WO2018221723A1 - レンズ鏡筒及び撮像装置 - Google Patents

レンズ鏡筒及び撮像装置 Download PDF

Info

Publication number
WO2018221723A1
WO2018221723A1 PCT/JP2018/021173 JP2018021173W WO2018221723A1 WO 2018221723 A1 WO2018221723 A1 WO 2018221723A1 JP 2018021173 W JP2018021173 W JP 2018021173W WO 2018221723 A1 WO2018221723 A1 WO 2018221723A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
cam groove
cylinder
optical axis
lens barrel
Prior art date
Application number
PCT/JP2018/021173
Other languages
English (en)
French (fr)
Inventor
崇弘 堺
祐治 猪原
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to US16/310,932 priority Critical patent/US10809490B2/en
Priority to CN201880002602.7A priority patent/CN109477947B/zh
Priority to JP2018567308A priority patent/JP7056585B2/ja
Publication of WO2018221723A1 publication Critical patent/WO2018221723A1/ja
Priority to US17/022,709 priority patent/US11320627B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • G02B7/102Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens controlled by a microcomputer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B1/00Film strip handling
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0046Movement of one or more optical elements for zooming
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element

Definitions

  • the present invention relates to a lens barrel and an imaging apparatus.
  • This application claims priority based on Japanese Patent Application No. 2017-110463 for which it applied on June 02, 2017, and uses the content here.
  • One aspect of the present invention includes a first lens, an actuator that drives the first lens, a first cylinder that holds the first cam follower and the actuator and moves in the optical axis direction, a second lens, and a second lens.
  • FIG. 1 It is sectional drawing which shows the telephoto end imaging state and wide-angle end imaging state of a lens barrel. It is a figure which shows an example of an external appearance structure of a rotation cylinder and a 2nd lens fixed cylinder. It is a figure which shows an example of the cross section of a lens-barrel. It is a figure which shows an example of the expanded view of a rotation cylinder. It is a figure which shows an example of the amount of defocusing of a lens barrel when the shape of the cam groove of a 2nd cam groove and the shape of the cam groove of a 3rd cam groove are the same. It is a figure which shows an example of an external appearance structure of a 3 * 5 lens moving cylinder.
  • the lens barrel will be described with reference to the drawings.
  • Each figure shown below is provided with an XYZ orthogonal coordinate system for ease of explanation and understanding.
  • the direction toward the subject at the position of the camera (imaging device) when the photographer captures a horizontally long image with the optical axis AX horizontal (hereinafter referred to as the normal position) is defined as the ⁇ X direction.
  • the direction toward the left side when viewed from the photographer is defined as the + Y direction.
  • the direction toward the vertical at the normal position is defined as the + Z direction.
  • the direction parallel to the optical axis AX is also simply referred to as the optical axis direction.
  • FIG. 1 is a cross-sectional view showing a telephoto end imaging state and a wide-angle end imaging state of the lens barrel 1.
  • the upper half of the drawing shows the lens barrel 1 in the wide-angle end imaging state
  • the lower half of the drawing shows the lens barrel 1 in the telephoto end imaging state.
  • the lens barrel 1 is detachable from the camera body.
  • the lens barrel 1 may be a camera that is fixed to the camera body and is not removable.
  • the camera body (main body unit) 510 includes an imaging element 520, a display unit 530, and the like.
  • the lens barrel 1 includes a variable magnification optical system including a plurality of lens groups.
  • the lens barrel 1 includes the first lens unit L1, the second lens unit L2, the third lens unit L3, the fourth lens unit L4, and the fifth lens unit L5 in the + X direction from the ⁇ X side. And a zoom lens.
  • the first lens group L1, the third lens group L3, the fourth lens group L4, and the fifth lens group L5 are lens groups that move in the optical axis direction during zooming.
  • the second lens unit L2 is a fixed lens unit that does not move in the optical axis direction during zooming.
  • the fourth lens unit L4 includes a focus lens and moves in the optical axis direction during focusing.
  • the first lens unit L1 is held by the first lens holding frame 10.
  • the first lens holding frame 10 is held by the first lens moving cylinder 11.
  • the first lens unit 100 includes a first lens unit L1, a first lens holding frame 10, and a first lens moving cylinder 11.
  • the second lens group L2 is held by the second lens holding frame 20.
  • the second lens holding frame 20 is held by the second lens fixing cylinder 21.
  • the second lens unit 200 includes a second lens group L2, a second lens holding frame 20, and a second lens fixing cylinder 21.
  • the third lens unit L3 includes a third lens unit L3a, a third lens unit L3b, and a third lens unit L3c.
