WO2019004472A1 - 固体高分子形燃料電池触媒担体、固体高分子形燃料電池触媒担体の製造方法、固体高分子形燃料電池用触媒層、及び燃料電池 - Google Patents

固体高分子形燃料電池触媒担体、固体高分子形燃料電池触媒担体の製造方法、固体高分子形燃料電池用触媒層、及び燃料電池 Download PDF

Info

Publication number
WO2019004472A1
WO2019004472A1 PCT/JP2018/024965 JP2018024965W WO2019004472A1 WO 2019004472 A1 WO2019004472 A1 WO 2019004472A1 JP 2018024965 W JP2018024965 W JP 2018024965W WO 2019004472 A1 WO2019004472 A1 WO 2019004472A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
fuel cell
carbon material
catalyst carrier
activated
Prior art date
Application number
PCT/JP2018/024965
Other languages
English (en)
French (fr)
Inventor
孝 飯島
健一郎 田所
正孝 日吉
晋也 古川
智子 小村
和彦 水内
Original Assignee
新日鐵住金株式会社
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社, 日鉄ケミカル&マテリアル株式会社 filed Critical 新日鐵住金株式会社
Priority to EP18825158.1A priority Critical patent/EP3648213A4/en
Priority to CA3068601A priority patent/CA3068601C/en
Priority to JP2019527092A priority patent/JP6956181B2/ja
Priority to US16/626,724 priority patent/US11394034B2/en
Priority to CN201880043027.5A priority patent/CN110915041B/zh
Publication of WO2019004472A1 publication Critical patent/WO2019004472A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/305Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8817Treatment of supports before application of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a polymer electrolyte fuel cell catalyst carrier, a method for producing a polymer electrolyte fuel cell catalyst carrier, a catalyst layer for a polymer electrolyte fuel cell, and a fuel cell.
  • a polymer electrolyte fuel cell which is a type of fuel cell, comprises a pair of catalyst layers disposed on both sides of a solid polymer electrolyte membrane, a gas diffusion layer disposed outside each catalyst layer, and each gas diffusion layer. And an outer separator. Of the pair of catalyst layers, one catalyst layer is the anode of the polymer electrolyte fuel cell, and the other catalyst layer is the cathode of the polymer electrolyte fuel cell.
  • a plurality of unit cells having the above-described components are stacked in order to obtain a desired output.
  • a fuel gas such as hydrogen is introduced into the separator on the anode side.
  • the gas diffusion layer on the anode side introduces fuel to the anode after diffusing it.
  • the anode includes a catalyst component, a catalyst carrier supporting a fuel cell catalyst, and an electrolyte material having proton conductivity.
  • a catalyst component that promotes a power generation reaction (an oxidation reaction or a reduction reaction described later) in the fuel cell is also referred to as a "fuel cell catalyst".
  • the catalyst support is often composed of a porous carbon material.
  • an oxidation reaction of the fuel gas occurs to generate protons and electrons. For example, when the fuel gas is hydrogen gas, the following oxidation reaction occurs.
  • H 2 ⁇ 2H + + 2e - (E 0 0V)
  • the protons generated in this oxidation reaction are introduced to the cathode through the electrolyte material in the anode and the solid polymer electrolyte membrane. Also, electrons are introduced into the external circuit through the catalyst support, the gas diffusion layer, and the separator. The electrons work in an external circuit and are then introduced into the separator on the cathode side. Then, the electrons are introduced to the cathode through the separator on the cathode side and the gas diffusion layer on the cathode side.
  • the polymer electrolyte membrane is composed of an electrolyte material having proton conductivity.
  • the solid polymer electrolyte membrane introduces protons generated in the above oxidation reaction to the cathode.
  • An oxidizing gas such as oxygen gas or air is introduced into the separator on the cathode side.
  • the gas diffusion layer on the cathode side introduces oxidizing gas and then introduces it to the cathode.
  • the cathode includes a fuel cell catalyst, a catalyst carrier supporting the fuel cell catalyst, and an electrolyte material having proton conductivity.
  • the catalyst support is often composed of a porous carbon material.
  • Water generated by the reduction reaction is discharged to the outside of the fuel cell together with the unreacted oxidizing gas.
  • power is generated using the difference in free energy (potential difference) generated with the oxidation reaction of the fuel gas. In other words, it converts the free energy generated by the oxidation reaction into work that electrons perform in an external circuit.
  • Dendritic carbon nanostructures have characteristic structures not found in other carbon materials. Specifically, dendritic carbon nanostructures have a structure in which a highly developed pore structure (porous structure) and a large scale dendritic structure are compatible. That is, the carrier particles constituting the MCND have a large number of pores capable of supporting the fuel cell catalyst therein, and have a large dendritic structure.
  • Patent Document 5 proposes a technique in which a porous carbon (MgO template carbon) material using magnesium oxide nanoparticles as a template is used as a raw material, and further, a porous carbon heat-treated in air is used as a catalyst carrier ing.
  • MgO-templated carbon is characterized by having uniform pores in the inside of the material, but in Patent Document 5, the MgO-templated carbon is further heated in air to form pores in the MgO-templated carbon.
  • Patent Document 5 proposes a material that is intended to reduce the pore-to-pore partition (that is, to improve the communication).
  • Patent Document 1 International Publication No. 2014/129597
  • Patent Document 2 International Publication No. 2015/0808025
  • Patent Document 3 International Publication No. 2015/141810
  • Patent Document 4 International Publication No. 2016/133132
  • Patent Document 5 Japan JP-A-2017-91812
  • Non-Patent Document 1 Adsorption Hysteresis of Nitrogen and Argon in Pore Networks and Characterization of Novel Micro- and Mesoporous Silicas, Langmuir 2006, 22, 756-764
  • the MgO template carbon of Patent Document 5 is in the form of particles (without a steric structure). Therefore, even if the gas flowability in the particles is improved, the catalyst layer made of particles has a small pore volume, and it is difficult to control the pore size. As a result, not the gas diffusion in the particles but the diffusion of the gas in the catalyst layer is a limitation, causing the problem that the overvoltage at the large current can not be reduced.
  • an object of the present disclosure is to provide a new and improved solid which further reduces the overvoltage at a large current and has improved durability.
  • a polymer fuel cell catalyst carrier a method for producing a polymer electrolyte fuel cell catalyst carrier, a catalyst layer for a polymer electrolyte fuel cell, and a fuel cell.
  • the substances involved in the reaction on the cathode side are electrons, protons, an oxidizing gas, and water (steam) generated in the reaction on the cathode side.
  • electrons and protons are considered to exhibit ohmic behavior (that is, the resistance value is not affected by the magnitude of the current), and do not exhibit specific behavior at large current.
  • the diffusion of the oxidizing gas and the water vapor depends on the pore structure of the porous carbon material used for the support of the catalyst component.
  • the gas diffusion resistance is reduced.
  • the voltage drop associated with the large current may be small (that is, the over-voltage associated with the large current is small).
  • the diffusion resistance (so-called gas diffusion resistance) of the gas flowing in the cathode is considered to be the controlling factor of the overvoltage at the time of large current. That is, as the gas diffusion resistance increases, the oxidizing gas is less likely to reach the fuel cell catalyst in the catalyst carrier. Then, the fuel cell catalyst to which the oxidizing gas did not reach can not contribute to the power generation reaction (i.e., reduction reaction) on the cathode side. For this reason, the overvoltage at the time of large current rises.
  • flooding is also a controlling factor that affects over-voltage at the time of large current.
  • flooding means that water vapor (gas phase) generated in the cathode reaction is converted into a liquid phase in the catalyst layer, and the pores are clogged by the liquid water.
  • a large amount of water vapor is generated at the cathode.
  • such water vapor tends to stay in the pores if the diffusion resistance of the pores in the catalyst carrier is large.
  • the smaller the pore diameter the larger the diffusion resistance. Therefore, the smaller the pore size, the easier it is for water vapor to stay in the pores. That is, the water vapor pressure tends to increase.
  • the smaller the pore diameter the lower the saturated vapor pressure.
  • the water vapor pressure is more easily converted to the liquid phase in the pore, and the liquid phase blocks the pore. That is, flooding occurs in the pore.
  • the oxidizing gas it becomes difficult for the oxidizing gas to reach the fuel cell catalyst supported at the back of the pores. Then, the fuel cell catalyst to which the oxidizing gas did not reach can not contribute to the power generation reaction on the cathode side. As a result, the overvoltage at high current increases.
  • FIG. 3 shows a bottleneck pore 30 as an example of the bottleneck pore.
  • the bottleneck type pore 30 is composed of a bottle portion 30a and a neck portion 30b communicating with the bottle portion 30a.
  • the diameter of the bottle portion 30a is larger than the diameter of the neck portion 30b.
  • the neck portion 30 b communicates with the outer surface of the carbon material or other pores in the carbon material.
  • the gas does not easily flow in the bottle portion. That is, the gas diffusion resistance is increased. Furthermore, since the saturated vapor pressure is lower than the saturated vapor pressure at the neck portion, flooding is likely to occur at the neck portion. Therefore, the fuel cell catalyst supported on the bottle portion hardly contributes to the power generation reaction on the cathode side.
  • the minimum diameter of the neck (the minimum value of the diameters of all the necks present in the catalyst support)
  • the smaller and larger the volume of the corresponding bottle part the greater the gas diffusion resistance. Also, flooding is likely to occur.
  • the inventors examined a technique for reducing the volume ratio of the bottleneck pore and increasing the minimum diameter of the neck portion.
  • the inventor examined a technique for evaluating the volumetric ratio of the bottleneck pore and the minimum diameter of the neck portion.
  • the inventor focused on the nitrogen adsorption isotherm and the nitrogen desorption isotherm.
  • the nitrogen adsorption isotherm and the nitrogen adsorption isotherm are obtained by nitrogen gas adsorption measurement.
  • the nitrogen adsorption isotherm is an isotherm on the nitrogen adsorption side
  • the nitrogen desorption isotherm is an isotherm on the nitrogen desorption side.
  • the nitrogen adsorption isotherm and the isotherm which put together the nitrogen desorption isotherm are also called nitrogen adsorption-desorption isotherm.
  • FIG. 1 An example of a nitrogen adsorption and desorption isotherm is shown in FIG.
  • the nitrogen adsorption and desorption isotherm shown in FIG. 1 schematically shows the nitrogen adsorption and desorption isotherm of the conventional carbon material for a catalyst carrier. This nitrogen adsorption and desorption isotherm forms a hysteresis loop A.
  • a hysteresis loop occurs when a bottleneck pore is present.
  • a hysteresis loop is generated due to the difference between the adsorption process and the desorption process, as described below. That is, in the adsorption process, the adsorption thickness of nitrogen gradually increases in accordance with the relative pressure of nitrogen gas.
  • the neck part of the bottleneck type pore is first blocked by adsorption, but even if nitrogen is adsorbed to the bottle part by the thickness equivalent to the neck part, the diameter of the bottle part is larger than the diameter of the neck part , The bottle part is not completely filled yet.
  • the inventor further verified this theory. As a result, the inventor found that when the minimum diameter of the neck portion is larger than the diameter at which cavitation occurs, the hysteresis loop closes at a relative pressure corresponding to the minimum diameter of the neck portion. Such findings have not been found in the past, and carbon materials obtained by such findings have never been found in the past. Thus, if the minimum diameter of the neck is large (specifically, larger than the diameter at which cavitation occurs), the nitrogen desorption isotherm intersects the nitrogen adsorption isotherm at a relative pressure corresponding to the minimum diameter of the neck . That is, the hysteresis loop is closed.
  • the hysteresis loop is closed not by the cavitation but by the relative pressure corresponding to the diameter of the neck portion. Therefore, the higher the relative pressure P close / P 0 at which the hysteresis loop closes, the larger the minimum diameter of the neck portion.
  • the volumetric ratio of the bottleneck pore corresponds to the area of the hysteresis loop.
  • the blocking phenomenon prevents the desorption of nitrogen gas. Therefore, the larger the volumetric ratio of the bottleneck pores, the harder it is for the nitrogen desorption isotherm to fall. As a result, the area of the hysteresis loop is increased. Conversely, it can be said that the smaller the area of the hysteresis loop, the smaller the volumetric ratio of the bottleneck pore.
  • the inventors have found that the nitrogen adsorption and desorption isotherm can be used to evaluate the volumetric ratio of the bottleneck pore and the minimum diameter of the neck.
  • ketjen black is also widely used as a catalyst carrier for solid polymer fuel cells.
  • the total pore volume can be increased by performing gas activation (for example, CO 2 gas activation) of such ketjen black.
  • gas activation for example, CO 2 gas activation
  • the gas diffusion resistance tends to be reduced, and the overvoltage at the time of large current tends to be reduced.
  • the area of the above-mentioned hysteresis loop does not decrease but tends to increase. That is, the volumetric ratio of the bottleneck pore is increased. For this reason, it was not possible to sufficiently evaluate the characteristics of the carbon material, particularly the characteristics at a large current, only by the nitrogen adsorption isotherm focusing on only the adsorption process.
  • the inventor examined a technique for increasing the minimum diameter of the neck portion and reducing the volume ratio of the bottleneck-type pore.
  • the inventor of the present invention increases the minimum diameter of the neck portion by activating (that is, activating) the porous carbon material used as the catalyst carrier with the activating catalyst, and the bottleneck type pore It succeeded in reducing the volume ratio.
  • FIG. 2 schematically shows a nitrogen adsorption and desorption isotherm of the carbon material subjected to the catalyst activation (that is, the solid polymer fuel cell catalyst carrier according to the embodiment of the present disclosure).
  • the area ⁇ S 0.47-0.9 of the hysteresis loop A is smaller than that of FIG. 1, and the relative pressure P close / P 0 at which the hysteresis loop A closes is as shown in FIG. It is higher than it is.
  • the inventor believes that the minimum diameter of the neck portion is increased and the volume ratio of the bottleneck-type pores is decreased because the activation catalyst selectively reduces the thickness of the neck portion. That is, by selectively reducing the thickness of the neck portion, the bottleneck pore has a shape close to the size of the body. This increases the minimum diameter of the neck portion. Also, as the shape of the bottleneck pore is close to the size of the body, the pore is no longer a bottleneck pore. Thus, the volumetric ratio of the bottleneck pore is reduced.
  • the inventor of the present invention has improved the durability of the carbon material by heat treating the carbon material after the catalyst activation at a high temperature. In addition, it was confirmed that the same effect is exhibited even if catalyst activation is performed after heat treatment at a high temperature before the catalyst activation. However, since the site which has been oxidized and consumed becomes a starting point of oxidation and consumption by catalyst activation, when catalyst activation is performed, the oxidation resistance and exhaustion resistance may be lower than before catalyst activation. Therefore, it was confirmed that the oxidation exhaustion resistance can also be enhanced by performing heat treatment at high temperature before catalyst activation and again performing high temperature heat treatment after catalyst activation.
  • the present inventor has conceived of a polymer electrolyte fuel cell catalyst carrier according to the present disclosure based on the above findings.
  • the present disclosure includes the following aspects.
  • a polymer electrolyte fuel cell catalyst carrier comprising a carbon material satisfying the following requirements (A), (B), (C) and (D).
  • A) The specific surface area by BET analysis of the nitrogen adsorption isotherm is 450 to 1500 m 2 / g.
  • B) The nitrogen adsorption / desorption isotherm forms a hysteresis loop in the range of relative pressure P / P 0 greater than 0.47 to 0.90, and the area ⁇ S 0.47-0 of the hysteresis loop . 9 is 1 to 35 mL / g.
  • a method for producing a polymer electrolyte fuel cell catalyst carrier comprising producing a polymer electrolyte fuel cell catalyst carrier, comprising: Supporting the activated catalyst for promoting the activation reaction of the porous carbon material in the pores of the porous carbon material, thereby producing the activated catalyst-supporting carbon material; A first heat treatment step of heat treating the activated catalyst-supporting carbon material at 300 ° C. to 700 ° C. in an atmosphere containing oxygen; A method for producing a solid polymer fuel cell catalyst carrier comprising ⁇ 7> A second heat treatment step performed before and / or after the first heat treatment step, wherein the activated catalyst-supporting carbon material is heated at 1600 to 2100 ° C. in a vacuum or inert gas atmosphere.
  • a method for producing a solid polymer fuel cell catalyst carrier according to claim 6, comprising the heat treatment step of ⁇ 8>
  • the particle diameter of the activating catalyst is 2 to 7 nm, and the supporting ratio of the activating catalyst is 3 to 20% by mass when the activating catalyst is a noble metal element, the activating catalyst The supporting rate of the activated catalyst is 3 to 9% by mass when the element is a 3d element
  • the oxygen concentration in the oxygen-containing atmosphere is 5 to 100% by volume based on the total volume of the atmosphere gas
  • the heat treatment time is 20 minutes to 20 hours as described in ⁇ 6> or ⁇ 7>
  • Method of producing a solid polymer fuel cell catalyst carrier according to ⁇ 9> The method for producing a polymer electrolyte fuel cell catalyst carrier according to any one of ⁇ 6> to ⁇ 8>, wherein an activation catalyst removal step of removing the activation catalyst is performed after the first heat treatment step.
  • a catalyst layer for a polymer electrolyte fuel cell comprising the polymer electrolyte fuel cell catalyst carrier according to any one of ⁇ 1> to ⁇ 5>.
  • the minimum diameter of the neck portion is increased, and the volume ratio of the bottleneck pores is decreased.
  • the diffusion resistance is reduced, and the occurrence of flooding can be suppressed. Therefore, the overvoltage at high current is further reduced.
  • the solid polymer fuel cell catalyst carrier according to the present disclosure since the solid polymer fuel cell catalyst carrier according to the present disclosure has high crystallinity, the durability is also improved.
  • FIG. 6 is an enlarged view showing the vicinity of a relative pressure P close / P 0 at which a hysteresis loop is closed, of the nitrogen adsorption / desorption isotherm shown in FIG. 5;
  • the numerical range represented using “to” means a range including the numerical values described before and after “to” as the lower limit value and the upper limit value.
  • the numerical range in which “super” or “less than” is added to the numerical values described before and after “to” means a range that does not include these numerical values as the lower limit value or the upper limit value.
  • the term "step” is included in the term if the intended purpose of the step is achieved, even if it can not be distinguished clearly from the other steps, as well as independent steps.
  • the "polymer electrolyte fuel cell catalyst carrier” is also referred to as a catalyst carrier carbon material.
  • P indicates the pressure of the gas of the adsorbate (in this embodiment, nitrogen) in the adsorption equilibrium
  • P 0 is .
  • the saturation vapor pressure of the adsorbate (in this embodiment, nitrogen) at the adsorption temperature is shown.
  • Solid Polymer Fuel Cell Catalyst Carrier First, the configuration of the polymer electrolyte fuel cell catalyst carrier according to the present embodiment will be described.
  • the minimum diameter of the neck portion is large, and the volume ratio of the bottleneck pores is reduced.
  • the solid polymer fuel cell catalyst carrier according to the present embodiment is a carbon material (carbon material for catalyst carrier) satisfying the following requirements (A), (B), (C) and (D) It consists of (A)
  • the specific surface area by BET analysis of the nitrogen adsorption isotherm is 450 to 1500 m 2 / g.
  • the specific surface area (hereinafter also referred to as “BET specific surface area”) by BET analysis of the nitrogen adsorption isotherm is 450 to 1500 m 2 / g. Thereby, more catalyst components can be supported.
  • the BET specific surface area is less than 450 m 2 / g, the supportability of the catalyst component may be reduced.
  • the BET specific surface area exceeds 1500 m 2 / g, it is difficult to achieve both the physical strength (mechanical strength) and the durability (oxidation resistance) of the carbon material for a catalyst carrier.
  • the lower limit of the BET specific surface area is preferably 500 m 2 / g or more, and more preferably 550 m 2 / g or more, from the viewpoint of suppressing a decrease in the supportability of the catalyst component.
  • the upper limit of the BET specific surface area is preferably 1,400 m 2 / g or less, preferably 1,300 m 2 / g, in terms of both physical strength (mechanical strength) and durability (oxidation resistance) of the carbon material for a catalyst carrier. The following are more preferable.
  • the BET specific surface area is a value measured by the measurement method shown in the examples described later.
  • the overvoltage at high current is reduced.
