되는 나트륨 이차 전지용 양극 활물질 제조방법.
  11. 청구항 10에서,
    상기 전이금속 산화물 전구체 내의 전이금속과 상기 도펀트 전구체 내의 금속의 합계 몰수에 대한 상기 도펀트 전구체의 금속의 몰수의 비가 1 내지 5 mol%인 나트륨 이차 전지용 양극 활물질 제조방법.
  12. 청구항 11에서,
    상기 전이금속 산화물 전구체 내의 전이금속과 상기 도펀트 전구체 내의 금속의 합계 몰수에 대한 상기 도펀트 전구체의 금속의 몰수의 비가 3 내지 5 mol%인 나트륨 이차 전지용 양극 활물질 제조방법.
  13. 청구항 9에서,
    상기 전이금속 산화물 전구체는 하기 화학식 1 내지 3 중 어느 하나로 표시되는 나트륨 이차 전지용 양극 활물질 제조방법:
    [화학식 1] NixCoyMn1-x-y(OH)2,
    [화학식 2] NixCoyMn1-x-yC2O4,
    [화학식 3] [NixCoyMn1-x-y]3O4
    상기 화학식 1 내지 3에서 0.1≤x≤0.9, 0.1≤y≤0.9, 그리고 0.1≤1-x-y≤0.9이다.
  14. 청구항 9에서,
    상기 도펀트 전구체는 TiO2 또는 ZrO2인 나트륨 이차 전지용 양극 활물질 제조방법.
  15. 하기 화학식 1로 나타내어지는 양극활물질을 포함하는 양극;
    음극활물질을 함유하는 음극; 및
    상기 양극과 상기 음극 사이에 배치된 전해질을 포함하는 나트륨 이차 전지:
    [화학식 4]
    Na1+a[(NixCoyMn1-x-y)1-b(TM)b]O2-cAc
    상기 화학식 4에서, -0.2≤a≤0.2, 0.005≤b≤0.1, 0.1≤x≤0.9, 0.1≤y≤0.9, 0.1≤1-x-y≤0.9, TM은 Ti, Zr, Mg, Al, V, W, Mo, Nb, Zn, 또는 Cr이고, A는 N,O,F, 또는 S이고, c는 0 내지 0.1이다.
PCT/KR2018/008238 2017-07-21 2018-07-20 금속 도핑된 나트륨 이차전지용 양극 활물질, 이의 제조방법, 및 이를 포함하는 나트륨 이차전지 WO2019017736A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/632,632 US11437617B2 (en) 2017-07-21 2018-07-20 Metal-doped cathode active material for sodium secondary battery, method for manufacturing the same, and sodium secondary battery comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0092973 2017-07-21
KR20170092973 2017-07-21

Publications (3)

Publication Number Publication Date
WO2019017736A2 WO2019017736A2 (ko) 2019-01-24
WO2019017736A3 WO2019017736A3 (ko) 2019-04-11
WO2019017736A9 true WO2019017736A9 (ko) 2019-06-06

Family

ID=65016270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008238 WO2019017736A2 (ko) 2017-07-21 2018-07-20 금속 도핑된 나트륨 이차전지용 양극 활물질, 이의 제조방법, 및 이를 포함하는 나트륨 이차전지

Country Status (3)

Country Link
US (1) US11437617B2 (ko)
KR (1) KR102228659B1 (ko)
WO (1) WO2019017736A2 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102304734B1 (ko) 2019-08-19 2021-09-29 한국과학기술연구원 니켈-코발트-몰리브덴 산화물을 포함하는 이차전지용 음극 활물질, 이를 포함하는 이차전지용 음극, 상기 이차전지용 음극을 포함하는 이차전지 및 이들의 제조방법
KR102327602B1 (ko) 2019-11-19 2021-11-17 한국과학기술연구원 이차전지용 양극 활물질, 이를 포함하는 이차전지용 양극, 상기 이차전지용 양극을 포함하는 이차전지 및 이들의 제조방법
US11837726B2 (en) 2019-11-19 2023-12-05 Korea Institute Of Science And Technology Cathode active material for secondary battery, cathode for secondary battery including the same, secondary battery including the cathode for secondary battery, and manufacturing methods thereof
KR20240065501A (ko) * 2022-10-31 2024-05-14 주식회사 에코프로비엠 소듐 이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 소듐 이차전지
KR20240065526A (ko) * 2022-10-31 2024-05-14 주식회사 에코프로비엠 소듐 이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 소듐 이차전지

