WO2019010700A1 - 一种层级结构多级孔沸石及其制备方法 - Google Patents

一种层级结构多级孔沸石及其制备方法 Download PDF

Info

Publication number
WO2019010700A1
WO2019010700A1 PCT/CN2017/092987 CN2017092987W WO2019010700A1 WO 2019010700 A1 WO2019010700 A1 WO 2019010700A1 CN 2017092987 W CN2017092987 W CN 2017092987W WO 2019010700 A1 WO2019010700 A1 WO 2019010700A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
small molecule
acid
pore
preparation
Prior art date
Application number
PCT/CN2017/092987
Other languages
English (en)
French (fr)
Inventor
洪梅
张健
陈柱文
王彦顶
白杉
陈超
Original Assignee
北京大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学深圳研究生院 filed Critical 北京大学深圳研究生院
Priority to PCT/CN2017/092987 priority Critical patent/WO2019010700A1/zh
Priority to CN201780050869.9A priority patent/CN109790040B/zh
Publication of WO2019010700A1 publication Critical patent/WO2019010700A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/24Type Y

Definitions

  • the present application relates to the field of preparation of hierarchical structure multi-stage pore zeolites, and more particularly to a hierarchical structure multi-stage pore zeolite and a preparation method thereof.
  • Zeolites ie molecular sieves in a narrow sense, are generally defined as aluminosilicates having a microporous structure, formed by a common apex between tetrahedrons such as [SiO 4 ], [AlO 4 ] or [PO 4 ] Four connected skeletons create periodic channels. Zeolites have a high specific surface area, thermal stability, chemical stability and mechanical stability due to inorganic crystals having a uniform microporous structure. Together with more than 200 zeolite structures that have been discovered, zeolite materials have adjustable acid sites, pore sizes and hydrophilicity, which are widely used in traditional catalytic, adsorption, ion exchange fields, and emerging drug loading.
  • micropores in the zeolite have shape selective selectivity and active sites, which bring excellent properties to the zeolite; for example, Y and USY zeolites with FAU framework structure are one of the most important catalysts in the industry, with superior activity and selection.
  • Sexuality is widely used in many petrochemicals such as the conversion of heavy petroleum crude oil into high value-added products such as catalytic cracking of gasoline, or in biomass conversion reactions such as transesterification of sugars or fatty acids.
  • zeolites are only characterized by microporosity. For the steric hindrance and diffusion limitation of slightly larger molecules, macromolecules can only react on the outer surface of zeolite, which greatly limits the application range of zeolite. In the past decade, a new class of zeolitic materials has expanded mesoporous and/or macroporous structures in addition to its inherent microporous structure.
  • microporous-mesoporous-macroporous layer zeolite material that is, the multi-stage pore zeolite, overcomes the diffusion limitation of general zeolites to large-size macromolecules, and greatly expands the application range of zeolite materials; and, in the conventional zeolite
  • the field of application can also improve its performance, such as improving the conversion rate, selectivity, long-term stability, anti-coking ability and the like of organic catalytic conversion.
  • multi-stage pore zeolites can also achieve breakthroughs in applications where conventional zeolite materials are not possible, such as protein adsorption, macromolecular catalysis, and transition metal ion exchange; and because of the stability and long-range order of inorganic zeolite materials, The application effect in these fields is significantly better than that of organic mesoporous materials and amorphous silica molecular sieve materials.
  • the multi-stage pore structure also provides an ideal contact space for further loading of the active material or functional modification, and better retains the self-characteristics of the adsorbed material.
  • N,N-dimethyl-N-[3-(trimethicone)propyl]octadecyl ammonium chloride (abbreviated as TPOAC) is introduced into the synthesis of Y zeolite molecular sieve, organosilane end
  • TPOAC N,N-dimethyl-N-[3-(trimethicone)propyl]octadecyl ammonium chloride
  • the surfactants used in the synthesis of multi-stage pore structure Y zeolite are expensive and difficult to synthesize, which increases the synthesis cost and process difficulty of the multi-stage pore structure Y zeolite, and is difficult to scale production; and, more importantly,
  • the multi-stage pore structure Y zeolite prepared by the prior method is a supramolecular self-assembly molding based on a surfactant template, tends to form an ordered mesoporous structure, sacrificing the continuity and stability of the zeolite framework, and is difficult to form a catalyst.
  • the object of the present application is to provide a novel process for the preparation of a multistage pore zeolite of a hierarchical structure, and a hierarchical multistage pore zeolite prepared therefrom.
  • the present invention discloses a method for preparing a hierarchical multi-stage pore zeolite, comprising adding a small molecule material as an additive to a reaction synthesis liquid of a wet chemical hydrothermal synthesis zeolite, and reacting with each raw material to form a small molecule-zeolite composite. The material is then washed with a small molecule-zeolite composite to obtain a multistage pore zeolite of a hierarchical structure; wherein the small molecule material is an organic compound having a molecular weight of less than or equal to 900 Daltons, and the size of the small molecule material is less than 2 nm.
  • the preparation method of the present application does not need to add a hard template, a surfactant or a polymer, and only adds a small molecule material to the reaction synthesis liquid; wherein the reaction synthesis liquid refers to a raw material for forming a zeolite.
  • a solution such as a silicon source, an aluminum source and a base, and a doped metal source of selectively doped ions;
  • the zeolite of the present application may be a conventional Y zeolite, a USY zeolite or a faujasite zeolite, particularly preferably Y. Zeolite.
  • the small molecule material functions like a soft template, and the spatial structure of the small molecule material is relatively variable and plastic, and is compatible with the wet chemical reaction of the zeolite with high temperature and high pressure hydrothermal synthesis conditions, small molecular materials and Compared with other additives in the prior art, the polymer has the following advantages: First, the polymer template is easily decomposed in the synthesis of zeolite, and the present application uses a small molecular material, which has good structural stability and a strong plasticity in the space structure.
  • the solid skeleton structure of the zeolite has a FAU topological crystal structure as a whole, that is, the 24-membered-tetrahedral octahedral unit is arranged in the same manner as the carbon atoms in the diamond, and is called SOD cages, which are connected by a hexagonal prism double 6-ring forming a three-dimensional porous channel structure along [110], that is, having a microporous 12-oxygen ring window, the pore size of the micropores is about 0.74 nm, and the microporous skeleton A hollow or tunnel structure of from 2 to 100 nm, preferably from 10 to
  • small molecule materials such as amino acids
  • the stability is better, and the surfactant generally only forms a polycrystalline nanoparticle stack; and, in the hierarchical multi-stage pore zeolite obtained by the preparation method of the present application, mesopores, macropores or hollow tunnel structures are all Or partially inside the crystal for better stability.
  • the small molecule material can usually be removed by water washing to finally form a multi-stage pore zeolite of a multi-layer structure, and the preparation method of the present application is more energy-saving and environmentally friendly than the method of sintering to remove the template in the prior preparation method.
  • the preparation method of the present application since the surfactant is not required to be expanded due to foaming during the zeolite synthesis process, the preparation method of the present application is easier to enlarge and produce than the prior art. To meet the needs of large-scale industrial production.
  • micropores refer to pores having a pore diameter of less than 2 nm, mesopores to pores having a pore diameter of 2 to 50 nm, and macropores to pores having a pore diameter of more than 50 nm.
  • the size of the small molecule material is no more than 1 nm.
  • the small molecule material is at least one of an organic amine and an ammonium salt, an organic acid, an organic alcohol, and an amino acid.
  • the organic amine and the ammonium salt are selected from the group consisting of trimethylamine, ethylamine, triethylamine, propylamine, isopropylamine, butylamine, Isobutylamine, hexamethylenediamine, triethylenetetramine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, choline, pyrimidine, and derivatives of the above organic amines and ammonium salts
  • At least one of the organic acids selected from the group consisting of lactic acid, citric acid, tartaric acid, acetic acid, ethylenediaminetetraacetic acid, propionic acid, oxalic acid, and at least one of the above organic acid derivatives
  • the organic alcohol is selected from the group consisting of ethanol and propylene Alcohol, isopropanol, butanol, pentanol, ethylene glyco
  • the self-regulation and controllable self-assembly of the small molecule material in the zeolite synthesis process are mainly used to fill the mesopores and/or macropores, or hollow tunnels. Structure; it can be understood that as long as the filling can be performed during the formation of the zeolite framework, and does not affect the formation of large single crystal structure of the zeolite, and small molecules which are easily removed by washing or other solvent in the subsequent process can be used in the present application. It is not limited to some of the common small molecular materials exemplified above. Of course, small molecule materials can also be removed by common calcination methods.
  • the amount of the small molecule material is from 1% to 30% by weight based on the total weight of the small molecule-zeolite composite. More preferably, the small molecule material is used in an amount of from 5% to 20% by weight based on the total weight of the small molecule-zeolite composite.
  • the amount of small molecular materials and the structure of small molecular materials directly affect the structure of mesopores, macropores or hollow tunnels. It can be understood that the larger the amount of small molecular materials, the mesopores, macropores or hollow tunnels formed. The more the structure, the corresponding, the mechanical properties of the multi-stage pore zeolite will also be affected; the specific amount or structure of the small molecule material can be determined according to the required pore size, the number or type, and the stability of the zeolite. No specific restrictions.
  • the preparation method of the present application specifically includes the following steps.
  • step b) subjecting the reaction product of step a) to solid-liquid separation, drying the solid product to obtain the small molecule-zeolite composite;
  • the doped metal source of the dopant atoms is further included in the reaction synthesis liquid.
  • the reaction temperature of step a) is from 4 to 200 °C.
  • reaction temperature of step a) is from 50 to 180 °C.
  • a silicon source, an aluminum source and a base are both conventional raw materials for preparing zeolite.
  • the silicon source may be silica sol, silicon oxide, tetraethyl orthosilicate, sodium metasilicate, silicon.
  • N-butyl acrylate, silicon carbide, etc., aluminum source can be aluminum foil, aluminum powder, aluminum chloride, sodium metaaluminate, aluminum sulfate, aluminum nitrate, aluminum isopropoxide, pseudo-boehmite, aluminum hydroxide, etc.
  • Aluminum source can be aluminum foil, aluminum powder, aluminum chloride, sodium metaaluminate, aluminum sulfate, aluminum nitrate, aluminum isopropoxide, pseudo-boehmite, aluminum hydroxide, etc.
  • the doping metal source may be any atom or metal capable of substituting a silicon atom or an aluminum atom in the zeolite framework, such as a phosphorus atom, a boron atom, a germanium atom, a titanium atom, a zirconium atom, a gallium atom, a vanadium atom, a cobalt atom, or an iron.
  • the atom, optional hetero atom or metal source may be phosphoric acid, boric acid, tetraethoxy cerium, tetrabutyl titanate, zirconium dichloride, gallium phosphate, ammonium metavanadate, cobalt chloride, iron nitrate, and the like.
  • the specific raw materials and/or doping materials may be determined according to the zeolite to be prepared, and are not specifically limited herein.
  • the reaction temperature and pressure conditions are also determined depending on the specific zeolite to be prepared, and are not specifically limited herein.
  • the small molecule-zeolite composite is washed, the solvent used is a polar solvent, and the polar solvent is at least one of deionized water, ethanol, acetone, methanol and petroleum ether.
  • the polar solvent is deionized water.
  • the other side of the application discloses a small molecule-zeolite composite prepared by the preparation method of the present application.
  • the small molecule-zeolite composite material is actually the composite material which does not wash the small molecule material in the preparation method of the hierarchical structure multi-stage pore zeolite of the present application, that is, the product of the step b).
  • the small molecule-zeolite composite is an intermediate product of the present application, wherein the small molecular material dispersed and supported in the hierarchical pore structure has chirality, catalytic performance, desorption, and strong interaction with biological macromolecules.
  • the hierarchical meso-microporous structure provides a suitable pore size, morphology, and curved surface for the nesting of small molecular materials, which facilitates the interaction of small molecular materials with biological macromolecules, enabling small molecule-zeolite composites.
  • the other side of the application discloses a multistage pore zeolite of a hierarchical structure prepared by the preparation method of the present application.
  • the hierarchical structure multi-stage pore zeolite of the present application has a single crystal unit cell size of 2.43 nm to 2.45 nm and a BET specific surface area of not less than 500 m 2 /g.
  • the hierarchical structure multi-stage pore zeolite obtained by the preparation method of the present application has simple preparation, convenient and large-scale production on the one hand, and can form a large single crystal structure of the zeolite to realize high crystallinity on the other hand.
  • the preparation method of the present application can obtain a multi-stage pore zeolite with a controlled pore size, mesoporous, macroporous or hollow tunnel structure to meet different use requirements, and in particular, can achieve the existing zeolite.
  • the hierarchical multi-stage pore zeolite of the present application has a higher hierarchical structure than the existing microporous zeolitic material, including a hollow structure and an integral tunnel column structure, and the zeolite structure has high crystallinity, has catalysis and shape selection.
  • the selective function of the zeolite skeleton is good.
  • the outer layer of the microporous-mesoporous Y-type hierarchical multi-stage pore zeolite material of the present application is a microporous shell of 100-300 nm, and the inside of the microporous shell is snail-like.
  • the nanopore channel, the mesoporous size measured by nitrogen adsorption is bimodal, and the sizes are 4 nm and 24 nm, respectively. Even with these mesoporous channels interrupting the zeolite framework, the crystallinity of the crystal is still better than that of the conventional Y without adding small molecular materials.
  • the zeolitic material has a crystallinity of 20%. It is worth mentioning that, in some embodiments, a Y-type zeolite of an integral tunnel column structure can also be prepared, and the mesoporous or macroporous channels of the communication can pass to the outer surface of the zeolite, which is excellent in organic reaction catalysis applications. performance. Moreover, the hierarchical structure of multi-stage pore zeolite of hollow structure or integral tunnel column structure is also an excellent carrier for controlled release drugs.
  • the preparation method of the multi-stage pore zeolite of the hierarchical structure of the present application adopts a small molecular material as a soft template to form a multi-stage pore zeolite having a pore size and a structure-controlled hierarchical structure, and the prepared multi-stage pore zeolite can realize macromolecules such as proteins.
  • the adsorption and adsorption of organic molecules, biocatalysis, and the exchange of large-scale ions expand the application fields and scope of zeolites.
  • the preparation method of the present application is simple in process, easy to operate, and low in cost, and lays a foundation for mass production of multi-stage pore zeolite of hierarchical structure.
  • FIG. 3 is a nuclear magnetic resonance 1 H-NMR spectrum of a hierarchical structure multistage pore zeolite material in an embodiment of the present application;
  • FIG. 5 is an XRD diffraction pattern of a hierarchical structure multistage pore zeolite material in an embodiment of the present application
  • FIG. 6 is a nitrogen adsorption-desorption isotherm diagram of pore structure analysis of a hierarchical structure multistage pore zeolite material in an embodiment of the present application;
  • FIG. 7 is a BJH pore size analysis diagram of pore structure analysis of a hierarchical structure multi-stage pore zeolite material in an embodiment of the present application;
  • Figure 8 is a scanning electron micrograph of a hierarchical structure multistage pore zeolite material in an embodiment of the present application
  • FIG. 9 is a low resolution transmission electron microscope image of a hierarchical structure multistage pore zeolite material in an embodiment of the present application.
  • Figure 10 is a high resolution transmission electron micrograph of a hierarchical structure multistage pore zeolite material in an embodiment of the present application
  • FIG. 11 is a fast Fourier transform FFT diffraction pattern of a hierarchical structure multi-stage pore zeolite material in an embodiment of the present application
  • Figure 12 is a scanning electron micrograph of a hierarchical structure multistage pore zeolite material in another embodiment of the present application, shown as a complete crystal;
  • Figure 13 is a scanning electron micrograph of a hierarchical structure multi-stage pore zeolite material in another embodiment of the present application, shown as a few surface-crushed crystals;
  • Figure 14 is a scanning electron micrograph of a hierarchical structure multistage pore zeolite material in another embodiment of the present application.
