WO2019017706A2 - 퓨트레신을 생산하는 미생물 및 이를 이용한 퓨트레신 생산방법 - Google Patents

퓨트레신을 생산하는 미생물 및 이를 이용한 퓨트레신 생산방법 Download PDF

Info

Publication number
WO2019017706A2
WO2019017706A2 PCT/KR2018/008165 KR2018008165W WO2019017706A2 WO 2019017706 A2 WO2019017706 A2 WO 2019017706A2 KR 2018008165 W KR2018008165 W KR 2018008165W WO 2019017706 A2 WO2019017706 A2 WO 2019017706A2
Authority
WO
WIPO (PCT)
Prior art keywords
putrescine
seq
gapn
ncgl2522
microorganism
Prior art date
Application number
PCT/KR2018/008165
Other languages
English (en)
French (fr)
Other versions
WO2019017706A3 (ko
Inventor
이경민
이성근
김선혜
나경수
리홍선
배현정
양영렬
엄혜원
이효형
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to BR112020001174-6A priority Critical patent/BR112020001174A2/pt
Priority to JP2020502140A priority patent/JP6901621B2/ja
Priority to CN201880059726.9A priority patent/CN111655859B/zh
Priority to US16/632,084 priority patent/US10801047B2/en
Priority to EP18836158.8A priority patent/EP3656862A4/en
Publication of WO2019017706A2 publication Critical patent/WO2019017706A2/ko
Publication of WO2019017706A3 publication Critical patent/WO2019017706A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/36Dinucleotides, e.g. nicotineamide-adenine dinucleotide phosphate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01044Phosphogluconate dehydrogenase (decarboxylating) (1.1.1.44)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01049Glucose-6-phosphate dehydrogenase (1.1.1.49)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01013Glyceraldehyde-3-phosphate dehydrogenase (NADP+) (phosphorylating) (1.2.1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y106/00Oxidoreductases acting on NADH or NADPH (1.6)
    • C12Y106/01Oxidoreductases acting on NADH or NADPH (1.6) with NAD+ or NADP+ as acceptor (1.6.1)
    • C12Y106/01001NAD(P)+ transhydrogenase (B-specific) (1.6.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y106/00Oxidoreductases acting on NADH or NADPH (1.6)
    • C12Y106/01Oxidoreductases acting on NADH or NADPH (1.6) with NAD+ or NADP+ as acceptor (1.6.1)
    • C12Y106/01002NAD(P)+ Transhydrogenase (AB-specific) (1.6.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/01001Transketolase (2.2.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01057Diamine N-acetyltransferase (2.3.1.57)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/02Pentosyltransferases (2.4.2)
    • C12Y204/02011Nicotinate phosphoribosyltransferase (2.4.2.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01012Gluconokinase (2.7.1.12)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01023NAD+ kinase (2.7.1.23)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01017Ornithine decarboxylase (4.1.1.17)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y603/00Ligases forming carbon-nitrogen bonds (6.3)
    • C12Y603/04Other carbon-nitrogen ligases (6.3.4)

