WO2019000815A1 - Led封装及其制作方法 - Google Patents

Led封装及其制作方法 Download PDF

Info

Publication number
WO2019000815A1
WO2019000815A1 PCT/CN2017/112235 CN2017112235W WO2019000815A1 WO 2019000815 A1 WO2019000815 A1 WO 2019000815A1 CN 2017112235 W CN2017112235 W CN 2017112235W WO 2019000815 A1 WO2019000815 A1 WO 2019000815A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene oxide
fluororesin
silane coupling
coupling agent
led package
Prior art date
Application number
PCT/CN2017/112235
Other languages
English (en)
French (fr)
Inventor
梁仁瓅
许琳琳
陈景文
王帅
张骏
杜士达
Original Assignee
华中科技大学鄂州工业技术研究院
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学鄂州工业技术研究院, 华中科技大学 filed Critical 华中科技大学鄂州工业技术研究院
Priority to US16/145,222 priority Critical patent/US10636949B2/en
Publication of WO2019000815A1 publication Critical patent/WO2019000815A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements

Definitions

  • the present disclosure relates to the field of LED packaging, and more particularly to an LED package and a method of fabricating the same.
  • Deep ultraviolet LEDs based on AlGaN materials have broad application prospects in the fields of sterilization, confidential communication, biochemical detection and special lighting, and have received more and more attention and attention in recent years.
  • thermosetting epoxy resins and organosiloxane resins are widely used as sealant materials for LED devices. These sealant resins are spotted directly on the chip and cured to form a solid sealant.
  • the organic phase in such a conventional Si-O-based packaging material easily absorbs ultraviolet rays, resulting in poor transmittance and easy photolysis failure, making them unsuitable for use in the field of packaging materials for ultraviolet LEDs, especially deep ultraviolet LEDs. Therefore, C-F based fluoropolymers have attracted widespread attention. Yamada Hiwa et al.
  • the purpose of the present disclosure is to solve one of the technical defects existing in the prior art, and provide an LED package, which in turn includes a substrate, an LED chip, a sealing layer, and a quartz glass.
  • the sealing layer includes a graphene oxide fluororesin sealant layer and a KH550.
  • a layer of a silane coupling agent A layer of a silane coupling agent.
  • the graphene oxide fluororesin sealant layer chemically reacts with the KH550 silane coupling agent layer to form molecular crosslinks, and the bonding interface and the fluororesin matrix are tightly fixed together like numerous molecular anchors, thereby greatly improving the fluororesin seal.
  • Agent bonding ability The sealing performance of the LED package ensures the reliability of the LED package.
  • An LED package which in turn comprises a substrate, an LED chip, a sealing layer and a quartz glass
  • the sealing layer comprises a graphene oxide fluororesin sealant layer, a KH550 silane coupling agent layer
  • the graphene oxide fluororesin sealant layer comprises a graphene oxide dispersion and a fluororesin base
  • the KH550 silane coupling agent layer includes a deionized aqueous solution and a silane coupling agent.
  • the KH550 silane coupling agent layer is distributed on both sides of the graphene oxide fluororesin sealant layer, and the KH550 silane coupling agent layer is disposed on the contact surface of the LED chip and the quartz glass. on.
  • the graphene oxide dispersion liquid includes graphene oxide powder and anhydrous ethanol
  • the deionized water solution includes deionized water and absolute ethanol.
  • the graphene oxide fluororesin sealant layer is a graphene oxide fluororesin sealant having a concentration of 0.05-0.20 wt%
  • the KH550 silane coupling agent layer is a 1 wt% KH550 silane coupling agent solution.
  • the present disclosure also provides a method for fabricating the above LED package, and the specific steps are as follows:
  • the specific method for preparing the KH550 silane coupling agent solution in the step (1) is: adding a KH550 silane coupling agent to a deionized water solution, and ultrasonically shaking to prepare a silane coupling agent solution. .
  • the specific method for preparing the graphene oxide fluororesin sealant in the step (2) is: first, adding a graphene oxide dispersion liquid to a centrifuge tube filled with a fluororesin matrix, The mixture is stirred to obtain a graphene oxide dispersion-fluororesin matrix mixture A, and then the graphene oxide dispersion-fluororesin matrix mixture A is placed in a centrifuge for centrifugation and delamination to obtain a graphene oxide-fluororesin matrix mixture.
  • the graphene oxide-fluororesin base mixture B is further stirred to obtain a graphene oxide fluororesin sealant.
  • the method for preparing the graphene oxide dispersion is as follows: firstly, the graphene oxide powder is ball-milled and finely ground using a ball mill, and then the graphene oxide powder is added to absolute ethanol, and ultrasonically oscillated to prepare oxidation. Graphene dispersion.
  • the graphene-fluorine resin matrix mixture B is obtained by centrifugation and layering, and the anhydrous ethanol therein is naturally dried before being stirred.
  • the deionized water solution is prepared by adding deionized water to absolute ethanol and ultrasonically shaking to prepare a deionized aqueous solution.
  • FIG. 1 is a schematic structural view of an LED package provided by the present disclosure
  • FIG. 2 is a schematic diagram showing the principle of an anchor structure formed by reacting graphene oxide powder in a graphene oxide fluororesin sealant layer with a KH550 silane coupling agent in a sealant in an LED package;
  • FIG. 3 is a schematic diagram showing the comparison of Cls photoelectron spectroscopy of graphene oxide powder and graphene oxide powder modified by KH550 silane coupling agent, wherein 1 is a Cls photoelectron spectroscopy diagram of graphene oxide powder, and 2 is a KH550 silane coupling agent modification. Cls photoelectron spectroscopy of graphene oxide powder;
  • FIG. 4 is a schematic diagram of infrared spectrum comparison of graphene oxide powder and graphene oxide powder modified by KH550 silane coupling agent, wherein 1 is an infrared spectrum of graphene oxide powder, and 2 is a graphene oxide modified by KH550 silane coupling agent. Infrared spectrum of powder;
  • FIG. 5 is a schematic diagram of a process flow of a method for fabricating an LED package provided by the present disclosure
  • 6 is a comparative light decay accelerated aging test chart of a conventional fluororesin base LED package and an interface package treated LED package provided by the present disclosure, wherein 1 is a fluororesin matrix LED package of undoped graphene oxide.
  • Light decay accelerated aging test curve 2 is an optical decay accelerated aging test curve of an LED package treated with an interface agent containing a 0.05 wt% concentration of graphene oxide fluororesin sealant provided by the present disclosure
