WO2019004332A1 - 高周波モジュール - Google Patents

高周波モジュール Download PDF

Info

Publication number
WO2019004332A1
WO2019004332A1 PCT/JP2018/024497 JP2018024497W WO2019004332A1 WO 2019004332 A1 WO2019004332 A1 WO 2019004332A1 JP 2018024497 W JP2018024497 W JP 2018024497W WO 2019004332 A1 WO2019004332 A1 WO 2019004332A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
shield
recess
sealing resin
resin layer
Prior art date
Application number
PCT/JP2018/024497
Other languages
English (en)
French (fr)
Inventor
野村 忠志
裕太 森本
稔 小見山
彰夫 勝部
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2019527010A priority Critical patent/JP6965928B2/ja
Priority to CN201880043613.XA priority patent/CN110800100B/zh
Priority to KR1020197035063A priority patent/KR102408079B1/ko
Publication of WO2019004332A1 publication Critical patent/WO2019004332A1/ja
Priority to US16/728,525 priority patent/US11178778B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/421Blind plated via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/284Applying non-metallic protective coatings for encapsulating mounted components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15313Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a land array, e.g. LGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0243Printed circuits associated with mounted high frequency components

Definitions

  • the present invention relates to a high frequency module provided with a shield.
  • Some high frequency modules mounted on portable terminal devices and the like have a shield film formed on the surface of a resin layer that seals mounted components in order to prevent external noise from affecting the mounted components. Moreover, when several components are mounted, in order to prevent mutual interference of the noise radiated
  • a shield film formed on the surface of a resin layer that seals mounted components in order to prevent external noise from affecting the mounted components.
  • FIG. 15 in the high frequency module 100 described in Patent Document 1, a plurality of components 102a and 102b are mounted on the upper surface 101a of the wiring substrate 101, and the components 102a and 102b are sealed by a sealing resin layer 103. It is stopped. The surface of the sealing resin layer 103 is covered with a shield layer 104, and a shield wall 105a is formed between the component 102a and the component 102b.
  • the through groove is formed in the sealing resin layer 103 by laser processing, dicing or the like to form the shield wall 105a, damage to the wiring substrate 101 becomes a problem. Therefore, if a gap is provided between the upper surface 101 a of the wiring substrate 101 as in the shield wall 105 b, damage to the wiring substrate 101 can be reduced. In this case, the function as a shield between components Will decrease.
  • the present invention has been made in view of the above problems, and provides a high frequency module capable of reducing damage to a wiring board by providing an inter-component shield while maintaining the characteristics of the inter-component shield. With the goal.
  • a high frequency module includes a wiring substrate, a first component and a second component mounted on a main surface of the wiring substrate, and A conductive member mounted between one component and the second component, an abutting surface abutting on the wiring substrate, an opposing surface opposing the abutting surface, and edges of the abutting surface and the opposing surface A sealing resin layer covering the wiring substrate, the first component, the second component and the conductive member, and at least the opposite surface and the side surface of the sealing resin layer.
  • a shield film the conductive member itself is a conductor, or has a plate-shaped conductor in which one surface faces the first component and the other surface faces the second component, From the opposing surface of the sealing resin layer toward the conductive member, A recess is formed to expose a part of the electric member, and the recess is formed inside the sealing resin not reaching the side surface of the sealing resin, and the shield film is a wall surface of the recess, And covering the exposed portion of the conductive member.
  • the recess formed in the sealing resin layer is formed with a depth to which the conductive member is exposed, that is, a depth not reaching the main surface of the wiring substrate. Even in the case of the above, damage to the wiring substrate can be reduced. Further, since the wall surface of the recess is covered with the shield film, the shield film of the portion (recess) can function as an inter-component shield between the first component and the second component.
  • the component itself is a conductor, or one surface faces the first component and the other surface is the second Since the component has a plate-like conductor facing the component side, the conductive member can also function as a part of the inter-component shield between the first component and the second component. Therefore, even if the recess does not reach the main surface of the wiring substrate, the characteristics of the inter-component shield between the first component and the second component can be maintained.
  • the recess since the recess is formed inside the facing surface of the sealing resin layer, the recess does not divide the sealing resin layer. Therefore, it is possible to prevent the deterioration of the mechanical strength of the high frequency module due to the formation of the concave portion in the sealing resin layer.
  • a magnetic film formed between the sealing resin layer and the shield film may be provided.
  • a magnetic film formed to cover the shield film may be provided.
  • the magnetic film may also be formed on the wall surface of the recess.
  • the said electroconductive member may be plural and the said recessed part may be provided according to each said electroconductive member.
  • each recess can be easily formed by laser processing or the like.
  • the conductive member is provided in a plurality, and the recess is provided on one bottomed portion formed with a depth to which the plurality of conductive members are not exposed and on the bottom surface of the bottomed portion, and the plurality of conductive members are individually exposed. And may have a plurality of through parts.
  • the opening of the recess can be easily widened.
  • the shield film is formed using a thin film forming technique such as sputtering, the film thickness of the shield film in the recess can be easily increased. It is possible to improve the characteristics of the inter-part shield between the first part and the second part.
  • the recess may be one recess where all of the plurality of conductive members are exposed.
  • the opening of the recess can be easily widened.
  • the shield film is formed using a thin film forming technique such as sputtering, the film thickness of the shield film in the recess can be easily increased. It is possible to improve the characteristics of the inter-part shield between the first part and the second part.
  • the recess may have a shape which is expanded in a direction from the contact surface of the sealing resin layer to the opposing surface.
  • the area of the entrance to the recess of the shield film forming material can be easily expanded when the shield film is formed, and the characteristic of the shield between the first component and the second component is improved. It can be done.
  • the recess formed in the sealing resin layer is formed with a depth to which the conductive member is exposed, that is, a depth which does not reach the main surface of the wiring substrate. Even in the case of the above, damage to the wiring substrate can be reduced. Further, since the wall surface of the recess is covered with the shield film, the shield film of the portion (recess) can function as an inter-component shield between the first component and the second component.
  • the component itself is a conductor, or one surface faces the first component and the other surface is the second Since the component has a plate-like conductor facing the component side, the conductive member can also function as a part of the inter-component shield between the first component and the second component. Therefore, even if the recess does not reach the main surface of the wiring substrate, the characteristics of the inter-component shield between the first component and the second component can be maintained.
  • the recess since the recess is formed inside the facing surface of the sealing resin layer, the recess does not divide the sealing resin layer. Therefore, it is possible to prevent the deterioration of the mechanical strength of the high frequency module due to the formation of the concave portion in the sealing resin layer.
  • FIG. 7 is a plan view of the high frequency module of FIG. 6 from which a shield film and a sealing resin layer are removed.
  • FIGS. 1 is a cross-sectional view of the high-frequency module, taken along the line AA of FIG. 2, and FIG. 2 is a plan view of the high-frequency module 1a with the shield film 6 and the sealing resin layer 5 removed.
  • 3 is a view for explaining the recess 10
  • FIG. 4 is a view showing the relationship between the shape of the recess 10 and the film thickness of the shield film 6 formed on the wall surface 10a of the recess 10.
  • the high frequency module 1 a includes a wiring substrate 2, a plurality of components 3 a to 3 d mounted on the upper surface 2 a of the wiring substrate 2 and shield components 4, and the upper surface of the wiring substrate 2.