Definitions

  • the present invention relates to a microorganism producing putrescine and a method for producing putrescine using the microorganism.
  • the coryneform microorganism is a gram-positive microorganism frequently used industrially for producing a substance having various uses such as feed, medicines and foods including L-amino acid and various nucleic acids.
  • diamines and keto-acids have been produced from coryneform microorganisms.
  • NADPPH nicotinamide adenine dinucleotide phosphate
  • the oxidized form of NADP + and the reduced form of NADPH are in vivo electron transfer materials, which are involved in various synthesis processes.
  • the pathway that produces NADPH in the central metabolic pathway is mainly produced by 1) the oxidative pentose phosphate pathway and 2) the NADP-dependent isocitrate dehydrogenase (Icd gene) of the TCA pathway .
  • a variety of alternative routes to supply NADPH in a variety of microorganisms include malate enzyme, glucose dehydrogenase. It has a nonphosphorylation glyceraldehyde-3-phosphate dehydrogenase (Glyceraldehyde-3-phosphate dehydrogenase).
  • putrescine is known as one of raw materials for polyamides. Putrescine is produced mainly by chemical methods using petroleum compounds as raw materials. Recently, the technology for producing putrescine fermentation using microorganism genetic engineering technology and fermentation technology has been studied. For example, there is disclosed a method for producing putrescine at a high concentration by transforming Escherichia coli and a microorganism of the genus Corotte bacteria (Morris et al., J Biol. Chem. 241: 13, 3129-3135, 1996, International Biotechnol. Bioeng. 104: 4, 651-662, 2009; Schneider et al., Appl. Microbiol. Biotechnol. 88: 4, 859- 868, 2010; Schneider et al., Appl. Microbiol. Biotechnol. 91: 17-30, 2011).
  • putrescine production is increased in Corynebacterium sp.
  • Microorganisms through a multi-faceted study of enhancing NADPH for high-concentration putrescine production The present invention has been completed.
  • One object of the present application is to provide a microorganism of the genus Corynebacterium which produces putrescine, wherein the reduced nicotinamide adenine dinucleotide phosphate (NADPH) production capacity is increased compared to the unmodified microorganism.
  • NADPH nicotinamide adenine dinucleotide phosphate
  • Another object of the present application is to provide a method for producing putrescine using the microorganism.
  • the present invention relates to a microorganism producing putrescine and a method for producing putrescine using the microorganism, and has an excellent effect of increasing putrescine production in a microorganism of the genus Corynebacterium.
  • one aspect of the present invention provides a microorganism of the genus Corynebacterium which produces putrescine, which has an increased ability to produce reduced nicotinamide adenine dinucleotide phosphate (NADPH) compared to unmodified microorganisms.
  • NADPH nicotinamide adenine dinucleotide phosphate
  • NADH reduced nicotinamide adenine dinucleotide phosphate
  • NADPH reduced nicotinamide adenine dinucleotide phosphate
  • Oxidants (NAD + and NADP + ) of these coenzymes are known to play an important role in accepting the energy generated in the bio-catabolic reaction in the form of electrons and protons, and participate as electron acceptors in the oxidoreductase reaction.
  • the Corynebacterium sp. Microorganism producing the putrescine may be selected from the group consisting of (1) NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, Transketolase, Glucose-6-phosphate 1-dehydrogenase, 6-phosphogluconate dehydrogenase, NAD (P) trans Wherein the activity of at least one of the group consisting of NAD (P) transhydrogenase, nicotinate phosphoribosyltransferase, and NAD + kinase (NAD + kinase) is enhanced or (2) gluconate a combination of a kinase (Gluconate kinase) and NAD + diphosphonium Zapata dehydratase (NAD + diphosphophatase) one or more of the active from the group consisting of inactivated or, (3) (1) and (2) But is not limited thereto.
  • NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, Transketolase, Glucose-6-phosphate dehydrogenase, 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, NAD (P) transhydrogenase, nicotinate phosphotyrosyl transferase phosphoribosyltransferase), and NAD + kinase (NAD + kinase) may be one or more, two or more, three or more, four or more, five or more, or all enzymes having increased activity.
  • the gluconate kinase Gluconate kinase
  • NAD + diphosphonium Zapata dehydratase NAD + diphosphophatase
  • the combination of (1) and (2) may be a combination of NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, Transketolase, Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, NAD (P) transhydrogenase (NAD) ), Nicotinate phosphoribosyltransferase, and NAD + kinase (NAD + kinase) is one or more, two or more, three or more, four or more, five or more increase the activity of any enzyme and may be a gluconate kinase (gluconate kinase) and NAD + diphosphonium Zapata dehydratase (NAD + diphosphophatase) one from the group consisting of a combination of two or all of which activity is inactivated in.
  • NADP-dependent glyceraldehyde-3-phosphate dehydrogenase in the present application refers to D-glyceraldehyde-3-phosphate (3-phospho-D-glycerate) from NADPH to NADPH 1 molecule.
  • the NADP-dependent glyceralde-3-phosphate dehydrogenase may be a protein comprising the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 7, A protein having an amino acid sequence to be displayed, or a protein consisting of an amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 7.
  • Transketolase in the present application refers to an enzyme that affects the pentose phosphate pathway, and from D-xylulose-5-phosphate and D-ribose- -Phosphoric acid and D-glyceraldehyde-3-phosphate.
  • the transketolase may be a protein comprising the amino acid sequence shown in SEQ ID NO: 10 or SEQ ID NO: 16, but not limited thereto, a protein having the amino acid sequence shown in SEQ ID NO: 10 or SEQ ID NO: Or a protein consisting of the amino acid sequence represented by SEQ ID NO: 16.
  • Glucose-6-phosphate dehydrogenase refers to an enzyme that converts 6-phospho-D-glucono-1,5- The enzyme that synthesizes NADPH 1 molecules is referred to as the conversion.
  • Glucose-6-phosphodihydrogenase is also referred to as G6PD, G6PDH, or the like.
  • the glucose-6-phosphodihydrogenase may be mixed with G6PD or G6PDH.
  • the glucose-6-phosphodihydrogenase may be a protein including the amino acid sequence shown in SEQ ID NO: 20 or SEQ ID NO: 27, but is not limited thereto, and may include the amino acid sequence shown in SEQ ID NO: 20 or SEQ ID NO: Or a protein consisting of the amino acid sequence shown in SEQ ID NO: 20 or SEQ ID NO: 27.
  • 6-phosphogluconate dehydrogenase in the present application refers to an enzyme that converts NADPH 1 molecules while converting D-gluconate 6-phosphate into D-ribulose 5-phosphate Collectively. 6-phosphogluconate dehydrogenase is also referred to as 6PGD or the like. In addition, in the present application, the 6-phosphogluconate dehydrogenase can be mixed with 6PGD.
  • the 6-phosphogluconate dehydrogenase may be a protein comprising the amino acid sequence shown in SEQ ID NO: 32 or SEQ ID NO: 36, but is not limited to the amino acid sequence shown in SEQ ID NO: 32 or SEQ ID NO: Or a protein consisting of the amino acid sequence shown in SEQ ID NO: 32 or SEQ ID NO: 36.
  • NAD (P) transhydrogenase in the present application refers to an enzyme capable of synthesizing NADPH 1 molecule while transferring hydrogen of NADH to NADP + .
  • the NAD (P) transhydrogenase may be a protein comprising the amino acid sequence shown in SEQ ID NO: 39 or SEQ ID NO: 41, but not limited thereto, and the amino acid sequence shown in SEQ ID NO: Protein or a protein consisting of the amino acid sequence shown in SEQ ID NO: 39 or SEQ ID NO: 41.
  • Gluconate kinase refers to an enzyme capable of converting gluconate to 6-phospho-D-gluconate, an intermediate of the pentose phosphorylation pathway, do.
  • the gluconate kinase may be a protein including an amino acid sequence represented by SEQ ID NO: 53, SEQ ID NO: 51 or SEQ ID NO: 59, but is not limited thereto and may include an amino acid sequence represented by SEQ ID NO: 51 or SEQ ID NO: 59 Or a protein consisting of the amino acid sequence shown in SEQ ID NO: 51 or SEQ ID NO: 59.
  • NAD + NAD + is also so be converted to NADP +
  • nicotinate phospholipid transferase is enhanced view of the amount of NADPH precursors .
  • the nicotinate phosphoribosyltransferase may be a protein comprising the amino acid sequence shown in SEQ ID NO: 61, SEQ ID NO: 65 or SEQ ID NO: 69, but is not limited to the protein having SEQ ID NO: A protein having an amino acid sequence, or a protein consisting of an amino acid sequence represented by SEQ ID NO: 65 or SEQ ID NO: 69.
  • NAD + diphosphonium claim Zapata (NAD + diphosphatase) is as enzymes that break from NAD + to nicotinamide ⁇ - D- ribo nucleotide ( ⁇ -nicotinamide D-ribonucleotide) , NAD + di phosphatase is weakened It is possible to increase the amount of NAD which is a precursor of NADPH.
  • the NAD + diphosphospatase may be a protein including an amino acid sequence represented by SEQ ID NO: 73 or SEQ ID NO: 79, but is not limited to a protein having an amino acid sequence represented by SEQ ID NO: 73 or SEQ ID NO: A protein consisting of an amino acid sequence represented by SEQ ID NO: 73 or SEQ ID NO: 79.
  • NAD kinase in this application is an enzyme that synthesizes NADP + from NAD + , and NADP + is a precursor of NADPH.
  • the NAD + kinase may be a protein comprising an amino acid sequence represented by SEQ ID NO: 81 or SEQ ID NO: 85, but not limited thereto, a protein having an amino acid sequence represented by SEQ ID NO: 81 or SEQ ID NO: 85, Or a protein consisting of the amino acid sequence represented by SEQ ID NO: 85.
  • NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, transketolase, glucose-6-phosphodihydrogenase, 6-phosphogluconate dehydrogenase, NAD (P) transhydrogenase , Nicotinate phosphoribosyl transferase, NAD + kinase, gluconate kinase or NAD + diphosphatase can be obtained from known databases such as the National Center for Biotechnology Information NCBI), but are not limited thereto.
  • the enzymes are not limited to the above-mentioned sequence numbers, but also include not only the above-mentioned sequence numbers but also sequences having 80% or more, 85% or more, specifically 90% or more, more specifically 95% or more, Or a protein exhibiting homology or identity.
  • amino acid sequence having homology or identity with the above sequence and having the same or corresponding biological activity as that of the enzyme protein of the sequence listing substantially as described above the amino acid sequence having a deletion, modification, are also included in the scope of the present application.
  • the polynucleotide encoding the NADP-dependent glyceraldephosphoribosyltransferase, NAD + kinase, gluconate kinase or NAD + diphosphatase is the NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, transketolase, 6-phosphoglycate dehydrogenase, NAD (P) transhydrogenase, nicotinate phosphoribosyltransferase, NAD + kinase, gluconate kinase or NAD +
  • NADP-dependent glyceralde-3-phosphate dehydrogenase may be encoded by the polynucleotide sequence of SEQ ID NO: 2 or SEQ ID NO: 8 and the transketolase may be encoded by the nucleotide sequence of SEQ ID NO: 11 or SEQ ID NO: 17
  • Polynucleotide sequence and the glucose-6-phosphodihydrogenase may be encoded by the polynucleotide sequence of SEQ ID NO: 21 or SEQ ID NO: 28, and the 6-phosphogluconate dehydrogenase may be encoded by the polynucleotide sequence of SEQ ID NO: 33 or SEQ ID NO: 37
  • the NAD (P) transhydrogenase may be encoded by the polynucleotide sequence of SEQ ID NO: 40 or SEQ ID NO: 42
  • the nicotinate phosphoribosyltransferase may be encoded by the polynucleotide sequence of SEQ ID NO:
  • polynucleotide can be used in a variety of coding regions within a range that does not change the amino acid sequence of the protein expressed from the coding region, taking into consideration the codon preference in the organism to which the protein is to be expressed owing to codon degeneracy. A deformation can be made.
  • the polynucleotide encoding the enzyme protein may be included without limitation as long as it is a polynucleotide encoding a nucleotide, a nicotinate phosphoribosyl transferase, a NAD + kinase, a gluconate kinase, or a NAD + diphosphatase.
  • a probe that can be prepared from a known gene sequence for example, hydridylation under stringent conditions with a complementary sequence to all or part of the polynucleotide sequence, and the NADP-dependent glyceraldehyde-3- phosphate dihydro 6-phosphoglycate dehydrogenase, NAD (P) transhydrogenase, nicotinate phospholibosyltransferase, NAD + kinase , A gluconate kinase, or a sequence encoding a protein having the activity of an NAD + diphosphatase enzyme protein.
  • Homology or identity refers to the degree of association with two given amino acid sequences or nucleotide sequences and can be expressed as a percentage.
  • Sequence homology or identity of conserved polynucleotides or polypeptides is determined by standard alignment algorithms and default gap penalties established by the program used can be used together.
  • Substantially homologous or identical sequences generally have at least about 50%, 60%, 70%, 80% or 90% of the length of the sequence or the entire length of the sequence under moderate or high stringency conditions can be hybridized under stringent conditions.
  • Polynucleotides containing degenerate codons instead of codons in hybridizing polynucleotides are also contemplated.
  • BLAST Altschul, [S.] : 403 (1990); Guide to Huge Computers, Martin J. Bishop, ed., Academic Press, San Diego, 1994; and CARILLO ETA /. (1988) SIAM J Applied Math 48: 1073)
  • BLAST or ClustalW, of the National Center for Biotechnology Information Database can be used to determine homology, similarity, or identity.
  • the homology, similarity or identity of polynucleotides or polypeptides is described, for example, in Smith and Waterman, Adv. Appl. Math (1981) 2: 482, for example, in Needleman et al. (1970), J Mol Biol. 48: 443, by comparing the sequence information using a GAP computer program.
  • the GAP program defines the total number of symbols in the shorter of the two sequences, divided by the number of similar aligned symbols (ie, nucleotides or amino acids).
  • the default parameters for the GAP program are (1) a linear comparison matrix (containing 1 for identity and 0 for non-identity) and Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp.
  • enhancing activity in the present application means that the activity of the enzyme protein is introduced, or the activity is enhanced as compared to the intrinsic activity or the pre-modification activity of the microorganism.
  • introduction of the activity is meant that the activity of the specific protein, which the microorganism did not originally have, appeared natural or artificial.
  • Unmodified microorganism refers to a microorganism having a specific protein activity originally possessed by a parent strain before transformation, when a specific protein of the microorganism to be compared is a genetic variation caused by natural or anthropogenic factors, It says.
  • Intransic activity refers to the activity of a specific protein originally possessed by a parent strain before transformation when a microorganism is transformed by genetic variation caused by natural or anthropogenic factors. Unmodified in the present application can be used in combination with a form having an intrinsic activity that does not cause genetic mutation.
  • the active enhancement may be enhanced by the introduction or introduction of exogenous NADP-dependent glyceraldehyde-3-phosphate dehydrogenase and / or NAD (P) transhydrogenase, or by intrinsic transketolase, Glucose-6-phosphodihydrogenase, 6-phosphogluconate dehydrogenase, nicotinate phosphoribosyltransferase and / or NAD + kinase.
  • NAD NAD
  • the copy number increase of the 1) polynucleotide can be carried out in a form that is not particularly limited but is operably linked to a vector or inserted into a chromosome in a host cell. Also, in one embodiment of increasing the number of copies, it can be carried out by introducing an exogenous polynucleotide exhibiting the activity of the enzyme or a codon-optimized mutant polynucleotide of the polynucleotide into a host cell.
  • the foreign polynucleotide can be used without limitation in its sequence or sequence as long as it exhibits the same / similar activity as the enzyme. Such introduction can be carried out by appropriately selecting a person skilled in the art by a known transformation method, and the expression of the introduced polynucleotide in the host cell can result in the generation of an enzyme and an increase in its activity.
  • nucleic acid sequence may be deleted, inserted, non-conserved or conservative substitution, or the like to enhance the activity of the expression control sequence. , Or by replacing with a nucleic acid sequence having more potent activity.
  • the expression regulatory sequence may include, but is not limited to, promoters, operator sequences, sequences encoding ribosomal binding sites, sequences regulating the termination of transcription and translation, and the like.
  • a strong heterologous promoter may be connected to the upper part of the polynucleotide expression unit instead of the original promoter.
  • the strong promoter include CJ7 promoter, lysCP1 promoter, EF-Tu promoter, groEL promoter, aceA or aceB promoter.
  • the expression level of the polynucleotide encoding the enzyme can be improved by being operatively linked to the lysCP1 promoter (WO2009 / 096689) or the CJ7 promoter (WO2006 / 065095), which is a promoter derived from the genus Corynebacterium, It does not.
  • modification of the polynucleotide sequence on the chromosome is not particularly limited. However, modification of the nucleotide sequence by deletion, insertion, non-conservative or conservative substitution, or a combination thereof may be used to further enhance the activity of the polynucleotide sequence. , Or by replacing the polynucleotide sequence with an improved polynucleotide sequence so as to have stronger activity.
  • a method for modifying to enhance by the combination of 1) to 3) above comprises: increasing the number of copies of the polynucleotide encoding the enzyme; modifying the expression control sequence to increase its expression; A modification of the sequence and an exogenous polynucleotide representing the activity of the enzyme, or a modification of the codon-optimized mutant polynucleotide thereof.
  • the term " vector" means a DNA construct containing a nucleotide sequence of a polynucleotide encoding the desired protein operably linked to a suitable regulatory sequence so as to be capable of expressing the protein of interest in the appropriate host.
  • the regulatory sequence may include a promoter capable of initiating transcription, any operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosome binding site, and a sequence controlling the termination of transcription and translation.
  • the vector may be transcribed into an appropriate host cell and then cloned or functioned independently of the host genome and integrated into the genome itself.
  • the vector used in the present application is not particularly limited as long as it is replicable in the host cell, and any vector known in the art can be used.
  • Examples of commonly used vectors include plasmids, cosmids, viruses and bacteriophages in their natural or recombinant state.
  • pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A and Charon21A can be used as the phage vector or cosmid vector
  • pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vector and the like can be used but are not limited thereto.
  • the vector usable in the present application is not particularly limited, and known expression vectors can be used.
  • a polynucleotide encoding a target protein can be inserted into a chromosome through a vector for intracellular chromosome insertion.
  • the insertion of the polynucleotide into the chromosome can be accomplished by any method known in the art, for example, homologous recombination, but is not limited thereto. And may further include a selection marker for confirming whether or not the chromosome is inserted.
  • Selection markers are used to select cells that are transfected with a vector, that is, to confirm the insertion of a target nucleic acid molecule, and are provided with selectable phenotypes such as drug resistance, resistance to nutritional requirement, tolerance to cytotoxic agents, May be used. In the environment treated with the selective agent, only the cells expressing the selectable marker survive or express different phenotypes, so that the transformed cells can be selected.
  • transformed means introducing a vector comprising a polynucleotide encoding a target protein into a host cell so that the protein encoded by the polynucleotide can be expressed in the host cell.
  • Transformed polynucleotides may include all of these, whether inserted into the chromosome of the host cell or located outside the chromosome, provided that the polynucleotide can be expressed in the host cell.
  • the polynucleotide includes DNA and RNA encoding a target protein.
  • the polynucleotide may be introduced in any form as far as it is capable of being introduced into a host cell and expressed.
  • the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct containing all the elements necessary for its expression.
  • the expression cassette can typically include a promoter operably linked to the polynucleotide, a transcription termination signal, a ribosome binding site, and a translation termination signal.
  • the expression cassette may be in the form of an expression vector capable of self-replication.
  • the polynucleotide may be introduced into the host cell in its own form and operatively linked to the sequence necessary for expression in the host cell, but is not limited thereto.
  • Such a transformation method includes any method of introducing a nucleic acid into a cell, and may be carried out by selecting a suitable standard technique as known in the art depending on the host cell. For example, electroporation, calcium phosphate (CaPO 4 ) precipitation, calcium chloride (CaCl 2 ) precipitation, microinjection, polyethylene glycol (PEG) method, DEAE-dextran method, A lithium acetate-DMSO method, and the like, but are not limited thereto.
  • operably linked means that the polynucleotide sequence is functionally linked to a promoter sequence that initiates and mediates transcription of a polynucleotide encoding the protein of interest of the present application.
  • Operable linkages can be made using known recombinant techniques in the art, and site-specific DNA cleavage and linkage can be made using, but not limited to, cutting and linking enzymes in the art.
  • inactivated refers to a case where the activity is weakened, the protein is not expressed at all, or the protein is not expressed even if it is expressed, compared to the intrinsic activity or the pre-modification activity of the enzyme protein inherently possessed by the microorganism .
  • the inactivation may be caused by a mutation or the like of the polynucleotide encoding the enzyme, such that the activity of the enzyme itself is attenuated or eliminated compared to the activity of the enzyme originally possessed by the microorganism, and inhibition of the expression or translation of the gene encoding the enzyme Or the like, the degree of the total enzyme activity in the cell is low or eliminated compared to the natural microorganism, the gene is partially or completely deleted, and combinations thereof.
  • This inactivation of the enzyme activity can be achieved by the application of various methods well known in the art.
  • the method include 1) a method of replacing the gene encoding the enzyme on chromosome with a gene mutated to weaken the activity of the enzyme including the case where the activity of the enzyme is eliminated; 2) a method of modifying the expression control sequence of the gene on the chromosome encoding the enzyme; 3) a method of replacing the expression control sequence of the gene encoding the enzyme with a sequence having weak or no activity; 4) a method of deleting all or part of the gene on the chromosome encoding the enzyme; 5) a method of introducing an antisense oligonucleotide (for example, antisense RNA) that binds complementarily to a transcript of a gene on the chromosome and inhibits translation of the mRNA into an enzyme; 6) artificially adding a sequence complementary to the SD sequence to the front of the SD sequence of the gene encoding the enzyme to form a secondary structure to make
  • the method of modifying the gene sequence on the chromosome may be carried out by inducing a mutation of the sequence in a deletion, insertion, non-conservative or conservative substitution, or a combination thereof, of the gene sequence so as to further weaken the activity of the enzyme, Or by replacing the gene sequence with an improved gene sequence or an improved gene sequence so that there is no activity.
  • the method of modifying the expression control sequence may be performed by inducing a mutation in the expression control sequence by deletion, insertion, non-conservative or conservative substitution, or a combination thereof, so as to further weaken the activity of the expression control sequence, To a nucleic acid sequence having an activity.
  • expression control sequences include, but are not limited to, promoters, operator sequences, sequences that encode ribosomal binding sites, and sequences that control the termination of transcription and translation.
  • a method of deleting a part or the whole of a polynucleotide encoding an enzyme can be performed by replacing a polynucleotide encoding an intrinsic target protein in a chromosome with a polynucleotide or marker gene in which a part of the nucleic acid sequence is deleted through a vector for insertion of a chromosome into a bacterium .
  • a method of deleting a part or all of such polynucleotides a method of deleting polynucleotides by homologous recombination can be used, but the present invention is not limited thereto.
  • the polynucleotide may be described as a gene when it is a polynucleotide aggregate capable of functioning.
  • a polynucleotide and a gene can be mixed.
  • part refers to the number of polynucleotides, which varies depending on the kind of the polynucleotide, but may be 1 to 300, more specifically 1 to 100, and more particularly 1 to 50, no.
  • microbes producing putrescine and " microbes having ability to produce putrescine” refer to microorganisms that have putrescine production ability or naturally occurring microspheres Means a microorganism that has putrescine-producing ability through natural type or mutation.
  • the microorganism producing putrescine may be a microorganism which has inherent ability to produce putrescine by inserting a polynucleotide associated with the native microorganism itself or an external putrescine production mechanism or by intensifying or inactivating the intrinsic gene activity . ≪ / RTI >
  • the microorganism producing putrescine in the present application may be " the genus Corynebacterium microorganism ".
  • the microorganism of the genus Corynebacterium is specifically exemplified by Corynebacterium glutamicum, Corynebacterium ammonia genesis, Brevibacterium lactis fermentum lactofermentum ), Brevibacterium ( Brevibacterium or the like flavu m), Corynebacterium thermo amino to Ness (Corynebacterium thermoaminogenes), Corynebacterium epi syeonseu (Corynebacterium efficiens), is not limited thereto. More specifically, the microorganism of the genus Corynebacterium in the present application may be Corynebacterium glutamicum .
  • the microorganism producing the putrescine may be one in which the activity of ornithine decarboxylase (ODC) is further introduced, though not particularly limited thereto.
  • ODC ornithine decarboxylase
  • the ornithine decarboxylase refers to an enzyme that produces putrescine through the decarboxylation of ornithine. Although there is no putrescine biosynthetic pathway in Corynebacterium sp. Microorganisms, putrescine can be synthesized by introducing ornithine decarboxylase (ODC) from the outside.
  • the microorganism producing putrescine is not particularly limited, but additionally, ornithine carbamoyltransfrase (ArgF) involved in the arginine synthesis in ornithine, a protein involved in the release of glutamate (NCgl1221 ) May be inactivated.
  • ArgF ornithine carbamoyltransfrase
  • the microorganism producing putrescine is not particularly limited.
  • acetyl glutamate synthase or acetyl glutamate synthase that converts glutamate to N-acetylglutamate to enhance the biosynthetic pathway from glutamate to ornithine (ArgJ) which converts ornithine to ornithine
  • acetylglutamate kinase (ArgB) which converts acetylglutamate to N-acetylglutamyl phosphate
  • acetylglutamate kinase (ArgB) which converts acetylglutamate phosphate to acetylglutamate semialdehyde
  • ArC acetylglutamate semialdehyde
  • the activity of acetyl ornithine aminotransferase (ArgD) which converts acetyl ornithine aminotransferase
  • the microorganism producing putrescine may be a microorganism belonging to the genus Corynebacterium having putrescine-producing ability, in which the activity of putrescine acetyltransferase is weakened, though not particularly limited thereto.
  • the microorganism that produces putrescine may be, but not limited to, an enhanced activity of putrescine excretion protein.
  • the activation of the putrescine excretion protein may be enhanced by the activity of a protein having the amino acid sequence of SEQ ID NO: 87 in a microorganism belonging to the genus Corynebacterium having putrescine-producing ability, but the present invention is not limited thereto.
  • the activation of the putrescine excretion protein may be inactivated but not limited to the activity of the protein having the amino acid sequence of SEQ ID NO: 88 in the microorganism of the genus Corynebacterium having putrescine-producing ability.
  • the present application is directed to a method for the treatment of NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, transketolase, glucose-6-phosphate dehydrogenase, 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, NAD (P) transhydrogenase, nicotinate phosphate dehydrogenase, Poly view transferase (nicotinate phosphoribosyltransferase), and NAD + kinase (NAD + kinase), one or more active from the group consisting of enhanced or, (2), gluconate kinase (gluconate kinase) and NAD + diphosphonium Zapata claim (NAD + diphosphophatase, or (3) a combination of (1) and (2), wherein the ability to produce NADPH is increased, and wherein Corynebacterium Culturing the microorganism in a medium; And (P) trans
  • NADP-dependent glyceraldehyde-3-phosphate dehydrogenase "transketolase”, "glucose-6-phospho-1-dehydrogenase”, “6-phosphogluconate dehydrogenase”
  • NAD (P) transhydrogenase "Nicotinate phospholibosyltransferase”
  • NAD kinase "Enhancement of activity”
  • Gluconate kinase” NAD + Quot ;, " inactivation of activity ", and " Corynebacterium sp.
  • Microorganism producing putrescine "
  • the step of culturing the microorganism may be performed by a known batch culture method, a continuous culture method, a fed-batch culture method, and the like, though not particularly limited thereto.
  • the culturing conditions are not particularly limited, but may be carried out at a suitable pH (for example, a pH of 5 to 9, specifically, a pH of 5 to 10, and a pH of 5 to 10) using a basic compound such as sodium hydroxide, potassium hydroxide or ammonia or an acidic compound such as phosphoric acid or sulfuric acid.
  • PH 6 to 8, most specifically pH 6.8 oxygen or an oxygen-containing gas mixture can be introduced into the culture to maintain aerobic conditions.
  • the incubation temperature can be maintained at 20 to 45 ⁇ , specifically at 25 to 40 ⁇ , and can be cultured for about 10 to 160 hours, but is not limited thereto.
  • the putrescine produced by the above culture may be secreted into the medium or left in the cells.
  • the culture medium used may be a carbon source such as sugars and carbohydrates such as glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose, oils and fats such as soybean oil, sunflower seeds Alcohols such as glycerol and ethanol, and organic acids such as acetic acid may be used individually or in combination with each other, , But is not limited thereto.
  • a carbon source such as sugars and carbohydrates such as glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose, oils and fats such as soybean oil, sunflower seeds Alcohols such as glycerol and ethanol, and organic acids such as acetic acid may be used individually or in combination with each other, , But is not limited thereto.
  • nitrogen sources include nitrogen-containing organic compounds such as peptone, yeast extract, juice, malt extract, corn steep liquor, soybean meal and urea, or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, Ammonium nitrate), and the like may be used individually or in combination, but the present invention is not limited thereto.
  • the phosphorus source potassium dihydrogenphosphate, dipotassium hydrogenphosphate, and the corresponding sodium-containing salt may be used individually or in combination, but the present invention is not limited thereto.
  • the medium may include essential growth-promoting substances such as other metal salts (e.g., magnesium sulfate or ferrous sulfate), amino acids and vitamins.
  • the method of recovering putrescine produced in the above culturing step of the present application may collect the desired amino acid from the culture solution by a suitable method known in the art according to the culture method. For example, centrifugation, filtration, anion exchange chromatography, crystallization, HPLC and the like can be used, and the desired putrescine can be recovered from the culture medium or microorganism using a suitable method known in the art.
  • the method for recovering the putrescine may further comprise a purification step.
  • NADP-dependent glyceraldehyde-3-phosphate dehydrogenase derived from Lactobacillus delbrueckii subsp .
  • Bulgaricus with NADP-dependent glyceraldehyde-3-phosphate dehydrogenase with high affinity to Corynebacterium Genease was selected. Then, the following experiment was conducted to improve the activity.
  • amino acid sequence SEQ ID NO: 1
  • nucleotide sequence SEQ ID NO: 2
  • the transformation vector pDZTn (WO2009 / 125992) was used for introducing the Ldb1179 gene into the chromosome using the transposon gene region of the genus Corynebacterium, and the promoter was cj7 (WO 2006/65095) .
  • the Ldb1179 gene was amplified from the chromosome of Lactobacillus delbrueckii bulgaricus ATCC 11842 strain using the primers of SEQ ID NOS: 3 and 4, and the gene fragment of about 1.43 kb in the form of the initiation codon TTG changed to ATG (Table 1) .
  • the PCR reaction was repeated 30 times at 95 ° C for 30 seconds of denaturation, 55 ° C for 30 seconds of annealing, and 72 ° C for 1 minute and 30 seconds of elongation.
  • the PCR product was electrophoresed on 0.8% agarose gel and eluted with a band of about 1.4 kb.
  • the CJ7 promoter region was subjected to PCR under the same conditions using the primer pairs of SEQ ID NOS: 5 and 6 to obtain PCR products.
  • the PCR reaction was repeated 30 times for denaturation at 95 ° C for 30 seconds, annealing at 55 ° C for 30 seconds, and extension at 72 ° C for 30 seconds.
  • the pDZTn vector was treated with XhoI and the PCR product obtained above was subjected to fusion cloning. Fusion cloning was performed using an In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDZTn: P (CJ7) - (L).
  • SEQ ID NO: primer The sequence (5'-3 ') 3 gapN (L) -F aaggaacactgatatc aTGACAGAACACTATTTAAACTATGTCAATG 4 gapN (L) -R gccaaaacagcctcgagTTAGTCTTCGATGTTGAAGACAACG 5 CJ7-F ggcccactagtctcgagGCCGGCATAGCCTACCGAT 6 CJ7-R GATATCAGTGTTTCCTTTCGTTGG
  • Streptococcus Mutant (Streptococcus mutans ) ATCC 25175-derived NADP-dependent Glyceryl aldehyde -3- Phosphate Dihydrogenase Coryneform Construction of vectors for introduction into transposon genes in microbial chromosomes
  • the amino acid sequence (SEQ ID NO: 7) of the SMUFR_0590 gene (SEQ ID NO: 7) encoding the gapN derived from the Streptococcus mutant strain ATCC 25175 was obtained from NIH GenBank and the CJ7 promoter in the transposon gene A vector was introduced to introduce the expressed SMUFR_0590
  • the transformation vector pDZTn was used, and the promoter was cj7.
  • the SMUFR_0590 gene derived from Streptococcus mutant ATCC 25175 was amplified with about 1.7 kb of the gene fragment using pECCG117-Pcj7-gapN1 (Korean Patent No. 1182033) as a template and the primers of SEQ ID NOS: 5 and 9 (Table 2). At this time, the PCR reaction was repeated 30 times for denaturation at 95 DEG C for 30 seconds, annealing at 55 DEG C for 30 seconds, and extension at 72 DEG C for 2 minutes.
  • the PCR product was electrophoresed on 0.8% agarose gel and eluted with a band of a desired size.
  • the pDZTn vector was treated with XhoI and the PCR product obtained above was subjected to fusion cloning. Fusion cloning was performed using an In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDZTn: P (CJ7) -gapN (S).
  • SEQ ID NO: primer The sequence (5'-3 ') 5 CJ7-F ggcccactagtctcgagGCCGGCATAGCCTACCGAT 9 gapN (S) -R gccaaaacagcctcgagTTATTTGATATCAAATACGACGGATTTA
  • the plasmid pDZTn: P (CJ7) -gapN (L) prepared in Example 1-1 and the plasmid pDZTn: P (CJ7) -gapN (S) prepared in Example 1-2 were subjected to electroporation using Corynebacterium (Korean Patent Laid-Open Publication No. 2013-0003648), KCCM11240P P (CJ7) -NCgl2522 (Korea Patent Publication No. 2014-0115244) and KCCM11520P (Korean Patent Laid-Open No.
  • a transformant was cultured in a BHIS plate medium containing 25 ⁇ g / ml of kanamycin and X-gal (5-bromo-4-chloro-3-indoline- ⁇ -D- galactoside) infusion 37 g / l, sorbitol 91 g / l, agar 2%) and cultured to form colonies.
  • a strain in which the plasmid pDZTn: P (CJ7) -gapN (L) or pDZTn: P (CJ7) -gapN (S) was introduced was selected by selecting a blue colony among the colonies formed therefrom.
  • the selected strains were cultured in CM medium (glucose 10 g / l, polypeptone 10 g / l, yeast extract 5 g / l, beef extract 5 g / l, sodium chloride (NaCl) 2.5 g / l, urea 2 g / pH 6.8) and shake-cultured at 30 ° C for 8 hours.
  • CM medium glucose 10 g / l, polypeptone 10 g / l, yeast extract 5 g / l, beef extract 5 g / l, sodium chloride (NaCl) 2.5 g / l, urea 2 g / pH 6.8
  • the cells were sequentially diluted with 10-4 to 10-10, and then plated on X-gal-containing solid medium and cultured to form colonies.
  • Corynebacterium glutamicum mutants were designated as KCCM11240P Tn: P (CJ7) -gapN (L), KCCM11240P Tn: P (CJ7) -gapN (S), KCCM11240P P P (CJ7) -gapN (S), KCCM11520P Tn: P (CJ7) -gapN (L), KCCM11520P Tn: P (CJ7) (S).
  • control groups KCCM11240P, KCCM11240PP (CJ7) -NCgl2522, KCCM11520P, DAB12-b, DAB12-bP (CJ7) -NCgl2522, DAB12-b?
  • Each of the cultivated strains was inoculated into 25 ml of the production medium at a level of about one platinum, sampled at 30 ° C at 200 rpm for 50 hours, and sampled at the end of 98 hours. When all strains were cultured, 1 mM arginine was added to the medium.
  • KCCM11240P Tn P (CJ7) -gapN (L), KCCM11240P Tn: P (CJ7) -gapN (S), DAB12-b Tn: P (CJ7) -gapN (L) and DAB12-b Tn: P (CJ7) -gapN (S) showed comparable levels of putrescine production compared to the control group and KTCM11240P P P (CJ7) -gapN (L), KCCM11240P (CJ7) -NCG2522, and DAB12-bNCG2525 based on 8 mutant strains KCCM11240P P (CJ7) -GapN (S), DAB12-bP (CJ7) -GapN (S), KCCM11520P Tn: P ) -NCgl2522 Tn: P (CJ7) -gapN (L), DAB12-bP (C
  • the activity of NADP-dependent glyceraldehyde-3-phosphate dehydrogenase of gapN (L) derived from Bulgaricus and gapN (S) derived from Streptococcus mutant was compared.