  • Figure 15 is a scanning electron micrograph of a hierarchical structure multistage pore zeolite material in another embodiment of the present application.
  • Figure 16 is a scanning electron microscope image of a hierarchical structure multistage pore zeolite material in another embodiment of the present application.
  • Figure 17 is a TEM image of a hierarchical structure multistage pore zeolite material in another embodiment of the present application.
  • Figure 18 is an XRD diffraction pattern of a conventional microporous zeolite in the comparative examples of the present application.
  • Figure 19 is a nitrogen adsorption-desorption isotherm of a conventional microporous zeolite in the comparative examples of the present application.
  • Figure 20 is a scanning electron micrograph of a conventional microporous zeolite in the comparative examples of the present application.
  • Figure 21 is a transmission electron micrograph of a conventional microporous zeolite in the comparative examples of the present application.
  • 0 is the analysis result of the conventional microporous zeolite in the comparative example of the present application, wherein a picture is an XRD diffraction pattern, b picture is a nitrogen adsorption-desorption isotherm, c picture is a scanning electron microscope photograph, and d picture is a transmission electron microscope photograph.
  • the preparation method of the present application has developed a novel strategy for synthesizing a multi-stage pore zeolite of a hierarchical structure, without using a hard template, without using a surfactant, or using a polymer; instead, using a special structure of a small molecule and a zeolite structure
  • the interaction, one-step method yields a small molecule-zeolite composite with a wide range of uses.
  • the small molecule-zeolite composite structure contains the microporous structure of the zeolite itself, and at the same time, small molecules participate in the formation of the secondary pore structure, and the secondary pore structure may be mesoporous or macroporous or contain both mesopores depending on the small molecular material used.
  • the macroporous and secondary pore structures are highly connected and located inside the crystal, and small molecules reside in the mesoporous and macroporous secondary pore structures.
  • Small molecules dispersed and supported in the hierarchical pore structure have chirality, catalytic properties, and desorption, and have strong interactions with biological macromolecules; at the same time, mesoporous and macroporous secondary pore structures are small molecules.
  • Nesting provides suitable pore size, morphology, curved surface, zeolite skeleton charge and localized exchangeable positive ions also provide favorable conditions for the exchange of small molecules; these make small points
  • the sub-zeolite composite has great application value in protein adsorption, catalysis and sustained release of small molecules.
  • the small molecule-zeolite composite is further washed to remove small molecules, thereby obtaining a multistage pore zeolite of the hierarchical structure of the present application.
  • small molecules belong to soft template, spatial structure is relatively variable, plasticity, and compatibility with wet chemical and even hydrothermal synthesis conditions.
  • an amino acid is used as a small molecule material, and the melting point of the amino acid is about 230 ° C or higher, so it is very stable under the conditions of zeolite synthesis, and is soluble in strong acid and alkali, unlike polymer template.
  • the zeolitic material is decomposed in the synthesis, and the amino acids are colorless crystals, so no change in the color of the zeolite is produced, which is superior to the polymer template.
  • the interaction of amino acids with zeolites includes hydrogen bonding interactions and electrostatic interactions, which are much weaker than the covalent interactions between organosilane-containing surfactants and zeolites, and do not produce micelles during the synthesis process. Therefore, it is easier to form a large single crystal structure, instead of forming a polycrystalline nanoparticle stack like a surfactant, and the large single crystal structure has better thermal stability and hydrothermal stability.
  • the amino acid has a holding capacity in the amino acid-zeolite composite structure, that is, the amino acid content can reach 30%.
  • the amino acid is an ampholyte, which exists in the form of a zwitter ion or a zwitterion in an aqueous solution or crystal.
  • the so-called zwitterion refers to an NR 4+ cation and a acceptable proton capable of releasing a proton on the same amino acid molecule.
  • the COO - negative ion because of this, the amino acid has good water solubility, especially the non-standard amino acid with a permanent double ion structure has moisture absorption, and the presence of the zeolite structure can stabilize the zwitterionic state of the amino acid and inhibit the non-dissociated state.
  • the amino acid of the amino acid-zeolite composite structure can be removed by washing, such as washing, without the need for the existing templating agent to be removed by calcination or pickling. Therefore, the preparation method of the present application is more energy-saving and environmentally friendly than the prior art.
  • the amino acid does not foam during the synthesis of the zeolite, and does not cause volume expansion of the synthetic liquid. Therefore, the preparation method of the present application is easier to enlarge than the prior art.
  • the zeolite structure with small molecules removed has microporous-mesoporous-macroporous multi-stage pores, and the hierarchical structure multi-stage pore zeolite or the overall cylindrical hollow structure of the hollow structure can be prepared by adjusting the amount and structure of the small molecule material.
  • the hierarchical multi-stage pore zeolite can accommodate larger molecules and reduce diffusion resistance compared to conventional microporous zeolites.
  • the mesopores or macropores are inside the crystal, and the size of the mesopores or macropores is adjustable, so that they have a shape selective selectivity, especially for the macromolecule selective selectivity that microporous zeolite cannot achieve, and also have adjustable acidity.
  • Site tunable affinity/hydrophobicity, retained crystalline structure and stability, exchangeable ions, and the ability to be exchanged for alkali catalysts with alkali or alkaline earth metals. It can improve the performance of zeolite in traditional fields such as catalysis, adsorption and ion exchange, and can also realize the functions of protein adsorption, biocatalysis and large-scale ions such as organic ion exchange which cannot be realized by traditional zeolite.
  • the zeolite solid and the small molecule have interaction and matching shape characteristics, and small molecules are added in the early stage of zeolite synthesis, which can interfere with the morphology and charge characteristics of the synthesized zeolite, in order to better accommodate the addition.
  • Small molecule that reduces van der Waals forces in the pores, the resulting boiling The stone has microporous-mesoporous, microporous-macroporous, or microporous-mesopore-macroporous properties.
  • a three-dimensional grid material with obvious hierarchical structure is formed, which has strong stability. Since the small molecules are evenly distributed in the composite structure, the functions of small molecules such as catalysis, protein adsorption, and the like can be better realized. And small molecules can also be released under desorption conditions.
  • the interaction between zeolite solids and small molecules is electrostatic interactions and ionic bond interactions, rather than covalent interactions. Therefore, small molecules in the small molecule-zeolite composite are easily removed by washing, and the present application is preferably removed by water washing instead of the prior art by high temperature calcination.
  • the small molecular material in the small molecule-zeolite composite is removed to obtain a multi-stage pore zeolite having a microporous-mesoporous, or microporous-macroporous, or microporous-mesopore-macroporous structure, the pores thereof Adjustable and three-dimensional connection, so that macromolecules can enter, making multi-stage pore zeolite become a catalyst with acidic sites; the hollow structure of zeolite or tunnel column structure can realize drug-loaded sustained-release function; in addition, due to zeolite It has a free positive ion and can also be converted into a basic catalyst by alkali ion exchange.
  • the hierarchical multi-stage pore zeolite of the present application has better catalytic, adsorption, and ion exchange properties than conventional microporous zeolite structures, especially for some conventional zeolite structures such as molecules or ions having a large diameter.
  • the preparation method of the present application is first proposed to introduce small molecules into the zeolite synthesis process, and to construct a small molecule-zeolite composite material having a three-dimensional structure by mutual interaction of small molecules and stereo configuration, the organic-inorganic composite
  • the material also has a hierarchical pore due to the function of the porogen, which may be a mesoporous, mesoporous-macroporous, hollow structure or a connected tunnel structure, while the small molecule resides in the zeolite.
  • the porogen may be a mesoporous, mesoporous-macroporous, hollow structure or a connected tunnel structure, while the small molecule resides in the zeolite.
  • the hierarchical channel it plays a very good load-holding function.
  • the resulting inorganic material is a microporous-mesoporous or microporous-mesoporous-macroporous multistage pore zeolite having a hierarchical structure.
  • the hierarchical multi-stage pore zeolite of the present application may have a mesoporous or macropore size which is adjusted by zeolite synthesis conditions, the amount of small molecule material or by ion exchange after synthesis, and the mesopores or macropores are located in the crystal.
  • the hierarchical multi-stage pore zeolite of the present application has at least two levels of pore structure, i.e., at least micropores and mesopores, or has micropores and macropores, and such a layered zeolite material having at least two levels of pore structure shows Better macromolecular accessibility, has broad prospects for applications that are restricted by traditional zeolite pore diffusion or steric hindrance, including organic catalytic conversion, adsorption, etc.
  • it can be ion exchanged with large diameter and can be used as ion exchange.
  • the agent if exchanged with an alkali ion or an alkali metal ion, can also be converted into a basic catalyst.
  • the preparation method of the present application avoids the use of expensive hard templating agents relative to the surfactant materials in the background art, and avoids the high cost of surfactants, especially expensive silylating agents. Process amplification problems such as foaming due to the use of surfactants are also avoided. Moreover, the preparation method of the present application not only has the application value of the hierarchical multi-stage pore zeolite prepared by the preparation thereof, but also the intermediate product small molecule-zeolite composite material has good application value, and overcomes the organic template-zeolite composite material itself. The disadvantage of use.
  • the small molecular material used is a biological small molecular structure ubiquitous in nature, and the small molecule-zeolite composite material is obtained in one step without additional reagents, and has an extremely wide application.
  • the zeolitic material after removal of the small molecule has a layer of microporous-mesoporous, microporous-macroporous, or microporous-mesopore-macroporous interwoven pores, which can be used as a catalyst, adsorption and ion exchange for high value-added products.
  • the hierarchical multi-stage pore zeolite material of the present application has a higher hierarchical structure than the conventional microporous zeolite material, that is, includes a core-shell structure and a monolithic column structure, and the crystal structure of the zeolite structure is high.
  • the zeolite skeleton having catalytic and shape selective functions has good continuity.
  • the core-shell structure refers to a structure in which a microporous skeleton of zeolite is a shell, a hollow macropores is a core, and a structure formed by a hollow structure; a monolithic column structure refers to a hollow cylindrical tunnel in which a hollow structure is connected, and the tunnel The hollow extends to the surface of the zeolite.
  • the outer layer of the microporous-mesoporous Y-type zeolitic material of the present application is a microporous shell of 100-300 nm, and the core has an ant nest like the micropores.
  • the mesoporous size measured by nitrogen adsorption is bimodal, and the sizes are 4 nm and 24 nm, respectively. Even with these mesoporous channels interrupting the zeolite framework, the crystallinity of the crystal is still better than that of the conventional Y zeolite without adding biomicromolecules. The crystallinity of the material is 20% higher.
  • a Y-type zeolite having a monolithic column structure is also prepared, and the mesoporous or macroporous channels extending to the outer surface of the zeolite can have excellent performance in organic reaction catalysis applications.
  • Hierarchical structure of core-shell structure and monolithic column structure Multi-stage pore zeolite is an excellent carrier for controlled release drugs.
  • the small molecule material used refers to molecular biology and pharmacology, a low molecular weight organic compound which can help regulate biological processes, and its molecular weight is usually less than 900 Dao.
  • the size is less than 2 nm, and the preferred small molecular material size is no more than 1 nm.
  • the more common small molecular materials include organic amines and ammonium salts, organic acids, organic alcohols and amino acids.
  • amino acid refers to a general term for a class of organic compounds containing an amino group and a carboxyl group, and may be a protein amino acid, a non-protein amino acid or an amino acid-like amino acid.
  • surfactant refers to a parent structure having a hydrophobic group at the tail and a hydrophilic group at the head, thereby reducing the liquid-liquid or liquid-solid surface tension or interfacial tension, after a certain concentration, A class of organic compounds that form micelles. It is apparent that the small molecule material used in the present application has a small hydrophobic group and does not have a critical micelle concentration, and thus does not form micelles like a surfactant, and does not affect the formation of a large single crystal structure of the zeolite.
  • the preparation method of the present application can prepare zeolites of various structures, including Y-type zeolite, USY type zeolite, The faujasite zeolite and the like are particularly suitable for the preparation of a hierarchical multi-stage pore Y-type zeolite. It should be noted that in the art, the above various types of zeolites of the USY type can be realized by the control or post-treatment of the synthesis of the zeolite Y, which is not difficult to achieve by those skilled in the art.
  • the skeleton structure is related to the properties of the small molecules used, that is, the small molecular materials matching the properties are selected according to different skeleton structures; for example, the negative electron density of the skeleton structure is larger, and the strip is selected.
  • Positively charged small molecular materials such as arginine, histidine, lysine, etc.; for example, for hydrophilic zeolites, the amino acids are preferably charged or polar amino acids, including lysine (Lys), refined ammonia Acid (Arg), histidine (His), tyrosine (Tyr), serine (Ser), threonine (Thr), cysteine (Cys), asparagine (Asn), glutamine ( Gln), aspartic acid (Asp), glutamic acid (Glu), proline (Val), betaine, L-carnitine, ectoine, sodium laurylaminopropionate, dodecyl Sodium dimethylmethylenedicarboxylate, acyl lysine, methyl lauroyl lysine, N-acyl sarcosine, N-acyl glutamic acid, N-acyl sarcosine, N-alkyl aspartate - ⁇ -alkyl
  • the skeletal structure charge, affinity/hydrophobicity, and stability of the zeolite are related to the ratio of silicon and aluminum elements in the framework, or other dopant atomic elements, ie, the ratio of silicon to aluminum, or the ratio of silicon to heteroatoms.
  • the ratio of Y-zeolite to USY-type silicon-aluminum ranges from 1.5 to infinity.
  • the F-type zeolite has a Y-structure silicon-aluminum ratio of between 1.5 and 3, and the USY silicon-aluminum ratio is about 6 or more. Since the valence state of silicon is tetravalent, and the valence state of aluminum is trivalent, the isomorphous substitution of aluminum with silicon produces a negatively charged zeolite framework.
  • the zeolite structure contains free positive ions. Can be exchanged.
  • the silica-alumina ratio of the zeolite increases, the charge number of the skeleton band becomes smaller, the free positive ions become smaller, the hydrophobicity increases, the ion exchange capacity becomes smaller, the acidity becomes smaller, and the stability increases.
  • the small molecule-zeolite composite reaction product is subjected to solid-liquid separation, and the operation methods such as filtration, centrifugal filtration, and sedimentation separation may be selected, and are not specifically limited herein; Centrifugal filtration was used.
  • the solvent used for washing the small molecule-zeolite composite is a polar solvent including, but not limited to, deionized water, ethanol, acetone, methanol, petroleum ether, etc., preferably washed with water.
  • the solid is dried by infrared lamp drying, blast drying oven drying, vacuum drying oven drying, double cone drying, wiped film drying, etc.; drying temperature is 60-300 ° C, preferably 60-100.
  • the preparation method of the present application further comprises recovering the solid liquid separation liquid and the small molecule-zeolite composite washing liquid, and the recovered liquid contains a small molecular material, which can be recycled and added to the zeolite.
  • the small molecular material in the recovered liquid may be directly added to the zeolite reaction synthesis liquid in the form of a recovery liquid; the recovery liquid may be treated, the small molecular material is extracted, and then added to the zeolite reaction synthesis liquid, which is not specifically limited herein. .
  • the amino acid as a small molecule material may be any currently known ammonia.
  • Acids except for the functional group positions in the backbone structure, such as ⁇ , ⁇ , ⁇ , ⁇ -position amino acids, which are in polarity, pH, and side chain properties such as aliphatic groups, aromatic groups, sulfur, There are great differences in the hydroxyl group and the like, and thus the interaction force on the zeolite structure is also different.