  • the sealing resin layer 5 is stacked on the sealing resin layer 5 and the shield film 6 that covers the sealing resin layer 5.
  • the sealing resin layer 5 is mounted on a mother substrate of an electronic device using high frequency signals.
  • the wiring board 2 is formed of, for example, low-temperature co-fired ceramic, glass epoxy resin, etc., and the components 3a to 3d are formed on the upper surface 2a of the wiring board 2 And a mounting electrode 7 for mounting the shield component 4 is formed.
  • a plurality of external electrodes (not shown) for external connection are formed.
  • various internal wiring electrodes 8 and via conductors 9 are formed inside the wiring substrate 2. In FIG. 1, only the ground electrode is shown as the internal wiring electrode 8, and the others are not shown.
  • the mounting electrode 7, the internal wiring electrode 8 and the external electrode are all formed of a metal generally adopted as a wiring electrode such as Cu, Ag, Al or the like.
  • the via conductor 9 is formed of a metal such as Ag or Cu.
  • Ni / Au plating may be given to each mounting electrode 7 and the external electrode.
  • the components 3a to 3d are composed of semiconductor elements formed of semiconductors such as Si and GaAs, and chip components such as a chip inductor, a chip capacitor, and a chip resistor, and the wiring substrate 2 is formed by a general surface mounting technology such as solder bonding.
  • the components 3a to 3c are active components such as semiconductor elements, and the components 3d are formed of passive components such as chip capacitors.
  • the shield component 4 (corresponding to the “conductive member” of the present invention) is formed of a rectangular Cu block, and is mounted on the top surface 2 a of the wiring board 2 together with the other components 3 a to 3 d.
  • the shield component 4 is connected to the ground electrode (internal wiring electrode 8) via the mounting electrode 7 and the via conductor 9.
  • the shape of the shield component 4 is not limited to a rectangular parallelepiped, but is preferably the same as that of any of the other components 3a to 3d. In this way, mountability equivalent to that of the other components 3a to 3d can be ensured.
  • the conductor which forms the shield component 4 can be suitably changed not only Cu but Al, Ag, etc. FIG.
  • the sealing resin layer 5 is disposed on the upper surface 2 a of the wiring substrate 2 and covers the components 3 a to 3 d and the shield component 4.
  • the sealing resin layer 5 can be formed of a resin generally employed as a sealing resin such as an epoxy resin.
  • the upper surface 5 a of the sealing resin layer 5 corresponds to the “facing surface of the sealing resin layer” of the present invention
  • the lower surface 5 b corresponds to the “contact surface of the sealing resin layer” of the present invention.
  • a recess 10 for exposing a part of the upper surface 4 a of the shield component 4 is formed on the upper surface 5 a of the sealing resin layer 5.
  • the concave portion 10 is formed in a truncated pyramid shape expanding in a direction from the lower surface 5 b of the sealing resin layer 5 toward the upper surface 5 a with the upper surface 4 a of the shield component 4 as the bottom (see FIGS. 1 and 3).
  • the recess 10 has an opening 10 b in the upper surface 5 a of the sealing resin layer 5. That is, the recess 10 does not reach the side surface 5 c of the sealing resin layer 5 and is disposed inside the edge of the sealing resin layer 5.
  • the recess 10 can be formed, for example, by laser processing.
  • the shape of the recessed part 10 can be suitably changed not only in truncated pyramid shape.
  • the shield film 6 covers the upper surface 5 a and the side surface 5 c of the sealing resin layer 5 and the side surface 2 c of the wiring substrate 2 and covers the upper surface 4 a of the shield component 4 exposed through the wall surface 10 a of the recess 10 and the recess 10. Do.
  • the shield film 6 covering the wall surface 10 a of the recess 10 and the shield component 4 form an inter-component shield between the component 3 b and the component 3 c.
  • the part 3b and the part 3c which are targets of inter-part shielding correspond to the "first part" and the "second part" in the present invention.
  • the shield film 6 can be formed by, for example, a film forming method such as sputtering or vapor deposition, and the adhesive film laminated on the upper surface 5a of the sealing resin layer 5 and the conductive film laminated on the adhesive film. And a protective film stacked on the conductive film.
  • the adhesion film is provided to increase the adhesion strength between the conductive film and the sealing resin layer 5, and can be formed of, for example, a metal such as SUS.
  • the conductive film is a layer responsible for the substantial shielding function of the shield film 6, and can be formed of, for example, any metal of Cu, Ag, and Al.
  • the protective film is provided to prevent the conductive film from being corroded or scratched, and can be formed of, for example, SUS.
  • the film thickness of the portion covering the wall surface 10 a of the recess 10 tends to be thinner than the portion covering the other portion.
  • the film thickness of the shield film 6 is preferably about 2 ⁇ m. Therefore, the inventors measured how the film thickness of the shield film 6 covering the wall surface 10 a of the recess 10 changes depending on the shape of the recess 10. It is known that the film thickness of the wall surface 10a of the recess 10 becomes thicker as the penetration of the forming material of the shield film 6 into the recess 10 becomes larger and becomes thinner as the depth of the recess 10 becomes deeper. .
  • the recess 10 formed in the sealing resin layer 5 is formed with a depth at which the upper surface 4 a of the shield component 4 is exposed, ie, a depth which does not reach the upper surface 2 a of the wiring substrate 2. Therefore, even if the recess 10 is formed by laser processing, dicing or the like, damage to the wiring board 2 can be reduced. Further, since the wall surface 10a of the recess 10 is covered with the shield film 6, the shield film 6 of the portion (recess 10) can function as an inter-component shield between the component 3b and the component 3c.
  • shield component 4 made of a Cu block is disposed in the gap between recess 10 and wiring substrate 2, component 3 b and components even if recess 10 does not reach top surface 2 a of wiring substrate 2.
  • the characteristics of the part-to-part shield between 3c can be maintained.
  • the recess 10 is formed inside the upper surface 5 a of the sealing resin layer 5, the recess 10 does not divide the sealing resin layer 5. Therefore, it is possible to prevent the mechanical strength of the high frequency module 1a from being deteriorated due to the formation of the recess 10 in the sealing resin layer 5.
  • the recess 10 has a shape expanding in the direction from the lower surface 5 b to the upper surface 5 a of the sealing resin layer 5, when the shield film 6 is formed, a penetration hole (opening 10 b And the characteristics of the inter-component shield between the component 3 b and the component 3 c can be improved.
  • the inter-component shield between the component 3 b and the component 3 c has been described. However, if it is desired to form an inter-component shield between the component 3 c and the component 3 a, as shown in FIG. It is good to arrange another shield part 4 between the two and the part 3c. In this case, another recess (not shown) may be formed to expose the upper surface 4a of the shield component 4 disposed between the component 3a and the component 3c, and the shield film 6 may be formed on the wall surface of the recess. . In addition, the said recessed part should just be made into the shape similar to the above-mentioned recessed part 10. FIG. Here, the component 3a and the component 3c which are targets of the inter-component shield also correspond to the "first component" and the "second component” in the present invention.
  • FIGS. 6 and 7 is a cross-sectional view of the high-frequency module 1b, taken along the line BB in FIG. 7, and FIG. 7 is a plan view of the high-frequency module 1b with the shield film 6 and the sealing resin layer 5 removed. is there.
  • the high-frequency module 1b according to this embodiment is different from the high-frequency module 1a according to the first embodiment described with reference to FIGS. 1 to 5 in the configuration of the inter-component shield as shown in FIGS. It is.
  • the other configuration is the same as that of the high frequency module 1a of the first embodiment, and thus the description will be omitted by giving the same reference numerals.
  • each shield component 4 is disposed between the component 3 b and the component 3 c.
  • Each shield part 4 is arranged in a line between the two parts 3b and 3c.
  • concave portions 10 are provided according to the individual shield components 4.
  • Each recess 10 is formed in a truncated pyramid shape like the recess 10 of the first embodiment, and the wall surface 10 a of each recess 10 and the upper surface 4 a of the shield component 4 exposed through the recess 10 are shielded by the shield film 6. It is coated (see FIG. 6).
  • Each shield component 4 is connected to the ground electrode (internal wiring electrode 8) through the via conductor 9.