  • the area ⁇ S 0.47 ⁇ 0.9 of the hysteresis loop exceeds 35 mL / g, the volumetric ratio of the bottleneck pore becomes large, and the overvoltage at the time of large current does not decrease sufficiently.
  • the area ⁇ S 0.47-0.9 of the hysteresis loop is less than 1 mL / g, then 50 % or more of the mass of the carbon wall inside the porous carbon material forming the pores will be oxidized and consumed. As a result, the macroscopic mechanical strength of the porous carbon material itself is weakened. For example, when a force is applied to the powder such as an ink preparation process for producing an electrode, the powder is crushed and the pores are largely reduced. Therefore, the overvoltage at the time of large current becomes large.
  • the upper limit of 0.90 of the relative pressure range corresponds to pores with a radius of about 10 nm, and contains substantially all the pores of the porous carbon material supporting the fuel cell catalyst.
  • the lower limit of 0.47 or more of the relative pressure range corresponds to the lower limit of the relative pressure P close / P 0 of requirement C.
  • the lower limit of the area ⁇ S 0.47-0.9 of the hysteresis loop is preferably 5 mL / g or more, more preferably 10 mL / g or more, and still more preferably 15 mL or more, from the viewpoint of reduction in overvoltage at large current.
  • the upper limit of the area ⁇ S 0.47-0.9 of the hysteresis loop is preferably 32 mL / g or less, and more preferably 30 mL / g or less, from the viewpoint of decreasing the overvoltage at large current.
  • the area ⁇ S 0.47-0.9 of the hysteresis loop is a value measured by the measurement method shown in the examples described later.
  • the relative pressure P close / P 0 at which the hysteresis loop closes is greater than 0.47 to 0.7.
  • This requirement (C) is a requirement corresponding to the minimum diameter of the bottleneck pore (ie, the minimum diameter of the neck portion). Since the relative pressure P close / P 0 at which the hysteresis loop closes is as high as 0.47 to 0.7, the minimum diameter of the neck portion is increased. For this reason, the gas diffusion resistance is reduced, and flooding is less likely to occur.
  • the pore size corresponding to the relative pressure P close / P 0 is approximately 2 to 7 nm.
  • the pore diameter in the present embodiment means a diameter evaluated by nitrogen gas adsorption measurement.
  • the lower limit of the relative pressure P close / P 0 at which the hysteresis loop closes is preferably 0.50 or more, more preferably 0.53 or more, from the viewpoint of reduction in overvoltage at large current.
  • the upper limit of the relative pressure P close / P 0 at which the hysteresis loop closes indicates that pores larger than the pore diameter corresponding to the relative pressure higher than the relative pressure have no factor of gas flow segregation. Become. Therefore, the lower the relative pressure, the better the gas flow, ie, the better the large current characteristics. Therefore, the upper limit of the relative pressure P close / P 0 is preferably 0.69 or less, more preferably 0.68 or less.
  • the relative pressure P close / P 0 at which the hysteresis loop is closed is the relative pressure at which the difference between the nitrogen desorption isotherm and the nitrogen adsorption isotherm becomes 10 mL / g or less for the first time.
  • the full width at half maximum of the G band detected in the range of 1500 to 1700 cm -1 by Raman spectroscopy is 45 to 75 cm -1 .
  • the graphitization degree (crystallinity) of the carbon material for a catalyst carrier is improved.
  • the durability (oxidation resistance) is improved. That is, even if start and stop of a solid polymer fuel cell using a carbon material for a catalyst carrier are repeated, the carbon material for a catalyst carrier is hardly oxidized and consumed.
  • the half width of the G band exceeds 75 cm -1 the oxidation resistance of the carbon material for a catalyst support is reduced, and as a result, the overvoltage at high current is increased.
  • the half width of the G band is less than 45 cm -1 , the pore structure may be broken, and as a result, requirements (A) to (C) and any of the requirements (E) described later may not be satisfied.
  • the lower limit of the half width of the G band is preferably 50 cm -1 or more, and more preferably 55 cm -1 or more, from the viewpoint of ease of supporting the catalyst and suppression of deterioration in power generation characteristics due to a decrease in hydrophilicity.
  • the upper limit of the half band width of the G band is preferably 70 cm -1 or less from the viewpoint of maintaining the mechanical strength of the carbon material for a catalyst carrier in combination with the viewpoint of maintaining the oxidation resistance , 68 cm -1 or less is more preferable.
  • the half width of the G band is a value measured by the measurement method described in the examples described later.
  • the carbon material for a catalyst carrier preferably further satisfies the following requirement (E).
  • the adsorption volume V 0.2-0.9 measured from the nitrogen adsorption isotherm within the relative pressure range of 0.20 to 0.90 is 150 to 700 mL / g.
  • the adsorption volume V 0.2-0.9 is the difference between the nitrogen adsorption amount (mL / g) at a relative pressure of 0.20 and the nitrogen adsorption amount (mL / g) at a relative pressure of 0.90.
  • This requirement (E) defines the pore volume for supporting the fuel cell catalyst.
  • the pore diameter corresponding to the relative pressure of 0.20 to 0.90 is approximately 2 to 20 nm.
  • the fuel cell catalyst is supported in the pores having a pore diameter of 2 to 20 nm. Therefore, it is preferable that pores with a pore diameter of 2 to 20 nm be sufficiently distributed in the carbon material for a catalyst carrier. That is, the adsorption volume V 0.2-0.9 is preferably 150 to 700 mL / g. If this requirement (E) is satisfied, more fuel cell catalysts can be supported, and the overvoltage at high current is further reduced.
  • the adsorption volume V 0.2-0.9 is less than 150 mL / g, the load of the fuel cell catalyst is reduced, so that the overvoltage at high current may be increased. Moreover, when the adsorption volume V 0.2-0.9 exceeds 700 mL / g, the carbon layer which becomes the partition between the pores becomes thin, which may lower the mechanical strength of the carbon material for the catalyst carrier. . As a result, the pores may be broken in the manufacturing process of the fuel cell and the like, and the desired power generation characteristics may not be obtained.
  • the lower limit of the adsorption volume V 0.2-0.9 is preferably 200 mL / g or more, and more preferably 250 mL / g or more, from the viewpoint of reduction in overvoltage at large current.
  • the upper limit of the adsorption volume V 0.2-0.9 is preferably 650 mL / g or less, more preferably 600 mL / g or less, from the viewpoint of suppressing the decrease in mechanical strength of the carbon material for a catalyst carrier.
  • the adsorption volume V 0.2-0.9 is a value measured by the measurement method shown in the examples described later.
  • the porous carbon material that can be used in the present embodiment is not particularly limited, but is preferably a carbon material that can be used, for example, as a catalyst carrier of a solid polymer fuel cell.
  • porous carbon materials include ketjen black, dendritic carbon nanostructures (eg, dendritic carbon nanostructures having a three-dimensional dendritic structure in which rods or rings are three-dimensionally branched), template particles
  • examples thereof include carbon materials made porous using (for example, MgO template particles), carbon materials made porous by gas activation (for example, CO 2 gas activation), and the like.
  • gas activation for example, CO 2 gas activation
  • ketjen black and dendritic carbon nanostructures are preferable in that they have a developed dendritic structure, and dendritic carbon nanostructures are most preferable.
  • the dendritic carbon nanostructure has a tetrapod-like structure (for example, a three-dimensional dendritic structure in which rods or rings are three-dimensionally branched) in addition to a developed dendritic structure. Therefore, pores can be formed more efficiently than ketjen black.
  • the volume distribution of the mesopores of the porous carbon material has an arithmetic average diameter of It is preferable that the particle size of the activated catalyst be larger than that of the activated catalyst.
  • the porous carbon material may be selected according to the particle size of the activation catalyst.
  • the activated catalyst may be any catalyst that accelerates the activation reaction of the porous carbon material.
  • the activation reaction means a reaction in which the carbon layer constituting the porous carbon material is reduced in thickness by oxidation (in other words, consumed).
  • the activated catalyst promotes the activation reaction of the carbon layer present around the activated catalyst.
  • the activating catalyst examples include particles containing at least one of 3d elements (transition elements of the fourth period such as Ni, Fe, Co and Ti), and noble metal elements (Ru, Cu, Ag, Pt, Pd, etc.) Can be mentioned. Among these, particles containing at least one of Ni, Fe, Co and Pt are preferable.
  • the activation catalyst may be particles consisting of a single element of these elements, or alloy particles with other metals. For example, alloy particles of 3d element and Pt may be used as an activation catalyst.
  • Ni, Fe, and Co are preferable are: (1) high catalytic activity, (2) easy removal after heat treatment step, and (3) utilization when an alloy with Pt is used as an activation catalyst
  • the catalyst can be diverted as it is to a fuel cell catalyst.
  • Pt is preferable is: (1) Pt used as an activation catalyst can be diverted as it is to a fuel cell catalyst, (2) easily reduced as compared to the 3d element, and nano-sized particles are formed in porous carbon It is easy to do.
  • the method for supporting the activated catalyst in the pores of porous carbon includes, for example, the following methods.
  • salts of the catalyst for utilization include nitrates of the catalyst for utilization and the like.
  • examples of the activated catalyst complex include acetylacetonate complexes of the activated catalyst.
  • the reducing agent is, for example, a polyol (ethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, hexadecanediol, etc.), sodium borohydride, potassium borohydride, lithium borohydride, lithium aluminum hydride, hydrogen Aluminum hydroxide and the like.
  • Tetraethylene glycol is both a reducing agent and functions as a solvent for mixed solutions.
  • the activated catalyst ions in the mixed solution are reduced by the reducing agent.
  • the activated catalyst is precipitated as clusters in the pores of the porous carbon.
  • Activated catalysts are united by being in contact with each other and grow into larger activated catalysts.
  • the activated catalyst is supported in the pores of the porous carbon.
  • the activated catalyst ions may be reduced in a high temperature solvent, and such treatment is also preferably performed.
  • hexadecanediol or the like is dissolved as a polyol in a high boiling point solvent such as diphenyl ether, dibenzyl ether, octyl ether tetraethylene glycol or the like, and the mixed solution is heated to 200 ° C. or higher.
  • a high boiling point solvent such as diphenyl ether, dibenzyl ether, octyl ether tetraethylene glycol or the like.
  • This treatment can also reduce the complex or salt of the 3d element.
  • Other methods include the following methods. That is, after a solution of a salt (or a complex) of an activation catalyst is impregnated in porous carbon, the resultant is dried to prepare a coagulated dried product. Next, the solidified dried material is heated in a reducing gas (for example, hydrogen) atmosphere to reduce the activated catalyst ions in the solidified dried material. As a result, the activated catalyst is supported in the pores of the porous carbon.
  • a reducing gas for example, hydrogen
  • the distance between the activated catalysts in the activated carbon carrying carbon material fluctuates depending on the loading ratio of the activated catalyst (% by mass of the activated catalyst with respect to the total mass of the porous carbon and the activated catalyst).
  • the smaller the distance between the active catalysts the smaller the area ⁇ S 0.47-0.9 of the hysteresis loop described above.
  • the supporting ratio of the activating catalyst required to set the distance between the activating catalysts to about 5 to 7 nm varies depending on the type of the activating catalyst.
  • the loading ratio is preferably 3 to 20% by mass, and more preferably 10 to 15% by mass.
  • the activation catalyst is a 3d element (Ni, Fe, Co, etc.)
  • the supporting rate is preferably 3 to 9% by mass.
  • the distance between the activating catalysts can be about 5 to 7 nm. Thereby, the area ⁇ S 0.47-0.9 of the hysteresis loop can be easily adjusted to 1 to 35 mL / g.
  • the loading ratio of the activating catalyst and the distance between the activating catalysts can be measured by direct observation using an SEM (scanning electron microscope) or a TEM (transmission electron microscope).
  • the supporting rate of the activating catalyst can also be quantified from the mass of the metal component contained in the reagent.
  • the loading ratio of the activation catalyst can be adjusted by adjusting the concentration of the activation catalyst in the mixed solution described above.
  • the particle size of the activating catalyst is not particularly limited, but is preferably 2 to 7 nm.
  • the minimum diameter of the neck portion can be easily adjusted to 2 to 7 nm.
  • the particle diameter of the activated catalyst can be simply identified by powder X-ray diffraction method, and can be observed by TEM or SEM in detail.
  • the crystallite size is specified based on the half width of the diffraction peak and the Scherrer equation. The position of the diffraction peak differs depending on the X-ray line type and the type of the activated catalyst (metal type).
  • Diffraction peaks appear at 2 ⁇ 39-40 ° when CuK ⁇ radiation is used and when the activated catalyst is Pt, and at 43 ° -46 ° when the activated catalyst is Fe, Ni or Co. Since the crystallites of the activated catalyst are nanoparticles of several nm in size, the crystallite size can be regarded as it corresponds to the particle size. That is, the crystallite size is the particle size.
  • the line width of the highest intensity diffraction line in the diffraction peak of the activated catalyst (that is, catalyst metal particles) appearing in powder X-ray diffraction (full line width of diffraction line at half the maximum intensity of the diffraction line)
  • the particle diameter (particle diameter when regarded as spherical) calculated by the Scherrer method is determined as the particle diameter of the activated catalyst.
  • the particle size of the activated catalyst can be adjusted by control of the conditions of the above-described supporting method, the type of the activated catalyst, the supporting ratio of the activated catalyst, and the like.
  • the particle diameter specified here is the particle diameter of the activated catalyst in the state of being supported by the porous carbon material before the catalyst activation treatment.
  • a protective agent adhering to the surface of the activation catalyst may be added to the above mixed solution.
  • the method of producing fine particles with a protective agent is also referred to as colloid preparation.
  • the protective agent is, for example, a ligand coordinated to a metal constituting the activation catalyst.
  • the protective agent adheres to the surface of the activation catalyst.
  • the molecular weight of the protective agent is preferably small.
  • protecting agents include polyvinyl pyrrolidone, citric acid (or citrate), oleic acid, oleylamine, gelatin, CMC (carboxymethyl cellulose or its sodium salt) and the like.
  • the particle size of the activated catalyst is approximately 2 to 5 nm .
  • the particle size of the activated catalyst is approximately independent of the supporting ratio. It becomes about 7 nm.
  • the particle diameter of the activated catalyst is approximately 5 nm.
  • the activated catalyst-supporting carbon material is heat-treated at 300 ° C. to 700 ° C. in an oxygen-containing atmosphere. This causes an activation reaction. That is, the carbon layer present around the activated catalyst is reduced by oxidation.
  • the carbon material produced by the first heat treatment step (that is, the catalyst activated carbon material) satisfies the requirements of (A) to (C) described above (preferably (A) to (C), and (E) Meet the requirements of That is, the minimum diameter of the neck portion is increased, and the volume ratio of the bottleneck pore is decreased.
  • the inventor believes that the minimum diameter of the neck portion is increased and the volume ratio of the bottleneck-type pores is decreased because the activation catalyst selectively reduces the thickness of the neck portion. That is, by selectively reducing the thickness of the neck portion, the bottleneck pore has a shape close to the size of the body. This increases the minimum diameter of the neck portion. Also, as the shape of the bottleneck pore is close to the size of the body, the pore is no longer a bottleneck pore. Thus, the volumetric ratio of the bottleneck pore is reduced.
  • the oxygen concentration in the oxygen-containing atmosphere is preferably 5 to 100% by volume with respect to the total volume of the atmosphere gas.
  • the oxygen-containing atmosphere is preferably a mixed gas atmosphere of oxygen and an inert gas.
  • the oxygen concentration is preferably 5 to 100% by volume based on the total volume of the mixed gas. If the oxygen concentration is less than 5% by volume, the activation reaction may not proceed sufficiently.
  • the mixed gas is preferably flowing.
  • the linear velocity at this time is preferably about 1 mm / min to 30 cm / min. If the linear velocity is less than 1 mm / min, the amount of oxygen gas supplied may be insufficient, and the activation reaction may not proceed sufficiently. When the linear velocity exceeds 30 cm / min, the mixed gas may take heat from the activated catalyst-supporting carbon material, and the activation reaction may occur unevenly.
  • the activation reaction may not proceed sufficiently.
  • the temperature of the heat treatment exceeds 700 ° C., the activation reaction proceeds excessively, which may cause a decrease in mechanical strength, a decrease in durability, and the like of the product catalyst activated carbon material.
  • the heat treatment time is preferably about 20 minutes to 20 hours. If the heat treatment time is less than 20 minutes, selective thinning of the neck portion may not proceed sufficiently. As a result, the minimum diameter of the neck portion may not be sufficiently large. In addition, when the heat treatment time exceeds 20 hours, the production cost of the carbon material for a catalyst carrier is increased. Note that the lower the concentration of oxygen gas, the longer the heat treatment time needs to be.
  • the gas activation method is also known as a method of activating a porous carbon material.
  • the gas activation method it was not possible to produce the carbon material for a catalyst carrier according to the present embodiment.
  • the reason for this is that in the gas activation method, the carbon layer is uniformly reduced.
  • the treatment is generally carried out at a temperature of 900 ° C. or higher, but since the oxidizing power is weak, only the end of the carbon hexagonal network (condensed polycyclic aromatic) is oxidized and consumed. Therefore, the neck portion and the bottle portion of the bottleneck pore are uniformly reduced. As a result, the area of the hysteresis loop is rather increased.
  • the treatment is generally performed at 300 ° C. to 700 ° C.
  • the oxidizing power is strong, the origin of oxidation is generated not only at the end of the carbon hexagonal mesh plane but also in the plane. Advance consumption.
  • a network of pores is developed, and the area of the hysteresis loop is reduced.
  • oxygen-based gas activation in order to obtain an effect of reducing the area of the hysteresis loop, it is necessary to increase the thickness reduction rate to 50% or more.
  • the gas activation method in general it is an activation method in which the end of the carbon hexagonal mesh surface is oxidized and consumed, or small pores are generated in the carbon hexagonal mesh surface itself, and therefore it is necessary to increase the minimum neck diameter itself Since the hysteresis loop can not be closed, the relative pressure P close / P 0 is 0.47 or less.
  • the activated catalyst remains in the catalyst-activated carbon material produced by the first heat treatment step.
  • this step removes the activated catalyst from the catalyst activated carbon material.
  • the catalyst activated carbon material is heated at 1400 to 2200 ° C. in a vacuum or an inert gas atmosphere.
  • the heating temperature is preferably 1600 to 2100 ° C.
  • the crystallinity of the catalyst activated carbon material can be enhanced by the second heat treatment step. That is, the catalyst activated carbon material which satisfies the requirement (D) mentioned above can be produced. If the heating temperature in the second heating step is lower than 1400 ° C., the crystallinity of the catalyst-activated carbon material may not be improved, and the durability in the fuel cell operating environment may not be ensured. That is, the requirement (D) may not be satisfied.
  • the heating time of the second heat treatment step is preferably 10 minutes to 10 hours from the viewpoint of enhancing the crystallinity of the catalyst activated carbon material and satisfying any of the requirements (A) to (C) and (E). More preferably, 20 minutes to 5 hours.
  • the method of heating the catalyst activated carbon material is not particularly limited as long as the catalyst activated carbon material can be heated at the above temperature.
  • a heating method resistance heating, microwave heating, high frequency heating, a heating method of furnace type etc. are mentioned, for example.
  • the furnace type is not limited as long as an inert or depressurized atmosphere can be achieved, such as a graphitization furnace, a batch furnace, a tunnel furnace and the like.
  • the carbon material for a catalyst carrier according to the present embodiment is manufactured by the above steps.
  • the second heat treatment step may be performed before the first heat treatment step, or may be performed before and after the first heat treatment step. That is, the second heat treatment step may be performed at least one of before and after the first heat treatment step.
  • the carbon material for a catalyst carrier according to the present embodiment that is, the polymer electrolyte fuel cell catalyst carrier