  • the side chain of arginine, histidine and lysine is positively charged, the side chain of aspartic acid and glutamic acid is negatively charged, the side chain of serine and threonine is uncharged, tryptophan,
  • the side chain of phenylalanine has a benzene ring and is hydrophobic.
  • those skilled in the art will be able to select suitable amino acids depending on the needs and the particular application in which the amino acid-zeolite composite is produced or the particular microporous mesoporous zeolite material is desired.
  • the ratio of silicon to aluminum is 1, preferably a charged amino acid, including but not limited to lysine, arginine, histidine, tyrosine, serine, sul More preferred are non-standard amino acids of permanent zwitterionics, including but not limited to betaine, L-carnitine, and the like, and are preferably limited to betaines, glutamine, aspartic acid, glutamic acid, glutamine, aspartic acid, glutamic acid, Ic doneo, sodium laurylaminopropionate, sodium lauryl dimethylmethylene dicarboxylate, acyl lysine, methyl lauroyl lysine, N-acyl sarcosine, N-acyl valley Amino acid, N-acyl sarcosine, N-alkylaspartic acid- ⁇ -alkyl ester, N-acyl glutamic acid diester, di(octy
  • the hierarchical multi-stage pore zeolite of the present application has a pore structure of connected microporous-mesoporous, microporous-macroporous, or microporous-mesopore-macroporous, and can be used for organic catalytic conversion reaction, especially industrially. Fluidized bed catalytic cracking, biomass conversion, carbon-carbon bond coupling reaction, etc., which have great application value.
  • a small molecule-zeolite composite material is prepared by adding a non-standard amino acid L-carnitine small molecule material as an additive to a reaction synthesis liquid of Y-type zeolite, and specifically comprises the following steps:
  • reaction product of the step a) is subjected to centrifugation, a white solid is collected, and dried at 60 ° C to obtain 11.5 g of a product, that is, a small molecule-zeolite composite of the present example, which is labeled as an amino acid-zeolite composite LC. @Y.
  • silica sol used in this example and the silica sols used in the subsequent examples and comparative examples were silica sols having a Si 2 O content of 25% purchased from Qingdao Ocean.
  • the small molecule-zeolite composite of this example was subjected to nuclear magnetic resonance analysis. Specifically, the amino acid-zeolite composite LC@Y prepared in this example was dissolved in DMSO and D2O, and after centrifugation, the supernatant was subjected to Bruker's 500 MHz. The 1H-NMR and 13C-NMR measurements were carried out by a nuclear magnetic resonance spectrometer, and the measurement results are shown in FIGS. 1 and 2. The results of Fig. 1 and Fig. 2 show that the presence of organic amino acids in the composite structure can be clearly seen on the spectra of hydrogen and carbon spectra, indicating that small molecule materials exist in the small molecule-zeolite composite.
  • the small molecule-zeolite composite of Example 1 was washed to obtain a multistage zeolite having a hierarchical structure. Specifically, 5 g of the amino acid-zeolite composite material LC@Y obtained in Example 1 was stirred in 100 g of deionized water for 5 minutes, centrifuged, and washed twice, and the white solid after centrifugation was collected and dried at 60 ° C to obtain 4.1 g.
  • the product, the hierarchical multi-stage pore zeolite of this example is labeled as a microporous-mesoporous grade zeolite material LC-Y.
  • microporous mesoporous grade zeolite material LC-Y of this example was subjected to nuclear magnetic resonance analysis, X-ray diffraction analysis, scanning electron microscope observation, and nitrogen adsorption desorption measurement, as follows.
  • microporous mesoporous grade zeolite material of this example was subjected to X-ray diffraction analysis, and the specific microporous-mesoporous grade zeolite material LC-Y was measured by Rigaku D/Max-2200PC X-ray diffractometer for XRD measurement.
  • the result is shown in Figure 5.
  • the results of Fig. 5 show that all the characteristic peaks of the Y-type zeolite structure can be clearly seen on the diffraction pattern, and it is confirmed that the obtained solid is a crystalline FAU structure zeolite.
  • Nitrogen adsorption desorption measurement The microporous mesoporous grade zeolite material LC-Y of this example was subjected to nitrogen adsorption desorption measurement at 77 K temperature by Micromeritics Tristar II 3020, and the measurement results are shown in Fig. 6 and Fig. 7, and the results are shown in Fig. 6 and Fig. 7 It is shown that the obtained adsorption isotherm is type IV, and the resulting desorption isotherm forms a H4 type hysteresis loop, and under high P/P 0 pressure, it does not reach saturation, as shown in Fig. 6, which proves that LC-Y does exist. Mesopores.
  • the obtained nitrogen adsorption-desorption isotherm was calculated by the BJH method, and the correlation diagram between the obtained dV/dlog(D) pore volume and the average pore diameter Dp is shown in Fig. 7.
  • the comparison of the obtained microporous-mesoporal grade zeolite material LC-Y can be seen.
  • the pores ranged from 10 to 40 nm with an average pore diameter of 24 nm.
  • microporous mesoporous grade zeolite material LC-Y having a BET specific surface area of 737 m 2 /g and a mesoporous pore volume of 0.04 cm 3 /g.
  • the elemental content of the microporous mesoporous grade zeolite material LC-Y was measured by HORIBA Jobin Yvon's inductively coupled plasma atomic emission spectrometry JY 2000-2 to obtain a Si/Al ratio of 2.01.
  • the microporous mesoporous grade zeolite material LC-Y of this example was observed by a scanning electron microscope (abbreviated SEM) of an uncoated gold sample by JEOL JSM-7800F. The results are shown in Fig. 8.
  • the microporous-mesoporous graded zeolite material LC-Y of this example has a distinct eight-sided double-cone Y crystal form.
  • the microporous mesoporous grade zeolite material LC-Y sample of this example was embedded in an epoxy resin, and then sliced into an embedded thin plate having a thickness of 90 nm, which was used by a TE2NAG G2F30 field emission source transmission electron microscope.
  • Fig. 9 is a low-resolution transmission electron micrograph
  • Fig. 10 is a high-resolution transmission electron micrograph.
  • the results show that the microporous-mesoporal grade zeolite material LC- of this example Y has a distinct polycrystalline structure and a non-ordered mesoporous pore structure, and the pore structure is inside the crystal; a large macroporous pore structure is also visible, and the secondary mesoporous/macroporous pores are highly connected.
  • the Fourier transform was performed on the high power TEM, and the results are shown in Fig. 11.
  • the microporous-mesoporal grade zeolite material LC-Y of this example was shown to have high order and high crystallinity.
  • a small molecule-zeolite composite material is prepared by adding a lysine small molecule material as an additive to a reaction synthesis liquid of Y type zeolite, as follows:
  • the small molecule-zeolite composite of Example 3 was washed to obtain a multistage zeolite having a hierarchical structure. Specifically, 5 g of the amino acid-zeolite composite Lys@Y obtained in Example 3 was stirred in 100 g of deionized water for 5 minutes, centrifuged, and washed twice, and the white solid after centrifugation was collected and dried at 60 ° C to obtain 4.3 g.
  • the product, the hierarchical multi-stage pore zeolite of this example is labeled as a microporous-mesoporous grade zeolite material Lys-Y.
  • microporous mesoporous grade zeolite material Lys-Y of this example was subjected to scanning electron microscopic observation and nitrogen adsorption desorption measurement, respectively, as follows.
  • Nitrogen adsorption desorption measurement The microporous mesoporous grade zeolite material Lys-Y of this example was subjected to nitrogen adsorption desorption measurement at 77 K temperature by Micromeritics Tristar II 3020 to obtain a nitrogen adsorption desorption isotherm at 77 K, And the correlation data between the dV/dlog(D) pore volume calculated by the BJH method and the average pore diameter Dp, the mesoporous range of the microporous-mesoporal grade zeolite material Lys-Y can be calculated to be between 10 and 50 nm, and the average pore diameter is 26 nm, BET specific surface area was 698 m 2 /g, mesoporous pore volume 0.05 cm 3 /g. The Si/Al ratio was 2.04.
  • the microporous-mesoporous grade zeolite material Lys-Y of this example was observed by scanning electron microscopy of uncoated gold samples by JEOL JSM-7800F. The results are shown in Fig. 12 and Fig. 13, and the results show that The microporous-mesoporal grade zeolite material Lys-Y can be seen to have a distinct FAU crystal form and mesoporous structure, and the non-ordered second mesoporous pore structure penetrates inside the crystal.
  • the microporous mesoporous grade zeolite material LC-Y of the second embodiment is further processed to obtain a microporous-mesoporous-macroporous Y zeolite material having a monolithic column structure, which is labeled as a monolithic column structure multistage pore Y zeolite.
  • LC-Y-Arg The specific preparation steps are as follows:
  • Arginine treatment Weigh 0.2g of LC-YH + prepared in this example in a sealed tube, add 20mL of deionized water, and ultrasonically disperse; weigh 1.15g of arginine into the sealed tube, magnetically stir for 10min; start heating, The set temperature is 100 °C. When the temperature was raised to 100 ° C, the time was counted, and after 6 hours of reaction, the mixture was centrifuged, and a white solid was collected and dried at 60 ° C to obtain 0.1955 g of a product, that is, the monolithic structure of the mono-column Y zeolite LC-Y-Arg of this example.
  • the monolithic column structure Y-zeolite LC-Y-Arg of this example was observed by a scanning electron microscope. The results are shown in Fig. 14 and Fig. 15, and Fig. 14 and Fig. 15 are observation results of two fields of view, respectively. The results show that the monolithic pore structure Y zeolite LC-Y-Arg of this example has obvious FAU crystal form and mesoporous and macroporous structure. The non-ordered secondary pore structure penetrates inside the crystal and communicates to the outside of the particle. surface.
  • microporous mesoporous grade zeolite material Lys-Y of Example 4 was further processed to obtain a microporous-mesoporous-macroporous Y zeolite material having a monolithic column structure, which was labeled as a monolithic column structure multistage pore Y zeolite. Lys-Y-Arg.
  • the specific preparation steps are as follows:
  • Example 2 2 g of the microporous mesoporous grade zeolite material Lys-Y prepared in Example 2 was weighed into a sealed tube, and 30 mL of deionized water was added thereto, and ultrasonically dispersed. The subsequent steps are the same as in the fifth embodiment.
  • this example obtained 1.9 g of a solid product, that is, the monolithic structure of the mono-column Y zeolite Lys-Y-Arg of this example.
  • the multi-stage pore Y zeolite Lys-Y-Arg of this example was observed by scanning electron microscopy (SEM). The results show that the monolithic structure of the multi-stage pore Y zeolite Lys-Y-Arg has obvious FAU crystal. Type and mesoporous, macroporous structure, non-ordered secondary pore structure throughout the crystal and connected to the outer surface of the particle.
  • a small molecule-zeolite composite material is prepared by adding a pyrimidine small molecule material as an additive to a reaction synthesis liquid of Y type zeolite, as follows:
  • a conventional FAU type zeolite material CFAU zeolite was synthesized according to a conventional preparation method as a comparison.
  • the specific preparation method is as follows:
  • FIGS. 18 to 21 nuclear magnetic resonance analysis, X-ray diffraction analysis, scanning electron microscopy, and nitrogen adsorption desorption measurement were carried out in the same manner as in Example 2.
  • the results are shown in FIGS. 18 to 21, and FIG. 18 is an XRD diffraction pattern and FIG. It is a nitrogen adsorption-desorption isotherm, FIG. 20 is a scanning electron microscope photograph, and FIG. 21 is a transmission electron microscope photograph.
  • the results show that the zeolite of this example has a smooth FAU-type crystal structure, the nitrogen adsorption isotherm and the desorption isotherm are substantially coincident, and no retention loop occurs. No mesoporous distribution is observed from the adsorption and desorption data or the TEM image, XRD The diffraction pattern showed that the crystallinity was only 80% of the layer porous zeolite Y in Example 1.
  • microporous mesoporous grade zeolite material LC-Y of Example 2 the monolithic column structure multistage pore Y zeolite LC-Y-Arg of Example 5, and the CFAU zeolite of the comparative example were subjected to catalytic application tests, as follows.
  • Test 1 Catalytic application in Friedel's alkylation-carbon-carbon coupling reaction
  • microporous mesoporous grade zeolite material LC-Y of Example 2, the monolithic column structure multistage pore Y zeolite LC-Y-Arg of Example 5, and the CFAU zeolite of the comparative example were calcined at 350 ° C for 1 h in a nitrogen atmosphere. Then, 100 mg was accurately weighed separately, dispersed in 5 mL of toluene and stirred for 10 min, then 1 mL of benzyl chloride was added, and refluxed at 110 ° C for 30 h, and benzyl chloride was catalytically converted by zeolite. The reaction product was analyzed by gas chromatography using SHIMADZU GC-2010Plus. The conversion rate of the reaction was based on the amount of benzyl chloride consumed, and the formula was as follows:
  • the conversion rates of the three zeolites of LC-Y, LC-Y-Arg or CFAU were calculated by the above formula.
  • the results show that the conversion of the conventional CFAU zeolite is only 43%, while the conversion efficiency by LC-Y catalysis is 84%, and the conversion efficiency catalyzed by LC-Y-Arg is 87%.
  • the hierarchical structure multistage pore Y zeolite of the present application has excellent catalytic performance.
  • the zeolite after the previous catalytic reaction is recovered, then calcined at 350 ° C for 2 h in a mixed gas stream of nitrogen and oxygen, and calcined for 1 h in a nitrogen atmosphere, and then repeatedly used for the benzyl chloride catalytic process, the catalytic reaction is the same as before;
  • the catalytic cycle was carried out 5 times, and the conversion rate was tested separately.
  • the test results show that the conversion rates of LC-Y and LC-Y-Arg are comparable each time, and the conversion rate is not significantly decreased.
  • the surface of the multi-stage pore Y zeolite of the present application has a long catalytic performance life and catalytic effect. stable.
  • Test 2 Catalytic application in catalytic cracking reactions
  • microporous mesoporous grade zeolite material LC-Y of Example 2, the monolithic column structure multistage pore Y zeolite LC-Y-Arg of Example 5, and the CFAU zeolite of the comparative example each took 2 g, respectively, to a concentration of 200 mL of 200 mL.
  • the NH 4 Cl aqueous solution was subjected to ion exchange; then, the ion-exchanged zeolite was washed with 50 mL of water, washed three times, and then calcined at 400 ° C for 2 h; the ion exchange, washing, and calcination were repeated three times.
  • the ion-exchanged zeolite after washing, calcining depicting 10mg, were placed in a tube furnace, under N 2 stream 100mL / min heating rate of 100 deg.] C 2h, then heated to 400 deg.] C held for 2h, maintaining the temperature at 200 °C.
  • the N 2 gas stream was introduced into a three-necked bottle of 1,3,5-triisopropylbenzene (1,3,5-TiPBz) maintained at a temperature of 71 ° C, and a saturated gas stream containing the organic matter was introduced to the tubular reactor.
  • the partial pressure of 1,3,5-triisopropylbenzene was 180 Pa.
  • the collected product was sampled and analyzed until equilibrium, and the reaction product was analyzed by gas chromatography using SHIMADZU GC-2010 Plus. The results are shown in Table 1.
  • the results in Table 1 show that the conversion rate using CFAU catalysis is only 31.9%, while the conversion efficiency by LC-Y catalysis is 76.3%, and the conversion efficiency of LC-Y-Arg is 85.5%.
  • the multi-stage pore zeolite material has excellent catalytic cracking properties and exhibits unique selectivity as a catalyst.
  • microporous mesoporous grade zeolite material LC-Y of Example 2 The microporous mesoporous grade zeolite material Lys-Y of Example 4, and the monolithic column structure multistage pore Y zeolite of Example 5 LC-Y-Arg
  • the application of the monolithic column structure multistage pore Y zeolite Lys-Y-Arg of Example 6 and the CFAU zeolite of the comparative example as a drug carrier was as follows.
  • Bovine liver catalase hydrogen peroxide oxidoreductase EC1.11.1.6, has four polypeptide chains, each of which is about 500 amino acids long, so bovine liver catalase is about 10 nm in molecular size. Glycoproteins are widely used in industrial catalytic degradation of peroxides into water and oxygen.
  • PBS phosphate buffer
  • the adsorption test procedure is the same as above, but the sample is not sampled in the middle, and after 24 hours, the centrifuge is used to detect the concentration of the supernatant catalase, thereby calculating the catalase adsorbed by the zeolite.
  • the total amount The catalase in the molecular sieve zeolite was formulated into a concentration of 0.05 mg/mL, and tested by a catalase kit of Beijing Solabao Technology Co., Ltd., and a fresh 0.05 mg/mL pure catalase was prepared. The control was used to calculate relative enzyme activity.
  • the LC-Y, Lys-Y, LC-Y-Arg, Lys-Y-Arg and CFAU zeolites were each measured for the equilibrium loading capacity of each zeolite and the relative activity of catalase according to the aforementioned test procedure.
  • the results showed that the equilibrium loadings of the four zeolitic materials LC-Y, Lys-Y, LC-Y-Arg and Lys-Y-Arg for bovine liver catalase were 241 mg/g, 264 mg/g, 179 mg/ g, 208 mg/g, while the equilibrium loading of the conventional microporous FAU zeolite CFAU on bovine liver catalase was only 112 mg/g.
  • the relative activities of the immobilized catalase LC-Y, Lys-Y, LC-Y-Arg, Lys-Y-Arg were 94%, 95%, 96%, respectively. 90%, while the activity of bovine liver catalase immobilized by CFAU zeolite in contrast, the relative activity was only 82%. It can be seen that the hierarchical structure multi-stage pore zeolite of the present application has a much larger amount of catalase than the conventional CFAU zeolite, that is, the hierarchical multi-stage pore zeolite of the present application can carry more peroxidation under the same amount of zeolite.
  • Hydrogenase is a better drug-carrying carrier; and the catalase immobilized by the hierarchical structure multi-stage pore zeolite of the present application has a relatively higher relative activity than the conventional CFAU zeolite, that is, the hierarchical structure multi-stage pore of the present application. Zeolite is more beneficial to catalase activity and has better drug-loading effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