  • each recess 10 formed in the sealing resin layer 5 is formed with a depth at which the upper surface 4 a of the shield component 4 is exposed, ie, a depth which does not reach the upper surface 2 a of the wiring substrate 2. Therefore, even if each recess 10 is formed by laser processing, dicing or the like, damage to the wiring substrate 2 can be reduced. Further, since the wall surface 10a of each recess 10 is covered with the shield film 6, the shield film 6 in the relevant portion (recess 10) can function as an inter-component shield between the component 3b and the component 3c.
  • shield component 4 made of a Cu block is disposed in each of the gaps between each recess 10 and wiring substrate 2, even if each recess 10 does not reach upper surface 2 a of wiring substrate 2, the components The characteristics of the inter-part shield between 3b and part 3c can be maintained. Moreover, since the formation area of the inter-component shield between the component 3 b and the component 3 c is wider than in the first embodiment, the shield characteristics are improved. Further, since each recess 10 is formed inside the upper surface 5 a of the sealing resin layer 5, each recess 10 does not divide the sealing resin layer 5. Therefore, it is possible to prevent the mechanical strength of the high frequency module 1a from being deteriorated due to the formation of the respective recesses 10 in the sealing resin layer 5.
  • the inter-component shield between the component 3 b and the component 3 c has been described, but if it is desired to form an inter-component shield between the component 3 c and the component 3 a, as shown in FIG.
  • a plurality of other shield parts 4 may be disposed between the two and the part 3c.
  • the said recessed part should just be made into the shape similar to the recessed part 10 of 1st Embodiment.
  • the shield parts 4 are arranged at equal intervals along a straight line, but may be arranged offset from the straight line according to the intensity of the electromagnetic interference distribution between the parts, etc. It does not have to be equally spaced.
  • each shield is provided with one bottomed portion 11a formed with a depth such that the top surface 4a of each shield component 4 is not exposed and the bottom surface 11a1 of the bottomed portion 11a.
  • the upper surface 4a of the component 4 may be formed of a plurality of through parts 11b which are individually exposed.
  • the bottomed portion 11 a is formed as a common recess with respect to each shield component 4, the opening area is formed wide.
  • the film thickness (for example, 2 ⁇ m or more) of the shield film 6 that covers the wall surface can be easily secured even if the shape is not expanded as in the above-described concave portion 10. Moreover, since each penetration part 11b is also shallower than the above-mentioned recessed part 10 in the depth, it is not necessary to necessarily have the expanded shape.
  • the upper surfaces 4a of all the shield components 4 are exposed instead of forming the recesses 10 individually for each shield component 4
  • Two recesses 12 may be formed.
  • the recess 12 is formed as a common recess for each shield component 4, the opening area is formed wide. Therefore, the film thickness (for example, 2 ⁇ m or more) of the shield film 6 that covers the wall surface can be easily secured even if the shape is not expanded as in the above-described concave portion 10.
  • FIG. 11 is a cross-sectional view of the high frequency module 1 c and corresponds to FIG. 1.
  • the high frequency module 1c according to this embodiment is different from the high frequency module 1a according to the first embodiment described with reference to FIGS. 1 to 5 in that a magnetic sheet 13 is further provided as shown in FIG. .
  • the other configuration is the same as that of the high frequency module 1a of the first embodiment, and thus the description will be omitted by giving the same reference numerals.
  • the magnetic sheet 13 (corresponding to the “magnetic film” in the present invention) is disposed on the upper surface 5 a of the sealing resin layer 5.
  • the recess 10 penetrates the magnetic sheet 13 and is further recessed in the sealing resin layer 5, and a part of the upper surface 4 a of the shield component 4 is exposed from the bottom of the recess 10.
  • the recess 10 does not extend to the side surface of the sealing resin layer 5 and is disposed inside the edge of the sealing resin layer 5.
  • the shield film 6 is exposed from the side surface 5 c of the sealing resin layer 5, the side surface 2 c of the wiring substrate 2, the portion not in contact with the top surface 5 a of the sealing resin layer 5 of the magnetic sheet 13, and the recess 10 of the shielding component 4.
  • the wall surface 10a of the recessed part 10 containing the part which is doing is coat
  • the magnetic sheet 13 can be formed of, for example, a metal sheet made of a magnetic material, a sheet in which a magnetic material is mixed with a resin, or the like.
  • the magnetic sheet 13 may be a laminated sheet obtained by laminating a resin layer such as an adhesive on the above-mentioned sheet.
  • laser light is applied from above the magnetic sheet 13 It can form by irradiating and removing the part which forms the recessed part 10 of each of the magnetic sheet 13 and the sealing resin layer 5.
  • the magnetic sheet 13 is provided between the sealing resin layer 5 and the shield film 6.
  • the magnetic sheet 13 is provided on the upper surface of the shield film 6. It may be In this case, the magnetic sheet 13 is attached onto the shield film 6 via an adhesive layer or the like.
  • the magnetic sheet 13 has an opening 10 b in the recess 10.
  • the magnetic sheet 13 is formed so as to cover substantially the entire top surface 5 a of the sealing resin layer 5 except for the concave portion 10, but may be configured to cover a part. . Even in this case, low frequency, in particular, 100 KHz to 10 MHz noise can be blocked more effectively.
  • FIG. 13 is a cross-sectional view of the high frequency module 1 d and corresponds to FIG. 1.
  • the high frequency module 1d according to this embodiment is different from the high frequency module 1a according to the first embodiment described with reference to FIGS. 1 to 5 in that a magnetic film 14 is further provided as shown in FIG. .
  • the other configuration is the same as that of the high frequency module 1a of the first embodiment, and thus the description will be omitted by giving the same reference numerals.
  • the recess 10 similar to that of the first embodiment is formed in the sealing resin layer 5 and includes the portion exposed from the recess 10 of the upper surface 5 a of the sealing resin layer 5 and the upper surface 4 a of the shield component 4.
  • the wall surface 10 a of the magnetic film 14 is covered with the magnetic film 14.
  • the shield film 6 covers the side surface 5 c of the sealing resin layer 5, the portion covering the top surface 5 a of the sealing resin layer 5 of the magnetic film 14, and the wall surface of the recess 10 of the magnetic film 14 (recess 10 of the shield component 4).
  • the side surface 2c of the wiring substrate 2 is covered.
  • the magnetic film 14 and the shield film 6 are formed, for example, by forming the recess 10 on the upper surface 5 a of the sealing resin layer 5 and then forming the magnetic film 14 by a film forming process such as sputtering or evaporation. Then, the shield film 6 is formed thereon by sputtering, vapor deposition or the like. At this time, after an aggregate in which a plurality of high frequency modules 1d are arranged in a matrix is formed to form a magnetic film 14 collectively, it is separated into individual high frequency modules 1d by dicing or laser processing, and then a shield film Form 6 Thus, the magnetic film 14 does not cover the side surface 5c of the sealing resin layer 5, and the shield film 6 can cover the side surface 5c.
  • the magnetic film 14 there is also a method of applying a magnetic paste to the upper surface 5 a of the sealing resin layer 5 and the wall surface 10 a of the recess 10.
  • the magnetic film 14 can also be formed using a plating method.
  • the magnetic film 14 is provided between the sealing resin layer 5 and the shield film 6, but the magnetic film 14 is provided to cover the shield film 6 as shown in FIG. 14. It may be In this case, the magnetic film 14 is formed by a film forming process such as sputtering or evaporation. The magnetic film 14 is also formed on the wall surface 10 a of the recess 10. As another method of forming the magnetic film 14, a method of applying a magnetic paste or a plating method may be used. Even in this case, low frequency, in particular, 100 KHz to 10 MHz noise can be blocked more effectively.
  • the ground electrode (internal wiring electrode 8) is necessarily exposed to the side surface 2 c of the wiring substrate 2 to form a shield film. It is not necessary to connect with 6.
  • the shield component 4 may not be a conductor (Cu block) itself as long as a conductor that shields noise between components is formed.
  • the conductor that shields noise is, for example, a plate-shaped conductor in which one side faces one of two parts that prevents noise interference, and the other side faces the other part, specifically, a chip Examples include side electrodes of chip parts such as capacitors. In addition to the side electrodes, such a conductor may be formed inside the shield part.
  • the present invention is variously provided with a sealing resin layer for covering components mounted on a wiring substrate, a shield for covering the surface of the sealing resin layer, and a shield for preventing mutual interference of noises between components. It can be applied to high frequency modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