  • 3 is provided for the present disclosure including 0.1 Light decay accelerated aging test curve of interface agent treated LED package of wt% concentration of graphene oxide fluororesin sealant, 4 interface agent treated LED package containing 0.2 wt% graphene oxide fluororesin sealant provided by the present disclosure The light decay accelerates the aging test curve.
  • the embodiment provides an LED package, which in turn comprises a substrate 1 , a chip 2 , a sealing layer 3 , and a quartz glass 4 .
  • the sealing layer 3 includes a 0.05 wt % concentration of a graphene oxide fluororesin sealant layer.
  • 1 wt% of KH550 silane coupling agent layer 301, the 0.05 wt% concentration of graphene oxide fluororesin sealant layer consists of 2 mg / mL of graphene oxide dispersion and fluororesin matrix, the 2 mg / mL
  • the graphene oxide dispersion is composed of graphene oxide powder and anhydrous ethanol
  • the 1 wt% KH550 silane coupling agent layer is composed of a 5 wt% deionized water solution and a KH550 silane coupling agent, and the 5 wt% deionized water solution is removed. Ionized water and anhydrous ethanol.
  • the fluororesin matrix is a polymerized perfluoro-4-vinyloxy-1-butene having a -CF 3 terminal, which is polymerized from inorganic molecules of a fluorine element and has a high ultraviolet transmittance. Excellent UV radiation stability, good water and oxygen resistance and poor adhesion.
  • the graphene oxide powder is prepared by using the Hummers method, has a typical quasi-two-dimensional structure, and has a plurality of oxygen-containing groups on the sheet layer, and has a high specific surface energy and a good pro Waterborne, high thermal conductivity, mechanical properties and barriers are ideal composite doping materials.
  • the KH550 silane coupling agent used contains two different reactive groups, an amino group and an oxy group, for coupling an organic polymer and an inorganic filler.
  • Figure 2 shows the principle of the reaction between graphene oxide powder and KH550 silane coupling agent.
  • the two react chemically to form molecular crosslinks.
  • the bonding interface and the fluororesin matrix are tightly fixed together.
  • the bonding ability of the fluororesin sealant is improved, and the reliability of the LED package is ensured.
  • 3 is a schematic diagram of the comparison of Cls photoelectron spectroscopy
  • FIG. 4 is a schematic diagram of infrared spectroscopy comparison.
  • FIG. 3 and FIG. 4 actually prove that the graphene oxide powder and the KH550 silane coupling agent can react chemically
  • FIGS. 3 and 4 are FIG.
  • the theory provides a factual basis.
  • the KH550 silane coupling agent layer 301 is distributed on both sides of the graphene oxide fluororesin sealant layer 302, and the KH550 silane coupling agent layer 302 is disposed on the LED chip 2 and the quartz glass 4. Contact surface. This structure makes the bonding effect better.
  • the embodiment further provides a method for fabricating the above LED package, and the specific steps are as follows:
  • the specific method for preparing the above 1 wt% KH550 silane coupling agent solution in the step (2) is: first adding deionized water to anhydrous ethanol, ultrasonically shaking to prepare a 5 wt% deionized water solution, and then The KH550 silane coupling agent was added to a 5 wt% deionized water solution, and ultrasonically shaken to prepare a 1 wt% KH550 silane coupling agent solution.
  • the specific method for preparing the above-mentioned 0.05 wt% concentration of the graphene oxide fluororesin sealant is as follows: first, using a ball mill, the graphene oxide powder is ball-milled and finely determined, and will be fixed. The weight of graphene oxide powder is added to absolute ethanol, and after 1 hour of ultrasonic vibration, it is formulated into a 2 mg/mL graphene oxide dispersion; and 2 mg/mL of graphene oxide dispersion is added to the fluororesin matrix.
  • a glass rod was stirred for 15 minutes to obtain a graphene oxide dispersion-fluororesin base mixture A, and then the graphene oxide dispersion-fluororesin base mixture A was placed in a centrifuge, and the number of revolutions was set to 10,000. After the centrifugal layering, the graphene oxide-fluororesin matrix mixture B was obtained, and the anhydrous ethanol in the graphene oxide-fluororesin matrix mixture B was naturally dried, and the remaining liquid was further stirred for 1 hour to obtain 0.05 wt%. A concentration of graphene oxide fluororesin sealant.
  • the embodiment provides an LED package, which in turn comprises a substrate 1 , a chip 2 , a sealing layer 3 , and a quartz glass 4 .
  • the sealing layer 3 includes a 0.1 wt% concentration of a graphene oxide fluororesin sealant layer.
  • the graphene oxide dispersion is composed of graphene oxide powder and anhydrous ethanol;
  • the 1 wt% KH550 silane coupling agent layer is composed of a 5 wt% deionized water solution and a KH550 silane coupling agent, and the 5 wt% deionized water solution is removed. Ionized water and anhydrous ethanol.
  • the fluororesin matrix is a polymerized perfluoro-4-vinyloxy-1-butene having a -CF 3 terminal, which is polymerized from inorganic molecules of a fluorine element and has a high ultraviolet transmittance. Excellent UV radiation stability, good water and oxygen resistance and poor adhesion.
  • the graphene oxide powder is prepared by the Hummers method, has a typical quasi-two-dimensional structure, and has a plurality of oxygen-containing groups on the sheet layer, and has high specific surface energy and good hydrophilicity. High thermal conductivity, mechanical properties and barriers are ideal composite doping materials.
  • the KH550 silane coupling agent used contains two different reactive groups, an amino group and an oxy group, for coupling an organic polymer and an inorganic filler.
  • Figure 2 shows the principle of the reaction between graphene oxide powder and KH550 silane coupling agent.
  • the two react chemically to form molecular crosslinks.
  • the bonding interface and the fluororesin matrix are tightly fixed together.
  • the bonding ability of the fluororesin sealant is improved, and the reliability of the LED package is ensured.
  • Figure 3 is a schematic diagram of the comparison of Cl s photoelectron spectroscopy, and the infrared spectrum comparison diagram of Figure 4, Figure 3, 4 From the fact that the graphene oxide powder and the KH550 silane coupling agent can be chemically reacted, Figures 3 and 4 provide the factual basis for the theory of Figure 2.
  • the KH550 silane coupling agent layer 301 is distributed on both sides of the graphene oxide fluororesin sealant layer 302, and the KH550 silane coupling agent layer 302 is disposed on the LED chip 2 and the quartz glass 4. Contact surface. This structure makes the bonding effect better.