  • the minimum diameter of the neck portion is increased, and the volume ratio of the bottleneck pores is decreased. Therefore, the gas diffusion resistance of the catalyst layer can be reduced, and the occurrence of flooding can be suppressed. Therefore, the overvoltage at high current is further reduced.
  • the carbon material for a catalyst carrier according to the present embodiment that is, a polymer electrolyte fuel cell catalyst carrier
  • the durability of the carbon material is also improved.
  • the carbon material for a catalyst carrier according to the present embodiment is applicable to, for example, a solid polymer fuel cell 100 shown in FIG.
  • the polymer electrolyte fuel cell 100 includes separators 110 and 120, gas diffusion layers 130 and 140, catalyst layers 150 and 160, and an electrolyte membrane 170.
  • the separator 110 is a separator on the anode side, and introduces a fuel gas such as hydrogen into the gas diffusion layer 130.
  • the separator 120 is a separator on the cathode side, and introduces an oxidizing gas such as oxygen gas or air into the gas diffusion aggregation phase.
  • the type of the separators 110 and 120 is not particularly limited, as long as it is a separator used in a conventional fuel cell, for example, a polymer electrolyte fuel cell.
  • the gas diffusion layer 130 is a gas diffusion layer on the anode side, diffuses the fuel gas supplied from the separator 110, and then supplies the fuel gas to the catalyst layer 150.
  • the gas diffusion layer 140 is a gas diffusion layer on the cathode side, diffuses the oxidizing gas supplied from the separator 120, and then supplies it to the catalyst layer 160.
  • the type of the gas diffusion layers 130 and 40 is not particularly limited, as long as it is a gas diffusion layer used in a conventional fuel cell, for example, a polymer electrolyte fuel cell. Examples of the gas diffusion layers 130 and 40 include porous carbon materials (carbon cloth, carbon paper, etc.), porous metal materials (metal mesh, metal wool, etc.), and the like.
  • the layer on the separator side of the gas diffusion layer is a gas diffusion fiber layer mainly composed of a fibrous carbon material, and the layer on the catalyst layer is mainly carbon black.
  • a two-layered gas diffusion layer to be a micropore layer is a gas diffusion fiber layer mainly composed of a fibrous carbon material, and the layer on the catalyst layer is mainly carbon black.
  • the catalyst layer 150 is a so-called anode.
  • an oxidation reaction of the fuel gas occurs to generate protons and electrons.
  • the fuel gas is hydrogen gas
  • the protons generated by the oxidation reaction reach the catalyst layer 160 through the catalyst layer 150 and the electrolyte membrane 170.
  • the electrons generated by the oxidation reaction reach the external circuit through the catalyst layer 150, the gas diffusion layer 130, and the separator 110. Electrons are introduced into the separator 120 after working in an external circuit. Thereafter, the electrons reach the catalyst layer 160 through the separator 120 and the gas diffusion layer 140.
  • the configuration of the catalyst layer 150 to be the anode is not particularly limited. That is, the structure of the catalyst layer 150 may be the same as that of the conventional anode, or may be the same as that of the catalyst layer 160, or it is a structure that is more hydrophilic than the catalyst layer 160. May be
  • the catalyst layer 160 is a so-called cathode.
  • a reduction reaction of the oxidizing gas occurs to generate water.
  • the oxidizing gas is oxygen gas or air
  • the following reduction reaction occurs.
  • Water generated by the oxidation reaction is discharged to the outside of the polymer electrolyte fuel cell 100 together with the unreacted oxidizing gas.
  • the polymer electrolyte fuel cell 100 generates power using the energy difference (potential difference) between the oxidation reaction and the reduction reaction.
  • the electrons generated by the oxidation reaction do work in the external circuit.
  • the catalyst layer 160 preferably contains the carbon material for a catalyst carrier according to the present embodiment. That is, the catalyst layer 160 includes the carbon material for a catalyst carrier according to the present embodiment, an electrolyte material, and a fuel cell catalyst. Thereby, the catalyst utilization rate in the catalyst layer 160 can be increased. As a result, the catalyst utilization of the polymer electrolyte fuel cell 100 can be increased.
  • the fuel cell catalyst loading ratio in the catalyst layer 160 is not particularly limited, but is preferably 30% by mass or more and less than 80% by mass.
  • the fuel cell catalyst supporting ratio is a mass% of the fuel cell catalyst with respect to the total mass of the catalyst supporting particles (particles obtained by supporting the fuel cell catalyst on a carbon material for a catalyst carrier). In this case, the catalyst utilization is further increased.
  • the fuel cell catalyst loading ratio is less than 30% by mass, it may be necessary to thicken the catalyst layer 160 in order to make the polymer electrolyte fuel cell 100 withstand practical use.
  • the fuel cell catalyst loading ratio is 80% by mass or more, catalyst aggregation tends to occur. Also, the catalyst layer 160 becomes too thin, which may cause flooding.
  • the mass ratio I / C of the mass I (g) of the electrolyte material to the mass C (g) of the carbon material for the catalyst support in the catalyst layer 160 is not particularly limited, but is preferably more than 0.5 and less than 5.0 .
  • the pore network and the electrolyte material network can be compatible, and the catalyst utilization rate becomes high.
  • the mass ratio I / C is 0.5 or less, the electrolyte material network tends to be poor and the proton conduction resistance tends to be high.
  • the mass ratio I / C is 5.0 or more, the pore network may be divided by the electrolyte material. In either case, catalyst utilization may be reduced.
  • the thickness of the catalyst layer 160 is not particularly limited, but is preferably more than 5 ⁇ m and less than 20 ⁇ m. In this case, the oxidizing gas is easily diffused into the catalyst layer 160, and flooding hardly occurs. When the thickness of the catalyst layer 160 is 5 ⁇ m or less, flooding easily occurs. When the thickness of the catalyst layer 160 is 20 ⁇ m or more, the oxidizing gas hardly diffuses in the catalyst layer 160, and the fuel cell catalyst in the vicinity of the electrolyte membrane 170 becomes difficult to work. That is, the catalyst utilization may be reduced.
  • the electrolyte membrane 170 is made of an electrolyte material having proton conductivity.
  • the electrolyte membrane 170 introduces the protons generated in the above oxidation reaction into the catalyst layer 160 which is the cathode.
  • the type of the electrolyte material is not particularly limited, as long as it is an electrolyte material used in a conventional fuel cell, for example, a polymer electrolyte fuel cell.
  • a preferred example is an electrolyte material used in a polymer electrolyte fuel cell, ie, an electrolyte resin.
  • the electrolyte resin examples include a polymer into which a phosphoric acid group, a sulfonic acid group or the like is introduced (for example, a perfluorosulfonic acid polymer or a polymer into which a benzenesulfonic acid is introduced).
  • the electrolyte material according to the present embodiment may be another type of electrolyte material.
  • Examples of such an electrolyte material include electrolyte materials such as inorganic and inorganic-organic hybrid systems.
  • the polymer electrolyte fuel cell 100 may be a fuel cell operating in the range of normal temperature to 150 ° C.
  • the method for producing the polymer electrolyte fuel cell 100 is not particularly limited, and any conventional production method may be used. However, it is preferable to use the carbon material for a catalyst carrier according to the present embodiment as the catalyst carrier on the cathode side.
  • the BET specific surface area was calculated by BET analysis of the nitrogen adsorption isotherm in the relative pressure P / P 0 range of 0.05 to 0.15.
  • the P 0 is the relative pressure P close the / P 0 Less hysteresis loop.
  • the difference between the nitrogen adsorption amount (mL / g) at a relative pressure of 0.20 and the nitrogen adsorption amount (mL / g) at a relative pressure of 0.90 was taken as the adsorption volume V 0.2-0.9 .
  • porous carbon material to be a starting material of a carbon material for a catalyst carrier was prepared by the following steps.
  • a porous carbon material (porous carbon black, activated CB-1) is obtained by heat treating Toka Black # 4500 manufactured by Tokai Carbon Co., Ltd. under carbon dioxide gas flow at a temperature of 780 ° C. for 50 hours.
  • a porous carbon material (porous carbon black, activated CB-2) was obtained by heat treating Toka Black # 4500 manufactured by Tokai Carbon Co., Ltd. under carbon dioxide gas flow at 810 ° C. for 60 hours.
  • a porous carbon material (MH-1800) is obtained by performing the same steps as the above (2-1-2) except that Knobel MH (trade name) manufactured by Toyo Tanso Co., Ltd. is used.
  • Knobel MH trade name manufactured by Toyo Tanso Co., Ltd. is used.
  • the activated catalyst-supporting carbon material was prepared.
  • the mass of the porous carbon material to be added to tetraethylene glycol is adjusted in the range of 0.2 to 1.0 g, and the concentration of the tetraethylene glycol solution of nickel acetylacetonate (manufactured by Tokyo Chemical Industry Co., Ltd.) is 0.
  • an activated catalyst-supporting carbon material having a different loading ratio of activated catalyst (here, nickel particles) and particle diameter was prepared.
  • the support ratio is simply calculated from the amount of the reagent to be supplied for shortening the time. can do.
  • the particle size of the activated catalyst was measured by the method described above, that is, the half width of the peak of the metal component of XRD. Table 1 summarizes the types of the activated catalyst, the loading method, the loading ratio, and the particle size.
  • the same treatment was performed in which nickel acetylacetonate was changed to iron acetylacetonate, cobalt acetylacetonate, or platinum acetylacetonate according to the type of the activated catalyst.
  • the activated catalyst supporting carbon material was activated. Specifically, 1.5 g of the activated catalyst-supporting carbon material was placed in an alumina boat, and this alumina boat was set in a horizontal electric furnace. Then, a mixed gas of oxygen and argon was circulated in the electric furnace. The linear velocity of the mixed gas was 1 cm / min. The flow rate ratio of oxygen and argon in the mixed gas, that is, the range of 5 to 80% by volume of oxygen concentration in the mixed gas was prepared. Then, the temperature (processing temperature) in the electric furnace was adjusted in the range of 250 to 800.degree. Furthermore, the treatment time was adjusted in the range of 0.2 hours to 18 hours while controlling the weight loss. Catalyst activated carbon material was produced by this process.
  • the activated catalyst was removed from the catalyst-activated carbon material. Specifically, a 5% by mass nitric acid aqueous solution was prepared, and the catalyst activated carbon material was dispersed in the nitric acid aqueous solution. The dispersion was then stirred for 10 hours maintaining the temperature at 60 ° C. Thus, the activated catalyst was dissolved in the aqueous nitric acid solution. The dispersion was then filtered through a membrane filter, and the solid remaining on the filter was redispersed in distilled water. The dispersion was then filtered again through a membrane filter and the solid remaining on the filter was vacuum dried at 110 ° C. Thereby, the activated catalyst was removed from the catalyst-activated carbon material.
  • This step was omitted in Run Nos. Run-28 to 32, 38, and 39. That is, in Run-28 to 32, the Pt loading catalyst is further loaded with platinum by a loading treatment of platinum described later, and in Run-38 and 39, the loading catalyst Co is loaded further on platinum loading treatment described later. Then, the platinum loading amount was made to be a predetermined amount, and thereafter, a treatment for alloying described later was performed, and used as a fuel cell catalyst.
  • the second heat treatment step was performed in the step of producing Experiment Nos. Run-33 to Run-37. Specifically, the inside of the graphitization furnace was vacuum replaced with argon gas. Next, activated CB-2 was treated at 1800 ° C. (Run-33, 34, 37) while flowing argon gas at a flow rate of 5 L / min in the graphitization furnace. By this treatment, the crystallinity was enhanced, and the durability after the catalyst activation treatment was aimed to be improved. Run-33, 34, 37 performed the catalyst activation treatment after the second heat treatment. The conditions are as shown in Table 1. Furthermore, after the catalyst activation treatment, Run-37 was treated again by setting the treatment temperature to 2100 ° C. in the above process.
  • the heat treatment time was 1 hour in each case. Run-35 and 36 were heated for 1 hour at 1800 ° C. (Run-35) and 1900 ° C. (Run-36), respectively, after the catalyst activation treatment. Thereby, the graphitization degree (crystallinity) of the catalyst activated carbon material was enhanced.
  • a carbon material for catalyst support (activated CB-1-H 2 O, experiment No. Run-44) in which the activation was enhanced by steam activation (gas activation by steam) of activated CB-1 was prepared.
  • activation conditions argon gas was bubbled in a water bath at 90 ° C. to prepare argon gas containing water vapor, and heat treatment was performed at 800 ° C. for 3 hours under the flow.
  • the material (MH-1800-Air 570, Run No. 46) was prepared as follows. Heat treatment of the porous carbon material (MH-1800) in air (air activation). Oxidized consumption of carbon. Specifically, the porous carbon material (MH-1800) was treated at 570 ° C. for 1 hour with the porous carbon material (MH-1800-Air 540) treated at 40 ° C. for 1 hour under air flow. A porous carbon material (MH-1800-Air 570) was obtained.
  • Table 1 shows the production conditions for producing the carbon material for a catalyst carrier
  • Table 2 summarizes the physical property values.
  • MEA membrane electrode complex
  • a carbon material dispersion was prepared by dispersing a carbon material for a catalyst carrier in distilled water. Then, formaldehyde was added to the carbon material dispersion, and the carbon material dispersion was set in a water bath set at 40 ° C. Then, the temperature of the carbon material dispersion was kept at 40 ° C. equal to that of the bath, and then, while stirring the carbon material dispersion, an aqueous dinitrodiamine Pt complex aqueous solution was slowly poured into the carbon material dispersion. After continuing stirring for about 2 hours, the carbon material dispersion was filtered and the obtained solid was washed. The solid thus obtained was vacuum dried at 90 ° C. and then ground in a mortar.
  • the amount of platinum supported on the catalyst-supporting carbon material was 40% by mass with respect to the total mass of the catalyst support carbon material and the platinum particles.
  • the supported amount of platinum was 41.5% by mass, and the supported amount of Co was 6.9% by mass.
  • the supported amount of platinum was 42.0% by mass, and the supported amount of Co was 8.1% by mass.
  • the supported amount of platinum and Co was confirmed by inductively coupled plasma emission spectroscopy (ICP-AES).
  • the catalyst concentration (the concentration of the fuel cell catalyst) in the coating ink was made to be 1.0% by mass with respect to the total mass of the coating ink.
  • the type of fuel cell catalyst differs depending on Run, but is at least one of platinum, Co, and alloys thereof.
  • the concentration of the fuel cell catalyst means the concentration of all these components.
  • the spray condition is adjusted so that the mass per unit area of catalyst layer of the fuel cell catalyst (hereinafter referred to as “the catalyst basis weight”) becomes 0.2 mg / cm 2, and the above-mentioned coated ink is Teflon (registered trademark) ) Was sprayed on the sheet.
  • the catalyst layer was produced by performing the drying process for 60 minutes at 120 degreeC in argon atmosphere. Two identical catalyst layers were prepared, one as a cathode and the other as an anode.
  • the mass of the catalyst layer fixed to the Nafion membrane is determined from the difference between the weight of the Teflon (registered trademark) sheet with the catalyst layer before pressing and the weight of the Teflon (registered trademark) sheet after pressing, and the composition of the catalyst layer
  • the weight per unit area of the catalyst, the weight per unit area of the catalyst carrier carbon material, and the per unit weight of the electrolyte resin were calculated from the mass ratio of By this method, it was confirmed that the catalyst basis weight was 0.2 mg / cm 2 .
  • Performance evaluation test> The prepared MEAs were each incorporated into a cell, and the performance evaluation of the fuel cell was performed using a fuel cell measurement device.
  • the air and pure hydrogen supplied to the fuel cell were humidified by passing them through distilled water kept at 65 ° C. in a humidifier (that is, performing bubbling). That is, these gases contained steam equivalent to reformed hydrogen.
  • humidified gas was supplied to the cell. After the gas was supplied to the cells under such conditions, the load was gradually increased, the voltage between cell terminals at 1000 mA / cm 2 was recorded as the output voltage, and the large current characteristics of the fuel cell were evaluated.
  • Experiment No. Run-0 is an example in which the activation process according to the present embodiment was not performed, and the large current characteristics were inferior.
  • the loading ratio of the activated catalyst was varied in the range of 1 to 11% by mass.
  • the supporting rate was 3 to 9% by mass
  • a carbon material for a catalyst carrier satisfying requirements (A) to (E) could be produced.
  • the large current characteristics before and after the endurance test were all good.
  • the carbon material for a catalyst support according to Experiment Nos. Run-3 to Run 6 having a relative pressure P close / P 0 in the range of 0.50 to 0.70 at which the hysteresis loop closes has any large current characteristics before and after the endurance test. Also became good.
  • Run-14 to 16 have different oxygen concentrations and treatment times in the first heat treatment.
  • the oxygen concentration was as low as 5% by volume
  • a carbon material for a catalyst support satisfying requirements (A) to (E) could be produced by securing a sufficient treatment time (see Run-14).
  • the large current characteristics before and after the endurance test were also good.
  • the oxygen concentration was as high as 80% by mass
  • a carbon material for a catalyst support satisfying requirements (A) to (E) could be produced by shortening the treatment time (see Run-16) .
  • the large current characteristics before and after the endurance test were also good.
  • the treatment time was too short, it was not possible to produce a carbon material for a catalyst support which meets the requirements (A) to (E) (see Run-15).
  • Run-17 to 18 are modified loading methods. According to these examples, it was possible to produce a carbon material for a catalyst carrier that satisfies the requirements (A) to (E) even when the loading method is changed. The large current characteristics before and after the endurance test were also good.
  • the supporting catalyst is Fe, and the supporting method is changed.
  • the activated catalyst is Co and the supporting method is changed. According to these examples, it was possible to produce a carbon material for a catalyst carrier that satisfies the requirements (A) to (E) even when the activation catalyst is Co. The large current characteristics before and after the endurance test were also good.
  • the activation catalyst is Pt, and Pt is diverted to a fuel cell catalyst. Even in this case, it was possible to produce a carbon material for a catalyst support which satisfies the requirements (A) to (E). The large current characteristics before and after the endurance test were also good.
  • the carbon material for a catalyst carrier according to Run-32 according to Run-32 having good large current characteristics before and after the durability test satisfies the nitrogen desorption characteristics of requirements (A) to (C). Recognize.
  • Run-33 to Run-37 the activated catalyst is Co and the second heat treatment step is performed.
  • Run-33 to 34 not only fulfills the requirements (A) to (D)
  • Run-35 to 37 not only fulfills the requirements (A) to (E) but the crystallinity is further enhanced. It was possible to produce a carbon material for catalyst support. The large current characteristics before and after the endurance test were also good.
  • the activation catalyst is Co
  • Co is diverted to a fuel cell catalyst. Even in this case, it was possible to produce a carbon material for a catalyst support which satisfies the requirements (A) to (E). The large current characteristics before and after the endurance test were also good.
  • Experiment No. Run-44 is obtained by performing conventional gas activation on activated CB-1.
  • the carbon material for a catalyst carrier according to Experiment No. Run-44 did not satisfy the requirements (B) and (C), and as a result, the large current characteristics were poor.
  • Run-45 to 46 are obtained by performing conventional gas activation (gas activation with air) on the porous carbon material (MH-1800).
  • the carbon materials for a catalyst carrier according to Run-45 to 46 resulted in weight loss of 25% by mass and 49% by mass, respectively, by gas activation (air oxidation treatment) with air. Due to the gas activation by air, the area ⁇ S 0.47-0.9 of the hysteresis loop was greatly reduced.
  • the area ⁇ S 0.47-0.9 of MH-1800 is 34 mL / g, while the area ⁇ S 0.47-0.9 of MH-1800-Air 540 is 12 mL / g, MH-1800
  • the substantial loop disappeared ie, the adsorption and desorption curves coincided
  • the calculated value of the area ⁇ S 0.47-0.9 was 0.4 mL / g.
  • the relative pressure P close / P 0 at which the hysteresis loop closes also decreased.
  • the carbon material for a catalyst carrier according to Run-45 did not satisfy the requirements (A) and (C), and as a result, the large current characteristics were poor.
  • the carbon material for a catalyst support did not satisfy the requirements (A), (B), (C) and (E), and as a result, the large current characteristics were poor.
  • the nitrogen adsorption and desorption isotherm of the carbon material for a catalyst carrier according to each Run indicated by “E” in the remarks in Tables 1 and 2 has a relative pressure P / P 0 of more than 0.47. It was confirmed that a hysteresis loop was formed in the range of 0.90.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

