WO2019004279A1 - 位相差フィルム - Google Patents

位相差フィルム Download PDF

Info

Publication number
WO2019004279A1
WO2019004279A1 PCT/JP2018/024351 JP2018024351W WO2019004279A1 WO 2019004279 A1 WO2019004279 A1 WO 2019004279A1 JP 2018024351 W JP2018024351 W JP 2018024351W WO 2019004279 A1 WO2019004279 A1 WO 2019004279A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
atom
independently represent
integer
Prior art date
Application number
PCT/JP2018/024351
Other languages
English (en)
French (fr)
Inventor
上平 茂生
直之 師岡
貴文 中山
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020197037662A priority Critical patent/KR102326392B1/ko
Priority to JP2019526977A priority patent/JP6830157B2/ja
Priority to CN201880043388.XA priority patent/CN110799870B/zh
Publication of WO2019004279A1 publication Critical patent/WO2019004279A1/ja
Priority to US16/718,598 priority patent/US10899882B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/045Aromatic polycarbonates containing aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • C08G64/1608Aliphatic-aromatic or araliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/22General preparatory processes using carbonyl halides
    • C08G64/226General preparatory processes using carbonyl halides and alcohols
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • C09K2323/035Ester polymer, e.g. polycarbonate, polyacrylate or polyester
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133637Birefringent elements, e.g. for optical compensation characterised by the wavelength dispersion