  • the embodiment further provides a method for fabricating the above LED package, and the specific steps are as follows:
  • the specific method for preparing the above 1 wt% KH550 silane coupling agent solution in the step (2) is as follows: first, deionized water is added to absolute ethanol, and ultrasonically oscillated to prepare a solution of 5 wt% deionized water. Then, KH550 silane coupling agent was added to a 5 wt% deionized water solution, and ultrasonically shaken to prepare a 1 wt% KH550 silane coupling agent solution.
  • the specific method for preparing the above-mentioned 0.1 wt% concentration of the graphene oxide fluororesin sealant in the step (3) is: first, using a ball mill, the graphene oxide powder is ball-milled to a certain weight of graphene oxide. The powder was added to absolute ethanol, and after 1 hour of ultrasonic vibration, the ratio was adjusted to 2 mg/mL of graphene oxide dispersion; then 2 mg/mL of graphene oxide dispersion was added to a centrifuge tube containing a fluororesin matrix.
  • the mixture was stirred for 15 minutes with a glass rod to obtain a graphene oxide dispersion-fluororesin base mixture A, and then the graphene oxide dispersion-fluororesin base mixture A was placed in a centrifuge, and the number of revolutions was set to 10,000 rpm for centrifugation. After the layer, a graphene oxide-fluororesin matrix mixture B is obtained, and the anhydrous ethanol in the graphene oxide-fluororesin matrix mixture B is naturally dried, and the remaining liquid is further stirred for 1 hour to obtain 0.1 wt% concentration of graphene oxide fluororesin sealant.
  • the embodiment provides an LED package, which in turn comprises a substrate 1 , a chip 2 , a sealing layer 3 , and a quartz glass 4 .
  • the sealing layer 3 includes a 0.2 wt% concentration of a graphene oxide fluororesin sealant layer.
  • 1 wt% of KH550 silane coupling agent layer 301, the 0.2 wt% concentration of graphene oxide fluororesin sealant layer consists of 2 mg / mL of graphene oxide dispersion and fluororesin matrix, the 2 mg / mL
  • the graphene oxide dispersion is composed of graphene oxide powder and anhydrous ethanol
  • the 1 wt% KH550 silane coupling agent layer is composed of a 5 wt% deionized water solution and a KH550 silane coupling agent, and the 5 wt% deionized water solution is removed. Ionized water and anhydrous ethanol.
  • the fluororesin matrix is a polymerized perfluoro-4-vinyloxy-1-butene having a -CF 3 terminal, which is polymerized from inorganic molecules of a fluorine element and has a high ultraviolet transmittance. Excellent UV radiation stability, good water and oxygen resistance and poor adhesion.
  • the graphene oxide powder is prepared by the Hummers method, has a typical quasi-two-dimensional structure, and has a plurality of oxygen-containing groups on the sheet layer, and has high specific surface energy and good hydrophilicity. High thermal conductivity, mechanical properties and barriers are ideal composite doping materials.
  • the KH550 silane coupling agent used contains two different reactive groups, an amino group and an oxy group, for coupling an organic polymer and an inorganic filler.
  • Figure 2 shows the principle of the reaction between graphene oxide powder and KH550 silane coupling agent.
  • the two react chemically to form molecular crosslinks.
  • the bonding interface and the fluororesin matrix are tightly fixed together.
  • the bonding ability of the fluororesin sealant is improved, and the reliability of the LED package is ensured.
  • 3 is a schematic diagram of the comparison of Cls photoelectron spectroscopy
  • FIG. 4 is a schematic diagram of infrared spectroscopy comparison.
  • FIG. 3 and FIG. 4 actually prove that the graphene oxide powder and the KH550 silane coupling agent can react chemically
  • FIGS. 3 and 4 are FIG.
  • the theory provides a factual basis.
  • the KH550 silane coupling agent layer 301 is distributed on both sides of the graphene oxide fluororesin sealant layer 302, and the KH550 silane coupling agent layer 302 is disposed on the LED chip 2 and the quartz glass 4. Contact surface. This structure makes the bonding effect better.
  • the embodiment further provides a method for fabricating the above LED package, and the specific steps are as follows:
  • the specific method for preparing the above 1 wt% KH550 silane coupling agent solution in the step (2) is as follows: first, deionized water is added to absolute ethanol, and ultrasonically oscillated to prepare a solution of 5 wt% deionized water. Then, KH550 silane coupling agent was added to a 5 wt% deionized water solution, and ultrasonically shaken to prepare a 1 wt% KH550 silane coupling agent solution.
  • the specific method for preparing the above-mentioned 0.12% by weight concentration of the graphene oxide fluororesin sealant is as follows: first, using a ball mill, the graphene oxide powder is ball-milled to a certain weight of graphene oxide. The powder was added to absolute ethanol, and after 1 hour of ultrasonic vibration, the ratio was adjusted to 2 mg/mL of graphene oxide dispersion; then 2 mg/mL of graphene oxide dispersion was added to a centrifuge tube containing a fluororesin matrix.
  • the mixture was stirred for 15 minutes with a glass rod to obtain a graphene oxide dispersion-fluororesin base mixture A, and then the graphene oxide dispersion-fluororesin base mixture A was placed in a centrifuge, and the number of revolutions was set to 10,000 rpm for centrifugation. After the layer, a graphene oxide-fluororesin matrix mixture B is obtained, and the anhydrous ethanol in the graphene oxide-fluororesin matrix mixture B is naturally dried, and the remaining liquid is further stirred for 1 hour to obtain a 0.2 wt% concentration of graphite oxide. A fluororesin sealant.
  • FIG. 6 The results of the light aging accelerated aging test of the LED package of the first, second, and third embodiments and the existing fluororesin base LED package are shown in FIG. 6.
  • 1 is fluorine of undoped graphene oxide.
  • the light decay accelerated aging test curve of the LED package of the resin matrix 2 is the light decay accelerated aging test curve of the LED package treated with the interface agent containing the 0.05 wt% concentration of the graphene oxide fluororesin sealant provided by the present disclosure
  • Line 3 is the light decay accelerated aging test curve of the interface agent-treated LED package containing 0.1 wt% concentration of graphene oxide fluororesin sealant provided by the present disclosure
  • 4 is provided by the present disclosure containing 0.2 wt% of graphene oxide fluoride
  • the light decay accelerated aging test curve 4 of the LED package of the interface agent treatment of the resin sealant It can be seen that the anti-aging ability of the LED package treated by the interface agent provided by the present disclosure is obviously enhanced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