  • the NADP-dependent glyceraldehyde-3-phosphate dehydrogenase activity of KCCM 11240P Tn: P (CJ7) -gapN (S) to which gapN (S) derived from Streptococcus mutant was introduced was 100 When viewed, L.delbrueckii subsp. It was confirmed that the activity of NADP-dependent glyceraldehyde-3-phosphate dehydrogenase of KCCM 11240P Tn: P (CJ7) -gapN (L) strain from which BulgarNus -derived gapN (L) was introduced was more than 1.5 times higher. As a result, it was confirmed that the activity of NADP-dependent glyceraldehyde-3-phosphate dehydrogenase was higher, and that the amount of NADPH supplied increased the productivity and yield of putrescine.
  • a vector was prepared to convert the initiation codon TTG of the gene encoding it into ATG.
  • amino acid sequence SEQ ID NO: 10
  • nucleotide sequence SEQ ID NO: 11
  • the transformation vector pDZ was used. Two gene fragments of about 0.5 kb were amplified using the primers of SEQ ID NOs: 12 and 13 and the primers of SEQ ID NOs: 14 and 15 with the chromosome of Corynebacterium glutamicum ATCC 13032 as a template (Table 6). At this time, the PCR reaction was repeated 30 times for denaturation at 95 ° C for 30 seconds, annealing at 55 ° C for 30 seconds, and extension at 72 ° C for 30 seconds. The PCR product was electrophoresed on 0.8% agarose gel and eluted with a band of a desired size.
  • the pDZ vector was treated with XbaI and the PCR products obtained above were subjected to fusion cloning. Fusion cloning was performed using an In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDZ-1'tkt (ATG).
  • SEQ ID NO: primer The sequence (5'-3 ') 12 NCgl1512_5F CCGGGGATCCTCTAGAGTAGACGCTTGATTGGCGGAC 13 NCgl1512_5R TCCTTCCTGGGTTAAACCGGG 14 NCgl1512_ATG_3F gtttaacccaggaaggaaTGACCACCTTGACGCTGTCAC 15 NCgl1512_3R GCAGGTCGACTCTAGAGTCGAATAGGCCACGCTCAC
  • amino acid sequence of a gene having homology with NCgl1512 encoding the transketolase of Corynebacterium glutamicum ATCC 13869 through PCR reaction and sequencing based on the nucleotide sequence of Corynebacterium glutamicum ATCC 13032 ( SEQ ID NO: 16) and a base sequence (SEQ ID NO: 17).
  • DA112-b P CJ7 -NCgl2522 (Korea Patent Publication No. 2014-0115244) and DAB12-b? NCgl2523 (Korean Patent Launch No. 2014-0049766) based on Corynebacterium glutamicum ATCC13869 .
  • the plasmid pDZ-2'tkt (ATG) prepared in Example 2-1-1 was transformed in the same manner as in Example ⁇ 1-4-1> to prepare a strain in which the start codon of NCgl1512 was substituted with ATG .
  • the selected Corynebacterium glutamicum mutant was named DAB12-bP (CJ7) -NCgl2522 tkt (ATG) and DAB12-b ⁇ NCgl2523 tkt (ATG).
  • mutants in which the initiation codon of tkt was substituted with ATG in the putrescine-producing strain derived from Corynebacterium glutamicum ATCC 13032 or 13869 were increased in putrescine productivity compared to the control.
  • NCgl1512 To enhance the activity of NCgl1512 with transketolase activity, a vector was introduced to introduce the CJ7 promoter before the initiation codon of the NCgl1512 gene in the chromosome.
  • the transformation vector pDZ was used. Two gene fragments of about 0.5 kb were amplified using the primers of SEQ ID NOs: 12 and 13 and the primers of SEQ ID NOs: 19 and 15 with the chromosome of Corynebacterium glutamicum ATCC 13032 as a template (Table 8). At this time, the PCR reaction was repeated 30 times for denaturation at 95 ° C for 30 seconds, annealing at 55 ° C for 30 seconds, and extension at 72 ° C for 30 seconds. The PCR product was electrophoresed on 0.8% agarose gel and eluted with a band of a desired size.
  • the CJ7 promoter region was obtained by repeating 30 cycles of denaturation at 95 DEG C for 30 seconds, annealing at 55 DEG C for 30 seconds, and 72 DEG C for 30 seconds using the primer pairs of SEQ ID NOS: 18 and 6.
  • the pDZ vector was treated with XbaI and the PCR products obtained above were subjected to fusion cloning. Fusion cloning was performed using an In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDZ-P (CJ7) -1'tkt (ATG).
  • SEQ ID NO: primer The sequence (5'-3 ') 12 NCgl1512_5F CCGGGGATCCTCTAGAGTAGACGCTTGATTGGCGGAC 13 NCgl1512_5R TCCTTCCTGGGTTAAACCGGG 18 NCgl1512-PC7-F gtttaacccaggaaggaGCCGGCATAGCCTACCGAT 6 PC7-R GATATCAGTGTTTCCTTTCGTTGG 19 NCgl1512-PC7-ATG-F aaggaaacactgatatcaTGACCACCTTGACGCTGTCAC 15 NCgl1512_3R GCAGGTCGACTCTAGAGTCGAATAGGCCACGCTCAC
  • Corynebacterium glutamicum mutant selected from these was named KCCM11240P P (CJ7) -NCgl2522 P (CJ7) -tkt (ATG) and KCCM11520P P (CJ7) -tkt (ATG).
  • the plasmid pDZ-P (CJ7) -2'tkt (ATG) prepared in Example 2-2-1 was transformed in the same manner as in Example ⁇ 1-4-1>, and the CJ7 promoter was introduced in front of the NCgl1512 start codon .
  • the Corynebacterium glutamicum mutant was named DAB12-bP (CJ7) -NCgl2522 P (CJ7) -tkt (ATG) and DAB12-b ⁇ NCgl2523 P (CJ7) -tkt (ATG).
  • the mutant strain in which the promoter of tkt was replaced with the CJ7 promoter was significantly increased in putrescine productivity compared to the control.
  • a vector was introduced to introduce the CJ7 promoter before the initiation codon of the gene encoding the gene in the chromosome.
  • the amino acid sequence (SEQ ID NO: 20) and the nucleotide sequence (SEQ ID NO: 21) of the NCgl1514 gene encoding G6PD derived from Corynebacterium glutamicum ATCC 13032 were obtained from NIH GenBank.
  • the transformation vector pDZ was used. Two gene fragments of about 0.5 kb were amplified using the primers of SEQ ID NOs: 22 and 23 and the primers of SEQ ID NOs: 25 and 26 with the chromosome of Corynebacterium glutamicum ATCC 13032 as a template (Table 10). At this time, the PCR reaction was repeated 30 times for denaturation at 95 ° C for 30 seconds, annealing at 55 ° C for 30 seconds, and extension at 72 ° C for 30 seconds. The PCR product was electrophoresed on 0.8% agarose gel and eluted with a band of a desired size.
  • the CJ7 promoter region was obtained by repeating 30 cycles of denaturation at 95 DEG C for 30 seconds, annealing at 55 DEG C for 30 seconds, and 72 DEG C for 30 seconds using the primer pairs of SEQ ID NOS: 24 and 6, respectively.
  • the pDZ vector was treated with XbaI and the PCR products obtained above were subjected to fusion cloning. Fusion cloning was performed using an In-Fusion® HD cloning kit (Clontech). The resulting plasmid was designated pDZ-P (CJ7) -1'zwf.
  • SEQ ID NO: primer The sequence (5'-3 ') 22 NCgl1514-5F CCGGGGATCCTCTAGACTGAAGGTGCCAACACTCAGC 23 NCgl1514-5R GATGGTAGTGTCACGATCCTTTC 24 PC7-F (1514) gatcgtgacactaccatcGCCGGCATAGCCTACCGAT 6 PC7-R GATATCAGTGTTTCCTTTCGTTGG 25 NCgl1514-3F (C7-GTG) aaggaaacactgatatcGTGAGCACAAACACGACCCCC 26 NCgl1514-3R GCAGGTCGACTCTAGACGGTGGATTCAGCCATGCC
  • amino acid sequence of a gene having homology with NCgl1514 encoding G6PD of Corynebacterium glutamicum ATCC 13869 (SEQ ID NO: 1) through PCR reaction and sequencing based on the nucleotide sequence of Corynebacterium glutamicum ATCC 13032 27) and the nucleotide sequence (SEQ ID NO: 28) were obtained from NIH GenBank.
  • two gene fragments of about 0.5 kb were amplified using the primers of SEQ ID NOS: 22 and 29 and the primers of SEQ ID NOS: 25 and 26 with the chromosome of Corynebacterium glutamicum ATCC 13869 as a template (Table 11).
  • the PCR reaction was repeated 30 times for denaturation at 95 ° C for 30 seconds, annealing at 55 ° C for 30 seconds, and extension at 72 ° C for 30 seconds.
  • the PCR product was electrophoresed on 0.8% agarose gel and eluted with a band of a desired size.
  • the CJ7 promoter region was obtained by repeating 30 cycles of denaturation at 95 DEG C for 30 seconds, annealing at 55 DEG C for 30 seconds, and 72 DEG C for 30 seconds using the primer pairs of SEQ ID NOS: 30 and 6, respectively.
  • the pDZ vector was treated with XbaI and the PCR products obtained above were subjected to fusion cloning. Fusion cloning was performed using an In-Fusion® HD cloning kit (Clontech). The resulting plasmid was designated pDZ-P (CJ7) -2'zwf.
  • SEQ ID NO: primer The sequence (5'-3 ') 22 NCgl1514-5F CCGGGGATCCTCTAGACTGAAGGTGCCAACACTCAGC 29 2 'NCgl1514-5R GATGGTAGCGTCACGATCCTTTC 30 2 'PC7-F (1514) gatcgtgacgctaccatcGCCGGCATAGCCTACCGAT 6 PC7-R GATATCAGTGTTTCCTTTCGTTGG 25 NCgl1514-3F (C7-GTG) aaggaaacactgatatcGTGAGCACAAACACGACCCCC 26 NCgl1514-3R GCAGGTCGACTCTAGACGGTGGATTCAGCCATGCC
  • KCCM11240P P CJ7
  • the plasmid pDZ-P (CJ7) -1'zwf prepared in -1-1 was transformed in the same manner as in Example ⁇ 1-4-1> to prepare a strain into which the CJ7 promoter was introduced before the start codon of NCgl1514.
  • the Corynebacterium glutamicum mutant selected from these was named KCCM11240P P (CJ7) -NCgl2522 P (CJ7) -zwf and KCCM11520P P (CJ7) -zwf.
  • the plasmid pDZ-P (CJ7) -2'zwf prepared in Example 3-1-1 was transformed in the same manner as in Example ⁇ 1-4-1 > and a strain in which the CJ7 promoter was introduced in front of the NCgl1512 start codon Respectively.
  • the selected Corynebacterium glutamicum mutant was named DAB12-bP (CJ7) -NCgl2522 P (CJ7) -zwf and DAB12-b ⁇ NCgl2523 P (CJ7) -zwf.
  • a vector was prepared to introduce the CJ7 promoter in front of the initiation codon of the gene encoding the gene in the chromosome and to substitute the initiation codon GTG with ATG at the same time.
  • the transformation vector pDZ was used. Two gene fragments of about 0.5 kb were amplified using the primers of SEQ ID NOs: 22 and 23 and the primers of SEQ ID NOS: 31 and 26, respectively, using the chromosome of Corynebacterium glutamicum ATCC 13032 as a template (Table 13). At this time, the PCR reaction was repeated 30 times for denaturation at 95 ° C for 30 seconds, annealing at 55 ° C for 30 seconds, and extension at 72 ° C for 30 seconds. The PCR product was electrophoresed on 0.8% agarose gel and eluted with a band of a desired size.
  • the CJ7 promoter region was obtained by repeating 30 cycles of denaturation at 95 DEG C for 30 seconds, annealing at 55 DEG C for 30 seconds, and 72 DEG C for 30 seconds using the primer pairs of SEQ ID NOS: 24 and 6, respectively.
  • the pDZ vector was treated with XbaI and the PCR products obtained above were subjected to fusion cloning. Fusion cloning was performed using an In-Fusion® HD cloning kit (Clontech). The resulting plasmid was designated pDZ-P (CJ7) -1'zwf (ATG).
  • SEQ ID NO: primer The sequence (5'-3 ') 22 NCgl1514-5F CCGGGGATCCTCTAGACTGAAGGTGCCAACACTCAGC 23 NCgl1514-5R GATGGTAGTGTCACGATCCTTTC 24 PC7-F (1514) gatcgtgacactaccatcGCCGGCATAGCCTACCGAT 6 PC7-R GATATCAGTGTTTCCTTTCGTTGG 31 NCgl1514-3F (C7-ATG) aaggaaacactgatatcATGAGCACAAACACGACCCCC 26 NCgl1514-3R GCAGGTCGACTCTAGACGGTGGATTCAGCCATGCC
  • the CJ7 promoter region was obtained by repeating 30 cycles of denaturation at 95 DEG C for 30 seconds, annealing at 55 DEG C for 30 seconds, and 72 DEG C for 30 seconds using the primer pairs of SEQ ID NOS: 30 and 6, respectively.
  • the pDZ vector was treated with XbaI and the PCR products obtained above were subjected to fusion cloning. Fusion cloning was performed using an In-Fusion® HD cloning kit (Clontech). The resulting plasmid was designated pDZ-P (CJ7) -2'zwf (ATG).
  • SEQ ID NO: primer The sequence (5'-3 ') 22 NCgl1514-5F CCGGGGATCCTCTAGACTGAAGGTGCCAACACTCAGC 29 2 'NCgl1514-5R GATGGTAGCGTCACGATCCTTTC 30 2 'PC7-F (1514) gatcgtgacgctaccatcGCCGGCATAGCCTACCGAT 6 PC7-R GATATCAGTGTTTCCTTTCGTTGG 31 NCgl1514-3F (C7-ATG) aaggaaacactgatatcATGAGCACAAACACGACCCCC 26 NCgl1514-3R GCAGGTCGACTCTAGACGGTGGATTCAGCCATGCC
  • Corynebacterium glutamicum mutants were named KCCM11240P P (CJ7) -NCgl2522 P (CJ7) -zwf (ATG) and KCCM11520P P (CJ7) -zwf (ATG).
  • the plasmid pDZ-P (CJ7) -2'zwf (ATG) prepared in Example 3-2-1 was transformed in the same manner as in Example ⁇ 1-4-1>, and the CJ7 promoter was introduced in front of the NCgl1512 start codon .
  • the selected Corynebacterium glutamicum mutant was designated as DAB12-bP (CJ7) -NCgl2522 P (CJ7) -zwf (ATG) and DAB12-b ⁇ NCgl2523 P (CJ7) -zwf (ATG).
  • 6PGD (6-phosphogluconate dehydrogenase)
  • NCgl1396 with 6PGD activity a vector was introduced to introduce NCgl1396 expressed by the CJ7 promoter in the chromosomal transposon gene.
  • the amino acid sequence (SEQ ID NO: 32) and the nucleotide sequence (SEQ ID NO: 33) of NCgl1396 encoding Gnd with 6PGD activity from Corynebacterium glutamicum ATCC 13032 were obtained from NIH GenBank, .
  • a transfection vector pDZTn was used to introduce a gene in a transposon gene in a chromosome using a transposon gene region of a microorganism belonging to the genus Corynebacterium.
  • a gene fragment of about 1.45 kb was amplified using the primers of SEQ ID NOS: 34 and 35 with the chromosome of Corynebacterium glutamicum ATCC 13032 as a template (Table 16).
  • the PCR reaction was repeated 30 times at 95 ° C for 30 seconds of denaturation, 55 ° C for 30 seconds of annealing, and 72 ° C for 1 minute and 30 seconds of elongation.
  • the PCR product was electrophoresed on 0.8% agarose gel and eluted with a band of a desired size.
  • the CJ7 promoter region was obtained by repeating 30 seconds of denaturation at 95 DEG C for 30 seconds, annealing at 55 DEG C for 30 seconds, and 72 DEG C for 30 seconds using the primer pairs of SEQ ID NOS: 5 and 6.
  • the pDZ vector was treated with XbaI and the PCR products obtained above were subjected to fusion cloning. Fusion cloning was performed using an In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDZTn: P (CJ7) -1'gnd.
  • SEQ ID NO: primer The sequence (5'-3 ') 34 NCgl1396-F aaggaacactgatatcATGACTAATGGAGATAATCTCGCAC 35 1 ' NCgl1396-R gccaaaacagcctcgagTTAAGCTTCAACCTCGGAGCG 5 CJ7-F ggcccactagtctcgagGCCGGCATAGCCTACCGAT 6 CJ7-R GATATCAGTGTTTCCTTTCGTTGG
  • nucleotide sequence of Corynebacterium glutamicum ATCC 13032 was subjected to PCR reaction and sequencing to determine the amino acid sequence of a gene having homology with NCgl1396 encoding Gnd of Corynebacterium glutamicum ATCC 13869 (SEQ ID NO: 36) and (SEQ ID NO: 37) were obtained from NIH GenBank.
  • a gene fragment of about 1.45 kb was amplified using the primers of SEQ ID NOS: 34 and 38 with the chromosome of Corynebacterium glutamicum ATCC 13869 as a template (Table 17).
  • the PCR reaction was repeated 30 times for denaturation at 95 ° C for 30 seconds, annealing at 55 ° C for 30 seconds, and extension at 72 ° C for 30 seconds.
  • the PCR product was electrophoresed on 0.8% agarose gel and eluted with a band of a desired size.
  • the CJ7 promoter region was obtained by repeating 30 seconds of denaturation at 95 DEG C for 30 seconds, annealing at 55 DEG C for 30 seconds, and 72 DEG C for 30 seconds using the primer pairs of SEQ ID NOS: 5 and 6.
  • the pDZ vector was treated with XbaI and the PCR products obtained above were subjected to fusion cloning. Fusion cloning was performed using an In-Fusion® HD cloning kit (Clontech). The resulting plasmid was named pDZTn: P (CJ7) -2'gnd.
  • SEQ ID NO: primer The sequence (5'-3 ') 34 NCgl1396-F aaggaacactgatatcATGTCTGGAGGATTAGTTACAGC 38 2'NCgl1396-R gccaaaacagcctcgagTTAAGCTTCCACCTCGGAGC 5 CJ7-F ggcccactagtctcgagGCCGGCATAGCCTACCGAT 6 CJ7-R GATATCAGTGTTTCCTTTCGTTGG
  • KCCM11520P Korean Patent Laid-Open No. 2014-0049766
  • the plasmid pDZTn: P (CJ7) -1'gnd prepared in Example 1 was transformed in the same manner as in Example ⁇ 1-4-1> to confirm that NCgl1396, which is a gene encoding Gnd in transposon, was introduced.
  • the Corynebacterium glutamicum mutant was named KCCM11240P P (CJ7) -NCgl2522 Tn: P (CJ7) -gnd and KCCM11520P Tn: P (CJ7) -gnd.
  • the plasmid pDZTn: P (CJ7) -1'gnd prepared in Example 4-1 was transformed in the same manner as in Example ⁇ 1-4-1> to introduce NCgl1396, which is a gene encoding Gnd in transposon, Respectively.
  • the Corynebacterium glutamicum mutant was named DAB12-bP (CJ7) -NCgl2522 Tn: P (CJ7) -gnd and DAB12-bNCgl2523 Tn: P (CJ7) -gnd.
  • Putrescine-producing strain of Corynebacterium produced NCgl1396 encrypting 6PGD in the embodiments 4-2 and 4-3, in order to confirm the effect on the inside when introduced, putrescine production in trans pojon chromosome Solarium Glutamicum mutants were compared with their ability to produce putrescine.
  • Corynebacterium glutamicum mutants (KCCM11240P P (CJ7) -NCGL2522, KCCM11520P, DAB12-bP (CJ7) -NCgl2522 and DAB12- PNCJ2522 Tn: P (CJ7) -Gnd, DAB12-BNCg2523 Tn: P (CJ7) -Gnd, KCCM11520P Tn: P -gnd were plated on a CM plate medium containing 1 mM arginine each and cultured for 24 hours at 30 ° C. Each strain was inoculated into 25 ml of the production medium in an amount of one platinum and incubated at 30 ° C. at 200 rpm And incubated for 98 hours. When all strains were cultured, 1 mM arginine was added to the medium.
  • E. coli E. coli
  • W3110 derived NAD P
  • Transhydrogenase Coryneform Construction of vectors for introduction into transposon genes in microbial chromosomes
  • amino acid sequence SEQ ID NO: 39
  • nucleotide sequence SEQ ID NO: 40
  • amino acid sequence SEQ ID NO: 41
  • a transfection vector pDZTn was used to introduce a gene in a transposon gene in a chromosome using a transposon gene region of a microorganism belonging to the genus Corynebacterium.
  • E. coli W3110 A DNA fragment of about 2.92 kb was amplified using the primers of SEQ ID NOS: 43 and 44 with the chromosome of the strain as a template (Table 19). At this time, the PCR reaction was repeated 30 times for denaturation at 95 ° C for 30 seconds, annealing at 55 ° C for 30 seconds, and extension at 72 ° C for 3 minutes.
  • the PCR product was electrophoresed on 0.8% agarose gel and eluted with a band of a desired size.
  • the CJ7 promoter region was obtained by repeating 30 seconds of denaturation at 95 DEG C for 30 seconds, annealing at 55 DEG C for 30 seconds, and 72 DEG C for 30 seconds using the primer pairs of SEQ ID NOS: 5 and 6.
  • the pDZTn vector was treated with XhoI and the PCR product obtained above was subjected to fusion cloning. Fusion cloning was performed using an In-Fusion® HD cloning kit (Clontech). The resulting plasmid was designated pDZTn: P (CJ7) -pntAB.
  • SEQ ID NO: primer The sequence (5'-3 ') 43 Y75_p1579-F aaggaaacactgatatcATGCGAATTGGCATACCAAGAGAAC 44 Y75_p1578-R gccaaaacagcctcgagTTACAGAGCTTTCAGGATTGCATCC 5 CJ7-F ggcccactagtctcgagGCCGGCATAGCCTACCGAT 6 CJ7-R GATATCAGTGTTTCCTTTCGTTGG
  • Corynebacterium glutamicum mutant selected from these was named KCCM11240P Tn: P (CJ7) -pntAB, KCCM11240PP (CJ7) -NCgl2522 Tn: P (CJ7) -pntAB.
  • DAB12-b Korean Patent Laid-open No. 10-2013-0003648
  • DAB12-bP DAB12-bP
  • NCgl2522 Korean Patent Laid-Open Patent No. 2014-0115244
  • the plasmid pDZTn: P (CJ7) -pntAB prepared in Example 5-1 was transformed in the same manner as in Example ⁇ 1-4-1> to give Y75_p1579, which is a gene encoding the PntAB in the transposon, Y75_p1578 was introduced.
  • the selected Corynebacterium glutamicum mutant was designated as DAB12-b Tn: P (CJ7) -pntAB, DAB12-bP (CJ7) -NCgl2522 Tn: P (CJ7) -pntAB.
  • mutants in which a putrescine-producing strain derived from Corynebacterium glutamicum ATCC 13032 or 13869 introduced the NADP transhydrogenase pntAB from Escherichia coli showed slight increase in putrescine productivity compared to the control group .
  • Example 6-1 Gluconate Kinase gene NCgl2399 , NCgl2905 Construction of defect vector
  • NCgl2399 and NCgl2905 are the genes NCgl2399 and NCgl2905 with gluconate kinase activity.
  • NCgl2399 and NCgl2905 are the genes having gluconate kinase activity.
  • a vector for the deletion of the NCgl2399 gene was constructed.
  • the amino acid sequence (SEQ ID NO: 45) and the nucleotide sequence (SEQ ID NO: 46) of the NCgl2399 gene of the Corynebacterium glutamicum ATCC 13032 strain were obtained from NIH GenBank.
  • the transformation vector pDZ was used. Two gene fragments of about 0.5 kb were amplified using the primers of SEQ ID NOs: 47 and 48 and the primers of SEQ ID NOs: 49 and 50 with the chromosome of Corynebacterium glutamicum ATCC 13032 as a template (Table 21). At this time, the PCR reaction was repeated 30 times for denaturation at 95 ° C for 30 seconds, annealing at 55 ° C for 30 seconds, and extension at 72 ° C for 30 seconds. The PCR product was electrophoresed on 0.8% agarose gel and eluted with a band of a desired size.
  • the pDZ vector was treated with XbaI and the PCR products obtained above were subjected to fusion cloning. Fusion cloning was performed using an In-Fusion® HD cloning kit (Clontech). The resulting plasmid was designated pDZ-1 ' NCgl2399 (K / O).
  • SEQ ID NO: primer The sequence (5'-3 ') 47 NCgl2399-del-5F CCGGGGATCCTCTAGAgcccacgctttgtatcaatgg 48 NCgl2399-del-5R GAAGTTCGTCGCCGTCTTTG 49 NCgl2399-del-3F GACGGCGACGAACTTCGGCCGCCCAATCTGCAG 50 NCgl2399-del-3R GCAGGTCGACTCTAGAGGGTGGGGTCTGCTTTGG
  • NCgl2905 having gluconate kinase activity was prepared.
  • the amino acid sequence (SEQ ID NO: 53) and the nucleotide sequence (SEQ ID NO: 54) of NCgl2905 gene of Corynebacterium glutamicum ATCC 13032 strain were obtained from NIH GenBank.
  • the transformation vector pDZ was used. Two gene fragments of about 0.5 kb were amplified using the primers of SEQ ID NOs: 55 and 56 and the primers of SEQ ID NOs: 57 and 58 with the chromosome of Corynebacterium glutamicum ATCC 13032 as a template (Table 22). At this time, the PCR reaction was repeated 30 times for denaturation at 95 ° C for 30 seconds, annealing at 55 ° C for 30 seconds, and extension at 72 ° C for 30 seconds. The PCR product was electrophoresed on 0.8% agarose gel and eluted with a band of a desired size.
  • the pDZ vector was treated with XbaI and the PCR products obtained above were subjected to fusion cloning. Fusion cloning was performed using an In-Fusion® HD cloning kit (Clontech). The resulting plasmid was designated pDZ-1 ' NCgl2905 (K / O).
  • SEQ ID NO: primer The sequence (5'-3 ') 55 NCgl2905-del-5F CCGGGGATCCTCTAGActgggtcgtggcataagaa 56 NCgl2905-del-5R GTGCCTTTGATTGGGCAGC 57 NCgl2905-del-3F GCCCAATCAAAGGCACGAATTCCTCGCGATGCTTTCC 58 NCgl2905-del-3R GCAGGTCGACTCTAGACTAGACCAACTTGAGGTAGAGG
  • the putrescine-producing strain Corynebacterium glutamicum KCCM11240P (Korean Patent Laid-Open Publication No. 2013-0003648) based on Corynebacterium glutamicum ATCC 13032 was cultured in the same manner as in Example 6-1-1 except that the plasmid pDZ- 1 > NCgl2399 (K / O) was transformed in the same manner as in Example ⁇ 1-4-1 > to produce NCgl2399 gene-deficient strain.
  • the selected Corynebacterium glutamicum mutant was named KCCM11240P ⁇ NCgl2399.
  • the plasmid pDZ-1 'NCgl2905 (K / O) prepared in Example 6-1-2 and the KCCM11240P ⁇ NCgl2399 prepared in Example 6-2-1 were subjected to the same method as in Example ⁇ 1-4-1> To produce a strain in which both NCgl2399 gene and NCgl2905 were deleted.
  • the selected Corynebacterium glutamicum mutant was designated as KCCM11240P ⁇ NCgl2399 ⁇ NCgl2905.
  • the selected Corynebacterium glutamicum mutant was designated as DAB12-b ⁇ NCgl2399.
  • the plasmid pDZ-2 'NCgl2905 (K / O) prepared in Example 6-1-2 was subjected to KCCM11240P ⁇ NCGL2399 prepared in Example 7-2-3 in the same manner as in Example ⁇ 1-4-1> To produce a strain in which both NCgl2399 gene and NCgl2905 were deleted.
  • the Corynebacterium glutamicum mutant selected therefrom was named DAB12-b ⁇ NCgl2399 ⁇ NCgl2905.
  • Example 6-2-1, 6-2-2, 6-2-3 In order to confirm the effects of the gluconate kinase gene NCgl2399 and NCgl2905 on the putrescine production in the putrescine-producing strain, in the case of Example 6-2-1, 6-2-2, 6-2-3 and The putrescine production ability of the Corynebacterium glutamicum mutants prepared in 6-2-4 was compared in the same manner as in Example 1-4-3.
  • mutans strains lacking the gluconate kinase gene NCgl2399 and NCgl2905 in the putrescine-producing strain derived from Corynebacterium glutamicum ATCC 13032 or 13869 were increased in putrescine productivity compared to the control. It was also found that the putrescine productivity of the NCgl2399 and NCgl2905 deficient strains was higher than that of NCgl2399 alone.
  • Example 7 NADP Dependent Glyceryl aldehyde -3- Phosphate Dihydrogenase Introduction and production of purresin by transketolase enrichment
  • Example 2-1-1 The plasmids prepared in Example 2-1-1 were subjected to the ATCC 13032-based putrescine-producing strain KCCM11240P P (CJ7) -NCgl2522 Tn: P (CJ7) -gapN (S) pDZ-1'tkt (ATG) was transformed in the same manner as in Example ⁇ 1-4-1>.
  • the resulting Corynebacterium glutamicum mutant was named KCCM11240P P (CJ7) -NCgl2522 Tn: P (cj7) -gapN (S) tkt (ATG).
  • Example 1-4-2 the ATTC 13869-based putrescine-producing strain DAB-b P (CJ7) -NCgl2522 P (CJ7) -gapN (S) prepared in Example 1-4-2 was used Plasmid pDZ-2'tkt (ATG) was transformed in the same manner as in Example ⁇ 1-4-1>.
  • the Corynebacterium glutamicum mutant prepared from this was named DAB-b P (CJ7) -NCgl2522 Tn: P (cj7) -gapN (S) tkt (ATG).
  • the putrescine-producing strain KCCM11240P P (CJ7) -NCgl2522 Tn: P (CJ7) -gapN (S) prepared in Example 1-4-1 was tested for the plasmid produced in Example 2-2-1 pDZ-P (CJ7) -1'tkt (ATG) was transformed in the same manner as in Example ⁇ 1-4-1>.
  • the resulting Corynebacterium glutamicum mutant was named KCCM11240P P (CJ7) -NCgl2522 Tn: P (cj7) -gapN (S) P (CJ7) -tkt (ATG).
  • Example 1-4-2 the ATCC 13869-based putrescine-producing strain DAB-b P (CJ7) -NCgl2522 P (CJ7) -gapN (S) prepared in Example 1-4-2 was tested in the same manner as in Example 2-2-1 Plasmid pDZ-P (CJ7) -2'tkt (ATG) was transformed in the same manner as in Example ⁇ 1-4-1>.
  • the resulting Corynebacterium glutamicum mutant was named DAB-b P (CJ7) -NCgl2522 Tn: P (cj7) -gapN (S) P (CJ7) -tkt (ATG).
  • NADP-dependent glyceraldehyde-3-phosphate dehydrogenase gapN was introduced in the putrescine-producing strain derived from Corynebacterium glutamicum ATCC 13032 or 13869 and the initiation codon of tkt was introduced It was confirmed that putrescine productivity was increased more than that of gapN alone when ATG was substituted or gapN was introduced and the tkt promoter was replaced to increase the expression level.
  • Example 8 NADP Dependent Glyceryl aldehyde -3- Phosphate Dihydrogenase Introduction and purine production through enhanced G6PD
  • putrescine-producing strains were confirmed when both NADP-dependent glyceraldehyde-3-phosphate dehydrogenase activity and G6PD activity were enhanced.
  • Example 3-1-1 The plasmids prepared in Example 3-1-1 were subjected to the ATCC 13032-based putrescine-producing strain KCCM11240P P (CJ7) -NCgl2522 Tn: P (CJ7) -gapN (S) pDZ-P (CJ7) -1'zwf was transformed in the same manner as in Example ⁇ 1-4-1> to prepare a strain into which the CJ7 promoter was introduced before the start codon of NCgl1514.
  • the selected Corynebacterium glutamicum mutant was named KCCM11240P P (CJ7) -NCgl2522 Tn: P (CJ7) -gapN (S) P (CJ7) -zwf.
  • Example 1-4-2 the ATTC 13869-based putrescine-producing strain DAB-b P (CJ7) -NCgl2522 P (CJ7) -gapN (S) produced in Example 1-4-2 was used
  • the plasmid pDZ-P (CJ7) -2'zwf was transformed in the same manner as in Example ⁇ 1-4-1> to prepare a strain into which the CJ7 promoter was introduced before the start codon of NCgl1514.
  • the Corynebacterium glutamicum mutant selected from the above was named DAB-b P (CJ7) -NCgl2522 Tn: P (CJ7) -gapN (S) P (CJ7) -zwf.
  • NADP-dependent glyceraldehyde-3-phosphate dehydrogenase gapN was introduced in the putrescine-producing strain derived from Corynebacterium glutamicum ATCC 13032 or 13869 and the start codon of zwf When the CJ7 promoter was introduced, it was confirmed that the putrescine productivity was slightly increased as compared with the gapN-only enhanced strain.
  • Example 9 NADP Dependent Glyceryl aldehyde -3- Phosphate Dihydrogenase Introduction and production of putrescine through reinforcement of nicotinate phospholiposyl transferase
  • NADP-dependent glyceraldehyde-3 was produced in a putrescine-producing strain in order to activate the reaction for synthesizing NADPH from NADP and also to strengthen the ⁇ -nicotinate D-ribonucleotide which is a precursor of NAD and NADP -Phosphate dehydrogenase activity and nicotinate phospholipoxyl transferase activity on enhancing putrescine production were examined. Nicotinate phospholiposyltransferase was applied to genes derived from E. coli and Corynebacterium glutamicum, respectively.
  • nicotinate of E. coli W3110 comes Nate Phospholipids see the acyltransferase (EC.2.4.2.11) Preparation of vector for introduction into transposon gene in coryneform microbial chromosome .
  • Escherichia coli W3110-derived A vector was introduced to introduce Y75_p0903 encoding the pncB having nicotinate phosphoribosyl transferase activity into the transposon gene in the chromosome.
  • the amino acid sequence (SEQ ID NO: 61) and the nucleotide sequence (SEQ ID NO: 62) of the Y75_p0903 gene encoding PncB having the nicotinate phosphoribosyltransferase activity derived from E. coli W3110 were obtained from NIH GenBank, USA .
  • a transformation vector pDZTn was used to introduce a gene in a chromosome using a transposon gene region of a microorganism of the genus Corynebacterium.
  • the Y75_p0903 gene amplified about 1.2 kb of the gene fragment using the primers of SEQ ID NOS: 63 and 64 with the chromosome of E. coli W3110 as a template (Table 26).
  • the PCR reaction was repeated 30 times at 95 ° C for 30 seconds of denaturation, 55 ° C for 30 seconds of annealing, and 72 ° C for 1 minute and 30 seconds of elongation.
  • the PCR product was electrophoresed on 0.8% agarose gel and eluted with a band of a desired size.
  • the CJ7 promoter region was subjected to PCR under the same conditions using the primer pairs of SEQ ID NOS: 5 and 6 to obtain PCR products.
  • the PCR reaction was repeated 30 times for denaturation at 95 ° C for 30 seconds, annealing at 55 ° C for 30 seconds, and extension at 72 ° C for 30 seconds.
  • the pDZTn vector was treated with XhoI and the PCR product obtained above was subjected to fusion cloning. Fusion cloning was performed using an In-Fusion® HD cloning kit (Clontech).
  • the resulting plasmid was named pDZTn: P (CJ7) -pncB (Eco).
  • SEQ ID NO: primer The sequence (5'-3 ') 63 pNCB (Eco) -F aaggaaacactgatatcATGACACAATTCGCTTCTCCTG 64 pncB (Eco) -R gccaaaacagcctcgagTTAACTGGCTTTTTTAATATGCGGAAG 5 CJ7-F ggcccactagtctcgagGCCGGCATAGCCTACCGAT 6 CJ7-R GATATCAGTGTTTCCTTTCGTTGG
  • NCgl2431 coding for PncB having the nicotinate phosphoribosyltransferase activity derived from Corynebacterium glutamicum ATCC 13032 into the chromosome was prepared.
  • the amino acid sequence (SEQ ID NO: 65) and the nucleotide sequence (SEQ ID NO: 66) of the NCgl2431 gene from Corynebacterium glutamicum ATCC 13032 were obtained from NIH GenBank. At this time, NCG2431 was introduced in the ATG form, not the initiation codon GTG.
  • a transformation vector pDZTn was used to introduce a gene in a chromosome using a transposon gene region of a microorganism of the genus Corynebacterium.
  • a gene fragment of about 1.3 kb was amplified using the primers of SEQ ID NOS: 67 and 68 with the chromosome of Corynebacterium glutamicum ATCC 13032 as a template (Table 27).
  • the PCR reaction was repeated 30 times at 95 ° C for 30 seconds of denaturation, 55 ° C for 30 seconds of annealing, and 72 ° C for 1 minute and 30 seconds of elongation.
  • the PCR product was electrophoresed on 0.8% agarose gel and eluted with a band of a desired size.
  • the CJ7 promoter region was obtained by repeating 30 seconds of denaturation at 95 DEG C for 30 seconds, annealing at 55 DEG C for 30 seconds, and 72 DEG C for 30 seconds using the primer pairs of SEQ ID NOS: 5 and 6.
  • the pDZ vector was treated with XbaI and the PCR products obtained above were subjected to fusion cloning. Fusion cloning was performed using an In-Fusion® HD cloning kit (Clontech). The resulting plasmid was designated pDZTn: P (CJ7) -1'pncB.
  • SEQ ID NO: primer The sequence (5'-3 ') 67 1 'NCgl2431-F aaggaaacactgatatcATGAATACCAATCCGTCTGAATTCTCC 68 1'NCgl2431-R gccaaaacagcctcgag CTAAGCGGCCGGCGGGAA 5 CJ7-F ggcccactagtctcgagGCCGGCATAGCCTACCGAT 6 CJ7-R GATATCAGTGTTTCCTTTCGTTGG
  • amino acid sequence (SEQ ID NO: 69) of a gene having homology with NCgl2431 of Corynebacterium glutamicum ATCC 13869 (SEQ ID NO: 69) and the base (SEQ ID NO: 70).
  • a gene fragment of about 1.45 kb was amplified using the primers of SEQ ID NOS: 71 and 72 with the chromosome of Corynebacterium glutamicum ATCC 13869 as a template (Table 28). At this time, the PCR reaction was repeated 30 times for denaturation at 95 ° C for 30 seconds, annealing at 55 ° C for 30 seconds, and extension at 72 ° C for 30 seconds. The PCR product was electrophoresed on 0.8% agarose gel and eluted with a band of a desired size.
  • the CJ7 promoter region was obtained by repeating 30 seconds of denaturation at 95 DEG C for 30 seconds, annealing at 55 DEG C for 30 seconds, and 72 DEG C for 30 seconds using the primer pairs of SEQ ID NOS: 5 and 6.
  • the pDZ vector was treated with XbaI and the PCR products obtained above were subjected to fusion cloning. Fusion cloning was performed using an In-Fusion® HD cloning kit (Clontech). The resulting plasmid was designated pDZTn: P (CJ7) -2'pncB.
  • SEQ ID NO: primer The sequence (5'-3 ') 71 2 'NCgl2431-F aaggaaacactgatatcATGAATACCAATCCTTCTGAATTCTCC 72 2 'NCgl2431-R gccaaaacagcctcgagCTAAGCGACCGGCGGGAATC 5 CJ7-F ggcccactagtctcgagGCCGGCATAGCCTACCGAT 6 CJ7-R GATATCAGTGTTTCCTTTCGTTGG
  • the plasmid pDZTn produced in Example 9-1 was tested for ATCC 13032-based putrescine-producing strain KCCM11240P P (CJ7) -NCgl2522 Tn: P (CJ7) -gapN (S)
  • the plasmid pDZTn: P (CJ7) -1'pncB prepared in Example 9-2 was transformed in the same manner as in ⁇ 1-4-1 > to obtain pncB from Escherichia coli W3110 Encoding Y75_p0903 gene or coding for pncB derived from Corynebacterium glutamicum ATCC 13032 produced a strain into which NCgl2431 gene was introduced into transposon.
  • CJ7 -GapN (S) Tn P (CJ7) -pncB (Eco), KCCM11240P P (CJ7) -NCgl2522 Tn: P (CJ7) -gapN (S) Tn: P (CJ7) -1'NCgl2431.
  • Example 9-1 the plasmid pDZTn (SEQ ID NO: 1) prepared in Example 9-1 was used as the target strain DAB-b P (CJ7) -NCgl2522 P (CJ7) : P (CJ7) -pncB (Eco) and the plasmid pDZTn: P (CJ7) -2'pncB prepared in Example 9-2 were transformed in the same manner as in ⁇ 1-4-1> Encoding the Y75_p0903 gene or the pncB derived from Corynebacterium glutamicum ATCC 13869 was prepared by introducing the NCgl2431 gene into the transposon.
  • CJ7 -gapN (S) Tn P (CJ7) -pncB (Eco), DAB-bP CJ7) -NCgl2522 Tn: P (CJ7) -gapN (S) Tn: P (CJ7) -2'NCgl2431.
  • Encryption of Y75_p0903 gene encoding PncB derived from Escherichia coli W3110 or PncB derived from Corynebacterium glutamicum was carried out in the same manner as in Example 9-1 to confirm the effect on the production of putrescine when the NCgl2431 gene was enhanced The ability of putrescine to produce Corynebacterium glutamicum mutants was compared.
  • Example 10 NADP Dependent Glyceryl aldehyde -3- Phosphate Dihydrogenase Introduction and NAD + Production of putrescine through dephosphatase deficiency
  • NCgl0744 gene having NAD + diphosphatase activity was obtained from NIH GenBank. To attenuate the activity of NAD + diphosphatase, a vector was constructed to delete the NCgl0744 gene.
  • the transformation vector pDZ was used. Two gene fragments of about 0.5 kb were amplified using the primers of SEQ ID NOs: 75 and 76 and the primers of SEQ ID NOs: 77 and 78 with the chromosome of Corynebacterium glutamicum ATCC 13032 as a template (Table 30). At this time, the PCR reaction was repeated 30 times for denaturation at 95 ° C for 30 seconds, annealing at 55 ° C for 30 seconds, and extension at 72 ° C for 30 seconds. The PCR product was electrophoresed on 0.8% agarose gel and eluted with a band of a desired size.
  • the pDZ vector was treated with XbaI and the PCR products obtained above were subjected to fusion cloning. Fusion cloning was performed using an In-Fusion® HD cloning kit (Clontech). The resulting plasmid was designated pDZ-1 ' NCgl0744 (K / O).
  • SEQ ID NO: primer The sequence (5'-3 ') 75 0744-del-5F CCGGGGATCCTCTAGAGCAGATGTGTTGCGTCTAGC 76 0744-del-5R TTGTCATTTACCTCCTCGCTAAATAC 77 0744-del-3F cgaggaggtaaatgacaaGGAAGATGAGTTGCCTCAAGG 78 0744-del-3R GCAGGTCGACTCTAGACAGATTACCCGCCACCTGAG
  • the plasmid pDZ-1 produced in Example 10-1 was tested for ATCC 13032-based putrescine-producing strain KCCM11240P P (CJ7) -NCgl2522 Tn: P (CJ7) -gapN (S) 1 > NCgl0744 (K / O) was transformed in the same manner as in ⁇ 1-4-1 > to prepare NCgl0744 gene-deficient strain.
  • the Corynebacterium glutamicum mutant selected from the above was named KCCM11240PP (CJ7) -NCgl2522 Tn: P (CJ7) -gapN (S)? NCgl0744, KCCM11240P? )? NCgl0744.
  • CJ7 -NCGl2522 P (CJ7) -gapN (S) prepared in Example 1-4-2 was tested for the putrescine-producing strain DAB-b P -2 'NCgl0744 (K / O) was transformed in the same manner as in ⁇ 1-4-1> to prepare a strain in which the NCgl0744 gene was deleted.
  • Example 10-2-1 In order to confirm the effect of the NAD + diphosphatase gene NCgl0744 on the production of putrescine in the putrescine-producing strain, the Corynebacterium glutamicum mutant prepared in Example 10-2-1 The putrescine production ability was compared in the same manner as in Example 1-4-3.
  • NADP-dependent glyceraldehyde-3-phosphate dehydrogenase gapN was introduced in a putrescine-producing strain derived from Corynebacterium glutamicum ATCC 13032 or 13869 and NAD + diphosphatase When NCgl0744 was deleted, the productivity of putrescine was slightly increased.
  • NAD + kinase A vector for introducing NCgl1358 expressed by the CJ7 promoter in the intrachromosomal transposon gene was constructed in order to enhance the activity of NCgl1358 having activity.
  • a transfection vector pDZTn was used to introduce a gene in a transposon gene in a chromosome using a transposon gene region of a microorganism belonging to the genus Corynebacterium.
  • a gene fragment of about 0.96 kb was amplified using the primers of SEQ ID NOS: 83 and 84 with the chromosome of Corynebacterium glutamicum ATCC 13032 as a template (Table 32).
  • the PCR reaction was repeated 30 times for denaturation at 95 ° C for 30 seconds, annealing at 55 ° C for 30 seconds, and extension at 72 ° C for 1 minute.
  • the PCR product was electrophoresed on 0.8% agarose gel and eluted with a band of a desired size.
  • the CJ7 promoter region was obtained by repeating 30 seconds of denaturation at 95 DEG C for 30 seconds, annealing at 55 DEG C for 30 seconds, and 72 DEG C for 30 seconds using the primer pairs of SEQ ID NOS: 5 and 6.
  • the pDZ vector was treated with XbaI and the PCR products obtained above were subjected to fusion cloning. Fusion cloning was performed using an In-Fusion® HD cloning kit (Clontech). The resulting plasmid was designated pDZTn: P (CJ7) -1'ppnk.
  • SEQ ID NO: primer The sequence (5'-3 ') 83 NCgl1358-F aaggaaacactgatatc_atgactgcacccacgaacgc 84 NCgl1358-R gccaaaacagcctcgag TTACCCCGCTGACCTGGG 5 CJ7-F ggcccactagtctcgag GCCGGCATAGCCTACCGAT 6 CJ7-R GATATCAGTGTTTCCTTTCGTTGG
  • amino acid sequence of a gene having homology with NCK1358 encoding ppnK of Corynebacterium glutamicum ATCC 13869 through a PCR reaction and sequencing based on the nucleotide sequence of Corynebacterium glutamicum ATCC 13032 (SEQ ID NO: 85 ) And a base sequence (SEQ ID NO: 86).
  • pDZTn P (CJ7) -2'ppnk.
  • the plasmid pDZTn produced in Example 11-1 was tested on the ATCC 13032-based putrescine-producing strain KCCM11240P P (CJ7) -NCgl2522 Tn: P (CJ7) -gapN (S) P (CJ7) -1'ppnk was transformed in the same manner as in ⁇ 1-4-1 > to prepare a strain into which NCgl1358 gene was introduced into transposon.
  • the Corynebacterium glutamicum mutant selected from this was named KCCM11240P P (CJ7) -NCgl2522 Tn: P (CJ7) -gapN (S) Tn: P (CJ7) -1'ppnk.
  • the ATCC 13869-based putrescine-producing strain DAB-b P (CJ7) -NCgl2522 P (CJ7) -gapN (S) prepared in Example 1-4-2 was subjected to plasmid pDZTn : P (CJ7) -2'ppnk was transformed in the same manner as in ⁇ 1-4-1 > to prepare a strain into which NCgl1358 gene was introduced into transposon.
  • the Corynebacterium glutamicum mutant selected from the above was named DAB-b P (CJ7) -NCgl2522 Tn: P (CJ7) -gapN (S) Tn: P (CJ7) -2'ppnK.
  • NADP-dependent glyceraldehyde-3-phosphate dehydrogenase gapN was introduced in putrescine-producing strains derived from Corynebacterium glutamicum ATCC 13032 or 13869 and Corynebacterium glue Encryption of NAD + kinase, ppnK, derived from Tamikum, showed a slight increase in putrescine productivity when NCgl1358 was enhanced.
  • the present application discloses that Corynebacterium, which enhances NADP-dependent glyceraldehyde-3-phosphate dehydrogenase activity by introducing Ldb1179 in a transposon in a Corynebacterium sp.
  • CJ7 Korean Center for Microorganism Conservation