下記の要件(A)、(B)、(C)、及び(D)を満たす固体高分子形燃料電池触媒担体およびその製造方法、並びに、固体高分子形燃料電池用触媒層および燃料電池。 (A)窒素吸着等温線のBET解析による比表面積が450~1500m2/gとなる。 (B)窒素吸脱着等温線が、相対圧P/P0=0.47超~0.90の範囲でヒステリシスループを形成し、且つ、当該ヒステリシスループの面積△S0.47-0.9が1~35mL/gである。 (C)ヒステリシスループが閉じる相対圧Pclose/P0が0.47超~0.70である。 (D)ラマン分光測定により1500~1700cm-1の範囲で検出されるGバンドの半値幅が45~75cm-1である。

Description

固体高分子形燃料電池触媒担体、固体高分子形燃料電池触媒担体の製造方法、固体高分子形燃料電池用触媒層、及び燃料電池
 本開示は、固体高分子形燃料電池触媒担体、固体高分子形燃料電池触媒担体の製造方法、固体高分子形燃料電池用触媒層、及び燃料電池に関する。
 燃料電池の一種である固体高分子形燃料電池は、固体高分子電解質膜の両面に配置される一対の触媒層と、各触媒層の外側に配置されるガス拡散層と、各ガス拡散層の外側に配置されるセパレータとを備える。一対の触媒層のうち、一方の触媒層は固体高分子形燃料電池のアノードとなり、他方の触媒層は固体高分子形燃料電池のカソードとなる。なお、通常の固体高分子形燃料電池では、所望の出力を得るために、上記構成要素を有する単位セルが複数個スタックされている。
 アノード側のセパレータには、水素等の燃料ガスが導入される。アノード側のガス拡散層は、燃料を拡散させた後、アノードに導入する。アノードは、触媒成分と、燃料電池用触媒を担持する触媒担体と、プロトン伝導性を有する電解質材料とを含む。以下、燃料電池内の発電反応(後述する酸化反応または還元反応)を促進する触媒成分を「燃料電池用触媒」とも称する。触媒担体は、多孔質炭素材料で構成されることが多い。燃料電池用触媒上では、燃料ガスの酸化反応が起こり、プロトンと電子が生成される。例えば、燃料ガスが水素ガスとなる場合、以下の酸化反応が起こる。
 H→2H+2e (E=0V)
 この酸化反応で生じたプロトンは、アノード内の電解質材料、及び固体高分子電解質膜を通ってカソードに導入される。また、電子は、触媒担体、ガス拡散層、及びセパレータを通って外部回路に導入される。この電子は、外部回路で仕事をした後、カソード側のセパレータに導入される。そして、この電子は、カソード側のセパレータ、カソード側のガス拡散層を通ってカソードに導入される。
 固体高分子形電解質膜は、プロトン伝導性を有する電解質材料で構成されている。固体高分子電解質膜は、上記酸化反応で生成したプロトンをカソードに導入する。
 カソード側のセパレータには、酸素ガス又は空気等の酸化性ガスが導入される。カソード側のガス拡散層は、酸化性ガスを拡散させた後、カソードに導入する。カソードは、燃料電池用触媒と、燃料電池用触媒を担持する触媒担体と、プロトン伝導性を有する電解質材料とを含む。触媒担体は、多孔質炭素材料で構成されることが多い。燃料電池用触媒上では、酸化性ガスの還元反応が起こり、水が生成される。例えば、酸化性ガスが酸素ガスあるいは空気となる場合、以下の還元反応が起こる。
 O+4H+4e→2HO (E=1.23V)
 還元反応で生じた水は、未反応の酸化性ガスとともに燃料電池の外部に排出される。このように、固体高分子形燃料電池では、燃料ガスの酸化反応に伴って生成する自由エネルギー差(電位差)を利用して発電する。言い換えれば、酸化反応で生じた自由エネルギーを電子が外部回路で行う仕事に変換するものである。
 ところで、近年、特許文献1~4に開示されているように、樹状炭素ナノ構造体を触媒担体として使用する技術が提案されている。樹状炭素ナノ構造体は、他の炭素材料には認められない特徴的な構造を有する。具体的には、樹状炭素ナノ構造体は、非常に発達した細孔構造(多孔質構造)と大きなスケールの樹状構造を両立させた構造を有する。つまり、MCNDを構成する担体粒子は、その内部に燃料電池用触媒を担持可能な細孔を多数有しており、かつ、大きな樹状構造を有している。
 また、特許文献5では、マグネシウム酸化物ナノ粒子を鋳型にした多孔質炭素(MgO鋳型炭素)材料を原料とし、さらに、空気中で加熱処理した多孔質炭素を触媒担体として使用する技術が提案されている。MgO鋳型炭素は、一般に、材料内部にまで均一な細孔を持つという特徴を有するが、特許文献5では、さらに、MgO鋳型炭素を空気中で加熱することで、MgO鋳型炭素に細孔を形成する炭素壁を酸化消耗させる(つまり空気賦活させる)技術が提案されている。つまり、特許文献5は、細孔と細孔の間の仕切りを減らす(即ち、連通性を高める)ことを企図した材料を提案している。
 特許文献1:国際公開第2014/129597号
 特許文献2:国際公開第2015/088025号
 特許文献3:国際公開第2015/141810号
 特許文献4:国際公開第2016/133132号
 特許文献5:日本国特開2017-91812号
 非特許文献1:Adsorption Hysteresis of Nitrogen and Argon in Pore Networks and Characterization of Novel Micro- and Mesoporous Silicas, Langmuir 2006, 22, 756-764
 ところで、固体高分子形燃料電池に大電流を流した場合、過電圧が大きくなりやすいという問題があった。特に自動車の動力源に固体高分子形燃料電池を適用する場合、大電流時の過電圧を小さくしたいという要望が非常に大きかった。この問題に関して、MCNDを触媒担体として使用することで、過電圧を下げることができる。しかし、固体高分子形燃料電池のさらなる高性能化のためには、過電圧をさらに下げる必要があった。その一方で、触媒担体には、さらなる耐久性の向上も求められていた。
 特に、特許文献5のMgO鋳型炭素は、形状が粒子状(立体構造を持たない)である。そのため、粒子内のガス流通性が改善されても、粒子で作る触媒層は、細孔容積が小さく、また、細孔サイズの制御が難しい。その結果、粒子内のガス拡散ではなく、触媒層内のガスの拡散が制約となり、大電流時の過電圧を小さくできないという問題を生じる。
 そこで、本開示は、上記問題に鑑みてなされたものであり、本開示の目的とするところは、大電流時の過電圧をさらに低下させ、かつ、耐久性が向上した、新規かつ改良された固体高分子形燃料電池触媒担体、固体高分子形燃料電池触媒担体の製造方法、固体高分子形燃料電池用触媒層、及び燃料電池を提供することにある。
 まず、本発明者は、カソード側の反応に関与する物質の移動抵抗(拡散抵抗)が大電流時の過電圧に影響を与える支配因子の一つであると考えた。ここで、カソード側の反応に関与する物質は、電子、プロトン、酸化性ガス、およびカソード側の反応で生成する水(水蒸気)である。これらの物質のうち、電子、およびプロトンはオーミックな挙動を示す(すなわち、抵抗値は電流の大小に影響を受けない)と考えられ、大電流時に特異的な振る舞いを示さない。
 一方、酸化性ガス及び水蒸気の拡散は触媒成分の担体に用いられる多孔質炭素材料の細孔構造に依存する。具体的には、多孔質炭素材料の細孔径が大きい、屈曲が少ない、くびれが少ない等、多孔質炭素材料内にガスが拡散しやすくなっている場合、大電流時に必要なガスの供給がし易くなる。すなわち、ガス拡散抵抗が小さくなる。この結果、大電流に伴う電圧の低下も小さくて済む(すなわち、大電流に伴う過電圧が小さい)。このように、カソード内を流動するガスの拡散抵抗(所謂ガス拡散抵抗)が大電流時の過電圧の支配因子であると考えられる。つまり、ガス拡散抵抗が大きいほど、触媒担体内の燃料電池用触媒に酸化性ガスが届きにくくなる。そして、酸化性ガスが届かなかった燃料電池用触媒は、カソード側の発電反応(すなわち還元反応)に寄与できない。このため、大電流時の過電圧が上昇する。
 また、本発明者は、フラッディングも大電流時の過電圧に影響を与える支配因子であると考えた。ここで、フラッディングとは、カソード反応で生成する水蒸気(気相)が触媒層内で液相に転換し、液体水によって細孔が閉塞することを意味する。
 大電流での発電時には、カソードで大量の水蒸気が発生する。そして、このような水蒸気は、触媒担体内の細孔の拡散抵抗が大きいと細孔内に留まり易くなる。そして、細孔径が小さいほど、拡散抵抗が大きくなる。
 したがって、細孔径が小さいほど、水蒸気が細孔内に留まりやすくなる。すなわち、水蒸気圧が高まりやすくなる。その一方で、細孔径が小さいほど飽和蒸気圧が低くなる。このように、細孔径が小さいほど、細孔内で水蒸気圧が液相に転換しやすく、当該液相が細孔を閉塞することになる。すなわち、細孔内でフラッディングが生じる。この時、細孔の奥に担持された燃料電池用触媒に酸化性ガスが届きにくくなる。そして、酸化性ガスが届かなかった燃料電池用触媒は、カソード側の発電反応に寄与できない。この結果、大電流時の過電圧が上昇する。
 本発明者は、ガス拡散抵抗の増大及びフラッディングが生じる原因の一つがボトルネック型細孔であると考えた。図3にボトルネック型細孔の一例として、ボトルネック型細孔30を示す。ボトルネック型細孔30は、ボトル部30aと、ボトル部30aに連通するネック部30bとで構成される。ボトル部30aの直径はネック部30bの直径より大きい。また、ネック部30bは、炭素材料の外表面または炭素材料内の他の細孔に連通している。
 図3から明らかな通り、ネック部の直径はボトル部の直径よりも小さいので、ガスはボトル部内を流動しにくい。すなわち、ガス拡散抵抗が増大する。さらに、飽和蒸気圧はネック部の飽和蒸気圧はボトル部の飽和蒸気圧よりも小さいため、ネック部でフラッディングが生じやすい。したがって、ボトル部に担持された燃料電池用触媒がカソード側の発電反応に寄与しにくくなる。
 そして、触媒担体中の全細孔の容積に占めるボトルネック型細孔の容積比が大きいほど、また、ネック部の最小径(触媒担体中に存在する全てのネック部の直径の最小値)が小さく、且つ相当するボトル部の容積が大きいほど、ガス拡散抵抗が増大する。また、フラッディングが生じやすくなる。
 そこで、本発明者は、ボトルネック型細孔の容積比を小さくし、かつ、ネック部の最小径を大きくする技術について検討した。まず、本発明者は、ボトルネック型細孔の容積比及びネック部の最小径を評価する技術について検討した。具体的には、本発明者は、窒素吸着等温線及び窒素脱着等温線に着目した。ここで、窒素吸着等温線及び窒素脱着等温線は、窒素ガス吸着測定により得られる。窒素吸着等温線は、窒素吸着側の等温線であり、窒素脱着等温線は、窒素脱離側の等温線である。以下、窒素吸着等温線及び窒素脱着等温線をまとめた等温線(すなわち、これらの等温線を連結した等温線)を窒素吸脱着等温線とも称する。
 図1に窒素吸脱着等温線の一例を示す。図1に示す窒素吸脱着等温線は、従来の触媒担体用炭素材料の窒素吸脱着等温線を模式的に示すものである。この窒素吸脱着等温線は、ヒステリシスループAを形成している。
 ここで、ヒステリシスループが生じる原因としては諸説ある。例えば、ボトルネック型細孔が存在する場合に、ヒステリシスループが生じるとする説が提案されている。この説では、次に説明するように、吸着過程と脱着過程の違いによってヒステリシスループが生じる。すなわち、吸着過程では、窒素ガスの相対圧力に応じ、窒素の吸着厚みが徐々に厚くなっていく。その過程で、先ずボトルネック型細孔のネック部が吸着により閉塞するが、その時ボトル部にネック部相当の厚みで窒素が吸着しても、ボトル部の直径はネック部の直径よりも大きいので、ボトル部はまだ完全に埋まりきっていない。この状態では、例えネック部が閉塞していても、窒素吸着層を通じて外部圧力とボトル部内部の圧力は平衡にある。このため、更に窒素ガスの相対圧力(すなわち外部圧力)が増せば、ボトル部内部の圧力も増す。したがって、外部圧力に相当する吸着がボトル部でも進行し、ボトル部の窒素吸着層は厚くなる。更に外部圧力が増すと遂にボトル部も窒素吸着層によって完全に閉塞する。即ち、ボトルネック型細孔であっても吸着プロセスでは通常の細孔構造と同様の吸着が進行する。但し、厳密には、ネック部が窒素吸着層で閉塞した時には、ネック部に吸着した窒素吸着層の少なくとも一部が液相になる。そして、このような液相の表面張力により、外部圧力よりも液相内部の圧力(すなわち、ボトル部内部の圧力)は僅かに小さくなることが知られている。この現象は、いわゆる毛細管現象と呼ばれている。このため、ボトルネック型細孔の吸着等温線では、非ボトルネック型の細孔と同じ吸着量を得るために必要な相対圧力が僅かに高い値にシフトすることになる。
 次に、ボトルネック型細孔の全ての細孔が埋まった状態からの窒素の脱離過程を考える。脱離過程では、ネック部の閉塞が解ける圧力に外部圧力が低下するまで、ネック部が開通することはない。なお、ネック部の閉塞が解ける圧力に外部圧力が低下する過程で、外部圧力は、ボトル部の吸着が解ける圧力となる。しかし、この状態であっても、ネック部の閉塞の為にボトル部の内部に吸着した窒素はそのまま保持される(いわゆるブロッキング現象)。窒素を吸着質として液体窒素温度(例えば77K)で脱着等温線を計測する場合には、ネック部が開通する圧力よりも高い相対圧で、ネック部内の窒素吸着層が沸騰(キャビテーション)を始める。このため、窒素吸着層が沸騰を始める圧力で、ボトル部及びネック部に吸着した窒素が一気に脱離放出されることになる。このときの圧力Pcloseでヒステリシスループが閉じる。ヒステリシスループが閉じる(すなわち、キャビテーションが生じる)時の相対圧Pclose/Pは、0.4程度である。相対圧Pclose/Pの値は、細孔構造には依存せず、吸着質と測定温度で決まる。なお、ヒステリシスの現象は、例えば、非特許文献1に詳細に説明されている。
 本発明者は、この説をさらに検証した。この結果、本発明者は、ネック部の最小径をキャビテーションが生じる径よりも大きくした場合、ヒステリシスループは、ネック部の最小径に相当する相対圧で閉じることを見出した。このような知見は従来には無かったものであり、このような知見によって得られる炭素材料は、従来には全く無かったものである。したがって、ネック部の最小径が大きい(具体的には、キャビテーションが生じる径よりも大きい)場合、窒素脱着等温線は、ネック部の最小径に相当する相対圧で、窒素吸着等温線に交差する。すなわち、ヒステリシスループが閉じる。つまり、この場合、キャビテーションによる立下りでなく、ネック部の直径に相当する相対圧での立ち下がりによってヒステリシスループが閉じる。したがって、ヒステリシスループの閉じる相対圧Pclose/Pが高いほど、ネック部の最小径が大きいことになる。
 また、ボトルネック型細孔の容積比は、ヒステリシスループの面積に対応している。上述したように、ボトルネック型細孔では、ブロッキング現象によって窒素ガスの脱離が妨げられる。したがって、ボトルネック型細孔の容積比が大きいほど、窒素脱着等温線が立ち下がりにくくなる。この結果、ヒステリシスループの面積が大きくなる。逆に言えば、ヒステリシスループの面積が小さいほど、ボトルネック型細孔の容積比が小さいと言える。
 このように、本発明者は、窒素吸脱着等温線を用いてボトルネック型細孔の容積比及びネック部の最小径を評価することができることを見出した。
 なお、従来でも、窒素吸着等温線に基づいて炭素材料を評価することは行われていた。しかし、窒素吸着等温線だけでは、炭素材料の特性(特に大電流時の特性)を十分に評価することができなかった。例えば、ケッチェンブラックも固体高分子形燃料電池の触媒担体として広く使用されている。このようなケッチェンブラックをガス賦活(例えばCOガス賦活)することで全細孔容積を大きくすることができる。そして、ガス賦活を行ったケッチェンブラックを触媒担体として使用した場合、ガス拡散抵抗が低減し、大電流時の過電圧が小さくなる傾向がある。しかしながら、ガス賦活の前後で上述のヒステリシスループの面積は減少せず、寧ろ増大する傾向を持つ。つまり、ボトルネック型細孔の容積比が増大する。このため、吸着過程だけに着目した窒素吸着等温線だけでは、炭素材料の特性、特に大電流時の特性を十分に評価することができなかった。
 つぎに、本発明者は、ネック部の最小径を大きくし、かつ、ボトルネック型細孔の容積比を低下させる技術について検討した。この結果、本発明者は、触媒担体として使用される多孔質炭素材料を賦活用触媒で賦活(つまり触媒賦活)することで、ネック部の最小径を大きくし、かつ、ボトルネック型細孔の容積比を低下させることに成功した。
 ここで、ネック部の最小径が大きくなり、かつ、ボトルネック型細孔の容積比が低下したことは、窒素吸脱着等温線によって確認できた。すなわち、上記賦活を行った炭素材料では、ヒステリシスループが閉じる相対圧が高くなり、かつ、ヒステリシスループの面積が小さくなった。図2は、上記触媒賦活を行った炭素材料(すなわち本開示の実施形態に係る固体高分子形燃料電池触媒担体)の窒素吸脱着等温線を模式的に示す。図2から明らかな通り、ヒステリシスループAの面積△S0.47-0.9は図1に比べて小さくなっており、かつ、ヒステリシスループAが閉じる相対圧Pclose/Pは図1に比べて高くなっている。
 本発明者は、賦活用触媒がネック部を選択的に減肉するために、ネック部の最小径が大きくなり、かつ、ボトルネック型細孔の容積比が低下したと考えている。すなわち、ネック部が選択的に減肉されることで、ボトルネック型細孔が寸胴に近い形状となる。これにより、ネック部の最小径が大きくなる。また、ボトルネック型細孔が寸胴に近い形状になることで、その細孔はもはやボトルネック型細孔ではなくなる。したがって、ボトルネック型細孔の容積比が減少する。
 さらに、本発明者は、上記触媒賦活を行った後の炭素材料を高温で熱処理することで、炭素材料の耐久性を高めた。また、前記触媒賦活よりも前に高温で熱処理した後に、触媒賦活を行っても同様の効果は発現することを確認した。ただし、触媒賦活により、酸化消耗した部位は酸化消耗の起点となるのであるから、触媒賦活すると、触媒賦活する前よりも耐酸化消耗性は低下することがある。したがって、触媒賦活前に高温で熱処理し、触媒賦活後に、再度、高温熱処理することにより、耐酸化消耗性を高めることもできることを確認した。本発明者は、以上の知見に基づいて、本開示に係る固体高分子形燃料電池触媒担体に想到した。
 すなわち、本開示のある観点によれば、本開示は、次の態様を含む。
<1>
 下記の要件(A)、(B)、(C)、及び(D)を満たす炭素材料からなる固体高分子形燃料電池触媒担体。
(A)窒素吸着等温線のBET解析による比表面積が450~1500m/gとなる。
(B)窒素吸脱着等温線が、相対圧P/P=0.47超~0.90の範囲内でヒステリシスループを形成し、且つ、当該ヒステリシスループの面積△S0.47-0.9が1~35mL/gである。
(C)前記ヒステリシスループが閉じる相対圧Pclose/Pが0.47超~0.70である。
(D)ラマン分光測定により1500~1700cm-1の範囲で検出されるGバンドの半値幅が45~75cm-1である。
<2>
 さらに下記の要件(E)を満たす<1>に記載の固体高分子形燃料電池触媒担体。
(E)相対圧0.20~0.90の範囲内の前記窒素吸着等温線から測定される吸着容積V0.2-0.9が150~700mL/gである。
<3>
 前記ヒステリシスループの面積△S0.47-0.9が5~35mL/gである<1>又は<2>に記載の固体高分子形燃料電池触媒担体。
<4>
 前記ヒステリシスループの面積△S0.47-0.9が15~35mL/gである<1>又は<2>に記載の固体高分子形燃料電池触媒担体。
<5>
 前記ヒステリシスループが閉じる相対圧Pclose/Pが0.50~0.70である<1>~<4>のいずれか1項に記載の固体高分子形燃料電池触媒担体。
<6>
 固体高分子形燃料電池触媒担体を製造する固体高分子形燃料電池触媒担体の製造方法であって、
 多孔質炭素材料の賦活反応を促進する賦活用触媒を前記多孔質炭素材料の細孔内に担持させることで、賦活用触媒担持炭素材料を作製する担持工程と、
 前記賦活用触媒担持炭素材料を酸素含有雰囲気下で300℃~700℃で熱処理する第1の熱処理工程と、
 を含む固体高分子形燃料電池触媒担体の製造方法。
<7>
 前記第1の熱処理工程の前及び後の少なくとも一方で行われる第2の熱処理工程であって、前記賦活用触媒担持炭素材料を真空または不活性ガス雰囲気中で1600~2100℃で加熱する第2の熱処理工程を含む請求項6に記載の固体高分子形燃料電池触媒担体の製造方法。
<8>
 前記担持工程において、前記賦活用触媒の粒子径が2~7nmであり、前記賦活用触媒が貴金属元素である場合の前記賦活用触媒の担持率が3~20質量%であり、前記賦活用触媒が3d元素である場合の前記賦活用触媒の担持率が3~9質量%であり、
 第1の熱処理工程において、前記酸素含有雰囲気の酸素濃度が雰囲気ガスの総体積に対して5~100体積%であり、熱処理時間が20分~20時間である<6>または<7>に記載の固体高分子形燃料電池触媒担体の製造方法。
<9>
 前記賦活用触媒を除去する賦活用触媒除去工程を、前記第1の熱処理工程の後に行う<6>~<8>のいずれか1項に記載の固体高分子形燃料電池触媒担体の製造方法。
<10>
 <1>~<5>のいずれか1項に記載の固体高分子形燃料電池触媒担体を含む固体高分子形燃料電池用触媒層。
<11>
 <10>に記載の固体高分子形燃料電池用触媒層を含む燃料電池。
<12>
 前記固体高分子形燃料電池用触媒層は、カソード側の触媒層である<11>記載の燃料電池。
 以上説明したように本開示によれば、本開示に係る固体高分子形燃料電池触媒担体は、ネック部の最小径が大きくなり、かつ、ボトルネック型細孔の容積比が低下するので、ガス拡散抵抗が低下し、かつ、フラッディングの発生を抑制することができる。したがって、大電流時の過電圧がさらに低下する。また、本開示に係る固体高分子形燃料電池触媒担体は、高い結晶性を有するので、耐久性も向上する。
従来の触媒担体用炭素材料の窒素吸脱着等温線を模式的に示すグラフである。 本開示の実施形態に係る固体高分子形燃料電池触媒担体(触媒担体用炭素材料)の窒素吸脱着等温線を模式的に示すグラフである。 ボトルネック型細孔の一例を模式的に示す説明図である。 本実施形態に係る燃料電池の概略構成を示す模式図である。 実験番号Run-29に係る触媒担体用炭素材料の窒素吸脱着等温線を示すグラフである。 図5に示す窒素吸脱着等温線の、ヒステリシスループが閉じる相対圧Pclose/P付近を示す拡大図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。
 なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 「~」の前後に記載される数値に「超」または「未満」が付されている場合の数値範囲は、これら数値を下限値または上限値として含まない範囲を意味する。
 「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
 「固体高分子形燃料電池触媒担体」は、触媒担体用炭素材料とも称する。
 窒素吸脱着等温線の相対圧P/Pにおいて、「P」は吸着平衡にある吸着質(本実施形態では窒素)の気体の圧力を示し、「P」は吸着温度における吸着質(本実施形態では窒素)の飽和蒸気圧を示す。
 <1.固体高分子形燃料電池触媒担体>
 まず、本実施形態に係る固体高分子形燃料電池触媒担体の構成について説明する。本実施形態に係る固体高分子形燃料電池触媒担体では、ネック部の最小径が大きくなっており、かつ、ボトルネック型細孔の容積比が低下している。具体的には、本実施形態に係る固体高分子形燃料電池触媒担体は、下記の要件(A)、(B)、(C)、及び(D)を満たす炭素材料(触媒担体用炭素材料)で構成される。
(A)窒素吸着等温線のBET解析による比表面積が450~1500m/gとなる。
(B)窒素吸脱着等温線が、相対圧P/P=0.47超~0.90の範囲内でヒステリシスループを形成し、且つ、当該ヒステリシスループの面積△S0.47-0.9が1~35mL/gである。
(C)ヒステリシスループが閉じる相対圧Pclose/Pが0.47超~0.7である。
(D)ラマン分光測定により1500~1700cm-1の範囲で検出されるGバンドの半値幅が45~75cm-1である。
 