一种LED封装及其制作方法。LED封装依次包括基板(1)、LED芯片(2)、密封层(3)、石英玻璃(4),该密封层包括氧化石墨烯氟树脂密封剂层(302)、KH550硅烷偶联剂层(301)。氧化石墨烯氟树脂密封剂层与KH550硅烷偶联剂层发生化学反应,形成分子交联,如同无数个分子锚一样将黏结界面及氟树脂基体紧紧固定在一起,大大提高了氟树脂密封剂的黏结能力,提高了LED封装的密封性能从而保证了LED封装的可靠性。

Description

LED封装及其制作方法 技术领域
本公开涉及LED封装领域,特别是涉及LED封装及其制作方法。
背景技术
基于AlGaN材料的深紫外LED在杀菌消毒、保密通讯、生化探测及特种照明等领域有着广阔的应用前景,近年来受到越来越多的关注和重视。目前,热固性环氧树脂和有机硅氧烷树脂被广泛用作LED器件的密封剂材料。这些密封剂树脂直接点在芯片上并固化形成固体密封剂。然而,这种常规的Si-O基封装材料中的有机相容易吸收紫外线,导致其透过率差,容易光解失效,使得它们不适用于紫外LED尤其是深紫外LED的封装材料领域。因此,基于C-F的含氟聚合物已经引起了广泛的关注。山田喜和等人制造了具有稳定端(-CF 3)的S型聚合全氟-4-乙烯基氧基-1-丁烯,证明了S型含氟聚合物有优秀的紫外透过率,强韧的紫外线稳定性,在提高深紫外LED性能方面发挥了重要作用。然而,粘合能力较差的含氟聚合物在深紫外LED三明治结构(芯片-密封剂-石英透镜)中的应用具有很大的困难,形成的空气壁垒大大影响深紫外LED的光输出功率和热量传递,引起外界环境中氧气和水蒸汽侵蚀芯片,导致深紫外LED失效。
为了推动和促进深紫外LED光源的广泛应用,需要一种密封性能较好的LED封装。
发明内容
本公开的目的在于解决现有技术存在的技术缺陷之一,提供一种LED封装,依次包括基板、LED芯片、密封层、石英玻璃,所述密封层包括氧化石墨烯氟树脂密封剂层、KH550硅烷偶联剂层。氧化石墨烯氟树脂密封剂剂层与KH550硅烷偶联剂层发生化学反应,形成分子交联,如同无数个分子锚一样将黏结界面及氟树脂基体紧紧固定在一起,大大提高了氟树脂密封剂的黏结能力,提高 了LED封装的密封性能从而保证了LED封装的可靠性。
为了实现上述目的,采用如下技术方案:
一种LED封装,依次包括基板、LED芯片、密封层和石英玻璃,所述密封层包括氧化石墨烯氟树脂密封剂层,KH550硅烷偶联剂层,所述氧化石墨烯氟树脂密封剂层包括氧化石墨烯分散液及氟树脂基体;所述KH550硅烷偶联剂层包括去离子水溶液和硅烷偶联剂。
作为上述方案的优选,所述KH550硅烷偶联剂层分布在所述氧化石墨烯氟树脂密封剂层的两侧,所述KH550硅烷偶联剂层设置于所述LED芯片与石英玻璃的接触面上。
作为上述方案的优选,所述氧化石墨烯分散液包括氧化石墨烯粉末和无水乙醇,所述去离子水溶液包括去离子水和无水乙醇。
作为上述方案的优选,所述氧化石墨烯氟树脂密封剂层为0.05-0.20wt%浓度的氧化石墨烯氟树脂密封剂,所述KH550硅烷偶联剂层为1wt%的KH550硅烷偶联剂溶液。
本公开还提供一种上述LED封装的制作方法,具体步骤为:
(1)将KH550硅烷偶联剂溶液涂覆在LED芯片表面及石英透镜底部,涂抹均匀后将LED芯片及石英透镜进行烘烤后形成KH550硅烷偶联剂层;
(2)在LED芯片表面涂覆氧化石墨烯氟树脂密封剂后形成氧化石墨烯氟树脂密封剂层,真空脱泡后KH550硅烷偶联剂层与氧化石墨烯氟树脂密封剂层反应形成密封层;
(3)加装石英透镜后形成LED封装;
(4)将上述LED封装进行烘烤。
作为上述方案的优选,所述步骤(1)中制备所述KH550硅烷偶联剂溶液的具体方法为:将KH550硅烷偶联剂加入到去离子水溶液中,超声震荡,制成硅烷偶联剂溶液。
作为上述方案的优选,所述步骤(2)中制备所述氧化石墨烯氟树脂密封剂的具体方法为:首先将氧化石墨烯分散液加入到装有氟树脂基体的离心管中, 进行搅拌得到氧化石墨烯分散液-氟树脂基体混合液A,然后将氧化石墨烯分散液-氟树脂基体混合液A放入离心机中进行离心分层后得到氧化石墨烯-氟树脂基体混合液B,将氧化石墨烯-氟树脂基体混合液B再进行搅拌得到氧化石墨烯氟树脂密封剂。
作为上述方案的优选,制备所述氧化石墨烯分散液的方法为:首先使用球磨机将氧化石墨烯粉进行球磨研细,然后将氧化石墨烯粉末加入无水乙醇中,经过超声震荡,配制成氧化石墨烯分散液。
作为上述方案的优选,所述离心分层后得到氧化石墨烯-氟树脂基体混合液B进行搅拌之前先将其中的无水乙醇自然晾干。
作为上述方案的优选,制备所述去离子水溶液的方法为:将去离子水加入到无水乙醇中,超声震荡,制成去离子水溶液。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开提供的LED封装的结构示意图;
图2为LED封装中密封剂中氧化石墨烯氟树脂密封剂层中的氧化石墨烯粉与KH550硅烷偶联剂反应形成的锚固结构原理示意图;
图3为氧化石墨烯粉及通过KH550硅烷偶联剂修饰的氧化石墨烯粉的Cls光电子能谱对比示意图,其中1为氧化石墨烯粉的Cls光电子能谱图,2为KH550硅烷偶联剂修饰的氧化石墨烯粉的Cls光电子能谱图;
图4为氧化石墨烯粉及通过KH550硅烷偶联剂修饰的氧化石墨烯粉的红外光谱对比示意图,其中1为氧化石墨烯粉的红外光谱图,2为KH550硅烷偶联剂修饰的氧化石墨烯粉的红外光谱图;
图5为本公开提供的LED封装的制作方法的工艺流程示意图;