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 출원은 퓨트레신을 생산하는 코리네박테리움 속 (genus Corynebacterium) 미생물 및 이를 이용한 퓨트레신의 생산방법에 관한 것이다.

Description

퓨트레신을 생산하는 미생물 및 이를 이용한 퓨트레신 생산방법
본 발명은 퓨트레신을 생산하는 미생물 및 당해 미생물을 이용한 퓨트레신의 생산방법에 관한 것이다.
코리네형 미생물은 L- 아미노산 및 각종 핵산을 포함한 사료, 의약품 및 식품 등의 다양한 용도를 갖는 물질을 산업적으로 생산하는데에 자주 이용되는 그람양성 미생물이다. 근래에는 디아민(diamine), 케토산(keto-acid) 등을 코리네형 미생물로부터 생산하기도 한다.
미생물 발효를 통하여 유용 산물을 생산하기 위하여, 미생물내 목적산물의 생합성 경로 강화와 함께 에너지원 또는 환원력에 대한 요구가 증가한다. 이 중, 환원력을 공급하는데 있어 NADPH (nicotinamide adenine dinucleotide phosphate)는 필수요소이다. 산화형인 NADP+와 환원형인 NADPH는 서로 생체내 전자 전달 물질로, 여러 합성과정에 관여한다. 중앙대사 경로중 NADPH를 생산하는 경로에는 1) 산화적 오탄당 인산경로(oxidative pentose phosphate pathway)와 2) TCA경로의 NADP 의존성 이소시트르산 탈수소효소(NADP-dependent isocitrate dehydrogenase; Icd 유전자)에 의해 주로 생산되는 것으로 알려져 있다. 이외 여러 미생물에서 NADPH를 공급하기 위한 다양한 대안경로로써 말레익 효소 (malate enzyme), 글루코즈 디하이드로게나제 (glucose dehydrogenase). 비인산화 글리세르알데하이드-3-포스페이트 디하이드로게나제 (nonphosphorylation glyceraldehyde-3-phosphate dehydrogenase)를 가지고 있다.
또한 중앙대사경로와 무관하게 NADPH를 생산하는 효소로는 트렌스수소화효소 (transhydrogenase), 페레독신 NADP+ 산화환원효소 (Ferredoxin:NADP+ oxidoredutase) 등이 있다.
한편, 퓨트레신은 폴리아미드의 원료 물질 중 하나로 알려져 있다. 퓨트레신은 주로 석유화합물을 원료물질로 하는 화학적 방법으로 생산되며, 근래 들어 미생물의 유전자 조작 기술 및 발효 기술을 이용한 퓨트레신 발효 생산 기술이 연구되고 있다. 예를 들어, 대장균과 코리테박테리움속 미생물을 형질전환하여 퓨트레신을 고농도로 생산하는 방법이 공개되어 있다(Morris et al., J Biol. Chem. 241: 13, 3129-3135, 1996, 국제특허공개 WO06/005603; 국제특허공개 WO09/125924; Qian ZD et al., Biotechnol. Bioeng. 104: 4, 651-662, 2009; Schneider et al., Appl. Microbiol. Biotechnol. 88: 4, 859-868, 2010; Schneider et al., Appl. Microbiol. Biotechnol. 91: 17-30, 2011).
그러나, 환원력과 퓨트레신 생산능과의 관계에 대하여는 아직까지 보고된 바 없다.
본 발명자들은 퓨트레신 생산 미생물에서 퓨트레신의 생산을 증가시키기 위해 예의 노력한 결과, 고농도 퓨트레신 생산을 위한 NADPH 강화하는 다방면의 연구를 통하여 코리네박테리움 속 미생물에서 퓨트레신 생산이 증가됨을 확인함으로써 본 발명을 완성하였다.
본 출원의 하나의 목적은 NADPH (reduced nicotinamide adenine dinucleotide phosphate) 생산능이 비변형 미생물에 비해 증가된, 퓨트레신을 생산하는 코리네박테리움 속 미생물을 제공하는 것이다.
본 출원의 다른 목적은 상기 미생물을 이용하여 퓨트레신을 생산하는 방법을 제공하는 것이다.
본 발명은 퓨트레신을 생산하는 미생물 및 당해 미생물을 이용한 퓨트레신의 생산방법에 관한 것으로, 코리네박테리움 속 미생물에서 퓨트레신 생산이 증가되는 우수한 효과를 갖는다.
이를 구체적으로 설명하면 다음과 같다. 한편, 본 출원에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 볼 수 없다.
상기 목적을 달성하기 위한 본 출원의 하나의 양태는, NADPH (reduced nicotinamide adenine dinucleotide phosphate) 생산능이 비변형 미생물에 비해 증가된, 퓨트레신을 생산하는 코리네박테리움 속 미생물을 제공한다.
본 출원에서 용어, "NADPH (reduced nicotinamide adenine dinucleotide phosphate)"는 니코틴 아마이드 아데닌 디뉴클레오티드 구조를 공유하는 NADH와 함께 많은 산화환원효소(oxidoreductase와 dehydrogenase)의 반응에 전자 공여체로 참여해 환원력을 제공하는 조효소의 일종이다. 이들 조효소의 산화물(NAD+와 NADP+)은 생체 이화반응에서 생성되는 에너지를 전자와 프로톤 형태로 수용하는 중요한 기능을 담당하며, 산화환원효소 반응에 전자 수용체로 참여하는 것으로 알려져 있다.
구체적으로 상기 퓨트레신을 생산하는 코리네박테리움 속 미생물은 NADPH 생산능을 증가시키기 위해서 (1) NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제(NADP dependent glyceraldehyde-3-phosphate dehydrogenase), 트랜스케톨라제(Transketolase), 글루코스-6-포스포 디하이드로게네이즈 (Glucose-6- phosphate 1- dehydrogenase), 6-포스포글루코네이트 디하이드로게나제 (6-phosphogluconate dehydrogenase), NAD(P) 트랜스하이드로게나제 (NAD(P) transhydrogenase), 니코티네이트 포스포리보실트랜스퍼라제 (nicotinate phosphoribosyltransferase), 및 NAD+ 키나제 (NAD+ kinase)로 구성되는 그룹 중에서 하나 이상의 활성이 강화되거나, (2) 글루코네이트 키나제 (Gluconate kinase) 및 NAD+ 디포스포파타아제 (NAD+ diphosphophatase)로 구성되는 그룹 중에서 하나 이상의 활성이 불활성화되거나, (3) (1) 및 (2)의 조합으로 구성될 수 있으나, 이에 제한되지 않는다.
또한, 상기 (1) NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제(NADP dependent glyceraldehyde-3-phosphate dehydrogenase), 트랜스케톨라제(Transketolase), 글루코스-6-포스포 디하이드로게네이즈 (Glucose-6- phosphate dehydrogenase), 6-포스포글루코네이트 디하이드로게나제 (6-phosphogluconate dehydrogenase), NAD(P) 트랜스하이드로게나제 (NAD(P) transhydrogenase), 니코티네이트 포스포리보실트랜스퍼라제 (nicotinate phosphoribosyltransferase), 및 NAD+ 키나제 (NAD+ kinase)로 구성되는 그룹 중에서 하나 이상의 활성의 강화는 1이상, 2이상, 3이상, 4이상, 5이상 또는 모든 효소의 활성이 증가되는 것일 수 있다.
또한, 상기 (2) 글루코네이트 키나제 (Gluconate kinase) 및 NAD+ 디포스포파타아제 (NAD+ diphosphophatase)로 구성되는 그룹 중에서 하나 또는 2 모두의 활성이 불활성화되는 것일 수 있다.
또한, 상기 (3)에서, (1) 및 (2)의 조합은 NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제(NADP dependent glyceraldehyde-3-phosphate dehydrogenase), 트랜스케톨라제(Transketolase), 글루코스-6-포스포 디하이드로게네이즈 (Glucose-6- phosphate dehydrogenase), 6-포스포글루코네이트 디하이드로게나제 (6-phosphogluconate dehydrogenase), NAD(P) 트랜스하이드로게나제 (NAD(P) transhydrogenase), 니코티네이트 포스포리보실트랜스퍼라제 (nicotinate phosphoribosyltransferase), 및 NAD+ 키나제 (NAD+ kinase)로 구성되는 그룹 중에서 하나 이상의 활성의 강화는 1이상, 2이상, 3이상, 4이상, 5이상 또는 모든 효소의 활성이 증가되고 글루코네이트 키나제 (Gluconate kinase) 및 NAD+ 디포스포파타아제 (NAD+ diphosphophatase)로 구성되는 그룹 중에서 하나 또는 2 모두의 활성이 불활성화되는 조합일 수 있다.
본 출원에서 용어, "NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제 (NADP dependent glyceraldehyde-3-phosphate dehydrogenase)"는 D- 글리세르알데드-3-포스페이트 (D-glyceraldehyde-3-phosphate)로부터 3-포스포-D-글리세레이트 (3-phospho-D-glycerate)로 전환하면서 NADPH 1분자를 합성하는 효소를 통칭한다.
구체적으로 상기 NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제는 서열번호 1 또는 서열번호 7로 표시되는 아미노산 서열을 포함하는 단백질일 수 있으나 이에 제한되지 않으며, 서열번호 1 또는 서열번호 7로 표시되는 아미노산 서열을 가지는 단백질, 혹은 서열번호 1 또는 서열번호 7로 표시되는 아미노산 서열로 구성되는 단백질이라는 표현과 혼용되어 사용될 수 있다.
본 출원에서 용어, "트랜스케톨라제(Transketolase)"는 오탄당 인산 경로에 영향을 미치는 효소로서 D-크실룰로오스-5-인산과 D-리보오스-5-인산으로부터 D-세도헵툴로오스-7-인산과 D-글리세르알데히드-3-인산을 생성한다.
구체적으로 상기 트랜스케톨레이즈는 서열번호 10 또는 서열번호 16으로 표시되는 아미노산 서열을 포함하는 단백질일 수 있으나 이에 제한되지 않으며, 서열번호 10 또는 서열번호 16로 표시되는 아미노산 서열을 가지는 단백질 혹은 서열번호 10 또는 서열번호 16로 표시되는 아미노산 서열로 구성되는 단백질이라는 표현과 혼용되어 사용될 수 있다.
본 출원에서 용어, "글루코스-6-포스포 디하이드로게나제 (Glucose-6- phosphate dehydrogenase)"는 β-D-글루코스 6-포스페이트로부터 6-포스포 D-글루코노-1,5-락톤으로 전환하면서 NADPH 1분자를 합성하는 효소를 통칭한다. 글루코스-6-포스포 디하이드로게나제는 다른 이름으로 G6PD, G6PDH 등으로 불리워지고 있다. 또한, 본 출원에서는 상기 글루코스-6-포스포 디하이드로게나제는 G6PD 또는 G6PDH와 혼용될 수 있다.
구체적으로 상기 글루코스-6-포스포 디하이드로게나제는 서열번호 20 또는 서열번호 27로 표시되는 아미노산 서열을 포함하는 단백질일 수 있으나 이에 제한되지 않으며, 서열번호 20 또는 서열번호 27로 표시되는 아미노산 서열을 가지는 단백질 혹은 서열번호 20 또는 서열번호 27로 표시되는 아미노산 서열로 구성되는 단백질이라는 표현과 혼용되어 사용될 수 있다.
본 출원에서 용어, "6-포스포글루코네이트 디하이드로게나제 (6-phosphogluconate dehydrogenase)"는 D-글루코네이트 6-포스페이트로부터 D-리불로스 5-포스페이트로 전환하면서 NADPH 1분자를 합성하는 효소를 통칭한다. 6-포스포글루코네이트 디하이드로게나제는 다른 이름으로 6PGD 등으로 불리워지고 있다. 또한, 본 출원에서는 상기 6-포스포글루코네이트 디하이드로게나제는 6PGD와 혼용될 수 있다.
구체적으로 상기 6-포스포글루코네이트 디하이드로게나제는 서열번호 32 또는 서열번호 36로 표시되는 아미노산 서열을 포함하는 단백질일 수 있으나 이에 제한되지 않으며, 서열번호 32 또는 서열번호 36으로 표시되는 아미노산 서열을 가지는 단백질 혹은 서열번호 32 또는 서열번호 36으로 표시되는 아미노산 서열로 구성되는 단백질이라는 표현과 혼용되어 사용될 수 있다.
본 출원에서 용어, "NAD(P) 트랜스하이드로게나제 (NAD(P) transhydrogenase)"는 NADH의 수소를 NADP+로 전달하면서 NADPH 1분자를 합성할 수 있는 효소를 통칭한다.
구체적으로 상기 NAD(P) 트랜스하이드로게나제는 서열번호 39 또는 서열번호 41로 표시되는 아미노산 서열을 포함하는 단백질일 수 있으나 이에 제한되지 않으며, 서열번호 39 또는 서열번호 41로 표시되는 아미노산 서열을 가지는 단백질 혹은 서열번호 39 또는 서열번호 41로 표시되는 아미노산 서열로 구성되는 단백질이라는 표현과 혼용되어 사용될 수 있다.
본 출원에서 용어, "글루코네이트 키나제 (Gluconate kinase)"는 오탄당 인산화 경로의 중간체인 6-포스포-D-글루코네이트 (6-phospho-D-gluconate)로부터 글루코네이트로 전환할 수 있는 효소를 통칭한다.
구체적으로 상기 글루코네이트 키나제는 서열번호 45 서열번호 53, 서열번호 51 또는 서열번호 59로 표시되는 아미노산 서열을 포함하는 단백질일 수 있으나 이에 제한되지 않으며, 서열번호 51 또는 서열번호 59로 표시되는 아미노산 서열을 가지는 단백질 혹은 서열번호 51 또는 서열번호 59로 표시되는 아미노산 서열로 구성되는 단백질이라는 표현과 혼용되어 사용될 수 있다.
본 출원에서 용어, "니코티네이트 포스포리보실트랜스퍼라제 (nicotinate phosphoribosyltransferase)"는 니코티네이트로부터 β-니코티네이트 D-리보뉴클레오티드((β-nicotinate D-ribonucleotide)를 합성하는 효소를 통칭한다. 상기 β-니코티네이트 D-리보뉴클레오티드는 Deamino-NAD+를 거쳐 NAD+로 전환되고, 또한 NAD+는 NADP+로 전환될수 있으므로, 니코티네이트 포스포리보실트랜스퍼라제강화는 NADPH의 전구체들의 양을 증가시킬 수 있다.
구체적으로 상기 니코티네이트 포스포리보실트랜스퍼라제는 서열번호 61, 서열번호 65 또는 서열번호 69로 표시되는 아미노산 서열을 포함하는 단백질일 수 있으나 이에 제한되지 않으며, 서열번호 65 또는 서열번호 69로 표시되는 아미노산 서열을 가지는 단백질 혹은 서열번호 65 또는 서열번호 69로 표시되는 아미노산 서열로 구성되는 단백질이라는 표현과 혼용되어 사용될 수 있다.
본 출원에서 용어, "NAD+ 디포스포파타제 (NAD+ diphosphatase)"는 NAD+로부터 β-니코틴아마이드 D-리보뉴클레오티드 (β-nicotinamide D-ribonucleotide)로 분해하는 효소로써, NAD+ 디포스파타제 약화는 NADPH의 전구체인 NAD 양을 증가시킬 수 있다.
구체적으로 상기 NAD+ 디포스포파타제는 서열번호 73 또는 서열번호 79 로 표시되는 아미노산 서열을 포함하는 단백질일 수 있으나 이에 제한되지 않으며, 서열번호 73 또는 서열번호 79로 표시되는 아미노산 서열을 가지는 단백질 혹은 서열번호 73 또는 서열번호 79로 표시되는 아미노산 서열로 구성되는 단백질이라는 표현과 혼용되어 사용될 수 있다.
본 출원에서 용어, "NAD+ 키나제 (NAD kinase)"는 NAD+로부터 NADP+를 합성하는 효소로써, NADP+는 NADPH의 전구체이다.
구체적으로 상기 NAD+ 키나제는 서열번호 81 또는 서열번호 85로 표시되는 아미노산 서열을 포함하는 단백질일 수 있으나 이에 제한되지 않으며, 서열번호 81 또는 서열번호 85로 표시되는 아미노산 서열을 가지는 단백질 혹은 서열번호 81 또는 서열번호 85로 표시되는 아미노산 서열로 구성되는 단백질이라는 표현과 혼용되어 사용될 수 있다.
상기 NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제, 트랜스케톨라제, 글루코스-6-포스포 디하이드로게나제, 6-포스포글루코네이트 디하이드로게나제, NAD(P) 트랜스하이드로게나제, 니코티네이트 포스포리보실트랜스퍼라제, NAD+ 키나제, 글루코네이트 키나제 또는 NAD+ 디포스파타제의 유전적 정보는 공지의 데이터 베이스에서 얻을 수 있으며, 그 예로 미국 국립생물정보센터 (National Center for Biotechnology Information; NCBI)의 GenBank 등이 있으나, 이에 제한되지 않는다.
상기 NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제, 트랜스케톨라제, 글루코스-6-포스포 디하이드로게나제, 6-포스포글루코네이트 디하이드로게나제, NAD(P) 트랜스하이드로게나제, 니코티네이트 포스포리보실트랜스퍼라제, NAD+ 키나제, 글루코네이트 키나제 또는 NAD+ 디포스파타제는 미생물의 종 또는 미생물에 따라 활성을 나타내는 단백질의 아미노산 서열에 차이가 존재하는 경우가 있기 때문에, 그 유래나 서열에 한정되지 않는다.
또한, 본 출원에서 상기 효소들은 기재된 서열번호뿐만 아니라, 상기 아미노산 서열과 80 % 이상, 85 % 이상, 구체적으로는 90 % 이상, 더욱 구체적으로는 95%이상, 보다 더욱 구체적으로는 99% 이상의 상동성 또는 동일성을 나타내는 단백질을 포함할 수 있다.
또한 상기 서열과 상동성 또는 동일성을 가지는 서열로서 실질적으로 기재된 서열번호의 효소 단백질과 동일하거나 상응하는 생물학적 활성을 가지는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 가지는 경우도 역시 본 출원의 범주에 포함됨은 자명하다.
본 출원의 NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제, 트랜스케톨라제, 글루코스-6-포스포 디하이드로게나제, 6-포스포글루코네이트 디하이드로게나제, NAD(P) 트랜스하이드로게나제, 니코티네이트 포스포리보실트랜스퍼라제, NAD+ 키나제, 글루코네이트 키나제 또는 NAD+ 디포스파타제를 코딩하는 폴리뉴클레오티드는 상기 NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제, 트랜스케톨라제, 글루코스-6-포스포 디하이드로게나제, 6-포스포글루코네이트 디하이드로게나제, NAD(P) 트랜스하이드로게나제, 니코티네이트 포스포리보실트랜스퍼라제, NAD+ 키나제, 글루코네이트 키나제 또는 NAD+ 디포스파타제 효소 단백질과 동일하거나 상응하는 생물학적 활성을 가지는 한, 기재된 서열번호의 아미노산 서열 또는 상기 서열과 80 % 이상, 85 % 이상, 구체적으로는 90 % 이상, 더욱 구체적으로는 95%이상, 보다 더욱 구체적으로는 99% 이상의 상동성 또는 동일성을 나타내는 단백질을 코딩하는 폴리뉴클레오티드를 포함할 수 있다. 예를 들어, NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제는 서열은 서열번호 2 또는 서열번호 8의 폴리뉴클레오티드서열로 암호화 될 수 있으며 , 트랜스케톨라제는 서열번호 11 또는 서열번호 17의 폴리뉴클레오티드 서열로 암호화 될 수 있으며, 글루코스-6-포스포 디하이드로게나제는 서열번호 21 또는 서열번호 28의 폴리뉴클레오티드 서열로 암호화 될 수 있으며, 6-포스포글루코네이트 디하이드로게나제는 서열번호 33 또는 서열번호 37의 폴리뉴클레오티드 서열로 암호화 될 수 있으며, NAD(P) 트랜스하이드로게나제는 서열번호 40 또는 서열번호 42의 폴리뉴클레오티드 서열로 암호화 될 수 있으며, 니코티네이트 포스포리보실트랜스퍼라제는 서열번호 62, 서열번호66 또는 서열번호 70의 폴리뉴클레오티드 서열로 암호화 될 수 있으며, NAD+ 키나제는 서열번호 82 또는 서열번호 86의 폴리뉴클레오티드 서열로 암호화 될 수 있으며, 글루코네이트 키나제는 서열번호 46, 서열번호 52, 서열번호 54 또는 서열번호 60의 폴리뉴클레오티드 서열로 암호화 될 수 있으며, NAD+ 디포스파타제는 서열번호 74 또는 서열번호 80의 폴리뉴클레오티드 서열로 암호화 될 수 있으나, 이에 제한되는 것은 아니다.
또한 상기 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy)으로 인하여 상기 단백질을 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 코딩영역으로부터 발현되는 단백질의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩영역에 다양한 변형이 이루어질 수 있다. 따라서, 상기 NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제, 트랜스케톨라제, 글루코스-6-포스포 디하이드로게나제, 6-포스포글루코네이트 디하이드로게나제, NAD(P) 트랜스하이드로게나제, 니코티네이트 포스포리보실트랜스퍼라제, NAD+ 키나제, 글루코네이트 키나제 또는 NAD+ 디포스파타제를 코딩하는 폴리뉴클레오티드는 상기 효소 단백질을 코딩하는 폴리뉴클레오티드서열이면 제한없이 포함될 수 있다.
또는 공지의 유전자 서열로부터 조제될 수 있는 프로브, 예를 들면, 상기 폴리뉴클레오티드 서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이드리드화하여, 상기 NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제, 트랜스케톨라제, 글루코스-6-포스포 디하이드로게나제, 6-포스포글루코네이트 디하이드로게나제, NAD(P) 트랜스하이드로게나제, 니코티네이트 포스포리보실트랜스퍼라제, NAD+ 키나제, 글루코네이트 키나제 또는 NAD+ 디포스파타제 효소 단백질의 활성을 가지는 단백질을 암호화하는 서열이라면 제한없이 포함될 수 있다.
상동성(homology) 또는 동일성(identity)은 두 개의 주어진 아미노산 서열 또는 염기 서열과 관련된 정도를 의미하며 백분율로 표시될 수 있다.
용어 상동성 및 동일성은 종종 상호교환적으로 이용될 수 있다.
보존된 (conserved) 폴리뉴클레오티드 또는 폴리펩티드의 서열 상동성 또는 동일성은 표준 배열 알고리즘에 의해 결정되며, 사용되는 프로그램에 의해 확립된 디폴트 갭 페널티가 함께 이용될 수 있다. 실질적으로, 상동성을 갖거나 (homologous) 또는 동일한 (identical) 서열은 일반적으로 서열 전체 또는 전체-길이의 적어도 약 50%, 60%, 70%, 80% 또는 90%를 따라 중간 또는 높은 엄격한 조건(stringent conditions)에서 하이브리드할 수 있다. 하이브리드하는 폴리뉴클레오티드에서 코돈 대신 축퇴 코돈을 함유하는 폴리뉴클레오티드 또한 고려된다.
임의의 두 폴리뉴클레오티드 또는 폴리펩티드 서열이 상동성, 유사성 또는 동일성을 갖는지 여부는 예를 들어, Pearson et al (1988)[Proc. Natl. Acad. Sci. USA 85]: 2444에서와 같은 디폴트 파라미터를 이용하여 "FASTA" 프로그램과 같은 공지의 컴퓨터 알고리즘을 이용하여 결정될 수 있다. 또는, EMBOSS 패키지의 니들만 프로그램(EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277)(버전 5.0.0 또는 이후 버전)에서 수행되는 바와 같은, 니들만-운치(Needleman-Wunsch) 알고리즘(Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453)이 사용되어 결정될 수 있다. (GCG 프로그램 패키지 (Devereux, J., et al, Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215]: 403 (1990); Guide to Huge Computers, Martin J. Bishop, [ED.,] Academic Press, San Diego,1994, 및 [CARILLO ETA/.](1988) SIAM J Applied Math 48: 1073을 포함한다). 예를 들어, 국립 생물공학 정보 데이터베이스 센터의 BLAST, 또는 ClustalW를 이용하여 상동성, 유사성 또는 동일성을 결정할 수 있다.
폴리뉴클레오티드 또는 폴리펩티드의 상동성, 유사성 또는 동일성은 예를 들어, Smith and Waterman, Adv. Appl. Math (1981) 2:482 에 공지된 대로, 예를 들면, Needleman et al. (1970), J Mol Biol.48 : 443과 같은 GAP 컴퓨터 프로그램을 이용하여 서열 정보를 비교함으로써 결정될 수 있다. 요약하면, GAP 프로그램은 두 서열 중 더 짧은 것에서의 기호의 전체 수로, 유사한 배열된 기호(즉, 뉴클레오티드 또는 아미노산)의 수를 나눈 값으로 정의한다. GAP 프로그램을 위한 디폴트 파라미터는 (1) 일진법 비교 매트릭스(동일성을 위해 1 그리고 비-동일성을 위해 0의 값을 함유함) 및 Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. 353-358 (1979)에 의해 개시된 대로, Gribskov et al(1986) Nucl. Acids Res. 14: 6745의 가중된 비교 매트릭스 (또는 EDNAFULL(NCBI NUC4.4의 EMBOSS 버전) 치환 매트릭스); (2) 각 갭을 위한 3.0의 페널티 및 각 갭에서 각 기호를 위한 추가의 0.10 페널티 (또는 갭 개방 패널티 10, 갭 연장 패널티 0.5); 및 (3) 말단 갭을 위한 무 페널티를 포함할 수 있다. 따라서, 본원에서 사용된 것으로서, 용어 "상동성" 또는 "동일성"은 서열들간의 관련성(relevance)를 나타낸다.
본 출원에서 용어, "활성의 강화"는 효소 단백질의 활성이 도입되거나, 미생물이 가진 내재적 활성 또는 변형 전 활성에 비하여 활성이 향상된 것을 의미한다. 상기 활성의 "도입"은, 미생물이 본래 가지고 있지 않았던 특정 단백질의 활성이 자연적 혹은 인위적으로 나타나게 되는 것을 의미한다. "비변형 미생물"은, 비교 대상 미생물의 특정 단백질이 자연적 또는 인위적 요인에 의한 유전적 변이로 미생물의 형질이 변화하는 경우, 형질 변화 전 모균주가 본래 가지고 있던 특정 단백질의 활성을 갖고 있는 미생물을 말한다. "내재적 활성"은 자연적 또는 인위적 요인에 의한 유전적 변이로 미생물의 형질이 변화하는 경우, 형질 변화 전 모균주가 본래 가지고 있던 특정 단백질의 활성을 말한다. 본 출원에서 비변형은 유전적 변이가 일어나지 않은 내재적 활성을 갖는 형태와 혼용되어 사용될 수 있다.
예를 들어, 상기 활성 강화는 외래의 NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제 및/또는 NAD(P) 트랜스하이드로게나제를 도입하거나 도입하여 강화하는 것, 또는 내재적 트랜스케톨라제, 글루코스-6-포스포 디하이드로게나제, 6-포스포글루코네이트 디하이드로게나제, 니코티네이트 포스포리보실트랜스퍼라제 및/또는 NAD+ 키나제의 활성을 강화하는 것을 모두 포함할 수 있다. 구체적으로, 본 출원에서 활성 증가의 방법으로는,
1) 상기 효소들을 암호화하는 폴리뉴클레오티드의 카피수 증가,
2) 상기 폴리뉴클레오티드의 발현이 증가하도록 발현조절 서열의 변형,
3) 상기 효소들의 활성이 강화되도록 염색체 상의 폴리뉴클레오티드 서열의 변형, 또는
4) 이의 조합에 의해 강화되도록 변형하는 방법 등에 의하여 수행될 수 있으나, 이에 제한되지 않는다.
상기 1) 폴리뉴클레오티드의 카피수 증가는, 특별히 이에 제한되지 않으나, 벡터에 작동 가능하게 연결된 형태로 수행되거나, 숙주세포 내의 염색체 내로 삽입됨으로써 수행될 수 있다. 또한 카피수 증가의 한 양태로, 효소의 활성을 나타내는 외래 폴리뉴클레오티드 또는 상기 폴리뉴클레오티드의 코돈 최적화된 변이형 폴리뉴클레오티드를 숙주세포 내로 도입하여 수행될 수 있다. 상기 외래 폴리뉴클레오티드는 상기 효소와 동일/유사한 활성을 나타내는 한 그 유래나 서열에 제한 없이 사용될 수 있다. 상기 도입은 공지된 형질전환 방법을 당업자가 적절히 선택하여 수행될 수 있으며, 숙주 세포 내에서 상기 도입된 폴리뉴클레오티드가 발현됨으로써 효소가 생성되어 그 활성이 증가될 수 있다.
다음으로, 2) 폴리뉴클레오티드의 발현이 증가하도록 발현조절 서열의 변형은, 특별히 이에 제한되지 않으나, 상기 발현조절 서열의 활성을 더욱 강화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 강한 활성을 가지는 핵산 서열로 교체함에 의하여 수행될 수 있다. 상기 발현조절 서열은, 특별히 이에 제한되지 않으나 프로모터, 오퍼레이터 서열, 리보좀 결합 부위를 코딩하는 서열, 전사 및 해독의 종결을 조절하는 서열 등을 포함할 수 있다.
구체적으로, 폴리뉴클레오티드 발현 단위의 상부에는 본래의 프로모터 대신 강력한 이종 프로모터가 연결될 수 있는데, 상기 강력한 프로모터의 예로는 CJ7 프로모터, lysCP1 프로모터, EF-Tu 프로모터, groEL 프로모터, aceA 혹은 aceB 프로모터 등이 있다. 더욱 구체적으로는 코리네박테리움 속 유래 프로모터인 lysCP1 프로모터 (WO2009/096689) 혹은 CJ7 프로모터(WO2006/065095)와 작동 가능하게 연결되어 상기 효소를 코딩하는 폴리뉴클레오티드의 발현율을 향상시킬 수 있으나, 이에 한정되지 않는다.
아울러, 3) 염색체 상의 폴리뉴클레오티드 서열의 변형은, 특별히 이에 제한되지 않으나, 상기 폴리뉴클레오티드 서열의 활성을 더욱 강화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현조절 서열상의 변이를 유도하여 수행하거나, 더욱 강한 활성을 갖도록 개량된 폴리뉴클레오티드 서열로 교체함에 의하여 수행될 수 있다.
마지막으로, 4) 상기 1) 내지 3)의 조합에 의해 강화되도록 변형하는 방법은, 상기 효소를 암호화하는 폴리뉴클레오티드의 카피수 증가, 이의 발현이 증가하도록 발현조절 서열의 변형, 염색체 상의 상기 폴리뉴클레오티드 서열의 변형 및 상기 효소의 활성을 나타내는 외래 폴리뉴클레오티드 또는 이의 코돈 최적화된 변이형 폴리뉴클레오티드의 변형 중 1 이상의 방법을 함께 적용하여 수행될 수 있다.
본 출원에서 사용된 용어 "벡터"는 적합한 숙주 내에서 목적 단백질을 발현시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 상기 목적 단백질을 코딩하는 폴리뉴클레오티드의 염기서열을 함유하는 DNA 제조물을 의미한다. 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다.
본 출원에서 사용되는 벡터는 숙주세포 내에서 복제 가능한 것이면 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 구체적으로는 pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC 벡터 등을 사용할 수 있으나, 이에 제한되지 않는다.
본 출원에서 사용 가능한 벡터는 특별히 제한되는 것이 아니며 공지된 발현 벡터를 사용할 수 있다. 또한, 세포 내 염색체 삽입용 벡터를 통해 염색체 내에 목적 단백질을 코딩하는 폴리뉴클레오티드를 삽입시킬 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동재조합에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다. 상기 염색체 삽입 여부를 확인하기 위한 선별 마커(selection marker)를 추가로 포함할 수 있다. 선별 마커는 벡터로 형질전환된 세포를 선별, 즉 목적 핵산 분자의 삽입 여부를 확인하기 위한 것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 단백질의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다. 선택제(selective agent)가 처리된 환경에서는 선별 마커를 발현하는 세포만 생존하거나 다른 표현 형질을 나타내므로, 형질전환된 세포를 선별할 수 있다.
본 출원에서 용어 "형질전환"은 표적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 숙주세포 내에 도입하여 숙주세포 내에서 상기 폴리뉴클레오티드가 코딩하는 단백질이 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오티드는 숙주세포 내에서 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하거나 상관없이 이들 모두를 포함할 수 있다. 또한, 상기 폴리뉴클레오티드는 표적 단백질을 코딩하는 DNA 및 RNA를 포함한다. 상기 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로 도입되는 것이든 상관없다. 예를 들면, 상기 폴리뉴클레오티드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트 (expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터 (promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 한정되지 않는다. 상기 형질전환 하는 방법은 핵산을 세포 내로 도입하는 어떤 방법도 포함되며, 숙주세포에 따라 당 분야에서 공지된 바와 같이 적합한 표준 기술을 선택하여 수행할 수 있다. 예를 들어, 전기천공법 (electroporation), 인산칼슘 (CaPO4) 침전, 염화칼슘 (CaCl2) 침전, 미세주입법 (microinjection), 폴리에틸렌글리콜 (PEG)법, DEAE-덱스트란법, 양이온 리포좀법, 및 초산 리튬-DMSO법 등이 있으나, 이에 제한되지 않는다.
또한, 상기에서 용어 "작동 가능하게 연결"된 것이란 본 출원의 목적 단백질을 코딩하는 폴리뉴클레오티드의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 폴리뉴클레오티드 서열이 기능적으로 연결되어 있는 것을 의미한다. 작동 가능한 연결은 당업계의 공지된 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당업계의 절단 및 연결 효소 등을 사용하여 제작할 수 있으나, 이에 제한되지 않는다.
본 출원의 용어 "불활성화"는 본래 미생물이 가진 효소 단백질의 내재적 활성 또는 변형 전 활성에 비하여, 그 활성이 약화되는 경우, 전혀 발현이 되지 않는 경우 또는 발현이 되더라도 그 활성이 없는 경우를 의미한다. 상기 불활성화는 상기 효소를 코딩하는 폴리뉴클레오티드의 변이 등으로 효소 자체의 활성이 본래 미생물이 가지고 있는 효소의 활성에 비해 약화하거나 제거된 경우와, 이를 코딩하는 유전자의 발현 저해 또는 번역(translation) 저해 등으로 세포 내에서 전체적인 효소 활성 정도가 천연형 미생물에 비하여 낮거나 제거된 경우, 상기 유전자가 일부 또는 전체 결실된 경우, 및 이들의 조합 역시 포함하는 개념으로, 이에 한정되지는 않는다.
이러한 효소 활성의 불활성화는, 당해 분야에 잘 알려진 다양한 방법의 적용으로 달성될 수 있다. 상기 방법의 예로, 1) 상기 효소의 활성이 제거된 경우를 포함하여 상기 효소의 활성이 약화되도록 돌연변이된 유전자로, 염색체상의 상기 효소를 코딩하는 유전자를 대체하는 방법; 2) 상기 효소를 코딩하는 염색체상의 유전자의 발현 조절 서열을 변형하는 방법; 3) 상기 효소를 코딩하는 유전자의 발현 조절 서열을 활성이 약하거나 없는 서열로 교체하는 방법; 4) 상기 효소를 코딩하는 염색체상의 유전자의 전체 또는 일부를 결실시키는 방법; 5) 상기 염색체상의 유전자의 전사체에 상보적으로 결합하여 상기 mRNA로부터 효소로의 번역을 저해하는 안티센스 올리고뉴클레오티드(예컨대, 안티센스 RNA)를 도입하는 방법; 6) 상기 효소를 코딩하는 유전자의 SD 서열 앞단에 SD 서열과 상보적인 서열을 인위적으로 부가하여 2차 구조물을 형성시켜 리보솜(ribosome)의 부착이 불가능하게 만드는 법 또는 7) 해당 서열의 ORF(open reading frame)의 3' 말단에 역전사되도록 프로모터를 부가하는RTE(Reverse transcription engineering) 방법 등이 있으며, 이들의 조합으로도 달성할 수 있으나, 이에, 특별히 제한되는 것은 아니다.
상기 염색체상의 유전자 서열을 변형하는 방법은 상기 효소의 활성을 더욱 약화하도록 유전자 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 약한 활성을 갖도록 개량된 유전자 서열 또는 활성이 없도록 개량된 유전자 서열로 교체함으로써 수행할 수 있으나, 이에 한정되는 것은 아니다.
상기 발현 조절 서열을 변형하는 방법은 상기 발현 조절 서열의 활성을 더욱 약화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현 조절 서열상의 변이를 유도하여 수행하거나, 더욱 약한 활성을 갖는 핵산 서열로 교체함으로써 수행할 수 있다. 상기 발현 조절서열에는 프로모터, 오퍼레이터 서열, 리보좀 결합부위를 코딩하는 서열, 및 전사와 해독의 종결을 조절하는 서열을 포함하나, 이에 한정되는 것은 아니다.
또한, 효소를 코딩하는 폴리뉴클레오티드의 일부 또는 전체를 결실하는 방법은, 세균내 염색체 삽입용 벡터를 통해 염색체 내 내재적 목적 단백질을 코딩하는 폴리뉴클레오티드를 일부 핵산 서열이 결실된 폴리뉴클레오티드 또는 마커 유전자로 교체함으로써 수행될 수 있다. 이러한 폴리뉴클레오티드의 일부 또는 전체를 결실하는 방법의 일례로 상동 재조합에 의하여 폴리뉴클레오티드를 결실시키는 방법을 사용할 수 있으나, 이에 한정되지는 않는다.
상기 폴리뉴클레오티드는 기능을 할 수 있는 폴리뉴클레오티드 집합체인 경우 유전자로 기재될 수 있다. 본 출원에서 폴리뉴클레오티드와 유전자는 혼용될 수 있다.
상기에서 "일부"란, 폴리뉴클레오티드의 종류에 따라서 상이하지만, 구체적으로는 1 내지 300개, 더욱 구체적으로는 1 내지 100개, 보다 더욱 구체적으로는 1 내지 50개일 수 있으나, 특별히 이에 제한되는 것은 아니다.
본 출원에서 사용되는 용어 "퓨트레신을 생산하는 미생물", "퓨트레신 생산능을 가지는 미생물"이란, 자연적으로 퓨트레신 생산능을 가지고 있는 미생물 또는 퓨트레신 생산능이 없거나 현저히 적은 모균주에 천연형 또는 변이를 통하여 퓨트레신 생산능을 가지고 있는 미생물을 의미한다.
구체적으로, 본 출원에서 퓨트레신을 생산하는 미생물은 천연형 미생물 자체 또는 외부 퓨트레신 생산 기작과 관련된 폴리뉴클레오티드가 삽입되거나 내재적 유전자의 활성을 강화시키거나 불활성시켜 퓨트레신 생산능을 가지게 된 미생물을 의미할 수 있다.