 (1-1.要件(A))
 窒素吸着等温線のBET解析による比表面積(以下、「BET比表面積」とも称する)が450~1500m/gとなる。これにより、より多くの触媒成分を担持することができる。ここで、BET比表面積が450m/g未満だと、触媒成分の担持性が低下する場合が生じる。BET比表面積が1500m/gを超える場合、触媒担体用炭素材料の物理的強度(機械的強度)及び耐久性(耐酸化消耗性)との両立を図ることが困難となる。
 BET比表面積の下限は、触媒成分の担持性の低下を抑制する点から、500m/g以上が好ましく、550m/g以上がより好ましい。
 一方、BET比表面積の上限は、触媒担体用炭素材料の物理的強度(機械的強度)及び耐久性(耐酸化消耗性)との両立の点か1400m/g以下が好ましく、1300m/g以下がより好ましい。
 ここで、BET比表面積は、後述する実施例に示す測定方法により測定される値である。
 (1-2.要件(B))
 窒素吸脱着等温線が、相対圧P/P=0.47超~0.90の範囲内でヒステリシスループを形成し、且つ、当該ヒステリシスループの面積△S0.47-0.9が1~35mL/gである。本要件(B)は、ボトルネック型細孔の容積比に対応する要件である。本実施形態では、ヒステリシスループの面積△S0.47-0.9が1~35mL/gと非常に小さくなるので、ボトルネック型細孔の容積比が非常に小さくなる。したがって、ガス拡散抵抗が低下し、フラッディングも生じにくくなる。この結果、大電流時の過電圧が減少する。ヒステリシスループの面積△S0.47-0.9が35mL/gを超えると、ボトルネック型細孔の容積比が大きくなり、大電流時の過電圧が十分に低下しなくなる。ヒステリシスループの面積△S0.47-0.9が1mL/g未満となると、細孔を形成する多孔質炭素材料内部の炭素壁の5割以上の質量分を酸化消耗させることになる。その結果、多孔質炭素材料自体のマクロな機械的強度が弱くなる。例えば電極作成用のインク調製工程など粉末に力が加わった際に粉末が潰れて細孔が大幅に減少することとなる。そのため、大電流時の過電圧が大きくなる。
 なお、相対圧範囲の上限0.90は、およそ半径10nmの細孔に相当し、燃料電池触媒を担持する多孔質炭素材料の細孔を実質的に全て含有するものである。一方、相対圧範囲の下限0.47超は、要件Cの相対圧Pclose/Pの下限に一致するものである。
 ヒステリシスループの面積△S0.47-0.9の下限は、大電流時の過電圧減少の観点から、5mL/g以上が好ましく、10mL/g以上がより好ましく、15mL以上がさらに好ましい。
 一方、ヒステリシスループの面積△S0.47-0.9の上限は、大電流時の過電圧減少の観点から、32mL/g以下が好ましく、30mL/g以下がより好ましい。
 ここで、ヒステリシスループの面積△S0.47-0.9は、後述する実施例に示す測定方法により測定される値である。
 (1-3.要件(C))
 ヒステリシスループが閉じる相対圧Pclose/Pが0.47超~0.7である。本要件(C)は、ボトルネック型細孔の最小径(すなわち、ネック部の最小径)に対応する要件である。ヒステリシスループが閉じる相対圧Pclose/Pが0.47超~0.7と高い値になっているので、ネック部の最小径が大きくなる。このため、ガス拡散抵抗が低下し、フラッディングも生じにくくなる。相対圧Pclose/Pに対応する細孔径は、概ね2~7nmである。本実施形態における細孔径は、窒素ガス吸着測定により評価される直径を意味する。相対圧Pclose/Pが0.7を超える触媒担体用炭素材料を得ようとすると、後述する触媒賦活を過剰に行う必要が生じる。この場合、触媒担体用炭素材料の機械的強度がかえって低下する、耐久性が低下する等の別の問題が発生しうる。相対圧Pclose/Pが0.47以下となる場合、ネック部の最小径が小さくなる。このため、ガス拡散抵抗が増大し、フラッディングも生じやすくなる。その結果、大電流時の過電圧が増加しやすくなる。
 ヒステリシスループが閉じる相対圧Pclose/Pの下限は、大電流時の過電圧減少の観点から、0.50以上が好ましく、0.53以上がより好ましい。
 一方、ヒステリシスループが閉じる相対圧Pclose/Pの上限は、その相対圧よりも高い相対圧に相当する細孔径より大きい細孔には、ガス流れの疎外要因がないということを表すことになる。したがって、その相対圧は低い方がよりガス流れがよい、即ち、大電流特性が良好ということに相当する。よって、相対圧Pclose/Pの上限は、0.69以下が好ましく、0.68以下がより好ましい。
 なお、ヒステリシスループが閉じる相対圧Pclose/Pは、窒素脱着等温線と窒素吸着等温線との吸着量の差が初めて10mL/g以下になる相対圧とする。
 (1-4.要件(D))
 ラマン分光測定により1500~1700cm-1の範囲で検出されるGバンドの半値幅が45~75cm-1である。これにより、触媒担体用炭素材料の黒鉛化度(結晶性)が向上する。このため、耐久性(耐酸化消耗性)が向上する。すなわち、触媒担体用炭素材料を用いた固体高分子形燃料電池の起動停止を繰り返しても、触媒担体用炭素材料は酸化消耗しにくくなる。Gバンドの半値幅が75cm-1を超える場合、触媒担体用炭素材料の耐酸化消耗性が減少し、結果として、大電流時の過電圧が大きくなる。Gバンドの半値幅が45cm-1未満となる場合、細孔構造が崩れ、結果として要件(A)~(C)、及び後述する要件(E)のいずれかが満たされなくなる可能性がある。
 Gバンドの半値幅の下限は、触媒の担持しやすさと、親水性の低下による発電特性の低下を抑制する観点から、50cm-1以上が好ましく、55cm-1以上がより好ましい。
 一方、Gバンドの半値幅の上限は、結晶性の低下から、上述の耐酸化消耗性維持の観点と併せて、触媒担体用炭素材料の機械的強度維持の観点から、70cm-1以下が好ましく、68cm-1以下がより好ましい。
 ここで、Gバンドの半値幅は、後述する実施例に示す測定方法により測定される値である。
 (1-5.要件(E))
 触媒担体用炭素材料は、要件(A)~(D)に加えて、さらに下記の要件(E)を満たすことが好ましい。
(E)相対圧0.20~0.90の範囲内の窒素吸着等温線から測定される吸着容積V0.2-0.9が150~700mL/gである。なお、吸着容積V0.2-0.9は、相対圧0.20における窒素吸着量(mL/g)と相対圧0.90における窒素吸着量(mL/g)との差分である。
 本要件(E)は、燃料電池用触媒を担持するための細孔容積を規定するものである。相対圧0.20~0.90に対応する細孔径は概ね2~20nm程度である。細孔径が2~20nmの細孔内で燃料電池用触媒が担持される。したがって、細孔径2~20nmの細孔が触媒担体用炭素材料内に十分に分布していることが好ましい。すなわち、吸着容積V0.2-0.9が150~700mL/gであることが好ましい。この要件(E)が満たされる場合、より多くの燃料電池用触媒を担持することができるので、大電流時の過電圧がさらに低下する。
 吸着容積V0.2-0.9が150mL/g未満となる場合、燃料電池用触媒の担持量が減少するので、大電流時の過電圧が増大する可能性がある。また、吸着容積V0.2-0.9が700mL/gを超える場合、細孔同士の隔壁となる炭素層が薄くなるので、触媒担体用炭素材料の機械的強度が低下する可能性がある。この結果、燃料電池の製造工程等において細孔が潰れ、所望の発電特性が得られなくなる可能性がある。
 吸着容積V0.2-0.9の下限は、大電流時の過電圧減少の観点から、200mL/g以上が好ましく、250mL/g以上がより好ましい。
 一方、吸着容積V0.2-0.9の上限は、触媒担体用炭素材料の機械的強度の低下抑制の観点から、650mL/g以下が好ましく、600mL/g以下がより好ましい。
 ここで、吸着容積V0.2-0.9は、後述する実施例に示す測定方法により測定される値である。
 <2.固体高分子形燃料電池触媒担体の製造方法>
 次に、固体高分子形燃料電池触媒担体(触媒担体用炭素材料)の製造方法の一例について説明する。触媒担体用炭素材料の製造方法では、賦活用触媒を用いた賦活処理(いわゆる触媒賦活処理)を行うものである。本実施形態に係る触媒担体用炭素材料の製造方法は、担持工程、第1の熱処理工程、賦活用触媒除去工程、第2の熱処理工程を含む。なお、触媒賦活処理は、前述の第1の熱処理工程において、実施されるものである。
 (2-1.担持工程)
 この工程では、多孔質炭素材料の賦活反応を促進する賦活用触媒を多孔質炭素材料の細孔内に担持させる。
 ここで、本実施形態で使用可能な多孔質炭素材料は、特に制限されないが、例えば、固体高分子形燃料電池の触媒担体に使用可能な炭素材料であることが好ましい。多孔質炭素材料の例としては、ケッチェンブラック、樹状炭素ナノ構造体(例えば棒状体又は環状体が3次元的に分岐した3次元樹状構造を有する樹状炭素ナノ構造体)、鋳型粒子(例えばMgO鋳型粒子)を用いて多孔質化した炭素材料、ガス賦活(例えばCOガス賦活)によって多孔質化した炭素材料等が挙げられる。ガス賦活により多孔質化した炭素材料としては、カーボンブラックをガス賦活することで得られたケッチェンブラック等が挙げられる。これらのうち、発達した樹状構造を持っているという点でケッチェンブラック、樹状炭素ナノ構造体が好ましく、樹状炭素ナノ構造体が最も好ましい。樹状炭素ナノ構造体は、発達した樹状構造の他、テトラポッド的な構造(例えば、棒状体又は環状体が3次元的に分岐した3次元樹状構造)を有している。このため、ケッチェンブラックよりも効率的に細孔を形成することができる。
 なお、多孔質炭素材料のメソ孔、具体的には、窒素ガス吸着測定結果からBJH解析を用いて得られるメソ孔の容積分布は、(細孔径2~50nmの細孔)の算術平均径が賦活用触媒の粒子径より大きいことが好ましい。この場合、上述した要件(A)~(E)を満たす触媒担体用炭素材料を比較的容易に作製することができる。したがって、賦活用触媒の粒子径に応じて多孔質炭素材料を選択してもよい。
 賦活用触媒は、多孔質炭素材料の賦活反応を促進するものであればどのようなものであってもよい。ここで、賦活反応とは、多孔質炭素材料を構成する炭素層を酸化により減肉する(言い換えれば、消耗させる)反応を意味する。賦活用触媒は、当該賦活用触媒の周囲に存在する炭素層の賦活反応を促進する。
 賦活用触媒の例としては、3d元素(Ni、Fe、Co、Ti等の第4周期の遷移元素)、貴金属元素(Ru、Cu、Ag、Pt、Pd等)等の少なくとも1種を含む粒子が挙げられる。これらのうち、Ni、Fe、Co、Ptの少なくとも1種を含む粒子が好ましい。なお、賦活用触媒は、これらの元素の単体からなる粒子であってもよいし、他の金属との合金粒子であってもよい。例えば、3d元素及びPtの合金粒子を賦活用触媒として使用してもよい。
 Ni、Fe、およびCoが好ましい理由としては、(1)触媒活性が高い、(2)熱処理工程後の除去が容易、(3)Ptとの合金を賦活用触媒として使用した場合に、賦活用触媒をそのまま燃料電池用触媒に転用できる等が挙げられる。
 Ptが好ましい理由としては、(1)賦活用触媒として使用したPtをそのまま燃料電池用触媒に転用できる、(2)3d元素に比べて還元されやすく、ナノサイズの粒子を多孔質炭素内に形成しやすい等が挙げられる。
 多孔質炭素の細孔内に賦活用触媒を担持させる方法は特に制限されない。具体的な方法としては、例えば、以下の方法が挙げられる。まず、多孔質炭素、賦活用触媒の塩(または錯体)及び還元剤の混合溶液を作製する。ここで、賦活用触媒の塩としては、賦活用触媒の硝酸塩等が挙げられる。また、賦活用触媒の錯体としては、賦活用触媒のアセチルアセトナート錯体等が挙げられる。還元剤は、例えば、ポリオール(エチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、ヘキサデカンジオール等)の他、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ホウ素リチウム、水素化アルミニウムリチウム、水素化アルミニウムナトリウム等が挙げられる。テトラエチレングリコールは、還元剤でもあり混合溶液の溶媒としても機能する。
 ついで、還元剤によって混合溶液中の賦活用触媒イオンを還元する。これにより、多孔質炭素の細孔内に賦活用触媒がクラスタとして析出する。賦活用触媒同士は接触することで合体し、より大きな賦活用触媒に成長する。これにより、多孔質炭素の細孔内に賦活用触媒が担持される。なお、賦活用触媒イオンは、高温溶媒中で還元されてもよく、このような処理も好ましく行われる。例えば、ジフェニルエーテル、ジベンジルエーテル、オクチルエーテルテトラエチレングリコール等の高沸点溶媒に、ポリオールとして、例えば、ヘキサデカンジオール等を溶解させ、混合溶液を200℃以上に加熱する。この処理によっても、3d元素の錯体又は塩を還元することが出来る。
 他の方法としては、以下の方法が挙げられる。すなわち、多孔質炭素に賦活用触媒の塩(または錯体)の溶液を含浸した後、乾燥することで、凝固乾燥物を作製する。ついで、この凝固乾燥物を還元性ガス(例えば水素等)雰囲気下で加熱することで、凝固乾燥物中の賦活用触媒イオンを還元する。これにより、多孔質炭素の細孔内に賦活用触媒が担持される。以下、賦活用触媒が担持された多孔質炭素を賦活用触媒担持炭素材料とも称する。
 賦活用触媒の担持率(多孔質炭素及び賦活用触媒の総質量に対する賦活用触媒の質量%)によって賦活用触媒担持炭素材料中の賦活用触媒間距離が変動する。そして、賦活用触媒間距離が短いほど、上述したヒステリシスループの面積△S0.47-0.9が小さくなる。本発明者が検討したところ、賦活用触媒間距離を5~7nm程度まで短くすることで、ヒステリシスループの面積△S0.47-0.9を容易に1~35mL/gに調整することができることがわかった。賦活用触媒間距離を5~7nm程度とするために必要な賦活用触媒の担持率は、賦活用触媒の種類によって異なる。例えば、賦活用触媒が貴金属元素(例えばPt)となる場合、担持率は3~20質量%であることが好ましく、10~15質量%であることがさらに好ましい。賦活用触媒が3d元素(Ni、Fe、Co等)となる場合、担持率は3~9質量%であることが好ましい。これらの場合に、賦活用触媒間距離を5~7nm程度とすることができる。それにより、ヒステリシスループの面積△S0.47-0.9を容易に1~35mL/gに調整することができる。
 ここで、賦活用触媒の担持率及び賦活用触媒間距離は、SEM(走査型電子顕微鏡)、TEM(透過型電子顕微鏡)による直接観察によって測定可能である。賦活用触媒の担持率は、試薬中に含まれる金属成分の質量から定量化することもできる。また、賦活用触媒の担持率は、上述した混合溶液中の賦活用触媒の濃度を調整すること等により調整可能である。
 賦活用触媒の粒子径は、特に制限されないが、2~7nmであることが好ましい。この範囲内の粒子径を有する賦活用触媒を使用することで、ネック部の最小径を容易に2~7nmに調整することができる。なお、賦活用触媒の粒子径は、簡便には粉末X線回折法によって特定可能であり、詳しくは、TEM又はSEMにより観察することが可能である。粒子径を粉末X線回折法で測定する場合、回折ピークの半値幅及びScherrer式に基づいて結晶子サイズを特定する。回折ピークの位置は、X線の線種及び賦活用触媒の種類(金属種)に応じて異なる。CuKα線を使用し、かつ賦活用触媒がPtであれば、2θ=39~40°、賦活用触媒がFe、Ni又はCoであれば43°~46°に回折ピークが現れる。賦活用触媒の結晶子は数nmサイズのナノ粒子となるので、結晶子サイズがそのまま粒子サイズに相当するとみなせる。つまり、結晶子サイズが粒子径となる。
 具体的には、粉末X線回折に現れる賦活用触媒(つまり触媒金属粒子)の回折ピークにおける、最も強度の高い回折線の線幅(回折線の最大強度の半分の強度における回折線の全線幅)を基に、Scherrer法により算出した粒子径(球形とみなした時の粒子直径)を、賦活用触媒の粒子径として求める。
 また、賦活用触媒の粒子径は、前述の担持法の条件の制御、賦活用触媒の種類、賦活用触媒の担持率等によって調整可能である。ここで指定する粒子径は、触媒賦活処理前の多孔質炭素材料に担持された状態の賦活用触媒の粒子径である。
 上述した賦活用触媒が成長しすぎると、賦活用触媒の粒子径が7nmを超える場合がある。そこで、賦活用触媒の表面に付着する保護剤を上記混合溶液に添加してもよい。保護剤による微粒子の作製方法は、コロイド調整法とも称される。保護剤は、例えば賦活用触媒を構成する金属に配位結合する配位子である。保護剤は、賦活用触媒の表面に付着する。これにより、賦活用触媒同士が接触しても賦活用触媒同士が合体しにくくなる。すなわち、賦活用触媒同士が成長しにくくなる。保護剤が配位した賦活用触媒の粒子径が大きすぎると、賦活用触媒が多孔質炭素の細孔内に入りにくくなる。このため、保護剤の分子量は小さいことが好ましい。保護剤の例としては、ポリビニルピロリドン、クエン酸(又はクエン酸塩)、オレイン酸、オレイルアミン、ゼラチン、CMC(カルボキシメチルセルロース、又はそのナトリウム塩)等が挙げられる。
 例えば、賦活用触媒の錯体としてニッケルのアセチルアセトナート錯体、還元剤としてテトラエチレングリコールを使用し、担持率が3質量%以下となる場合、賦活用触媒の粒子径は概ね2~5nm程度となる。また、賦活用触媒の錯体としてニッケルのアセチルアセトナート錯体、還元剤として水素化ホウ素ナトリウム、保護剤としてオレイン酸及びクエン酸を使用した場合、担持率によらず、賦活用触媒の粒子径は概ね7nm程度となる。また、凝固乾燥物として、硝酸ニッケルを含む凝固乾燥物を作製する方法において、担持率が3質量%となる場合、賦活用触媒の粒子径は概ね5nm程度となる。
 (2-2.第1の熱処理工程)
 第1の熱処理工程では、賦活用触媒担持炭素材料を酸素含有雰囲気下で300℃~700℃で熱処理する。これにより、賦活反応を生じさせる。すなわち、賦活用触媒の周囲に存在する炭素層を酸化により減肉させる。
 第1の熱処理工程により作製される炭素材料(すなわち触媒賦活済炭素材料)は、上述した(A)~(C)の要件を満たす(このましくは(A)~(C)、および(E)の要件を満たす)。つまり、ネック部の最小径が大きくなり、かつ、ボトルネック型細孔の容積比が低下する。本発明者は、賦活用触媒がネック部を選択的に減肉するために、ネック部の最小径が大きくなり、かつ、ボトルネック型細孔の容積比が低下したと考えている。すなわち、ネック部が選択的に減肉されることで、ボトルネック型細孔が寸胴に近い形状となる。これにより、ネック部の最小径が大きくなる。また、ボトルネック型細孔が寸胴に近い形状になることで、その細孔はもはやボトルネック型細孔ではなくなる。したがって、ボトルネック型細孔の容積比が減少する。
 ここで、前記酸素含有雰囲気の酸素濃度が雰囲気ガスの総体積に対して5~100体積%であることが好ましい。具体的には、酸素含有雰囲気は、酸素及び不活性ガスの混合ガス雰囲気であることが好ましい。酸素濃度は、混合ガスの総体積に対して5~100体積%であることが好ましい。酸素濃度が5体積%未満となる場合、賦活反応が十分に進行しない可能性がある。
 混合ガスは、流動していることが好ましい。この時の線速度は1mm/分~30cm/分程度であることが好ましい。線速度が1mm/分未満となる場合、酸素ガスの供給量が不足し、賦活反応が十分に進行しない可能性がある。線速度が30cm/分を超える場合、混合ガスが賦活用触媒担持炭素材料から熱を奪い、賦活反応が不均一に生じる可能性がある。
 熱処理の温度が300℃未満となる場合、賦活反応が十分に進行しない可能性がある。熱処理の温度が700℃を超える場合、賦活反応が過剰に進行するので、生成物である触媒賦活済炭素材料の機械的強度低下、耐久性低下等が生じる可能性がある。
 また、熱処理の時間は20分~20時間程度であることが好ましい。熱処理の時間が20分未満となる場合、ネック部の選択的な減肉が十分に進行しない可能性がある。この結果、ネック部の最小径が十分に大きくならない可能性がある。また、熱処理の時間が20時間を超える場合、触媒担体用炭素材料の製造コストが高くなってしまう。なお、酸素ガスの濃度が低いほど、熱処理時間を長くする必要がある。
 なお、多孔質炭素材料を賦活する方法としてガス賦活法も知られている。本発明者がガス賦活法を試したところ、本実施形態に係る触媒担体用炭素材料を作製することができなかった。
 この理由として、ガス賦活法では、炭素層が一律に減肉されることが挙げられる。
 例えば、水蒸気、炭酸ガス等によるガス賦活法では、一般に900℃以上の温度で処理を進めるが、酸化力は弱いため、炭素六角網面(縮合多環芳香族)の端部のみを酸化消耗するため、ボトルネック型細孔のネック部及びボトル部が一律に減肉される。その結果、ヒステリシスループの面積がむしろ増大してしまう。
 また、例えば、酸素、空気等によるガス賦活法では、300℃~700℃で一般に処理するが、酸化力が強いため炭素六角網面の端部だけでなく面内にも酸化の起点を生じて消耗を進める。その結果、ボトル部分に新たに孔をあけることで細孔同士の連結のネットワークが発達し、このため、ヒステリシスループの面積が減少する。但し、酸素系のガス賦活の場合には、ヒステリシスループの面積を減らすような効果を得るためには、減肉率を50%以上に高める必要がある。
 また、ガス賦活法全般では、炭素六角網面の端部を酸化消耗する、または、炭素六角網面そのものに小さな細孔を生じさせる賦活法であるため、最小のネック径そのものを大きくすることはできないため、ヒステリシスループが閉じる相対圧Pclose/Pが0.47以下となる。
 (2-3.賦活用触媒除去工程)
 第1の熱処理工程によって作製された触媒賦活済炭素材料には、賦活用触媒が残留している。賦活用触媒が燃料電池用触媒として流用できない場合、本工程によって触媒賦活済炭素材料から賦活用触媒を除去する。賦活用触媒を除去する方法は特に制限されないが、例えば酸性溶液(例えば硝酸水溶液等)に触媒賦活済炭素材料を浸漬させる方法等が挙げられる。
 (2-4.第2の熱処理工程)
 第2の熱処理工程では、触媒賦活済炭素材料を真空または不活性ガス雰囲気中で1400~2200℃で加熱する。加熱温度は、好ましくは1600~2100℃である。第2の熱処理工程によって触媒賦活済炭素材料の結晶性を高めることができる。すなわち、上述した要件(D)を満たす触媒賦活済炭素材料を作製することができる。この第2の加熱工程における加熱温度が1400℃より低いと、触媒賦活済炭素材料の結晶性が向上せず、燃料電池使用環境下の耐久性が担保できない可能性がある。すなわち、要件(D)が満たされなくなる可能性がある。また、加熱温度が2200℃を超えると細孔構造が崩れ、結果として要件(A)~(C)、(E)の何れかが満たされなくなる可能性がある。
 第2の熱処理工程の加熱時間は、触媒賦活済炭素材料の結晶性を高め、かつ要件(A)~(C)、(E)の何れかが満たす観点から、10分~10時間が好ましく、20分~5時間がより好ましい。
 ここで、触媒賦活済炭素材料の加熱方法は、触媒賦活済炭素材料を上記温度で加熱することができる方法であれば、特に制限されない。加熱方法としては、例えば、抵抗加熱、マイクロ波加熱、高周波加熱、炉形式の加熱方法などが挙げられる。炉形式については黒鉛化炉、バッチ式炉、トンネル炉等、不活性又は減圧雰囲気を達成できれば制限はない。以上の工程により、本実施形態に係る触媒担体用炭素材料を作製する。
 なお、第2の熱処理工程は、第1の熱処理工程の前に行われてもよいし、第1の熱処理工程の前及び後に行われてもよい。つまり、第2の熱処理工程は、第1の熱処理工程の前及び後の少なくとも一方で行われればよい。
 以上説明したように本実施形態による触媒担体用炭素材料(つまり固体高分子形燃料電池触媒担体)では、ネック部の最小径が大きくなり、かつ、ボトルネック型細孔の容積比が低下する。したがって、触媒層のガス拡散抵抗が低下し、かつ、フラッディングの発生を抑制することができる。したがって、大電流時の過電圧がさらに低下する。また、本実施形態に係る触媒担体用炭素材料(つまり固体高分子形燃料電池触媒担体)は、高い結晶性を有するので、炭素材料の耐久性も向上する。
 <3.固体高分子形燃料電池の構成>
 本実施形態に係る触媒担体用炭素材料は、例えば図4に示す固体高分子形燃料電池100に適用可能である。固体高分子形燃料電池100は、セパレータ110、120、ガス拡散層130、140、触媒層150、160、及び電解質膜170を備える。
 セパレータ110は、アノード側のセパレータであり、水素等の燃料ガスをガス拡散層130に導入する。セパレータ120は、カソード側のセパレータであり、酸素ガス、空気等の酸化性ガスをガス拡散凝集相に導入する。セパレータ110、120の種類は特に問われず、従来の燃料電池、例えば固体高分子形燃料電池で使用されるセパレータであればよい。
 ガス拡散層130は、アノード側のガス拡散層であり、セパレータ110から供給された燃料ガスを拡散させた後、触媒層150に供給する。ガス拡散層140は、カソード側のガス拡散層であり、セパレータ120から供給された酸化性ガスを拡散させた後、触媒層160に供給する。ガス拡散層130、40の種類は特に問われず、従来の燃料電池、例えば固体高分子形燃料電池に使用されるガス拡散層であればよい。ガス拡散層130、40の例としては、多孔質炭素材料(カーボンクロス、カーボンペーパー等)、多孔質金属材料(金属メッシュ、金属ウール等)等が挙げられる。
 なお、ガス拡散層130、140の好ましい例としては、ガス拡散層のセパレータ側の層が繊維状炭素材料を主成分とするガス拡散繊維層となり、触媒層側の層がカーボンブラックを主成分とするマイクロポア層となる2層構造のガス拡散層が挙げられる。
 触媒層150は、いわゆるアノードである。触媒層150内では、燃料ガスの酸化反応が起こり、プロトンと電子が生成される。例えば、燃料ガスが水素ガスとなる場合、以下の酸化反応が起こる。
 H→2H+2e (E=0V)
 酸化反応によって生じたプロトンは、触媒層150、及び電解質膜170を通って触媒層160に到達する。酸化反応によって生じた電子は、触媒層150、ガス拡散層130、及びセパレータ110を通って外部回路に到達する。電子は、外部回路内で仕事をした後、セパレータ120に導入される。その後、電子は、セパレータ120、ガス拡散層140を通って触媒層160に到達する。
 アノードとなる触媒層150の構成は特に制限されない。すなわち、触媒層150の構成は、従来のアノードと同様の構成であってもよいし、触媒層160と同様の構成であってもよいし、触媒層160よりもさらに親水性が高い構成であってもよい。
 触媒層160は、いわゆるカソードである。触媒層160内では、酸化性ガスの還元反応が起こり、水が生成される。例えば、酸化性ガスが酸素ガスあるいは空気となる場合、以下の還元反応が起こる。酸化反応で発生した水は、未反応の酸化性ガスとともに固体高分子形燃料電池100の外部に排出される。
 O+4H+4e→2HO (E=1.23V)
 このように、固体高分子形燃料電池100では、酸化反応と還元反応とのエネルギー差(電位差)を利用して発電する。言い換えれば、酸化反応で生じた電子が外部回路で仕事を行う。
 触媒層160には、本実施形態に係る触媒担体用炭素材料が含まれていることが好ましい。すなわち、触媒層160は、本実施形態に係る触媒担体用炭素材料と、電解質材料と、燃料電池用触媒とを含む。これにより、触媒層160内の触媒利用率を高めることができる。その結果、固体高分子形燃料電池100の触媒利用率を高めることができる。
 なお、触媒層160における燃料電池触媒担持率は特に制限されないが、30質量%以上80質量%未満であることが好ましい。ここで、燃料電池触媒担持率は、触媒担持粒子(触媒担体用炭素材料に燃料電池用触媒を担持させた粒子)の総質量に対する燃料電池用触媒の質量%であることが好ましい。この場合、触媒利用率がさらに高くなる。なお、燃料電池触媒担持率が30質量%未満となる場合、固体高分子形燃料電池100を実用に耐えるようにするために触媒層160を厚くする必要が生じうる。一方、燃料電池触媒担持率が80質量%以上となる場合、触媒凝集が起こりやすくなる。また、触媒層160が薄くなりすぎて、フラッディングが起こる可能性が生じる。
 触媒層160における電解質材料の質量I(g)と触媒担体用炭素材料の質量C(g)との質量比I/Cは特に制限されないが、0.5超5.0未満であることが好ましい。この場合、細孔ネットワークと電解質材料ネットワークとが両立でき、触媒利用率が高くなる。一方、質量比I/Cが0.5以下となる場合、電解質材料ネットワークが貧弱になり、プロトン伝導抵抗が高くなる傾向にある。質量比I/Cが5.0以上となる場合、電解質材料によって細孔ネットワークが分断される可能性がある。いずれの場合にも、触媒利用率が低下する可能性がある。
 