层级结构多级孔沸石及其制备方法;层级结构多级孔沸石的制备方法,包括在湿化学水热合成沸石反应合成液中加入小分子材料,与各原材料一起反应,生成小分子-沸石复合材料,然后洗涤固体产物,得到层级结构多级孔沸石;小分子材料是分子量低于或等于900道尔顿的有机化合物,小分子材料尺寸小于2nm。采用小分子材料为软模板,能形成孔大小和结构可控的层级结构的多级孔沸石,所制备的多级孔沸石能够实现蛋白质等大分子物质的吸附、有机物转化、生物催化、大尺度离子交换等功能,拓展了沸石应用领域和范围。制备方法简单、易操作、成本低,为大规模生产层级结构的多级孔沸石奠定了基础。

Description

一种层级结构多级孔沸石及其制备方法 技术领域
本申请涉及层级结构多级孔沸石制备领域,特别是涉及一种层级结构多级孔沸石及其制备方法。
背景技术
沸石(zeolites),即狭义上的分子筛,通常被定义为具有微孔结构的硅铝酸盐,由[SiO4]、[AlO4]或[PO4]等四面体之间通过共用顶点形成三维四连接骨架而产生周期性孔道。由于具有均匀微孔结构的无机晶体,沸石拥有较高的比表面积、热稳定性、化学稳定性和机械稳定性。再加上目前已被发现的超过200种沸石结构,沸石材料具有可调的酸性位点、孔道大小和亲疏水性,被广泛应用于传统的催化、吸附、离子交换领域,以及新兴的载药缓释、纳米储能等领域。沸石中的微孔具有择形选择性和活性位点,从而为沸石带来优异的性能;例如具有FAU框架结构的Y和USY沸石是工业上最重要的催化剂之一,有着优越的活性和选择性,在诸如重质石油原油转化为高附加值产物如汽油的催化裂化等诸多石油化学、或在诸如糖或脂肪酸的酯交换等生物质转化反应中都有着广泛应用。
然而,沸石仅具有微孔性质的特点,对于稍大分子的位阻和扩散限制,使得大分子只能在沸石外表面上反应,很大程度上限制了沸石的应用范围。近十年来,一类新型的沸石材料,除了拥有自身固有的微孔结构,还具有拓展的介孔和/或大孔结构。这种微孔-介孔-大孔层级沸石材料,即多级孔沸石,克服了一般沸石对尺径大的大分子的扩散限制,大大扩展了沸石材料的应用范围;并且,在传统沸石的应用领域也可以提高其性能,例如提高有机物催化转化的转化率、选择性、长期稳定性、抗结焦能力等。此外,多级孔沸石还可以在传统沸石材料无法实现的领域,如蛋白吸附、大分子催化、过渡金属离子交换等应用实现突破;同时由于保存了无机沸石材料的稳定性和长程有序性,在这些领域的应用效果明显优于有机介孔材料和无定形氧化硅分子筛材料。多级孔道结构也为进一步的负载活性物质或进行官能化修饰提供了理想的可接触空间,更好保留了被吸附物质的自身特性。
正是由于微孔-介孔-大孔多级孔沸石的极大优势,近十年来对于该类结构的研究呈现指数增长的趋势。然而对于在催化裂化中占重要组成部分的Y型沸石,合成其多级孔结构的报道很少,且目前为止都是采用表面活性剂为制孔剂。对 于表面活性剂作为制孔剂的工艺来说,由于表面活性剂的超分子模板组装机理,与湿化学法和水热合成沸石的晶体成长机理相互竞争,采用普通的表面活性剂只能形成无定形氧化硅/沸石复合材料,无法形成具有层级结构的沸石,因此需要特殊设计的表面活性剂,例如利用有机硅烷基团,通过共价连接,增加成长中的沸石与致介孔剂表面活性剂的相互作用。专利CN103214003B中,将N,N-二甲基-N-[3-(三甲氧硅)丙基]氯化十八烷基铵(缩写TPOAC)引入到Y型沸石分子筛的合成中,有机硅烷端的硅氧烷基水解为硅羟基,化学键连入到沸石表面骨架,另外的烷基端聚合后参与扩孔,从而得到介孔Y型沸石分子筛。由于使用的制介孔表面活性剂模板剂结构特殊,需要定制合成,合成步骤繁琐,成本高;并且,即便采用特殊设计的表面活性剂模板剂,如有机硅烷,也很难得到大的晶体,一般得到纳米粒子聚集体、纳米线等结构,机械强度不高,沸石的晶体结构特征不明显。此外,还有采用与传统沸石模板剂共同作用的双模板剂策略,双模板剂策略消耗的两种高成本的模板剂在合成的最后需要在500℃以上高温煅烧除去,非常不环保。并且,以上方法都涉及表面活性剂的添加,而表面活性剂会导致沸石合成的过程中容易发泡,合成工艺难以放大。
总的来说,目前合成多级孔结构Y沸石采用的表面活性剂昂贵、难以合成,增加了多级孔结构Y沸石的合成成本和工艺难度,难以规模化生产;并且,更为重要的是,现有方法制备的多级孔结构Y沸石,是基于表面活性剂模板的超分子自组装成型,趋于形成有序介孔结构,牺牲了沸石框架的连续性和稳定性,很难形成催化应用上需要的高结晶度,以及含三维连接的微孔-介孔-大孔等纳米孔的大颗粒沸石晶体。
发明内容
本申请的目的是提供一种新的层级结构多级孔沸石的制备方法,及其制备的层级结构多级孔沸石。
本申请采用了以下技术方案:
本申请一方面公开了一种层级结构多级孔沸石的制备方法,包括在湿化学水热合成沸石的反应合成液中加入小分子材料作为添加剂,与各原材料一起反应,生成小分子-沸石复合材料,然后对小分子-沸石复合材料进行洗涤,得到层级结构的多级孔沸石;其中,小分子材料是分子量低于或等于900道尔顿的有机化合物,小分子材料的尺寸小于2nm。
需要说明的是,本申请的制备方法无需添加硬模板、表面活性剂或高分子,仅仅在反应合成液中添加小分子材料;其中,反应合成液是指生成沸石的原材 料溶液,例如硅源、铝源和碱,以及选择性添加的掺杂离子的掺杂金属源;本申请的沸石可以是常规的Y型沸石、USY型沸石或faujasite沸石,特别优选的为Y型沸石。本申请的制备方法中,小分子材料起到类似软模板的作用,小分子材料空间结构比较易变、具有可塑性,与沸石的湿化学含高温高压水热合成条件兼容性好,小分子材料与现有技术中的其它添加剂相比,具有如下优势:第一,高分子模板在沸石合成中易分解,而本申请采用小分子材料,其自身结构稳定性好,且空间结构可塑性强,因此,能够形成各种可控的介孔、大孔等二级孔或三级孔结构;例如,形成中空或隧道结构、微孔-介孔结构、微孔-大孔结构、微孔-介孔-大孔结构等,本申请的一种实现方式中,沸石的固体骨架结构整体具有FAU拓扑晶体结构,即由24元-四面体八面体单元以与金刚石中的碳原子相同的方式排列,称为SOD笼,它们通过沿[110]形成三维多孔通道结构的六边形棱镜双6环连接,即拥有微孔12-氧环窗,微孔的孔径约0.74nm,而微孔骨架围成2-100nm优选为10-50nm的中空或隧道结构,并且这些中空或隧道结构是相互连通的。第二,小分子材料,例如氨基酸,通常都是无色结晶,不会影响沸石的颜色。第三,与高分子或者表面活性剂相比,小分子材料与沸石之间主要是氢键相互作用和静电相互作用,而包含有机硅烷在内的表面活性剂与沸石之间都是共价相互作用,因此,小分子材料与沸石之间的作用力弱很多,这使得沸石在合成过程中不产生骨架约束,更容易形成大的沸石单晶结构,且单晶结构的热稳定性和水热稳定性更好,而表面活性剂通常只能形成多晶纳米粒子堆积;并且,本申请的制备方法所获得的层级结构多级孔沸石中,介孔、大孔或者中空隧道结构等都是全部或部分位于晶体内部,具有更好的稳定性。第四,小分子材料通常可以采用水洗去除,最终形成多层结构的多级孔沸石,与现有制备方法中采用烧结去除模板的方式相比,本申请的制备方法更加节能、环保。第五,本申请的制备方法,由于无需采用表面活性剂,在沸石合成过程中不会因发泡造成合成液体积膨胀,因此,本申请的制备方法与现有工艺相比,更加易于放大生产,满足规模化工业生产的需求。
本申请中,按照国际纯粹与应用化学联合会(IUPAC)的分类标准,微孔是指孔径小于2nm的孔,介孔是指孔径2-50nm的孔,大孔是指孔径大于50nm的孔。
优选的,小分子材料的尺寸不大于1nm。
更优选的,小分子材料为有机胺及铵盐、有机酸、有机醇和氨基酸中的至少一种。
优选的,有机胺及铵盐选自三甲胺、乙胺、三乙胺、丙胺、异丙胺、丁胺、 异丁胺、己二胺、三亚乙基四胺、四甲基氢氧化铵、四乙基氢氧化铵、四丙基氢氧化铵、胆碱、嘧啶,以及以上有机胺及铵盐的衍生物中的至少一种;有机酸选自乳酸、柠檬酸、酒石酸、乙酸、乙二胺四乙酸、丙酸、草酸,以及以上有机酸的衍生物中的至少一种;有机醇选自乙醇、丙醇、异丙醇、丁醇、戊醇、乙二醇、1,2-丙二醇、1,2-丁二醇、1,3-丁二醇、1,2-戊二醇、1,5-戊二醇、1,2-己二醇、丙三醇、1,2,3-己二醇、1,2,6-己二醇中的至少一种;氨基酸为亲水性氨基酸和/或非标准两性离子氨基酸;亲水性氨基酸选自丙氨酸、赖氨酸、精氨酸、组氨酸、酪氨酸、丝氨酸、苏氨酸、脯氨酸、半胱氨酸、天冬酰胺、谷氨酰胺、天冬氨酸、谷氨酸、缬氨酸,以及以上亲水性氨基酸的衍生物中的至少一种;非标准两性离子氨基酸选自甜菜碱、左旋肉碱、依克多因、十二烷基氨基丙酸钠、十二烷基二亚甲基氨基二甲酸钠、酰基赖氨酸、甲基月桂酰赖氨酸、N-酰基肌氨酸、N-酰基谷氨酸、N-酰基肌氨酸、N-烷基天冬氨酸-β-烷基酯、N-酰基谷氨酸二酯、二(辛氨基乙基)甘氨酸,以及以上非标准两性离子氨基酸的衍生物中的至少一种。
需要说明的是,本申请的制备方法中,主要是利用小分子材料在沸石合成过程中的自调节和可控自组装,对其进行填充,从而形成介孔和/或大孔,或者中空隧道结构;可以理解,只要在沸石框架形成的过程中能够起到填充作用,且不会影响沸石大单晶结构形成,并且在后续容易通过水或其它溶剂洗涤去除的小分子都可以用于本申请,并不只限于以上例举的一些常见小分子材料。当然,小分子材料也可以通过常见的煅烧方法去除。
优选的,小分子材料的用量为小分子-沸石复合材料总重量的1%-30%。更优选的,小分子材料的用量为所述小分子-沸石复合材料总重量的5%-20%。
需要说明的是,小分子材料的用量,以及小分子材料的结构,直接影响介孔、大孔或者中空隧道结构,可以理解,小分子材料用量越大,形成的介孔、大孔或者中空隧道结构就越多,相应的,多级孔沸石的机械性能也会受到影响;具体的用量或小分子材料结构,可以根据所需的孔隙大小、多少或类型,以及沸石稳定性而定,在此不做具体限定。
优选的,本申请的制备方法具体包括以下步骤,
a)将小分子材料加入包括硅源、铝源和碱在内的沸石反应合成液中,反应温度0-300℃、压力1-20bar的条件下进行合成反应;
b)对步骤a)的反应产物进行固液分离,干燥固体产物得到所述小分子-沸石复合材料;
c)对小分子-沸石复合材料进行洗涤,得到层级结构的多级孔沸石。
优选的,反应合成液中还包括掺杂原子的掺杂金属源。
优选的,步骤a)的反应温度为4-200℃。
更优选的,步骤a)的反应温度为50-180℃。
需要说明的是,为了得到不同的性能,通常会在沸石中掺杂其它元素,本申请的制备方法,同样适用于沸石掺杂其它元素的情况。此外,本申请的制备方法中,硅源、铝源和碱都是制备沸石的常规的原材料,例如,硅源可以采用硅溶胶、氧化硅、原硅酸四乙酯、偏硅酸钠、硅酸正丁酯、碳化硅等,铝源可以采用铝箔、铝粉、氯化铝、偏铝酸钠、硫酸铝、硝酸铝、异丙醇铝、拟薄水铝石、氢氧化铝等,碱可以采用氢氧化钠、氢氧化钾、氢氧化铵、氢氧化钙、氢氧化铝、氢氧化银、氢氧化铅、氢氧化锌、氢氧化铯、碳酸钾、碳酸钠、氨水、联氨、羟氨、液氨等。而掺杂金属源可以是任意的能取代沸石骨架中硅原子或铝原子的原子或金属,例如磷原子、硼原子、锗原子、钛原子、锆原子、镓原子、钒原子、钴原子、铁原子,可选杂原子或金属源可以是磷酸、硼酸、四乙氧基锗、钛酸四丁酯、二氯二茂锆、磷酸镓、偏钒酸铵、氯化钴、硝酸铁等。具体采用的原材料和/或掺杂材料,可以根据所需要制备的沸石而定,在此不做具体限定。同样的步骤a)中,反应温度和压力条件也是根据具体的所制备的沸石而定的,在此不做具体限定。