보다 구체적으로, 본 출원에서 퓨트레신을 생산하는 미생물은 "코리네박테리움 속 (the genus Corynebacterium) 미생물"일 수 있다. 상기 코리네박테리움 속 미생물은 구체적으로는 코리네박테리움 글루타미쿰, 코리네박테리움 암모니아게네스, 브레비박테리움 락토퍼멘텀 (Brevibacterium lactofermentum), 브레비박테리움 플라범 (Brevibacterium flavum), 코리네박테리움 써모아미노게네스 (Corynebacterium thermoaminogenes), 코리네박테리움 에피션스 (Corynebacterium efficiens) 등이나, 반드시 이에 한정되는 것은 아니다. 보다 더욱 구체적으로는, 본 출원에서 코리네박테리움 속 미생물은 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)일 수 있다.
상기 퓨트레신을 생산하는 미생물은, 특별히 이에 제한되지 않으나, 추가적으로 오르니틴 디카복실라제(ornithine decarboxylase, ODC)의 활성이 도입된 것일 수 있다. 상기 오르니틴 디카복실라제는 오르니틴의 디카복실화(decarboxylation)를 매개하여 퓨트레신을 생산하는 효소를 의미한다. 코리네박테리움 속 미생물에는 퓨트레신 생합성 경로가 없지만 외부로부터 오르니틴 디카르복실라아제(ornithine decarboxylase, ODC)를 도입하면 퓨트레신이 합성될 수 있다.
또한, 상기 퓨트레신을 생산하는 미생물은, 특별히 이에 제한되지 않으나, 추가적으로 오르니틴에서 아르기닌 합성에 관여하는 오르니틴 카르바모일 트랜스퍼라아제(ornithine carbamoyltransfrase, ArgF), 글루타메이트의 배출에 관여하는 단백질(NCgl1221)이 불활성화된 것일 수 있다.
또한, 상기 퓨트레신을 생산하는 미생물은, 특별히 이에 제한되지 않으나, 예를 들어 글루타메이트에서 오르니틴까지의 생합성 경로를 강화하기 위해 글루타메이트를 아세틸글루타메이트 (N-acetylglutamate)로 전환하는 아세틸글루타메이트 신타아제 또는 아세틸오르니틴을 오르니틴으로 전환하는 오르니틴 아세틸트랜스퍼라아제 (ArgJ), 아세틸글루타메이트를 아세틸글루타밀 포스페이트 (N-acetylglutamyl phosphate)로 전환하는 아세틸글루타메이트 키나제 (ArgB), 아세틸글루타밀 포스페이트를 아세틸글루타메이트 세미알데히드 (N-acetylglutamate semialdehyde)로 전환하는 아세틸 감마 글루타밀 포스페이트 리덕타아제 (ArgC), 아세틸글루타메이트 세미알데히드를 아세틸오르니틴 (N-acetylornithine)으로 전환하는 아세틸오르니틴 아미노트랜스퍼라아제 (ArgD)의 활성이 내재적 활성에 비하여 강화되어 퓨트레신의 생합성 원료로서 사용되는 오르니틴의 생산성이 향상된 것일 수 있다.
또한, 상기 퓨트레신을 생산하는 미생물은, 특별히 이에 제한되는 것은 아니나, 추가적으로 퓨트레신 아세틸트렌스퍼라아제의 활성이 약화된, 퓨트레신 생산능을 가지는 코리네박테리움 속 미생물일 수 있다.
아울러, 상기 퓨트레신을 생산하는 미생물은, 특별히 이에 제한되는 것은 아니나, 퓨트레신 배출단백질의 활성이 강화된 것일 수 있으나 이에 제한되는 것은 아니다. 상기 퓨트레신 배출단백질의 활성 강화는 퓨트레신 생산능을 가지는 코리네박테리움 속 미생물에서 서열번호 87의 아미노산 서열을 가지는 단백질의 활성이 강화된 것일 수 있으나, 이에 제한되지 않는다.
또한, 상기 퓨트레신 배출단백질의 활성 강화는 퓨트레신 생산능을 가지는 코리네박테리움 속 미생물에서 서열번호 88의 아미노산 서열을 가지는 단백질의 활성이 불활성화된것일 수 있으나, 이에 제한되지 않는다.
다른 하나의 양태로서 본 출원은, (1) NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제(NADP dependent glyceraldehyde-3-phosphate dehydrogenase), 트랜스케톨라제(Transketolase), 글루코스-6-포스포 디하이드로게네이즈 (Glucose-6- phosphate dehydrogenase), 6-포스포글루코네이트 디하이드로게나제 (6-phosphogluconate dehydrogenase), NAD(P) 트랜스하이드로게나제 (NAD(P) transhydrogenase), 니코티네이트 포스포리보실트랜스퍼라제 (nicotinate phosphoribosyltransferase), 및 NAD+ 키나제 (NAD+ kinase)로 구성되는 그룹 중에서 하나 이상의 활성이 강화되거나, (2) 글루코네이트 키나제 (Gluconate kinase) 및 NAD+ 디포스포파타제 (NAD+ diphosphophatase)로 구성되는 그룹 중에서 하나 이상의 활성이 불활성화되거나, (3) (1) 및 (2)의 조합으로 구성되어, NADPH생산능이 증가된, 퓨트레신을 생산하는 코리네박테리움 속 미생물을 배지에서 배양하는 단계; 및 (b) 상기 단계에서 수득되는 미생물 또는 배지로부터 퓨트레신을 회수하는 단계를 포함하는 퓨트레신 생산 방법을 제공한다.
"NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제", "트랜스케톨라제", "글루코스-6-포스포 1-디하이드로게네이즈", "6-포스포글루코네이트 디하이드로게나제", "NAD(P) 트랜스하이드로게나제", "니코티네이트 포스포리보실트랜스퍼라제", "NAD 키나제 (NAD kinase)", "활성의 강화", "글루코네이트 키나제" "NAD+ 디포스포파타제", "활성의 불활성화" 및 "퓨트레신을 생산하는 코리네박테리움속 미생물"에 대해서는 상기 설명한 바와 같다.
상기 방법에 있어서, 상기 미생물을 배양하는 단계는, 특별히 이에 제한되지 않으나, 공지된 회분식 배양방법, 연속식 배양방법, 유가식 배양방법 등에 의해 수행될 수 있다. 이때, 배양조건은, 특별히 이에 제한되지 않으나, 염기성 화합물 (예: 수산화나트륨, 수산화칼륨 또는 암모니아) 또는 산성 화합물 (예: 인산 또는 황산)을 사용하여 적정 pH (예컨대, pH 5 내지 9, 구체적으로는 pH 6 내지 8, 가장 구체적으로는 pH 6.8)를 조절할 수 있고, 산소 또는 산소-함유 가스 혼합물을 배양물에 도입시켜 호기성 조건을 유지할 수 있다. 배양온도는 20 내지 45 ℃, 구체적으로는 25 내지 40 ℃를 유지할 수 있고, 약 10 내지 160 시간 동안 배양할 수 있으나, 이에 제한 되는 것은 아니다. 상기 배양에 의하여 생산된 퓨트레신은 배지 중으로 분비되거나 세포 내에 잔류할 수 있다.
아울러, 사용되는 배양용 배지는 탄소 공급원으로는 당 및 탄수화물 (예: 글루코오스, 슈크로오스, 락토오스, 프럭토오스, 말토오스, 몰라세, 전분 및 셀룰로오스), 유지 및 지방 (예: 대두유, 해바라기씨유, 땅콩유 및 코코넛유), 지방산 (예: 팔미트산, 스테아르산 및 리놀레산), 알코올 (예: 글리세롤 및 에탄올) 및 유기산 (예: 아세트산) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 질소 공급원으로는 질소-함유 유기 화합물 (예: 펩톤, 효모 추출액, 육즙, 맥아 추출액, 옥수수 침지액, 대두 박분 및 우레아), 또는 무기 화합물 (예: 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 인 공급원으로 인산 이수소칼륨, 인산수소이칼륨, 이에 상응하는 나트륨 함유 염 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 또한, 배지에는 기타 금속염 (예: 황산마그네슘 또는 황산철), 아미노산 및 비타민과 같은 필수성장-촉진 물질을 포함할 수 있다.
본 출원의 상기 배양 단계에서 생산된 퓨트레신을 회수하는 방법은 배양방법에 따라 당해 분야에 공지된 적합한 방법을 이용하여 배양액으로부터 목적하는 아미노산을 수집할 수 있다. 예를 들어, 원심분리, 여과, 음이온 교환 크로마토그래피, 결정화 및 HPLC 등이 사용될 수 있으며, 당해 분야에 공지된 적합한 방법을 이용하여 배지 또는 미생물로부터 목적하는 퓨트레신을 회수 할 수 있다. 상기 퓨트레신을 회수하는 방법은, 정제단계를 추가적으로 포함할 수 있다.
이하 본 출원을 실시예에 의해 보다 상세하게 설명한다. 그러나 이들 실시예는 본 출원을 예시적으로 설명하기 위한 것으로, 본 출원의 범위가 이들 실시예에 의해 제한되는 것은 아니다.
실시예 1: NADP 의존적 글리세르알데드 -3- 포스페이트 디하이드로게나제 도입을 통한 퓨트레신 생산
퓨트레신 생산균주에서 NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제 활성 강화시 퓨트레신 생산에 미치는 효과를 확인해보았다.
1-1: 락토바실러스 델부루키 아종 불가리쿠스 ATCC 11842 유래의 NADP 의존적 글리세르알데드 -3- 포스페이트 디하이드로게나제를 코리네형 미생물 염색체 내 트랜스포존 내 도입을 위한 벡터의 제작
코리네박테리움에 친화력이 높은 NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제로 락토바실러스 델부루키 아종 불가리쿠스(Lactobacillus delbrueckii subsp . Bulgaricus) 유래의 NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제를 선정하였다. 이후 상기 활성을 향상시키기 위해 다음의 실험을 진행하였다.
락토바실러스 델부루키 아종 불가리쿠스 ATCC 11842 유래의 gapN을 암호화 하는 Ldb1179 유전자의 아미노산 서열 (서열번호 1)과 염기서열 (서열번호 2)은 미국국립보건원 진뱅크 (NIH GenBank)로부터 확보하였다.
또한, 코리네박테리움 속 미생물의 트렌스포존 유전자 부위를 이용하여 염색체 내 Ldb1179 유전자를 도입하기 위하여 형질전환용 벡터 pDZTn(WO2009/125992)를 사용하였으며, 프로모터는 cj7 (WO 2006/65095)를 이용하였다. Ldb1179 유전자는 락토바실러스 델부루키 아종 불가리쿠스 ATCC 11842 균주의 염색체를 주형으로 서열번호 3 및 4 프라이머를 이용하여 개시코돈 TTG를 ATG로 변경한 형태로 약 1.43 kb 의 유전자 단편을 증폭하였다(표 1). 이때, PCR 반응은 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 1분 30초의 신장 과정을 30회 반복하였다. 이 PCR 결과물을 0.8% 아가로스 겔에서 전기 영동한 후 약 1.4 kb 밴드를 용리하여 정제하였다. 또한, CJ7 프로모터 부위는 서열번호 5 및 6의 프라이머 쌍을 이용하여 동일한 조건에서 PCR을 수행하여 PCR산물을 수득하였다. 이때, PCR 반응은 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 30초의 신장 과정을 30회 반복하였다. pDZTn 벡터는 XhoI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDZTn:P(CJ7)-(L)라 명명하였다.
서열번호 프라이머 서열(5'-3')
3 gapN(L)-F aaggaaacactgatatc aTGACAGAACACTATTTAAACTATGTCAATG
4 gapN(L)-R gccaaaacagcctcgagTTAGTCTTCGATGTTGAAGACAACG
5 CJ7-F ggcccactagtctcgagGCCGGCATAGCCTACCGAT
6 CJ7-R GATATCAGTGTTTCCTTTCGTTGG
1-2: 스트렙토코커스 변이주 (Streptococcus mutans ) ATCC 25175 유래의 NADP 의존적 글리세르알데드 -3- 포스페이트 디하이드로게나제를 코리네형 미생물 염색체 내 트렌스포존 유전자 내 도입을 위한 벡터의 제작
락토바실러스 델부루키 아종 불가리쿠스 ATCC 11842 유래의 gapN의 대조군으로써, 스트렙토코커스 변이주(Streptococcus mutans) ATCC 25175내 NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제 활성을 가진 SMUFR_0590 (대한민국 등록특허 제1182033호)을 도입하기 위해 다음의 실험을 진행하였다.
스트렙토코커스 변이주 ATCC 25175 유래의 gapN을 암호화하는 SMUFR_0590 유전자의 아미노산 서열 (서열번호 7) 염기서열 (서열번호 8)과 은 미국국립보건원 진뱅크 (NIH GenBank)로부터 확보하였고, 트랜스포존 유전자 내 CJ7 프로모터에 의해 발현되는 SMUFR_0590을 도입하기 위한 벡터를 제작하였다
실시예 1-1에서와 마찬가지로 형질전환용 벡터 pDZTn를 사용하였으며, 프로모터는 cj7를 이용하였다. 스트렙토코커스 변이주 ATCC 25175유래의 SMUFR_0590 유전자는 pECCG117-Pcj7-gapN1 (대한민국 등록특허 제 1182033호)을 주형으로 서열번호 5 및 9 프라이머를 이용하여 약 1.7 kb 의 유전자 단편을 증폭하였다(표 2). 이때, PCR 반응은 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 2분의 신장 과정을 30회 반복하였다. 이 PCR 결과물을 0.8% 아가로스 겔에서 전기 영동한 후 원하는 크기의 밴드를 용리하여 정제하였다. pDZTn 벡터는 XhoI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDZTn:P(CJ7)-gapN(S)라 명명하였다.
서열번호 프라이머 서열(5'-3')
5 CJ7-F ggcccactagtctcgagGCCGGCATAGCCTACCGAT
9 gapN(S)-R gccaaaacagcctcgagTTATTTGATATCAAATACGACGGATTTA
1-3. 퓨트레신을 생산하는 코리네형 균주에 NADP 의존적 글리세르알데드 -3-포스페이트 디하이드로게나제 도입을 통한 퓨트레신 발효
<1-3-1> ATCC 13032 기반 퓨트레신 생산균주의 염색체 내 트렌스포존 유전자 내 NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제 도입
실시예 1-1에서 제작한 플라스미드 pDZTn:P(CJ7)-gapN(L)와 실시예 1-2에서 제작한 플라스미드 pDZTn:P(CJ7)-gapN(S)를 전기천공법으로 코리네박테리움 글루타미쿰 KCCM11240P (대한민국 공개특허 제2013-0003648), KCCM11240P P(CJ7)-NCgl2522 (대한민국 공개특허 제2014-0115244호), KCCM11520P (대한민국 공개특허 제2014-0049766)에 도입하여 형질전환체를 수득하고, 상기 형질전환체를 카나마이신(25 ㎍/㎖)과 X-gal(5-브로모-4-클로로-3-인돌린-β-D-갈락토시드)이 함유된 BHIS 평판배지(Braine heart infusion 37 g/ℓ, 소르비톨 91 g/ℓ, 한천 2%)에 도말하여 배양함으로써 콜로니를 형성시켰다. 이로부터 형성된 콜로니 중에서 푸른색의 콜로니를 선택함으로써 상기 플라스미드 pDZTn:P(CJ7)-gapN(L) 또는 pDZTn:P(CJ7)-gapN(S)가 도입된 균주를 선발하였다.
상기 선발된 균주를 CM 배지(글루코스 10 g/ℓ, 폴리펩톤 10 g/ℓ, 효모 추출물 5 g/ℓ, 비프 추출물 5 g/ℓ, 염화나트륨(NaCl) 2.5 g/ℓ, 우레아 2 g/ℓ, pH 6.8)에 접종하여 30℃에서 8시간 동안 진탕 배양하고, 각각 10-4부터 10-10까지 순차적으로 희석한 후 X-gal 함유 고체배지에 도말하고 배양하여 콜로니를 형성시켰다. 형성된 콜로니 중에서 상대적으로 낮은 비율로 나타나는 백색의 콜로니를 선택하여, gapN(L) 또는 gapN(S)을 암호화하는 유전자인 Ldb1179와 SMUFR_0590이 도입된 퓨트레신 생산하는 코리네박테리움 글루타미쿰 균주를 제작하였다. 이로부터 제작된 코리네박테리움 글루타미쿰 변이주를 각각 KCCM11240P Tn:P(CJ7)-gapN(L), KCCM11240P Tn:P(CJ7)-gapN(S), KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(L), KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S), KCCM11520P Tn:P(CJ7)-gapN(L), KCCM11520P Tn:P(CJ7)-gapN(S)로 명명하였다.
<1-3-2> ATCC 13869 기반 퓨트레신 생산균주의 염색체 내 트렌스포존 유전자 내 NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제 도입
코리네박테리움 글루타미쿰 ATCC13869 기반의 퓨트레신 생산균주 DAB12-b (대한민국 공개특허 제2013-0003648), DAB12-b P(CJ7)-NCgl2522 (대한민국 공개특허 제2014-0115244호), DAB12-b ΔNCgl2523 (대한민국 공개특허 제2014-0049766)를 대상으로 앞에서 제작한 pDZTn:P(CJ7)-gapN(L)과 pDZTn:P(CJ7)-gapN(S)를 실시예 <1-3-1>과 동일한 방법으로 형질전환하였다. 이로부터 제작된 코리네박테리움 글루타미쿰 변이주를 DAB12-b Tn:P(CJ7)-gapN(L), DAB12-b Tn:P(CJ7)-gapN(S), DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(L), DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S), DAB12-b ΔNCgl2523 Tn:P(CJ7)-gapN(L), DAB12-b ΔNCgl2523 Tn:P(CJ7)-gapN(S)라 명명하였다.
<1-3-3> NADP 의존적 글리세르알데드 -3- 포스페이트 디하이드로게나제 유전자가 도입된 코리네 퓨트레신 생산균주의 퓨트레신 생산능 평가
퓨트레신 생산 균주에서 NADP 의존적 글리세르알데하이드-3-포스페이트 디하이드로지나제 유전자 도입시 퓨트레신 생산에 미치는 효과를 확인하기 위하여, 상기 실시예 <1-3-1> 및 <1-3-2>에서 제작된 코리네박테리움 글루타미쿰 변이주를 대상으로 퓨트레신 생산능을 비교하였다.
구체적으로, 6종의 대조군(KCCM11240P, KCCM11240P P(CJ7)-NCgl2522, KCCM11520P, DAB12-b, DAB12-b P(CJ7)-NCgl2522, DAB12-b ΔNCgl2523)과 12종의 코리네박테리움 글루타미쿰 변이주 (KCCM11240P Tn:P(CJ7)-gapN(L), KCCM11240P Tn:P(CJ7)-gapN(S), KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(L), KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S), KCCM11520P Tn:P(CJ7)-gapN(L), KCCM11520P Tn:P(CJ7)-gapN(S), DAB12-b Tn:P(CJ7)-gapN(L), DAB12-b Tn:P(CJ7)-gapN(S), DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(L), DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S), DAB12-b ΔNCgl2523 Tn:P(CJ7)-gapN(L), DAB12-b ΔNCgl2523 Tn:P(CJ7)-gapN(S))를 각각 1 mM 아르기닌 함유 CM 평판배지에 도말하여 30℃에서 24시간 동안 배양하였다. 이로부터 배양된 각 균주를 25 ml의 생산 배지에 한 백금이 정도로 접종한 후 이를 30℃에서 200 rpm으로 50시간 후 샘플하고, 최종 98시간에 샘플링하였다. 모든 균주의 배양 시 배지에 1 mM 아르기닌을 첨가하였다.
<CM 평판 배지(pH 6.8)>
포도당 1%, 폴리펩톤 1%, 효모 추출물 0.5%, 비프 추출물 0.5%, 염화나트륨(NaCl) 0.25%, 우레아 0.2%, 50% 수산화나트륨(NaOH) 100 μl, 한천(agar) 2%, pH 6.8, (증류수 1 리터 기준)
<생산배지 (pH 7.0)>
포도당 8%, 대두단백질 0.25%, 옥수수고형 0.50%, 황산암모늄((NH4)2SO4) 4%, 인산칼륨(KH2PO4) 0.1%, 황산마그네슘 7 수화물 (MgSO4·7H2O) 0.05%, 우레아 0.15%, 바이오틴 100 μg, 티아민 염산염 3 mg, 칼슘-판토텐산 3 mg, 니코틴아미드 3 mg, 탄산칼슘 (CaCO3) 5% (증류수 1리터 기준).
50시간에 샘플링한 배양물로부터 생산된 퓨트레신 농도를 측정하고 그 결과를 하기 표 3에 나타내었다.
균주명 퓨트레신(g/L) 생산성(g/l/min)
KCCM11240P 5.8 6.96
KCCM11240P Tn:P(CJ7)-gapN(L) 6.4 7.68
KCCM11240P Tn:P(CJ7)-gapN(S) 6.3 7.56
KCCM11240P P(CJ7)-NCgl2522 7.3 8.76
KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(L) 10.6 12.72
KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) 9.8 11.76
KCCM11520P 7.0 8.40
KCCM11520P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(L) 9.8 11.76
KCCM11520P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) 9.2 11.04
DAB12-b 6.5 7.80
DAB12-b Tn:P(CJ7)-gapN(L) 7.0 8.40
DAB12-b Tn:P(CJ7)-gapN(S) 6.9 8.28
DAB12-b P(CJ7)-NCgl2522 7.8 9.36
DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(L) 11.5 13.80
DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) 10.7 12.84
DAB12-b ΔNCgl2523 7.5 9.00
DAB12-b ΔNCgl2523 Tn:P(CJ7)-gapN(L) 10.6 12.72
DAB12-b ΔNCgl2523 Tn:P(CJ7)-gapN(S) 10.1 12.12
상기 표 3에 나타난 바와 같이, 코리네박테리움 글루타미쿰 ATCC 13032 또는 13869 유래의 퓨트레신 생산균주에서 L. delbrueckii subsp . Bulgaricus ATCC 11842 유래의 gapN(L) 유전자 또는 스트렙토코커스 변이주 ATCC 25175 유래의 gapN(S) 유전자가 도입된 12종의 코리네박테리움 글루타미쿰 변이주 모두 대조군 대비 퓨트레신 생산성이 증가되었다. 이로부터 NADP 의존적 글리세르알데하이드-3-포스페이트 디하이드로지나제를 통한 NADPH 공급시 퓨트레신 생산성이 증가됨을 확인하였다.
또한, 스트렙토코커스 변이주 ATCC 25175 유래의 gapN(S)이 도입된 6종 변이주 KCCM11240P Tn:P(CJ7)-gapN(S), KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S), KCCM11520P Tn:P(CJ7)-gapN(S), DAB12-b Tn:P(CJ7)-gapN(S), DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S), DAB12-b △NCgl2523 Tn:P(CJ7)-gapN(S) 대비 L.delbrueckii subsp. Bulgaricus 유래의 gapN(L)이 도입된 6종 변이주 KCCM11240P Tn:P(CJ7)-gapN(L), KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(L), KCCM11520P Tn:P(CJ7)-gapN(L), DAB12-b Tn:P(CJ7)-gapN(L), DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(L), DAB12-b △NCgl2523 Tn:P(CJ7)-gapN(L) 균주의 퓨트레신 생산성이 더 높음을 확인하였다.
또한 98시간에 샘플링한 배양물로부터 생산된 퓨트레신 농도를 측정하고 그 결과를 하기 표 4에 나타내었다.
균주명 퓨트레신(g/L) 생산성(g/L/min)
KCCM11240P 12.3 7.52
KCCM11240P Tn:P(cj7)-gapN(L) 12.5 7.65
KCCM11240P Tn:P(cj7)-gapN(S) 12.3 7.52
KCCM11240P P(CJ7)-NCgl2522 15.5 9.48
KCCM11240P P(CJ7)-NCgl2522 Tn:P(cj7)-gapN(L) 16.5 10.01
KCCM11240P P(CJ7)-NCgl2522 Tn:P(cj7)-gapN(S) 16.0 9.79
KCCM11520P 14.5 8.87
KCCM11520P P(CJ7)-NCgl2522 Tn:P(cj7)-gapN(L) 15.3 9.36
KCCM11520P P(CJ7)-NCgl2522 Tn:P(cj7)-gapN(S) 15.0 9.18
DAB12-b 13.1 8.02
DAB12-b Tn:P(cj7)-gapN(L) 13.4 8.20
DAB12-b Tn:P(cj7)-gapN(S) 13.3 8.14
DAB12-b P(CJ7)-NCgl2522 15.9 9.73
DAB12-b P(CJ7)-NCgl2522 Tn:P(cj7)-gapN(L) 16.7 10.22
DAB12-b P(CJ7)-NCgl2522 Tn:P(cj7)-gapN(S) 16.4 10.04
DAB12-b ΔNCgl2523 15.0 9.18
DAB12-b ΔNCgl2523 Tn:P(cj7)-gapN(L) 15.7 9.61
DAB12-b ΔNCgl2523 Tn:P(cj7)-gapN(S) 15.5 9.49
마찬가지로 표 4에서 KCCM11240P 또는 DAB12-b 기반에서 gapN을 강화한 4종의 변이균주 KCCM11240P Tn:P(CJ7)-gapN(L), KCCM11240P Tn:P(CJ7)-gapN(S), DAB12-b Tn:P(CJ7)-gapN(L), DAB12-b Tn:P(CJ7)-gapN(S)은 대조군 대비 동등이상 수준의 퓨트레신 생산량을 나타내었고, 퓨트레신 배출능이 강화된 KCCM11240P P(CJ7)-NCgl2522, KCCM11520P, DAB12-b P(CJ7)-NCgl2522, DAB12-b ΔNCgl2523 기반에서 gapN을 강화한 8종의 변이균주 KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(L), KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S), KCCM11520P Tn:P(CJ7)-gapN(L), KCCM11520P Tn:P(CJ7)-gapN(S), DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(L), DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S), DAB12-b ΔNCgl2523 Tn:P(CJ7)-gapN(L), DAB12-b ΔNCgl2523 Tn:P(CJ7)-gapN(S)의 퓨트레신 생산성이 더욱 증가함을 확인할 수 있다.
이로써 코리네박테리움 글루타미쿰 ATCC 13032 또는 13869 유래의 퓨트레신 생산균주에서 NADP 의존적 글리세르알데하이드-3-포스페이트 디하이드로지나제 유전자를 강화하였을 때, 생산성과 생산량이 모두 증가함을 확인하였으며, 퓨트레신 배출능이 함께 강화시 증가폭이 더욱 커짐을 확인하였다.
1-4: 퓨트레신 균주에서 NADP 의존적 글리세르알데하이드 -3- 포스페이트 디하이드로지나제 활성 비교
Ldb1179 유전자 또는 SMUFR_0590 유전자가 도입된 KCCM11240P Tn:P(CJ7)-gapN(L), KCCM11240P Tn:P(CJ7)-gapN(S) 균주로부터 L.delbrueckii subsp. Bulgaricus 유래의 gapN(L)과 스트렙토코커스 변이주 유래의 gapN(S)의 NADP 의존적 글리세르알데하이드-3-포스페이트 디하이드로지나제의 활성을 비교하였다. 대조군으로 gapN 유전자가 없는 KCCM11240P 균주를 사용하였다. 각 균주를 1 mM 아르기닌 함유 복합 평판 배지에서 하루 정도 배양한 후, 1 mM 아르기닌 함유 종배지에 초기 OD600=0.2로 맞추어 배양한 후, OD600=10에서 세포를 회수하였다.
<종배지>
포도당 20 g, 펩톤 10 g, 효모추출물 10 g, 요소 5 g, KH2PO4 4 g, K2HPO4 8 g, MgSO4 7 H2O 0.5 g, 바이오틴 100㎍, 티아민 HCl 1000㎍ (공정수 1 리터 기준)
공지된 방법 (A. Soukri et al., Protein Expression and Purification; 25; (2002) 519-529)을 이용하여 NADP 의존적 글리세르알데하이드-3-포스페이트 디하이드로지나제의 활성을 측정하고 그 결과를 하기 표 5에 나타내었다.
균주명 gapN activity (%)
KCCM 11240P 0
KCCM 11240P Tn:P(CJ7)-gapN(L) 154
KCCM 11240P Tn:P(CJ7)-gapN(S) 100
상기 표 5에 나타난 바와 같이 스트렙토코커스 변이주 유래의 gapN(S)이 도입된 KCCM 11240P Tn:P(CJ7)-gapN(S)의 NADP 의존적 글리세르알데하이드-3-포스페이트 디하이드로지나제 활성을 100으로 보았을 때, L.delbrueckii subsp. Bulgaricus 유래의 gapN(L)이 도입된 KCCM 11240P Tn:P(CJ7)-gapN(L) 균주의 NADP 의존적 글리세르알데하이드-3-포스페이트 디하이드로지나제의 활성은 1.5배 이상 더 높음을 확인하였다. 이로써 NADP 의존적 글리세르알데하이드-3-포스페이트 디하이드로지나제의 활성이 높을수록, 공급된 NADPH가 많을수록 퓨트레신 생산성 및 생산량이 증가함을 확인하였다.
실시예 2: 트랜스케톨라제 강화를 통한 퓨트레신 생산
퓨트레신 생산균주에서 트랜스케톨라제 활성 강화시 퓨트레신 생산에 미치는 효과를 확인해보았다.
2-1: 트랜스케톨라제 강화를 위한 개시코돈 치환
<2-1-1> 트랜스케톨라제의 개시코돈 TTG를 ATG로 치환하기 위한 벡터의 제작
트랜스케톨라제의 활성을 강화하기 위해, 이를 코딩하는 유전자의 개시코돈 TTG를 ATG로 바꾸기 위한 벡터를 제작하였다.
코리네박테리움 글루타미쿰 ATCC 13032 유래의 트랜스케톨라제를 암호화하는 NCgl1512 유전자의 아미노산 서열 (서열번호 10)과 염기서열 (서열번호 11)은 미국국립보건원 진뱅크 (NIH GenBank)로부터 확보하였다.
본 출원의 구체적인 실시예에서는 형질전환용 벡터 pDZ를 사용하였다. 코리네박테리움 글루타미쿰 ATCC 13032 균주의 염색체를 주형으로 서열번호 12 및 13 프라이머와 서열번호 14 및 15 프라이머를 이용하여 약 0.5 kb 의 유전자 단편 2개를 증폭하였다(표 6). 이때, PCR 반응은 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 30초의 신장 과정을 30회 반복하였다. 이 PCR 결과물을 0.8% 아가로스 겔에서 전기 영동한 후 원하는 크기의 밴드를 용리하여 정제하였다. pDZ 벡터는 XbaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDZ-1'tkt(ATG)라 명명하였다.
서열번호 프라이머 서열(5'-3')
12 NCgl1512_5F CCGGGGATCCTCTAGAGTAGACGCTTGATTGGCGGAC
13 NCgl1512_5R TCCTTCCTGGGTTAAACCGGG
14 NCgl1512_ATG_3F gtttaacccaggaaggaaTGACCACCTTGACGCTGTCAC
15 NCgl1512_3R GCAGGTCGACTCTAGAGTCGAATAGGCCACGCTCAC
또한, 코리네박테리움 글루타미쿰 ATCC 13032의 염기서열을 기반으로 PCR 반응 및 시퀀싱을 통해 코리네박테리움 글루타미쿰 ATCC 13869의 트랜스케톨라제를 암호화하는 NCgl1512와 상동성을 가지는 유전자의 아미노산 서열 (서열번호 16)과 염기서열 (서열번호 17)을 확보하였다.
마찬가지로 코리네박테리움 글루타미쿰 ATCC 13869 균주의 염색체를 주형으로 동일한 프라이머를 사용하여 약 0.5 kb 의 유전자 단편 2개를 증폭하여 상기 방법과 같이 벡터를 제작하였다. 결과로 얻은 플라스미드를 pDZ-2'tkt(ATG)라 명명하였다.
<2-1-2> ATCC 13032 기반 퓨트레신 생산균주의 염색체 내 트렌스포존 유전자 내 트랜스케톨라제의 개시코돈 치환
코리네박테리움 글루타미쿰 ATCC 13032 기반의 퓨트레신 생산균주 KCCM11240P P(CJ7)-NCgl2522 (대한민국 공개특허 제2014-0115244호), KCCM11520P (대한민국 공개특허 제2014-0049766)를 대상으로 실시예 2-1-1에서 제작한 플라스미드 pDZ-1'tkt(ATG)를 실시예 <1-4-1>과 동일한 방법으로 형질전환하여 NCgl1512의 개시코돈이 ATG로 치환된 균주를 제작하였다. 이로부터 선발된 코리네박테리움 글루타미쿰 변이주를 KCCM11240P P(CJ7)-NCgl2522 tkt(ATG), KCCM11520P tkt(ATG)라 명명하였다.
<2-1-3> ATCC 13869 기반 퓨트레신 생산균주의 염색체 내 트렌스포존 유전자 내 트랜스케톨라제의 개시코돈 치환
코리네박테리움 글루타미쿰 ATCC13869 기반의 퓨트레신 생산균주 DAB12-b P(CJ7)-NCgl2522 (대한민국 공개특허 제2014-0115244호), DAB12-b ΔNCgl2523 (대한민국 공개특허 제2014-0049766)를 대상으로 실시예 2-1-1에서 제작한 플라스미드 pDZ-2'tkt(ATG)를 실시예 <1-4-1>과 동일한 방법으로 형질전환하여 NCgl1512의 개시코돈이 ATG로 치환된 균주를 제작하였다. 이로부터 선발된 코리네박테리움 글루타미쿰 변이주를 DAB12-b P(CJ7)-NCgl2522 tkt(ATG), DAB12-b ΔNCgl2523 tkt(ATG)라 명명하였다.
<2-1-4> 트랜스케톨라제의 개시코돈 치환된 코리네 퓨트레신 생산균주의 퓨트레신 생산능 평가
퓨트레신 생산 균주에서 트랜스케톨라제를 암호화하는 유전자 tkt의 발현이 증가할 때 퓨트레신 생산에 미치는 효과를 확인하기 위하여, 상기 실시예 2-1-2 및 2-1-3에서 제작된 코리네박테리움 글루타미쿰 변이주를 대상으로 실시예 1-4-3과 동일한 방법으로 퓨트레신 생산능을 비교하였다.
균주명 퓨트레신(g/L) 생산성(g/l/min)
KCCM11240P P(CJ7)-NCgl2522 7.3 8.76
KCCM11240P P(CJ7)-NCgl2522 tkt(ATG) 8.3 9.96
KCCM11520P 7.0 8.40
KCCM11520P P(CJ7)-NCgl2522 tkt(ATG) 7.9 9.48
DAB12-b P(CJ7)-NCgl2522 7.8 9.36
DAB12-b P(CJ7)-NCgl2522 tkt(ATG) 8.9 10.68
DAB12-b ΔNCgl2523 7.5 9.00
DAB12-b ΔNCgl2523 tkt(ATG) 8.5 10.2
상기 표 7에 나타난 바와 같이, 코리네박테리움 글루타미쿰 ATCC 13032 또는 13869 유래의 퓨트레신 생산균주에서 tkt의 개시코돈이 ATG로 치환된 변이주 모두 대조군 대비 퓨트레신 생산성이 증가되었다.
2-2: 트랜스케톨라제 강화 및 오탄당 인산 경로를 강화하기 위한 프로모터 치환
<2-2-1> 트랜스케톨라제의 프로모터를 치환한 벡터의 제작
트랜스케톨라제 활성을 가진 NCgl1512의 활성을 강화하기 위해 염색체 내 NCgl1512 유전자의 개시코돈 앞에 CJ7 프로모터를 도입하기 위한 벡터를 제작하였다.
본 출원의 구체적인 실시예에서는 형질전환용 벡터 pDZ를 사용하였다. 코리네박테리움 글루타미쿰 ATCC 13032 균주의 염색체를 주형으로 서열번호 12 및 13 프라이머와 서열번호 19 및 15 프라이머를 이용하여 약 0.5 kb 의 유전자 단편 2개를 증폭하였다(표 8). 이때, PCR 반응은 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 30초의 신장 과정을 30회 반복하였다. 이 PCR 결과물을 0.8% 아가로스 겔에서 전기 영동한 후 원하는 크기의 밴드를 용리하여 정제하였다. CJ7 프로모터 부위는 서열번호: 18 및 6의 프라이머 쌍을 이용하여 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 30초 과정을 30회 반복하여 수득하였다. pDZ 벡터는 XbaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDZ-P(CJ7)-1'tkt(ATG)라 명명하였다.
서열번호 프라이머 서열(5'-3')
12 NCgl1512_5F CCGGGGATCCTCTAGAGTAGACGCTTGATTGGCGGAC
13 NCgl1512_5R TCCTTCCTGGGTTAAACCGGG
18 NCgl1512-PC7-F gtttaacccaggaaggaGCCGGCATAGCCTACCGAT
6 PC7-R GATATCAGTGTTTCCTTTCGTTGG
19 NCgl1512-PC7-ATG-F aaggaaacactgatatcaTGACCACCTTGACGCTGTCAC
15 NCgl1512_3R GCAGGTCGACTCTAGAGTCGAATAGGCCACGCTCAC
마찬가지로 코리네박테리움 글루타미쿰 ATCC 13869 균주의 염색체를 주형으로 동일한 프라이머를 사용하여 유전자 단편 3개를 증폭하여고 상기 방법과 같이 벡터를 제작하였다. 결과로 얻은 플라스미드를 pDZ-P(CJ7)-2'tkt(ATG)라 명명하였다.
<2-2-2> ATCC 13032 기반 퓨트레신 생산균주의 염색체 내 트랜스케톨라제의 프로모터 치환
코리네박테리움 글루타미쿰 ATCC 13032 기반의 퓨트레신 생산균주 KCCM11240P P(CJ7)-NCgl2522 (대한민국 공개특허 제2014-0115244호), KCCM11520P (대한민국 공개특허 제2014-0049766)를 대상으로 실시예 2-2-1에서 제작한 플라스미드 pDZ-P(CJ7)-1'tkt(ATG)를 실시예 <1-4-1>과 동일한 방법으로 형질전환하여 NCgl1512의 개시코돈 앞에 CJ7 프로모터가 도입된 균주를 제작하였다. 이로부터 선발된 코리네박테리움 글루타미쿰 변이주를 KCCM11240P P(CJ7)-NCgl2522 P(CJ7)-tkt(ATG), KCCM11520P P(CJ7)-tkt(ATG)라 명명하였다.
<2-2-3> ATCC 13869 기반 퓨트레신 생산균주의 염색체 내 트랜스케톨라제의 프로모터 치환
코리네박테리움 글루타미쿰 ATCC13869 기반의 퓨트레신 생산균주 DAB12-b P(CJ7)-NCgl2522 (대한민국 공개특허 제2014-0115244호), DAB12-b ΔNCgl2523 (대한민국 공개특허 제2014-0049766)를 대상으로 실시예 2-2-1에서 제작한 플라스미드 pDZ-P(CJ7)-2'tkt(ATG)를 실시예 <1-4-1>과 동일한 방법으로 형질전환하여 NCgl1512 개시코돈 앞에 CJ7 프로모터가 도입된 균주를 제작하였다. 이로부터 선발된 코리네박테리움 글루타미쿰 변이주를 DAB12-b P(CJ7)-NCgl2522 P(CJ7)-tkt(ATG), DAB12-b ΔNCgl2523 P(CJ7)-tkt(ATG)라 명명하였다.
<2-2-4> 트랜스케톨라제의 프로모터를 강화한 코리네 퓨트레신 생산균주의 퓨트레신 생산능 평가