 また、触媒層160の厚さは特に制限されないが、5μm超20μm未満であることが好ましい。この場合、触媒層160内に酸化性ガスが拡散しやすく、かつ、フラッディングが生じにくくなる。触媒層160の厚さが5μm以下となる場合、フラッディングが生じやすくなる。触媒層160の厚さが20μm以上となる場合、触媒層160内で酸化性ガスが拡散しにくくなり、電解質膜170近傍の燃料電池用触媒が働きにくくなる。すなわち、触媒利用率が低下する可能性がある。
 電解質膜170は、プロトン伝導性を有する電解質材料で構成されている。電解質膜170は、上記酸化反応で生成したプロトンをカソードである触媒層160に導入する。ここで、電解質材料の種類は特に問われず、従来の燃料電池、例えば固体高分子形燃料電池で使用される電解質材料であればよい。好適な例は固体高分子形燃料電池で使用される電解質材料、すなわち、電解質樹脂である。電解質樹脂としては、例えば、リン酸基、スルホン酸基等を導入した高分子(例えば、パーフルオロスルホン酸ポリマー又はベンゼンスルホン酸が導入されたポリマー)等が挙げられる。もちろん、本実施形態に係る電解質材料は他の種類の電解質材料であってもよい。このような電解質材料としては、例えば、無機系、無機-有機ハイブリッド系等の電解質材料等が挙げられる。なお、固体高分子形燃料電池100は、常温~150℃の範囲内で作動する燃料電池であってもよい。
 <4.固体高分子形燃料電池の製造方法>
 固体高分子形燃料電池100の製造方法は特に制限されず、従来と同様の製造方法であればよい。ただし、カソード側の触媒担体には本実施形態に係る触媒担体用炭素材料を用いることが好ましい。
 <1.各パラメータの測定方法>
 つぎに、本実施形態の実施例について説明する。まず、各パラメータの測定方法について説明する。
 (1-1.窒素吸脱着等温線の測定方法)
 約30mgの試料を測り採り、120℃で2時間真空乾燥した。ついで、自動比表面積測定装置(マイクロトラックベル社製、BELSORP MAX)に試料をセットし、窒素ガスを吸着質に用いて77Kの測定温度で窒素吸脱着等温線を測定した。
 窒素吸脱着等温線の測定では、一般の測定よりも、相対圧P/Pの測定間隔を小さく(具体的には、P/Pの測定間隔を0.005刻みで定点を取るように)設定した。つまり、測定上の相対圧P/Pの測定精度は0.005とした。
 次に、相対圧P/Pが0.05~0.15の範囲で窒素吸着等温線をBET解析することにより、BET比表面積を算出した。
 さらに、相対圧P/P=0.47超~0.9で形成されたヒステリシスループの面積△S0.47-0.9を算出した。
 具体的には、ヒステリシスループの面積△S0.47-0.9の算出は、次の方法により行った。すなわち、各相対圧P/Pの測定点における吸着過程と脱離過程との吸着量Vの差分ΔVに、相対圧P/Pの測定間隔0.005を乗じた値を、相対圧P/P=0.47超~0.9のすべての測定点に関して積算した値を算出した。そして、この算出した積算値を、△S0.47-0.9とした。
 また、窒素脱着等温線を測定する過程で、窒素脱着等温線の吸着量と、窒素吸着等温線の吸着量との差△P(図6参照)が初めて10mL/g以下となった相対圧P/Pをヒステリシスループの閉じる相対圧Pclose/Pとした。また、相対圧0.20における窒素吸着量(mL/g)と相対圧0.90における窒素吸着量(mL/g)との差分を吸着容積V0.2-0.9とした。
 (1-2.ラマン分光スペクトルの測定方法)
 試料約3mgを測り採り、レーザラマン分光光度計(日本分光(株)製、NRS-3100型)を用い、励起レーザー532nm、レーザーパワー10mW(試料照射パワー:1.1mW)、顕微配置:対物レンズ:×100倍、スポット径:1μm、露光時間:30sec、観測波数:2000~300cm-1、積算回数:6回の測定条件で試料のラマン分光スペクトルを測定した。そして、各測定で得られたラマン分光スペクトルからGバンドと呼ばれる1500~1700cm-1の範囲のピークを抽出し、このピークの半値幅(△G)を測定した。表2に結果をまとめて示す。
 (1-3.賦活用触媒の粒子径の測定方法)
 粉末X線回折装置(リガク社製SmartLab)を用いて賦活用触媒担持後の炭素材料のX線回折スペクトルを測定した。これにより、賦活用触媒の粒子径を測定した。本方法により本試験で使用した全ての種類の賦活用触媒の粒子径を測定した。X線はCuKα線を用いた。
 賦活用触媒がPtであれば、2θ~39°、賦活用触媒がFe、Ni又はCoであれば43°~46°に現れる回折ピークを用いて、その半値幅及びScherrer式を用いて、賦活用触媒の結晶子サイズを算出した。いずれの賦活用触媒も数nmサイズのナノ粒子となったので、結晶子サイズがそのまま粒子サイズに相当するとし、結晶子サイズを触媒粒子径とした。
 <2.触媒担体用炭素材料の準備>
 実験番号Run-0~46毎に異なる製造条件で複数種類の触媒担体用炭素材料を作製した。具体的には、以下の工程を行うことで、複数種類の触媒担体用炭素材料を作製した。
 (2-1.多孔質炭素材料の準備)
 触媒担体用炭素材料の出発物質となる多孔質炭素材料を以下の工程により準備した。
(2-1-1)東海カーボン社製トーカブラック#4500を炭酸ガス流通下、780℃の温度で50時間熱処理することで、多孔質炭素材料(多孔質カーボンブラック、賦活CB-1)を得た。また、東海カーボン社製トーカブラック#4500を炭酸ガス流通下、810℃で60時間熱処理することで、多孔質炭素材料(多孔質カーボンブラック、賦活CB-2)を得た。
(2-1-2)ライオン社製EC600JDを以下の工程で熱処理したものを準備した。10gのEC600JDを黒鉛製坩堝に入れ、進成電炉社製黒鉛化炉にセットした。ついで、黒鉛化炉内をアルゴンガスで真空置換した。ついで、黒鉛化炉内を5L/分の流速でアルゴンガスをフローした状態で、10℃/分で1800℃に昇温し、この状態を2時間保持した。これにより、EC600JDの結晶性を高めた多孔質炭素材料(EC-1800)を準備した。
(2-1-3)新日鉄住金化学社製エスカーボンを使用し、かつ、熱処理温度を2100℃にしたほかは上記(2-1-1)の賦活CB-1)と同様の処理を行うことで、多孔質炭素材料(SC-2100)を得た。
(2-1-4)東洋炭素社製クノーベルMH(商品名)を使用した他は上記(2-1-2)と同様の工程を行うことで、多孔質炭素材料(MH-1800)を得た。
 (2-2.担持工程)
 表1の条件に従って、以下の3種の担持工程A~Cを行うことで、賦活用触媒担持炭素材料を作製した。
 (2-2-1.担持工程A)
 テトラエチレングリコール(関東化学社、特級試薬。以下同じ)200mLに多孔質炭素材料を分散させた。ついで、多孔質炭素材料の分散液をアルゴンガス流通下、マントルヒーターで150℃に加熱保持した。ついで、この分散液にあらかじめ調整したニッケルアセチルアセトナート(東京化成社製)のテトラエチレングリコール溶液を注ぎ入れた。その後、混合液を約1時間200℃の温度に保持した。ついで、アルゴン気流中で混合液を80℃以下に冷却した。ついで、混合液をメンブレンフィルターで濾過し、フィルター上の固形物を120℃で数時間真空乾燥した。これにより、賦活用触媒担持炭素材料を準備した。ここで、テトラエチレングリコールに投入する多孔質炭素材料の質量を0.2~1.0gの範囲で調整し、かつ、ニッケルアセチルアセトナート(東京化成社製)のテトラエチレングリコール溶液の濃度を0.5~10質量%に調整することで、賦活用触媒(ここではニッケル粒子)の担持率、粒子径が異なる賦活用触媒担持炭素材料を準備した。ここで、担持率は、合成に用いた上述の担持後の賦活触媒金属を担持した炭素材料の元素分析でも、もちろん同じ値が確認されるが、時間短縮のため試薬の仕込み量から簡便に算出することができる。賦活用触媒の粒子径は上述した方法、即ち、XRDの金属成分のピークの半値幅により測定した。表1に賦活用触媒の種類、担持方法、担持率、粒子径をまとめて示す。
 なお、担持工程Aでは、賦活用触媒の種類に応じて、ニッケルアセチルアセトナートを鉄アセチルアセトナート、コバルトアセチルアセトナート、又は白金アセチルアセトナートに変えた同様の処理を行った。
 (2-2-2.担持工程B)
 担持工程Aにおいて、ニッケルアセチルアセトナート(東京化成社製)のテトラエチレングリコール溶液を注ぎ入れた後の保持温度を300℃に変更した以外は担持工程Aと同様の処理を行った。
 (2-2-3.担持工程C)
 担持工程Aにおいて、賦活用触媒のアセチルアセトナートを賦活用触媒の硝酸塩水和物に変更し、かつ、混合液にクエン酸を賦活用触媒に対するモル比が5倍になるように投入した他は、担持工程Aと同様の処理を行った。
 (2-3.第1の熱処理工程)
 第1の熱処理工程を行うことで、賦活用触媒担持炭素材料を賦活した。具体的には、アルミナボート内に1.5gの賦活用触媒担持炭素材料を投入し、このアルミナボートを横型の電気炉にセットした。ついで、電気炉内に酸素及びアルゴンの混合ガスを流通させた。混合ガスの線速度は1cm/分とした。混合ガス中の酸素及びアルゴンの流通量比、すなわち混合ガス中の酸素濃度5~80体積%の範囲で調製した。ついで、電気炉内の温度(処理温度)を250~800℃の範囲で調整した。さらに、重量減少を管理しながら、処理時間を0.2時間~18時間の範囲で調製した。この工程により、触媒賦活済炭素材料を作製した。
 (2-4.賦活用触媒除去工程)
 本工程を行うことで、触媒賦活済炭素材料から賦活用触媒を除去した。具体的には、5質量%硝酸水溶液を準備し、この硝酸水溶液に触媒賦活済炭素材料を分散させた。ついで、分散液を60℃に維持しながら10時間撹拌した。これにより、賦活用触媒を硝酸水溶液中に溶解させた。ついで、分散液をメンブレンフィルターで濾過し、フィルター上に残った固形物を蒸留水に再度分散させた。ついで、分散液をメンブレンフィルターで再度濾過し、フィルター上に残った固形物を110℃で真空乾燥した。これにより、触媒賦活済炭素材料から賦活用触媒を除去した。
 なお、実験番号Run-28~32、38、39では、本工程を省略した。すなわち、Run-28~32では、賦活用触媒のPtに更に後述の白金担持処理で所定の白金担持量とし、また、Run-38、39では、賦活用触媒のCoに更に後述の白金担持処理で所定の白金担持量とし、その後に後述の合金化のための処理を施し、燃料電池用触媒として使用した。
 (2-5.第2の熱処理工程)
 実験番号Run-33~37を作製する工程では、第2の熱処理工程を行った。具体的には、黒鉛化炉内をアルゴンガスで真空置換した。ついで、黒鉛化炉内を5L/分の流速でアルゴンガスをフローした状態で、賦活CB-2を1800℃(Run-33、34、37)処理した。この処理により、結晶性を高め、触媒賦活処理後の耐久性の向上を狙った。
 Run-33、34、37は、第2の加熱処理の後に、触媒賦活処理を行った、条件は表1に示すとおりである。更にRun-37は、触媒賦活処理後に、再度、上述のプロセスにおいて処理温度を2100℃に設定して処理を行った。加熱処理時間は、何れの場合も1時間とした。
 Run-35と36は、触媒賦活処理後に、各々1800℃(Run-35)と1900℃(Run-36)で1時間加熱した。これにより、触媒賦活済炭素材料の黒鉛化度(結晶性)を高めた。
 以上の工程により、実験番号Run-0~43、45~46に係る触媒担体用炭素材料を作製した。
 また、賦活CB-1を水蒸気賦活(水蒸気によるガス賦活)して賦活度を高めた触媒担体用炭素材料(賦活CB-1-HO、実験番号Run-44)を調製した。賦活条件は、90℃の水槽にアルゴンガスをバブルさせることで水蒸気を含有したアルゴンガスを調製し、その流通下で、800℃3時間加熱処理した。
 また、多孔質炭素材料(MH-1800)に対して空気賦活(空気によるガス賦活)し、連通度を高めた多孔質炭素材料(MH-1800-Air540、実験番号Run-45)および多孔質炭素材料(MH-1800-Air570、実験番号Run-46)を、次の通り調製した。多孔質炭素材料(MH-1800)を空気中で加熱処理し(空気賦活し)。炭素を酸化消耗させた。具体的には、空気流通下で、多孔質炭素材料(MH-1800)に対して、40℃で1時間処理した多孔質炭素材料(MH-1800-Air540)と、570℃で1時間処理した多孔質炭素材料(MH-1800-Air570)を得た。
 触媒担体用炭素材料を作製する際の製造条件を表1に、物性値を表2にまとめて示す。
 <3.MEAの作製>
 上記で作製した触媒担体用炭素材料を用いて以下の工程によりMEA(膜電極複合体)を作製した。
 (3-1.白金担持処理)
 触媒担体用炭素材料を蒸留水中に分散させることで、炭素材料分散液を作製した。ついで、この炭素材料分散液にホルムアルデヒドを加え、40℃に設定したウォーターバスにセットした。ついで、炭素材料分散液の温度がバスと同じ40℃になるまで待機し、その後、炭素材料分散液を撹拌しながら炭素材料分散液にジニトロジアミンPt錯体硝酸水溶液をゆっくりと注ぎ入れた。約2時間撹拌を続けた後、炭素材料分散液を濾過し、得られた固形物を洗浄した。このようにして得られた固形物を90℃で真空乾燥した後、乳鉢で粉砕した。ついで、固形物を、水素を5体積%含むアルゴン雰囲気中200℃で1時間熱処理した。これにより、白金担持炭素材料を作製した。白金担持炭素材料中の白金が燃料電池用触媒となる。実験番号Run-38、39では、賦活処理用触媒のCoが残った炭素材料に対し、上記の白金担持処理を行った。さらに、担持されているCoとPtとを合金化する目的で、水素を10体積%含むアルゴン流通雰囲気中で、炭素材料を700℃30分加熱処理した。以下、本工程により得られた炭素材料を「触媒担持炭素材料」とも称する。
 なお、触媒担持炭素材料の白金担持量は、触媒担体用炭素材料及び白金粒子の合計質量に対して40質量%とした。実験番号Run-38では、白金の担持量は41.5質量%、Coの担持量は6.9質量%とした。また、実験番号Run-39では、白金の担持量は42.0質量%、Coの担持量は8.1質量%とした。なお、白金、Coの担持量は、誘導結合プラズマ発光分光分析(ICP-AES: Inductively Coupled Plasma-Atomic Emission Spectrometry)により確認した。
 (3-2.塗布インクの作製)
 電解質樹脂となるナフィオン(Dupont社製ナフィオン、登録商標:Nafion、パースルホン酸系イオン交換樹脂)が溶解したナフィオン溶液を用意した。ついで、アルゴン雰囲気下で触媒担持炭素材料及びナフィオン溶液を混合した。ここで、電解質樹脂の固形分の質量比は、触媒担持炭素材料に対して1.0倍とした。ついで、混合溶液を軽く撹拌した後、超音波で混合溶液中の触媒担持炭素材料を解砕した。ついで、混合溶液に更にエタノールを加えることで、触媒担持炭素材料及び電解質樹脂の合計の固形分濃度が混合物の総質量に対して1.0質量%となるように調整した。これにより、触媒担持炭素材料及び電解質樹脂を含む塗布インクを作製した。
 (3-3.触媒層の作製)
 塗布インクにさらにエタノールを加えることで、塗布インク中の触媒濃度(燃料電池用触媒の濃度)を塗布インクの総質量に対して1.0質量%とした。ここで、燃料電池用触媒の種類はRun毎に異なるが、白金、Co、及びこれらの合金のいずれか1種以上である。燃料電池用触媒の濃度は、これらの全成分の濃度を意味する。後述の目付量も同様である。ついで、燃料電池用触媒の触媒層単位面積当たりの質量(以下、「触媒目付量」という。)が0.2mg/cmとなるようにスプレー条件を調節し、上記塗布インクをテフロン(登録商標)シート上にスプレーした。ついで、アルゴン雰囲気中120℃で60分間の乾燥処理を行うことで、触媒層を作製した。同じ触媒層を2つ作製し、一方をカソード、他方をアノードとした。
 (3-4.MEAの作製)
 ナフィオン膜(Dupont社製NR211)から一辺6cmの正方形状の電解質膜を切り出した。また、テフロン(登録商標)シート上に塗布されたアノード及びカソードの各触媒層をそれぞれカッターナイフで一辺2.5cmの正方形状に切り出した。このようにして切り出されたアノード及びカソードの各触媒層の間に、各触媒層が電解質膜の中心部を挟んでそれぞれ接すると共に互いにずれが無いように、この電解質膜を挟み込み、120℃、100kg/cmで10分間プレスした。次いで、この積層体を室温まで冷却した。次いで、アノード及びカソード共にテフロン(登録商標)シートのみを注意深く剥ぎ取った。以上の工程により、アノード及びカソードの各触媒層を電解質膜に定着させた。
 次に、ガス拡散層となるカーボンペーパー(SGLカーボン社製35BC)から一辺2.5cmの正方形状のカーボンペーパーを2つ切り出した。ついで、これらのカーボンペーパーをアノードとカソードにずれが無いように積層することで、積層体を作製した。ついで、積層体を120℃、50kg/cmで10分間プレスすることで、MEAを作製した。なお、プレス前の触媒層付テフロン(登録商標)シートの重量とプレス後にはがしたテフロン(登録商標)シートの質量との差からナフィオン膜に定着した触媒層の質量を求め、触媒層の組成の質量比より触媒目付量、触媒担体炭素材料の目付量、及び電解質樹脂の目付量を算出した。この方法により、触媒目付量が0.2mg/cmであることを確認した。
 <4.性能評価試験>
 作製したMEAをそれぞれセルに組み込み、燃料電池測定装置を用いて燃料電池の性能評価を行った。
 (4-1.大電流特性)
 カソードに空気、アノードに純水素を、それぞれ利用率が40%と70%となるように、大気圧下に供給した。セル温度は80℃に設定した。また、燃料電池に供給する空気と純水素を加湿器中で65℃に保温された蒸留水にそれぞれ通す(すなわち、バブリングを行う)ことで、加湿した。すなわち、これらのガスに改質水素相当の水蒸気を含ませた。そして、加湿したガスをセルに供給した。このような条件でセルにガスを供給した後、負荷を徐々に増やし、1000mA/cmにおけるセル端子間電圧を出力電圧として記録し、燃料電池の大電流特性評価を実施した。
 得られた燃料電池の大電流特性評価結果については、出力電圧により、A、B。Cの合格ランクとDの不合格の基準で評価を行った。合格ランクについては合格のものをCとし、より高性能のものをBとし、さらに高性能なものをAとした。合格ランクA、B,Cについては1000mA/cmにおける出力電圧が、各々、0.60V以上、0.63V以上、0.65V以上を満たすものとした。更に、不合格のDについては、合格ランクCに満たないものとした。評価結果(表中、「耐久前出力」と表記)を表2にまとめて示す。
 (4-2.耐久性)
 上記セルにおいて、アノードに供給する水素ガスはそのまま維持し、カソードに上記4-1.と同じ加湿条件で加湿したアルゴンガスを供給した。この状態で、セル電圧を1.0Vで4秒保持し、1.3Vで4秒保持する矩形波的電圧変動サイクルを4000サイクル行った。これにより、耐久試験を行った。その後、4-1.と同様の試験を行い、耐久試験後の大電流特性を評価した。評価結果(表中「耐久後出力」と表記)を表2にまとめて示す。
 なお、耐久試験後の大電流特性は、耐久試験前の大電流特性に対する減少率ではなく、電圧の絶対値を採用した。耐久試験後にカソードの表面性状が親水性に振れるので、耐久試験後の大電流特性の方が良好になる場合もあるからである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 <5.評価>
 実験番号Run-0は本実施形態に係る賦活処理を行わなかった例であり、大電流特性は劣っていた。実験番号Run-1~7は、賦活用触媒の担持率を1~11質量%の範囲で変動させたものである。この結果、担持率が3~9質量%となる場合に、要件(A)~(E)を満たす触媒担体用炭素材料を作製することができた。そして、要件(A)~(E)を満たす触媒担体用炭素材料を用いたセルでは、耐久試験前後の大電流特性が何れも良好となった。
 特に、ヒステリシスループが閉じる相対圧Pclose/Pが0.50~0.70の範囲にある実験番号Run-3~6に係る触媒担体用炭素材料は、耐久試験前後の大電流特性が何れも良好となった。
 実験番号Run-8~13は、第1の熱処理工程における処理温度を250~800℃の範囲内で変動させたものである。この結果、処理温度が300~700℃となる場合に、要件(A)~(E)を満たす触媒担体用炭素材料を作製することができた。耐久試験前後の大電流特性も良好であった。
 実験番号Run-14~16は、第1の加熱処理における酸素濃度及び処理時間を変更したものである。酸素濃度が5体積%と低い場合には、処理時間を十分確保することで、要件(A)~(E)を満たす触媒担体用炭素材料を作製することができた(Run-14参照)。耐久試験前後の大電流特性も良好であった。一方、酸素濃度が80質量%と高い場合には、処理時間を短くすることで、要件(A)~(E)を満たす触媒担体用炭素材料を作製することができた(Run-16参照)。耐久試験前後の大電流特性も良好であった。しかし、処理時間が短すぎると要件(A)~(E)を満たす触媒担体用炭素材料を作製することができなかった(Run-15参照)。
 実験番号Run-17~18は、担持方法を変更したものである。これらの例によれば、担持方法を変更した場合であっても、要件(A)~(E)を満たす触媒担体用炭素材料を作製することができた。耐久試験前後の大電流特性も良好であった。
 実験番号Run-19~24は、賦活用触媒をFeとし、担持方法を変更したものである。これらの例によれば、賦活用触媒をFeとし、担持方法を変更した場合であっても、本実施形態に係る触媒賦活処理を行うことで、要件(A)~(E)を満たす触媒担体用炭素材料を作製することができた(Run-19、21参照)。
 実験番号Run-25~27は、賦活用触媒をCoとし、担持方法を変更したものである。これらの例によれば、賦活用触媒をCoとした場合であっても、要件(A)~(E)を満たす触媒担体用炭素材料を作製することができた。耐久試験前後の大電流特性も良好であった。
 実験番号Run-28~32は、賦活用触媒をPtとし、Ptを燃料電池用触媒に流用したものである。この場合であっても、要件(A)~(E)を満たす触媒担体用炭素材料を作製することができた。耐久試験前後の大電流特性も良好であった。
 ここで、図5にRun-29に係る触媒担体用炭素材料の窒素吸脱着等温線、および図6に図5に示す窒素吸脱着等温線のヒステリシスループが閉じる相対圧Pclose/P付近の拡大図を示す。図5~図6に示すように、耐久試験前後の大電流特性も良好なRun-32に係る触媒担体用炭素材料は、要件(A)~(C)の窒素脱着特性を満たしていることがわかる。
 実験番号Run-33~37は、賦活用触媒をCoとし、第2の熱処理工程を行ったものである。これにより、Run-33~34は要件(A)~(D)を満たすだけではなく、またRun-35~37は要件(A)~(E)を満たすだけでなく、結晶性がさらに高まった触媒担体用炭素材料を作製することができた。耐久試験前後の大電流特性も良好であった。
 実験番号Run-38、39は、賦活用触媒をCoとし、Coを燃料電池用触媒に流用したものである。この場合であっても、要件(A)~(E)を満たす触媒担体用炭素材料を作製することができた。耐久試験前後の大電流特性も良好であった。
 実験番号Run-40~43は、出発物質である多孔質炭素を変更し、賦活用触媒をCoとし、かつ担持方法を変更したものである。この場合であっても、要件(A)~(E)を満たす触媒担体用炭素材料を作製することができた。耐久試験前後の大電流特性も良好であった。
 特に、実験番号Run-40と実験番号Run-41とを比較から、ヒステリシスループの面積△S0.47-0.9が5mL/g以上の実験番号Run-41に係る触媒担体用炭素材料は、大電流特性も良好であった。
 実験番号Run-44は、賦活CB-1に従来のガス賦活を行ったものである。実験番号Run-44に係る触媒担体用炭素材料は、要件(B)および(C)を満たさず、結果として大電流特性が不良であった。
 Run-45~46は、多孔質炭素材料(MH-1800)に従来のガス賦活(空気によるガス賦活)を行ったものである。
 Run-45~46に係る触媒担体用炭素材料は、各々、空気によるガス賦活(空気酸化処理)により、25質量%、49質量%の重量減少を生じた。空気によるガス賦活により、ヒステリシスループの面積△S0.47-0.9は、大きく減少した。具体的には、MH-1800の面積△S0.47-0.9は34mL/gに対し、MH-1800-Air540の面積△S0.47-0.9は12mL/g、MH-1800-Air570は実質ループは消失し(即ち、吸着と脱離の曲線が一致し)、面積△S0.47-0.9の算出値は0.4mL/gであった。
 また、ヒステリシスループが閉じる相対圧Pclose/Pも低下した。
 その結果、Run-45に係るに触媒担体用炭素材料は、要件(A)および(C)を満たさず、結果として大電流特性が不良であった。
 また、Run-46に係るに触媒担体用炭素材料は、要件(A)、(B)、(C)および(E)を満たさず、結果として大電流特性が不良であった。
 なお、表1~表2中の備考に「E」と付されている各Runに係る触媒担体用炭素材料の実施例窒素吸脱着等温線は、相対圧P/P=0.47超~0.90の範囲内でヒステリシスループを形成していることが確認できた。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示はかかる例に限定されない。本開示の属する技術の分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 以下、図中の符号の説明を付記する。
  A   ヒステリシスループ
 30   ボトルネック型細孔
 20a、30a  ボトル部
 20b、30b  ネック部
 100  固体高分子形燃料電池
 110、120  セパレータ
 130、140  ガス拡散層
 150、160  触媒層
 170     電解質膜
 なお、日本国特許出願第2017-127399号の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (12)