部品間シールドの特性を維持しつつ、部品間シールドを設けることによる配線基板へのダメージを軽減する。 高周波モジュール1aは、配線基板2と、配線基板2の上面2aに実装された、複数の部品3a~dと、部品3bと部品3cとの間に実装されたシールド部品4と、各部品3a~3dおよびシールド部品4を被覆する封止樹脂層5と、封止樹脂層の表面を被覆するシールド膜6とを備え、封止樹脂層5の上面5aには、シールド部品4が露出する凹部10が形成されるとともに、該凹部10は、封止樹脂層5の側面に至らないように端縁の内側に形成され、シールド膜6は、凹部10の壁面10a、および、シールド部品4の凹部10を介して露出する部分をさらに被覆する。

Description

高周波モジュール
 本発明は、シールドを備える高周波モジュールに関する。
 携帯端末装置などに搭載される高周波モジュールには、外部からのノイズが実装部品に影響するのを防止するために、実装部品を封止する樹脂層の表面にシールド膜を形成するものがある。また、複数の部品が実装される場合は、部品自身から輻射されるノイズの相互干渉を防止するために、部品間シールドを設けるものもある。例えば、図15に示すように、特許文献1に記載の高周波モジュール100は、配線基板101の上面101aに複数の部品102a,102bが実装され、各部品102a,102bが封止樹脂層103により封止される。封止樹脂層103の表面はシールド層104で被覆されるとともに、部品102aと部品102bとの間には、シールド壁105aが形成される。
特開2015-111802号公報(段落0039~0047、図5等参照)
 しかしながら、従来の高周波モジュール100では、シールド壁105aを形成するのに、レーザ加工やダイシングなどによって封止樹脂層103に貫通溝を形成するため、配線基板101へのダメージが問題となる。そこで、シールド壁105bのように、配線基板101の上面101aとの間に隙間を設けるようにすれば、配線基板101へのダメージを軽減することができるが、この場合、部品間シールドとしての機能が低下してしまう。
 本発明は、上記した課題に鑑みてなされたものであり、部品間シールドの特性を維持しつつ、部品間シールドを設けることによる配線基板へのダメージを軽減することができる高周波モジュールを提供することを目的とする。
 上記した目的を達成するために、本発明の高周波モジュールは、配線基板と、前記配線基板の主面に実装された、第1部品および第2部品と、前記配線基板の主面における、前記第1部品と前記第2部品の間に実装された導電部材と、前記配線基板に当接する当接面と、該当接面に対向する対向面と、前記当接面と前記対向面の端縁同士を繋ぐ側面とを有し、前記配線基板、前記第1部品、前記第2部品および前記導電部材を被覆する封止樹脂層と、少なくとも前記封止樹脂層の前記対向面および前記側面を被覆するシールド膜とを備え、前記導電部材は、自体が導体であるか、あるいは、一方面が前記第1部品側に向き、他方面が前記第2部品側に向く板状の導体を有し、前記封止樹脂層の前記対向面から前記導電部材に向かって、前記導電部材の一部が露出するように凹部が形成されるとともに、該凹部は、前記封止樹脂の側面に至らない当該封止樹脂の内側に形成され、前記シールド膜は、前記凹部の壁面、および、前記導電部材の露出する部分をさらに被覆することを特徴としている。
 この構成によれば、封止樹脂層に形成された凹部は、導電部材が露出する深さ、すなわち、配線基板の主面に到達しない深さで形成されるため、凹部をレーザ加工やダイシングなどで形成しても、配線基板へのダメージを軽減することができる。また、凹部の壁面がシールド膜で被覆されるため、当該部分(凹部)のシールド膜を第1部品と第2部品との間の部品間シールドとして機能させることができる。また、凹部と配線基板との間の隙間には導電部材が配置されるが、当該部品は、それ自体が導体であるか、あるいは、一方面が第1部品側に向き、他方面が第2部品側に向く板状の導体を有する部品であるため、導電部材も、第1部品と第2部品との間の部品間シールドの一部として機能させることができる。そのため、凹部が配線基板の主面に到達しない深さであっても、第1部品と第2部品との間の部品間シールドの特性を維持することができる。また、凹部は、封止樹脂層の前記対向面の内側に形成されるため、凹部が封止樹脂層を分断することがない。そのため、封止樹脂層に凹部を形成したことに起因する、高周波モジュールの機械強度の劣化を防止することができる。
 また、前記封止樹脂層と前記シールド膜間に形成された磁性膜を備えていてもよい。
 この構成によれば、低周波のノイズをより効果的に遮断できる。
 また、前記シールド膜を覆うように形成された磁性膜を備えていてもよい。
 この構成によれば、低周波のノイズをより効果的に遮断できる。
 また、前記磁性膜は、前記凹部の壁面にも形成されていてもよい。
 この構成によれば、低周波のノイズをさらに効果的に遮蔽できる。
 また、前記導電部材は複数あり、前記凹部は、個々の前記導電部材に応じて設けられていてもよい。
 この構成によれば、各凹部をレーザ加工などにより容易に形成することができる。
 また前記導電部材は複数あり、前記凹部は、前記複数の導電部材が露出しない深さで形成された1つの有底部と、該有底部の底面に設けられ、前記複数の導電部材が個別に露出する複数の貫通部とを有していてもよい。
 この構成によれば、凹部の開口を容易に広くすることができるため、例えば、シールド膜をスパッタなどの薄膜形成技術を用いて形成する際に、凹部内のシールド膜の膜厚を容易に厚く形成でき、第1部品と第2部品との間の部品間シールドの特性を向上させることができる。
 また、前記導電部材は複数あり、前記凹部は、前記複数の導電部材の全てが露出する1つの凹部であってもよい。
 この構成によれば、凹部の開口を容易に広くすることができるため、例えば、シールド膜をスパッタなどの薄膜形成技術を用いて形成する際に、凹部内のシールド膜の膜厚を容易に厚く形成でき、第1部品と第2部品との間の部品間シールドの特性を向上させることができる。
 また、前記凹部は、前記封止樹脂層の前記当接面から前記対向面に向かう方向に拡開した形状を有していてもよい。
 この構成によれば、シールド膜の形成時にシールド膜の形成材料の凹部への侵入口の面積を容易に広げることができ、第1部品と第2部品との間の部品間シールドの特性を向上させることができる。
 本発明によれば、封止樹脂層に形成された凹部は、導電部材が露出する深さ、すなわち、配線基板の主面に到達しない深さで形成されるため、凹部をレーザ加工やダイシングなどで形成しても、配線基板へのダメージを軽減することができる。また、凹部の壁面がシールド膜で被覆されるため、当該部分(凹部)のシールド膜を第1部品と第2部品との間の部品間シールドとして機能させることができる。また、凹部と配線基板との間の隙間には導電部材が配置されるが、当該部品は、それ自体が導体であるか、あるいは、一方面が第1部品側に向き、他方面が第2部品側に向く板状の導体を有する部品であるため、導電部材も、第1部品と第2部品との間の部品間シールドの一部として機能させることができる。そのため、凹部が配線基板の主面に到達しない深さであっても、第1部品と第2部品との間の部品間シールドの特性を維持することができる。また、凹部は、封止樹脂層の前記対向面の内側に形成されるため、凹部が封止樹脂層を分断することがない。そのため、封止樹脂層に凹部を形成したことに起因する、高周波モジュールの機械強度の劣化を防止することができる。
本発明の第1実施形態にかかる高周波モジュールの断面図である。 図1の高周波モジュールのシールド膜および封止樹脂層を除いた状態の平面図である。 封止樹脂層に形成された凹部を説明するための図である。 凹部の形状と、凹部の壁面に形成されたシールド膜の膜厚との関係を示す図である。 シールド部品の配置の変形例を示す図である。 本発明の第2実施形態にかかる高周波モジュールの断面図である。 図6の高周波モジュールのシールド膜および封止樹脂層を除いた状態の平面図である。 シールド部品の配置の変形例を示す図である。 凹部形状の変形例を示す図である。 凹部形状の他の変形例を示す図である。 本発明の第3実施形態にかかる高周波モジュールの断面図である。 図11の磁性シートの変形例を示す図である。 本発明の第4実施形態にかかる高周波モジュールの断面図である。 図13の磁性膜の変形例を示す図である。 従来の高周波モジュールの断面図である。
 <第1実施形態>
 本発明の第1実施形態にかかる高周波モジュール1aについて、図1~図4を参照して説明する。なお、図1は高周波モジュールの断面図であって、図2のA-A矢視断面図、図2はシールド膜6および封止樹脂層5を除いた状態の高周波モジュール1aの平面図、図3は凹部10を説明するための図、図4は、凹部10の形状と、凹部10の壁面10aに形成されたシールド膜6の膜厚との関係を示す図である。
 この実施形態にかかる高周波モジュール1aは、図1に示すように、配線基板2と、該配線基板2の上面2aに実装された複数の部品3a~3dおよびシールド部品4と、配線基板2の上面2aに積層された封止樹脂層5と、封止樹脂層5を被覆するシールド膜6と備え、例えば、高周波信号が用いられる電子機器のマザー基板等に搭載される。
 配線基板2は、例えば、低温同時焼成セラミックやガラスエポキシ樹脂などで形成されており、配線基板2の上面2a(本発明の「配線基板の主面」に相当)には、各部品3a~3dやシールド部品4の実装用の実装電極7が形成される。配線基板2の下面2bには、外部接続用の複数の外部電極(図示省略)が形成される。また、配線基板2の内部には、各種の内部配線電極8やビア導体9が形成される。なお、図1では内部配線電極8として