图6为现有的氟树脂基体的LED封装及采用本公开提供的界面剂处理的LED封装的对比光衰加速老化测试图,其中1为未掺杂氧化石墨烯的氟树脂基体的LED封装的光衰加速老化测试曲线,2为采用本公开提供的包含0.05wt%浓度的氧化石墨烯氟树脂密封剂的界面剂处理的LED封装的光衰加速老化测试曲线,3为本公开提供的包含0.1wt%浓度的氧化石墨烯氟树脂密封剂的界面剂处理的LED封装的光衰加速老化测试曲线,4为本公开提供的包含0.2wt%氧化石墨烯氟树脂密封剂的界面剂处理的LED封装的光衰加速老化测试曲线。
具体实施方式
下面将结合本公开的附图,对本公开的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
实施例1
如图1所示,本实施例提供一种LED封装,依次包括基板1、芯片2、密封层3、石英玻璃4,所述密封层3包括0.05wt%浓度的氧化石墨烯氟树脂密封剂层302、1wt%的KH550硅烷偶联剂层301,所述0.05wt%浓度的氧化石墨烯氟树脂密封剂层由2mg/mL的氧化石墨烯分散液及氟树脂基体组成,所述2mg/mL的氧化石墨烯分散液由氧化石墨烯粉末和无水乙醇组成;所述1wt%的KH550硅烷偶联剂层由5wt%去离子水溶液和KH550硅烷偶联剂组成,所述5wt%去离子水溶液由去离子水和无水乙醇组成。
进一步地,所述氟树脂基体是一种具有-CF3末端的聚合全氟-4-乙烯基氧基-1-丁烯,由含氟元素的无机分子聚合而成,具有高紫外透过率,优秀的紫外照射稳定性,良好的防水防氧功能及粘结性差等特征。
进一步地,所述氧化石墨烯粉是使用Hummers法制备而成,具有典型的准二维空间结构,其片层上含有很多含氧基团,具有较高的比表面能、良好的亲 水性、高导热系数、机械性能及壁垒作用,是理想的复合掺杂材料。
进一步地,所使用的KH550硅烷偶联剂,分子中含有两种不同的活性基团——氨基和氧基,用来偶联有机高分子和无机填料。
图2显示了氧化石墨烯粉与KH550硅烷偶联剂发生反应的原理,二者发生化学反应,形成分子交联,如同无数个分子锚一样将黏结界面及氟树脂基体紧紧固定在一起,大大提高了氟树脂密封剂的黏结能力,保证了LED封装的可靠性。图3为Cls光电子能谱对比示意图,图4的红外光谱对比示意图,图3、图4从事实上证明氧化石墨烯粉与KH550硅烷偶联剂能够发生化学反应,图3、4为图2的理论提供了事实依据。进一步地,所述KH550硅烷偶联剂层301分布在所述氧化石墨烯氟树脂密封剂层302的两侧,所述KH550硅烷偶联剂层302设置于所述LED芯片2与石英玻璃4的接触面上。这种结构使得粘结效果更好。
如图5所示,本实施例还提供一种上述LED封装的制作方法,具体步骤为:
(1)将未装石英透镜的LED芯片及石英透镜进行超声波清洗;
(2)将上述LED封装的氟树脂界面剂中的1wt%的KH550硅烷偶联剂溶液滴在LED芯片表面及石英透镜底部,涂抹均匀后将LED芯片及石英透镜置于80℃烘烤5分钟;
(3)使用点胶机在LED芯片表面点涂上述LED封装的氟树脂界面剂中的0.05wt%浓度的氧化石墨烯氟树脂密封剂,真空脱泡10分钟;
(4)加装石英透镜,并调整石英透镜位置到LED芯片中心形成LED封装;
(5)将上述LED封装放入烤箱中烘烤,设定烘烤温度为80℃,反应时间为12小时,然后制得图1所示的LED封装。
进一步地,所述步骤(2)中制备上述1wt%的KH550硅烷偶联剂溶液的具体方法为:首先将去离子水加入到无水乙醇中,超声震荡,制成5wt%去离子水溶液,再将KH550硅烷偶联剂加入到5wt%去离子水溶液中,超声震荡,制成1wt%的KH550硅烷偶联剂溶液。
进一步地,所述步骤(3)中制备上述0.05wt%浓度的氧化石墨烯氟树脂密封剂的具体方法为:首先使用球磨机,将氧化石墨烯粉进行球磨研细,将一定 重量的氧化石墨烯粉末加入无水乙醇中,经过1小时的超声震荡,配制成2mg/mL的氧化石墨烯分散液;再将2mg/mL的氧化石墨烯分散液加入到装有氟树脂基体的离心管中,用玻璃棒搅拌15分钟得到氧化石墨烯分散液-氟树脂基体混合液A,然后将氧化石墨烯分散液-氟树脂基体混合液A放入离心机中,设定转数为10000转进行离心分层后得到氧化石墨烯-氟树脂基体混合液B,将氧化石墨烯-氟树脂基体混合液B中的无水乙醇自然晾干,剩余的液体再搅拌1小时,得到0.05wt%浓度的氧化石墨烯氟树脂密封剂。
实施例2
如图1所示,本实施例提供一种LED封装,依次包括基板1、芯片2、密封层3、石英玻璃4,所述密封层3包括0.1wt%浓度的氧化石墨烯氟树脂密封剂层302,1wt%的KH550硅烷偶联剂层301,所述0.1wt%浓度的氧化石墨烯氟树脂密封剂层由2mg/mL的氧化石墨烯分散液及氟树脂基体组成,所述2mg/mL的氧化石墨烯分散液由氧化石墨烯粉末和无水乙醇组成;所述1wt%的KH550硅烷偶联剂层由5wt%去离子水溶液和KH550硅烷偶联剂组成,所述5wt%去离子水溶液由去离子水和无水乙醇组成。
进一步地,所述氟树脂基体是一种具有-CF3末端的聚合全氟-4-乙烯基氧基-1-丁烯,由含氟元素的无机分子聚合而成,具有高紫外透过率,优秀的紫外照射稳定性,良好的防水防氧功能及粘结性差等特征。
进一步地,所述氧化石墨烯粉是使用Hummers法制备而成,具有典型的准二维空间结构,其片层上含有很多含氧基团,具有较高的比表面能、良好的亲水性、高导热系数、机械性能及壁垒作用,是理想的复合掺杂材料。
进一步地,所使用的KH550硅烷偶联剂,分子中含有两种不同的活性基团——氨基和氧基,用来偶联有机高分子和无机填料。