Definitions

  • the present invention relates to a retardation film.
  • retardation films have been used as optical films in liquid crystal displays and the like.
  • a reverse dispersion film is known in which the retardation increases as the wavelength increases.
  • a positive intrinsic birefringence component hereinafter also referred to as a positive monomer component
  • a negative intrinsic birefringence component hereinafter also referred to as a negative monomer component
  • the refractive index of the positive monomer component is larger than the refractive index of the negative monomer component, and the wavelength dispersion of the refractive index of the positive monomer component is negative It becomes a reverse dispersion film by being smaller than the wavelength dispersion of the refractive index which a monomer component shows.
  • the negative monomer component it is necessary for the negative monomer component to have an absorption maximum on the longer wavelength side than the positive monomer component.
  • Patent Documents 1 to 6 disclose a retardation film composed of a copolymer including a structural unit having a fluorene structure and a structural unit having an alicyclic hydrocarbon or an aromatic hydrocarbon.
  • Patent Documents 1 and 2 disclose structural units derived from 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene as structural units containing a fluorene structure, and Patent Documents 3 to 6 disclose such structural units. Disclosed are structural units derived from 9,9-bis (4-hydroxyphenyl) fluorene.
  • the refractive index wavelength dispersion of the negative monomer component to be used may not be sufficiently large, and the reverse wavelength dispersion may not be sufficiently exhibited. Then, in order to solve such a subject of a prior art, the present inventors advanced examination for the purpose of providing the retardation film which can exhibit sufficient reverse wavelength dispersion.
  • a retardation film comprises a copolymer comprising a unit derived from a negative monomer component having a specific structure and a unit derived from a positive monomer component. It has been found that, by forming the above, a retardation film capable of exhibiting sufficient reverse wavelength dispersion can be obtained. Specifically, the present invention has the following configuration.
  • a co-containing comprising at least one selected from a unit represented by the following general formula (1) and a unit represented by the following general formula (2), and a unit represented by the following general formula (3) Containing polymers, 20 nm ⁇ Re (548) ⁇ 300 nm, 0.5 ⁇ Re (446) / Re (548) ⁇ 1.0, Retardation film satisfying 1.0 ⁇ Re (629) / Re (548) ⁇ 2.0; However, Re (446), Re (548), Re (629) represent in-plane retardation at wavelengths of 446 nm, 548 nm, and 629 nm, respectively;
  • each of R 11 to R 14 independently represents a hydrogen atom or a substituent having a Hammett's substituent constant ⁇ p value smaller than ⁇ 0.15, which is an aryl group, a heteroaryl group and a reaction R 11 to R 14 do not form a fused ring by being bound to each other by mutually adjacent substituents.
  • R 15 ⁇ R 17 each independently represent a substituent;
  • Each of a to c is independently an integer of 0 or more, and represents an integer equal to or less than the maximum number substitutable in each ring; when a to c are integers of 2 or more, plural R 15 and plural R 16 And a plurality of R 17 may be the same or different;
  • Ar 11 and Ar 12 each independently represent an aryl group containing a benzene ring surrounded by a broken line or a heteroaryl group containing a benzene ring surrounded by a broken line as one of condensed rings;
  • L 11 and L 12 each independently represent a C 2-8 alkylene group, a C 5-12 cycloalkylene group, a C 6-20 arylene group, or a C 6-20 hetero.
  • n11 and n12 each independently represent an integer of 0 to 10; when n11 and n12 are integers of 2 to 10, a plurality of L 11 and a plurality of L 12 may be the same or different;
  • Ar 11 and Ar 12 are each independently an aromatic fused ring group containing a benzene ring surrounded by a broken line, R 15 , R 16 , -O- [L 11 -O] n11-and- [O -L 12 ] n12 -O- may be independently substituted on the benzene ring enclosed by the broken line, or may be substituted on a fused ring other than the benzene ring enclosed by the broken line;
  • Y 21 and Y 22 are each independently a carbon atom, an oxygen atom, a sulfur atom or a nitrogen atom, and at least one of Y 21 and Y 22 is an oxygen atom, a sulfur atom or a nitrogen atom is there;
  • Z represents
  • L 21 and L 22 each independently represent a C 2-8 alkylene group, a C 5-12 cycloalkylene group, a C 6-20 arylene group, or a C 6-20 hetero.
  • m21 and m22 each independently represent an integer of 0 to 10; when m21 and m22 are integers of 2 to 10, a plurality of-[L 21 -X 21 ]-and a plurality of-[X 22 -L 22 ] -
  • Ar 21 and Ar 22 are each independently an aromatic fused ring group containing a benzene ring surrounded by a broken line
  • R 21 , R 22 , -O- [L 21 -X 21 ] m 21- and- [ X 22 -L 22 ] m 22 -O- may be each independently substituted with a benzene ring enclosed by a broken line or may be substituted with a fused ring other than a benzene ring enclosed
  • X 32 represents an alkylene group having 2 to 20 carbon atoms, a cycloalkylene group having 4 to 20 carbon atoms, an arylene group having 6 to 20 carbon atoms, or a combination of these;
  • the ring member atoms of the cycloalkylene group may be substituted with an oxygen atom, a sulfur atom or a nitrogen atom.
  • each of R 11 to R 14 independently represents a hydrogen atom or a substituent having a Hammett's substituent constant ⁇ p value smaller than ⁇ 0.15, which is an aryl group, a heteroaryl group and a reaction R 11 to R 14 do not form a fused ring by being bound to each other by mutually adjacent substituents.
  • R 15 and R 16 each independently represent a methyl group or an ethyl group; a and b each independently represent an integer of 0 to 2; L 11 and L 12 each independently represent an ethylene group or a propylene group; n11 and n12 each independently represent an integer of 0 to 3.
  • X 32 is an alkylene group having 5 to 20 carbon atoms which has at least one member selected from an alicyclic ring, a heterocyclic ring and an aromatic ring as a substituent, and has 4 to 20 carbon atoms
  • a retardation film capable of exhibiting sufficient reverse wavelength dispersion can be obtained.
  • a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
  • the notation not describing substitution and non-substitution includes those having no substituent as well as those having a substituent.
  • the "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • the carbon number of each group (atomic group) is a value including the carbon number of the substituent.
  • the present invention is a copolymer comprising at least one of a unit represented by the general formula (1) and a unit represented by the general formula (2), and a unit represented by the general formula (3)
  • the present invention relates to a retardation film containing
  • the unit represented by the general formula (1) is a constitutional unit represented by the following.
  • the unit represented by the general formula (1) is a unit derived from a negative monomer component.
  • each of R 11 to R 14 independently represents a hydrogen atom or a substituent having a Hammett's substituent constant ⁇ p value smaller than ⁇ 0.15, which is an aryl group, a heteroaryl group and a reaction R 11 to R 14 do not form a condensed ring by being bonded to each other by adjacent substituents, which is a substituent other than a substituent having a property group.
  • R 15 to R 17 each independently represent a substituent.
  • Each of a to c is independently an integer of 0 or more, and represents an integer equal to or less than the maximum number that can be substituted in each ring.
  • each of Ar 11 and Ar 12 independently represents an aryl group containing a benzene ring surrounded by a broken line or a heteroaryl group containing a benzene ring surrounded by a broken line as one of condensed rings.
  • L 11 and L 12 each independently represent a C 2-8 alkylene group, a C 5-12 cycloalkylene group, a C 6-20 arylene group, or a C 6-20 hetero. Represents an arylene group.
  • n11 and n12 each independently represent an integer of 0 to 10.
  • n11 and n12 are integers of 2 to 10, the plurality of L 11 and the plurality of L 12 may be the same or different.
  • Ar 11 and Ar 12 are each independently an aromatic fused ring group containing a benzene ring surrounded by a broken line
  • R 15 , R 16 , -O- [L 11 -O] n11-and- [O -L 12 ] n12 -O- may be independently substituted on the benzene ring enclosed by the broken line or may be substituted on a fused ring other than the benzene ring enclosed by the broken line.
  • each of R 11 to R 14 independently represents a hydrogen atom or a substituent having a Hammett's substituent constant ⁇ p value smaller than ⁇ 0.15, which is an aryl group, a heteroaryl group and a reaction It is a substituent except the substituent which has a sexic group.
  • R 11 to R 14 do not bond to each other between adjacent substituents to form a fused ring.
  • the reactive group is a (meth) acryloyl group.
  • At least one of R 11 to R 14 is a substituent having a Hammett's substituent constant ⁇ p value of less than ⁇ 0.15, and excluding a substituent having an aryl group, a heteroaryl group and a reactive group It is preferably a substituent.
  • the wavelength dispersion of the unit represented by General Formula (1) can be increased. It is possible to increase the reverse wavelength dispersion of the retardation film.
  • the Hammett's substituent constant ⁇ p value is more preferably ⁇ 0.20 or less, still more preferably ⁇ 0.25 or less.
  • the lower limit value of the Hammett's substituent constant ⁇ p value is preferably ⁇ 0.7.
  • pKa is the acid dissociation constant of para-substituted benzoic acid at 25 ° C. in water.
  • substituent having a Hammett substituent constant ⁇ p value smaller than ⁇ 0.15 for example, a cyclopropyl group (-cycloC 3 H 5, ⁇ p value ⁇ 0.21), an amino group (—NH 2, ⁇ p value is -0.57, dimethylamino group (-N (CH 3 ) 2, ⁇ p value is -0.63), benzoylamino group (-NHCOC 6 H 5, ⁇ p value is -0.19 ), Hydroxyl group (-OH , ⁇ p value is -0.38), methoxy group (-OCH 3, ⁇ p value is-0.28), ethoxy group (-OC 2 H 5, ⁇ p value is -0 21), propoxy group (-OC 3 H 7, ⁇ p value is -0.25), and the like.
  • substituents among R 11 to R 14 are substituents having a Hammett's substituent constant ⁇ p value smaller than ⁇ 0.15, these substituent
  • R 12 and R 13 are substituents having a Hammett's substituent constant ⁇ p value smaller than ⁇ 0.15, and is an aryl group, a heteroaryl group and a reactivity
  • R 12 and R 13 each is a substituent having a Hammett substituent constant ⁇ p value smaller than ⁇ 0.15, and is preferably an aryl group, a heteroaryl group, It is preferable that it is a substituent except the substituent which has a reactive group.
  • the substituent having a Hammett's substituent constant ⁇ p value of less than ⁇ 0.15 is preferably an alkyl group, an alkoxy group, or a dialkylamino group, and more preferably an alkoxy group.
  • the alkoxy group is preferably a methoxy group, an ethoxy group or a propoxy group, and more preferably a methoxy group.
  • R 12 and R 13 are preferably an alkoxy group, and more preferably R 12 and R 13 is an alkoxy group. Furthermore, R 12 and R 13 are preferably a methoxy group, an ethoxy group or a propoxy group, and more preferably a methoxy group.
  • R 15 to R 17 each independently represent a substituent.
  • the substituent represented by R 15 to R 17 is not particularly limited, and examples thereof include a halogen atom, a halogenated alkyl group, an alkyl group, an alkenyl group, an acyl group, a hydroxyl group, a hydroxyalkyl group, an alkoxy group, an aryl group and a hetero An aryl group, an alicyclic group, etc. can be mentioned.
  • the substituent represented by R 15 to R 17 is preferably an alkyl group, an alkoxy group or an aryl group, and more preferably an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms or a phenyl group Particularly preferred is a methyl group, a methoxy group or a phenyl group.
  • Ar 11 and Ar 12 each independently represent an aryl group containing a benzene ring surrounded by a broken line or a heteroaryl group containing a benzene ring surrounded by a broken line as one of condensed rings.
  • Ar 11 and Ar 12 are preferably each independently an aryl group containing a benzene ring surrounded by a broken line.
  • Ar 11 and Ar 12 are aryl groups containing a benzene ring surrounded by a broken line, they are preferably aryl groups having 6 to 18 carbon atoms, and more preferably aryl groups having 6 to 14 carbon atoms And an aryl group having 6 to 10 carbon atoms is particularly preferable.
  • Ar 11 and Ar 12 are each a heteroaryl group containing a benzene ring surrounded by a broken line as one of the condensed rings, it is preferably a heteroaryl group having 9 to 14 ring members, and 9 to 10 ring members. More preferably, it is a heteroaryl group of The hetero atom constituting the heteroaryl group which may have a substituent Ar 11 and Ar 12 represent include nitrogen atom, oxygen atom, sulfur atom.
  • Ar 11 and Ar 12 each independently may be an aryl group consisting of only a benzene ring surrounded by a broken line, and is an aromatic fused ring group containing the benzene ring surrounded by a broken line as one of condensed rings It may be.
  • the fused ring of the aromatic fused ring group has aromaticity as a whole of the fused ring.
  • L 11 and L 12 each independently represent an alkylene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 12 carbon atoms, an arylene group having 6 to 20 carbon atoms, or carbon It represents a heteroarylene group having a number of 6 to 20.
  • Each of L 11 and L 12 is preferably independently an alkylene group having 2 to 8 carbon atoms, more preferably an alkylene group having 2 to 4 carbon atoms, and still more preferably an ethylene group.
  • a to c each independently represent an integer of 0 or more and represent an integer equal to or less than the maximum number that can be substituted on each ring.
  • Each of a to c is preferably independently an integer of 0 to 4, more preferably an integer of 0 to 3, still more preferably an integer of 0 to 2, and it is preferably 0 or 1. Still more preferably, it is particularly preferably 0.
  • R ⁇ 15 > may be same or different.
  • the plurality of R 15 may be bonded to each other to form a ring, but it is preferable that the plurality of R 15 be bonded to each other to form no ring.
  • b is an integer of 2 or more
  • plural R 16 s may be the same or different.
  • the plurality of R 16 's may be bonded to each other to form a ring, but it is preferable that the plurality of R 16' s be bonded to each other to form no ring.
  • c is an integer of 2 or more
  • a plurality of R 17 may be the same or different.
  • the plurality of R 17 may be bonded to each other to form a ring, but it is preferable that the plurality of R 17 be bonded to each other to form no ring.
  • n11 and n12 may be each independently an integer of 0 to 10, preferably an integer of 0 to 4, more preferably an integer of 0 to 2, and 0 or 1 It is further preferred that When n11 is an integer of 2 to 10, the plurality of L 11 may be the same or different, and when n12 is an integer of 2 to 10, the plurality of L 12 may be the same or different.
  • the unit represented by the general formula (1) is preferably a unit represented by the following general formula (11).
  • each of R 11 to R 14 independently represents a hydrogen atom or a substituent having a Hammett's substituent constant ⁇ p value smaller than ⁇ 0.15, which is an aryl group, a heteroaryl group and a reaction R 11 to R 14 do not form a condensed ring by being bonded to each other by adjacent substituents, which is a substituent other than a substituent having a property group.
  • R 15 and R 16 each independently represent a methyl group or an ethyl group.
  • a and b each independently represent an integer of 0 to 2;
  • L 11 and L 12 each independently represent an ethylene group or a propylene group.
  • n11 and n12 each independently represent an integer of 0 to 3.
  • R 11 ⁇ R 14 in the general formula (11) is the same as the preferred ranges of R 11 ⁇ R 14 in the general formula (1).
  • R 15 and R 16 in the general formula (11) are each independently a methyl group.
  • L 11 and L 12 in the general formula (11) are each independently an ethylene group.
  • N11 and n12 in the general formula (11) are each independently preferably an integer of 0 to 2, and more preferably 0 or 1.
  • Each of a and b in the general formula (11) is independently preferably 0 or 1, and more preferably 0.
  • the compound used as a precursor may be obtained commercially, and may be manufactured synthetically.
  • the compounds to be precursors are produced synthetically, they can be synthesized by known methods and methods described in the examples.
  • the unit represented by General formula (2) is a structural unit represented below.
  • the unit represented by the general formula (2) is a unit derived from a negative monomer component.
  • Y 21 and Y 22 are each independently a carbon atom, an oxygen atom, a sulfur atom or a nitrogen atom, and at least one of Y 21 and Y 22 is an oxygen atom, a sulfur atom or a nitrogen atom is there.
  • Each of R 21 to R 24 independently represents a substituent.
  • p to s each independently represent an integer of 0 or more, and represent an integer equal to or less than the maximum number that can be substituted on each ring.
  • plural R 21 's , plural R 22' s , plural R 23 's and plural R 24' s may be the same or different.
  • Each of Ar 21 and Ar 22 independently represents an aryl group containing a benzene ring surrounded by a broken line or a heteroaryl group containing a benzene ring surrounded by a broken line as one of condensed rings.
  • Each of X 21 and X 22 independently is a group selected from a single bond, -O- and -S-.
  • L 21 and L 22 each independently represent a C 2-8 alkylene group, a C 5-12 cycloalkylene group, a C 6-20 arylene group, or a C 6-20 hetero. Represents an arylene group.
  • m21 and m22 each independently represent an integer of 0 to 10. When m21 and m22 are integers of 2 to 10, the plurality of-[L 21 -X 21 ]-and the plurality of-[X 22 -L 22 ]-may be the same or different.
  • R 21 , R 22 , -O- [L 21 -X 21 ] m 21- and- [ X 22 -L 22 ] m 22 -O- may be each independently substituted with a benzene ring enclosed by a broken line or may be substituted with a fused ring other than a benzene ring enclosed by a broken line.
  • Y 21 and Y 22 are each independently an oxygen atom, a sulfur atom, a nitrogen atom or a carbon atom, and at least one of Y 21 and Y 22 is an oxygen atom, a sulfur atom or a nitrogen atom is there.
  • Y 21 and Y 22 are preferably each independently a nitrogen atom or a carbon atom, and at least one selected from Y 21 and Y 22 is preferably a nitrogen atom. More preferably, both Y 21 and Y 22 are nitrogen atoms.
  • Z is preferably an atom group forming a 5- or 6-membered ring together with Y 21 —CCC—Y 22 , more preferably an atom group forming a 6-membered ring.
  • Z is more preferably an atomic group in which a ring-constituting atom is a carbon atom.
  • R 21 to R 24 each independently represent a substituent.
  • the substituent represented by R 21 to R 24 is not particularly limited, and examples thereof include a halogen atom, a halogenated alkyl group, an alkyl group, an alkenyl group, an acyl group, a hydroxyl group, a hydroxyalkyl group, an alkoxy group, an aryl group and a hetero
  • An aryl group, an alicyclic group, a cyano group, a silyl group etc. can be mentioned.
  • the substituents represented by R 21 to R 23 are preferably each independently an alkyl group, an alkoxy group or an aryl group, and are an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms or a phenyl group More preferably, it is a methyl group, a methoxy group or a phenyl group, more preferably a methyl group or a methoxy group.
  • R 24 is preferably an alkyl group, a silyl group, an alkoxy group or an aryl group, more preferably an alkyl group having 1 to 5 carbon atoms, a silyl group, an alkoxy group having 1 to 5 carbon atoms or a phenyl group More preferably, it is a methyl group, a silyl group or a methoxy group.
  • a plurality of R 24 may be a group forming a fused ring with a ring to be substituted.
  • p to s each independently represent an integer of 0 or more, and represent an integer equal to or less than the maximum number that can be substituted on each ring.
  • p to r each independently are preferably an integer of 0 to 4, more preferably an integer of 0 to 3, still more preferably an integer of 0 to 2, and it is preferably 0 or 1. Still more preferably, it is particularly preferably 0.
  • s is preferably an integer of 0 to 3, and more preferably an integer of 0 to 2.
  • plural R 21 s may be the same or different.
  • the plurality of R 21 may be bonded to each other to form a ring, but it is preferable that the plurality of R 21 be bonded to each other to form no ring.
  • a plurality of R 22 may be the same or different.
  • the plurality of R 22 may be bonded to each other to form a ring, but it is preferable that the plurality of R 22 be bonded to each other to form no ring.
  • plural R 23 s may be the same or different.
  • the plurality of R 23 may be bonded to each other to form a ring, but it is preferable that the plurality of R 23 be bonded to each other to form no ring.
  • the plurality of R 24 may be the same or different, and the plurality of R 24 may be combined with each other to form a ring.
  • a plurality of R 24 preferably form a fused ring with the ring to be substituted.
  • the fused ring may further have a substituent, and in this case, the substituent mentioned as R 24 can be exemplified as a preferable substituent as the substituent.
  • the number of rings forming the fused ring is preferably 4 or less, more preferably 3 or less, Is preferred.
  • Ar 21 and Ar 22 each independently represent an aryl group containing a benzene ring enclosed by a broken line or a heteroaryl group containing a benzene ring enclosed by a broken line as one of condensed rings.
  • Ar 21 and Ar 22 are preferably each independently an aryl group containing a benzene ring surrounded by a broken line.
  • Ar 21 and Ar 22 each is an aryl group containing a benzene ring surrounded by a broken line, it is preferably an aryl group having 6 to 18 carbon atoms, and more preferably an aryl group having 6 to 14 carbon atoms And an aryl group having 6 to 10 carbon atoms is particularly preferable.
  • Ar 21 and Ar 22 each is a heteroaryl group containing a benzene ring surrounded by a broken line as one of the condensed rings, it is preferably a heteroaryl group having 9 to 14 ring members, and 9 to 10 ring members. More preferably, it is a heteroaryl group of The hetero atom constituting the heteroaryl group which may have a substituent Ar 21 and Ar 22 represent include nitrogen atom, oxygen atom, sulfur atom.
  • Ar 21 and Ar 22 each independently may be an aryl group consisting of only a benzene ring surrounded by a broken line, and is an aromatic fused ring group containing the benzene ring surrounded by a broken line as one of condensed rings It may be.
  • the fused ring of the aromatic fused ring group has aromaticity as a whole of the fused ring.
  • L 21 and L 22 each independently represent an alkylene group having 2 to 8 carbon atoms, a cycloalkylene group having 5 to 12 carbon atoms, an arylene group having 6 to 20 carbon atoms, or carbon It represents a heteroarylene group having a number of 6 to 20.
  • L 21 and L 22 are each independently preferably an alkylene group having 2 to 8 carbon atoms, more preferably an alkylene group having 2 to 4 carbon atoms, and still more preferably an ethylene group.
  • X 21 and X 22 each independently represent a group selected from a single bond, -O-, and -S-. Among them, X 21 and X 22 are preferably a single bond or -O-.
  • m21 and m22 may each independently be an integer of 0 to 10, preferably an integer of 0 to 4, more preferably an integer of 0 to 2, and 0 or 1 It is further preferred that If m21 is an integer of 2 to 10, a plurality of - [L 21 -X 21] - it may be the same or different, when m22 is an integer of 2 to 10, a plurality of - [X 22 - L 22 ]-may be the same or different.
  • the unit represented by the general formula (2) is preferably a unit represented by the following general formula (21).
  • Y 21 and Y 22 each independently represent a carbon atom or a nitrogen atom, and at least one of Y 21 and Y 22 is a nitrogen atom.
  • R 21 and R 22 each independently represent a methyl group or an ethyl group, and R 23 and R 24 each independently represent a substituent.
  • p and q each independently represent an integer of 0 to 3
  • r represents an integer of 0 to 4
  • s represents an integer of 0 to 2
  • R 24 when s is 2, a substituent represented by R 24 is And may be bonded to each other to form a fused ring.
  • L 21 and L 22 each independently represent an ethylene group or a propylene group.
  • m21 and m22 each independently represent an integer of 0 to 3.
  • a preferred range of Y 21 and Y 22 in the general formula (21) is the same as the preferred range of Y 21 and Y 22 in the general formula (2).
  • Y 21 and Y 22 are preferably nitrogen atoms.
  • a preferred range of R 23 and R 24 in the general formula (21) is the same as the preferred ranges of R 23 and R 24 in the general formula (2).
  • L 21 and L 22 in the general formula (21) each independently represent an ethylene group or a propylene group, preferably an ethylene group.
  • M21 and m22 in the general formula (21) each independently represent an integer of 0 to 3, preferably an integer of 0 to 2, and more preferably 0 or 1.
  • R represents an integer of 0 to 4, more preferably an integer of 0 to 3, still more preferably an integer of 0 to 2, still more preferably 0 or 1, and 0 Is particularly preferred.
  • s represents an integer of 0 to 2; When s is 2, two substituents represented by R 24 may be bonded to each other to form a fused ring.
  • the compound used as a precursor may be obtained commercially, and may be manufactured synthetically.
  • the compounds to be precursors are produced synthetically, they can be synthesized by known methods and methods described in the examples.
  • the unit represented by General formula (3) is a structural unit represented below.
  • the unit represented by the general formula (3) is a unit derived from a positive monomer component.
  • X 32 represents an alkylene group having 2 to 20 carbon atoms, a cycloalkylene group having 4 to 20 carbon atoms, an arylene group having 6 to 20 carbon atoms, or a combination thereof.
  • the ring-constituting atom of the cycloalkylene group may be substituted with an oxygen atom, a sulfur atom or a nitrogen atom.
  • the alkylene group, cycloalkylene group and arylene group which X 32 may represent may have a substituent.
  • the carbon number of each group is preferably within the above range, including the carbon number of the substituent.
  • the substituent is not particularly limited, and examples thereof include an alkyl group, an alkenyl group, an acyl group, a hydroxyl group, a hydroxyalkyl group, an alkoxy group, an aryl group, a heteroaryl group and an alicyclic group.
  • the carbon atom which comprises an alkylene group may be substituted by an oxygen atom, a sulfur atom, or a nitrogen atom