グランド電極のみを図示し、他は図示省略している。
 実装電極7、内部配線電極8および外部電極は、いずれもCuやAg、Al等の配線電極として一般的に採用される金属で形成されている。また、ビア導体9は、AgやCu等の金属で形成されている。なお、各実装電極7、外部電極には、Ni/Auめっきがそれぞれ施されていてもよい。
 部品3a~3dは、SiやGaAs等の半導体で形成された半導体素子や、チップインダクタ、チップコンデンサ、チップ抵抗等のチップ部品で構成され、半田接合などの一般的な表面実装技術により配線基板2に実装される。なお、この実施形態では、部品3a~3cは、半導体素子などの能動部品であり、部品3dがチップコンデンサなどの受動部品で形成されている。
 シールド部品4(本発明の「導電部材」に相当)は、直方体のCuブロックで形成され、他の部品3a~3dとともに、配線基板2の上面2aに実装される。また、シールド部品4は、実装電極7およびビア導体9を介してグランド電極(内部配線電極8)に接続される。なお、シールド部品4の形状は直方体に限らないが、他の部品3a~3dのいずれかと同じ形状であるのが好ましい。このようにすると、他の部品3a~3dと同等の実装性を確保することができる。また、シールド部品4を形成する導体は、Cuに限らずAlやAgなど、適宜変更することができる。
 封止樹脂層5は、配線基板2の上面2aに配設されて、各部品3a~3dおよびシールド部品4を被覆する。封止樹脂層5は、エポキシ樹脂等の封止樹脂として一般的に採用される樹脂で形成することができる。ここで、封止樹脂層5の上面5aが、本発明の「封止樹脂層の対向面」に相当し、下面5bが、本発明の「封止樹脂層の当接面」に相当する。
 また、封止樹脂層5の上面5aには、シールド部品4の上面4aの一部を露出させるための凹部10が形成される。この凹部10は、シールド部品4の上面4aを底面として、封止樹脂層5の下面5bから上面5aに向かう方向に拡開する角錐台形状で形成される(図1および図3参照)。また、凹部10は、封止樹脂層5の上面5aにおいて開口10bを有している。すなわち、凹部10は、封止樹脂層5の側面5cには至っておらず、封止樹脂層5の端縁の内側に配置される。当該凹部10は、例えば、レーザ加工で形成することができる。なお、凹部10の形状は、角錐台形状に限らず、適宜変更可能である。
 シールド膜6は、封止樹脂層5の上面5aと側面5c、配線基板2の側面2cを被覆するとともに、凹部10の壁面10aおよび凹部10を介して露出するシールド部品4の上面4aとを被覆する。そして、当該凹部10の壁面10aを被覆するシールド膜6とシールド部品4とにより、部品3bと部品3cとの間の部品間シールドが形成される。なお、レーザ加工で凹部10を形成する場合は、シールド部品4の上面4aを露出させる際に、該上面4aを若干削って酸化被膜を除去することにより、シールド膜6とシールド部品との接続抵抗を下げることができる。ここで、部品間シールドの対象となる部品3bおよび部品3cが、本発明の「第1部品」および「第2部品」に相当する。
 また、グランド電極(内部配線電極8)の端縁の一部は配線基板2の側面2cから露出しており、この箇所でシールド膜6とグランド電極とが接続することにより、シールド膜6が接地される。さらに、シールド膜6はシールド部品4とも接触していることから、シールド部品4を介しても接地が可能となっている。なお、シールド膜6は、例えば、スパッタリング法や蒸着法などの成膜方法で形成することができ、封止樹脂層5の上面5aに積層された密着膜と、密着膜に積層された導電膜と、導電膜に積層された保護膜とを有する多層構造とすることができる。
 この場合、密着膜は、導電膜と封止樹脂層5との密着強度を高めるために設けられたものであり、例えば、SUSなどの金属で形成することができる。導電膜は、シールド膜6の実質的なシールド機能を担う層であり、例えば、Cu、Ag、Alのうちのいずれかの金属で形成することができる。保護膜は、導電膜が腐食したり、傷が付いたりするのを防止するために設けられたものであり、例えば、SUSで形成することができる。
 スパッタリング法や蒸着法などの成膜プロセスを用いてシールド膜6を形成する場合、凹部10の壁面10aを被覆する部分の膜厚が、他の部分を被覆する部分よりも薄くなる傾向がある。所望のシールド特性を確保するために、シールド膜6の膜厚は、2μm程度とすることが好ましい。そこで、発明者らは、凹部10の形状によって、凹部10の壁面10aを被覆するシールド膜6の膜厚がどのように変化するかを測定した。なお、凹部10の壁面10aの膜厚は、シールド膜6の形成材料の凹部10の内部への侵入口が大きくなる程厚くなり、凹部10の深さが深くなるにつれて薄くなることが分かっている。そこで、封止樹脂層5の上面5aに形成される凹部10の横長矩形状の開口10bのうち、短辺の長さをW1(図3参照)、凹部10の深さH1(図1参照)とした場合に、これらの比(W1/H1)に対して、膜厚がどのように変化したかをプロットしたのが図4である。結果としては、
 (i)W1=500μm、H1=500μm(W1/H1=1.0)のときのシールド膜6の膜厚が1.8μm
 (ii)W1=650μm、H1=500μm(W1/H1=1.33)のときのシールド膜6の膜厚が3.2μm
 (iii)W1=800μm、H1=500μm(W1/H1=1.60)のときのシールド膜6の膜厚が3.7μm
 (iv)W1=900μm、H1=500μm(W1/H1=1.80)のときのシールド膜6の膜厚が4.1μm
 (v)W1=1000μm、H1=500μm(W1/H1=2.00)のときのシールド膜6の膜厚が4.9μmであった。
これらのデータによれば、(W1/H1)が1.33以上であれば、所望のシールド特性を得るためのシールド膜6の膜厚(=2μm)を確保することができるため、好ましい。なお、データの近似線によれば、(W1/H1)が1.02以上であれば、所望のシールド特性を得るためのシールド膜6の膜厚(=2μm)を確保することができる。
 したがって、上記した実施形態によれば、封止樹脂層5に形成された凹部10は、シールド部品4の上面4aが露出する深さ、すなわち、配線基板2の上面2aに到達しない深さで形成されるため、凹部10をレーザ加工やダイシングなどで形成しても、配線基板2へのダメージを軽減することができる。また、凹部10の壁面10aがシールド膜6で被覆されるため、当該部分(凹部10)のシールド膜6を部品3bと部品3cとの間の部品間シールドとして機能させることができる。また、凹部10と配線基板2との間の隙間にCuブロックからなるシールド部品4が配置されるため、凹部10が配線基板2の上面2aに到達しない深さであっても、部品3bと部品3cとの間の部品間シールドの特性を維持することができる。また、凹部10は、封止樹脂層5の上面5aの内側に形成されるため、凹部10が封止樹脂層5を分断することがない。そのため、封止樹脂層5に凹部10を形成したことに起因する、高周波モジュール1aの機械強度の劣化を防止することができる。
 また、凹部10は、封止樹脂層5の下面5bから上面5aに向かう方向に拡開した形状を有するため、シールド膜6の形成時にシールド膜の形成材料の凹部10への侵入口(開口10b)の面積を容易に広げることができ、部品3bと部品3cとの間の部品間シールドの特性を向上させることができる。
 また、1つのシールド部品4を実装することにより、部品3bと部品3cとの間の部品間シールドを形成するため、配線基板2の上面2aにおける部品間シールドの占有スペースが少なくて済み、配線基板2の実装自由度が向上する。
 (シールド部品の配置の変形例)
 上記した実施形態では、部品3bと部品3cとの間の部品間シールドについて説明したが、部品3cと部品3aとの間に部品間シールドを形成したい場合は、図5に示すように、部品3aと部品3cとの間に別のシールド部品4を配置するとよい。この場合、部品3aと部品3cとの間に配置されたシールド部品4の上面4aが露出するように別の凹部(図示省略)を形成し、当該凹部の壁面にもシールド膜6を形成するとよい。なお、当該凹部は、上述の凹部10と同様の形状とすればよい。ここで、部品間シールドの対象となる部品3aおよび部品3cも、本発明の「第1部品」および「第2部品」に相当する。
 <第2実施形態>
 本発明の第2実施形態にかかる高周波モジュール1bについて、図6および図7を参照して説明する。なお、図6は高周波モジュール1bの断面図であって、図7のB-B矢視断面図、図7はシールド膜6および封止樹脂層5を除いた状態の高周波モジュール1bの平面図である。
 この実施形態にかかる高周波モジュール1bが、図1~5を参照して説明した第1実施形態の高周波モジュール1aと異なるところは、図6および図7に示すように、部品間シールドの構成が異なることである。その他の構成は、第1実施形態の高周波モジュール1aと同じであるため、同一符号を付すことにより説明を省略する。
 この場合、部品3bと部品3cとの間に複数(この実施形態では3つ)のシールド部品4が配置される。各シールド部品4は、両部品3b、3cとの間で一列に配列される。また、封止樹脂層5の上面5aには、個々のシールド部品4に応じて凹部10が設けられる。各凹部10は、第1実施形態の凹部10と同様に角錐台形状で形成され、それぞれの凹部10の壁面10a、および、凹部10を介して露出したシールド部品4の上面4aがシールド膜6により被覆される(図6参照)。また、各シールド部品4は、ビア導体9を介してグランド電極(内部配線電極8)に接続される。