퓨트레신 생산 균주에서 트랜스케톨라제의 프로모터를 치환했을 때, 퓨트레신 생산에 미치는 효과를 확인하기 위하여, 상기 실시예 2-2-2 및 2-2-3에서 제작된 코리네박테리움 글루타미쿰 변이주를 대상으로 실시예 1-4-3과 동일한 방법으로 퓨트레신 생산능을 비교하였다.
균주명 퓨트레신(g/L) 생산성(g/l/min)
KCCM11240P P(CJ7)-NCgl2522 7.3 8.76
KCCM11240P P(CJ7)-NCgl2522 P(CJ7)-tkt(ATG) 12.4 14.94
KCCM11520P 7.0 8.4
KCCM11520P P(CJ7)-NCgl2522 P(CJ7)-tkt(ATG) 11.8 14.22
DAB12-b P(CJ7)-NCgl2522 7.8 9.36
DAB12-b P(CJ7)-NCgl2522 P(CJ7)-tkt(ATG) 13.4 16.08
DAB12-b ΔNCgl2523 7.5 9.00
DAB12-b ΔNCgl2523 P(CJ7)-tkt(ATG) 12.5 15.06
표 9에 나타난 바와 같이, 코리네박테리움 글루타미쿰 ATCC 13032 또는 13869 유래의 퓨트레신 생산균주에서 tkt의 프로모터를 CJ7 프로모터로 치환된 변이주 모두 대조군 대비 퓨트레신 생산성이 대폭 증가되었다.
실시예 3: G6PD 강화를 통한 퓨트레신 생산
퓨트레신 생산균주에서 글루코스-6-포스포 디하이드로게네이즈 활성 강화시 퓨트레신 생산에 미치는 효과를 확인해보았다.
3-1: G6PD 강화를 위한 프로모터 치환
<3-1-1> G6PD의 프로모터를 치환하기 위한 벡터의 제작
G6PD의 활성을 강화하기 위해 염색체 내 이를 코딩하는 유전자의 개시코돈 앞에 CJ7 프로모터를 도입하기 위한 벡터를 제작하였다. 코리네박테리움 글루타미쿰 ATCC 13032 유래의 G6PD를 암호화 하는 NCgl1514 유전자의 아미노산 서열 (서열번호 20)과 염기서열 (서열번호 21)은 미국국립보건원 진뱅크 (NIH GenBank)로부터 확보하였다.
본 출원의 구체적인 실시예에서는 형질전환용 벡터 pDZ를 사용하였다. 코리네박테리움 글루타미쿰 ATCC 13032 균주의 염색체를 주형으로 서열번호 22 및 23 프라이머와 서열번호 25 및 26 프라이머를 이용하여 약 0.5 kb 의 유전자 단편 2개를 증폭하였다(표 10). 이때, PCR 반응은 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 30초의 신장 과정을 30회 반복하였다. 이 PCR 결과물을 0.8% 아가로스 겔에서 전기 영동한 후 원하는 크기의 밴드를 용리하여 정제하였다. CJ7 프로모터 부위는 서열번호: 24 및 6의 프라이머 쌍을 이용하여 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 30초 과정을 30회 반복하여 수득하였다. pDZ 벡터는 XbaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDZ-P(CJ7)-1'zwf라 명명하였다.
서열번호 프라이머 서열(5'-3')
22 NCgl1514-5F CCGGGGATCCTCTAGACTGAAGGTGCCAACACTCAGC
23 NCgl1514-5R GATGGTAGTGTCACGATCCTTTC
24 PC7-F(1514) gatcgtgacactaccatcGCCGGCATAGCCTACCGAT
6 PC7-R GATATCAGTGTTTCCTTTCGTTGG
25 NCgl1514-3F(C7-GTG) aaggaaacactgatatcGTGAGCACAAACACGACCCCC
26 NCgl1514-3R GCAGGTCGACTCTAGACGGTGGATTCAGCCATGCC
또한, 코리네박테리움 글루타미쿰 ATCC 13032의 염기서열을 기반으로 PCR 반응 및 시퀀싱을 통해 코리네박테리움 글루타미쿰 ATCC 13869의 G6PD를 암호화하는 NCgl1514와 상동성을 가지는 유전자의 아미노산 서열 (서열번호 27)과 염기서열 (서열번호 28)을 미국국립보건원 진뱅크 (NIH GenBank)로부터 확보하였다.
마찬가지로 코리네박테리움 글루타미쿰 ATCC 13869 균주의 염색체를 주형으로 서열번호 22 및 29 프라이머와 서열번호 25 및 26 프라이머를 이용하여 약 0.5 kb 의 유전자 단편 2개를 증폭하였다(표 11). 이때, PCR 반응은 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 30초의 신장 과정을 30회 반복하였다. 이 PCR 결과물을 0.8% 아가로스 겔에서 전기 영동한 후 원하는 크기의 밴드를 용리하여 정제하였다. CJ7 프로모터 부위는 서열번호 30 및 6의 프라이머 쌍을 이용하여 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 30초 과정을 30회 반복하여 수득하였다. pDZ 벡터는 XbaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDZ-P(CJ7)-2'zwf라 명명하였다.
서열번호 프라이머 서열(5'-3')
22 NCgl1514-5F CCGGGGATCCTCTAGACTGAAGGTGCCAACACTCAGC
29 2'NCgl1514-5R GATGGTAGCGTCACGATCCTTTC
30 2'PC7-F(1514) gatcgtgacgctaccatcGCCGGCATAGCCTACCGAT
6 PC7-R GATATCAGTGTTTCCTTTCGTTGG
25 NCgl1514-3F(C7-GTG) aaggaaacactgatatcGTGAGCACAAACACGACCCCC
26 NCgl1514-3R GCAGGTCGACTCTAGACGGTGGATTCAGCCATGCC
<3-1-2> ATCC 13032 기반 퓨트레신 생산균주의 염색체 내 G6PD 의 프로모터 치환
코리네박테리움 글루타미쿰 ATCC 13032 기반의 퓨트레신 생산균주 KCCM11240P P(CJ7)-NCgl2522 (대한민국 공개특허 제2014-0115244호), KCCM11520P (대한민국 공개특허 제2014-0049766)를 대상으로 실시예 3-1-1에서 제작한 플라스미드 pDZ-P(CJ7)-1'zwf를 실시예 <1-4-1>과 동일한 방법으로 형질전환하여 NCgl1514의 개시코돈 앞에 CJ7 프로모터가 도입된 균주를 제작하였다. 이로부터 선발된 코리네박테리움 글루타미쿰 변이주를 KCCM11240P P(CJ7)-NCgl2522 P(CJ7)-zwf, KCCM11520P P(CJ7)-zwf 명명하였다.
<3-1-3> ATCC 13869 기반 퓨트레신 생산균주의 염색체 내 G6PD 의 프로모터 치환
코리네박테리움 글루타미쿰 ATCC13869 기반의 퓨트레신 생산균주 DAB12-b P(CJ7)-NCgl2522 (대한민국 공개특허 제2014-0115244호), DAB12-b ΔNCgl2523 (대한민국 공개특허 제2014-0049766)를 대상으로 실시예 3-1-1에서 제작한 플라스미드 pDZ-P(CJ7)-2'zwf를 실시예 <1-4-1>과 동일한 방법으로 형질전환하여 NCgl1512 개시코돈 앞에 CJ7 프로모터가 도입된 균주를 제작하였다. 이로부터 선발된 코리네박테리움 글루타미쿰 변이주를 DAB12-b P(CJ7)-NCgl2522 P(CJ7)-zwf, DAB12-b ΔNCgl2523 P(CJ7)-zwf라 명명하였다.
<3-1-4> G6PD 의 프로모터를 강화한 코리네 퓨트레신 생산균주의 퓨트레신 생산능 평가
퓨트레신 생산 균주에서 G6PD 의 프로모터를 치환했을 때, 퓨트레신 생산에 미치는 효과를 확인하기 위하여, 상기 실시예 3-1-2 및 3-1-3에서 제작된 코리네박테리움 글루타미쿰 변이주를 대상으로 실시예 1-4-3과 동일한 방법으로 퓨트레신 생산능을 비교하였다.
균주명 퓨트레신(g/L) 생산성(g/l/h)
KCCM11240P P(CJ7)-NCgl2522 7.3 8.76
KCCM11240P P(CJ7)-NCgl2522 P(CJ7)-zwf 7.9 9.48
KCCM11520P 7.0 8.40
KCCM11520P P(CJ7)-NCgl2522 P(CJ7)-zwf 7.5 9.00
DAB12-b P(CJ7)-NCgl2522 7.8 9.36
DAB12-b P(CJ7)-NCgl2522 P(CJ7)-zwf 8.5 10.20
DAB12-b ΔNCgl2523 7.5 9.00
DAB12-b ΔNCgl2523 P(CJ7)-zwf 8.0 9.60
상기 표 12에 나타난 바와 같이, 코리네박테리움 글루타미쿰 ATCC 13032 또는 13869 유래의 퓨트레신 생산균주에서 G6PD 의 프로모터를 CJ7 프로모터로 치환된 변이주 모두 대조군 대비 퓨트레신 생산성이 증가되었다.
3-2: G6PD 강화를 위한 프로모터및 개시코돈 동시 치환
<3-2-1> G6PD의 프로모터 및 개시코돈이 동시에 치환된 벡터의 제작
G6PD의 활성을 강화하기 위해 염색체 내 이를 코딩하는 유전자의 개시코돈 앞에 CJ7 프로모터를 도입과 동시에 개시코돈 GTG를 ATG로 치환하기 위한 벡터를 제작하였다.
본 출원의 구체적인 실시예에서는 형질전환용 벡터 pDZ를 사용하였다. 코리네박테리움 글루타미쿰 ATCC 13032 균주의 염색체를 주형으로 서열번호 22 및 23 프라이머와 서열번호 31 및 26 프라이머를 이용하여 약 0.5 kb 의 유전자 단편 2개를 증폭하였다(표 13). 이때, PCR 반응은 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 30초의 신장 과정을 30회 반복하였다. 이 PCR 결과물을 0.8% 아가로스 겔에서 전기 영동한 후 원하는 크기의 밴드를 용리하여 정제하였다. CJ7 프로모터 부위는 서열번호: 24 및 6의 프라이머 쌍을 이용하여 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 30초 과정을 30회 반복하여 수득하였다. pDZ 벡터는 XbaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDZ-P(CJ7)-1'zwf(ATG)라 명명하였다.
서열번호 프라이머 서열(5'-3')
22 NCgl1514-5F CCGGGGATCCTCTAGACTGAAGGTGCCAACACTCAGC
23 NCgl1514-5R GATGGTAGTGTCACGATCCTTTC
24 PC7-F(1514) gatcgtgacactaccatcGCCGGCATAGCCTACCGAT
6 PC7-R GATATCAGTGTTTCCTTTCGTTGG
31 NCgl1514-3F(C7-ATG) aaggaaacactgatatcATGAGCACAAACACGACCCCC
26 NCgl1514-3R GCAGGTCGACTCTAGACGGTGGATTCAGCCATGCC
마찬가지로 코리네박테리움 글루타미쿰 ATCC 13869 균주의 염색체를 주형으로 서열번호 22 및 프라이머 29와 서열번호 31 및 26 프라이머를 이용하여 약 0.5 kb 의 유전자 단편 2개를 증폭하였다(표 14). 이때, PCR 반응은 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 30초의 신장 과정을 30회 반복하였다. 이 PCR 결과물을 0.8% 아가로스 겔에서 전기 영동한 후 원하는 크기의 밴드를 용리하여 정제하였다. CJ7 프로모터 부위는 서열번호: 30 및 6의 프라이머 쌍을 이용하여 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 30초 과정을 30회 반복하여 수득하였다. pDZ 벡터는 XbaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDZ-P(CJ7)-2'zwf(ATG)라 명명하였다.
서열번호 프라이머 서열(5'-3')
22 NCgl1514-5F CCGGGGATCCTCTAGACTGAAGGTGCCAACACTCAGC
29 2'NCgl1514-5R GATGGTAGCGTCACGATCCTTTC
30 2'PC7-F(1514) gatcgtgacgctaccatcGCCGGCATAGCCTACCGAT
6 PC7-R GATATCAGTGTTTCCTTTCGTTGG
31 NCgl1514-3F(C7-ATG) aaggaaacactgatatcATGAGCACAAACACGACCCCC
26 NCgl1514-3R GCAGGTCGACTCTAGACGGTGGATTCAGCCATGCC
<3-2-2> ATCC 13032 기반 퓨트레신 생산균주의 염색체 내 G6PD 의 프로모터 치환
코리네박테리움 글루타미쿰 ATCC 13032 기반의 퓨트레신 생산균주 KCCM11240P P(CJ7)-NCgl2522 (대한민국 공개특허 제2014-0115244호), KCCM11520P (대한민국 공개특허 제2014-0049766)를 대상으로 실시예 3-2-1에서 제작한 플라스미드 pDZ-P(CJ7)-1'zwf(ATG)를 실시예 <1-4-1>과 동일한 방법으로 형질전환하여 NCgl15124의 개시코돈 앞에 CJ7 프로모터가 도입되고 개시코돈이 ATG로 치환된 균주를 제작하였다. 이로부터 선발된 코리네박테리움 글루타미쿰 변이주를 KCCM11240P P(CJ7)-NCgl2522 P(CJ7)-zwf(ATG), KCCM11520P P(CJ7)-zwf(ATG)라 명명하였다.
<3-2-3> ATCC 13869 기반 퓨트레신 생산균주의 염색체 내 G6PD 의 프로모터 치환
코리네박테리움 글루타미쿰 ATCC13869 기반의 퓨트레신 생산균주 DAB12-b P(CJ7)-NCgl2522 (대한민국 공개특허 제2014-0115244호), DAB12-b ΔNCgl2523 (대한민국 공개특허 제2014-0049766)를 대상으로 실시예 3-2-1에서 제작한 플라스미드 pDZ-P(CJ7)-2'zwf(ATG)를 실시예 <1-4-1>과 동일한 방법으로 형질전환하여 NCgl1512 개시코돈 앞에 CJ7 프로모터가 도입된 균주를 제작하였다. 이로부터 선발된 코리네박테리움 글루타미쿰 변이주를 DAB12-b P(CJ7)-NCgl2522 P(CJ7)-zwf(ATG), DAB12-b ΔNCgl2523 P(CJ7)-zwf(ATG)라 명명하였다.
<3-2-4> G6PD의 프로모터를 강화하고 개시코돈을 ATG 로 치환한 코리네 퓨트레신 생산균주의 퓨트레신 생산능 평가
퓨트레신 생산 균주에서 G6PD 의 프로모터를 CJ7 프로모터로를 치환하고 개시코돈을 ATG로 치환했을 때, 퓨트레신 생산에 미치는 효과를 확인하기 위하여, 상기 실시예 3-2-2 및 3-2-3에서 제작된 코리네박테리움 글루타미쿰 변이주를 대상으로 실시예 1-4-3과 동일한 방법으로 퓨트레신 생산능을 비교하였다.
균주명 퓨트레신(g/L) 생산성(g/l/min)
KCCM11240P P(CJ7)-NCgl2522 7.3 8.76
KCCM11240P P(CJ7)-NCgl2522 P(CJ7)-zwf(ATG) 7.9 9.48
KCCM11520P 7.0 8.40
KCCM11520P P(CJ7)-NCgl2522 P(CJ7)-zwf(ATG) 7.6 9.12
DAB12-b P(CJ7)-NCgl2522 7.8 9.36
DAB12-b P(CJ7)-NCgl2522 P(CJ7)-zwf(ATG) 8.6 10.32
DAB12-b ΔNCgl2523 7.5 9.00
DAB12-b ΔNCgl2523 P(CJ7)-zwf(ATG) 8.1 9.72
상기 표 15에 나타난 바와 같이, 코리네박테리움 글루타미쿰 ATCC 13032 또는 13869 유래의 퓨트레신 생산균주에서 zwf의 프로모터를 CJ7 프로모터로 치환하고 개시코돈을 ATG로 치환한 변이주 모두 대조군 대비 퓨트레신 생산성이 증가되었다.
실시예 4: 6PGD 강화를 통한 퓨트레신 생산
퓨트레신 생산균주에서 6PGD(6-phosphogluconate dehydrogenase) 활성 강화시 퓨트레신 생산에 미치는 효과를 확인해보았다.
4- 1: 6PGD를 코리네형 미생물 염색체 내 트렌스포존 유전자내 도입을 위한 벡터의 제작
6PGD 활성을 가진 NCgl1396의 활성을 강화하기 위해 염색체 내 트렌스포존 유전자 내 CJ7 프로모터에 의해 발현되는 NCgl1396을 도입하기 위한 벡터를 제작하였다. 코리네박테리움 글루타미쿰 ATCC 13032 유래의 6PGD활성이 있는 Gnd을 암호화 하는 하는 NCgl1396 의 아미노산 서열 (서열번호 32)과 염기서열 (서열번호 33)은 미국국립보건원 진뱅크 (NIH GenBank)로부터 확보하였다.
본 출원의 구체적인 실시예에서는 코리네박테리움 속 미생물의 트렌스포존 유전자 부위를 이용하여 염색체 내 트렌스포존 유전자 내 유전자를 도입하기 위하여 형질전환용 벡터 pDZTn를 사용하였다. 코리네박테리움 글루타미쿰 ATCC 13032 균주의 염색체를 주형으로 서열번호 34 및 35 프라이머를 이용하여 약 1.45 kb 의 유전자 단편을 증폭하였다(표 16). 이때, PCR 반응은 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 1분 30초의 신장 과정을 30회 반복하였다. 이 PCR 결과물을 0.8% 아가로스 겔에서 전기 영동한 후 원하는 크기의 밴드를 용리하여 정제하였다. CJ7 프로모터 부위는 서열번호: 5 및 6의 프라이머 쌍을 이용하여 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 30초 과정을 30회 반복하여 수득하였다. pDZ 벡터는 XbaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDZTn:P(CJ7)-1'gnd라 명명하였다.
서열번호 프라이머 서열(5'-3')
34 NCgl1396-F aaggaaacactgatatcATGACTAATGGAGATAATCTCGCAC
35 1'NCgl1396-R gccaaaacagcctcgagTTAAGCTTCAACCTCGGAGCG
5 CJ7-F ggcccactagtctcgagGCCGGCATAGCCTACCGAT
6 CJ7-R GATATCAGTGTTTCCTTTCGTTGG
또한, 코리네박테리움 글루타미쿰 ATCC 13032의 염기서열을 기반으로 PCR 반응 및 시퀀싱을 통해 코리네박테리움 글루타미쿰 ATCC 13869의 Gnd를 암호화하는 NCgl1396와 상동성을 가지는 유전자의 아미노산 서열 (서열번호 36)염기서열과 (서열번호 37)을 미국국립보건원 진뱅크 (NIH GenBank)로부터 확보하였다.
마찬가지로 코리네박테리움 글루타미쿰 ATCC 13869 균주의 염색체를 주형으로 서열번호 34 및 38 프라이머를 이용하여 약 1.45 kb 의 유전자 단편을 증폭하였다(표 17). 이때, PCR 반응은 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 30초의 신장 과정을 30회 반복하였다. 이 PCR 결과물을 0.8% 아가로스 겔에서 전기 영동한 후 원하는 크기의 밴드를 용리하여 정제하였다. CJ7 프로모터 부위는 서열번호: 5 및 6의 프라이머 쌍을 이용하여 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 30초 과정을 30회 반복하여 수득하였다. pDZ 벡터는 XbaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDZTn:P(CJ7)-2'gnd라 명명하였다.
서열번호 프라이머 서열(5'-3')
34 NCgl1396-F aaggaaacactgatatcATGTCTGGAGGATTAGTTACAGC
38 2'NCgl1396-R gccaaaacagcctcgagTTAAGCTTCCACCTCGGAGC
5 CJ7-F ggcccactagtctcgagGCCGGCATAGCCTACCGAT
6 CJ7-R GATATCAGTGTTTCCTTTCGTTGG
4-2: ATCC 13032 기반 퓨트레신 생산균주의 염색체 내 트렌스포존 유전자 내 6PGD 도입
코리네박테리움 글루타미쿰 ATCC 13032 기반의 퓨트레신 생산균주 KCCM11240P P(CJ7)-NCgl2522 (대한민국 공개특허 제2014-0115244호), KCCM11520P (대한민국 공개특허 제2014-0049766)를 대상으로 실시예 4-1에서 제작한 플라스미드 pDZTn:P(CJ7)-1'gnd를 실시예 <1-4-1>과 동일한 방법으로 형질전환하여 트렌스포존 내 Gnd을 암호화하는 유전자인 NCgl1396이 도입되었음을 확인하였다. 이로부터 선발된 코리네박테리움 글루타미쿰 변이주를 KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gnd, KCCM11520P Tn:P(CJ7)-gnd 명명하였다.
4-3: ATCC 13869 기반 퓨트레신 생산균주의 염색체 내 트렌스포존 유전자 내 6PGD 도입
코리네박테리움 글루타미쿰 ATCC13869 기반의 퓨트레신 생산균주 DAB12-b P(CJ7)-NCgl2522 (대한민국 공개특허 제2014-0115244호), DAB12-b ΔNCgl2523 (대한민국 공개특허 제2014-0049766)를 대상으로 실시예 4-1에서 제작한 플라스미드 pDZTn:P(CJ7)-1'gnd를 실시예 <1-4-1>과 동일한 방법으로 형질전환하여 트렌스포존 내 Gnd을 암호화하는 유전자인 NCgl1396이 도입되었음을 확인하였다. 이로부터 선발된 코리네박테리움 글루타미쿰 변이주를 DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gnd, DAB12-b ΔNCgl2523 Tn:P(CJ7)-gnd 라 명명하였다.
4-4: 6PGD를 강화한 코리네 퓨트레신 생산균주의 퓨트레신 생산능 평가
퓨트레신 생산 균주에서 6PGD를 암호화하는 NCgl1396을 염색체 내 트렌스포존 내 도입하였을 때, 퓨트레신 생산에 미치는 효과를 확인하기 위하여, 상기 실시예 4-2 및 4-3에서 제작된 코리네박테리움 글루타미쿰 변이주를 대상으로 퓨트레신 생산능을 비교하였다.
구체적으로, 4종의 대조군(KCCM11240P P(CJ7)-NCgl2522, KCCM11520P, DAB12-b P(CJ7)-NCgl2522, DAB12-b ΔNCgl2523)과 4종의 코리네박테리움 글루타미쿰 변이주 (KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gnd, KCCM11520P Tn:P(CJ7)-gnd, DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gnd, DAB12-b ΔNCgl2523 Tn:P(CJ7)-gnd 를 각각 1 mM 아르기닌 함유 CM 평판배지에 도말하여 30℃에서 24시간 동안 배양하였다. 이로부터 배양된 각 균주를 25 ml의 생산 배지에 한 백금이 정도로 접종한 후 이를 30℃에서 200 rpm으로 98시간 동안 진탕 배양하였다. 모든 균주의 배양 시 배지에 1 mM 아르기닌을 첨가하였다.
<CM 평판 배지(pH 6.8)>
포도당 1%, 폴리펩톤 1%, 효모 추출물 0.5%, 비프 추출물 0.5%, 염화나트륨(NaCl) 0.25%, 우레아 0.2%, 50% 수산화나트륨(NaOH) 100 μl, 한천(agar) 2%, pH 6.8, (증류수 1 리터 기준)
<생산배지 (pH 7.0)>
포도당 8%, 대두단백질 0.25%, 옥수수고형 0.50%, 황산암모늄((NH4)2SO4) 4%, 인산칼륨(KH2PO4) 0.1%, 황산마그네슘 7 수화물 (MgSO4·7H2O) 0.05%, 우레아 0.15%, 바이오틴 100 μg, 티아민 염산염 3 mg, 칼슘-판토텐산 3 mg, 니코틴아미드 3 mg, 탄산칼슘 (CaCO3) 5% (증류수 1리터 기준).
98시간 배양한 최종산물로부터 생산된 퓨트레신 농도를 측정하고 그 결과를 하기 표 18에 나타내었다.
균주명 퓨트레신(g/L) 생산성(g/L/min)
KCCM11240P P(CJ7)-NCgl2522 15.5 9.48
KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gnd 15.9 9.73
KCCM11520P 14.5 8.87
KCCM11520P P(CJ7)-NCgl2522 Tn:P(CJ7)-gnd 15.2 9.30
DAB12-b P(CJ7)-NCgl2522 15.9 9.73
DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gnd 16.2 9.91
DAB12-b ΔNCgl2523 15.0 9.18
DAB12-b ΔNCgl2523 Tn:P(CJ7)-gnd 15.5 9.49
상기 표 18에 나타난 바와 같이, 코리네박테리움 글루타미쿰 ATCC 13032 또는 13869 유래의 퓨트레신 생산균주에서 gnd의 발현양을 증가시킨 변이주 모두 대조군 대비 퓨트레신 생산량이 소폭 증가되었다.
실시예 5 : NAD(P) 트랜스하이드로게나제 도입을 통한 퓨트레신 생산
퓨트레신을 생산하는 코리네박테리움 글루타미쿰에서 NAD(P) 트랜스하이드로게나제 (NAD(P) transhydrogenase)활성 강화시 NADPH 공급에 따른 퓨트레신 생산에 미치는 효과를 확인해보았다.
5-1: 대장균( E. coli ) W3110 유래의 NAD (P) 트랜스하이드로게나제를 코리네형 미생물 염색체 내 트렌스포존 유전자 내 도입을 위한 벡터의 제작
대장균 W3110 유래의 NAD(P) 트랜스하이드로게나제활성을 가진 PntAB를 암호화하는 Y75_p1579와 Y75_p1578의 발현을 강화하기 위해 염색체 내 트랜스포존 유전자 내 트랜스포존 유전자 내 CJ7 프로모터에 의해 발현되는 Y75_p1579와 Y75_p1578 유전자를 도입하기 위한 벡터를 제작하였다. 대장균 W3110 유래의 NAD(P) 트랜스하이드로게나제는 PntA와 PntB가 complex를 이룬다. PntA를 암호화 하는 Y75_p1579 유전자의 아미노산 서열 (서열번호 39)과 염기서열 (서열번호 40) 및 PntB를 암호화하는 Y75_p1578 유전자의 아미노산 서열 (서열번호 41)과 염기서열 (서열번호 42)은 미국국립보건원 진뱅크 (NIH GenBank)로부터 확보하였다.
본 출원의 구체적인 실시예에서는 코리네박테리움 속 미생물의 트렌스포존 유전자 부위를 이용하여 염색체 내 트렌스포존 유전자 내 유전자를 도입하기 위하여 형질전환용 벡터 pDZTn를 사용하였다. 대장균 W3110 균주의 염색체를 주형으로 서열번호 43 및 44 프라이머를 이용하여 약 2.92 kb 의 유전자 단편을 증폭하였다(표 19). 이때, PCR 반응은 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 3분의 신장 과정을 30회 반복하였다. 이 PCR 결과물을 0.8% 아가로스 겔에서 전기 영동한 후 원하는 크기의 밴드를 용리하여 정제하였다. CJ7 프로모터 부위는 서열번호: 5 및 6의 프라이머 쌍을 이용하여 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 30초 과정을 30회 반복하여 수득하였다. pDZTn 벡터는 XhoI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDZTn:P(CJ7)-pntAB라 명명하였다.
서열번호 프라이머 서열(5'-3')
43 Y75_p1579-F aaggaaacactgatatcATGCGAATTGGCATACCAAGAGAAC
44 Y75_p1578-R gccaaaacagcctcgagTTACAGAGCTTTCAGGATTGCATCC
5 CJ7-F ggcccactagtctcgagGCCGGCATAGCCTACCGAT
6 CJ7-R GATATCAGTGTTTCCTTTCGTTGG
5-2: ATCC 13032 기반 퓨트레신 생산균주의 염색체 내 트렌스포존 유전자 내 NAD(P) 트랜스하이드로게나제 도입
코리네박테리움 글루타미쿰 ATCC 13032 기반의 퓨트레신 생산균주 KCCM11240P (대한민국 공개특허 제2013-0003648호), KCCM11240P P(CJ7)-NCgl2522 (대한민국 공개특허 제2014-0115244호)를 대상으로 실시예 5-1에서 제작한 플라스미드 pDZTn:P(CJ7)-pntAB를 실시예 <1-4-1>과 동일한 방법으로 형질전환하여 트렌스포존 내 PntAB을 암호화하는 유전자인 Y75_p1579과 Y75_p1578이 도입되었음을 확인하였다. 이로부터 선발된 코리네박테리움 글루타미쿰 변이주를 KCCM11240P Tn:P(CJ7)-pntAB, KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-pntAB 명명하였다.
5-3: ATCC 13869 기반 퓨트레신 생산균주의 염색체 내 트렌스포존 유전자 내 NAD(P) 트랜스하이드로게나제도입
코리네박테리움 글루타미쿰 ATCC13869 기반의 퓨트레신 생산균주 DAB12-b (대한민국 공개특허 10-2013-0003648), DAB12-b P(CJ7)-NCgl2522 (대한민국 공개특허 제2014-0115244호)를 대상으로 실시예 5-1에서 제작한 플라스미드 pDZTn:P(CJ7)-pntAB를 실시예 <1-4-1>과 동일한 방법으로 형질전환하여 트렌스포존 내 PntAB을 암호화하는 유전자인 암호화하는 유전자인 Y75_p1579과 Y75_p1578이 도입되었음을 확인하였다. 이로부터 선발된 코리네박테리움 글루타미쿰 변이주를 DAB12-b Tn:P(CJ7)-pntAB, DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-pntAB라 명명하였다.
5-4: NAD (P) 트랜스하이드로게나제를 도입한 코리네 퓨트레신 생산균주의 퓨트레신 생산능 평가
퓨트레신 생산 균주에서 NAD(P) 트랜스하이드로게나제 유전자 도입시 퓨트레신 생산에 미치는 효과를 확인하기 위하여, 상기 실시예 5-2 및 5-3에서 제작된 코리네박테리움 글루타미쿰 변이주를 대상으로 실시예 1-4-3과 동일한 방법으로 퓨트레신 생산능을 비교하였다.
균주명 퓨트레신(g/L) 생산성(g/l/min)
KCCM11240P 5.8 6.96
KCCM11240P Tn:P(CJ7)-pntAB 6.1 7.32
KCCM11240P P(CJ7)-NCgl2522 7.3 8.76
KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-pntAB 7.5 9.00
DAB12-b 6.5 7.80
DAB12-b Tn:P(CJ7)-pntAB 6.7 8.04
DAB12-b P(CJ7)-NCgl2522 7.8 9.36
DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-pntAB 8.1 9.72
상기 표 20에 나타난 바와 같이, 코리네박테리움 글루타미쿰 ATCC 13032 또는 13869 유래의 퓨트레신 생산균주에서 대장균 유래의 NADP 트랜스하이드로게나제 pntAB를 도입한 변이주 모두 대조군 대비 퓨트레신 생산성이 소폭 증가되었다.
실시예 6: 글루코네이트 키나제의 불활성화를 통한 퓨트레신 생산
퓨트레신 생산균주에서 글루코네이트 키나제(Gluconate kinase) 활성 약화시 퓨트레신 생산에 미치는 효과를 확인해보았다.
실시예 6-1: 글루코네이트 키나제 유전자 NCgl2399 , NCgl2905 결손벡터 제작
<6-1-1> NCgl2399 결손을 위한 벡터의 제작
코리네박테리움 글루타미쿰 ATCC 13032 염색체 내에는 글루코네이트 키나제 활성을 가지는 유전자 NCgl2399와 NCgl2905가 있다. 글루코네이트 키나제 활성을 가진 두개의 유전자 중, NCgl2399 유전자를 결손하기 위한 벡터를 제작하였다. 코리네박테리움 글루타미쿰 ATCC 13032 균주의 NCgl2399 유전자의 아미노산 서열 (서열번호 45)과 염기서열 (서열번호 46)은 미국국립보건원 진뱅크 (NIH GenBank)로부터 확보하였다.
본 출원의 구체적인 실시예에서는 형질전환용 벡터 pDZ를 사용하였다. 코리네박테리움 글루타미쿰 ATCC 13032 균주의 염색체를 주형으로 서열번호 47 및 48 프라이머와 서열번호 49 및 50 프라이머를 이용하여 약 0.5 kb 의 유전자 단편 2개를 증폭하였다(표 21). 이때, PCR 반응은 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 30초의 신장 과정을 30회 반복하였다. 이 PCR 결과물을 0.8% 아가로스 겔에서 전기 영동한 후 원하는 크기의 밴드를 용리하여 정제하였다. pDZ 벡터는 XbaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDZ-1'NCgl2399(K/O)라 명명하였다.
서열번호 프라이머 서열(5'-3')
47 NCgl2399-del-5F CCGGGGATCCTCTAGAgcccacgctttgtatcaatgg
48 NCgl2399-del-5R GAAGTTCGTCGCCGTCTTTG
49 NCgl2399-del-3F GACGGCGACGAACTTCGGCCGCCCAATCTGCAG
50 NCgl2399-del-3R GCAGGTCGACTCTAGAGGGTGGGGTCTGCTTTGG
또한, 코리네박테리움 글루타미쿰 ATCC 13032의 염기서열을 기반으로 PCR 반응 및 시퀀싱을 통해 코리네박테리움 글루타미쿰 ATCC 13869의 NCgl2399와 상동성을 가지는 유전자의 아미노산 서열 (서열번호 51)과 염기서열 (서열번호 52)를 확보하였다.
마찬가지로 코리네박테리움 글루타미쿰 ATCC 13869 균주의 염색체를 주형으로 동일한 프라이머를 사용하여 약 0.5 kb 의 유전자 단편 2개를 증폭하여 상기 방법과 같이 벡터를 제작하였다. 결과로 얻은 플라스미드를 pDZ-2'NCgl2399(K/O)라 명명하였다.
<6-1-2> NCgl2905 결손을 위한 벡터의 제작
글루코네이트 키나제 활성을 가진 또다른 유전자 NCgl2905 유전자를 결손하기 위한 벡터를 제작하였다. 코리네박테리움 글루타미쿰 ATCC 13032 균주의 NCgl2905 유전자의 아미노산 서열 (서열번호 53)과 염기서열 (서열번호 54)은 미국국립보건원 진뱅크 (NIH GenBank)로부터 확보하였다.
본 출원의 구체적인 실시예에서는 형질전환용 벡터 pDZ를 사용하였다. 코리네박테리움 글루타미쿰 ATCC 13032 균주의 염색체를 주형으로 서열번호 55 및 56 프라이머와 서열번호 57 및 58 프라이머를 이용하여 약 0.5 kb 의 유전자 단편 2개를 증폭하였다(표 22). 이때, PCR 반응은 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 30초의 신장 과정을 30회 반복하였다. 이 PCR 결과물을 0.8% 아가로스 겔에서 전기 영동한 후 원하는 크기의 밴드를 용리하여 정제하였다. pDZ 벡터는 XbaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDZ-1'NCgl2905(K/O)라 명명하였다.
서열번호 프라이머 서열(5'-3')
55 NCgl2905-del-5F CCGGGGATCCTCTAGActgggtcgtggcataagaa
56 NCgl2905-del-5R GTGCCTTTGATTGGGCAGC
57 NCgl2905-del-3F GCCCAATCAAAGGCACGAATTCCTCGCGATGCTTTCC
58 NCgl2905-del-3R GCAGGTCGACTCTAGACTAGACCAACTTGAGGTAGAGG
또한, 코리네박테리움 글루타미쿰 ATCC 13032의 염기서열을 기반으로 PCR 반응 및 시퀀싱을 통해 코리네박테리움 글루타미쿰 ATCC 13869의 NCgl2905와 상동성을 가지는 유전자의 아미노산 서열 (서열번호 59)과 염기서열 (서열번호 60)을 확보하였다.
마찬가지로 코리네박테리움 글루타미쿰 ATCC 13869 균주의 염색체를 주형으로 동일한 프라이머를 사용하여 약 0.5 kb 의 유전자 단편 2개를 증폭하여 상기 방법과 같이 벡터를 제작하였다. 결과로 얻은 플라스미드를 pDZ-2'NCgl2905(K/O)라 명명하였다.
6-2: 글루코네이트 키나제 유전자 NCgl2399 , NCgl2905 결손균주 제작 및 평가
<6-2-1> ATCC 13032 기반 퓨트레신 생산균주의 NCgl2399 결손균주 제작
코리네박테리움 글루타미쿰 ATCC 13032 기반의 퓨트레신 생산균주 코리네박테리움 글루타미쿰 KCCM11240P(대한민국 공개 특허 제2013-0003648호) 를 대상으로 실시예 6-1-1에서 제작한 플라스미드 pDZ-1'NCgl2399(K/O)를 실시예 <1-4-1>과 동일한 방법으로 형질전환하여 NCgl2399 유전자가 결손된 균주를 제작하였다. 이로부터 선발된 코리네박테리움 글루타미쿰 변이주를 KCCM11240P △NCgl2399 라 명명하였다.
<6-2-2> ATCC 13032 기반 퓨트레신 생산균주의 NCgl2399 , NCgl2905 동시 결손균주 제작
실시예 6-2-1에서 제작한 KCCM11240P △NCgl2399를 대상으로 실시예 6-1-2에서 제작한 플라스미드 pDZ-1'NCgl2905(K/O)를 실시예 <1-4-1>과 동일한 방법으로 형질전환하여 NCgl2399 유전자와 NCgl2905가 모두 결손된 균주를 제작하였다. 이로부터 선발된 코리네박테리움 글루타미쿰 변이주를 KCCM11240P △NCgl2399 △NCgl2905라 명명하였다.
<6-2-3> ATCC 13869 기반 퓨트레신 생산균주의 NCgl2399 결손균주 제작
코리네박테리움 글루타미쿰 ATCC 13032 기반의 퓨트레신 생산균주 코리네박테리움 글루타미쿰 DAB12-b (대한민국 공개특허 제2013-0003648호) 를 대상으로 실시예 6-1-1에서 제작한 플라스미드 pDZ-2'NCgl2399(K/O)를 실시예 <1-4-1>과 동일한 방법으로 형질전환하여 NCgl2399 유전자가 결손된 균주를 제작하였다. 이로부터 선발된 코리네박테리움 글루타미쿰 변이주를 DAB12-b △NCgl2399라 명명하였다.
<6-2-4> ATCC 13869 기반 퓨트레신 생산균주의 NCgl2399 , NCgl2905 동시 결손균주 제작
실시예 7-2-3에서 제작한 KCCM11240P △NCgl2399를 대상으로 실시예 6-1-2에서 제작한 플라스미드 pDZ-2'NCgl2905(K/O)를 실시예 <1-4-1>과 동일한 방법으로 형질전환하여 NCgl2399 유전자와 NCgl2905가 모두 결손된 균주를 제작하였다. 이로부터 선발된 코리네박테리움 글루타미쿰 변이주를 DAB12-b △NCgl2399 △NCgl2905라 명명하였다.
<6-2-5> 글루코네이트 키나제의 활성이 불활성화된 균주의 퓨트레신 생산능 평가
퓨트레신 생산 균주에서 글루코네이트 키나제 유전자 NCgl2399와 NCgl2905가 결손되었을 때 퓨트레신 생산에 미치는 효과를 확인하기 위하여, 상기 실시예 6-2-1, 6-2-2, 6-2-3 및 6-2-4에서 제작된 코리네박테리움 글루타미쿰 변이주를 대상으로 실시예 1-4-3과 동일한 방법으로 퓨트레신 생산능을 비교하였다.
균주명 퓨트레신(g/L) 생산성(g/l/min)
KCCM11240P 5.8 6.96
KCCM11240P ΔNCgl2399 5.9 7.08
KCCM11240P ΔNCgl2399 ΔNCgl2905 6.4 7.68
DAB12-b 6.5 7.80
DAB12-b ΔNCgl2399 6.5 7.80
DAB12-b ΔNCgl2399 ΔNCgl2905 7.1 8.52
상기 표 23에 나타난 바와 같이, 코리네박테리움 글루타미쿰 ATCC 13032 또는 13869 유래의 퓨트레신 생산균주에서 글루코네이트 키나제 유전자 NCgl2399와 NCgl2905가 결손된 변이주 모두 대조군 대비 퓨트레신 생산성이 증가되었다. 그리고 NCgl2399 단독 결손된 균주대비 NCgl2399와 NCgl2905 모두 결손된 균주의 퓨트레신 생산성이 더 높음을 확인하였다.
실시예 7: NADP 의존적 글리세르알데드 -3- 포스페이트 디하이드로게나제 도입 및 트랜스케톨라제 강화를 통한 퓨르레신 생산