  • the ring member atom of a cycloalkylene group may be substituted by an oxygen atom, a sulfur atom, or a nitrogen atom
  • X 32 may be a linking group containing the above group, may be a linking group consisting of the above groups, or may be a linking group having a structure in which two or more of the above groups are combined.
  • X 32 may be a group in which cycloalkylene groups are linked by a single bond, -O-, -S- or an alkylene group, and arylene groups are a single bond, -O-, -S It may be a group linked by-or an alkylene group, and may be a group linked by a single bond, -O-, -S- or an alkylene group, and a cycloalkylene group and an arylene group.
  • X 32 is an alkylene group having 5 to 20 carbon atoms and at least one member selected from an alicyclic ring, a heterocyclic ring and an aromatic ring as a substituent; It is preferable to represent an alkylene group, an arylene group having 6 to 20 carbon atoms, or a combination thereof.
  • the ring-constituting atom of the cycloalkylene group may be substituted with an oxygen atom, a sulfur atom or a nitrogen atom.
  • said carbon number is carbon number also including carbon number of a substituent, when each group has a substituent.
  • X 32 is an alkylene group having at least one selected from an alicyclic ring, a heterocyclic ring and an aromatic ring as a substituent
  • the alicyclic ring, the heterocyclic ring and the aromatic ring are preferably a 5- or 6-membered ring
  • the cycloalkylene group is preferably a 5- or 6-membered ring.
  • the carbon number of the arylene group is preferably 6 to 12.
  • the unit represented by General formula (3) is a unit selected from the following structural units.
  • R 331 represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms.
  • r1 is 0 or 1;
  • R 332 and R 333 each independently represent a hydrogen atom or a methyl group, and
  • Z 331 is a linking group represented by any of the following structural formulas.
  • * represents a linking site.
  • R 331 is preferably a hydrogen atom, and R 332 and R 333 are preferably a hydrogen atom. Further, Z 331 is preferably a linking group represented by the following structural formula.
  • the unit represented by the general formula (3) is particularly preferably a unit selected from the following structural units.
  • the compound used as a precursor may be obtained commercially, and may be manufactured synthetically.
  • the compounds to be precursors are produced synthetically, they can be synthesized by known methods and methods described in the examples.
  • the retardation film of the present invention comprises at least one selected from the unit represented by the general formula (1) and the unit represented by the general formula (2), and the unit represented by the general formula (3) And a copolymer containing.
  • the retardation film of the present invention may further contain another structural unit as long as the effects of the present invention are exhibited.
  • the copolymer may further comprise a polyester oligomer.
  • the unit represented by the general formula (1) and the unit represented by the above general formula (2) are preferably contained in an amount of 10 mol% or more, and 20 mol% with respect to all the constituent units of the copolymer It is more preferable that it is contained above.
  • the unit represented by the general formula (1) and the unit represented by the general formula (2) are preferably contained in an amount of 80 mol% or less, based on all the constituent units of the copolymer, 70 More preferably, it is contained in an amount of mol% or less.
  • the unit represented by the general formula (1) and the unit represented by the general formula (2) may be 60 mol% or less, and 50 mol% with respect to all the constituent units of the copolymer. It may be the following.
  • the unit represented by the general formula (1) and the unit represented by the general formula (2) have a sufficiently large wavelength dispersion and a large negative birefringence. Therefore, it is possible to suppress the addition amount of the negative monomer component necessary to express the desired retardation Re (548), and to increase the choice of the unit represented by the general formula (3) which is more versatile. it can. This also makes it possible to suppress the manufacturing cost of the retardation film.
  • the unit represented by the general formula (3) is preferably contained in an amount of 20 mol% or more, more preferably 30 mol% or more, based on all the structural units of the copolymer.
  • the unit represented by the general formula (3) is preferably contained in an amount of 90 mol% or less, more preferably 80 mol% or less, based on all the constituent units of the copolymer.
  • the weight average molecular weight of the copolymer is preferably 10000 or more, more preferably 20000 or more, and still more preferably 50000 or more.
  • the weight average molecular weight of the copolymer is preferably 200,000 or less, more preferably 100,000 or less.
  • the measurement of the molecular weight (mass average molecular weight) of the copolymer in the present invention can be performed using gel permeation chromatography (GPC). Specifically, tetrahydrofuran can be used as a solvent, polystyrene gel can be used, and the molecular weight can be determined using a conversion molecular weight calibration curve previously obtained from the constitutive curve of standard monodispersed polystyrene.
  • the measurement conditions of gel permeation chromatography are as follows. Column: Shodex KF801, KF803L, KF800L, KF800D (Showa Denko KK 4 products connected) Column temperature: 40 ° C Sample concentration: 0.5 mass% Detector: RI-2031 plus (made by JASCO) Pump: RI-2080plus (made by JASCO) Flow rate (flow rate): 0.8 ml / min Injection volume: 10 ⁇ l
  • the copolymer can be polymerized using known reaction means. For example, it is selected from (a) a condensation method in which phosgene or a phosgene precursor is reacted with at least one selected from dihydric phenol and dihydric phenol, and (b) selected from dihydric phenol and dihydric phenol derivative Examples include transesterification of at least one type using a carbonate precursor such as diester carbonate.
  • the phosgene precursor means triphosgene or diphosgene, and in the following, at least one selected from phosgene and a phosgene precursor may be simply referred to as phosgene.
  • at least one selected from dihydric phenol and dihydric phenol may be simply referred to as dihydric phenol.
  • dihydric phenol it is preferable to use a compound that can be a unit represented by the above-mentioned general formula (1) or general formula (2).
  • dihydric phenol it is preferable to use the chlorocarbonic acid compound etc. which can become a unit represented by General formula (1) or General formula (2).
  • the compound which can become a unit represented by General formula (3), and the chlorocarbonic acid compound which can become a unit represented by General formula (3) as a derivative of a dihydric phenol or a dihydric phenol.
  • a catalyst When the copolymer is polymerized, a catalyst, an end terminator, an antioxidant for dihydric phenol, a heat stabilizer, etc. may be used, as necessary.
  • the reaction using the condensation method of reacting phosgene of (a) is a reaction of dihydric phenol with phosgene and is carried out in the presence of an acid binder and an organic solvent.
  • an acid binder for example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an amine compound such as pyridine is used.
  • an organic solvent for example, halogenated hydrocarbons such as methylene chloride and chlorobenzene are used.
  • a catalyst such as tertiary amine such as triethylamine, tetra-n-butylammonium bromide or tetra-n-butylphosphonium bromide, a quaternary ammonium compound, a quaternary phosphonium compound or the like for accelerating the reaction. it can. At that time, it is preferable to keep the reaction temperature usually 0 to 40 ° C., the reaction time about 10 minutes to 5 hours, and the pH during the reaction to be 9 or more.
  • the reaction using the transesterification method of (b) is a transesterification reaction of dihydric phenol and carbonate ester, and the dihydric phenol and carbonate ester are mixed while heating in the presence of an inert gas, It is carried out by a method of distilling off the alcohol or phenol to be produced.
  • the reaction temperature varies depending on the boiling point of the alcohol or phenol to be produced, etc., but is usually in the range of 120 to 350 ° C.
  • the pressure of the system is reduced to about 1.3 ⁇ 10 1 to 1.3 ⁇ 10 3 Pa to facilitate distillation of the formed alcohol or phenol.
  • the reaction time is usually about 1 to 4 hours.
  • an ester such as an aryl group having 6 to 10 carbon atoms which may have a substituent, an aralkyl group or an alkyl group having 1 to 4 carbon atoms can be mentioned.
  • Specific examples include diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate, bis (diphenyl) carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate and the like, among which diphenyl carbonate It is preferred to use.
  • a polymerization catalyst can be used to accelerate the polymerization rate.
  • the polymerization catalyst include alkali metal compounds such as sodium hydroxide, potassium hydroxide, sodium salts of dihydric phenol and potassium salts, alkaline earth metal compounds such as calcium hydroxide, barium hydroxide and magnesium hydroxide, tetramethyl Nitrogen-containing basic compounds such as ammonium hydroxide, tetraethylammonium hydroxide, trimethylamine and triethylamine, alkoxides of alkali metals and alkaline earth metals, organic acid salts of alkali metals and alkaline earth metals, zinc compounds, boron compounds Aluminum compounds, silicon compounds, germanium compounds, organic tin compounds, lead compounds, osmium compounds, antimony compounds, manganese compounds, titanium compounds, zirconium compounds, etc.
  • catalysts used in the ester exchange reaction can be used alone or in combination of two or more.
  • the amount of these polymerization catalysts used is preferably 1 ⁇ 10 ⁇ 8 to 1 ⁇ 10 ⁇ 3 equivalents with respect to 1 mol of the raw material dihydric phenol.
  • monofunctional phenols commonly used as a termination agent can be used in the polymerization reaction.
  • monofunctional phenols are used as molecular terminators for molecular weight control, and the resulting copolymer is capped with groups based on monofunctional phenols at the end. Excellent thermal stability.
  • the present invention is a copolymer comprising at least one of a unit represented by the general formula (1) and a unit represented by the general formula (2), and a unit represented by the general formula (3)
  • the present invention relates to a retardation film containing
  • the retardation film means a film having birefringence on the entire surface or in part.
  • the retardation film of the present invention may be a single layer film or a multilayer film composed of a plurality of layers, but is preferably a single layer film.
  • the in-plane retardation at each wavelength of the retardation film satisfies the following conditions. 20 nm ⁇ Re (548) ⁇ 300 nm 0.5 ⁇ Re (446) / Re (548) ⁇ 1.0 1.0 ⁇ Re (629) / Re (548) ⁇ 2.0 However, Re (446), Re (548), and Re (629) represent in-plane retardation at wavelengths of 446 nm, 548 nm, and 629 nm, respectively.
  • the retardation film of the present invention When the in-plane retardation at each wavelength of the retardation film satisfies the above conditions, it means that the retardation film of the present invention exhibits reverse wavelength dispersion. That is, the retardation film of the present invention is a retardation film having reverse wavelength dispersion.
  • the in-plane retardation at each wavelength can be measured by an ellipsometer (M150, manufactured by JASCO Corporation).
  • the in-plane retardation at each wavelength of the retardation film satisfies the following conditions. 50 nm ⁇ Re (548) ⁇ 200 nm 0.6 ⁇ Re (446) / Re (548) ⁇ 0.9 1.0 ⁇ Re (629) / Re (548) ⁇ 1.5
  • the retardation film of the present invention is sufficient because it has a unit represented by the above general formula (1) and / or a unit represented by the above general formula (2), and the above general formula (3). Reverse wavelength dispersion can be exhibited. This is because the unit represented by the general formula (1) and the unit represented by the general formula (2) have large negative birefringence and sufficiently large wavelength dispersion.
  • the retardation film of the present invention can exhibit sufficient reverse wavelength dispersion, it can be said that adjustment to a desired retardation is easy.
  • the unit represented by the general formula (1) and the unit represented by the general formula (2) have a large negative birefringence and a sufficiently large wavelength dispersion, so adjustment to the desired retardation Re (548)
  • the amount of the monomer component of the unit represented by the general formula (3) which is more versatile than the unit represented by the general formula (1) and the unit represented by the general formula (2), can be increased. This also makes it possible to suppress the manufacturing cost of the retardation film.
  • the present invention is also characterized in that a retardation film having a smaller photoelastic coefficient can be obtained.
  • a retardation film having a smaller photoelastic coefficient can be obtained.
  • the photoelastic coefficient of the retardation film 0 cm 2 / is preferably N or more and 40 ⁇ 10 -8 cm 2 / N or less, 0 cm 2 / N at 30 ⁇ 10 -8 cm 2 / N or less than It is more preferable that
  • the thickness of the retardation film of the present invention is preferably 10 ⁇ m or more, and more preferably 20 ⁇ m or more.
  • the thickness of the retardation film is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less.
  • the retardation film of this invention can be manufactured by a well-known method using the composition containing the copolymer mentioned above. Specific examples thereof include a casting method in which the copolymer of the present invention is dissolved in a solvent and cast, and then the solvent is removed, and a method in which the copolymer is film-formed without using a solvent. It is not particularly limited.
  • a dope solution in which the copolymer is dissolved in an ether solvent such as tetrahydrofuran, an aromatic solvent such as toluene, or a halogen solvent such as methylene chloride can be used.
  • the method for producing a retardation film includes a step of applying a composition containing a copolymer onto a substrate, and when applying a composition containing a copolymer onto a substrate, spin coating, air knife coating, A curtain coat method, a roller coat method, a wire bar coat method, a gravure coat method, a die coat method etc. may be mentioned, and it is preferable to use a wire bar coat method.
  • the drying step can be performed by a method of heating a substrate having a coating film (coated composition) with a heated hot plate.
  • the drying step can also be performed by applying a wind of a predetermined temperature to the coating film.
  • a stretching step is preferably provided.
  • the film obtained through the drying step is cut out to a predetermined size and uniaxially stretched at the fixed end to produce a stretched film (retardation film).
  • the retardation of the retardation film can be measured using a retardation measurement apparatus (KOBRA-WPR manufactured by Oji Scientific Instruments).
  • a retardation measurement apparatus manufactured by Oji Scientific Instruments.
  • the retardation film of the present invention can be obtained by stretching a film, and conditions such as stretching method, stretching temperature, stretching ratio, stretching speed, and thermal aging after stretching can be appropriately changed according to the purpose.
  • the stretching method include a free end stretching method, a fixed end stretching method, a free end shrinkage method, a fixed end shrinkage method and the like, which may be used alone or may be used simultaneously or sequentially.
  • the stretching direction there are horizontal direction, vertical direction, thickness direction, diagonal direction and the like, and it is not particularly limited.
  • the stretching temperature is preferably set based on the glass transition temperature (Tg) of the film. Specifically, it is preferably Tg-20 ° C. or more, more preferably Tg-10 ° C. or more.
  • the stretching temperature is preferably Tg + 30 ° C. or less, more preferably Tg + 20 ° C. or less.
  • the draw ratio can be appropriately selected in order to impart the intended optical properties at the desired thickness.
  • the stretch ratio is preferably 1.1 times or more, more preferably 1.5 times or more.
  • the stretching ratio is preferably 6 times or less, more preferably 4 times or less, More preferably, it is 3 times or less.
  • the stretching speed is preferably adjusted appropriately in order to increase the productivity and to suppress an excessively large stretching ratio in order to obtain a desired retardation.
  • the stretching rate is preferably adjusted so that the strain rate represented by the following formula is 50% or more, more preferably 100% or more, and preferably 200% or more. Is more preferred.
  • the drawing speed in order to suppress the breakage at the time of drawing and to prevent the fluctuation of the optical characteristics under high temperature conditions, it is preferable to adjust the drawing speed so that the strain speed represented by the following formula is 1500% or less It is more preferable to adjust so that it becomes 1000% or less.
  • Strain rate (% / min) Stretching speed (mm / min) / Raw film length (mm) ⁇ 100
  • the present invention may relate to a laminate having the above-described retardation film.
  • the retardation film is used for viewing angle compensation of various displays (liquid crystal display device, organic EL display device, plasma display device, FED field emission display device, SED surface electric field display device), for reflection prevention of external light, color compensation And for conversion of linearly polarized light into circularly polarized light.
  • the retardation film of the present invention has ideal retardation characteristics at each wavelength in the visible region, has a small photoelastic coefficient, is excellent in heat resistance and moldability, and has a tendency to have both little coloring and high transparency. Is suitable for use as a 1 ⁇ 4 ⁇ plate, a circularly polarizing plate, an image display device, etc.
  • the present invention may also be related to a polarizing plate having the above-described retardation film.
  • the manufacturing method of a polarizing plate is not specifically limited, It can manufacture by a general method.
  • a polarizing plate is a protective film prepared by adsorbing a dichroic substance such as iodine or a dichroic dye to various films according to a conventionally known method, dyeing, crosslinking, stretching, and drying. Manufactured by laminating.
  • the polarizing plate is composed of a polarizer and two protective films protecting both surfaces thereof, and the retardation film of the present invention may be used as at least one of the two protective films. it can.
  • the present invention may relate to a liquid crystal display device having the above-described retardation film.
  • the liquid crystal display device has the above-described retardation film or polarizing plate of the present invention.
  • the liquid crystal display device comprises a liquid crystal cell having a liquid crystal supported between two electrode substrates, two polarizers disposed on both sides thereof, and at least one retardation between the liquid crystal cell and the polarizer. It has the composition which arranged the film.
  • the liquid crystal layer of the liquid crystal cell is usually formed by sealing liquid crystal in a space formed by sandwiching a spacer between two substrates.
  • the transparent electrode layer is formed on the substrate as a transparent film containing a conductive substance.
  • the liquid crystal cell may further be provided with a gas barrier layer, a hard coat layer or an undercoat layer (used for adhesion of a transparent electrode layer). These layers are usually provided on a substrate.
  • the substrate of the liquid crystal cell preferably has a thickness of 50 ⁇ m to 2 mm.
  • TN Transmission Nematic
  • IPS In-Plane Switching
  • FLC Fluoroelectric Liquid Crystal
  • AFLC Anti-ferroelectric Liquid Crystal
  • OCB Optically Compensatory Bend
  • STN Super Twisted Nematic
  • Various display modes such as VA (Vertically Aligned), ECB (Electrically Controlled Birefringence), and HAN (Hybrid Aligned Nematic) have been proposed.
  • VA Very Aligned
  • ECB Electrodefringence
  • HAN Hybrid Aligned Nematic
  • the liquid crystal display device of the IPS mode is preferably used.
  • These liquid crystal display devices may be transmissive, reflective or semi-transmissive.
  • composition example 2 290 g of 5,6-dimethoxy-1-indanone and 204 g of orthophthalaldehyde were dissolved in 1500 mL of methanol. The reaction solution was warmed, and while maintaining at 60 ° C., a solution of 255 g of potassium hydroxide dissolved in 1750 mL of methanol was added dropwise. After stirring for 5 hours, the reaction solution is returned to room temperature, and the precipitated crystals are collected by filtration to obtain 230 g of compound A-2A.
  • a copolymer (PC-2) was obtained in the same manner as in Synthesis Example 1 except that compound (A1) in Synthesis Example 1 was replaced with an equimolar amount of compound (A2).
  • the weight average molecular weight of the copolymer (PC-2) was as described in Table 1.
  • composition example 3 210 g of compound A3 was obtained using the synthesis method described in JP-A-2015-193809.
  • a copolymer (PC-3) was obtained in the same manner as in Synthesis Example 1 except that compound (A1) in Synthesis Example 1 was replaced with an equimolar amount of compound (A3).
  • the weight average molecular weight of the copolymer (PC-3) was as described in Table 1.
  • composition example 4 10.0 g (43 mmol) of the compound (A5-1) and 30.0 g (215 mmol) of 2-phenoxyethanol were dissolved in 15 ml of toluene and 12 ml of methanesulfonic acid. The resulting solution was warmed, and 0.16 mL of 3-mercaptopropionic acid was added dropwise while keeping the temperature at 120 ° C. The reaction solution was warmed, and after stirring at 150 ° C. for 2 hours, the reaction solution was returned to room temperature. The upper layer of the two-phase separated organic layer was removed, and 200 ml of ethyl acetate and water were added and stirred.
  • the precipitated crystals were collected by filtration and recrystallized with a mixed solvent of ethyl acetate / hexane. Filtration gave 12 g (25 mmol) of a compound (A5).
  • the 1 H-NMR (nuclear magnetic resonance) data of the compound (A5) are as follows. 1 H-NMR (300 MHz, DMSO-d6): ⁇ 3.66 ppm (tt, 4 H), 3.92 ppm (t, 4 H), 4.84 ppm (t, 2 H), 6.85 ppm (d, 4 H); 11 ppm (t, 4 H), 7.57-7. 70 ppm (m, 3 H), 7. 76-7.89 ppm (m, 2 H), 8.04-8. 10 ppm (m, 1 H), 8. 15- 8.25 ppm (m, 2 H)
  • a copolymer (PC-4) was obtained in the same manner as in Synthesis Example 1 except that compound (A1) in Synthesis Example 1 was replaced with an equimolar amount of compound (A5).
  • the weight average molecular weight of the copolymer (PC-4) was as described in Table 1.
  • composition example 5 24.9 g (51 mmol) of compound (A1), 22.7 g (76.5 mmol) of spiro glycol (SPG), and 102 ml of pyridine were mixed and dissolved at room temperature under a nitrogen stream. After the mixture was heated to about 50 ° C. with stirring, a solution of 18.8 g of triphosgene and 45 g of tetrahydrofuran was slowly added dropwise over 3 hours. At this time, the reaction was carried out by dropwise addition, taking care so that the internal temperature of the temperature in the reaction system is maintained at 50 to 55.degree. After completion of the dropwise addition, stirring was carried out for 1 hour while maintaining the temperature in the reaction system within the above range, and the reaction was allowed to proceed sufficiently.
  • SPG spiro glycol
  • PC-5 The weight average molecular weight of the copolymer (PC-5) was as described in Table 2.
  • Synthesis Example 6 A copolymer (PC-6) was obtained in the same manner as in Synthesis Example 1 except that compound ISS in Synthesis Example 1 was replaced with an equimolar amount of compound CHDM.
  • the weight average molecular weight of the copolymer (PC-6) was as described in Table 2.
  • PC-7 The weight average molecular weight of the copolymer (PC-7) was as described in Table 2.
  • a copolymer (PCR-1) was obtained in the same manner as in Synthesis Example 1 except that compound (A1) in Synthesis Example 1 was replaced with an equimolar amount (A7).
  • the weight average molecular weight of the copolymer (PCR-1) was as described in Table 1.
  • Example 1 to 10 and Comparative Examples 1 to 4 The copolymers (PC-1) to (PC-10) and (PCR-1) to (PCR-4) obtained in Synthesis Examples 1 to 10 and Comparative Synthesis Examples 1 to 4 are dissolved in methylene chloride, respectively. A dope solution was made. A cast film was produced by a known method using this dope solution. The obtained film was cut into a size of 100 mm ⁇ 70 mm and used as a sample, and the sample was stretched 2.0 times at 190 ° C. Thus, retardation films of Examples 1 to 10 and Comparative Examples 1 to 4 were obtained.
  • ⁇ Photoelastic coefficient> The retardation films obtained in Examples and Comparative Examples are cut out to a size of 3.5 cm ⁇ 12 cm, no load, 250 g, 500 g, 1000 g, and 1500 g of in-plane retardation (Re) at each load of an ellipsometer (Japan).
  • the photoelastic coefficient was calculated from the slope of the straight line of Re change with respect to stress, which was measured by Spectroscopic Co., Ltd. (M150).
  • the reverse wavelength dispersion of the retardation film is larger as the value of Re (446/548) is smaller and as the value of Re (629/548) is larger.
  • the retardation films of Examples 1 to 4 had a reverse wavelength dispersion greater than that of the retardation film of Comparative Example 1.
  • Example 5 of the Table 2 with Comparative Example 2 Comparing Example 5 of the Table 2 with Comparative Example 2, Example 6 of the Table 2 with Comparative Example 3, and Example 7 of the Table 2 with Comparative Example 4, the negative monomer component used in the Example is a comparative example.
  • the negative monomer component (compound A7) used Compared to the negative monomer component (compound A7) used, the effect of making the reverse wavelength dispersion of Re is large, and the effect of making Re negative is large. Therefore, it is possible to suppress the amount of the negative monomer component necessary to develop the desired reverse wavelength dispersion and retardation Re (548) (for example, 137.5 nm). This means that the compositional ratio of the more versatile positive monomer component than the negative monomer component can be increased.
  • the photoelastic coefficient of the retardation film obtained in the examples is 40 ⁇ 10 ⁇ 12 / Pa or less, which is preferable as the retardation film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明は、十分な逆波長分散性を発揮し得る位相差フィルムを提供することを課題とする。本発明は、一般式(1)で表される単位及び一般式(2)で表される単位から選択される少なくとも一方と、一般式(3)で表わされる単位と、を含有する共重合体を含み、 20nm<Re(548)<300nmであり、 0.5<Re(446)/Re(548)<1.0であり、 1.0<Re(629)/Re(548)<2.0である位相差フィルムに関する。 但し、Re(446)、Re(548)、Re(629)は、それぞれ波長446nm、548nm、629nmにおける面内のレタデーションを表す。