 この実施形態によれば、封止樹脂層5に形成された各凹部10は、シールド部品4の上面4aが露出する深さ、すなわち、配線基板2の上面2aに到達しない深さで形成されるため、各凹部10をレーザ加工やダイシングなどで形成しても、配線基板2へのダメージを軽減することができる。また、各凹部10の壁面10aがシールド膜6で被覆されるため、当該部分(凹部10)のシールド膜6を部品3bと部品3cとの間の部品間シールドとして機能させることができる。また、各凹部10と配線基板2との間の隙間それぞれにCuブロックからなるシールド部品4が配置されるため、各凹部10が配線基板2の上面2aに到達しない深さであっても、部品3bと部品3cとの間の部品間シールドの特性を維持することができる。また、第1実施形態よりも部品3bと部品3cとの間の部品間シールドの形成領域が広がるため、シールド特性が向上する。また、各凹部10は、封止樹脂層5の上面5aの内側に形成されるため、各凹部10が封止樹脂層5を分断することがない。そのため、封止樹脂層5に各凹部10を形成したことに起因する、高周波モジュール1aの機械強度の劣化を防止することができる。
 (シールド部品の配置の変形例)
 上記した実施形態では、部品3bと部品3cとの間の部品間シールドについて説明したが、部品3cと部品3aとの間に部品間シールドを形成したい場合は、図8に示すように、部品3aと部品3cとの間に別のシールド部品4を複数配置してもよい。この場合、部品3aと部品3cとの間に配置された各シールド部品4に応じて個別に凹部(図示省略)を形成し、当該凹部の壁面にもシールド膜6を形成するとよい。なお、当該凹部は、第1実施形態の凹部10と同様の形状とすればよい。また、図7および図8では、シールド部品4を一直線上に等間隔に並べて配置しているが、部品間の電磁干渉分布の強度などに応じて、一直線上からずらして配置してもよいし、等間隔でなくてもよい。
 (凹部形状の変形例)
 第2実施形態では、各シールド部品4に応じて個別に凹部10を形成する場合について説明したが、凹部の構造は適宜変更することができる。例えば、図9に示すように、凹部11が、各シールド部品4の上面4aが露出しない深さで形成された1つの有底部11aと、該有底部11aの底面11a1に設けられた、各シールド部品4の上面4aが個別に露出する複数の貫通部11bとで形成されていてもよい。この場合、有底部11aは、各シールド部品4に対する共通の凹部として形成されることから、開口面積が広く形成される。そのため、上記の凹部10のように拡開した形状でなくとも、壁面を被覆するシールド膜6の膜厚(例えば、2μm以上)を容易に確保することができる。また、各貫通部11bも、深さが上述の凹部10よりも浅いため、必ずしも拡開した形状でなくてもよい。
 また、図10に示すように、シールド部品4が複数実装される場合は、個々のシールド部品4に対して個別に凹部10を形成する代わりに、全てのシールド部品4の上面4aが露出する1つの凹部12を形成してもよい。この場合、凹部12は、各シールド部品4に対する共通の凹部として形成されることから、開口面積が広く形成される。そのため、上記の凹部10のように拡開した形状でなくとも、壁面を被覆するシールド膜6の膜厚(例えば、2μm以上)を容易に確保することができる。
 <第3実施形態>
 本発明の第3実施形態にかかる高周波モジュール1cについて、図11を参照して説明する。なお、図11は高周波モジュール1cの断面図であって、図1に対応する図である。
 この実施形態にかかる高周波モジュール1cが、図1~5を参照して説明した第1実施形態の高周波モジュール1aと異なるところは、図11に示すように、磁性シート13がさらに設けられることである。その他の構成は、第1実施形態の高周波モジュール1aと同じであるため、同一符号を付すことにより説明を省略する。
 この場合、封止樹脂層5の上面5aに磁性シート13(本発明の「磁性膜」に相当)が配置される。凹部10は、磁性シート13を貫通し、さらに封止樹脂層5の内に窪んで形成され、当該凹部10の底からシールド部品4の上面4aの一部が露出する。また、凹部10は、第1実施形態と同様、封止樹脂層5の側面には至っておらず、封止樹脂層5の端縁の内側に配置される。また、シールド膜6は、封止樹脂層5の側面5c、配線基板2の側面2c、磁性シート13の封止樹脂層5の上面5aに当接していない部分、シールド部品4の凹部10から露出している部分を含む凹部10の壁面10aを被覆する。
 なお、磁性シート13は、例えば、磁性体からなる金属シートや、樹脂に磁性材料が混合されたシートなどで形成することができる。あるいは、磁性シート13は、前記のシートに接着材などの樹脂層を積層した積層シートを用いてもよい。また、この実施形態の凹部10は、例えば、凹部10が形成されていない状態の封止樹脂層5の上面5aに平板状の磁性シート13を配置した後、磁性シート13の上方からレーザ光を照射し、磁性シート13および封止樹脂層5それぞれの、凹部10を形成する部分を除去することにより形成できる。
 この実施形態によれば、低周波、特に100KHzから10MHzのノイズをより効果的に遮断できる。
 (磁性シートの変形例)
 図11では、磁性シート13が、封止樹脂層5とシールド膜6との間に設けられているが、例えば、図12に示すように、磁性シート13が、シールド膜6の上面に設けられていてもよい。この場合、磁性シート13は、粘着層等を介してシールド膜6上に貼り付けられる。磁性シート13は、凹部10において開口10bを有する。また、図12において、磁性シート13は、凹部10を除き、封止樹脂層5の上面5aの略全面を被覆するように形成されているが、一部を覆っている構成であってもよい。このようにしても、低周波、特に100KHzから10MHzのノイズをより効果的に遮断できる。
 <第4実施形態>
 本発明の第4実施形態にかかる高周波モジュール1dについて、図13を参照して説明する。なお、図13は高周波モジュール1dの断面図であって、図1に対応する図である。
 この実施形態にかかる高周波モジュール1dが、図1~5を参照して説明した第1実施形態の高周波モジュール1aと異なるところは、図13に示すように、磁性膜14がさらに設けられることである。その他の構成は、第1実施形態の高周波モジュール1aと同じであるため、同一符号を付すことにより説明を省略する。
 この場合、封止樹脂層5に第1実施形態と同様の凹部10が形成され、封止樹脂層5の上面5a、シールド部品4の上面4aの凹部10から露出している部分を含む凹部10の壁面10aが、磁性膜14で被覆される。また、シールド膜6は、封止樹脂層5の側面5cと、磁性膜14の封止樹脂層5の上面5aを被覆する部分と、磁性膜14の凹部10の壁面(シールド部品4の凹部10から露出する部分を含む)を被覆する部分と、配線基板2の側面2cとを被覆する。
 この実施形態において、磁性膜14およびシールド膜6は、例えば、封止樹脂層5の上面5aに凹部10を形成したあと、スパッタや蒸着法などによる成膜プロセスにより、磁性膜14を成膜し、その上から同じくスパッタや蒸着法などによりシールド膜6を形成する。このとき、複数の高周波モジュール1dがマトリクス状に配列した集合体を形成し、まとめて磁性膜14を形成したあと、ダイシングやレーザ加工などにより個々の高周波モジュール1dに個片化し、その後、シールド膜6を形成する。このようにすると、磁性膜14は、封止樹脂層5の側面5cを被覆せず、シールド膜6が側面5cを被覆する構成を実現できる。また、磁性膜14の他の形成方法として、磁性体ペーストを封止樹脂層5の上面5aおよび凹部10の壁面10aに塗布する方法もある。また、めっき工法を用いて磁性膜14を形成することもできる。
 この実施形態によれば、低周波、特に100KHzから10MHzのノイズをより効果的に遮断できる。
 (磁性膜の変形例)
 図13において、磁性膜14は、封止樹脂層5とシールド膜6との間に設けられているが、当該磁性膜14は、図14に示すように、シールド膜6を覆うように設けられていてもよい。この場合、磁性膜14は、スパッタや蒸着法などによる成膜プロセスにより形成される。磁性膜14は、凹部10の壁面10aにも形成される。磁性膜14の他の形成方法として、磁性体ペーストを塗布する方法、めっき工法を用いてもよい。このようにしても、低周波、特に100KHzから10MHzのノイズをより効果的に遮断できる。
 なお、本発明は上記した各実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、上記したもの以外に種々の変更を行なうことが可能である。例えば、上記した各実施形態や変形例の構成を組合わせてもよい。
 また、上記した各実施形態では、シールド膜6は、接地されたシールド部品4に接続されることから、必ずしも配線基板2の側面2cにグランド電極(内部配線電極8)を露出させて、シールド膜6と接続させなくてもよい。
 また、シールド部品4は、それ自体が導体(Cuブロック)でなくともよく、部品間のノイズを遮蔽する導体が形成されていればよい。ノイズを遮蔽する導体は、例えば、一方面がノイズ干渉を防止する2つの部品のうちの一方に対向し、他方面が他方の部品に対向する板状の導体であり、具体的には、チップコンデンサなどのチップ部品の側面電極などが挙げられる。また、側面電極に限らず、シールド部品の内部にこのような導体が形成されていてもよい。
 また、本発明は、配線基板に実装された部品を被覆する封止樹脂層と、封止樹脂層の表面を被覆するシールドと、部品間のノイズの相互干渉を防止するシールドとを備える種々の高周波モジュールに適用することができる。
 1a~1d  高周波モジュール
 2  配線基板
 3a  部品(第1部品、第2部品)
 3b、3c  部品(第1部品、第2部品)
 4  シールド部品(導電部材)
 5  封止樹脂層
 6  シールド膜
 10、11、12  凹部
 10a  壁面
 11a  有底部
 11b  貫通部
 13  磁性シート(磁性膜)
 14  磁性膜