优选的,步骤c)中,对小分子-沸石复合材料进行洗涤,采用的溶剂为极性溶剂,极性溶剂为去离子水、乙醇、丙酮、甲醇和石油醚中的至少一种。
优选的,极性溶剂为去离子水。
本申请的另一面公开了采用本申请的制备方法制备的小分子-沸石复合材料。
需要说明的是,小分子-沸石复合材料,实际上就是在本申请的层级结构多级孔沸石制备方法中,最后不对小分子材料进行洗涤的复合材料,即步骤b)的产物。小分子-沸石复合材料作为本申请的一个中间产物,其中,分散固载在层级孔道结构中的小分子材料具有手性、催化性能、可脱附性,对生物大分子具有较强的相互作用,并且,层级介孔-微孔结构为小分子材料的巢居提供了合适的孔径、形貌、弯曲表面,这些都利于小分子材料与生物大分子的相互作用,使得小分子-沸石复合材料能够用于蛋白吸附、催化,或者自身小分子缓释。
本申请的另一面公开了采用本申请的制备方法制备的层级结构的多级孔沸石。
优选的,本申请的层级结构多级孔沸石的单晶晶胞尺寸为2.43nm-2.45nm,BET比表面积不小于500m2/g。
需要说明的是,由本申请的制备方法获得的层级结构多级孔沸石,一方面,制备方法简单、方便,易于大规模生产;另一方面,能够形成大的沸石单晶结构,实现高结晶度;此外,本申请的制备方法能够获得微孔、介孔、大孔或中空隧道结构可控的层级结构多级孔沸石,以满足不同的使用需求,特别是,能够实现现有的沸石所无法实现的蛋白吸附、生物催化或大尺度离子交换等功能。本申请的层级结构多级孔沸石,与现有的微孔沸石材料相比,具有更高的层级结构,包括中空结构和整体隧道柱结构,并且沸石结构的结晶度高,具有催化和择形选择性功能的沸石骨架连续性好。在一个实施例中,在同等的测试条件下,本申请的微孔-介孔Y型层级结构多级孔沸石材料的外层是100-300nm的微孔壳,内部除了微孔还有如蚂蚁窝状的纳米孔通道,氮气吸附测得的介孔尺寸为双峰,尺寸分别为4nm和24nm,即便有这些中断沸石骨架的介孔通道,晶体的结晶度仍比不添加小分子材料的传统Y型沸石材料的结晶度高20%。值得一提的是,在一些实施例中,还可制备整体隧道柱结构的Y型沸石,联通的介孔或大孔孔道能够通到沸石外表面,这在有机反应催化应用中具有极佳的性能。并且,中空结构或者整体隧道柱结构的层级结构多级孔沸石,还是可控缓释药物的极佳载体。
本申请的有益效果在于:
本申请层级结构多级孔沸石的制备方法,采用小分子材料作为软模板,能够形成孔大小和结构可控的层级结构的多级孔沸石,所制备的多级孔沸石能够实现蛋白质等大分子物质的吸附、催化有机分子转化、生物催化、大尺度离子的交换等功能,拓展了沸石的应用领域和范围。并且,本申请的制备方法工艺简单、易操作、成本低,为大规模生产层级结构的多级孔沸石奠定了基础。
附图说明
图1是本申请实施例中小分子-沸石复合材料的核磁共振1H-NMR图谱;
图2是本申请实施例中小分子-沸石复合材料的核磁共振13C-NMR谱图;
图3是本申请实施例中层级结构多级孔沸石材料的核磁共振1H-NMR图谱;
图4是本申请实施例中层级结构多级孔沸石材料的核磁共振13C-NMR谱图;
图5是本申请实施例中层级结构多级孔沸石材料的XRD衍射图;
图6是本申请实施例中层级结构多级孔沸石材料孔径结构分析的氮气吸附-脱附等温线图;
图7是本申请实施例中层级结构多级孔沸石材料孔径结构分析的BJH孔径分析图;
图8是本申请实施例中层级结构多级孔沸石材料的扫描电镜图;
图9是本申请实施例中层级结构多级孔沸石材料的低分辨透射电镜图片;
图10是本申请实施例中层级结构多级孔沸石材料的高分辨透射电镜照片;
图11是本申请实施例中层级结构多级孔沸石材料的快速傅立叶变换FFT衍射图;
图12是本申请另一实施例中层级结构多级孔沸石材料的扫描电镜照片,图示为完整晶体;
图13是本申请另一实施例中层级结构多级孔沸石材料的扫描电镜照片,图示为少数表面破碎晶体;
图14是本申请另一实施例中层级结构多级孔沸石材料的扫描电镜照片;
图15是本申请另一实施例中层级结构多级孔沸石材料的扫描电镜照片;
图16是本申请另一实施例中层级结构多级孔沸石材料的扫描电镜图片;
图17是本申请另一实施例中层级结构多级孔沸石材料的透射电镜图片;
图18是本申请对比例中传统微孔沸石的XRD衍射图;
图19是本申请对比例中传统微孔沸石的氮气吸附-脱附等温线;
图20是本申请对比例中传统微孔沸石的扫描电镜照片;
图21是本申请对比例中传统微孔沸石的透射电镜照片。
0是本申请对比例中传统微孔沸石的分析结果图,其中,a图为XRD衍射图、b图为氮气吸附-脱附等温线、c图为扫描电镜照片、d图为透射电镜照片。
具体实施方式
本申请的制备方法开发出了一种全新的合成层级结构的多级孔沸石的策略,不采用硬模板,不采用表面活性剂,也不使用高分子;而是利用小分子与沸石结构的特殊相互作用,一步法得到具有极广用途的小分子-沸石复合材料。小分子-沸石复合结构含有沸石自身的微孔结构,同时,由小分子参与形成二级孔结构,二级孔结构根据所采用的小分子材料可以是介孔或大孔或同时含有介孔和大孔,二级孔道结构高度联通,并位于晶体内部,小分子寄居在介孔、大孔二级孔结构中。分散固载在层级孔道结构中的小分子具有手性、催化性能、可脱附性,对于生物大分子有强的相互作用;与此同时,介孔、大孔二级孔结构为小分子的巢居提供了合适的孔径、形貌、弯曲表面,沸石骨架电荷和局域化可交换的正离子也为小分子的相互交换作用提供了有利条件;这些使得小分 子-沸石复合材料在蛋白吸附、催化以及小分子自身缓释方面具有重大应用价值。
小分子-沸石复合材料进一步洗涤,去除小分子,即得到本申请的层级结构的多级孔沸石。对于具有层级结构的多级孔沸石而言,小分子属于软模板,空间结构比较易变、具有可塑性,与湿化学甚至水热合成条件的兼容性好。例如本申请的一种实现方式中采用氨基酸作为小分子材料,氨基酸的熔点约在230℃以上,因此在沸石合成的条件下非常稳定,能溶于强酸和强碱,不像高分子模板剂在层级沸石材料合成中分解,且氨基酸都是无色结晶,因此不会产生沸石颜色的变化,这点也比高分子模板优越。氨基酸与沸石的相互作用包括氢键相互作用和静电相互作用,这与包含有机硅烷的表面活性剂与沸石间的共价相互作用相比,作用力弱很多,在合成过程中不产生胶束,因此更容易形成大的单晶结构,而不是像表面活性剂那样形成多晶纳米粒子堆积,大的单晶结构的热稳定性和水热稳定性更好。氨基酸在氨基酸-沸石复合结构中固载量,即氨基酸含量可达30%。氨基酸是两性电解质,在水溶液或结晶内基本上以兼性离子或两性离子的形式存在,所谓两性离子是指在同一个氨基酸分子上带有能释放出质子的NR4+正离子和能接受质子的COO-负离子,正因为如此,氨基酸水溶性好,特别是具有永久双离子结构的非标准氨基酸具有吸潮性,沸石结构的存在更能稳定氨基酸的两性离子状态,抑制非离解状态。因此氨基酸-沸石复合结构的氨基酸可以通过洗涤如水洗的方式去除,而不像现有模板剂需要通过煅烧或酸洗的方式去除。因此本申请的制备方法比现有工艺更加节能环保。氨基酸在沸石合成过程中不会发泡,不会造成合成液体积膨胀,因此本申请的制备方法比现有工艺更加易于放大。
去除了小分子的沸石结构具有微孔-介孔-大孔多级孔道,并且可以通过调节小分子材料的用量和结构,制备中空结构的层级结构多级孔沸石或整体呈柱形隧道中空结构的层级结构多级孔沸石,相比传统微孔沸石能容纳更大的分子,减少扩散阻力。其介孔或大孔在晶体内部,介孔或大孔的大小可调,从而具有择形选择性,特别是对于微孔沸石无法实现的大分子择形选择性,并且也具有可调的酸性位点、可调的亲/疏水性、被保留的晶型结构和稳定性、可交换的离子以及可被碱金属或碱土金属交换成碱性催化剂的能力。能够提高沸石在传统领域,如催化、吸附、离子交换的性能,还能实现传统沸石无法实现的蛋白吸附、生物催化和大尺度离子如有机离子交换的功能。
本申请的制备方法中,沸石固体和小分子具有相互作用以及相互匹配的形状特性,在沸石合成的早期加入小分子,能够干扰合成沸石的形貌和电荷特性,为了能够更好地容纳所加入的小分子,降低在孔道中的范德华力,所合成的沸 石具有了微孔-介孔、微孔-大孔、或微孔-介孔-大孔特性。同时由于小分子自身的相互作用和生物活性与小分子-沸石相互作用相交织,从而形成了具有明显层次结构的三维网格材料,该材料具有很强的稳定性。由于小分子均匀分布在该复合结构中,从而能够更好的实现小分子的功能,如催化、蛋白吸附等。并且小分子也可以在脱附的条件下缓释。
沸石固体和小分子之间的相互作用为静电相互作用和离子键相互作用,而非共价相互作用。因此小分子-沸石复合材料中的小分子很容易通过洗涤的方式去除,本申请优选的通过水洗的方式去除,而不是现有工艺的通过高温煅烧方式去除。将小分子-沸石复合材料中的小分子材料除去,即得到具有微孔-介孔、或微孔-大孔、或微孔-介孔-大孔的层级结构的多级孔沸石,其孔道可调且三维连接,从而使大分子可进入,使多级孔沸石成为具有酸性位点的催化剂;沸石的中空结构或者隧道柱形结构,使其可以实现载药缓释功能;此外,由于沸石具有游离的正离子,也可以通过碱离子交换成碱性催化剂。因此,总的来说,本申请的层级结构多级孔沸石具有优于传统微孔沸石结构的催化、吸附、离子交换性能,特别是对一些尺径较大的分子或离子等传统沸石结构无法实现的分子或离子范围,例如蛋白质的吸附、催化等。
本申请的制备方法首次提出将小分子引入到沸石合成过程中,通过小分子的静电相互作用和立体构型相互影响,构建具有三维立体结构的小分子-沸石复合材料,这种有机-无机复合材料除了拥有沸石的微孔结构,还由于小分子起到了致孔剂的功能而拥有层级孔,可以是介孔、介孔-大孔、中空结构或连通的隧道结构,同时小分子寄居在沸石的层级孔道中,起到了很好的固载功能。去除有机的小分子后,所得的无机材料为具有层级结构的微孔-介孔或微孔-介孔-大孔多级孔沸石。本申请的层级结构多级孔沸石,其介孔或大孔大小可以通过沸石合成条件、小分子材料的用量或者在合成之后通过离子交换等进行调节,并且介孔或大孔位于晶内。
本申请的层级结构多级孔沸石具有至少两个级别的孔道结构,即至少具有微孔和介孔,或者具有微孔和大孔,这种具有至少两个级别孔道结构的层级沸石材料显示了更好的大分子可达性,对于受到传统沸石孔扩散或位阻限制的应用领域,包括有机物催化转化、吸附等有着广阔的前景;同时,能够被大尺径的离子交换,可以作为离子交换剂,如果与碱离子或碱金属离子交换,还可以转换成碱性催化剂。
本申请的制备方法相对于背景技术中的表面活性剂材料来说,避免了昂贵的硬模板剂的使用,避免了表面活性剂特别是昂贵的硅烷化试剂带来的成本高, 也避免了因表面活性剂使用造成的发泡等工艺放大难题。并且,本申请的制备方法,不仅其制备的层级结构多级孔沸石具有应用价值,其中间产物小分子-沸石复合材料也具有很好的应用价值,克服了有机模板剂-沸石复合材料自身没有用途的劣势。本申请的制备方法中,所采用的小分子材料是自然界普遍存在的生物小分子结构,无需额外试剂,一步法制得了小分子-沸石复合材料,自身就具有极其广阔的用途。而除去小分子后的沸石材料具有层级微孔-介孔、微孔-大孔、或微孔-介孔-大孔交织的孔道,可以作为高附加值产品的催化、吸附和离子交换用途。