퓨트레신 생산균주에서 NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제 활성과 트랜스케톨라제 활성이 모두 강화시 퓨트레신 생산에 미치는 효과를 확인해보았다.
7-1: 스트렙토코커스 변이주 ATCC 25175 유래의 NADP 의존적 글리세르알데드 -3-포스페이트 디하이드로게나제 도입된 퓨트레신 생산균주에서 트랜스케톨라제 강화를 위한 개시코돈 치환 통합균주 제작
실시예 1-4-1에서 제작한 ATCC 13032기반 퓨트레신 생산균주 KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S)를 대상으로 실시예 2-1-1에서 제작한 플라스미드 pDZ-1'tkt(ATG)를 실시예 <1-4-1>과 동일한 방법으로 형질전환하였다. 이로부터 제작된 코리네박테리움 글루타미쿰 변이주를 KCCM11240P P(CJ7)-NCgl2522 Tn:P(cj7)-gapN(S) tkt(ATG)라 명명하였다.
마찬가지로 실시예 1-4-2에서 제작한 ATCC 13869기반 퓨트레신 생산균주 DAB-b P(CJ7)-NCgl2522 P(CJ7)-gapN(S)를 대상으로 실시예 2-1-1에서 제작한 플라스미드 pDZ-2'tkt(ATG)를 실시예 <1-4-1>과 동일한 방법으로 형질전환하였다. 이로부터 제작된 코리네박테리움 글루타미쿰 변이주를 DAB-b P(CJ7)-NCgl2522 Tn:P(cj7)-gapN(S) tkt(ATG)라 명명하였다.
7-2: 스트렙토코커스 변이주 ATCC 25175 유래의 NADP 의존적 글리세르알데드 -3-포스페이트 디하이드로게나제 도입된 퓨트레신 생산균주에서 트랜스케톨라제 강화를 위한 프로모터 치환 통합균주 제작
실시예 1-4-1에서 제작한 ATCC 13032기반 퓨트레신 생산균주 KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S)를 대상으로 실시예 2-2-1에서 제작한 플라스미드 pDZ-P(CJ7)-1'tkt(ATG)를 실시예 <1-4-1>과 동일한 방법으로 형질전환하였다. 이로부터 제작된 코리네박테리움 글루타미쿰 변이주를 KCCM11240P P(CJ7)-NCgl2522 Tn:P(cj7)-gapN(S) P(CJ7)-tkt(ATG)라 명명하였다.
마찬가지로 실시예 1-4-2에서 제작한 ATCC 13869기반 퓨트레신 생산균주 DAB-b P(CJ7)-NCgl2522 P(CJ7)-gapN(S)를 대상으로 실시예 2-2-1에서 제작한 플라스미드 pDZ-P(CJ7)-2'tkt(ATG)를 실시예 <1-4-1>과 동일한 방법으로 형질전환하였다. 이로부터 제작된 코리네박테리움 글루타미쿰 변이주를 DAB-b P(CJ7)-NCgl2522 Tn:P(cj7)-gapN(S) P(CJ7)-tkt(ATG)라 명명하였다.
7-3: 스트렙토코커스 변이주 ATCC 25175 유래의 NADP 의존적 글리세르알데드 -3-포스페이트 디하이드로게나제의 활성이 도입되고, 트랜스케톨라제의 활성이 강화된 통합균주의 퓨트레신 생산능 평가
NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제 활성을 지닌 gapN 유전자가 강화되고 동시에 트랜스케톨라제인 NCgl1512의 개시코돈이 TTG에서 ATG로 치환되었을 때, 또는 NCgl1512의 프로모터가 CJ7으로 치환되었을 때, 퓨트레신 생산에 미치는 효과를 확인하기 위하여, 상기 실시예 7-1과 7-2에서 제작된 코리네박테리움 글루타미쿰 변이주를 대상으로 퓨트레신 생산능을 비교하였다.
구체적으로, 2개의 대조군(KCCM11240P P(CJ7)-NCgl2522, DAB12-b P(CJ7)-NCgl2522)과 스트렙토코커스 변이주 ATCC 25175 유래의 gapN이 도입된 2개의 변이주 (KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S), DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S))과 스트렙토코커스 변이주 ATCC 25175 유래의 gapN이 도입되고 tkt의 개시코돈이 TTG에서 ATG로 치환된 2종의 변이주의 코리네박테리움 글루타미쿰 변이주 KCCM11240P P(CJ7)-NCgl2522 Tn:P(cj7)-gapN(S) tkt(ATG), DAB12-b P(CJ7)-NCgl2522 Tn:P(cj7)-gapN(S) tkt(ATG)와 스트렙토코커스 변이주 ATCC 25175 유래의 gapN이 도입되고 tkt의 프로모터가 CJ7으로 치환된 2종의 변이주의 코리네박테리움 글루타미쿰 변이주 (KCCM11240P P(CJ7)-NCgl2522 Tn:P(cj7)-gapN(S) P(CJ7)-tkt(ATG), DAB12-b P(CJ7)-NCgl2522 Tn:P(cj7)-gapN(S) P(CJ7)-tkt(ATG) 실시예 1-4-3과 동일한 방법으로 퓨트레신 생산능을 비교하였다.
균주명 퓨트레신(g/L) 생산성(g/l/min)
KCCM11240P P(CJ7)-NCgl2522 7.3 8.76
KCCM11240P P(CJ7)-NCgl2522 Tn:P(cj7)-gapN(S) 9.9 11.88
KCCM11240P P(CJ7)-NCgl2522 Tn:P(cj7)-gapN(S) tkt(ATG) 10.5 12.60
KCCM11240P P(CJ7)-NCgl2522 Tn:P(cj7)-gapN(S) P(CJ7)-tkt(ATG) 12.7 15.24
DAB12-b P(CJ7)-NCgl2522 7.9 9.48
DAB12-b P(CJ7)-NCgl2522 Tn:P(cj7)-gapN(S) 10.7 12.84
DAB12-b P(CJ7)-NCgl2522 Tn:P(cj7)-gapN(S) tkt(ATG) 11.3 13.56
DAB12-b P(CJ7)-NCgl2522 Tn:P(cj7)-gapN(S) P(CJ7)-tkt(ATG) 13.6 16.32
상기 표 24에 나타난 바와 같이, 코리네박테리움 글루타미쿰 ATCC 13032 또는 13869 유래의 퓨트레신 생산균주에서 NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제 gapN이 도입되고 tkt의 개시코돈을 ATG로 치환하거나 gapN이 도입되고 tkt 프로모터를 치환하여 발현양을 증가시킨 경우, gapN 단독 강화균주보다 퓨트레신 생산성이 증가함을 확인할 수 있었다.
실시예 8: NADP 의존적 글리세르알데드 -3- 포스페이트 디하이드로게나제 도입 및 G6PD 강화를 통한 퓨르레신 생산
퓨트레신 생산균주에서 NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제 활성과 G6PD 활성이 모두 강화되는 경우, 퓨트레신 생산에 미치는 효과를 확인해보았다.
8-1: 스트렙토코커스 변이주 ATCC 25175 유래의 NADP 의존적 글리세르알데드 -3-포스페이트 디하이드로게나제 도입된 퓨트레신 생산균주에서 G6PD 강화를 위한 CJ7 프로모터 도입 통합균주 제작
실시예 1-4-1에서 제작한 ATCC 13032기반 퓨트레신 생산균주 KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S)를 대상으로 실시예 3-1-1에서 제작한 플라스미드 pDZ-P(CJ7)-1'zwf를 실시예 <1-4-1>과 동일한 방법으로 형질전환하여 NCgl1514의 개시코돈 앞에 CJ7 프로모터가 도입된 균주를 제작하였다. 이로부터 선발된 코리네박테리움 글루타미쿰 변이주를 KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) P(CJ7)-zwf라 명명하였다.
마찬가지로 실시예 1-4-2에서 제작한 ATCC 13869기반 퓨트레신 생산균주 DAB-b P(CJ7)-NCgl2522 P(CJ7)-gapN(S)를 대상으로 실시예 3-1-1에서 제작한 플라스미드 pDZ-P(CJ7)-2'zwf를 실시예 <1-4-1>과 동일한 방법으로 형질전환하여 NCgl1514의 개시코돈 앞에 CJ7 프로모터가 도입된 균주를 제작하였다. 이로부터 선발된 코리네박테리움 글루타미쿰 변이주를 DAB-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) P(CJ7)-zwf라 명명하였다.
8-2: 스트렙토코커스 변이주 ATCC 25175 유래의 NADP 의존적 글리세르알데드 -3-포스페이트 디하이드로게나제의 활성이 도입되고, G6PD의 활성이 강화된 통합균주의 퓨트레신 생산능 평가
NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제 활성을 지닌 gapN 유전자가 강화되고 동시에 G6PD 인 NCgl1514의 개시코돈 앞에 CJ7 프로모터가 도입었을 때, 퓨트레신 생산에 미치는 효과를 확인하기 위하여, 상기 실시예 8-1에서 제작된 코리네박테리움 글루타미쿰 변이주를 대상으로 퓨트레신 생산능을 비교하였다.
구체적으로, 2개의 대조군(KCCM11240P P(CJ7)-NCgl2522, DAB12-b P(CJ7)-NCgl2522)과 스트렙토코커스 변이주 ATCC 25175 유래의 gapN이 도입된 2개의 변이주 KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S), DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S)와 스트렙토코커스 변이주 ATCC 25175 유래의 gapN이 도입되고 NCgl1514의 앞에 CJ7 프로모터가 도입된 2종의 변이주의 코리네박테리움 글루타미쿰 변이주 (KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) P(CJ7)-zwf, DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) P(CJ7)-zwf를 실시예 1-4-3과 동일한 방법으로 퓨트레신 생산능을 비교하였다.
균주명 퓨트레신(g/L) 생산성(g/l/min)
KCCM11240P P(CJ7)-NCgl2522 7.3 8.76
KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) 9.9 11.88
KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) P(CJ7)-zwf 10.0 12.00
DAB12-b P(CJ7)-NCgl2522 7.8 9.48
DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) 10.7 12.84
DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) P(CJ7)-zwf 10.9 13.08
상기 표 25에 나타난 바와 같이, 코리네박테리움 글루타미쿰 ATCC 13032 또는 13869 유래의 퓨트레신 생산균주에서 NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제 gapN이 도입되고 zwf의 개시코돈 앞에 CJ7 프로모터가 도입하였을 때, gapN 단독 강화균주보다 퓨트레신 생산성이 소폭 증가함을 확인할 수 있었다.
실시예 9: NADP 의존적 글리세르알데드 -3- 포스페이트 디하이드로게나제 도입 및 니코티네이트 포스포리보실트랜스퍼라제 강화를 통한 퓨트레신 생산
본 실시예에서는 NADP로부터 NADPH를 합성하는 반응을 활성화시킴과 동시에 NAD, NADP의 전구체인 β-니코티네이트 D-리보뉴클레오티드도 함께 강화하기 위하여 퓨트레신 생산균주에서 NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제 활성과 니코티네이트 포스포리보실트랜스퍼라제 활성이 모두 강화시 퓨트레신 생산에 미치는 효과를 확인해보았다. 니코티네이트 포스포리보실트랜스퍼라제는 대장균 유래의 유전자와 코리네박테리움 글루타미쿰 유래의 유전자를 각각 적용해보았다.
9-1: 대장균 W3110 유래의 니코티네이트 포스포리보실트랜스퍼라제 (EC.2.4.2.11) 코리네형 미생물 염색체 내 트렌스포존 유전자 내 도입을 위한 벡터의 제작.
대장균 W3110 유래의 니코티네이트 포스포리보실트랜스퍼라제활성을 지닌 pncB를 암호화하는 Y75_p0903을 염색체 내 트렌스포존 유전자 내 도입하기 위한 벡터를 제작하였다. 대장균 W3110 유래의 니코티네이트 포스포리보실트랜스퍼라제 활성을 지닌 PncB을 암호화 하는 Y75_p0903 유전자의 아미노산 서열 (서열번호 61)과 염기서열 (서열번호 62)은 미국국립보건원 진뱅크 (NIH GenBank)로부터 확보하였다.
본 출원의 구체적인 실시예에서는 코리네박테리움 속 미생물의 트렌스포존 유전자 부위를 이용하여 염색체 내 유전자를 도입하기 위하여 형질전환용 벡터 pDZTn를 사용하였다. Y75_p0903 유전자는 대장균 W3110 균주의 염색체를 주형으로 서열번호 63 및 64 프라이머를 이용하여 약 1.2 kb의 유전자 단편을 증폭하였다(표 26). 이때, PCR 반응은 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 1분 30초의 신장 과정을 30회 반복하였다. 이 PCR 결과물을 0.8% 아가로스 겔에서 전기 영동한 후 원하는 크기의 밴드를 용리하여 정제하였다. 또한, CJ7 프로모터 부위는 서열번호: 5 및 6의 프라이머 쌍을 이용하여 동일한 조건에서 PCR을 수행하여 PCR산물을 수득하였다. 이때, PCR 반응은 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 30초의 신장 과정을 30회 반복하였다. pDZTn 벡터는 XhoI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDZTn:P(CJ7)-pncB(Eco)라 명명하였다.
서열번호 프라이머 서열(5'-3')
63 pncB(Eco)-F aaggaaacactgatatcATGACACAATTCGCTTCTCCTG
64 pncB(Eco)-R gccaaaacagcctcgagTTAACTGGCTTTTTTAATATGCGGAAG
5 CJ7-F ggcccactagtctcgagGCCGGCATAGCCTACCGAT
6 CJ7-R GATATCAGTGTTTCCTTTCGTTGG
9-2: 니코티네이트 포스포리보실트랜스퍼라제 코리네형 미생물 염색체 내 트렌스포존 유전자 내 도입을 위한 벡터의 제작
코리네박테리움 글루타미쿰 ATCC 13032 유래의 니코티네이트 포스포리보실트랜스퍼라제활성을 지닌 PncB를 암호화하는 NCgl2431을 염색체 내 도입하기 위한 벡터를 제작하였다. 코리네박테리움 글루타미쿰 ATCC 13032 유래의 NCgl2431 유전자의 아미노산 서열 (서열번호 65)과 염기서열 (서열번호 66)은 미국국립보건원 진뱅크 (NIH GenBank)로부터 확보하였다. 이때 NCgl2431의 개시코돈 GTG가 아닌 ATG 형태로 도입하였다.
본 출원의 구체적인 실시예에서는 코리네박테리움 속 미생물의 트렌스포존 유전자 부위를 이용하여 염색체 내 유전자를 도입하기 위하여 형질전환용 벡터 pDZTn를 사용하였다. 코리네박테리움 글루타미쿰 ATCC 13032 균주의 염색체를 주형으로 서열번호 67 및 68 프라이머를 이용하여 약 1.3 kb 의 유전자 단편을 증폭하였다(표 27). 이때, PCR 반응은 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 1분 30초의 신장 과정을 30회 반복하였다. 이 PCR 결과물을 0.8% 아가로스 겔에서 전기 영동한 후 원하는 크기의 밴드를 용리하여 정제하였다. CJ7 프로모터 부위는 서열번호: 5 및 6의 프라이머 쌍을 이용하여 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 30초 과정을 30회 반복하여 수득하였다. pDZ 벡터는 XbaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDZTn:P(CJ7)-1'pncB라 명명하였다.
서열번호 프라이머 서열(5'-3')
67 1'NCgl2431-F aaggaaacactgatatcATGAATACCAATCCGTCTGAATTCTCC
68 1'NCgl2431-R gccaaaacagcctcgag CTAAGCGGCCGGCGGGAA
5 CJ7-F ggcccactagtctcgagGCCGGCATAGCCTACCGAT
6 CJ7-R GATATCAGTGTTTCCTTTCGTTGG
또한, 코리네박테리움 글루타미쿰 ATCC 13032의 염기서열을 기반으로 PCR 반응 및 시퀀싱을 통해 코리네박테리움 글루타미쿰 ATCC 13869의 NCgl2431와 상동성을 가지는 유전자의 아미노산 서열 (서열번호 69)과 염기서열 (서열번호 70)을 확보하였다.
마찬가지로 코리네박테리움 글루타미쿰 ATCC 13869 균주의 염색체를 주형으로 서열번호 71 및 72 프라이머를 이용하여 약 1.45 kb 의 유전자 단편을 증폭하였다(표 28). 이때, PCR 반응은 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 30초의 신장 과정을 30회 반복하였다. 이 PCR 결과물을 0.8% 아가로스 겔에서 전기 영동한 후 원하는 크기의 밴드를 용리하여 정제하였다. CJ7 프로모터 부위는 서열번호: 5 및 6의 프라이머 쌍을 이용하여 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 30초 과정을 30회 반복하여 수득하였다. pDZ 벡터는 XbaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDZTn:P(CJ7)-2'pncB라 명명하였다.
서열번호 프라이머 서열(5'-3')
71 2'NCgl2431-F aaggaaacactgatatcATGAATACCAATCCTTCTGAATTCTCC
72 2'NCgl2431-R gccaaaacagcctcgagCTAAGCGACCGGCGGGAATC
5 CJ7-F ggcccactagtctcgagGCCGGCATAGCCTACCGAT
6 CJ7-R GATATCAGTGTTTCCTTTCGTTGG
9-3: NADP 의존적 글리세르알데드 -3- 포스페이트 디하이드로게나제 도입된 코리네기반 퓨트레신 생산균주에서 니코티네이트 포스포리보실트랜스퍼라제 강화를 통한 퓨트레신 발효
<9-3-1> 스트렙토코커스 변이주 ATCC 25175 유래의 NADP 의존적 글리세르알데드 -3-포스페이트 디하이드로게나제 도입된 코리네기반 퓨트레신 생산균주에서 니코티네이트 포스포리보실트랜스퍼라제 강화 균주 제작
실시예 1-4-1에서 제작한 ATCC 13032기반 퓨트레신 생산균주 KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S)를 대상으로 실시예 9-1에서 제작한 플라스미드 pDZTn:P(CJ7)-pncB(Eco)와 실시예 9-2에서 제작한 플라스미드 pDZTn:P(CJ7)-1'pncB를 <1-4-1>과 동일한 방법으로 형질전환하여 대장균 W3110 유래의 pncB를 암호화하는 Y75_p0903 유전자 또는 코리네박테리움 글루타미쿰 ATCC 13032 유래의 pncB를 암호화는 NCgl2431 유전자가 트렌스포존 내 도입된 균주를 제작하였다. 이로부터 선발된 코리네박테리움 글루타미쿰 변이주를 KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) Tn:P(CJ7)-pncB(Eco), KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) Tn:P(CJ7)-1'NCgl2431라 명명하였다.
마찬가지로 실시예 1-4-2에서 제작한 ATCC 13869기반 퓨트레신 생산균주 DAB-b P(CJ7)-NCgl2522 P(CJ7)-gapN(S)를 대상으로 실시예 9-1에서 제작한 플라스미드 pDZTn:P(CJ7)-pncB(Eco)와 실시예 9-2에서 제작한 플라스미드 pDZTn:P(CJ7)-2'pncB를 <1-4-1>과 동일한 방법으로 형질전환하여 대장균 W3110 유래의 pncB를 암호화하는 Y75_p0903 유전자 또는 코리네박테리움 글루타미쿰 ATCC 13869 유래의 pncB를 암호화는 NCgl2431 유전자가 트렌스포존 내 도입된 균주를 제작하였다. 이로부터 선발된 코리네박테리움 글루타미쿰 변이주를 DAB-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) Tn:P(CJ7)-pncB(Eco), DAB-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) Tn:P(CJ7)-2'NCgl2431라 명명하였다.
<9-3-2> 스트렙토코커스 변이주 ATCC 25175 유래의 NADP 의존적 글리세르알데드 -3-포스페이트 디하이드로게나제의 활성이 도입되고, 니코티네이트 포스포리보실트랜스퍼라제의 활성이 강화된 통합균주의 퓨트레신 생산능 평가
대장균 W3110 유래의 PncB를 암호화하는 Y75_p0903 유전자 또는 코리네박테리움 글루타미쿰 유래의 PncB를 암호화는 NCgl2431 유전자가 강화되었을 때 퓨트레신 생산에 미치는 효과를 확인하기 위하여, 상기 실시예 9-1에서 제작된 코리네박테리움 글루타미쿰 변이주를 대상으로 퓨트레신 생산능을 비교하였다.
구체적으로, 2개의 대조군(KCCM11240P P(CJ7)-NCgl2522, DAB12-b P(CJ7)-NCgl2522)과 스트렙토코커스 변이주 ATCC 25175 유래의 gapN이 도임된 2개의 변이주 (KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S), DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S))과 스트렙토코커스 변이주 ATCC 25175 유래의 gapN이 도입되고 대장균 W3110 유래의 pncB를 암호화하는 Y75_p0903 유전자 또는 코리네박테리움 글루타미쿰 유래의 pncB를 암호화는 NCgl2431 유전자가 도입된 4종의 변이주의 코리네박테리움 글루타미쿰 변이주 (KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) Tn:P(CJ7)-pncB(Eco), KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) Tn:P(CJ7)-1'NCgl2431, DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) Tn:P(CJ7)-pncB(Eco), DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) Tn:P(CJ7)-2'NCgl2431를 실시예 1-4-3과 동일한 방법으로 퓨트레신 생산능을 비교하였다.
균주명 퓨트레신(g/L) 생산성(g/l/min)
KCCM11240P P(CJ7)-NCgl2522 7.3 8.76
KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) 9.9 11.88
KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) Tn:P(CJ7)-pncB(Eco) 10.0 12.00
KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) Tn:P(CJ7)-1'NCgl2431 10.2 12.24
DAB12-b P(CJ7)-NCgl2522 7.8 9.48
DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) 10.7 12.84
DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) Tn:P(CJ7)-pncB(Eco) 10.9 13.08
DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) Tn:P(CJ7)-2'NCgl2431 11.1 13.32
상기 표 29에 나타난 바와 같이, 코리네박테리움 글루타미쿰 ATCC 13032 또는 13869 유래의 퓨트레신 생산균주에서 NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제 gapN이 도입되고 대장균 W3110 유래의 pncB를 암호화하는 Y75_p0903 유전자 또는 코리네박테리움 글루타미쿰 유래의 pncB를 암호화는 NCgl2431이 강화되었을 때 퓨트레신 생산성이 증가함을 확인할 수 있었다. 또한 대장균 유래의 pncB 도입보다 코리네 유래의 pncB를 강화했을 때 보다 퓨트레신 생산성이 더 증가됨을 확인하였다.
실시예 10: NADP 의존적 글리세르알데드 -3- 포스페이트 디하이드로게나제 도입 및 NAD + 디포스파타제 결손를 통한 퓨트레신 생산
퓨트레신 생산균주에서 NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제 활성과 NAD+ 디포스파타제 활성이 모두 강화시 퓨트레신 생산에 미치는 효과를 확인해보았다.
10-1: NAD + 디포스파타제 유전자 NCgl0744 결손벡터 제작
NAD+ 디포스파타제 활성을 지닌 NCgl0744 유전자의 아미노산 서열 (서열번호 73)과 염기서열 (서열번호 74)은 미국국립보건원 진뱅크 (NIH GenBank)로부터 확보하였다. NAD+ 디포스파타제 활성을 약화하기 위해 NCgl0744 유전자를 결손하기 위한 벡터를 제작하였다.
본 출원의 구체적인 실시예에서는 형질전환용 벡터 pDZ를 사용하였다. 코리네박테리움 글루타미쿰 ATCC 13032 균주의 염색체를 주형으로 서열번호 75 및 76 프라이머와 서열번호 77 및 78 프라이머를 이용하여 약 0.5 kb 의 유전자 단편 2개를 증폭하였다(표 30). 이때, PCR 반응은 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 30초의 신장 과정을 30회 반복하였다. 이 PCR 결과물을 0.8% 아가로스 겔에서 전기 영동한 후 원하는 크기의 밴드를 용리하여 정제하였다. pDZ 벡터는 XbaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDZ-1'NCgl0744(K/O)라 명명하였다.
서열번호 프라이머 서열(5'-3')
75 0744-del-5F CCGGGGATCCTCTAGAGCAGATGTGTTGCGTCTAGC
76 0744-del-5R TTGTCATTTACCTCCTCGCTAAATAC
77 0744-del-3F cgaggaggtaaatgacaaGGAAGATGAGTTGCCTCAAGG
78 0744-del-3R GCAGGTCGACTCTAGACAGATTACCCGCCACCTGAG
또한, 코리네박테리움 글루타미쿰 ATCC 13032의 염기서열을 기반으로 PCR 반응 및 시퀀싱을 통해 코리네박테리움 글루타미쿰 ATCC 13869의 NCgl0744와 상동성을 가지는 유전자의 아미노산 서열(서열번호 79)과 염기서열 (서열번호 80)을 확보하였다.
마찬가지로 코리네박테리움 글루타미쿰 ATCC 13869 균주의 염색체를 주형으로 동일한 프라이머를 사용하여 약 0.5 kb 의 유전자 단편 2개를 증폭하여 상기 방법과 같이 벡터를 제작하였다. 결과로 얻은 플라스미드를 pDZ-2'NCgl0744(K/O)라 명명하였다.
10-2: NAD + 디포스파타제 유전자 NCgl0744 결손균주 제작 및 평가
<10-2-1> 스트렙토코커스 변이주 ATCC 25175 유래의 NADP 의존적 글리세르 알데드-3-포스페이트 디하이드로게나제 도입된 코리네기반 퓨트레신 생산균주에서 NAD + 디포스파타제 결손 균주 제작
실시예 1-4-1에서 제작한 ATCC 13032기반 퓨트레신 생산균주 KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S)를 대상으로 실시예 10-1에서 제작한 플라스미드 pDZ-1'NCgl0744(K/O)를 <1-4-1>과 동일한 방법으로 형질전환하여 NCgl0744 유전자가 결손된 균주를 제작하였다. 이로부터 선발된 코리네박테리움 글루타미쿰 변이주를 KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) ΔNCgl0744, KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) ΔNCgl0744라 명명하였다.
마찬가지로 실시예 1-4-2에서 제작한 ATCC 13869기반 퓨트레신 생산균주 DAB-b P(CJ7)-NCgl2522 P(CJ7)-gapN(S)를 대상으로 실시예 10-1에서 제작한 플라스미드 pDZ-2'NCgl0744(K/O)를 <1-4-1>과 동일한 방법으로 형질전환하여 NCgl0744 유전자가 결손된 균주를 제작하였다. 이로부터 선발된 코리네박테리움 글루타미쿰 변이주를 DAB-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) ΔNCgl0744, DAB-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) ΔNCgl0744라 명명하였다.
<10-2-2> 스트렙토코커스 변이주 ATCC 25175 유래의 NADP 의존적 글리세르 알데드-3-포스페이트 디하이드로게나제의 활성이 도입되고, NAD + 디포스파타제 의 활성이 불활성화된 균주의 퓨트레신 생산능 평가
퓨트레신 생산 균주에서 NAD+ 디포스파타제 유전자 NCgl0744 가 결손되었을 때 퓨트레신 생산에 미치는 효과를 확인하기 위하여, 상기 실시예 10-2-1에서 제작된 코리네박테리움 글루타미쿰 변이주를 대상으로 실시예 1-4-3과 동일한 방법으로 퓨트레신 생산능을 비교하였다.
균주명 퓨트레신(g/L) 생산성(g/l/min)
KCCM11240P P(CJ7)-NCgl2522 7.3 8.76
KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) 9.9 11.88
KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) ΔNCgl0744 10.1 12.12
DAB12-b P(CJ7)-NCgl2522 7.8 9.48
DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) 10.7 12.84
DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) ΔNCgl0744 11.0 13.20
상기 표 31에 나타난 바와 같이, 코리네박테리움 글루타미쿰 ATCC 13032 또는 13869 유래의 퓨트레신 생산균주에서 NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제 gapN이 도입되고 NAD+ 디포스파타제 를 암호화하는 NCgl0744가 결손되었을 때 퓨트레신 생산성이 소폭 증가함을 확인할 수 있었다.
실시예 11: NADP 의존적 글리세르알데드 -3- 포스페이트 디하이드로게나제 도입 및 NAD + 키나제 강화를 통한 퓨트레신 생산
퓨트레신 생산균주에서 NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제 활성과 NAD+ 키나제 활성이 모두 강화시 퓨트레신 생산에 미치는 효과를 확인해보았다.
11-1: NAD + 키나제 코리네형 미생물 염색체 내 트렌스포존 유전자 내 도입을 위한 벡터의 제작
NAD+ 키나제 활성을 가진 NCgl1358의 활성을 강화하기 위해 염색체 내 트랜스포존 유전자 내 CJ7 프로모터에 의해 발현되는 NCgl1358을 도입하기 위한 벡터를 제작하였다. 코리네박테리움 글루타미쿰 ATCC 13032 유래의 NCgl1358 유전자의 아미노산 서열 (서열번호 81)과 염기서열 (서열번호 82)은 미국국립보건원 진뱅크 (NIH GenBank)로부터 확보하였다.
본 출원의 구체적인 실시예에서는 코리네박테리움 속 미생물의 트렌스포존 유전자 부위를 이용하여 염색체 내 트렌스포존 유전자 내 유전자를 도입하기 위하여 형질전환용 벡터 pDZTn를 사용하였다. 코리네박테리움 글루타미쿰 ATCC 13032 균주의 염색체를 주형으로 서열번호 83 및 84 프라이머를 이용하여 약 0.96 kb 의 유전자 단편을 증폭하였다(표 32). 이때, PCR 반응은 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 1분 신장 과정을 30회 반복하였다. 이 PCR 결과물을 0.8% 아가로스 겔에서 전기 영동한 후 원하는 크기의 밴드를 용리하여 정제하였다. CJ7 프로모터 부위는 서열번호: 5 및 6의 프라이머 쌍을 이용하여 95℃에서 30초의 변성, 55℃에서 30초의 어닐링 및 72℃에서 30초 과정을 30회 반복하여 수득하였다. pDZ 벡터는 XbaI을 처리하고 상기에서 수득한 PCR 산물을 퓨전 클로닝하였다. 퓨전 클로닝은 In-Fusion® HD 클로닝 키트(Clontech)를 사용하였다. 결과로 얻은 플라스미드를 pDZTn:P(CJ7)-1'ppnk라 명명하였다.
서열번호 프라이머 서열(5'-3')
83 NCgl1358-F aaggaaacactgatatc_atgactgcacccacgaacgc
84 NCgl1358-R gccaaaacagcctcgag TTACCCCGCTGACCTGGG
5 CJ7-F ggcccactagtctcgag GCCGGCATAGCCTACCGAT
6 CJ7-R GATATCAGTGTTTCCTTTCGTTGG
또한, 코리네박테리움 글루타미쿰 ATCC 13032의 염기서열을 기반으로 PCR 반응 및 시퀀싱을 통해 코리네박테리움 글루타미쿰 ATCC 13869의 ppnK 암호화하는 NCgl1358과 상동성을 가지는 유전자의 아미노산 서열 (서열번호 85)과 염기서열 (서열번호 86)과 을 확보하였다.
마찬가지로 코리네박테리움 글루타미쿰 ATCC 13869 균주의 염색체를 주형으로 동일한 프라이머를 이용하여 약 0.96 kb 의 유전자 단편을 증폭하였다. 이때, PCR 반응과 클로닝 방법은 상기와 동일하며 이로부터 얻은 플라스미드를 pDZTn:P(CJ7)-2'ppnk라 명명하였다.
11-2: NADP 의존적 글리세르알데드 -3- 포스페이트 디하이드로게나제 도입된 코리네기반 퓨트레신 생산균주에서 NAD + 키나제 강화를 통한 퓨트레신 발효
<11-2-1> 스트렙토코커스 변이주 ATCC 25175 유래의 NADP 의존적 글리세르알데드 -3-포스페이트 디하이드로게나제 도입된 코리네기반 퓨트레신 생산균주에서 NAD 키나제 강화 균주 제작
실시예 1-4-1에서 제작한 ATCC 13032기반 퓨트레신 생산균주 KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S)를 대상으로 실시예 11-1에서 제작한 플라스미드 pDZTn:P(CJ7)-1'ppnk 를 <1-4-1>과 동일한 방법으로 형질전환하여 NCgl1358 유전자가 트렌스포존 내 도입된 균주를 제작하였다. 이로부터 선발된 코리네박테리움 글루타미쿰 변이주를 KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) Tn:P(CJ7)-1'ppnk라 명명하였다.
마찬가지로 실시예 1-4-2에서 제작한 ATCC 13869기반 퓨트레신 생산균주 DAB-b P(CJ7)-NCgl2522 P(CJ7)-gapN(S)를 대상으로 실시예 11-1에서 제작한 플라스미드 pDZTn:P(CJ7)-2'ppnk 를 <1-4-1>과 동일한 방법으로 형질전환하여 NCgl1358 유전자가 트렌스포존 내 도입된 균주를 제작하였다. 이로부터 선발된 코리네박테리움 글루타미쿰 변이주를 DAB-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) Tn:P(CJ7)-2'ppnK라 명명하였다.
<11-2-2> 스트렙토코커스 변이주 ATCC 25175 유래의 NADP 의존적 글리세르알데드 -3-포스페이트 디하이드로게나제의 활성이 도입되고, NAD + 키나제의 활성이 강화된 통합균주의 퓨트레신 생산능 평가
코리네박테리움 글루타미쿰 NADPH의 전구체인 NADP 공급을 원활히 하기 위해 NAD+ 키나제 활성을 가진 NCgl1358을 CJ7 프로모터에 의해 발현되는 형태로 염색체 내 트랜스포존 유전자 내 도입했을 때, 퓨트레신 생산에 미치는 효과를 확인하기 위하여, 상기 실시예 11-2-1에서 제작된 코리네박테리움 글루타미쿰 변이주를 대상으로 퓨트레신 생산능을 비교하였다.
구체적으로, 2개의 대조군(KCCM11240P P(CJ7)-NCgl2522, DAB12-b P(CJ7)-NCgl2522)과 스트렙토코커스 변이주 ATCC 25175 유래의 gapN이 도임된 2개의 변이주 (KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S), DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S))과 스트렙토코커스 변이주 ATCC 25175 유래의 gapN이 도입되고 코리네박테리움 글루타미쿰 유래의 ppnK 가 도입된 4종의 변이주의 코리네박테리움 글루타미쿰 변이주 (KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) Tn:P(CJ7)-1'ppnK, DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) Tn:P(CJ7)-2'ppnK 를 실시예 1-4-3과 동일한 방법으로 98시간 배양한 최종산물로부터 퓨트레신 생산능을 비교하였다.
균주명 퓨트레신(g/L) 생산성(g/L/min)
KCCM11240P P(CJ7)-NCgl2522 15.5 9.48
KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) 16.1 9.85
KCCM11240P P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) Tn:P(CJ7)-1'ppnK 16.7 10.22
DAB12-b P(CJ7)-NCgl2522 15.9 9.73
DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) 16.5 10.01
DAB12-b P(CJ7)-NCgl2522 Tn:P(CJ7)-gapN(S) Tn:P(CJ7)-2'ppnK 16.9 10.34
상기 표 33에 나타난 바와 같이, 코리네박테리움 글루타미쿰 ATCC 13032 또는 13869 유래의 퓨트레신 생산균주에서 NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제 gapN이 도입되고 코리네박테리움 글루타미쿰 유래의 NAD+ 키나제인 ppnK를 암호화는 NCgl1358 강화하였을 때 퓨트레신 생산성이 소폭 증가함을 확인할 수 있었다.
본 출원에서 아세틸퓨트레신 합성경로가 결손된 퓨트레신을 생산하는 코리네박테리움 속 미생물에서 트랜스포존 내 Ldb1179를 도입하여 NADP 의존적 글리세르알데히드-3-포스페이트디히드로게나제 활성을 강화시킨 코리네박테리움 글루타미쿰 균주가 고수율 및 고생산성으로 퓨트레신을 생산할 수 있음을 확인하고, 상기균주를 KCCM11240P Tn:P(CJ7)-gapN(L), CC01-0811로 명명한 후 부다페스트 조약 하에 2017년 6월 29일자로 한국미생물보존센터(KCCM)에 기탁하여 기탁번호 KCCM12052P를 부여받았다.
이상의 설명으로부터, 본 출원이 속하는 기술분야의 당업자는 본 출원이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 출원의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 출원의 범위에 포함되는 것으로 해석되어야 한다.