Claims (8)

  1.  配線基板と、
     前記配線基板の主面に実装された、第1部品および第2部品と、
     前記配線基板の主面における、前記第1部品と前記第2部品の間に実装された導電部材と、
     前記配線基板に当接する当接面と、該当接面に対向する対向面と、前記当接面と前記対向面の端縁同士を繋ぐ側面とを有し、前記配線基板、前記第1部品、前記第2部品および前記導電部材を被覆する封止樹脂層と、
     少なくとも前記封止樹脂層の前記対向面および前記側面を被覆するシールド膜とを備え、
     前記導電部材は、自体が導体であるか、あるいは、一方面が前記第1部品側に向き、他方面が前記第2部品側に向く板状の導体を有し、
     前記封止樹脂層の前記対向面から前記導電部材に向かって、前記導電部材の一部が露出するように凹部が形成されるとともに、該凹部は、前記封止樹脂の側面に至らない当該封止樹脂の内側に形成され、
     前記シールド膜は、前記凹部の壁面、および、前記導電部材の露出する部分をさらに被覆する
     ことを特徴とする高周波モジュール。
  2.  前記封止樹脂層と前記シールド膜間に形成された磁性膜を備えることを特徴とする
    請求項1に記載の高周波モジュール。
  3.  前記シールド膜を覆うように形成された磁性膜を備えることを特徴とする請求項1に記載の高周波モジュール。
  4.  前記磁性膜は、前記凹部の壁面にも形成されていることを特徴とする請求項2または3に記載の高周波モジュール。
  5.  前記導電部材は複数あり、
     前記凹部は、個々の前記導電部材に応じて設けられていることを特徴とする請求項1ないし4のいずれか1項に記載の高周波モジュール。
  6.  前記導電部材は複数あり、
     前記凹部は、
      前記複数の導電部材が露出しない深さで形成された1つの有底部と、
      該有底部の底面に設けられ、前記複数の導電部材が個別に露出する複数の貫通部とを有することを特徴とする請求項1ないし4のいずれか1項に記載の高周波モジュール。
  7.  前記導電部材は複数あり、
     前記凹部は、前記複数の導電部材の全てが露出する1つの凹部であることを特徴とする請求項1ないし4のいずれか1項に記載の高周波モジュール。
  8.  前記凹部は、前記封止樹脂層の前記当接面から前記対向面に向かう方向に拡開した形状を有することを特徴とする請求項1ないし7のいずれか1項に記載の高周波モジュール。
     
PCT/JP2018/024497 2017-06-29 2018-06-28 高周波モジュール WO2019004332A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019527010A JP6965928B2 (ja) 2017-06-29 2018-06-28 高周波モジュール
CN201880043613.XA CN110800100B (zh) 2017-06-29 2018-06-28 高频模块
KR1020197035063A KR102408079B1 (ko) 2017-06-29 2018-06-28 고주파 모듈
US16/728,525 US11178778B2 (en) 2017-06-29 2019-12-27 High frequency module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-127151 2017-06-29
JP2017127151 2017-06-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/728,525 Continuation US11178778B2 (en) 2017-06-29 2019-12-27 High frequency module

Publications (1)

Publication Number Publication Date
WO2019004332A1 true WO2019004332A1 (ja) 2019-01-03

Family

ID=64742384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024497 WO2019004332A1 (ja) 2017-06-29 2018-06-28 高周波モジュール

Country Status (5)