Description

位相差フィルム
 本発明は、位相差フィルムに関する。
 従来、液晶表示装置等には、光学フィルムとして位相差フィルムが用いられている。
位相差フィルムとしては、長波長ほど位相差が大きくなる逆分散フィルムが知られている。逆分散フィルムを構成するフィルムの成分としては、例えばフィルムの延伸方向に対して平行な方向に屈折率を増大させる正の固有複屈折成分(以下、正のモノマー成分ともいう)と、フィルムの延伸方向に対して垂直な方向に屈折率を増大させる負の固有複屈折成分(以下、負のモノマー成分ともいう)がある。可視光の波長領域(約400nm~約800nm)において、正のモノマー成分が示す屈折率が負のモノマー成分が示す屈折率よりも大きく、且つ正のモノマー成分が示す屈折率の波長分散が負のモノマー成分が示す屈折率の波長分散より小さいことで逆分散フィルムとなる。これを達成するには負のモノマー成分が正のモノマー成分よりも長波長側に吸収極大を有することが必要となる。
 負のモノマー成分としては、フルオレン構造を含む成分が知られている。例えば、特許文献1~6には、フルオレン構造を含む構成単位と、脂環式炭化水素又は芳香族炭化水素を有する構成単位を含む共重合体からなる位相差フィルムが開示されている。特許文献1及び2では、フルオレン構造を含む構成単位として、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンから誘導される構成単位が開示されており、特許文献3~6では、9,9-ビス(4-ヒドロキシフェニル)フルオレンから誘導される構成単位が開示されている。
特許第5079150号公報 特許第5706071号公報 特許第5668077号公報 特許第4739636号公報 特許第4010810号公報 特許第3325560号公報
 しかしながら、従来の位相差フィルムにおいては、用いられる負のモノマー成分の屈折率波長分散が十分に大きくなく、逆波長分散性が十分に発揮されない場合があった。そこで本発明者らは、このような従来技術の課題を解決するために、十分な逆波長分散性を発揮し得る位相差フィルムを提供することを目的として検討を進めた。
 上記の課題を解決するために鋭意検討を行った結果、本発明者らは、特定の構造を有する負のモノマー成分由来の単位と正のモノマー成分由来の単位を含む共重合体から位相差フィルムを形成することにより、十分な逆波長分散性を発揮し得る位相差フィルムが得られることを見出した。
 具体的に、本発明は、以下の構成を有する。
[1] 下記一般式(1)で表される単位及び下記一般式(2)で表される単位から選択される少なくとも一方と、下記一般式(3)で表わされる単位と、を含有する共重合体を含み、
 20nm<Re(548)<300nmであり、
 0.5<Re(446)/Re(548)<1.0であり、
 1.0<Re(629)/Re(548)<2.0である位相差フィルム;
 但し、Re(446)、Re(548)、Re(629)は、それぞれ波長446nm、548nm、629nmにおける面内のレタデーションを表す;
Figure JPOXMLDOC01-appb-C000008
 一般式(1)中、R11~R14はそれぞれ独立に、水素原子又はハメットの置換基定数σ値が-0.15よりも小さい置換基であって、アリール基、ヘテロアリール基及び反応性基を有する置換基を除く置換基であり、R11~R14は互いに隣り合う置換基同士で互いに結合して縮合環を形成するものではない;
 R15~R17はそれぞれ独立に置換基を表す;
 a~cはそれぞれ独立に、0以上の整数であり、各環に置換可能な最大数以下の整数を表す;a~cが2以上の整数である場合、複数のR15、複数のR16及び複数のR17はそれぞれ同一でも異なっていてもよい;
 Ar11及びAr12はそれぞれ独立に、破線で囲まれたベンゼン環を含むアリール基又は破線で囲まれたベンゼン環を縮合環のひとつとして含むヘテロアリール基を表す;
 L11及びL12はそれぞれ独立に、炭素数が2~8のアルキレン基、炭素数が5~12のシクロアルキレン基、炭素数が6~20のアリーレン基、又は炭素数が6~20のヘテロアリーレン基を表す;
 n11及びn12はそれぞれ独立に0~10の整数を表す;n11及びn12が2~10の整数である場合、複数のL11及び複数のL12はそれぞれ同一でも異なっていてもよい;
 Ar11及びAr12がそれぞれ独立に、破線で囲まれたベンゼン環を含む芳香族縮合環基である場合は、R15、R16、-O-[L11-O]n11-及び-[O-L12n12-O-はそれぞれ独立に、破線で囲まれたベンゼン環に置換していても、破線で囲まれたベンゼン環以外の縮合環に置換していてもよい;
Figure JPOXMLDOC01-appb-C000009
 一般式(2)中、Y21及びY22はそれぞれ独立に、炭素原子、酸素原子、硫黄原子又は窒素原子であり、Y21及びY22の少なくとも1つは酸素原子、硫黄原子又は窒素原子である;
 ZはY21-C=C-Y22とともに5~7員環を形成する原子群であって、環構成原子が炭素原子、酸素原子、硫黄原子又は窒素原子からなる原子群を表す;
 R21~R24はそれぞれ独立に置換基を表す;
 p~sはそれぞれ独立に、0以上の整数であり、各環に置換可能な最大数以下の整数を表す;p~sが2以上の整数である場合、複数のR21、複数のR22、複数のR23及び複数のR24はそれぞれ同一でも異なっていてもよい;
 Ar21及びAr22はそれぞれ独立に、破線で囲まれたベンゼン環を含むアリール基又は破線で囲まれたベンゼン環を縮合環のひとつとして含むヘテロアリール基を表す;
 X21及びX22はそれぞれ独立に、単結合、-O-、-S-から選ばれる基である。
 L21及びL22はそれぞれ独立に、炭素数が2~8のアルキレン基、炭素数が5~12のシクロアルキレン基、炭素数が6~20のアリーレン基、又は炭素数が6~20のヘテロアリーレン基を表す;
 m21及びm22はそれぞれ独立に0~10の整数を表す;m21及びm22が2~10の整数である場合、複数の-[L21-X21]-及び複数の-[X22-L22]-
はそれぞれ同一でも異なっていてもよい;
 Ar21及びAr22がそれぞれ独立に、破線で囲まれたベンゼン環を含む芳香族縮合環基である場合は、R21、R22、-O-[L21-X21m21-及び-[X22-L22m22-O-はそれぞれ独立に、破線で囲まれたベンゼン環に置換していても、破線で囲まれたベンゼン環以外の縮合環に置換していてもよい。
Figure JPOXMLDOC01-appb-C000010
 一般式(3)中、X32は炭素数が2~20のアルキレン基、炭素数が4~20のシクロアルキレン基、炭素数が6~20のアリーレン基又はこれらを組み合わせた基を表す;但し、シクロアルキレン基の環構成原子は、酸素原子、硫黄原子又は窒素原子で置換されていてもよい。
[2] 一般式(1)で表される単位が下記一般式(11)で表わされる単位である[1]に記載の位相差フィルム;
Figure JPOXMLDOC01-appb-C000011
 一般式(11)中、R11~R14はそれぞれ独立に、水素原子又はハメットの置換基定数σ値が-0.15よりも小さい置換基であって、アリール基、ヘテロアリール基及び反応性基を有する置換基を除く置換基であり、R11~R14は互いに隣り合う置換基同士で互いに結合して縮合環を形成するものではない;
 R15及びR16はそれぞれ独立にメチル基又はエチル基を表す;
 a及びbはそれぞれ独立に0~2の整数を表す;
 L11及びL12はそれぞれ独立に、エチレン基又はプロピレン基を表す;
 n11及びn12はそれぞれ独立に0~3の整数を表す。
[3] 一般式(2)で表される単位が下記一般式(21)で表わされる単位である[1]又は[2]に記載の位相差フィルム;
Figure JPOXMLDOC01-appb-C000012
 一般式(21)中、Y21及びY22はそれぞれ独立に、炭素原子又は窒素原子を表し、Y21及びY22の少なくとも1つは窒素原子である;
 R21及びR22はそれぞれ独立にメチル基又はエチル基を表し、R23及びR24はそれぞれ独立に置換基を表す;
 p及びqはそれぞれ独立に0~3の整数を表し、rは0~4の整数を表し、sは0~2の整数を表し、sが2の場合、R24で表される置換基は、互いに結合して縮合環を形成してもよい;
 L21及びL22はそれぞれ独立に、エチレン基又はプロピレン基を表す;
 m21及びm22はそれぞれ独立に0~3の整数を表す。
[4] 一般式(21)において、Y21及びY22は窒素原子である[3]に記載の位相差フィルム。
[5] 一般式(3)において、X32は脂環、複素環及び芳香環から選択される少なくとも1種を置換基として有する炭素数が5~20のアルキレン基、炭素数が4~20のシクロアルキレン基、炭素数が6~20のアリーレン基又はこれらを組み合わせた基を表す[1]~[4]のいずれかに記載の位相差フィルム;但し、シクロアルキレン基の環構成原子は、酸素原子、硫黄原子又は窒素原子で置換されていてもよい。
[6] 一般式(3)で表される単位が下記構成単位から選択される単位である[1]~[5]のいずれかに記載に位相差フィルム;
Figure JPOXMLDOC01-appb-C000013
 上記構成単位中、R331は水素原子又は炭素数1~12のアルキル基を表す;r1は0又は1である;R332及びR333はそれぞれ独立に水素原子又はメチル基を表し、Z331は、以下の構造式のいずれかで表される連結基である;
Figure JPOXMLDOC01-appb-C000014
 上記構造式中の*は連結部位を表す。
[7] 光弾性係数が0cm/N以上40×10-8cm/N以下である[1]~[6]のいずれかに記載の位相差フィルム。
 本発明によれば、十分な逆波長分散性を発揮し得る位相差フィルムを得ることができる。
 以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されない。なお、本明細書において「~」を用いて表される数値範囲は「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。また、本明細書における基(原子団)が置換基を有している場合、各基(原子団)の炭素数は置換基の炭素数も含めた値である。
(一般式(1)で表される単位)
 本発明は、一般式(1)で表される単位及び一般式(2)で表される単位から選択される少なくとも一方と、一般式(3)で表わされる単位と、を含有する共重合体を含む位相差フィルムに関する。
 一般式(1)で表される単位は、以下で表される構成単位である。一般式(1)で表される単位は、負のモノマー成分に由来する単位である。
Figure JPOXMLDOC01-appb-C000015
 一般式(1)中、R11~R14はそれぞれ独立に、水素原子又はハメットの置換基定数σ値が-0.15よりも小さい置換基であって、アリール基、ヘテロアリール基及び反応性基を有する置換基を除く置換基であり、R11~R14は互いに隣り合う置換基同士で互いに結合して縮合環を形成するものではない。
 R15~R17はそれぞれ独立に置換基を表す。
 a~cはそれぞれ独立に、0以上の整数であり、各環に置換可能な最大数以下の整数を表す。a~cが2以上の整数である場合、複数のR15、複数のR16及び複数のR17はそれぞれ同一でも異なっていてもよい。
 Ar11及びAr12はそれぞれ独立に、破線で囲まれたベンゼン環を含むアリール基又は破線で囲まれたベンゼン環を縮合環のひとつとして含むヘテロアリール基を表す。
 L11及びL12はそれぞれ独立に、炭素数が2~8のアルキレン基、炭素数が5~12のシクロアルキレン基、炭素数が6~20のアリーレン基、又は炭素数が6~20のヘテロアリーレン基を表す。
 n11及びn12はそれぞれ独立に0~10の整数を表す。n11及びn12が2~10の整数である場合、複数のL11及び複数のL12はそれぞれ同一でも異なっていてもよい。
 Ar11及びAr12がそれぞれ独立に、破線で囲まれたベンゼン環を含む芳香族縮合環基である場合は、R15、R16、-O-[L11-O]n11-及び-[O-L12n12-O-はそれぞれ独立に、破線で囲まれたベンゼン環に置換していても、破線で囲まれたベンゼン環以外の縮合環に置換していてもよい。
 一般式(1)中、R11~R14はそれぞれ独立に、水素原子又はハメットの置換基定数σ値が-0.15よりも小さい置換基であって、アリール基、ヘテロアリール基及び反応性基を有する置換基を除く置換基である。R11~R14は互いに隣り合う置換基同士で互いに結合して縮合環を形成するものではない。なお、反応性基とは、(メタ)アクリロイル基である。
 R11~R14のうち少なくとも1つは、ハメットの置換基定数σ値が-0.15よりも小さい置換基であって、アリール基、ヘテロアリール基及び反応性基を有する置換基を除く置換基であることが好ましい。R11~R14のうち少なくとも1つが、上記範囲のハメットの置換基定数σを有する電子供与性基であることにより、一般式(1)で表される単位の波長分散を大きくすることができ、位相差フィルムの逆波長分散性を大きくすることができる。
 なお、ハメットの置換基定数σ値は、-0.20以下であることがより好ましく、-0.25以下であることがさらに好ましい。なお、ハメットの置換基定数σ値の下限値は-0.7であることが好ましい。
 ハメットの置換基定数σ値は、Correlation Analysis in Chemistry, Ed. By N.B.Chapman, J.Shorter, p.439~540, Plenum Press(1978)及びこれに引用されている参考文献に記載されている。ここでは、σは、下記のように定義される。
 σ=Log(Ka/Ka)=pKa-pKa
 pKaは、水中25℃における安息香酸の酸解離定数である。pKaは、水中25℃におけるパラ位置換安息香酸の酸解離定数である。なお、上記文献に記載されていないものについては、同文献記載の方法によって求めることが可能である。
 ハメットの置換基定数σ値が-0.15よりも小さい置換基としては、例えば、シクロプロピル基(-cycloC5、σ値は-0.21)、アミノ基(-NH2、σ値は-0.57)、ジメチルアミノ基(-N(CH2、σ値は-0.63)、ベンゾイルアミノ基(-NHCOC5、σ値は-0.19)、ヒドロキシル基(-OHσ値は-0.38)、メトキシ基(-OCH3、σ値は-0.28)、エトキシ基(-OC5、σ値は-0.21)、プロポキシ基(-OC7、σ値は-0.25)等を挙げることができる。なお、R11~R14のうち複数の置換基が、ハメットの置換基定数σ値が-0.15よりも小さい置換基である場合、これらの置換基は同一でも異なっていてもよい。
 一般式(1)において、R12及びR13のうち少なくとも1つは、ハメットの置換基定数σ値が-0.15よりも小さい置換基であって、アリール基、ヘテロアリール基及び反応性基を有する置換基を除く置換基であることが好ましく、R12及びR13がハメットの置換基定数σ値が-0.15よりも小さい置換基であって、アリール基、ヘテロアリール基及び反応性基を有する置換基を除く置換基であることが好ましい。上記のように特定位置に配される置換基のハメットの置換基定数σ値を-0.15よりも小さくすることにより、一般式(1)で表される単位の波長分散を大きくすることができ、位相差フィルムの逆波長分散性を大きくすることができる。
 ハメットの置換基定数σ値が-0.15よりも小さい置換基は、アルキル基、アルコキシ基、又はジアルキルアミノ基であることが好ましく、アルコキシ基であることがより好ましい。アルコキシ基は、メトキシ基、エトキシ基又はプロポキシ基であることが好ましく、メトキシ基であることがより好ましい。
 R11~R14のうち少なくとも1つを上記のようなアルコキシ基とすることにより、一般式(1)で表される単位の構造がコンパクトになり、且つ一般式(1)で表される単位の波長分散を大きくすることができる。これにより、位相差フィルムの逆波長分散性を大きくすることができる。
 本発明においては、R12及びR13のうち少なくとも1つが、アルコキシ基であることが好ましく、R12及びR13がアルコキシ基であることがより好ましい。さらに、R12及びR13はメトキシ基、エトキシ基又はプロポキシ基であることが好ましく、メトキシ基であることがより好ましい。
 一般式(1)中、R15~R17はそれぞれ独立に置換基を表す。R15~R17が表す置換基としては特に制限はないが、例えば、ハロゲン原子、ハロゲン化アルキル基、アルキル基、アルケニル基、アシル基、ヒドロキシル基、ヒドロキシアルキル基、アルコキシ基、アリール基、ヘテロアリール基、脂環基などを挙げることができる。R15~R17が表す置換基はアルキル基、アルコキシ基またはアリール基であることが好ましく、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基またはフェニル基であることがより好ましく、メチル基、メトキシ基またはフェニル基であることが特に好ましい。
 一般式(1)において、Ar11及びAr12はそれぞれ独立に、破線で囲まれたベンゼン環を含むアリール基又は破線で囲まれたベンゼン環を縮合環のひとつとして含むヘテロアリール基を表す。中でも、Ar11及びAr12はそれぞれ独立に、破線で囲まれたベンゼン環を含むアリール基であることが好ましい。Ar11及びAr12が破線で囲まれたベンゼン環を含むアリール基である場合は、炭素数6~18のアリール基であることが好ましく、炭素数6~14のアリール基であることがより好ましく、炭素数6~10のアリール基であることが特に好ましい。また、Ar11及びAr12が破線で囲まれたベンゼン環を縮合環のひとつとして含むヘテロアリール基である場合は、環員数9~14のヘテロアリール基であることが好ましく、環員数9~10のヘテロアリール基であることがより好ましい。Ar11及びAr12が表す置換基を有していてもよいヘテロアリール基を構成するヘテロ原子としては、窒素原子、酸素原子、硫黄原子を挙げることができる。
 Ar11及びAr12はそれぞれ独立に、破線で囲まれたベンゼン環のみから構成されるアリール基であってもよく、破線で囲まれたベンゼン環を縮合環のひとつとして含む芳香族縮合環基であってもよい。なお、本明細書において、芳香族縮合環基の縮合環は縮合環全体として芳香族性を有するものである。
 一般式(1)中、L11及びL12はそれぞれ独立に、炭素数が2~8のアルキレン基、炭素数が5~12のシクロアルキレン基、炭素数が6~20のアリーレン基、又は炭素数が6~20のヘテロアリーレン基を表す。L11及びL12はそれぞれ独立に、炭素数が2~8のアルキレン基であることが好ましく、炭素数が2~4のアルキレン基であることがより好ましく、エチレン基であることがさらに好ましい。
 一般式(1)中、a~cはそれぞれ独立に、0以上の整数であり、各環に置換可能な最大数以下の整数を表す。a~cはそれぞれ独立に、0~4の整数であることが好ましく、0~3の整数であることがより好ましく、0~2の整数であることがさらに好ましく、0又は1であることがよりさらに好ましく、0であることが特に好ましい。
 なお、aが2以上の整数である場合、複数のR15は同一でも異なっていてもよい。複数のR15は互いに結合して環を形成してもよいが、複数のR15は互いに結合して環を形成していないことが好ましい。
 bが2以上の整数である場合、複数のR16は同一でも異なっていてもよい。複数のR16は互いに結合して環を形成してもよいが、複数のR16は互いに結合して環を形成していないことが好ましい。
 cが2以上の整数である場合、複数のR17は同一でも異なっていてもよい。複数のR17は互いに結合して環を形成してもよいが、複数のR17は互いに結合して環を形成していないことが好ましい。
 一般式(1)中、n11及びn12はそれぞれ独立に0~10の整数であればよく、0~4の整数であることが好ましく、0~2の整数であることがより好ましく、0又は1であることがさらに好ましい。n11が2~10の整数である場合、複数のL11は同一でも異なっていてもよく、n12が2~10の整数である場合、複数のL12は同一でも異なっていてもよい。
 一般式(1)で表される単位は、下記一般式(11)で表される単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000016
 一般式(11)中、R11~R14はそれぞれ独立に、水素原子又はハメットの置換基定数σ値が-0.15よりも小さい置換基であって、アリール基、ヘテロアリール基及び反応性基を有する置換基を除く置換基であり、R11~R14は互いに隣り合う置換基同士で互いに結合して縮合環を形成するものではない。
 R15及びR16はそれぞれ独立にメチル基又はエチル基を表す。
 a及びbはそれぞれ独立に0~2の整数を表す。
 L11及びL12はそれぞれ独立に、エチレン基又はプロピレン基を表す。
 n11及びn12はそれぞれ独立に0~3の整数を表す。
 一般式(11)におけるR11~R14の好ましい範囲は、一般式(1)におけるR11~R14の好ましい範囲と同様である。
 一般式(11)におけるR15及びR16はそれぞれ独立に、メチル基であることが好ましい。
 一般式(11)におけるL11及びL12はそれぞれ独立に、エチレン基であることが好ましい。
 一般式(11)におけるn11及びn12はそれぞれ独立に、0~2の整数であることが好ましく、0又は1であることがより好ましい。
 一般式(11)におけるa及びbはそれぞれ独立に、0又は1であることが好ましく、0であることがより好ましい。
 以下において、一般式(1)で表される単位の具体例を列挙するが、本発明は以下の単位に限定されるものではない。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-I000019
 一般式(1)で表される単位の入手方法については特に制限はなく、前駆体となる化合物を商業的に入手してもよく、合成により製造してもよい。前駆体となる化合物を合成により製造する場合は、公知の方法及び実施例に記載の方法で合成することができる。
(一般式(2)で表される単位)
 一般式(2)で表される単位は、以下で表される構成単位である。一般式(2)で表される単位は、負のモノマー成分に由来する単位である。
Figure JPOXMLDOC01-appb-C000020
 一般式(2)中、Y21及びY22はそれぞれ独立に、炭素原子、酸素原子、硫黄原子又は窒素原子であり、Y21及びY22の少なくとも1つは酸素原子、硫黄原子又は窒素原子である。
 ZはY21-C=C-Y22とともに5~7員環を形成する原子群であって、環構成原子が炭素原子、酸素原子、硫黄原子又は窒素原子からなる原子群を表す。
 R21~R24はそれぞれ独立に置換基を表す。
 p~sはそれぞれ独立に、0以上の整数であり、各環に置換可能な最大数以下の整数を表す。p~sが2以上の整数である場合、複数のR21、複数のR22、複数のR23及び複数のR24はそれぞれ同一でも異なっていてもよい。
 Ar21及びAr22はそれぞれ独立に、破線で囲まれたベンゼン環を含むアリール基又は破線で囲まれたベンゼン環を縮合環のひとつとして含むヘテロアリール基を表す。
 X21及びX22はそれぞれ独立に、単結合、-O-、-S-から選ばれる基である。
 L21及びL22はそれぞれ独立に、炭素数が2~8のアルキレン基、炭素数が5~12のシクロアルキレン基、炭素数が6~20のアリーレン基、又は炭素数が6~20のヘテロアリーレン基を表す。
 m21及びm22はそれぞれ独立に0~10の整数を表す。m21及びm22が2~10の整数である場合、複数の-[L21-X21]-及び複数の-[X22-L22]-はそれぞれ同一でも異なっていてもよい。
 Ar21及びAr22がそれぞれ独立に、破線で囲まれたベンゼン環を含む芳香族縮合環基である場合は、R21、R22、-O-[L21-X21m21-及び-[X22-L22m22-O-はそれぞれ独立に、破線で囲まれたベンゼン環に置換していても、破線で囲まれたベンゼン環以外の縮合環に置換していてもよい。
 一般式(2)中、Y21及びY22はそれぞれ独立に、酸素原子、硫黄原子、窒素原子又は炭素原子であり、Y21及びY22の少なくとも1つは酸素原子、硫黄原子又は窒素原子である。Y21及びY22はそれぞれ独立に、窒素原子又は炭素原子であることが好ましく、Y21及びY22から選択される少なくとも一方は窒素原子であることが好ましい。また、Y21及びY22の両方が窒素原子であることがより好ましい。