Claims (7)

  1. NADPH (reduced nicotinamide adenine dinucleotide phosphate) 생산능이 비변형 미생물에 비해 증가된, 퓨트레신을 생산하는 코리네박테리움 속 미생물.
  2. 제 1항에 있어서, 상기 미생물은
    (1) NADP 의존적 글리세르알데드-3-포스페이트 디하이드로게나제(NADP dependent glyceraldehyde-3-phosphate dehydrogenase), 트랜스케톨라제(Transketolase), 글루코스-6-포스포 디하이드로게나제 (Glucose-6- phosphate dehydrogenase), 6-포스포글루코네이트 디하이드로게나제 (6-phosphogluconate dehydrogenase), NAD(P) 트랜스하이드로게나제 (NAD(P) transhydrogenase), 니코티네이트 포스포리보실트랜스퍼라제 (nicotinate phosphoribosyltransferase), 및 NAD+ 키나제 (NAD+ kinase)로 구성되는 그룹 중에서 하나 이상의 활성이 강화되거나,
    (2) 글루코네이트 키나제 (Gluconate kinase) 및 NAD+ 디포스파타제 (NAD+ diphosphophatase)로 구성되는 그룹 중에서 하나 이상의 활성이 불활성화되거나,
    (3) (1) 및 (2)의 조합으로 구성되어,
    NADPH 생산능이 비변형 미생물에 비해 증가된, 퓨트레신을 생산하는 코리네박테리움 속 미생물.
  3. 제1항에 있어서, 상기 미생물은 추가로 오르니틴 디카복실라아제의 활성이 도입된, 퓨트레신을 생산하는 코리네박테리움 속 미생물.
  4. 제1항에 있어서, 상기 미생물은 추가적으로 퓨트레신 아세틸트렌스퍼라아제의 활성이 약화된, 퓨트레신을 생산하는 코리네박테리움 속 미생물.
  5. 제1항에 있어서, 상기 미생물은 추가적으로 퓨트레신 배출단백질의 활성이 강화된, 퓨트레신을 생산하는 코리네박테리움 속 미생물.
  6. 제1항에 있어서, 상기 미생물은 코리네박테리움 글루타미쿰인, 퓨트레신을 생산하는 미생물.
  7. (i) 제1항 내지 제6항 중 어느 한 항에 따른 퓨트레신을 생산하는 미생물을 배지에서 배양하는 단계; 및
    (ii) 상기 배양된 미생물 또는 배지로부터 퓨트레신을 회수하는 단계를 포함하는, 퓨트레신의 생산방법.
PCT/KR2018/008165 2017-07-19 2018-07-19 퓨트레신을 생산하는 미생물 및 이를 이용한 퓨트레신 생산방법 WO2019017706A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112020001174-6A BR112020001174A2 (pt) 2017-07-19 2018-07-19 microrganismo produtor de putrescina e método de produzir putrescina usando o mesmo
JP2020502140A JP6901621B2 (ja) 2017-07-19 2018-07-19 プトレシンを生産する微生物及びそれを用いたプトレシンの生産方法
CN201880059726.9A CN111655859B (zh) 2017-07-19 2018-07-19 生产腐胺的微生物及利用其生产腐胺的方法
US16/632,084 US10801047B2 (en) 2017-07-19 2018-07-19 Putrescine-producing microorganism and method of producing putrescine using the same
EP18836158.8A EP3656862A4 (en) 2017-07-19 2018-07-19 PUTRESCIN PRODUCING MICROORGANISM AND METHOD OF MANUFACTURING PUTRESCIN USING THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0091628 2017-07-19
KR1020170091628A KR102011394B1 (ko) 2017-07-19 2017-07-19 퓨트레신을 생산하는 미생물 및 이를 이용한 퓨트레신 생산방법

Publications (2)

Publication Number Publication Date
WO2019017706A2 true WO2019017706A2 (ko) 2019-01-24
WO2019017706A3 WO2019017706A3 (ko) 2019-04-11

Family

ID=65015781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008165 WO2019017706A2 (ko) 2017-07-19 2018-07-19 퓨트레신을 생산하는 미생물 및 이를 이용한 퓨트레신 생산방법

Country Status (7)

Country Link
US (1) US10801047B2 (ko)
EP (1) EP3656862A4 (ko)
JP (1) JP6901621B2 (ko)
KR (1) KR102011394B1 (ko)
CN (1) CN111655859B (ko)
BR (1) BR112020001174A2 (ko)
WO (1) WO2019017706A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113785070A (zh) * 2020-01-21 2021-12-10 Cj第一制糖株式会社 利用含有nadp-依赖性甘油醛-3-磷酸脱氢酶的微生物产生l-氨基酸的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111394268B (zh) * 2019-12-20 2021-06-18 合肥康诺生物制药有限公司 基因工程菌及其构建方法、应用,生产nad+的方法
CN117264924B (zh) * 2023-11-21 2024-02-06 内蒙古伊品生物科技有限公司 Bbd29_11900基因突变体及其在制备l-谷氨酸中的应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006005603A1 (en) 2004-07-15 2006-01-19 Dsm Ip Assets B.V. Biochemical synthesis of 1,4-butanediamine
WO2006065095A1 (en) 2004-12-16 2006-06-22 Cj Corporation Novel promoter nucleic acid derived from corynebacterium genus bacteria, expression cassette comprising the promoter and vector comprising the cassette, host cell comprising the vector and method for expressing a gene using the cell
WO2009096689A2 (ko) 2008-01-28 2009-08-06 Cj Cheiljedang Corporation 개량된 프로모터 및 이를 이용한 l-라이신의 생산 방법
WO2009125992A2 (ko) 2008-04-10 2009-10-15 씨제이제일제당(주) 트랜스포존을 이용한 형질전환용 벡터, 상기 벡터로 형질전환된 미생물 및 이를 이용한 l-라이신 생산방법
WO2009125924A2 (ko) 2008-04-10 2009-10-15 한국과학기술원 퓨트레신 고생성능을 가지는 변이 미생물 및 이를 이용한 퓨트레신의 제조방법
KR101182033B1 (ko) 2009-07-08 2012-09-11 씨제이제일제당 (주) 외래종 유래의 글리세르알데하이드-3-포스페이트 디하이드로지나제의 활성을 획득한 코리네박테리움 속의 l-라이신 생산방법
KR20130003648A (ko) 2011-06-30 2013-01-09 (주) 레몬봇 바코드 생성 방법, 바코드의 유효성 판단 방법, 바코드 생성 장치, 및 이를 포함하는 시스템
KR20140049766A (ko) 2012-10-18 2014-04-28 유흥열 차량 탑재형 이동식 스윙 놀이기구
KR20140115244A (ko) 2013-03-20 2014-09-30 씨제이제일제당 (주) 퓨트레신 생산 재조합 미생물 및 이를 이용한 퓨트레신 생산방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100768748B1 (ko) * 2004-12-30 2007-10-19 씨제이 주식회사 외래의 nadp 의존적 글리세르알데히드-3-포스페이트디히드로게나제 유전자를 포함하는 에세리키아 종 또는코리네박리움 종 미생물 및 그를 이용하여 l-라이신을생산하는 방법
DE102007005072A1 (de) * 2007-02-01 2008-08-07 Evonik Degussa Gmbh Verfahren zur fermentativen Herstellung von Cadaverin
KR101188432B1 (ko) 2008-04-10 2012-10-08 한국과학기술원 퓨트레신 고생성능을 가지는 변이 미생물 및 이를 이용한 퓨트레신의 제조방법
KR101269810B1 (ko) * 2010-07-15 2013-05-30 씨제이제일제당 (주) L-라이신 생산능이 향상된 미생물 및 이를 이용한 l-라이신 생산방법
ES2655764T3 (es) 2012-01-11 2018-02-21 Cj Cheiljedang Corporation Microorganismo recombinante que tiene una capacidad mejorada de producción de putrescina y un procedimiento para producir putrescina utilizando el mismo
CN106459888B (zh) * 2014-04-25 2019-12-24 Cj第一制糖株式会社 用于产生腐胺的微生物和使用其产生腐胺的方法
EP3237625A2 (en) * 2014-12-22 2017-11-01 Invista Technologies S.A.R.L. Methods and materials for the production of monomers for nylon-4/polyester production
KR101735935B1 (ko) 2015-07-20 2017-05-16 씨제이제일제당 (주) 퓨트레신 또는 오르니틴 생산 미생물 및 이를 이용한 퓨트레신 또는 오르니틴 생산방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006005603A1 (en) 2004-07-15 2006-01-19 Dsm Ip Assets B.V. Biochemical synthesis of 1,4-butanediamine
WO2006065095A1 (en) 2004-12-16 2006-06-22 Cj Corporation Novel promoter nucleic acid derived from corynebacterium genus bacteria, expression cassette comprising the promoter and vector comprising the cassette, host cell comprising the vector and method for expressing a gene using the cell
WO2009096689A2 (ko) 2008-01-28 2009-08-06 Cj Cheiljedang Corporation 개량된 프로모터 및 이를 이용한 l-라이신의 생산 방법
WO2009125992A2 (ko) 2008-04-10 2009-10-15 씨제이제일제당(주) 트랜스포존을 이용한 형질전환용 벡터, 상기 벡터로 형질전환된 미생물 및 이를 이용한 l-라이신 생산방법
WO2009125924A2 (ko) 2008-04-10 2009-10-15 한국과학기술원 퓨트레신 고생성능을 가지는 변이 미생물 및 이를 이용한 퓨트레신의 제조방법
KR101182033B1 (ko) 2009-07-08 2012-09-11 씨제이제일제당 (주) 외래종 유래의 글리세르알데하이드-3-포스페이트 디하이드로지나제의 활성을 획득한 코리네박테리움 속의 l-라이신 생산방법
KR20130003648A (ko) 2011-06-30 2013-01-09 (주) 레몬봇 바코드 생성 방법, 바코드의 유효성 판단 방법, 바코드 생성 장치, 및 이를 포함하는 시스템
KR20140049766A (ko) 2012-10-18 2014-04-28 유흥열 차량 탑재형 이동식 스윙 놀이기구
KR20140115244A (ko) 2013-03-20 2014-09-30 씨제이제일제당 (주) 퓨트레신 생산 재조합 미생물 및 이를 이용한 퓨트레신 생산방법

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
"Atlas Of Protein Sequence And Structure", 1979, NATIONAL BIOMEDICAL RESEARCH FOUNDATION, pages: 353 - 358
"Guide to Huge Computers", 1994, ACADEMIC PRESS
A. SOUKRI ET AL., PROTEIN EXPRESSION AND PURIFICATION, vol. 25, 2002, pages 519 - 529
ATSCHUL, [S.] [F., J MOLEC BIOL, vol. 215, 1990, pages 403
CARILLO, SIAM J APPLIED MATH, vol. 48, 1988, pages 1073
DEVEREUX, J. ET AL., NUCLEIC ACIDS RESEARCH, vol. 12, 1984, pages 387
GRIBSKOV ET AL., NUCL. ACIDS RES., vol. 14, 1986, pages 6745
MORRIS ET AL., J BIOL. CHEM., vol. 241, no. 13, 1966, pages 3129 - 3135
NEEDLEMAN ET AL., J MOL BIOL., vol. 48, 1970, pages 443
NEEDLEMANWUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 - 453
PEARSON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 2444
QIAN ZD ET AL., BIOTECHNOL. BIOENG., vol. 104, no. 4, 2009, pages 651 - 662
RICE ET AL.: "EMBOSS: The European Molecular Biology Open Software Suite", TRENDS GENET., vol. 16, 2000, pages 276 - 277, XP004200114, DOI: 10.1016/S0168-9525(00)02024-2
SCHNEIDER ET AL., APPL. MICROBIOL. BIOTECHNOL., vol. 88, no. 4, 2010, pages 859 - 868
SCHNEIDER ET AL., APPL. MICROBIOL. BIOTECHNOL., vol. 91, 2011, pages 17 - 30
SMITHWATERMAN, ADV. APPL. MATH, vol. 2, 1981, pages 482

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113785070A (zh) * 2020-01-21 2021-12-10 Cj第一制糖株式会社 利用含有nadp-依赖性甘油醛-3-磷酸脱氢酶的微生物产生l-氨基酸的方法
EP3878965A4 (en) * 2020-01-21 2022-03-09 CJ Cheiljedang Corporation METHOD FOR PRODUCING L-AMINO ACID USING A MICROORGANISM CONTAINING NADP-DEPENDENT GLYCERADEHYDE-3-PHOSPHATE DEHYDROGENASE
JP2022521115A (ja) * 2020-01-21 2022-04-06 シージェイ チェイルジェダン コーポレーション Nadp依存的グリセルアルデヒド-3-ホスフェートデヒドロゲナーゼを含む微生物を用いてl-アミノ酸を生産する方法
TWI777377B (zh) * 2020-01-21 2022-09-11 南韓商Cj第一製糖股份有限公司 使用包含nadp依賴型甘油醛-3-磷酸脫氫酶的微生物生產左旋胺基酸的方法
JP7193902B2 (ja) 2020-01-21 2022-12-21 シージェイ チェイルジェダン コーポレーション Nadp依存的グリセルアルデヒド-3-ホスフェートデヒドロゲナーゼを含む微生物を用いてl-アミノ酸を生産する方法
CN113785070B (zh) * 2020-01-21 2023-10-24 Cj第一制糖株式会社 利用含有nadp-依赖性甘油醛-3-磷酸脱氢酶的微生物产生l-氨基酸的方法

Also Published As

Publication number Publication date
US10801047B2 (en) 2020-10-13
CN111655859A (zh) 2020-09-11
EP3656862A2 (en) 2020-05-27
JP6901621B2 (ja) 2021-07-14
US20200224227A1 (en) 2020-07-16
JP2020528271A (ja) 2020-09-24
KR20190009872A (ko) 2019-01-30
CN111655859B (zh) 2024-09-03
WO2019017706A3 (ko) 2019-04-11
BR112020001174A2 (pt) 2020-07-28
EP3656862A4 (en) 2021-06-09
KR102011394B1 (ko) 2019-10-22

Similar Documents

Publication Publication Date Title
WO2020204427A1 (ko) 신규 l-트립토판 배출 단백질 변이체 및 이를 이용한 l-트립토판을 생산하는 방법
WO2019164348A1 (ko) 신규 l-트립토판 배출 단백질 및 이를 이용한 l-트립토판을 생산하는 방법
WO2021150029A1 (ko) Nadp 의존적 글리세르알데하이드-3-포스페이트 디하이드로지나제를 포함하는 미생물을 이용하여 l-아미노산을 생산하는 방법
WO2021049866A1 (ko) L-쓰레오닌 배출 단백질의 변이체 및 이를 이용한 l-쓰레오닌 생산 방법
WO2017014532A1 (ko) 퓨트레신 또는 오르니틴 생산 미생물 및 이를 이용한 퓨트레신 또는 오르니틴 생산방법
WO2019117671A1 (ko) 5&#39;-이노신산을 생산하는 미생물 및 이를 이용한 5&#39;-이노신산의 생산 방법
WO2022163951A1 (ko) 신규한 단백질 변이체 및 이를 이용한 l-라이신 생산 방법
WO2017069578A1 (ko) L-이소루신 생산능을 가지는 코리네박테리움 속 미생물 및 이를 이용하여 l-이소루신을 생산하는 방법
WO2021167414A1 (ko) 퓨린 뉴클레오티드를 생산하는 미생물 및 이를 이용한 퓨린 뉴클레오티드의 생산방법
WO2019017706A2 (ko) 퓨트레신을 생산하는 미생물 및 이를 이용한 퓨트레신 생산방법
WO2021125896A1 (ko) 내막 단백질의 변이체 및 이를 이용한 목적 산물 생산 방법
WO2020226341A1 (ko) L-아미노산을 생산하는 미생물 및 이를 이용한 l-아미노산을 생산하는 방법
WO2019164351A1 (ko) 마이코스포린 유사 아미노산을 생산하는 미생물 및 이를 이용한 마이코스포린 유사 아미노산의 생산방법
WO2021261733A1 (ko) L-쓰레오닌 디하이드라타아제의 신규 변이체 및 이를 이용한 l-이소류신 생산 방법
WO2018230977A1 (ko) 신규 폴리펩타이드 및 이를 이용한 오르니틴계 산물 생산방법
WO2021060696A1 (ko) 디하이드로디피콜린산 리덕타제 변이형 폴리펩티드 및 이를 이용한 l-쓰레오닌 생산방법
WO2022164118A1 (ko) 프리페네이트 탈수 효소 변이체 및 이를 이용한 분지쇄 아미노산 생산 방법
WO2022225075A1 (ko) 신규한 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2018230978A1 (ko) 신규 폴리펩타이드 및 이를 이용한 오르니틴계 산물 생산방법
WO2022050671A1 (ko) L-발린 생산 미생물 및 이를 이용한 l-발린 생산 방법
WO2022231036A1 (ko) 신규한 변이체 및 이를 이용한 l-글루탐산 생산 방법
WO2022124708A1 (ko) 신규한 분지 연쇄 아미노산 아미노트렌스퍼라아제 변이체 및 이를 이용한 이소류신 생산 방법
WO2022035011A1 (ko) 퓨트레신 생산 미생물 및 이를 이용한 퓨트레신 생산방법
WO2022231042A1 (ko) 신규한 변이체 및 이를 이용한 l-발린 생산 방법
WO2021153866A1 (ko) 시트레이트 신타아제의 활성이 약화된 신규한 변이형 폴리펩티드 및 이를 이용한 l-아미노산 생산 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18836158

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2020502140

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020001174

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018836158

Country of ref document: EP

Effective date: 20200219

ENP Entry into the national phase

Ref document number: 112020001174

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200117