Country Link
US (1) US11178778B2 (ja)
JP (1) JP6965928B2 (ja)
KR (1) KR102408079B1 (ja)
CN (1) CN110800100B (ja)
WO (1) WO2019004332A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262457A1 (ja) * 2019-06-27 2020-12-30 株式会社村田製作所 モジュールおよびその製造方法
WO2021090694A1 (ja) * 2019-11-07 2021-05-14 株式会社村田製作所 モジュール
WO2021124806A1 (ja) * 2019-12-20 2021-06-24 株式会社村田製作所 電子部品モジュール、および、電子部品モジュールの製造方法
WO2021124805A1 (ja) * 2019-12-20 2021-06-24 株式会社村田製作所 電子部品モジュール
WO2021246117A1 (ja) * 2020-06-05 2021-12-09 株式会社村田製作所 モジュールおよびその製造方法
WO2022215547A1 (ja) * 2021-04-08 2022-10-13 株式会社村田製作所 高周波モジュール及び通信装置
JP7404938B2 (ja) 2020-03-06 2023-12-26 住友電気工業株式会社 コネクタ付き多心ケーブル
US11968815B2 (en) 2019-06-13 2024-04-23 Murata Manufacturing Co., Ltd. Module

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220020018A (ko) * 2020-08-11 2022-02-18 삼성전기주식회사 부품 패키지 및 이에 이용되는 인쇄회로기판
WO2024072042A1 (ko) * 2022-09-28 2024-04-04 삼성전자 주식회사 회로 기판 모듈 및 이를 포함하는 전자 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087058A (ja) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd 高周波モジュール
JP2011187677A (ja) * 2010-03-09 2011-09-22 Panasonic Corp モジュール
JP2015057804A (ja) * 2013-08-13 2015-03-26 太陽誘電株式会社 回路モジュール
JP5988003B1 (ja) * 2016-03-23 2016-09-07 Tdk株式会社 電子回路パッケージ
WO2016195026A1 (ja) * 2015-06-04 2016-12-08 株式会社村田製作所 高周波モジュール

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317935A (ja) * 2004-03-30 2005-11-10 Matsushita Electric Ind Co Ltd モジュール部品およびその製造方法
TWI231166B (en) * 2004-04-16 2005-04-11 Unimicron Technology Corp Structure for connecting circuits and manufacturing process thereof
US8359739B2 (en) * 2007-06-27 2013-01-29 Rf Micro Devices, Inc. Process for manufacturing a module
JP4800898B2 (ja) * 2006-10-27 2011-10-26 日本電信電話株式会社 配線基板、電子回路装置およびその製造方法
CN101364550A (zh) * 2007-08-08 2009-02-11 矽品精密工业股份有限公司 具硅通道的多芯片堆叠结构及其制法
JP2009200113A (ja) * 2008-02-19 2009-09-03 Nitto Denko Corp シールド配線回路基板
JP2009212263A (ja) 2008-03-04 2009-09-17 Alps Electric Co Ltd 電子回路モジュール
JP2010056517A (ja) * 2008-07-28 2010-03-11 Toshiba Corp 半導体装置及びその製造方法
JP2012019091A (ja) * 2010-07-08 2012-01-26 Sony Corp モジュールおよび携帯端末
JP2012151353A (ja) 2011-01-20 2012-08-09 Sharp Corp 半導体モジュール
US20120228751A1 (en) * 2011-03-07 2012-09-13 Samsung Electronics Co., Ltd. Semiconductor package and method of manufacturing the same
KR20130048991A (ko) * 2011-11-03 2013-05-13 삼성전기주식회사 반도체 패키지 및 그 제조 방법
JP2013222829A (ja) * 2012-04-17 2013-10-28 Taiyo Yuden Co Ltd 回路モジュール及びその製造方法
US8704341B2 (en) * 2012-05-15 2014-04-22 Advanced Semiconductor Engineering, Inc. Semiconductor packages with thermal dissipation structures and EMI shielding
JP5767268B2 (ja) * 2013-04-02 2015-08-19 太陽誘電株式会社 回路モジュール及びその製造方法
US9788466B2 (en) * 2013-04-16 2017-10-10 Skyworks Solutions, Inc. Apparatus and methods related to ground paths implemented with surface mount devices
TWI554196B (zh) * 2013-07-31 2016-10-11 環旭電子股份有限公司 電子封裝模組及其製造方法
JP5576543B1 (ja) * 2013-09-12 2014-08-20 太陽誘電株式会社 回路モジュール
JP5505915B1 (ja) 2013-10-30 2014-05-28 太陽誘電株式会社 通信モジュール
JP6387278B2 (ja) * 2014-09-30 2018-09-05 太陽誘電株式会社 回路モジュール及びその製造方法
US9793212B2 (en) * 2015-04-16 2017-10-17 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structures and methods of forming same
JP6407186B2 (ja) * 2016-03-23 2018-10-17 Tdk株式会社 電子回路パッケージ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087058A (ja) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd 高周波モジュール
JP2011187677A (ja) * 2010-03-09 2011-09-22 Panasonic Corp モジュール
JP2015057804A (ja) * 2013-08-13 2015-03-26 太陽誘電株式会社 回路モジュール
WO2016195026A1 (ja) * 2015-06-04 2016-12-08 株式会社村田製作所 高周波モジュール
JP5988003B1 (ja) * 2016-03-23 2016-09-07 Tdk株式会社 電子回路パッケージ

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11968815B2 (en) 2019-06-13 2024-04-23 Murata Manufacturing Co., Ltd. Module
WO2020262457A1 (ja) * 2019-06-27 2020-12-30 株式会社村田製作所 モジュールおよびその製造方法
US11889625B2 (en) 2019-06-27 2024-01-30 Murata Manufacturing Co., Ltd. Module and method of manufacturing the same
WO2021090694A1 (ja) * 2019-11-07 2021-05-14 株式会社村田製作所 モジュール
WO2021124806A1 (ja) * 2019-12-20 2021-06-24 株式会社村田製作所 電子部品モジュール、および、電子部品モジュールの製造方法
WO2021124805A1 (ja) * 2019-12-20 2021-06-24 株式会社村田製作所 電子部品モジュール
US11871523B2 (en) 2019-12-20 2024-01-09 Murata Manufacturing Co., Ltd. Electronic component module and method for manufacturing electronic component module
JP7404938B2 (ja) 2020-03-06 2023-12-26 住友電気工業株式会社 コネクタ付き多心ケーブル
WO2021246117A1 (ja) * 2020-06-05 2021-12-09 株式会社村田製作所 モジュールおよびその製造方法
WO2022215547A1 (ja) * 2021-04-08 2022-10-13 株式会社村田製作所 高周波モジュール及び通信装置

Also Published As

Publication number Publication date
JP6965928B2 (ja) 2021-11-10
JPWO2019004332A1 (ja) 2020-03-26
US20200137893A1 (en) 2020-04-30
KR102408079B1 (ko) 2022-06-13
US11178778B2 (en) 2021-11-16
KR20200003050A (ko) 2020-01-08
CN110800100B (zh) 2023-09-05
CN110800100A (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
WO2019004332A1 (ja) 高周波モジュール
JP6806166B2 (ja) 高周波モジュール
US10849257B2 (en) Module
US10667381B2 (en) High frequency module
US10312172B2 (en) High-frequency module
US10674648B2 (en) High-frequency module
KR101250677B1 (ko) 반도체 패키지 및 그의 제조 방법
US10319685B2 (en) EMI shielded integrated circuit packages and methods of making the same
WO2019098316A1 (ja) 高周波モジュール
KR20120044027A (ko) 반도체 패키지 및 그의 제조 방법
WO2017043621A1 (ja) 高周波モジュール
JP2015115557A (ja) 半導体装置の製造方法
JP6199724B2 (ja) 半導体装置の製造方法
US10573591B2 (en) Electronic component mounting board, electronic device, and electronic module
WO2018164159A1 (ja) モジュール
US10741463B2 (en) Shielded module
WO2018181709A1 (ja) 高周波モジュール
WO2018101383A1 (ja) 高周波モジュール
US20220310317A1 (en) Electronic component module
US20220304201A1 (en) Module
KR20190116886A (ko) 전자 소자 모듈
JP2013110299A (ja) 複合モジュール
JP6414639B2 (ja) 高周波モジュールおよびその製造方法
KR20130048991A (ko) 반도체 패키지 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824544

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019527010

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197035063

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824544

Country of ref document: EP

Kind code of ref document: A1