图2显示了氧化石墨烯粉与KH550硅烷偶联剂发生反应的原理,二者发生化学反应,形成分子交联,如同无数个分子锚一样将黏结界面及氟树脂基体紧紧固定在一起,大大提高了氟树脂密封剂的黏结能力,保证了LED封装的可靠性。图3为Cl s光电子能谱对比示意图,图4的红外光谱对比示意图,图3、图 4从事实上证明氧化石墨烯粉与KH550硅烷偶联剂能够发生化学反应,图3、4为图2的理论提供了事实依据。
进一步地,所述KH550硅烷偶联剂层301分布在所述氧化石墨烯氟树脂密封剂层302的两侧,所述KH550硅烷偶联剂层302设置于所述LED芯片2与石英玻璃4的接触面上。这种结构使得粘结效果更好。
如图5所示,本实施例还提供一种上述LED封装的制作方法,具体步骤为:
(1)将未装石英透镜的LED芯片及石英透镜进行超声波清洗;
(2)将上述LED封装的氟树脂界面剂中的1wt%的KH550硅烷偶联剂溶液滴在LED芯片表面及石英透镜底部,涂抹均匀后将LED芯片及石英透镜置于80℃烘烤5分钟;
(3)使用点胶机在LED芯片表面点涂上述LED封装的氟树脂界面剂中的0.1wt%浓度的氧化石墨烯氟树脂密封剂,真空脱泡10分钟;
(4)加装石英透镜,并调整石英透镜位置到LED芯片中心形成LED封装;
(5)将上述LED封装放入烤箱中烘烤,设定烘烤温度为80℃,反应时间为12小时,然后制得图1所示的LED封装。
进一步地,所述步骤(2)中制备上述1wt%的KH550硅烷偶联剂溶液的具体方法为:首先将去离子水加入到无水乙醇中,超声震荡,制成5wt%去离子水的溶液,再将KH550硅烷偶联剂加入到5wt%去离子水溶液中,超声震荡,制成1wt%的KH550硅烷偶联剂溶液。
进一步地,所述步骤(3)中制备上述0.1wt%浓度的氧化石墨烯氟树脂密封剂的具体方法为:首先使用球磨机,将氧化石墨烯粉进行球磨研细,将一定重量的氧化石墨烯粉末加入无水乙醇中,经过1小时的超声震荡,配比成2mg/mL的氧化石墨烯分散液;再将2mg/mL的氧化石墨烯分散液加入到装有氟树脂基体的离心管中,用玻璃棒搅拌15分钟得到氧化石墨烯分散液-氟树脂基体混合液A,然后将氧化石墨烯分散液-氟树脂基体混合液A放入离心机中,设定转数为10000转进行离心分层后得到氧化石墨烯-氟树脂基体混合液B,将氧化石墨烯-氟树脂基体混合液B中的无水乙醇自然晾干,剩余的液体再搅拌1小时,得到 0.1wt%浓度的氧化石墨烯氟树脂密封剂。
实施例3
如图1所示,本实施例提供一种LED封装,依次包括基板1、芯片2、密封层3、石英玻璃4,所述密封层3包括0.2wt%浓度的氧化石墨烯氟树脂密封剂层302、1wt%的KH550硅烷偶联剂层301,所述0.2wt%浓度的氧化石墨烯氟树脂密封剂层由2mg/mL的氧化石墨烯分散液及氟树脂基体组成,所述2mg/mL的氧化石墨烯分散液由氧化石墨烯粉末和无水乙醇组成;所述1wt%的KH550硅烷偶联剂层由5wt%去离子水溶液和KH550硅烷偶联剂组成,所述5wt%去离子水溶液由去离子水和无水乙醇组成。
进一步地,所述氟树脂基体是一种具有-CF3末端的聚合全氟-4-乙烯基氧基-1-丁烯,由含氟元素的无机分子聚合而成,具有高紫外透过率,优秀的紫外照射稳定性,良好的防水防氧功能及粘结性差等特征。
进一步地,所述氧化石墨烯粉是使用Hummers法制备而成,具有典型的准二维空间结构,其片层上含有很多含氧基团,具有较高的比表面能、良好的亲水性、高导热系数、机械性能及壁垒作用,是理想的复合掺杂材料。
进一步地,所使用的KH550硅烷偶联剂,分子中含有两种不同的活性基团——氨基和氧基,用来偶联有机高分子和无机填料。
图2显示了氧化石墨烯粉与KH550硅烷偶联剂发生反应的原理,二者发生化学反应,形成分子交联,如同无数个分子锚一样将黏结界面及氟树脂基体紧紧固定在一起,大大提高了氟树脂密封剂的黏结能力,保证了LED封装的可靠性。图3为Cls光电子能谱对比示意图,图4的红外光谱对比示意图,图3、图4从事实上证明氧化石墨烯粉与KH550硅烷偶联剂能够发生化学反应,图3、4为图2的理论提供了事实依据。
进一步地,所述KH550硅烷偶联剂层301分布在所述氧化石墨烯氟树脂密封剂层302的两侧,所述KH550硅烷偶联剂层302设置于所述LED芯片2与石英玻璃4的接触面上。这种结构使得粘结效果更好。
如图5所示,本实施例还提供一种上述LED封装的制作方法,具体步骤为:
(1)将未装石英透镜的LED芯片及石英透镜进行超声波清洗;
(2)将上述LED封装的氟树脂界面剂中的1wt%的KH550硅烷偶联剂溶液滴在LED芯片表面及石英透镜底部,涂抹均匀后将LED芯片及石英透镜置于80℃烘烤5分钟;
(3)使用点胶机在LED芯片表面点涂上述LED封装的氟树脂界面剂中的0.2wt%浓度的氧化石墨烯氟树脂密封剂,真空脱泡10分钟;
(4)加装石英透镜,并调整石英透镜位置到LED芯片中心形成LED封装;
(5)将上述LED封装放入烤箱中烘烤,设定烘烤温度为80℃,反应时间为12小时,然后制得图1所示的LED封装。
进一步地,所述步骤(2)中制备上述1wt%的KH550硅烷偶联剂溶液的具体方法为:首先将去离子水加入到无水乙醇中,超声震荡,制成5wt%去离子水的溶液,再将KH550硅烷偶联剂加入到5wt%去离子水溶液中,超声震荡,制成1wt%的KH550硅烷偶联剂溶液。