 一般式(2)中、ZはY21-C=C-Y22とともに5~7員環を形成する原子群であって、環構成原子が炭素原子、酸素原子、硫黄原子又は窒素原子からなる原子群を表す。ZはY21-C=C-Y22とともに5又は6員環を形成する原子群であることが好ましく、6員環を形成する原子群であることがより好ましい。また、Zは環構成原子が炭素原子からなる原子群であることがより好ましい。
 一般式(2)中、R21~R24はそれぞれ独立に、置換基を表す。R21~R24が表す置換基としては特に制限はないが、例えば、ハロゲン原子、ハロゲン化アルキル基、アルキル基、アルケニル基、アシル基、ヒドロキシル基、ヒドロキシアルキル基、アルコキシ基、アリール基、ヘテロアリール基、脂環基、シアノ基、シリル基などを挙げることができる。
 R21~R23が表す置換基はそれぞれ独立に、アルキル基、アルコキシ基またはアリール基であることが好ましく、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基またはフェニル基であることがより好ましく、メチル基、メトキシ基またはフェニル基であることがさらに好ましく、メチル基又はメトキシ基であることが特に好ましい。
 R24はアルキル基、シリル基、アルコキシ基またはアリール基であることが好ましく、炭素数1~5のアルキル基、シリル基、炭素数1~5のアルコキシ基またはフェニル基であることがより好ましく、メチル基、シリル基またはメトキシ基であることがさらに好ましい。また、複数のR24は置換する環と縮合環を形成する基であってもよい。
 一般式(2)中、p~sはそれぞれ独立に0以上の整数であり、各環に置換可能な最大数以下の整数を表す。p~rはそれぞれ独立に、0~4の整数であることが好ましく、0~3の整数であることがより好ましく、0~2の整数であることがさらに好ましく、0又は1であることがよりさらに好ましく、0であることが特に好ましい。sは0~3の整数であることが好ましく、0~2の整数であることがより好ましい。
 なお、pが2以上の整数である場合、複数のR21は同一でも異なっていてもよい。複数のR21は互いに結合して環を形成してもよいが、複数のR21は互いに結合して環を形成していないことが好ましい。
 qが2以上の整数である場合、複数のR22は同一でも異なっていてもよい。複数のR22は互いに結合して環を形成してもよいが、複数のR22は互いに結合して環を形成していないことが好ましい。
 rが2以上の整数である場合、複数のR23は同一でも異なっていてもよい。複数のR23は互いに結合して環を形成してもよいが、複数のR23は互いに結合して環を形成していないことが好ましい。
 sが2以上の整数である場合、複数のR24は同一でも異なっていてもよく、複数のR24は互いに結合して環を形成してもよい。この場合、複数のR24は置換する環と縮合環を形成することが好ましい。縮合環はさらに置換基を有していてもよく、この場合、置換基としては、R24として挙げた置換基を好ましい置換基として例示できる。
 複数のR24が互いに結合して、置換する環と縮合環を形成する基である場合、縮合環を形成する環数は4以下であることが好ましく、3以下であることが好ましく、2であることが好ましい。縮合環を形成する環数を上記範囲とすることにより、上記構成単位を含む共重合体の着色を抑制し易くなる。
 一般式(2)において、Ar21及びAr22はそれぞれ独立に、破線で囲まれたベンゼン環を含むアリール基又は破線で囲まれたベンゼン環を縮合環のひとつとして含むヘテロアリール基を表す。中でも、Ar21及びAr22はそれぞれ独立に、破線で囲まれたベンゼン環を含むアリール基であることが好ましい。Ar21及びAr22が破線で囲まれたベンゼン環を含むアリール基である場合は、炭素数6~18のアリール基であることが好ましく、炭素数6~14のアリール基であることがより好ましく、炭素数6~10のアリール基であることが特に好ましい。また、Ar21及びAr22が破線で囲まれたベンゼン環を縮合環のひとつとして含むヘテロアリール基である場合は、環員数9~14のヘテロアリール基であることが好ましく、環員数9~10のヘテロアリール基であることがより好ましい。Ar21及びAr22が表す置換基を有していてもよいヘテロアリール基を構成するヘテロ原子としては、窒素原子、酸素原子、硫黄原子を挙げることができる。
 Ar21及びAr22はそれぞれ独立に、破線で囲まれたベンゼン環のみから構成されるアリール基であってもよく、破線で囲まれたベンゼン環を縮合環のひとつとして含む芳香族縮合環基であってもよい。なお、本明細書において、芳香族縮合環基の縮合環は縮合環全体として芳香族性を有するものである。
 一般式(2)中、L21及びL22はそれぞれ独立に、炭素数が2~8のアルキレン基、炭素数が5~12のシクロアルキレン基、炭素数が6~20のアリーレン基、又は炭素数が6~20のヘテロアリーレン基を表す。L21及びL22はそれぞれ独立に、炭素数が2~8のアルキレン基であることが好ましく、炭素数が2~4のアルキレン基であることがより好ましく、エチレン基であることがさらに好ましい。
 一般式(2)中、X21及びX22はそれぞれ独立に、単結合、-O-、-S-から選ばれる基を表す。中でも、X21及びX22は単結合又は-O-であることが好ましい。
 一般式(2)中、m21及びm22はそれぞれ独立に0~10の整数であればよく、0~4の整数であることが好ましく、0~2の整数であることがより好ましく、0又は1であることがさらに好ましい。m21が2~10の整数である場合、複数の-[L21-X21]-は、同一でも異なっていてもよく、m22が2~10の整数である場合、複数の-[X22-L22]-は同一でも異なっていてもよい。
 一般式(2)で表される単位は、下記一般式(21)で表される単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000021
 一般式(21)中、Y21及びY22はそれぞれ独立に、炭素原子又は窒素原子を表し、Y21及びY22の少なくとも1つは窒素原子である。
 R21及びR22はそれぞれ独立にメチル基又はエチル基を表し、R23及びR24はそれぞれ独立に置換基を表す。
 p及びqはそれぞれ独立に0~3の整数を表し、rは0~4の整数を表し、sは0~2の整数を表し、sが2の場合、R24で表される置換基は、互いに結合して縮合環を形成してもよい。
 L21及びL22はそれぞれ独立に、エチレン基又はプロピレン基を表す。
 m21及びm22はそれぞれ独立に0~3の整数を表す。
 一般式(21)におけるY21及びY22の好ましい範囲は、一般式(2)におけるY21及びY22の好ましい範囲と同様である。一般式(21)において、Y21及びY22は窒素原子であることが好ましい。
 一般式(21)におけるR23及びR24の好ましい範囲は、一般式(2)におけるR23及びR24の好ましい範囲と同様である。
 一般式(21)におけるL21及びL22はそれぞれ独立に、エチレン基又はプロピレン基を表し、エチレン基であることが好ましい。
 一般式(21)におけるm21及びm22はそれぞれ独立に0~3の整数を表し、0~2の整数であることが好ましく、0又は1であることがより好ましい。
 p及びqはそれぞれ独立に0~3の整数を表し、0~2の整数であることがより好ましく、0又は1であることがさらに好ましく、0であることが特に好ましい。また、rは0~4の整数を表し、0~3の整数であることがより好ましく、0~2の整数であることがさらに好ましく、0又は1であることがよりさらに好ましく、0であることが特に好ましい。sは0~2の整数を表す。なお、sが2の場合、R24で表される2つの置換基は、互いに結合して縮合環を形成してもよい。
 以下において、一般式(2)で表される単位の具体例を列挙するが、本発明は以下の構成単位に限定されるものではない。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 一般式(2)で表される単位の入手方法については特に制限はなく、前駆体となる化合物を商業的に入手してもよく、合成により製造してもよい。前駆体となる化合物を合成により製造する場合は、公知の方法及び実施例に記載の方法で合成することができる。
(一般式(3)で表される単位)
 一般式(3)で表される単位は、以下で表される構成単位である。一般式(3)で表される単位は、正のモノマー成分に由来する単位である。
Figure JPOXMLDOC01-appb-C000025
 一般式(3)中、X32は炭素数が2~20のアルキレン基、炭素数が4~20のシクロアルキレン基、炭素数が6~20のアリーレン基又はこれらを組み合わせた基を表す。但し、シクロアルキレン基の環構成原子は、酸素原子、硫黄原子又は窒素原子で置換されていてもよい。
 X32が表し得るアルキレン基、シクロアルキレン基、アリーレン基は置換基を有してもよい。この場合、各基の炭素数は置換基の炭素数も含めて上記範囲内であることが好ましい。置換基としては特に制限はないが、例えば、アルキル基、アルケニル基、アシル基、ヒドロキシル基、ヒドロキシアルキル基、アルコキシ基、アリール基、ヘテロアリール基、脂環基などを挙げることができる。なお、アルキレン基を構成する炭素原子が酸素原子、硫黄原子又は窒素原子で置換されていてもよく、シクロアルキレン基の環構成原子が、酸素原子、硫黄原子又は窒素原子で置換されていてもよい。
 X32は上記の基を含む連結基であればよく、上記の基からなる連結基であってもよく、上記の基を2種以上組み合わせた構造を有する連結基であってもよい。また、X32は、シクロアルキレン基同士が、単結合、-O-、-S-又はアルキレン基で連結された基であってもよく、アリーレン基同士が、単結合、-O-、-S-又はアルキレン基で連結された基であってもよく、シクロアルキレン基とアリーレン基が単結合、-O-、-S-又はアルキレン基で連結された基であってもよい。但し、X32は-O-C(=O)-O-は含まない基である。
 以下において、一般式(3)で表される単位のX32の具体例を列挙するが、X32の構造は下記構造に限定されるものではない。なお、下記具体例において、*は、一般式(3)で表される単位の主鎖中の連結部位を表す。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
 中でも、一般式(3)において、X32は脂環、複素環及び芳香環から選択される少なくとも1種を置換基として有する炭素数が5~20のアルキレン基、炭素数が4~20のシクロアルキレン基、炭素数が6~20のアリーレン基又はこれらを組み合わせた基を表すことが好ましい。但し、シクロアルキレン基の環構成原子は、酸素原子、硫黄原子又は窒素原子で置換されていてもよい。なお、上記炭素数は、各基が置換基を有する場合、置換基の炭素数も含めた炭素数である。
 X32が脂環、複素環及び芳香環から選択される少なくとも1種を置換基として有するアルキレン基である場合、脂環、複素環及び芳香環は5員環又は6員環であることが好ましい。X32がシクロアルキレン基である場合、シクロアルキレン基は5員環又は6員環であることが好ましい。X32がアリーレン基である場合、アリーレン基の炭素数は6~12であることが好ましい。
 さらに、一般式(3)で表される単位は下記構成単位から選択される単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000029
 上記構成単位中、R331は水素原子又は炭素数1~12のアルキル基を表す。r1は0又は1である。R332及びR333はそれぞれ独立に水素原子又はメチル基を表し、Z331は、以下の構造式のいずれかで表される連結基である。下記構造式中の*は連結部位を表す。
Figure JPOXMLDOC01-appb-C000030
 上記構成単位中、R331は水素原子であることが好ましく、R332及びR333は水素原子であることが好ましい。また、Z331は、以下の構造式で表される連結基であることが好ましい。
Figure JPOXMLDOC01-appb-C000031
 すなわち、一般式(3)で表される単位は下記構成単位から選択される単位であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000032
 一般式(3)で表される単位の入手方法については特に制限はなく、前駆体となる化合物を商業的に入手してもよく、合成により製造してもよい。前駆体となる化合物を合成により製造する場合は、公知の方法及び実施例に記載の方法で合成することができる。
(共重合体)
 本発明の位相差フィルムは、上記一般式(1)で表される単位及び上記一般式(2)で表される単位から選択される少なくとも一方と、上記一般式(3)で表わされる単位と、を含有する共重合体を含む。また、本発明の位相差フィルムは、本発明の効果を奏する限り、さらに別の構成単位を含んでいてもよい。例えば、この共重合体はポリエステルオリゴマーをさらに含んでいても良い。
 共重合体の全構成単位に対して、一般式(1)で表される単位及び上記一般式(2)で表される単位は、10モル%以上含まれていることが好ましく、20モル%以上含まれていることがより好ましい。また、共重合体の全構成単位に対して、一般式(1)で表される単位及び上記一般式(2)で表される単位は、80モル%以下含まれていることが好ましく、70モル%以下含まれていることがより好ましい。なお、共重合体の全構成単位に対して、一般式(1)で表される単位及び上記一般式(2)で表される単位は、60モル%以下であってもよく、50モル%以下であってもよい。上記一般式(1)で表される単位及び上記一般式(2)で表される単位は、波長分散が十分に大きく、負の複屈折率が大きいものである。そのため、望ましい位相差Re(548)を発現させるために必要な負のモノマー成分の添加量を抑制することができ、より汎用性の高い一般式(3)で表わされる単位の選択肢を増やすことができる。これにより、位相差フィルムの製造コストを抑制することも可能になる。
 共重合体の全構成単位に対して、一般式(3)で表される単位は、20モル%以上含まれていることが好ましく、30モル%以上含まれていることがより好ましい。また、共重合体の全構成単位に対して、一般式(3)で表される単位は、90モル%以下含まれていることが好ましく、80モル%以下含まれていることがより好ましい。
 共重合体の重量平均分子量は、10000以上であることが好ましく、20000以上であることがより好ましく、50000以上であることがさらに好ましい。また、共重合体の重量平均分子量は200000以下であることが好ましく、100000以下であることがより好ましい。
 本発明における共重合体の分子量(質量平均分子量)の測定は、ゲル・パーミエーション・クロマトグラフィー(GPC)を用いて行うことができる。具体的には、テトラヒドロフランを溶媒とし、ポリスチレンゲルを使用し、標準単分散ポリスチレンの構成曲線から予め求められた換算分子量較正曲線を用いて求めることができる。
 ゲルパーミエションクロマトグラフイー(GPC)の測定条件は以下のとおりである。
カラム:Shodex KF801、KF803L、KF800L、KF800D(昭和電工(株)製を4本接続して使用する)
カラム温度:40℃
試料濃度:0.5質量%
検出器:RI-2031plus(JASCO製)
ポンプ:RI-2080plus(JASCO製)
流量(流速):0.8ml/min
注入量:10μl
校正曲線:標準ポリスチレンShodex standard ポリスチレン(昭和電工(株)製)Mw=1320~2,500,000迄の10サンプルによる校正曲線を使用する。
(共重合体の重合方法)
 共重合体は、公知の反応手段を用いて重合することができる。例えば、(a)二価フェノール及び二価フェノールの誘導体から選択される少なくとも1種にホスゲンまたはホスゲン前駆体を反応させる縮合方法や、(b)二価フェノール及び二価フェノールの誘導体から選択される少なくとも1種を炭酸ジエステルなどのカーボネート前駆物質を用いてエステル交換する方法などが挙げられる。なお、ホスゲン前駆体とは、トリホスゲンやジホスゲンを意味し、以下ではホスゲン及びホスゲン前駆体から選択される少なくとも1種を単に、ホスゲンということもある。また、二価フェノール及び二価フェノールの誘導体から選択される少なくとも1種を単に、二価フェノールということもある。
 二価フェノールとしては、上述した一般式(1)又は一般式(2)で表される単位となり得る化合物を用いることが好ましい。また、二価フェノールの誘導体としては、一般式(1)又は一般式(2)で表される単位となり得るクロロ炭酸化合物等を用いることが好ましい。また、二価フェノールや二価フェノールの誘導体として、一般式(3)で表される単位となり得る化合物や、一般式(3)で表される単位となり得るクロロ炭酸化合物を用いることが好ましい。
 なお、共重合体を重合させる場合は、必要に応じて触媒、末端停止剤、二価フェノールの酸化防止剤、熱安定化剤等を使用してもよい。
 (a)のホスゲンを反応させる縮合方法を用いた反応は、二価フェノールとホスゲンとの反応であり、酸結合剤及び有機溶媒の存在下で行う。酸結合剤としては、例えば水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物又はピリジン等のアミン化合物が用いられる。有機溶媒としては、例えば塩化メチレン、クロロベンゼン等のハロゲン化炭化水素が用いられる。また、反応促進のために例えばトリエチルアミン、テトラ-n-ブチルアンモニウムブロマイド、テトラ-n-ブチルホスホニウムブロマイド等の第三級アミン、第四級アンモニウム化合物、第四級ホスホニウム化合物等の触媒を用いることもできる。その際、反応温度は通常0~40℃、反応時間は10分~5時間程度、反応中のpHは9以上に保つのが好ましい。
 (b)のエステル交換する方法を用いた反応は、二価フェノールとカーボネートエステルとのエステル交換反応であり、不活性ガスの存在下に二価フェノールとカーボネートエステルとを加熱しながら混合して、生成するアルコールまたはフェノールを留出させる方法により行われる。反応温度は生成するアルコールまたはフェノールの沸点等により異なるが、通常120~350℃の範囲である。反応後期には系を1.3×10~1.3×10Pa程度に減圧して生成するアルコールまたはフェノールの留出を容易にさせる。反応時間は通常1~4時間程度である。
 カーボネートエステルとしては、置換基を有してもよい炭素数6~10のアリール基、アラルキル基あるいは炭素数1~4のアルキル基などのエステルが挙げられる。具体的にはジフェニルカーボネート、ジトリルカーボネート、ビス(クロロフェニル)カーボネート、m-クレジルカーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネートなどが挙げられ、中でもジフェニルカーボネートを用いることが好ましい。
 また、(b)のエステル交換する方法を用いた反応においては重合速度を速めるために重合触媒を用いることができる。重合触媒としては、例えば水酸化ナトリウム、水酸化カリウム、二価フェノールのナトリウム塩、カリウム塩等のアルカリ金属化合物、水酸化カルシウム、水酸化バリウム、水酸化マグネシウム等のアルカリ土類金属化合物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、トリメチルアミン、トリエチルアミン等の含窒素塩基性化合物、アルカリ金属やアルカリ土類金属のアルコキシド類、アルカリ金属やアルカリ土類金属の有機酸塩類、亜鉛化合物類、ホウ素化合物類、アルミニウム化合物類、珪素化合物類、ゲルマニウム化合物類、有機スズ化合物類、鉛化合物類、オスミウム化合物類、アンチモン化合物類、マンガン化合物類、チタン化合物類、ジルコニウム化合物類などの通常エステル化反応やエステル交換反応に使用される触媒を用いることができる。触媒は単独で使用してもよいし、2種以上組み合わせて使用してもよい。これらの重合触媒の使用量は、原料の二価フェノール1モルに対し、1×10-8~1×10-3当量とすることが好ましい。
 共重合体は、その重合反応において、末端停止剤として通常使用される単官能フェノール類を使用することができる。例えば、ホスゲンを使用する反応の場合、単官能フェノール類は末端停止剤として分子量調節のために使用され、また得られた共重合体は、末端が単官能フェノール類に基づく基によって封止されているので、熱安定性に優れる。
(位相差フィルム)
 本発明は、一般式(1)で表される単位及び一般式(2)で表される単位から選択される少なくとも一方と、一般式(3)で表わされる単位と、を含有する共重合体を含む位相差フィルムに関する。本明細書において、位相差フィルムとは、全面または一部に複屈折性を有するフィルムを意味する。本発明の位相差フィルムは、単層フィルムでもよいし、複数の層からなる多層フィルムでもよいが、単層フィルムであることが好ましい。
 ここで、位相差フィルムの各波長における面内レタデーションは下記の条件を満たす。
 20nm<Re(548)<300nm
 0.5<Re(446)/Re(548)<1.0
 1.0<Re(629)/Re(548)<2.0
 但し、Re(446)、Re(548)、Re(629)は、それぞれ波長446nm、548nm、629nmにおける面内のレタデーションを表す。
 位相差フィルムの各波長における面内レタデーションが上記条件を満たすことは、本発明の位相差フィルムが逆波長分散性を示すことを意味する。すなわち、本発明の位相差フィルムは逆波長分散性を有する位相差フィルムである。
 なお、各波長における面内レタデーションは、エリプソメーター(日本分光(株)製、M150)により測定することができる。
 位相差フィルムの各波長における面内レタデーションは以下の条件を満たすものでることがより好ましい。
 50nm<Re(548)<200nm
 0.6<Re(446)/Re(548)<0.9
 1.0<Re(629)/Re(548)<1.5
 本発明の位相差フィルムは、上記一般式(1)で表される単位及び/又は上記一般式(2)で表される単位、並びに上記一般式(3)を有するものであるため、十分な逆波長分散性を発揮することができる。これは、一般式(1)で表される単位及び一般式(2)で表される単位は、負の複屈折率が大きく、波長分散が十分に大きいことによるものである。
 また、本発明の位相差フィルムは、十分な逆波長分散性を発揮することができるため、望ましい位相差に調整がしやすいものであるとも言える。例えば、一般式(1)で表される単位及び一般式(2)で表される単位は、負の複屈折率が大きく、波長分散が十分に大きいため、望ましい位相差Re(548)に調整するための一般式(3)で表わされる単位の選択肢を増やすこともできることができる。また、一般式(1)で表される単位及び一般式(2)で表される単位よりも汎用性の高い一般式(3)で表わされる単位のモノマー成分量を増加させることもできる。これにより、位相差フィルムの製造コストを抑制することも可能になる。なお、位相差フィルムとしては、例えば、Re(548)=137.5nm、Re(446/548)=0.818、Re(629/548)=1.182に近い値に調整することが好ましい。
 本発明においては、より光弾性係数の小さい位相差フィルムが得られる点にも特徴がある。具体的には、同一の一般式(3)で表わされる正のモノマー成分を用いた際には、一般式(1)又は一般式(2)で表される負のモノマー成分を用いることで、それ以外の負のモノマー成分を用いた場合よりも光弾性係数の小さい位相差フィルムを得ることができる。
 本発明においては、位相差フィルムの光弾性係数は0cm/N以上40×10-8cm/N以下であることが好ましく、0cm/N以上30×10-8cm/N以下であることがより好ましい。
 本発明の位相差フィルムの厚みは10μm以上であることが好ましく、20μm以上であることがより好ましい。また、位相差フィルムの厚みは500μm以下であることが好ましく、300μm以下であることがより好ましい。
(位相差フィルムの製造方法)