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120135315A1 (en) 2009-08-07 2012-05-31 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
KR101232839B1 (ko) 2010-09-14 2013-02-13 한양대학교 산학협력단 리튬 이차 전지용 양극 활물질 전구체, 이를 사용한 리튬 이차 전지용 양극 활물질의 제조 방법, 및 상기 제조된 리튬 이차 전지용 양극 활물질을 포함하는 리튬 이차 전지
CN103456936B (zh) * 2012-05-31 2016-12-14 中国科学院物理研究所 钠离子二次电池及其用的层状钛酸盐活性物质、电极材料、正负极和活性物质的制备方法
GB2503896A (en) 2012-07-10 2014-01-15 Faradion Ltd Nickel doped compound for use as an electrode material in energy storage devices
US20150357638A1 (en) 2013-01-31 2015-12-10 Iucf-Hyu(Industry-University Cooperation Foundation Hanyang University) Cathode active material for lithium secondary battery, method for manufacturing the same, and lithium secondary battery using the same
KR102082516B1 (ko) * 2013-05-31 2020-02-27 한양대학교 산학협력단 나트륨 이차 전지용 양극활물질, 이의 제조 방법 및 이를 포함하는 나트륨 이차 전지
KR102144996B1 (ko) 2013-09-30 2020-08-18 삼성전자주식회사 양극활물질, 및 이를 포함하는 양극 및 나트륨이차전지
CN103606667A (zh) * 2013-11-26 2014-02-26 浙江南都电源动力股份有限公司 一种锂离子电池材料锰系固溶体正极材料的制备方法
KR101689457B1 (ko) * 2014-02-12 2016-12-23 한양대학교 산학협력단 나트륨 이차전지용 양극활물질 및 이의 제조 방법
KR102193367B1 (ko) * 2014-02-13 2020-12-21 에스케이이노베이션 주식회사 비전도성 다공막이 구비된 소듐 이차전지
KR102473531B1 (ko) 2015-09-24 2022-12-05 삼성전자주식회사 복합 전극활물질, 이를 채용한 전극과 리튬전지, 및 복합 전극활물질 제조방법
FR3042915B1 (fr) * 2015-10-21 2017-12-15 Commissariat Energie Atomique Procede de fabrication d'un accumulateur du type sodium-ion

Also Published As

Publication number Publication date
US11437617B2 (en) 2022-09-06
WO2019017736A3 (ko) 2019-04-11
KR102228659B1 (ko) 2021-03-16
KR20190010494A (ko) 2019-01-30
WO2019017736A2 (ko) 2019-01-24
US20210367234A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
WO2019017736A9 (ko) 금속 도핑된 나트륨 이차전지용 양극 활물질, 이의 제조방법, 및 이를 포함하는 나트륨 이차전지
WO2015030402A1 (ko) 리튬 전이금속 복합 입자, 이의 제조방법, 및 이를 포함하는 양극 활물질
WO2015020486A1 (ko) 리튬 이차전지용 양극 재료 및 이를 포함하는 리튬 이차전지
WO2019194510A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2015080450A1 (ko) 고체 전해질층을 포함하는 이차전지
WO2020111404A1 (ko) 프러시안 블루 아날로그를 사용한 리튬-전이금속 산화물 제조 방법, 리튬-전이금속 산화물, 및 리튬 이차 전지
WO2015065046A1 (ko) 양극 활물질의 제조방법, 및 이에 의해 제조된 리튬 이차전지용 양극 활물질
WO2014193124A1 (ko) 다공성 실리콘계 음극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차전지
WO2016108384A1 (ko) 리튬이온 이차전지용 양극 활물질, 그의 제조방법 및 이것을 포함하는 리튬이온 이차전지
WO2018056650A1 (ko) 리튬 리치 안티페로브스카이트 코팅 lco계 리튬 복합체, 이의 제조방법, 이를 포함하는 양극 활물질 및 리튬 이차 전지
WO2019107878A1 (ko) 고체 전해질, 그 제조 방법 및 이를 포함하는 전고체 전지
WO2019078702A2 (ko) 음극 활물질 및 이를 포함하는 전고체 전지용 음극
WO2015060686A1 (ko) 고체 전해질 입자, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2017095074A1 (ko) 티타늄계 복합체를 포함하는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2018016737A1 (ko) 리튬 코발트 산화물을 합성하기 위한 양극 활물질을 포함하는 리튬 이차전지, 이의 제조방법
WO2020004882A1 (en) Lithium ion battery and cathode active material therefor
WO2019083330A2 (ko) 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2019225879A1 (ko) 리튬 이차전지용 음극활물질 및 이의 제조방법
WO2019083332A2 (ko) 실리콘-탄소 복합체 및 이를 포함하는 리튬 이차전지
WO2019235890A1 (ko) 리튬 이차전지용 음극 슬러리, 및 이의 제조방법
WO2023008866A1 (ko) 다층 구조의 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2020159322A1 (ko) 리튬이차전지용 음극 및 이를 포함하는 리튬이차전지
WO2024096295A1 (ko) 양극활물질, 이의 제조방법, 및 상기 양극활물질을 포함하는 리튬이차전지
WO2021125870A1 (ko) 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2019235733A1 (ko) 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835889

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18835889

Country of ref document: EP

Kind code of ref document: A2