难能可贵的是,本申请的层级结构多级孔沸石材料相对传统的微孔沸石材料而言,还具有更高的层级结构,即包括核壳结构和整体柱结构,并且沸石结构的结晶度高,具有催化和择形选择性功能的沸石骨架连续性好。其中核壳结构是指,以沸石的微孔骨架为壳,中空的大孔为核,所形成的结构,即中空结构;整体柱结构是指中空结构呈连通的柱形隧道中空,并且该隧道中空延伸至沸石表面。在本申请的一个实施例中,在同等的测试条件下,本申请的微孔-介孔Y型沸石材料的外层是100-300nm的微孔壳,内核除了微孔还有如蚂蚁窝状的纳米孔通道,氮气吸附测得的介孔尺寸为双峰,尺寸分别为4nm和24nm,即便有这些中断沸石骨架的介孔通道,晶体的结晶度仍比不添加生物小分子的传统Y型沸石材料的结晶度高20%。而在本申请的另一实施例中,还制备了整体柱结构的Y型沸石,联通的介孔或大孔孔道延伸至沸石外表面,可以在有机反应催化应用中具有极佳的性能。核壳结构和整体柱结构的层级结构多级孔沸石是控缓释药物的极佳载体。
需要说明的是,本申请的制备方法中,所采用的小分子材料是指分子生物学和药理学中,一种低分子量的可以帮助调节生物过程的有机化合物,其分子量通常低于900道尔顿,其尺寸小于2nm,优选的小分子材料尺寸不大于1nm。比较常见的小分子材料包括有机胺及铵盐、有机酸、有机醇和氨基酸。其中,氨基酸指的是含有氨基和羧基的一类有机化合物的通称,可以是蛋白氨基酸、非蛋白氨基酸或类氨基酸,目前已知的大约有500多种氨基酸。本申请的术语“表面活性剂”是指尾部含有疏水基团、头部含有亲水基团的双亲结构,因而能够降低液-液间或液-固间表面张力或界面张力,到一定浓度后,形成胶束的一类有机化合物。很显然,本申请所使用的小分子材料,其疏水基团小,不具有临界胶束浓度,因而不会像表面活性剂那样形成胶束,不会影响沸石大单晶结构的形成。
本申请的制备方法可以制备各种结构的沸石,包括Y型沸石、USY型沸石、 faujasite沸石等,特别适用于制备层级结构多级孔Y型沸石。需要说明的是,在本领域中,上述各种USY型沸石可以通过合成Y型沸石的控制或后处理而实现,这一点对于本领域的技术人员并不难实现。更为优选地的设计方案中,骨架结构与所使用的小分子的性质相关,即根据不同的骨架结构选择与之性质匹配的小分子材料;例如骨架结构的负电子密度较大,则选用带正电荷的小分子材料,如精氨酸、组氨酸、赖氨酸等;又例如,对于亲水性沸石,氨基酸优选为带电荷或极性氨基酸,包括赖氨酸(Lys)、精氨酸(Arg)、组氨酸(His)、酪氨酸(Tyr)、丝氨酸(Ser)、苏氨酸(Thr)、半胱氨酸(Cys)、天冬酰胺(Asn)、谷氨酰胺(Gln)、天冬氨酸(Asp)、谷氨酸(Glu)、缬氨酸(Val)、甜菜碱、左旋肉碱、依克多因、十二烷基氨基丙酸钠、十二烷基二亚甲基氨基二甲酸钠、酰基赖氨酸、甲基月桂酰赖氨酸、N-酰基肌氨酸、N-酰基谷氨酸、N-酰基肌氨酸、N-烷基天冬氨酸-β-烷基酯、N-酰基谷氨酸二酯、二(辛氨基乙基)甘氨酸等。沸石的骨架结构电荷、亲/疏水性、以及稳定性与骨架中的硅元素和铝元素,或其它掺杂原子元素的比例有关,即硅铝比,或硅与杂原子的比例。Y沸石和USY型的硅铝比范围是1.5至无穷大,一般FAU型沸石中Y结构硅铝比为1.5-3之间,而USY硅铝比约为6或更大。由于硅的价态为4价,而铝的价态为3价,所以铝对硅的同晶取代就会产生带负电荷的沸石骨架,为了平衡骨架负电荷,沸石结构中包含游离的正离子,可以被交换。沸石的硅铝比增大,骨架带的电荷数变小,游离的正离子也会相应变少,疏水性增加,离子交换能力变小,酸性变小,稳定性增加。
本申请的制备方法中,对小分子-沸石复合材料反应产物进行固液分离,可选用滤膜过滤、离心过滤、沉降分离等操作方法,在此不做具体限定;本申请的实施方式中优选采用离心过滤。对小分子-沸石复合材料进行洗涤采用的溶剂为极性溶剂,包括但不限于去离子水、乙醇、丙酮、甲醇、石油醚等,优选的采用水进行洗涤。本申请的制备方法中,对固体进行干燥可选用红外灯干燥、鼓风式干燥箱干燥、真空干燥箱干燥、双锥干燥、刮膜干燥等;干燥温度60-300℃,优选为60-100℃。在本申请进一步的优选方案中,本申请的制备方法还包括对固液分离的液体和小分子-沸石复合材料的洗涤液进行回收,回收的液体中包含小分子材料,可以循环利用添加到沸石反应合成液中。回收液体中的小分子材料,可以直接以回收液的形式添加到沸石反应合成液中;也可以对回收液进行处理,提取小分子材料,再加入沸石反应合成液中,在此不做具体限定。
本申请的制备方法中,作为小分子材料的氨基酸可以是目前任何已知的氨 基酸,除了在骨架结构官能团位置不一样,如α,β,γ,δ-位氨基酸,它们在极性、pH值、以及侧链性能如脂肪族基团、芳香族基团、含硫、含羟基等方面都有极大的差别,因而对沸石结构的相互作用力也不一样。例如精胺酸、组氨酸、赖氨酸的侧链带正电荷,天冬氨酸、谷氨酸的侧链带负电荷,丝氨酸、苏氨酸的侧链不带电荷,色氨酸、苯基丙氨酸的侧链带苯环并且是疏水性的。本申请中,本领域的人员都可以根据需求以及产生氨基酸-沸石复合材料的用途或者是所需微孔-介孔沸石材料的具体应用场合选择合适的氨基酸。例如对于具有极高亲水性的LTA型分子筛,其硅铝比为1,优选为带电荷的氨基酸,包含但不限于赖氨酸、精氨酸、组氨酸、酪氨酸、丝氨酸、苏氨酸、半胱氨酸、天冬酰胺、谷氨酰胺、天冬氨酸、谷氨酸,更为优选的为永久双性离子的非标准氨基酸,包含但不限于甜菜碱、左旋肉碱、依克多因、十二烷基氨基丙酸钠、十二烷基二亚甲基氨基二甲酸钠、酰基赖氨酸、甲基月桂酰赖氨酸、N-酰基肌氨酸、N-酰基谷氨酸、N-酰基肌氨酸、N-烷基天冬氨酸-β-烷基酯、N-酰基谷氨酸二酯、二(辛氨基乙基)甘氨酸等。
本申请的层级结构多级孔沸石,具有连通的微孔-介孔、微孔-大孔、或微孔-介孔-大孔的孔道结构,能够用于有机物催化转化反应,特别是工业上有重大应用价值的流化床催化裂化、生物质转化、碳碳键偶联反应等。
下面通过具体实施例和附图对本申请作进一步详细说明。以下实施例仅对本申请进行进一步说明,不应理解为对本申请的限制。
实施例一
本例以非标准氨基酸左旋肉碱小分子材料作为添加剂,加入到Y型沸石的反应合成液中,制备小分子-沸石复合材料,具体包括以下步骤:
a)将28g硅溶胶溶解于10mL去离子水中,搅拌15分钟以上使其分散均匀,标记为硅源;将2.33g氢氧化钠和4.78g偏铝酸钠溶解于32mL去离子水中,搅拌至澄清,标记为铝源;将4.7g左旋肉碱溶解于硅源中,超声分散,标记为混合物。将混合物滴加到硅源中,持续搅拌,室温老化12h后开始加热,设定温度为90℃,待温度升至90℃开始计时,反应20h;
b)反应结束后,对步骤a)的反应产物进行离心处理,收集白色固体,60℃烘干,得到11.5g产品,即本例的小分子-沸石复合材料,标记为氨基酸-沸石复合材料LC@Y。
本例采用的硅溶胶以及后续实施例和对比例采用的硅溶胶都是购自青岛海 洋的Si2O含量为25%的硅溶胶。
对本例的小分子-沸石复合材料进行核磁共振分析,具体的,将本例制备的氨基酸-沸石复合材料LC@Y用DMSO和D2O进行溶解,离心过滤后,将上清液采用Bruker公司的500MHz核磁共振光谱仪进行1H-NMR和13C-NMR测量,测量结果如图1和图2所示。图1和图2的结果显示,在其氢谱和碳谱的谱图上均可清晰地看到复合结构中有机氨基酸的存在,说明小分子-沸石复合材料中的确巢居有小分子材料。
实施例二
本例对实施例一的小分子-沸石复合材料进行洗涤,得到层级结构的多级孔沸石。具体的,将5g实施例一得到的氨基酸-沸石复合材料LC@Y在100g去离子水中搅拌5分钟,离心过滤,重复洗涤两次,收集离心后的白色固体,60℃烘干,得到4.1g产品,即本例的层级结构多级孔沸石,标记为微孔-介孔层级沸石材料LC-Y。
分别对本例的微孔-介孔层级沸石材料LC-Y进行核磁共振分析、X-射线衍射分析、扫描电镜观察、氮气吸附脱附测量,具体如下。
核磁共振分析:将本例的微孔-介孔层级沸石材料LC-Y用D2O进行溶解,离心过滤后,对上清液采用Bruker公司的500MHz核磁共振光谱仪进行1H-NMR和13C-NMR测量,测量结果如图3和图4所示。图3和图4的结果显示,所得氢谱和碳谱的谱图上均可清晰地看到水洗后的结构中不存在有机氨基酸,说明小分子-沸石复合材料中的小分子材料可以被水完全洗涤去除。
然后,对本例的微孔-介孔层级沸石材料进行X-射线衍分析,具体的微孔-介孔层级沸石材料LC-Y采用Rigaku公司的D/Max-2200PC X-射线衍射仪进行XRD测量,结果如图5所示。图5的结果显示,衍射图上可清晰地看到Y型沸石结构所有特征峰,证实所得固体为结晶态的FAU结构沸石。
氮气吸附脱附测量:对本例的微孔-介孔层级沸石材料LC-Y采用Micromeritics公司的Tristar II 3020进行77K温度下的氮气吸附脱附测量,测量结果如图6和图7所示,结果显示,所得吸附等温线为IV型,与所得脱附等温线形成H4型滞后回线,在高的P/P0压力下,未达到饱和,如图6所示,证明LC-Y中的确存在介孔。对所得氮气吸附脱附等温线进行BJH方法计算,所得dV/dlog(D)孔体积与平均孔直径Dp的关联图即图7,可见所得微孔-介孔层级沸石材料LC-Y的介孔范围在10-40nm之间,平均孔径为24nm。对图7得到的吸附数据进行Brunauer-Emmett-Teller比表面积计算,得到上述微孔-介孔层级沸石 材料LC-Y的BET比表面积为737m2/g,介孔孔容0.04cm3/g。采用HORIBA JobinYvon公司的电感耦合等离子体原子发射光谱JY 2000-2对微孔-介孔层级沸石材料LC-Y的元素含量进行测得,得到其Si/Al比为2.01。
扫描电镜观察:对本例的微孔-介孔层级沸石材料LC-Y采用JEOL公司的JSM-7800F进行未涂金样品的扫描电子显微镜(缩写SEM)观察,结果如图8所示,结果显示,本例的微孔-介孔层级沸石材料LC-Y具有明显的八面双锥Y晶型。进一步的,将本例的微孔-介孔层级沸石材料LC-Y样品包埋在环氧树脂后,切片成厚度为90nm的包埋薄片,采用TECNAI公司的G2F30场发射源透射电子显微镜用于TEM的测量,结果如图9和图10所示,图9是低分辨率透射电镜图,图10是高分辨率透射电镜图,结果显示,本例的微孔-介孔层级沸石材料LC-Y具有明显的多晶结构和非有序介孔孔道结构,并且,孔道结构在晶体内部;还可见明显的大孔孔道结构,并且二级介孔/大孔孔道高度联通。对高倍TEM进行傅里叶变换,结果如图11所示,显示本例的微孔-介孔层级沸石材料LC-Y具有高度的有序性,结晶度高。
实施例三
本例以赖氨酸小分子材料作为添加剂,加入到Y型沸石的反应合成液中,制备小分子-沸石复合材料,具体如下:
将12g硅溶胶溶解于8mL去离子水中,搅拌15分钟以上使其分散均匀,标记为硅源;将1.0g氢氧化钠以及2.05g偏铝酸钠溶解于10mL去离子水中,搅拌至澄清,标记为铝源;将1.83g赖氨酸溶解于铝源中,超声分散,标记为混合物。其余步骤与实施例一相同。
本例最终得到8.7g产品,即本例的小分子-沸石复合材料,标记为氨基酸-沸石复合材料Lys@Y。
实施例四