 本発明の位相差フィルムは、上述した共重合体を含む組成物を用いて、公知の方法で製造することができる。具体的には、本発明の共重合体を溶媒に溶解させてキャストした後、溶媒を除去する流延法や、共重合体を溶媒を用いず溶融製膜する方法を挙げることができるが、特に限定されない。例えば、流延法では、共重合体をテトラヒドロフランなどのエーテル系溶媒やトルエンなどの芳香族系溶媒、メチレンクロライドなどのハロゲン系溶媒に溶解させたドープ溶液を用いることができる。位相差フィルムの製造方法は、共重合体を含む組成物を基板上に塗布する工程を含み、共重合体を含む組成物を基板上に塗布する際には、スピンコート、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、ダイコート法等が挙げられ、ワイヤーバーコート法を用いることが好ましい。
 共重合体を含む組成物を基板上に塗布する工程の後には、塗布工程で塗布された組成物を乾燥する工程を有することが好ましい。乾燥工程は、加熱したホットプレートで、塗布膜(塗布された組成物)を有する基板を加熱する方法などにより行うことができる。乾燥工程は所定の温度の風を塗布膜にあてることによって行うこともできる。
 乾燥工程の後には、延伸工程が設けられることが好ましい。延伸工程では、乾燥工程を経て得られたフィルムを所定のサイズに切り出して、固定端一軸延伸して延伸フィルム(位相差フィルム)を作製する。なお、位相差フィルムの位相差は、位相差測定装置(王子計測機器社製KOBRA-WPR)を用いて測定することができる。延伸方向に対して、正の位相差が発現する場合、共重合体は正の屈折率異方性を示すことになり、負の位相差が発現する場合、共重合体は負の屈折率異方性を示すことになる。
 本発明の位相差フィルムはフィルムを延伸することで得られ、その目的に応じて、延伸方法、延伸温度、延伸倍率、延伸速度、延伸後の熱熟成等の条件を適宜変更することができる。
 延伸方法としては、自由端延伸法、固定端延伸法、自由端収縮法、固定端収縮法等が挙げられ、単独で用いても、同時もしくは逐次で用いてもよい。また、延伸方向に関しても、水平方向・垂直方向・厚さ方向、対角方向等があり、特に限定されない。
 延伸温度は、一般的にフィルムのガラス転移温度(Tg)を基準に設定することが好ましい。具体的には、Tg-20℃以上であることが好ましく、Tg-10℃以上であることがより好ましい。また、延伸温度は、Tg+30℃以下であることが好ましく、Tg+20℃以下であることがより好ましい。このような条件を選択することによって、位相差フィルムにおける位相差値が均一になり易く、かつ、位相差フィルムが白濁しにくくなる。
 延伸倍率は、所望の厚みにおいて意図した光学的特性を付与するために、適宜選択することができる。延伸前を基準に未延伸の場合を1倍とした場合、延伸倍率は1.1倍以上であることが好ましく、1.5倍以上であることがより好ましい。また、延伸時の破断を抑制し、かつ高温条件下での長期使用による光学的特性の変動を防ぐために、延伸倍率は6倍以下であることが好ましく、4倍以下であることがより好ましく、3倍以下であることがさらに好ましい。
 延伸速度は、生産性を高め、かつ所望の位相差を得るために延伸倍率を過度に大きくすることを抑制するために、適宜調整することが好ましい。延伸速度は、下記式で表される歪み速度が50%以上となるように調整することが好ましく、100%以上となるように調整することがより好ましく、200%以上となるように調整することがさらに好ましい。また、延伸時の破断を抑制し、かつ高温条件下での光学的特性の変動を防ぐために、延伸速度は、下記式で表される歪み速度が1500%以下となるように調整することが好ましく、1000%以下となるように調整することがより好ましい。
  歪み速度(%/分)= 延伸速度(mm/分)/原反フィルムの長さ(mm)×100
(積層体及び液晶表示装置)
 本発明は、上述した位相差フィルムを有する積層体に関するものであってもよい。例えば、位相差フィルムは、各種ディスプレイ(液晶表示装置、有機EL表示装置、プラズマ表示装置、FED電界放出表示装置、SED表面電界表示装置)の視野角補償用、外光の反射防止用、色補償用、直線偏光の円偏光への変換用などに用いることができる。本発明の位相差フィルムは、可視領域の各波長において理想的な位相差特性を備え、光弾性係数が小さく、耐熱性および成形性にも優れ、さらに着色が少なく高い透明性を兼ね備えている傾向があるため、1/4λ板、円偏光板、画像表示装置等に好適である。
 また、本発明は、上述した位相差フィルムを有する偏光板に関するものであってもよい。偏光板の製造方法は特に限定されず、一般的な方法で製造することができる。例えば、偏光板は、従来公知の方法により、各種フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて染色し、架橋、延伸、乾燥することによって調製した偏光子に保護フィルムを積層させることによって製造される。このように、偏光板は、偏光子及びその両面を保護する2枚の保護フィルムで構成されており、本発明の位相差フィルムは上記2枚の保護フィルムのうちの少なくとも一方として使用することができる。
 また、本発明は、上述した位相差フィルムを有する液晶表示装置に関するものであってもよい。液晶表示装置は、上記した本発明の位相差フィルム又は偏光板を有する。
 液晶表示装置は、二枚の電極基板の間に液晶を担持してなる液晶セル、その両側に配置された二枚の偏光子、および液晶セルと偏光子との間に少なくとも一枚の位相差フィルムを配置した構成を有している。液晶セルの液晶層は、通常は、二枚の基板の間にスペーサーを挟み込んで形成した空間に液晶を封入して形成する。透明電極層は、導電性物質を含む透明な膜として基板上に形成する。液晶セルには、さらにガスバリアー層、ハードコート層あるいは(透明電極層の接着に用いる)アンダーコート層(下塗り層)を設けてもよい。これらの層は、通常、基板上に設けられる。液晶セルの基板は、好ましくは50μm~2mmの厚さを有する。
 表示モードとしては、例えば、TN(Twisted Nematic)、IPS(In-Plane Switching)、FLC(Ferroelectric Liquid Crystal)、AFLC(Anti-ferroelectric Liquid Crystal)、OCB(Optically Compensatory Bend)、STN(Super Twisted Nematic)、VA(Vertically Aligned)、ECB(Electrically Controlled Birefringence)、及びHAN(Hybrid Aligned Nematic)のような様々な表示モードが提案されている。また、上記表示モードを配向分割した表示モードも提案されている。これらのモードのうち、特にIPSモードの液晶表示装置に好ましく用いられる。これらの液晶表示装置は、透過型、反射型および半透過型のいずれでもよい。
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
(合成例1)
 2,3-ベンゾフルオレノン9.0g、フェノキシエタノール8.6gを、トルエン2.0gに懸濁させ、3-メルカプトプロピオン酸0.07gを加えた。硫酸を3.6g滴下し、65℃にて16時間攪拌し、メタノールを0.64g加え、1時間撹拌後、水12.0gを加え室温に戻し、上清を取り除いた。残渣をカラムクロマトグラフィーで精製することにより、化合物(A1)を5.0g得た。
 H-NMR(300MHz,DMSO-d6):δ3.68ppm(tt、4H)、3.91ppm(t,4H)、4.82ppm(t,2H)、6.85ppm(d,4H)、7.09ppm(d,4H)、7.31-7.52ppm(m,5H)、7.85―7.92ppm(m,2H)、7.95ppm(d,1H)、8.05ppm(d,1H)、8.41ppm(s,1H)
Figure JPOXMLDOC01-appb-C000033
 化合物(A1)20.8g(42.5mmol)、イソソルビド(ISS)6.2g(42.5mmol)、ピリジン68mlを混合し、窒素気流下において室温で溶解させた。混合物を撹拌しながら約50℃まで昇温した後、トリホスゲン12.5gと1,2-ジクロロエタン30gの溶液を3時間かけてゆっくり滴下した。この際、反応系内の温度が50~55℃に保たれるように注意しながら滴下し、反応を行った。滴下終了後、反応系内の温度を上記範囲に保ちながらさらに1時間撹拌を行い、反応を十分に進行させた。反応終了後、水50mlをゆっくり滴下し、未反応のトリホスゲンを分解した。この反応液を3.5mol/Lの塩酸水200ml中に静かに注ぎ、固形物を得た。得られた固形物を200mlのメタノールに移し、ホモミキサーを用いて粉砕洗浄を行うという工程を2回繰り返し、さらに300mlの水で固形物を洗浄した。固形物をテトラヒドロフランで溶解し、ホモミキサーにて強撹拌しているメタノール溶媒中に添加することで再沈殿させた。沈殿物をろ別し、メタノールをかけることでかけ洗いをした後、窒素雰囲気下で乾燥することで、共重合体(PC―1)34.0gを得た。共重合体(PC-1)の重量平均分子量を測定したところ、21,200であった。
Figure JPOXMLDOC01-appb-C000034
(合成例2)
 5,6-ジメトキシ-1-インダノン290gと、オルトフタルアルデヒド204gを1500mLのメタノールに溶解させた。反応溶液を加温し、60℃に保ちつつ、水酸化カリウム255gをメタノール1750mLに溶解させたものを滴下した。5時間攪拌した後、反応溶液を室温に戻し、析出した結晶を濾取することにより、化合物A-2Aを230g得た。
Figure JPOXMLDOC01-appb-C000035
 化合物A-2A 200gと、フェノール320gをメタンスルホン酸320mLに溶解させた。反応溶液を加温し、60℃に保ちつつ、3-メルカプトプロピオン酸3.2mLを滴下した。5時間攪拌後、反応溶液にメタノールを720mL滴下し、30分攪拌後、さらに1400mLのメタノールを滴下した。反応溶液を室温に戻し、析出した結晶を濾取することにより、化合物A-2Bを292g得た。
Figure JPOXMLDOC01-appb-C000036
 化合物A-2B 10gを4-メチルモルホリン30mLに溶解させた。炭酸カリウム0.44g、炭酸エチレン4.62gを加え、120℃で4時間反応を行った。60℃に冷却したのち、反応溶液に水20mLと水酸化ナトリウム1.7gを添加し、さらに30分撹拌した。反応溶液にさらに酢酸エチル50mLと1N塩酸40mLを加え、さらに10分撹拌したのち、分液により水層を除去した。有機層を希塩酸で2回洗浄し、食塩水で1回洗浄したのち、有機層を硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ過により取り除き、エバポレーターで濃縮したのち、シリカゲルカラムクロマトグラフィーにより精製することで化合物A2を7.5g得た。
 H-NMR(300MHz,DMSO-d6):δ3.64-3.77ppm(m、7H)、3.89-3.96ppm(m,7H)、4.84ppm(t,2H)、6.85ppm(d,4H)、6.91ppm(s,1H)、7.10ppm(d,4H)、7.38-7.50ppm(m,2H)、7.67ppm(s,1H)、7.78ppm(s,1H)、7.83ppm(d、1H)、7.92ppm(d、1H)、8.30ppm(s,1H)
Figure JPOXMLDOC01-appb-C000037
 合成例1における化合物(A1)を、等モル量の化合物(A2)に置き換えた以外は、合成例1と同様の操作を行い、共重合体(PC-2)を得た。共重合体(PC-2)の重量平均分子量は表1に記載の通りであった。
Figure JPOXMLDOC01-appb-C000038
(合成例3)
 特開2015-193809号公報に記載の合成方法を用いて、化合物A3を210g得た。
Figure JPOXMLDOC01-appb-C000039
 合成例1における化合物(A1)を、等モル量の化合物(A3)に置き換えた以外は、合成例1と同様の操作を行い、共重合体(PC-3)を得た。共重合体(PC-3)の重量平均分子量は表1に記載の通りであった。
Figure JPOXMLDOC01-appb-C000040
(合成例4)
 化合物(A5-1)10.0g(43mmol)と、2-フェノキシエタノール30.0g(215mmol)を、トルエン15mlとメタンスルホン酸12mlに溶解させた。得られた溶液を加温し、120℃に保ちつつ、3-メルカプトプロピオン酸0.16mLを滴下した。反応溶液を加温し、150℃にて2時間攪拌後、反応溶液を室温に戻した。二相分離した有機層の上層を除去し、酢酸エチル200mlおよび水を加えて攪拌した。析出した結晶を濾取し、酢酸エチル/ヘキサン混合溶媒にて再結晶を行った。ろ過することで化合物(A5)を12g(25mmol)得た。化合物(A5)のH-NMR(nuclear magnetic resonance)データは下記の通りであった。
 H-NMR(300MHz,DMSO-d6):δ3.66ppm(tt、4H)、3.92ppm(t,4H)、4.84ppm(t,2H)、6.85ppm(d,4H)、7.11ppm(t,4H)、7.57-7.70ppm(m,3H)、7.76―7.89ppm(m,2H)、8.04-8.10ppm(m,1H)、8.15-8.25ppm(m,2H)
Figure JPOXMLDOC01-appb-C000041
 合成例1における化合物(A1)を、等モル量の化合物(A5)に置き換えた以外は、合成例1と同様の操作を行い、共重合体(PC-4)を得た。共重合体(PC-4)の重量平均分子量は表1に記載の通りであった。
Figure JPOXMLDOC01-appb-C000042
(合成例5)
 化合物(A1)24.9g(51mmol)、スピログリコール(SPG)22.7g(76.5mmol)、ピリジン102mlを混合し、窒素気流下において室温で溶解させた。混合物を撹拌しながら約50℃まで昇温した後、トリホスゲン18.8gとテトラヒドロフラン45gの溶液を3時間かけてゆっくり滴下した。この際、反応系内の温度の内温が50~55℃に保たれるように注意しながら滴下し、反応を行った。滴下終了後、反応系内の温度を上記範囲に保ちながらさらに1時間撹拌を行い、反応を十分に進行させた。反応終了後、水75mlをゆっくり滴下し、未反応のトリホスゲンを分解した。この反応液を3.5mol/Lの塩酸水300ml中に静かに注ぎ、固形物を得た。得られた固形物を300mlのメタノールに移し、ホモミキサーを用いて粉砕洗浄を行うという工程を2回繰り返し、さらに500mlの水で固形物を洗浄した。固形物をテトラヒドロフランで溶解し、ホモミキサーにて強撹拌しているメタノール溶媒中に添加することで再沈殿させた。沈殿物をろ別し、洗浄した固形物にメタノールをかけることでかけ洗いをした後、窒素雰囲気下で乾燥することで、共重合体(PC―5)43.0gを得た。共重合体(PC-5)の重量平均分子量は表2に記載の通りであった。
Figure JPOXMLDOC01-appb-C000043
(合成例6)
 合成例1における化合物ISSを、等モル量の化合物CHDMに置き換えた以外は、合成例1と同様の操作を行い、共重合体(PC-6)を得た。共重合体(PC-6)の重量平均分子量は表2に記載の通りであった。
Figure JPOXMLDOC01-appb-C000044
(合成例7)
 化合物(A1)43.6g(89.2mmol)、ビスフェノールA(BISA)8.7g(38.2mmol)、ピリジン102mlを混合し、窒素気流下において室温で溶解させた。混合物を撹拌しながら約50℃まで昇温した後、トリホスゲン18.8gとテトラヒドロフラン45gの溶液を3時間かけてゆっくり滴下した。この際、反応系内の温度の内温が50~55℃に保たれるように注意しながら滴下し、反応を行った。滴下終了後、反応系内の温度を上記範囲に保ちながらさらに1時間撹拌を行い、反応を十分に進行させた。反応終了後、水75mlをゆっくり滴下し、未反応のトリホスゲンを分解した。この反応液を3.5mol/Lの塩酸水300ml中に静かに注ぎ、固形物を得た。得られた固形物を300mlのメタノールに移し、ホモミキサーを用いて粉砕洗浄を行うという工程を2回繰り返し、さらに500mlの水で固形物を洗浄した。固形物をテトラヒドロフランで溶解し、ホモミキサーにて強撹拌しているメタノール溶媒中に添加することで再沈殿させた。沈殿物をろ別し、洗浄した固形物にメタノールをかけることでかけ洗いをした後、窒素雰囲気下で乾燥することで、共重合体(PC-7)45.2gを得た。共重合体(PC-7)の重量平均分子量は表2に記載の通りであった。
Figure JPOXMLDOC01-appb-C000045
(合成例8)
 化合物(A1)16.6g(34mmol)、イソソルビド(ISS)7.4g(51mmol)、ピリジン68mlを混合し、窒素気流下において室温で溶解させた。混合物を撹拌しながら約50℃まで昇温した後、トリホスゲン12.5gと1,2-ジクロロエタン30gの溶液を3時間かけてゆっくり滴下した。この際、反応系内の温度の内温が50~55℃に保たれるように注意しながら滴下し、反応を行った。滴下終了後、反応系内の温度を上記範囲に保ちながらさらに1時間撹拌を行い、反応を十分に進行させた。反応終了後、水50mlをゆっくり滴下し、未反応のトリホスゲンを分解した。この反応液を3.5mol/Lの塩酸水200ml中に静かに注ぎ、固形物を得た。得られた固形物を200mlのメタノールに移し、ホモミキサーを用いて粉砕洗浄を行うという工程を2回繰り返し、さらに300mlの水で固形物を洗浄した。固形物をテトラヒドロフランで溶解し、ホモミキサーにて強撹拌しているメタノール溶媒中に添加することで再沈殿させた。沈殿物をろ別し、洗浄した固形物にメタノールをかけることでかけ洗いをした後、窒素雰囲気下で乾燥することで、共重合体(PC-8)21.0gを得た。共重合体(PC-8)の重量平均分子量は表3に記載の通りであった。
Figure JPOXMLDOC01-appb-C000046
(合成例9)
 化合物(A5)13.8g(28.1mmol)、イソソルビド(ISS)8.3g(57.0mmol)、ピリジン68mlを混合し、窒素気流下において室温で溶解させた。混合物を撹拌しながら約50℃まで昇温した後、トリホスゲン12.5gと1,2-ジクロロエタン30gの溶液を3時間かけてゆっくり滴下した。この際、反応系内の温度の内温が50~55℃に保たれるように注意しながら滴下し、反応を行った。滴下終了後、反応系内の温度を上記範囲に保ちながらさらに1時間撹拌を行い、反応を十分に進行させた。反応終了後、水50mlをゆっくり滴下し、未反応のトリホスゲンを分解した。この反応液を3.5mol/Lの塩酸水200ml中に静かに注ぎ、固形物を得た。得られた固形物を200mlのメタノールに移し、ホモミキサーを用いて粉砕洗浄を行うという工程を2回繰り返し、さらに300mlの水で固形物をスラリー洗浄した。固形物をテトラヒドロフランで溶解し、ホモミキサーにて強撹拌しているメタノール溶媒中に添加することで再沈殿させた。沈殿物をろ別し、洗浄した固形物にメタノールをかけることでかけ洗いをした後、窒素雰囲気下で乾燥することで、共重合体(PC-9)20.5gを得た。共重合体(PC-9)の重量平均分子量は表3に記載の通りであった。
Figure JPOXMLDOC01-appb-C000047
(合成例10)
 化合物(A1)8.3g(17.0mmol)、化合物(A2)7.0g(12.8mmol)、イソソルビド(ISS)8.1g(55.3mmol)、ピリジン68mlを混合し、窒素気流下において室温で溶解させた。混合物を撹拌しながら約50℃まで昇温した後、トリホスゲン12.5gと1,2-ジクロロエタン30gの溶液を3時間かけてゆっくり滴下した。この際、反応系内の温度の内温が50~55℃に保たれるように注意しながら滴下し、反応を行った。滴下終了後、反応系内の温度を上記範囲に保ちながらさらに1時間撹拌を行い、反応を十分に進行させた。反応終了後、水50mlをゆっくり滴下し、未反応のトリホスゲンを分解した。この反応液を3.5mol/Lの塩酸水200ml中に静かに注ぎ、固形物を得た。得られた固形物を200mlのメタノールに移し、ホモミキサーを用いて粉砕洗浄を行うという工程を2回繰り返し、さらに300mlの水で固形物を洗浄した。固形物をテトラヒドロフランで溶解し、ホモミキサーにて強撹拌しているメタノール溶媒中に添加することで再沈殿させた。沈殿物をろ別し、洗浄した固形物にメタノールをかけることでかけ洗いをした後、窒素雰囲気下で乾燥することで、共重合体(PC-10)22.0gを得た。共重合体(PC-10)の重量平均分子量は表3に記載の通りであった。
Figure JPOXMLDOC01-appb-C000048
(比較合成例1)
 化合物(A7)として、和光純薬工業株式会社製の、cas117344-32-8を用いた。
Figure JPOXMLDOC01-appb-C000049
 合成例1における化合物(A1)を、等モル量の(A7)に置き換えた以外は、合成例1と同様の操作を行い、共重合体(PCR-1)を得た。共重合体(PCR-1)の重量平均分子量は表1に記載の通りであった。
Figure JPOXMLDOC01-appb-C000050
(比較合成例2)
 合成例5における化合物(A1)を、等モル量の化合物(A7)に置き換えた以外は、合成例5と同様の操作を行い、共重合体(PCR-2)を得た。共重合体(PCR-2)の重量平均分子量は表2に記載の通りであった。
Figure JPOXMLDOC01-appb-C000051
(比較合成例3)
 合成例6における化合物(A1)を、等モル量の化合物(A7)に置き換えた以外は、合成例6と同様の操作を行い、共重合体(PCR-3)を得た。共重合体(PCR-3)の重量平均分子量は表2に記載の通りであった。
Figure JPOXMLDOC01-appb-C000052
(比較合成例4)
 合成例7における化合物(A1)を、等モル量の化合物(A7)に置き換えた以外は、合成例7と同様の操作を行い、共重合体(PCR-4)を得た。共重合体(PCR-4)の重量平均分子量は表2に記載の通りであった。
Figure JPOXMLDOC01-appb-C000053
(実施例1~10及び比較例1~4)
 合成例1~10、比較合成例1~4で得られた共重合体(PC-1)~(PC-10)及び(PCR-1)~(PCR-4)をそれぞれメチレンクロライドに溶解させ、ドープ溶液を作製した。このドープ溶液を用いて公知の方法でキャストフィルムを作製した。得られたフィルムを100mm×70mmのサイズに切り出しサンプルとし、そのサンプルを190℃にて2.0倍に延伸した。このようにして、実施例1~10及び比較例1~4の位相差フィルムを得た。
(測定)
<面内のレタデーション(Re)>
 実施例及び比較例で得られた位相差フィルムの位相差をそれぞれ、エリプソメーター(日本分光(株)製、M150)で測定し、446nmにおける面内のレタデーション(Re(446))と、548nmにおける面内のレタデーション(Re(548))の比(Re(446/548))、及び、629nmにおける面内のレタデーション(Re(629))と、550nmにおける面内のレタデーション(Re(548))の比(Re(629/548))を算出した。
<光弾性係数>
 実施例及び比較例で得られた位相差フィルムを3.5cm×12cmのサイズに切り出し、荷重無し、250g、500g、1000g、1500gのそれぞれの荷重における面内のレタデーション(Re)をエリプソメーター(日本分光(株)製、M150)で測定し、応力に対するRe変化の直線の傾きから、光弾性係数を算出した。
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
 位相差フィルムの逆波長分散性はRe(446/548)の値が小さい程、またRe(629/548)の値が大きい程、大きい。実施例1~4の位相差フィルムは比較例1の位相差フィルムに比べて逆波長分散性が大きかった。
 表2の実施例5と比較例2、表2の実施例6と比較例3、表2の実施例7と比較例4を比較すると、実施例で用いた負のモノマー成分は、比較例で用いた負のモノマー成分(化合物A7)に比べてReの逆波長分散にする効果が大きく、またReを負にする効果が大きい。そのため、望ましい逆波長分散性及び位相差Re(548)(例えば137.5nm)を発現させるために必要な負のモノマー成分の量を抑えることができる。これは、負のモノマー成分よりも汎用性の高い正のモノマー成分の組成比を増加させることができることを意味する。
 また、実施例で得られた位相差フィルムの光弾性係数は40×10-12/Pa以下であり、位相差フィルムとして好ましいものであった。
 