进一步地,所述步骤(3)中制备上述0.12wt%浓度的氧化石墨烯氟树脂密封剂的具体方法为:首先使用球磨机,将氧化石墨烯粉进行球磨研细,将一定重量的氧化石墨烯粉末加入无水乙醇中,经过1小时的超声震荡,配比成2mg/mL的氧化石墨烯分散液;再将2mg/mL的氧化石墨烯分散液加入到装有氟树脂基体的离心管中,用玻璃棒搅拌15分钟得到氧化石墨烯分散液-氟树脂基体混合液A,然后将氧化石墨烯分散液-氟树脂基体混合液A放入离心机中,设定转数为10000转进行离心分层后得到氧化石墨烯-氟树脂基体混合液B,将氧化石墨烯-氟树脂基体混合液B中的无水乙醇自然晾干,剩余的液体再搅拌1小时,得到0.2wt%浓度的氧化石墨烯氟树脂密封剂。
将实施例1、2、3中的LED封装与现有的氟树脂基体的LED封装进行光衰加速老化测试后结果如图6所示,图6中,1为未掺杂氧化石墨烯的氟树脂基体的LED封装的光衰加速老化测试曲线,2为采用本公开提供的包含0.05wt%浓度的氧化石墨烯氟树脂密封剂的界面剂处理的LED封装的光衰加速老化测试曲 线,3为本公开提供的包含0.1wt%浓度的氧化石墨烯氟树脂密封剂的界面剂处理的LED封装的光衰加速老化测试曲线,4为本公开提供的包含0.2wt%氧化石墨烯氟树脂密封剂的界面剂处理的LED封装的光衰加速老化测试曲线4。可见,经过本公开提供的界面剂处理后的LED封装的抗老化能力明显增强。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种LED封装,依次包括基板、LED芯片、密封层和石英玻璃,其特征在于,所述密封层包括氧化石墨烯氟树脂密封剂层,KH550硅烷偶联剂层,所述氧化石墨烯氟树脂密封剂层包括氧化石墨烯分散液及氟树脂基体;所述KH550硅烷偶联剂层包括去离子水溶液和硅烷偶联剂。
  2. 根据权利要求1所述的LED封装,其特征在于,所述KH550硅烷偶联剂层分布在所述氧化石墨烯氟树脂密封剂层的两侧,所述KH550硅烷偶联剂层设置于所述LED芯片与石英玻璃的接触面上。
  3. 根据权利要求2所述的LED封装,其特征在于,所述氧化石墨烯分散液包括氧化石墨烯粉末和无水乙醇,所述去离子水溶液包括去离子水和无水乙醇。
  4. 根据权利要求1-3任一所述的LED封装,其特征在于,所述氧化石墨烯氟树脂密封剂层为0.05-0.20wt%浓度的氧化石墨烯氟树脂密封剂,所述KH550硅烷偶联剂层为1wt%的KH550硅烷偶联剂溶液。
  5. 一种权利要求1-4任一项所述LED封装的制作方法,其特征在于,具体步骤为:
    (1)将KH550硅烷偶联剂溶液涂覆在LED芯片表面及石英透镜底部,涂抹均匀后将LED芯片及石英透镜进行烘烤后形成KH550硅烷偶联剂层;
    (2)在LED芯片表面涂覆氧化石墨烯氟树脂密封剂后形成氧化石墨烯氟树脂密封剂层,真空脱泡后KH550硅烷偶联剂层与氧化石墨烯氟树脂密封剂层反应形成密封层;
    (3)加装石英透镜后形成LED封装;
    (4)将上述LED封装进行烘烤。
  6. 根据权利要求5所述LED封装的制作方法,其特征在于,所述步骤(1)中制备所述KH550硅烷偶联剂溶液的具体方法为:将KH550硅烷偶联剂加入到去离子水溶液中,超声震荡,制成硅烷偶联剂溶液。
  7. 根据权利要求5所述LED封装的制作方法,其特征在于,所述步骤(2)中制备所述氧化石墨烯氟树脂密封剂的具体方法为:首先将氧化石墨烯分散液 加入到装有氟树脂基体的离心管中,进行搅拌得到氧化石墨烯分散液-氟树脂基体混合液A,然后将氧化石墨烯分散液-氟树脂基体混合液A放入离心机中进行离心分层后得到氧化石墨烯-氟树脂基体混合液B,将氧化石墨烯-氟树脂基体混合液B再进行搅拌得到氧化石墨烯氟树脂密封剂。
  8. 根据权利要求7所述LED封装的制作方法,其特征在于,制备所述氧化石墨烯分散液的方法为:首先使用球磨机将氧化石墨烯粉进行球磨研细,然后将氧化石墨烯粉末加入无水乙醇中,经过超声震荡,配制成氧化石墨烯分散液。
  9. 根据权利要求8所述LED封装的制作方法,其特征在于,所述离心分层后得到氧化石墨烯-氟树脂基体混合液B进行搅拌之前先将其中的无水乙醇自然晾干。
  10. 根据权利要求6所述LED封装的制作方法,其特征在于,制备所述去离子水溶液的方法为:将去离子水加入到无水乙醇中,超声震荡,制成去离子水溶液。
PCT/CN2017/112235 2017-06-29 2017-11-22 Led封装及其制作方法 WO2019000815A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/145,222 US10636949B2 (en) 2017-06-29 2018-09-28 LED package and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710514855.X 2017-06-25
CN201710514855.XA CN107275465B (zh) 2017-06-29 2017-06-29 Led封装及其制作方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/145,222 Continuation US10636949B2 (en) 2017-06-29 2018-09-28 LED package and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2019000815A1 true WO2019000815A1 (zh) 2019-01-03