  1.  下記の要件(A)、(B)、(C)、及び(D)を満たす炭素材料からなる固体高分子形燃料電池触媒担体。
    (A)窒素吸着等温線のBET解析による比表面積が450~1500m/gとなる。
    (B)窒素吸脱着等温線が、相対圧P/P=0.47超~0.90の範囲内でヒステリシスループを形成し、且つ、当該ヒステリシスループの面積△S0.47-0.9が1~35mL/gである。
    (C)前記ヒステリシスループが閉じる相対圧Pclose/Pが0.47超~0.70である。
    (D)ラマン分光測定により1500~1700cm-1の範囲で検出されるGバンドの半値幅が45~75cm-1である。
  2.  さらに下記の要件(E)を満たす請求項1に記載の固体高分子形燃料電池触媒担体。
    (E)相対圧0.20~0.90の範囲内の前記窒素吸着等温線から測定される吸着容積V0.2-0.9が150~700mL/gである。
  3.  前記ヒステリシスループの面積△S0.47-0.9が5~35mL/gである請求項1又は2に記載の固体高分子形燃料電池触媒担体。
  4.  前記ヒステリシスループの面積△S0.47-0.9が15~35mL/gである請求項1又は2に記載の固体高分子形燃料電池触媒担体。
  5.  前記ヒステリシスループが閉じる相対圧Pclose/Pが0.50~0.70である請求項1~4のいずれか1項に記載の固体高分子形燃料電池触媒担体。
  6.  固体高分子形燃料電池触媒担体を製造する固体高分子形燃料電池触媒担体の製造方法であって、
     多孔質炭素材料の賦活反応を促進する賦活用触媒を前記多孔質炭素材料の細孔内に担持させることで、賦活用触媒担持炭素材料を作製する担持工程と、
     前記賦活用触媒担持炭素材料を酸素含有雰囲気下で300℃~700℃で熱処理する第1の熱処理工程と、
     を含む固体高分子形燃料電池触媒担体の製造方法。
  7.  前記第1の熱処理工程の前及び後の少なくとも一方で行われる第2の熱処理工程であって、前記賦活用触媒担持炭素材料を真空または不活性ガス雰囲気中で1600~2100℃で加熱する第2の熱処理工程を含む請求項6に記載の固体高分子形燃料電池触媒担体の製造方法。
  8.  前記担持工程において、前記賦活用触媒の粒子径が2~7nmであり、前記賦活用触媒が貴金属元素である場合の前記賦活用触媒の担持率が3~20質量%であり、前記賦活用触媒が3d元素である場合の前記賦活用触媒の担持率が3~9質量%であり、
     第1の熱処理工程において、前記酸素含有雰囲気の酸素濃度が雰囲気ガスの総体積に対して5~100体積%であり、熱処理時間が20分~20時間である請求項6又は7に記載の固体高分子形燃料電池触媒担体の製造方法。
  9.  前記賦活用触媒を除去する賦活用触媒除去工程を、前記第1の熱処理工程の後に行う請求項6~8のいずれか1項に記載の固体高分子形燃料電池触媒担体の製造方法。
  10.  請求項1~5のいずれか1項に記載の固体高分子形燃料電池触媒担体を含む固体高分子形燃料電池用触媒層。
  11.  請求項10に記載の固体高分子形燃料電池用触媒層を含む燃料電池。
  12.  前記固体高分子形燃料電池用触媒層は、カソード側の触媒層である請求項11記載の燃料電池。
PCT/JP2018/024965 2017-06-29 2018-06-29 固体高分子形燃料電池触媒担体、固体高分子形燃料電池触媒担体の製造方法、固体高分子形燃料電池用触媒層、及び燃料電池 WO2019004472A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18825158.1A EP3648213A4 (en) 2017-06-29 2018-06-29 SOLID POLYMER TYPE FUEL CELL CATALYST BRACKET, SOLID POLYMER TYPE FUEL CELL CATALYST BRACKET MANUFACTURING PROCESS, SOLID POLYMER TYPE FUEL CELL CATALYST LAYER, AND FUEL CELL
CA3068601A CA3068601C (en) 2017-06-29 2018-06-29 Support for polymer electrolyte fuel cell catalyst, method of producing support for polymer electrolyte fuel cell catalyst, catalyst layer for polymer electrolyte fuel cell, and fuel cell
JP2019527092A JP6956181B2 (ja) 2017-06-29 2018-06-29 固体高分子形燃料電池触媒担体、固体高分子形燃料電池触媒担体の製造方法、固体高分子形燃料電池用触媒層、及び燃料電池
US16/626,724 US11394034B2 (en) 2017-06-29 2018-06-29 Support for polymer electrolyte fuel cell catalyst, method of producing support for polymer electrolyte fuel cell catalyst, catalyst layer for polymer electrolyte fuel cell, and fuel cell
CN201880043027.5A CN110915041B (zh) 2017-06-29 2018-06-29 固体高分子型燃料电池催化剂载体及制造方法、燃料电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017127399 2017-06-29
JP2017-127399 2017-06-29