Claims (7)

  1.  下記一般式(1)で表される単位及び下記一般式(2)で表される単位から選択される少なくとも一方と、下記一般式(3)で表わされる単位と、を含有する共重合体を含み、
     20nm<Re(548)<300nmであり、
     0.5<Re(446)/Re(548)<1.0であり、
     1.0<Re(629)/Re(548)<2.0である位相差フィルム;
     但し、Re(446)、Re(548)、Re(629)は、それぞれ波長446nm、548nm、629nmにおける面内のレタデーションを表す;
    Figure JPOXMLDOC01-appb-C000001
     一般式(1)中、R11~R14はそれぞれ独立に、水素原子又はハメットの置換基定数σ値が-0.15よりも小さい置換基であって、アリール基、ヘテロアリール基及び反応性基を有する置換基を除く置換基であり、R11~R14は互いに隣り合う置換基同士で互いに結合して縮合環を形成するものではない;
     R15~R17はそれぞれ独立に置換基を表す;
     a~cはそれぞれ独立に、0以上の整数であり、各環に置換可能な最大数以下の整数を表す;a~cが2以上の整数である場合、複数のR15、複数のR16及び複数のR17はそれぞれ同一でも異なっていてもよい;
     Ar11及びAr12はそれぞれ独立に、破線で囲まれたベンゼン環を含むアリール基又は破線で囲まれたベンゼン環を縮合環のひとつとして含むヘテロアリール基を表す;
     L11及びL12はそれぞれ独立に、炭素数が2~8のアルキレン基、炭素数が5~12のシクロアルキレン基、炭素数が6~20のアリーレン基、又は炭素数が6~20のヘテロアリーレン基を表す;
     n11及びn12はそれぞれ独立に0~10の整数を表す;n11及びn12が2~10の整数である場合、複数のL11及び複数のL12はそれぞれ同一でも異なっていてもよい;
     Ar11及びAr12がそれぞれ独立に、破線で囲まれたベンゼン環を含む芳香族縮合環基である場合は、R15、R16、-O-[L11-O]n11-及び-[O-L12n12-O-はそれぞれ独立に、破線で囲まれたベンゼン環に置換していても、破線で囲まれたベンゼン環以外の縮合環に置換していてもよい;
    Figure JPOXMLDOC01-appb-C000002
     一般式(2)中、Y21及びY22はそれぞれ独立に、炭素原子、酸素原子、硫黄原子又は窒素原子であり、Y21及びY22の少なくとも1つは酸素原子、硫黄原子又は窒素原子である;
     ZはY21-C=C-Y22とともに5~7員環を形成する原子群であって、環構成原子が炭素原子、酸素原子、硫黄原子又は窒素原子からなる原子群を表す;
     R21~R24はそれぞれ独立に置換基を表す;
     p~sはそれぞれ独立に、0以上の整数であり、各環に置換可能な最大数以下の整数を表す;p~sが2以上の整数である場合、複数のR21、複数のR22、複数のR23及び複数のR24はそれぞれ同一でも異なっていてもよい;
     Ar21及びAr22はそれぞれ独立に、破線で囲まれたベンゼン環を含むアリール基又は破線で囲まれたベンゼン環を縮合環のひとつとして含むヘテロアリール基を表す;
     X21及びX22はそれぞれ独立に、単結合、-O-、-S-から選ばれる基である。
     L21及びL22はそれぞれ独立に、炭素数が2~8のアルキレン基、炭素数が5~12のシクロアルキレン基、炭素数が6~20のアリーレン基、又は炭素数が6~20のヘテロアリーレン基を表す;
     m21及びm22はそれぞれ独立に0~10の整数を表す;m21及びm22が2~10の整数である場合、複数の-[L21-X21]-及び複数の-[X22-L22]-はそれぞれ同一でも異なっていてもよい;
     Ar21及びAr22がそれぞれ独立に、破線で囲まれたベンゼン環を含む芳香族縮合環基である場合は、R21、R22、-O-[L21-X21m21-及び-[X22-L22m22-O-はそれぞれ独立に、破線で囲まれたベンゼン環に置換していても、破線で囲まれたベンゼン環以外の縮合環に置換していてもよい。
    Figure JPOXMLDOC01-appb-C000003
     一般式(3)中、X32は炭素数が2~20のアルキレン基、炭素数が4~20のシクロアルキレン基、炭素数が6~20のアリーレン基又はこれらを組み合わせた基を表す;但し、シクロアルキレン基の環構成原子は、酸素原子、硫黄原子又は窒素原子で置換されていてもよい。
  2.  前記一般式(1)で表される単位が下記一般式(11)で表わされる単位である請求項1に記載の位相差フィルム;
    Figure JPOXMLDOC01-appb-C000004
     一般式(11)中、R11~R14はそれぞれ独立に、水素原子又はハメットの置換基定数σ値が-0.15よりも小さい置換基であって、アリール基、ヘテロアリール基及び反応性基を有する置換基を除く置換基であり、R11~R14は互いに隣り合う置換基同士で互いに結合して縮合環を形成するものではない;
     R15及びR16はそれぞれ独立にメチル基又はエチル基を表す;
     a及びbはそれぞれ独立に0~2の整数を表す;
     L11及びL12はそれぞれ独立に、エチレン基又はプロピレン基を表す;
     n11及びn12はそれぞれ独立に0~3の整数を表す。
  3.  前記一般式(2)で表される単位が下記一般式(21)で表わされる単位である請求項1又は2に記載の位相差フィルム;
    Figure JPOXMLDOC01-appb-C000005
     一般式(21)中、Y21及びY22はそれぞれ独立に、炭素原子又は窒素原子を表し、Y21及びY22の少なくとも1つは窒素原子である;
     R21及びR22はそれぞれ独立にメチル基又はエチル基を表し、R23及びR24はそれぞれ独立に置換基を表す;
     p及びqはそれぞれ独立に0~3の整数を表し、rは0~4の整数を表し、sは0~2の整数を表し、sが2の場合、R24で表される置換基は、互いに結合して縮合環を形成してもよい;
     L21及びL22はそれぞれ独立に、エチレン基又はプロピレン基を表す;
     m21及びm22はそれぞれ独立に0~3の整数を表す。
  4.  前記一般式(21)において、Y21及びY22は窒素原子である請求項3に記載の位相差フィルム。
  5.  前記一般式(3)において、X32は脂環、複素環及び芳香環から選択される少なくとも1種を置換基として有する炭素数が5~20のアルキレン基、炭素数が4~20のシクロアルキレン基、炭素数が6~20のアリーレン基又はこれらを組み合わせた基を表す請求項1~4のいずれか1項に記載の位相差フィルム;但し、シクロアルキレン基の環構成原子は、酸素原子、硫黄原子又は窒素原子で置換されていてもよい。
  6.  前記一般式(3)で表される単位が下記構成単位から選択される単位である請求項1~5のいずれか1項に記載に位相差フィルム;
    Figure JPOXMLDOC01-appb-C000006
     上記構成単位中、R331は水素原子又は炭素数1~12のアルキル基を表す;r1は0又は1である;R332及びR333はそれぞれ独立に水素原子又はメチル基を表し、Z331は、以下の構造式のいずれかで表される連結基である;
    Figure JPOXMLDOC01-appb-C000007
     上記構造式中の*は連結部位を表す。
  7.  光弾性係数が0cm/N以上40×10-8cm/N以下である請求項1~6のいずれか1項に記載の位相差フィルム。
PCT/JP2018/024351 2017-06-28 2018-06-27 位相差フィルム WO2019004279A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197037662A KR102326392B1 (ko) 2017-06-28 2018-06-27 위상차 필름
JP2019526977A JP6830157B2 (ja) 2017-06-28 2018-06-27 位相差フィルム
CN201880043388.XA CN110799870B (zh) 2017-06-28 2018-06-27 相位差膜
US16/718,598 US10899882B2 (en) 2017-06-28 2019-12-18 Phase difference film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-126231 2017-06-28
JP2017126231 2017-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/718,598 Continuation US10899882B2 (en) 2017-06-28 2019-12-18 Phase difference film