Family

ID=60070512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112235 WO2019000815A1 (zh) 2017-06-29 2017-11-22 Led封装及其制作方法

Country Status (3)

Country Link
US (1) US10636949B2 (zh)
CN (1) CN107275465B (zh)
WO (1) WO2019000815A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107275465B (zh) * 2017-06-29 2019-01-04 华中科技大学鄂州工业技术研究院 Led封装及其制作方法
CN109037404B (zh) * 2018-08-01 2019-06-18 广东旭宇光电有限公司 植物萌芽照射二极管及其制备方法和植物萌芽照射灯
CN111029452B (zh) * 2019-12-10 2022-04-19 宁波安芯美半导体有限公司 一种紫外发光二极管封装结构及其封装方法、和紫外灯
CN113659059A (zh) * 2021-07-09 2021-11-16 深圳市佑明光电有限公司 Led灯珠、照明灯及led灯珠的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101079464A (zh) * 2006-05-22 2007-11-28 优志旺电机株式会社 紫外线发光元件封装
CN102504451A (zh) * 2011-12-11 2012-06-20 浙江大学 氟树脂/纳米复合材料的制备方法
CN104829990A (zh) * 2015-04-11 2015-08-12 安徽中威光电材料有限公司 一种led光源用聚四氟乙烯基掺杂铁磷粉的散热材料及其制备方法
CN107275465A (zh) * 2017-06-29 2017-10-20 华中科技大学鄂州工业技术研究院 Led封装及其制作方法
CN107337881A (zh) * 2017-06-29 2017-11-10 华中科技大学鄂州工业技术研究院 用于led封装的氟树脂界面剂、制备及使用方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120074434A1 (en) * 2010-09-24 2012-03-29 Jun Seok Park Light emitting device package and lighting apparatus using the same
CN103756325B (zh) * 2014-01-16 2016-06-22 广东工业大学 一种低填充量高导热石墨烯/硅脂复合材料及其制备方法
JP6465113B2 (ja) * 2014-07-15 2019-02-06 Agc株式会社 紫外線発光装置用接着剤および紫外線発光装置
CN106796977B (zh) * 2014-07-23 2019-06-28 晶体公司 紫外发光器件的光子提取
CN104910829B (zh) * 2015-05-05 2017-05-17 深圳新宙邦科技股份有限公司 一种led封装胶用增粘剂及其制备方法
CN104867450B (zh) * 2015-06-05 2017-09-19 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN106854330B (zh) * 2016-11-25 2018-03-23 常州中英科技股份有限公司 一种含氟树脂混合物及其制备的半固化片和覆铜板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101079464A (zh) * 2006-05-22 2007-11-28 优志旺电机株式会社 紫外线发光元件封装
CN102504451A (zh) * 2011-12-11 2012-06-20 浙江大学 氟树脂/纳米复合材料的制备方法
CN104829990A (zh) * 2015-04-11 2015-08-12 安徽中威光电材料有限公司 一种led光源用聚四氟乙烯基掺杂铁磷粉的散热材料及其制备方法
CN107275465A (zh) * 2017-06-29 2017-10-20 华中科技大学鄂州工业技术研究院 Led封装及其制作方法
CN107337881A (zh) * 2017-06-29 2017-11-10 华中科技大学鄂州工业技术研究院 用于led封装的氟树脂界面剂、制备及使用方法

Also Published As

Publication number Publication date
CN107275465A (zh) 2017-10-20
US10636949B2 (en) 2020-04-28
CN107275465B (zh) 2019-01-04
US20190035991A1 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
WO2019000816A1 (zh) 用于led封装的氟树脂界面剂、制备及使用方法
WO2019000815A1 (zh) Led封装及其制作方法
JP5244192B2 (ja) 太陽電池用バックシート及びその製造方法
WO2011152500A1 (ja) 水蒸気バリア性フィルム及びその製造方法
CN101230224A (zh) 氟硅橡胶纳米复合合金三防涂料及其生产方法
JP2013505851A (ja) フルオロポリマー/微粒子充填保護シート
JP4309744B2 (ja) フッ素系複合樹脂フィルム及び太陽電池
KR20180063180A (ko) 다층 배리어 코팅
TWI461290B (zh) A laminated body and an organic EL element, a window, and a solar cell module using the same
CN110699668B (zh) 带复合涂层体及其制备方法和应用、太阳能电池
JPWO2019245054A1 (ja) ゼオライト含有ポリイミド樹脂複合材、ゼオライト含有ポリイミド樹脂前駆体組成物、フィルム、及び電子デバイス
KR102035909B1 (ko) 양친성 고분자 사슬을 가지는 다리걸친 유기실리카 전구체를 이용한 가스 배리어 필름 제조용 조성물 및 이로부터 제조되는 가스 배리어 필름
Adja et al. Step by step progress to achieve an icephobic silicone‐epoxy hybrid coating: Tailoring matrix composition and additives
US10597512B2 (en) Optoelectronic device with a mixture having a silicone and a fluoro-organic additive
JP2012061651A (ja) ガスバリア性積層フィルム
CN113861481B (zh) 一种高透疏水光学聚酰亚胺复合薄膜材料及制备方法
JP6057582B2 (ja) Led用封止材料
WO2017054189A1 (en) Multilayer barrier stack
KR20150025399A (ko) 254나노미터 파장의 자외선 광원을 밴드 패스하기 위한 렌즈 제조방법
WO2012008276A1 (ja) ガスバリア性フィルム、及びそれを用いた有機電子デバイス
JP5403730B2 (ja) 低誘電性絶縁膜、プラズマディスプレイおよびその製造方法
JP6331828B2 (ja) 複合シリカ膜、複合シリカ膜形成用塗布液およびそれを用いた複合シリカ膜の形成方法
CN107880271A (zh) 一种酸碱可逆交联有机硅树脂及其制备方法
JP2013058744A (ja) 発光ダイオード用リフレクターおよびハウジング
CN115851126B (zh) 一种辐射制冷涂料及其制备方法和辐射制冷涂层

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17915380

Country of ref document: EP

Kind code of ref document: A1