Publications (1)

Publication Number Publication Date
WO2019004472A1 true WO2019004472A1 (ja) 2019-01-03

Family

ID=64741665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024965 WO2019004472A1 (ja) 2017-06-29 2018-06-29 固体高分子形燃料電池触媒担体、固体高分子形燃料電池触媒担体の製造方法、固体高分子形燃料電池用触媒層、及び燃料電池

Country Status (6)

Country Link
US (1) US11394034B2 (ja)
EP (1) EP3648213A4 (ja)
JP (1) JP6956181B2 (ja)
CN (1) CN110915041B (ja)
CA (1) CA3068601C (ja)
WO (1) WO2019004472A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021061142A (ja) * 2019-10-04 2021-04-15 日本製鉄株式会社 固体高分子形燃料電池の触媒担体用多孔質炭素材料、固体高分子形燃料電池用触媒層、及び燃料電池
WO2022054486A1 (ja) * 2020-09-10 2022-03-17 日清紡ホールディングス株式会社 金属担持触媒、電池電極及び電池
WO2022054485A1 (ja) * 2020-09-10 2022-03-17 日清紡ホールディングス株式会社 金属担持触媒、電池電極及び電池
WO2022085693A1 (ja) * 2020-10-19 2022-04-28 日鉄ケミカル&マテリアル株式会社 固体高分子形燃料電池触媒担体用炭素材料、固体高分子形燃料電池用触媒層、及び燃料電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113508478B (zh) * 2018-12-28 2024-04-19 凸版印刷株式会社 电极催化剂层、膜电极接合体以及固体高分子型燃料电池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006004910A (ja) * 2004-06-17 2006-01-05 Samsung Sdi Co Ltd 電界発光ディスプレイ装置及びその製造方法
JP2010208887A (ja) * 2009-03-10 2010-09-24 Toyo Tanso Kk 多孔質炭素及びその製造方法
WO2014129597A1 (ja) 2013-02-21 2014-08-28 新日鉄住金化学株式会社 触媒担体用炭素材料
WO2015088025A1 (ja) 2013-12-13 2015-06-18 新日鐵住金株式会社 固体高分子形燃料電池用の担体炭素材料及び金属触媒粒子担持炭素材料、並びにこれらの製造方法
WO2015141810A1 (ja) 2014-03-19 2015-09-24 新日鐵住金株式会社 固体高分子形燃料電池用の担体炭素材料及び触媒金属粒子担持炭素材料
WO2016133132A1 (ja) 2015-02-18 2016-08-25 新日鐵住金株式会社 触媒担体用炭素材料、固体高分子形燃料電池用触媒、固体高分子形燃料電池、及び触媒担体用炭素材料の製造方法
JP2017091812A (ja) 2015-11-10 2017-05-25 株式会社豊田中央研究所 固体高分子形燃料電池電極触媒
WO2017094648A1 (ja) * 2015-11-30 2017-06-08 国立大学法人山梨大学 カーボンブラック、それを用いた電極触媒及び燃料電池、並びにカーボンブラックの製造方法
JP2017127399A (ja) 2016-01-18 2017-07-27 株式会社サンセイアールアンドディ 遊技機

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3367534B2 (ja) * 1993-12-09 2003-01-14 三菱瓦斯化学株式会社 高吸着性炭素材料およびその製造方法
US6248691B1 (en) * 1998-02-10 2001-06-19 Corning Incorporated Method of making mesoporous carbon
JP2003292316A (ja) * 2002-03-29 2003-10-15 Osaka Gas Co Ltd 金属担持炭素材料、該炭素材料からなるガス吸蔵材及び該ガス吸蔵材を用いるガス貯蔵方法並びに燃料電池用電極材料
JP2006004916A (ja) 2004-05-17 2006-01-05 Nissan Motor Co Ltd 燃料電池用mea、およびこれを用いた燃料電池
JP2006016270A (ja) * 2004-07-02 2006-01-19 National Institute Of Advanced Industrial & Technology 塩基性金属化合物担持炭素、及びその製造方法
CN100528747C (zh) * 2007-02-07 2009-08-19 中国科学院山西煤炭化学研究所 一种窄孔径、石墨化度高的中孔炭的制备方法
JP6063039B2 (ja) * 2013-05-16 2017-01-18 トヨタ自動車株式会社 燃料電池用電極およびその製造方法
EP2954951B1 (de) * 2014-06-11 2023-08-02 Heraeus Deutschland GmbH & Co. KG Trägerkatalysator sowie Verfahren zur Herstellung eines mit Metall-Nanopartikeln belegten, porösen graphitisierten Kohlenstoffmaterials
CN104118861A (zh) * 2014-07-14 2014-10-29 天津工业大学 一种超高比表面积多级孔碳的制备方法
JP6327681B2 (ja) * 2014-10-29 2018-05-23 日産自動車株式会社 燃料電池用電極触媒、その製造方法、当該触媒を含む燃料電池用電極触媒層ならびに当該触媒または触媒層を用いる燃料電池用膜電極接合体および燃料電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006004910A (ja) * 2004-06-17 2006-01-05 Samsung Sdi Co Ltd 電界発光ディスプレイ装置及びその製造方法
JP2010208887A (ja) * 2009-03-10 2010-09-24 Toyo Tanso Kk 多孔質炭素及びその製造方法
WO2014129597A1 (ja) 2013-02-21 2014-08-28 新日鉄住金化学株式会社 触媒担体用炭素材料
WO2015088025A1 (ja) 2013-12-13 2015-06-18 新日鐵住金株式会社 固体高分子形燃料電池用の担体炭素材料及び金属触媒粒子担持炭素材料、並びにこれらの製造方法
WO2015141810A1 (ja) 2014-03-19 2015-09-24 新日鐵住金株式会社 固体高分子形燃料電池用の担体炭素材料及び触媒金属粒子担持炭素材料
WO2016133132A1 (ja) 2015-02-18 2016-08-25 新日鐵住金株式会社 触媒担体用炭素材料、固体高分子形燃料電池用触媒、固体高分子形燃料電池、及び触媒担体用炭素材料の製造方法
JP2017091812A (ja) 2015-11-10 2017-05-25 株式会社豊田中央研究所 固体高分子形燃料電池電極触媒
WO2017094648A1 (ja) * 2015-11-30 2017-06-08 国立大学法人山梨大学 カーボンブラック、それを用いた電極触媒及び燃料電池、並びにカーボンブラックの製造方法
JP2017127399A (ja) 2016-01-18 2017-07-27 株式会社サンセイアールアンドディ 遊技機

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Adsorption Hysteresis of Nitrogen and Argon in Pore Networks and Characterization of Novel Micro- and Mesoporous Silicas", LANGMUIR, vol. 22, 2006, pages 756 - 764
See also references of EP3648213A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021061142A (ja) * 2019-10-04 2021-04-15 日本製鉄株式会社 固体高分子形燃料電池の触媒担体用多孔質炭素材料、固体高分子形燃料電池用触媒層、及び燃料電池
JP7277770B2 (ja) 2019-10-04 2023-05-19 日本製鉄株式会社 固体高分子形燃料電池の触媒担体用多孔質炭素材料、固体高分子形燃料電池用触媒層、及び燃料電池
WO2022054486A1 (ja) * 2020-09-10 2022-03-17 日清紡ホールディングス株式会社 金属担持触媒、電池電極及び電池
WO2022054485A1 (ja) * 2020-09-10 2022-03-17 日清紡ホールディングス株式会社 金属担持触媒、電池電極及び電池
JP2022046187A (ja) * 2020-09-10 2022-03-23 日清紡ホールディングス株式会社 金属担持触媒、電池電極及び電池
JP2022046188A (ja) * 2020-09-10 2022-03-23 日清紡ホールディングス株式会社 金属担持触媒、電池電極及び電池
JP7175946B2 (ja) 2020-09-10 2022-11-21 日清紡ホールディングス株式会社 金属担持触媒、電池電極及び電池
JP7175945B2 (ja) 2020-09-10 2022-11-21 日清紡ホールディングス株式会社 金属担持触媒、電池電極及び電池
WO2022085693A1 (ja) * 2020-10-19 2022-04-28 日鉄ケミカル&マテリアル株式会社 固体高分子形燃料電池触媒担体用炭素材料、固体高分子形燃料電池用触媒層、及び燃料電池

Also Published As

Publication number Publication date
EP3648213A4 (en) 2021-03-17
JP6956181B2 (ja) 2021-11-02
CA3068601C (en) 2022-03-22
CA3068601A1 (en) 2019-01-03
US11394034B2 (en) 2022-07-19
EP3648213A1 (en) 2020-05-06
CN110915041B (zh) 2022-08-30
US20200287221A1 (en) 2020-09-10
CN110915041A (zh) 2020-03-24
JPWO2019004472A1 (ja) 2020-06-18

Similar Documents

Publication Publication Date Title
JP6956181B2 (ja) 固体高分子形燃料電池触媒担体、固体高分子形燃料電池触媒担体の製造方法、固体高分子形燃料電池用触媒層、及び燃料電池
JP4933770B2 (ja) 燃料電池用触媒、その製造方法及びこれを含む膜−電極接合体、並びに燃料電池システム
CN110476286B (zh) 固体高分子型燃料电池的催化剂载体用碳材料及其制造方法
EP3276717B1 (en) Carrier carbon material for solid polymer fuel cell and catalyst
JP6496531B2 (ja) 固体高分子形燃料電池用触媒
JP6814339B2 (ja) 触媒担体用炭素材料、固体高分子形燃料電池用触媒層、及び固体高分子形燃料電池
KR20180128938A (ko) 전극 촉매 그리고 당해 전극 촉매를 사용하는 막 전극 접합체 및 연료 전지
JP6854685B2 (ja) 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法、並びに前記触媒担体用炭素材料を用いた固体高分子形燃料電池用触媒担体
KR101688524B1 (ko) 연료전지용 전극촉매, 이 전극촉매를 포함하는 막 전극 접합체와 연료전지, 및 연료전지용 전극촉매의 제조방법
JP2018012626A (ja) 多孔質炭素材料、固体高分子形燃料電池用触媒および固体高分子形燃料電池ならびに多孔質炭素材料の製造方法
JP2017035685A (ja) 炭素担持型pgm系触媒における細孔構造の酸化制御
JP5150141B2 (ja) 燃料電池用触媒材料、燃料電池用触媒材料を用いた膜電極接合体及び膜電極接合体を用いた燃料電池
JP2008047473A (ja) 電極触媒
JP7110842B2 (ja) 固体高分子形燃料電池触媒担体用炭素材料、固体高分子形燃料電池燃料電池用触媒層、及び固体高分子形燃料電池
WO2018182047A1 (ja) 固体高分子形燃料電池の触媒担体用炭素材料およびその製造方法
JP4037814B2 (ja) 燃料電池用膜−電極接合体及び燃料電池
Tellez-Cruz et al. Comparative study of different carbon-supported Fe 2 O 3-Pt catalysts for oxygen reduction reaction
JP2022066847A (ja) 固体高分子形燃料電池触媒担体用炭素材料、固体高分子形燃料電池用触媒層、及び燃料電池
JP7320159B1 (ja) 電極触媒及びその製造方法並びに燃料電池
WO2023167199A1 (ja) 電極触媒及びその製造方法並びに燃料電池
WO2024202883A1 (ja) 固体高分子型燃料電池の触媒担体用炭素材料、固体高分子型燃料電池用触媒層、燃料電池、及び固体高分子型燃料電池の触媒担体用炭素材料の製造方法
JP7144378B2 (ja) 燃料電池触媒担体用の黒鉛化炭素多孔体、燃料電池触媒、及び燃料電池触媒層の製造方法
JP6846210B2 (ja) 電極触媒ならびに当該電極触媒を用いる膜電極接合体および燃料電池
JP2024127510A (ja) 燃料電池用電極触媒及びそれを備える固体高分子型燃料電池
Gray et al. Nanostructured Electrocatalysts for Fuel Cell Applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18825158

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019527092

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3068601

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018825158

Country of ref document: EP

Effective date: 20200129