Publications (1)

Publication Number Publication Date
WO2019004279A1 true WO2019004279A1 (ja) 2019-01-03

Family

ID=64742137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024351 WO2019004279A1 (ja) 2017-06-28 2018-06-27 位相差フィルム

Country Status (5)

Country Link
US (1) US10899882B2 (ja)
JP (1) JP6830157B2 (ja)
KR (1) KR102326392B1 (ja)
CN (1) CN110799870B (ja)
WO (1) WO2019004279A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262337A1 (ja) * 2019-06-24 2020-12-30 三菱ケミカル株式会社 熱可塑性樹脂、それよりなる光学フィルム、ジオール化合物、ジエステル化合物
JP2023074459A (ja) * 2021-11-17 2023-05-29 中國石油化學工業開發股▲分▼有限公司 脂環族ポリカーボネートの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111913248B (zh) * 2020-07-27 2022-03-29 明基材料有限公司 相位差膜、圆偏光板以及含该圆偏光板的电激发光显示器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3325560B2 (ja) * 1998-10-30 2002-09-17 帝人株式会社 位相差フィルム及びそれを用いた光学装置
JP4010810B2 (ja) * 1999-07-29 2007-11-21 帝人株式会社 位相差フィルム、位相差フィルム複合体及びそれらを用いた液晶表示装置
JP2009057322A (ja) * 2007-08-31 2009-03-19 Tokyo Institute Of Technology 新規ジベンゾフルオレン化合物
JP4739636B2 (ja) * 2000-04-24 2011-08-03 帝人株式会社 位相差フィルムの製造方法
JP5079150B2 (ja) * 2012-02-03 2012-11-21 帝人化成株式会社 位相差フィルム
JP5668077B2 (ja) * 2010-11-12 2015-02-12 帝人株式会社 コポリカーボネート
JP5706071B2 (ja) * 2009-03-26 2015-04-22 帝人株式会社 位相差フィルム
JP2015193809A (ja) * 2014-03-20 2015-11-05 富士フイルム株式会社 組成物、硬化性組成物、透明膜、固体撮像素子および表示装置
WO2017146023A1 (ja) * 2016-02-24 2017-08-31 富士フイルム株式会社 ポリカーボネート樹脂、成形体、光学部材及びレンズ
WO2017146022A1 (ja) * 2016-02-23 2017-08-31 富士フイルム株式会社 ポリカーボネート樹脂、成形体、光学部材及びレンズ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2631169B2 (ja) 1991-09-24 1997-07-16 株式会社竹中工務店 板状建材の施工法
JP3225560B2 (ja) * 1991-11-27 2001-11-05 日本電気株式会社 交差偏波干渉補償装置
TW583191B (en) * 2001-05-10 2004-04-11 Sumitomo Chemical Co Phase retarder
KR100526402B1 (ko) * 2002-11-22 2005-11-08 주식회사 엘지화학 고리형 올레핀계 부가 중합체를 포함하는 네가티브C-플레이트(negative C-plate)형 광학이방성 필름 및 이의 제조방법
TW200536891A (en) * 2004-03-31 2005-11-16 Teijin Dupont Films Japan Ltd Oriented film, process for producing the same and laminate thereof
TWI422623B (zh) * 2004-12-27 2014-01-11 Jsr Corp Thermoplastic resin compositions, optical films and stretched films
JP4619913B2 (ja) * 2005-09-28 2011-01-26 富士フイルム株式会社 光学補償フィルム、偏光板、および液晶表示装置
WO2007091716A1 (en) * 2006-02-07 2007-08-16 Fujifilm Corporation Optical film and phase difference plate, and liquid crystal compound
JP5245824B2 (ja) * 2006-06-05 2013-07-24 三菱瓦斯化学株式会社 光学レンズ
EP2354816B1 (en) * 2008-12-05 2015-05-06 Teijin Chemicals, Ltd. Optical films
CN102127249B (zh) * 2010-01-18 2014-11-26 富士胶片株式会社 纤维素酰化物薄膜、偏振片和液晶显示装置
JP5718260B2 (ja) * 2011-09-08 2015-05-13 富士フイルム株式会社 重合性液晶化合物、重合性組成物、高分子材料、及びフィルム
WO2016140245A1 (ja) * 2015-03-02 2016-09-09 富士フイルム株式会社 硬化性組成物、硬化物、光学部材、レンズ及び化合物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3325560B2 (ja) * 1998-10-30 2002-09-17 帝人株式会社 位相差フィルム及びそれを用いた光学装置
JP4010810B2 (ja) * 1999-07-29 2007-11-21 帝人株式会社 位相差フィルム、位相差フィルム複合体及びそれらを用いた液晶表示装置
JP4739636B2 (ja) * 2000-04-24 2011-08-03 帝人株式会社 位相差フィルムの製造方法
JP2009057322A (ja) * 2007-08-31 2009-03-19 Tokyo Institute Of Technology 新規ジベンゾフルオレン化合物
JP5706071B2 (ja) * 2009-03-26 2015-04-22 帝人株式会社 位相差フィルム
JP5668077B2 (ja) * 2010-11-12 2015-02-12 帝人株式会社 コポリカーボネート
JP5079150B2 (ja) * 2012-02-03 2012-11-21 帝人化成株式会社 位相差フィルム
JP2015193809A (ja) * 2014-03-20 2015-11-05 富士フイルム株式会社 組成物、硬化性組成物、透明膜、固体撮像素子および表示装置
WO2017146022A1 (ja) * 2016-02-23 2017-08-31 富士フイルム株式会社 ポリカーボネート樹脂、成形体、光学部材及びレンズ
WO2017146023A1 (ja) * 2016-02-24 2017-08-31 富士フイルム株式会社 ポリカーボネート樹脂、成形体、光学部材及びレンズ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262337A1 (ja) * 2019-06-24 2020-12-30 三菱ケミカル株式会社 熱可塑性樹脂、それよりなる光学フィルム、ジオール化合物、ジエステル化合物
CN113950500A (zh) * 2019-06-24 2022-01-18 三菱化学株式会社 热塑性树脂、由其构成的光学膜、二醇化合物、二酯化合物
CN113950500B (zh) * 2019-06-24 2023-11-03 三菱化学株式会社 热塑性树脂、由其构成的光学膜、二醇化合物、二酯化合物
US12065541B2 (en) 2019-06-24 2024-08-20 Mitsubishi Chemical Corporation Thermoplastic resin, optical film made therefrom, diol compound, diester compound
JP2023074459A (ja) * 2021-11-17 2023-05-29 中國石油化學工業開發股▲分▼有限公司 脂環族ポリカーボネートの製造方法
JP7461418B2 (ja) 2021-11-17 2024-04-03 中國石油化學工業開發股▲分▼有限公司 脂環族ポリカーボネートの製造方法

Also Published As

Publication number Publication date
JPWO2019004279A1 (ja) 2020-04-09
KR20200009078A (ko) 2020-01-29
CN110799870A (zh) 2020-02-14
US10899882B2 (en) 2021-01-26
KR102326392B1 (ko) 2021-11-12
US20200131309A1 (en) 2020-04-30
CN110799870B (zh) 2021-05-07
JP6830157B2 (ja) 2021-02-17

Similar Documents

Publication Publication Date Title
TWI417315B (zh) 光學薄膜
JP4759518B2 (ja) 光弾性定数の低いポリカーボネート及びそれからなるフィルム
JP6189355B2 (ja) 位相差フィルム、円偏光板及び画像表示装置
JP6823899B2 (ja) 位相差フィルム、円偏光板及び画像表示装置
US8454857B2 (en) Polymerizable liquid crystal compounds, polymerizable liquid crystal compositions, liquid crystalline polymers and optically anisotropic materials
TWI378302B (ja)
US10899882B2 (en) Phase difference film
TWI466920B (zh) Optical film
US8262932B2 (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition, polymer and film
JP2010134232A (ja) 光学フィルム
JP6911972B2 (ja) 重縮合系樹脂及びそれよりなる光学フィルム
US8262931B2 (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition, polymer and film
US20090041955A1 (en) Alignment material for liquid crystal display device of vertical alignment mode and method of preparing the same
JP2012150477A (ja) 光学フィルム
JP2784680B2 (ja) 位相差板の製造方法
EP2115071B1 (en) Optical films resin composition comprising polyarylate resin and amino resin having triazine structure, and optical films prepared by using the same
JP7023469B2 (ja) 電気光学効果を有するポリカーボネート及びその製造方法、並びにそのポリカーボネートを用いた光制御素子
JP2006131789A (ja) 位相差フィルム用ポリカーボネート共重合体
JP2011079897A (ja) 光弾性定数が低いポリカーボネート樹脂および光学フィルム
US8361345B2 (en) Compound, polymerizable liquid crystal composition, polymer and film
JP5583987B2 (ja) 光弾性定数が低いポリカーボネート樹脂および光学フィルム
KR101295978B1 (ko) 노르보넨계 중합체 및 그 제조방법
JP4080200B2 (ja) 位相差フィルムおよび液晶表示装置
WO2022163684A1 (ja) 環式ジオール化合物、該化合物の製造方法及び該化合物の用途
EP1971481B1 (en) Retardation compensators of negative c-type for liquid crystal display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824114

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526977

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197037662

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824114

Country of ref document: EP

Kind code of ref document: A1