本例对实施例三的小分子-沸石复合材料进行洗涤,得到层级结构的多级孔沸石。具体的,将5g实施例三得到的氨基酸-沸石复合材料Lys@Y在100g去离子水中搅拌5分钟,离心过滤,重复洗涤两次,收集离心后的白色固体,60℃烘干,得到4.3g产品,即本例的层级结构多级孔沸石,标记为微孔-介孔层级沸石材料Lys-Y。
分别对本例的微孔-介孔层级沸石材料Lys-Y进行扫描电镜观察和氮气吸附脱附测量,具体如下。
氮气吸附脱附测量:对本例的微孔-介孔层级沸石材料Lys-Y采用Micromeritics公司的Tristar II 3020进行77K温度下的氮气吸附脱附测量,得到77K温度下的氮气吸附脱附等温线、以及BJH方法计算所得dV/dlog(D)孔体积与平均孔直径Dp的关联数据,可计算得微孔-介孔层级沸石材料Lys-Y的介孔范围在10-50nm之间,平均孔径为26nm,BET比表面积为698m2/g,介孔孔容0.05cm3/g。Si/Al比为2.04。
扫描电镜观察:对本例的微孔-介孔层级沸石材料Lys-Y采用JEOL公司的JSM-7800F进行未涂金样品的扫描电子显微镜观察,结果如图12和图13所示,结果显示,本例的微孔-介孔层级沸石材料Lys-Y可见明显FAU晶型和介孔结构,非有序二级介孔孔道结构贯穿于晶体内部。
实施例五
本例对实施例二的微孔-介孔层级沸石材料LC-Y进行进一步处理,以得到整体柱结构的微孔-介孔-大孔Y沸石材料,标记为整体柱结构多级孔Y沸石LC-Y-Arg。具体制备步骤如下:
酸处理:称取2g实施例二制备的微孔-介孔层级沸石材料LC-Y于封管中,加入30mL去离子水,超声分散;称取0.964g H4EDTA加入封管中,磁力搅拌10min;开始加热,设定为温度100℃。当温度升为100℃时开始计时,反应6h后离心处理,收集白色固体,60℃烘干,得到1.44g产品,标记为LC-Y-H+
精氨酸处理:称取0.2g本例制备的LC-Y-H+于封管中,加入20mL去离子水,超声分散;称取1.15g精氨酸加入封管中,磁力搅拌10min;开始加热,设定温度为100℃。当温度升为100℃时开始计时,反应6h后离心处理,收集白色固体,60℃烘干,得到0.1955g产品,即本例的整体柱结构多级孔Y沸石LC-Y-Arg。
采用扫描电子显微镜观察本例的整体柱结构多级孔Y沸石LC-Y-Arg,结果如图14和图15所示,图14和图15分别为两个视野的观察结果。结果显示,本例的整体柱结构多级孔Y沸石LC-Y-Arg具有明显的FAU晶型和介孔、大孔结构,非有序的二级孔道结构贯穿于晶体内部并连通至颗粒外表面。
实施例六
本例对实施例四的微孔-介孔层级沸石材料Lys-Y进行进一步处理,以得到整体柱结构的微孔-介孔-大孔Y沸石材料,标记为整体柱结构多级孔Y沸石Lys-Y-Arg。具体制备步骤如下:
称取2g实施例二制备的微孔-介孔层级沸石材料Lys-Y于封管中,加入30mL去离子水,超声分散。后续步骤与实施例五相同。
最终,60℃烘干后,本例得到固体产品1.9g,即本例的整体柱结构多级孔Y沸石Lys-Y-Arg。
采用扫描电子显微镜(缩写SEM)观察本例的整体柱结构多级孔Y沸石Lys-Y-Arg,结果显示,本例的整体柱结构多级孔Y沸石Lys-Y-Arg具有明显的FAU晶型和介孔、大孔结构,非有序的二级孔道结构贯穿于晶体内部并连通至颗粒外表面。
实施例七
本例以嘧啶小分子材料作为添加剂,加入到Y型沸石的反应合成液中,制备小分子-沸石复合材料,具体如下:
将12g硅溶胶溶解于8mL去离子水中,搅拌15分钟以上使其分散均匀,标记为硅源;将1.0g氢氧化钠以及2.05g偏铝酸钠溶解于10mL去离子水中,搅拌至澄清,标记为铝源;将1g嘧啶溶解于铝源中,超声分散,标记为混合物。其余步骤与实施例一相同。
本例最终得到7.9g产品,即本例的小分子-沸石复合材料,标记为嘧啶-沸石复合材料Pyr@Y。
将5g Pyr@Y在100g去离子水中搅拌5分钟,离心过滤,重复洗涤两次,收集离心后的白色固体,60℃烘干,得到4.5g产品,即本例的层级结构多级孔沸石,标记为微孔-介孔层级沸石材料Pyr-Y。
扫描电镜观察:对本例的微孔-介孔层级沸石材料Pyr-Y采用JEOL公司的JSM-7800F进行未涂金样品的扫描电子显微镜SEM观察,结果如图16所示;采用TECNAI公司的G2F30场发射源进行透射电子显微镜TEM观察,结果如图17所示。结果显示,可见明显FAU晶型和晶内介孔结构。
对比例
本例按照传统的制备方法合成了传统FAU型沸石材料CFAU沸石,作为对比。具体制备方法如下:
将12.54mL硅溶胶溶解于30mL去离子水中,搅拌15分钟以上使其分散均匀,标记为硅源;将3.16g氢氧化钠以及0.91g偏铝酸钠溶解于30mL去离子水中,搅拌至澄清,标记为铝源。将铝源滴加到硅源中,持续搅拌,室温老化3h后开始加热,设定温度为100℃。待温度升至100℃开始计时,反应12h后, 离心处理,收集白色固体,60℃烘干,得到8.1g产品。
将得到的8.1g产品,按照实施例二相同的步骤和方法进行洗涤,得到CFAU沸石。
同样的,按照实施例二相同的方法进行核磁共振分析、X-射线衍射分析、扫描电镜观察、氮气吸附脱附测量,结果如图18至图21所示,图18为XRD衍射图、图19为氮气吸附-脱附等温线、图20为扫描电镜照片、图21为透射电镜照片。结果显示,本例的沸石具有光滑的FAU型晶体结构,氮气吸附等温线和脱附等温线基本重合,没有出现滞留环路,无论从吸脱附数据或TEM图片均未发现介孔分布,XRD衍射图显示其结晶度仅有实施例1中层级多孔沸石Y的80%。
对实施例二的微孔-介孔层级沸石材料LC-Y、实施例五的整体柱结构多级孔Y沸石LC-Y-Arg,和对比例的CFAU沸石进行催化应用试验,具体如下。
试验1:在傅克烷基化的碳-碳偶联反应中催化应用
将实施例二的微孔-介孔层级沸石材料LC-Y、实施例五的整体柱结构多级孔Y沸石LC-Y-Arg,和对比例的CFAU沸石,在氮气气氛中350℃煅烧1h,然后分别精确称量100mg,分别分散在5mL甲苯中搅拌10min,而后加入1mL苄基氯,110℃回流30h,利用沸石对苄基氯进行催化转化。反应产物采用SHIMADZU GC-2010Plus进行气相色谱分析,反应的转化率基于苄基氯消耗的量,其公式如下:
转化率=(消耗的苄基氯/初始的苄基氯)×100%
通过上述公式分别计算添加LC-Y、LC-Y-Arg或CFAU三种沸石的转化率。结果显示,传统的CFAU沸石催化的转化率只有43%,而采用LC-Y催化的转化效率为84%,采用LC-Y-Arg催化的转化效率为87%。由此可见,本申请的层级结构多级孔Y沸石具有优良的催化性能。
将前面催化反应后的沸石回收,然后在氮气和氧气的混合气流中350℃煅烧2h、在氮气气氛中继续煅烧1h,而后再重复用于苄基氯催化过程,催化反应与前面相同;如此回收、催化循环进行5次,分别测试每次的转化率。测试结果显示,LC-Y和LC-Y-Arg每次催化的转化率都相当,转化率没有明显下降,表面本申请的层级结构多级孔Y沸石具有较长的催化性能寿命,且催化效果稳定。
试验2:在催化裂解反应中催化应用
实施例二的微孔-介孔层级沸石材料LC-Y、实施例五的整体柱结构多级孔Y沸石LC-Y-Arg,和对比例的CFAU沸石各取2g,分别对200mL浓度0.2M的 NH4Cl水溶液进行离子交换;然后分别用50mL水对离子交换后的沸石进行洗涤,重复洗涤3次,然后在400℃下煅烧2h;重复进行离子交换、洗涤、煅烧这个过程三次。
将离子交换、洗涤、煅烧后的沸石各取10mg,分别置于管式反应炉中,100mL/min速度的N2气流下100℃加热2h,然后升温到400℃保持2h后,保持温度在200℃。将N2气流引入温度保持在71℃的1,3,5-三异丙基苯(1,3,5-TiPBz)的三口瓶中鼓泡,引出含有机物的饱和气流流向管式反应炉,1,3,5-三异丙基苯的分压为180帕,2min后收集产物取样分析直至平衡,反应产物采用SHIMADZU GC-2010Plus进行气相色谱分析,结果如表1所示。
表1 Y型沸石催化1,3,5-三异丙基苯催化裂解产率及产物分布表
Figure PCTCN2017092987-appb-000001
表1的结果显示,采用CFAU催化的转化率只有31.9%,而采用LC-Y催化的转化效率为76.3%,LC-Y-Arg的转化效率为85.5%,由此可见,本申请的层级结构多级孔沸石材料具有优良的催化裂解性能,并且其作为催化剂表现了独特的选择性。
将实施例二的微孔-介孔层级沸石材料LC-Y、实施例四的微孔-介孔层级沸石材料Lys-Y、实施例五的整体柱结构多级孔Y沸石LC-Y-Arg、实施例六的整体柱结构多级孔Y沸石Lys-Y-Arg,和对比例的CFAU沸石作为载药载体的应用试验,具体如下。
试验3:牛肝脏过氧化氢酶载药试验
牛肝脏过氧化氢酶,即过氧化氢的氧化还原酶EC1.11.1.6,有四条多肽链,每条多肽链约500个氨基酸长,所以牛肝脏过氧化氢酶是约10nm的分子大小的糖蛋白,被广泛用于工业催化降解过氧化物成水和氧。
本试验过程包括:将50mg新鲜的过氧化氢酶溶解于10mL pH=7.2的磷酸盐缓冲液(缩写PBS)中,冰水浴保存。然后向其中加入100mg的沸石材料,在4℃,600rpm的磁力搅拌中进行酶吸附实验。在吸附过程中,不同时间段取300μL磁力搅拌的样品进行离心,并取上清液在Thermo Scientific的NanoDrop 2000c仪 器上进行过氧化氢酶浓度的测量,通过减除法计算此时介孔沸石吸附的过氧化氢酶的负载量。在过氧化氢酶活性测试中,吸附实验操作步骤与上述类同,但中途不取样测试,24小时后离心,检测上清液过氧化氢酶的浓度,从而算出分子筛沸石吸附的过氧化氢酶的总量。将分子筛沸石中过氧化氢酶配成0.05mg/mL的浓度,采用北京索莱宝科技有限公司的过氧化氢酶试剂盒进行测试,同时配制新鲜的0.05mg/mL纯的过氧化氢酶进行对照用于计算相对酶活。
LC-Y、Lys-Y、LC-Y-Arg、Lys-Y-Arg和CFAU沸石分别按照前述试验过程,测量各沸石的平衡固载量和过氧化氢酶的相对活性。结果显示,LC-Y、Lys-Y、LC-Y-Arg、Lys-Y-Arg四个沸石材料对于牛肝脏过氧化氢酶的平衡固载量分别为241mg/g、264mg/g、179mg/g、208mg/g,而对比例的传统微孔FAU沸石CFAU对牛肝脏过氧化氢酶的平衡固载量仅为112mg/g。并且相对于自由状态的过氧化氢酶,固载的过氧化氢酶的相对活性LC-Y、Lys-Y、LC-Y-Arg、Lys-Y-Arg分别为94%、95%、96%、90%,而对比例CFAU沸石固载的牛肝脏过氧化氢酶的活性,其相对活性仅为82%。可见,本申请的层级结构多级孔沸石其过氧化氢酶的固载量远大于传统的CFAU沸石,即在等量沸石下,本申请的层级结构多级孔沸石能够携带更多的过氧化氢酶,是更佳的载药载体;并且,本申请层级结构多级孔沸石固载的过氧化氢酶,其相对活性也远高于传统的CFAU沸石,即本申请的层级结构多级孔沸石更利于过氧化氢酶活性发挥,载药效果更好。
以上内容是结合具体的实施方式对本申请所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本申请的保护范围。

Claims (10)

  1. 一种层级结构多级孔沸石的制备方法,其特征在于:包括在湿化学含水热合成沸石的反应合成液中加入小分子材料作为添加剂,与各原材料一起反应,生成小分子-沸石复合材料,然后对小分子-沸石复合材料进行洗涤,得到层级结构多级孔沸石;
    所述小分子材料是分子量低于或等于900道尔顿的有机化合物,小分子材料的尺寸小于2nm。
  2. 根据权利要求1所述的制备方法,其特征在于:所述小分子材料的尺寸不大于1nm;优选的,所述小分子材料为有机胺及铵盐、有机酸、有机醇和氨基酸中的至少一种。
  3. 根据权利要求2所述的制备方法,其特征在于:所述有机胺及铵盐选自三甲胺、乙胺、三乙胺、丙胺、异丙胺、丁胺、异丁胺、己二胺、三亚乙基四胺、四甲基氢氧化铵、四乙基氢氧化铵、四丙基氢氧化铵、胆碱、嘧啶,以及以上有机胺及铵盐的衍生物中的至少一种;
    所述有机酸选自乳酸、柠檬酸、酒石酸、乙酸、乙二胺四乙酸、丙酸、草酸,以及以上有机酸的衍生物中的至少一种;
    所述有机醇选自乙醇、丙醇、异丙醇、丁醇、戊醇、乙二醇、1,2-丙二醇、1,2-丁二醇、1,3-丁二醇、1,2-戊二醇、1,5-戊二醇、1,2-己二醇、丙三醇、1,2,3-己二醇、1,2,6-己二醇中的至少一种;
    所述氨基酸为亲水性氨基酸和/或非标准两性离子氨基酸;
    所述亲水性氨基酸选自丙氨酸、赖氨酸、精氨酸、组氨酸、酪氨酸、丝氨酸、苏氨酸、脯氨酸、半胱氨酸、天冬酰胺、谷氨酰胺、天冬氨酸、谷氨酸、缬氨酸,以及以上亲水性氨基酸的衍生物中的至少一种;
    所述非标准两性离子氨基酸选自甜菜碱、左旋肉碱、依克多因、十二烷基氨基丙酸钠、十二烷基二亚甲基氨基二甲酸钠、酰基赖氨酸、甲基月桂酰赖氨酸、N-酰基肌氨酸、N-酰基谷氨酸、N-酰基肌氨酸、N-烷基天冬氨酸-β-烷基酯、N-酰基谷氨酸二酯、二(辛氨基乙基)甘氨酸,以及以上非标准两性离子氨基酸的衍生物中的至少一种。
  4. 根据权利要求1所述的制备方法,其特征在于:所述小分子材料的用量为所述小分子-沸石复合材料总重量的1%-30%;优选的,小分子材料的用量为所述小分子-沸石复合材料总重量的5%-20%。
  5. 根据权利要求1-4任一项所述的制备方法,其特征在于:具体包括以下步骤,
    a)将所述小分子材料加入包括硅源、铝源和碱在内的沸石反应合成液中,反应温度0-300℃、压力1-20bar的条件下进行合成反应;
    b)对步骤a)的反应产物进行固液分离,干燥固体产物得到所述小分子-沸石复合材料;
    c)对所述小分子-沸石复合材料进行洗涤,得到层级结构的多级孔沸石。
  6. 根据权利要求5所述的制备方法,其特征在于:所述反应合成液中还包括掺杂原子的掺杂金属源;优选的步骤a)的反应温度为4-200℃;更优选的,步骤a)的反应温度为50-180℃。
  7. 根据权利要求5所述的制备方法,其特征在于:所述步骤c)中,对小分子-沸石复合材料进行洗涤采用的溶剂为极性溶剂,所述极性溶剂为去离子水、乙醇、丙酮、甲醇和石油醚中的至少一种;优选的,所述极性溶剂为去离子水。
  8. 根据权利要求1-7任一项所述的制备方法制备的小分子-沸石复合材料。
  9. 根据权利要求1-7任一项所述的制备方法制备的层级结构多级孔沸石。
  10. 根据权利要求9所述的层级结构多级孔沸石,其特征在于:所述层级结构多级孔沸石的单晶晶胞尺寸为2.43nm-2.45nm,BET比表面积不小于500m2/g。
PCT/CN2017/092987 2017-07-14 2017-07-14 一种层级结构多级孔沸石及其制备方法 WO2019010700A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/092987 WO2019010700A1 (zh) 2017-07-14 2017-07-14 一种层级结构多级孔沸石及其制备方法
CN201780050869.9A CN109790040B (zh) 2017-07-14 2017-07-14 一种层级结构多级孔沸石及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/092987 WO2019010700A1 (zh) 2017-07-14 2017-07-14 一种层级结构多级孔沸石及其制备方法

Publications (1)

Publication Number Publication Date
WO2019010700A1 true WO2019010700A1 (zh) 2019-01-17

Family

ID=65001773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092987 WO2019010700A1 (zh) 2017-07-14 2017-07-14 一种层级结构多级孔沸石及其制备方法

Country Status (2)

Country Link
CN (1) CN109790040B (zh)
WO (1) WO2019010700A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110372002A (zh) * 2019-07-23 2019-10-25 北京大学深圳研究生院 一种核壳mfi型沸石及其制备方法
CN113457718A (zh) * 2021-06-25 2021-10-01 复旦大学 一种磁性功能沸石分子筛催化剂及其制备方法
CN113694961A (zh) * 2021-09-26 2021-11-26 吉林化工学院 一种纳米多级孔bea结构分子筛催化剂及其制备方法和应用
CN114425215A (zh) * 2020-10-13 2022-05-03 中国石油化工股份有限公司 低温高效聚结吸附级配的挥发性有机化合物回收方法
CN115101888A (zh) * 2022-06-16 2022-09-23 广东工业大学 一种多级孔纤维布基聚合物复合膜及其制备方法和应用
CN116042332A (zh) * 2023-01-17 2023-05-02 西安南风日化有限责任公司 一种洗衣皂及制备方法
CN116062764A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 具有核壳结构的y-y复合型分子筛及其制备方法和应用
CN116409797A (zh) * 2021-12-31 2023-07-11 中国石油天然气股份有限公司 双亲微晶分子筛及其制备方法与应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112939016A (zh) * 2021-03-10 2021-06-11 成都理工大学 一种鸡蛋蛋白诱导形成的链状zsm-5微介孔分子筛及其合成方法
CN113184877B (zh) * 2021-05-10 2023-06-09 安阳工学院 一种中空八面体NaP分子筛及其制备方法
CN114380302B (zh) * 2022-01-26 2023-03-24 吉林大学 一种多级孔zsm-5分子筛及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090156389A1 (en) * 2005-10-14 2009-06-18 Ryong Ryoo Method of the preparation of microporous crystalline molecular sieve possessing mesoporous frameworks
CN102515195A (zh) * 2011-11-21 2012-06-27 浙江大学 一步法合成整体型多级孔道分子筛的方法
CN102674389A (zh) * 2012-05-07 2012-09-19 华东师范大学 一种含钛纳米丝光沸石分子筛的制备方法
CN103183354A (zh) * 2011-12-31 2013-07-03 上海欣年石化助剂有限公司 一种制备 euo 结构沸石的方法
CN105366690A (zh) * 2014-08-15 2016-03-02 中国石油天然气集团公司 一种具有晶内多级孔的y型沸石及其制备方法与应用
CN105692644A (zh) * 2016-02-17 2016-06-22 苏州大学 一种制备多级孔沸石的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5849258A (en) * 1996-06-06 1998-12-15 Intevep, S.A. Material with microporous crystalline walls defining a narrow size distribution of mesopores, and process for preparing same
CN1223400C (zh) * 2000-03-17 2005-10-19 Pq控股公司 具有增强的阳离子交换性能的沸石及沸石混合物的制备方法
US6607705B2 (en) * 2000-04-13 2003-08-19 Board Of Trustees Of Michigan State University Process for the preparation of molecular sieve silicas
US6660682B2 (en) * 2001-11-30 2003-12-09 Exxon Mobil Chemical Patents Inc. Method of synthesizing molecular sieves
NO20042200L (no) * 2003-05-30 2004-11-30 Ube Industries Novel proton type B zeolite, preparation method thereof and process for preparing phenol compound using the same
CN100586855C (zh) * 2006-01-19 2010-02-03 中国石油化工股份有限公司 一种多级孔道贯流型沸石材料的制备方法
CN100548880C (zh) * 2006-01-19 2009-10-14 中国石油化工股份有限公司 一种多级孔道β沸石的制备方法
GB0621816D0 (en) * 2006-11-02 2006-12-13 Westfaelische Wilhelms Uni Mun Imaging of cells or viruses
CN100480183C (zh) * 2007-01-09 2009-04-22 大连理工大学 一种介-微孔复合材料及其合成方法
TWI334361B (en) * 2007-04-10 2010-12-11 Hon Hai Prec Ind Co Ltd Manufacturing method for mesoporous materials
CN100564258C (zh) * 2007-07-13 2009-12-02 北京工业大学 一种利用硬模板剂合成高比表面积介孔碳分子筛的方法
CN101585856A (zh) * 2008-05-23 2009-11-25 安徽大学 具有单级或多级孔道结构的纳米孔洞金属-有机骨架材料及其制备
CN101538049B (zh) * 2008-12-29 2011-06-22 太原理工大学 一种多级孔道β沸石的制备方法
FR3010071B1 (fr) * 2013-09-02 2015-08-21 Ceca Sa Zeolithes a porosite hierarchisee
CN106145147B (zh) * 2015-03-31 2019-04-16 中国石油化工股份有限公司 一种制备多级孔钛硅分子筛的方法
CN105668585B (zh) * 2016-01-04 2018-01-16 北京科技大学 使用导向剂制备l型沸石的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090156389A1 (en) * 2005-10-14 2009-06-18 Ryong Ryoo Method of the preparation of microporous crystalline molecular sieve possessing mesoporous frameworks
CN102515195A (zh) * 2011-11-21 2012-06-27 浙江大学 一步法合成整体型多级孔道分子筛的方法
CN103183354A (zh) * 2011-12-31 2013-07-03 上海欣年石化助剂有限公司 一种制备 euo 结构沸石的方法
CN102674389A (zh) * 2012-05-07 2012-09-19 华东师范大学 一种含钛纳米丝光沸石分子筛的制备方法
CN105366690A (zh) * 2014-08-15 2016-03-02 中国石油天然气集团公司 一种具有晶内多级孔的y型沸石及其制备方法与应用
CN105692644A (zh) * 2016-02-17 2016-06-22 苏州大学 一种制备多级孔沸石的方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110372002A (zh) * 2019-07-23 2019-10-25 北京大学深圳研究生院 一种核壳mfi型沸石及其制备方法
CN110372002B (zh) * 2019-07-23 2023-02-17 北京大学深圳研究生院 一种核壳mfi型沸石及其制备方法
CN114425215B (zh) * 2020-10-13 2022-11-18 中国石油化工股份有限公司 低温高效聚结吸附级配的挥发性有机化合物回收方法
CN114425215A (zh) * 2020-10-13 2022-05-03 中国石油化工股份有限公司 低温高效聚结吸附级配的挥发性有机化合物回收方法
CN113457718B (zh) * 2021-06-25 2022-10-11 复旦大学 一种磁性功能沸石分子筛催化剂及其制备方法
CN113457718A (zh) * 2021-06-25 2021-10-01 复旦大学 一种磁性功能沸石分子筛催化剂及其制备方法
CN113694961A (zh) * 2021-09-26 2021-11-26 吉林化工学院 一种纳米多级孔bea结构分子筛催化剂及其制备方法和应用
CN113694961B (zh) * 2021-09-26 2023-11-10 吉林化工学院 一种纳米多级孔beta结构分子筛催化剂及其制备方法和应用
CN116062764A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 具有核壳结构的y-y复合型分子筛及其制备方法和应用
CN116062764B (zh) * 2021-10-29 2024-05-10 中国石油化工股份有限公司 具有核壳结构的y-y复合型分子筛及其制备方法和应用
CN116409797A (zh) * 2021-12-31 2023-07-11 中国石油天然气股份有限公司 双亲微晶分子筛及其制备方法与应用
CN115101888A (zh) * 2022-06-16 2022-09-23 广东工业大学 一种多级孔纤维布基聚合物复合膜及其制备方法和应用
CN115101888B (zh) * 2022-06-16 2024-03-26 广东工业大学 一种多级孔纤维布基聚合物复合膜及其制备方法和应用
CN116042332A (zh) * 2023-01-17 2023-05-02 西安南风日化有限责任公司 一种洗衣皂及制备方法

Also Published As

Publication number Publication date
CN109790040B (zh) 2021-09-21
CN109790040A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
WO2019010700A1 (zh) 一种层级结构多级孔沸石及其制备方法
Valtchev et al. Porous nanosized particles: preparation, properties, and applications
CN1247455C (zh) 一种二氧化硅介孔材料及其制备方法
CN103318911B (zh) 一种多级孔道β沸石的制备方法
Kim et al. Bulk crystal seeding in the generation of mesopores by organosilane surfactants in zeolite synthesis
Misran et al. Nonsurfactant route of fatty alcohols decomposition for templating of mesoporous silica
TWI657047B (zh) 一種全矽分子篩及其合成方法
WO2017124304A1 (zh) 氨基酸-沸石复合材料、其转换的微孔-介孔层级沸石材料及其制备方法和用途
WO2011047528A1 (zh) 一种y-beta/mcm-41双微孔—介孔复合分子筛及制备方法
CN109205642B (zh) 一种中微双孔zsm-5沸石纳米薄片的制备方法
CN108975349A (zh) 一种大孔-微孔复合zsm-5分子筛及其合成和应用
CN103058208B (zh) Sapo-56分子筛的制备方法
CN104971768B (zh) 一种sapo-34/天然粘土复合材料及制备方法和应用
CN113135578B (zh) 一种硅锗isv沸石分子筛的制备方法
Wang et al. Direct synthesis of nanorod stacked “nest-like” hierarchical ZSM-48 hollow spheres using a triazine-based bolaform organic structure-directing agent
CN106276964B (zh) 一种晶内含磷的zsm-5分子筛及其制备方法
CN104071802B (zh) 一种多级孔低硅沸石的制备方法
CN113184877A (zh) 一种中空八面体NaP分子筛及其制备方法
CN109205636B (zh) Y/sapo-34/zsm-11/asa多级孔材料的制备方法
CN106883120B (zh) MIL-101(Cr)粗样品以及MIL-101(Cr)材料的制备方法和应用
CN106268928A (zh) 一种有序大孔-介孔-微孔多级孔催化剂的合成方法
JP4484193B2 (ja) 球状マイクロポアシリカ多孔質粒子及びその製造方法
CN101264929B (zh) 一种采用固态反应结构导向技术合成介孔纳米的材料方法
JP4604212B2 (ja) 大細孔径繊維状多孔質シリカ粒子とその製造方法
CN108529647B (zh) 一种含有介孔结构的纳米zsm-22沸石组装体的合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17917530

Country of ref document: EP

Kind code of ref document: A1