  • the third lens group L3a is a VR lens group (anti-vibration lens group).
  • a diaphragm unit 8 is disposed between the third lens unit L3b and the third lens unit L3c.
  • the third lens groups L3a, L3b, and L3c are held by the third lens holding frames 30a, 30b, and 30c, respectively.
  • the third lens holding frames 30a, 30b, and 30c are held by the third and fifth lens moving cylinders 31.
  • the fifth lens unit L5 is held by the fifth lens holding frame 50.
  • the fifth lens holding frame 50 is held by the third and fifth lens moving cylinders 31. That is, both the third lens group L3 and the fifth lens group L5 are held by the third and fifth lens moving cylinders 31 via the respective lens holding frames.
  • the third and fifth lens units 300 include third lens groups L3a to L3c, third lens holding frames 30a to 30c, a fifth lens group L5, a fifth lens holding frame 50, and a third and fifth lens moving barrel 31.
  • the third and fifth lens moving cylinders 31 include the third lens unit L3 and the fifth lens unit L5 and move together. The present invention is not limited to this.
  • the third lens unit L3 and the fifth lens unit L5 may be provided in separate moving cylinders and may be configured to move separately.
  • the fourth lens unit L4 is held by the fourth lens holding frame 40.
  • the fourth lens holding frame 40 is held by the fourth lens moving cylinder 41.
  • the fourth lens moving cylinder 41 holds the actuator 43.
  • the fourth lens unit L4 and the fourth lens holding frame 40 are moved in the optical axis direction by the actuator 43.
  • the focus lens unit 400 includes a fourth lens unit L4, a fourth lens holding frame 40, a fourth lens moving cylinder 41, and an actuator 43.
  • the focal length of the lens barrel 1 changes due to zooming. Further, the shooting distance (or focus position) of the lens barrel 1 is changed by focusing.
  • the shooting distance here is the distance from the camera to the subject. More specifically, the distance from the reference position of the camera to the focused subject.
  • the focus position is the position of the subject in focus.
  • the lens barrel 1 is a so-called inner focus type lens barrel in which a fourth lens unit L4 that is a focus lens is disposed between a third lens unit L3 and a fifth lens unit L5 that is a zoom lens. .
  • the lens barrel 1 includes a first lens unit 100, a second lens unit 200, a third and fifth lens unit 300, a focus lens unit 400, a zoom operation ring 5a, and a focus operation.
  • a ring 5b, a rotating cylinder 6, an intermediate fixed cylinder 7, a diaphragm unit 8, a zoom detection unit 9a, a focus detection unit 9b (see FIG. 8), and a mount 900 are provided.
  • the zoom operation ring 5a and the focus operation ring 5b rotate in the circumferential direction of the optical axis AX of the lens group according to the operation of the photographer.
  • the zoom operation ring 5a rotates, the first lens unit L1, the third lens unit L3, the fourth lens unit L4, and the fifth lens unit L5 move in the optical axis direction, and the focal length of the lens barrel 1 is changed.
  • the actuator 43 is driven with the rotation of the focus operation ring 5b, and the fourth lens unit L4 moves in the optical axis direction. Thereby, the focus operation is performed.
  • the diaphragm unit 8 is disposed between the third lens unit L3b and the third lens unit L3c, and adjusts the amount of light.
  • An example of the zoom detection unit 9a is a potentiometer.
  • the zoom detection unit 9a is provided in the second lens fixed cylinder 21, and can detect the rotation amount and focal length of the zoom operation ring 5a.
  • the zoom detection unit 9 a relates to a zoom detection cam (not shown) formed in the third and fifth lens moving cylinders 31.
  • An example of the focus detection unit 9b (see FIG. 8) is a photo interrupter.
  • the focus detection unit 9b is provided in the fourth lens moving cylinder 41, and detects the rotation amount of the focus operation ring 5b.
  • the focus detection unit 9b relates to a light shielding plate provided in the focus operation ring 5b.
  • At least a part of the first lens moving cylinder 11 is disposed on the radially inner side (inner peripheral side) of the zoom operation ring 5a. At least a part of the rotary cylinder 6 is disposed on the radially inner side of the zoom operation ring 5a. At least a part of the second lens fixing cylinder 21 is disposed on the radially inner side of the rotating cylinder 6. At least a part of the third and fifth lens moving cylinders 31 is disposed on the radially inner side of the second lens fixing cylinder 21. At least a part of the fourth lens moving cylinder 41 is disposed on the radially inner side of the third and fifth lens moving cylinders 31.
  • the rotating cylinder 6 includes a first cam groove 61, a second cam groove 62, and a third cam groove 63.
  • the first cam groove 61 engages with the cam follower 12 provided in the first lens moving cylinder 11.
  • the second cam groove 62 engages with the cam follower 32 provided in the third and fifth lens moving cylinders 31.
  • the third cam groove 63 engages with the cam follower 42 provided in the fourth lens moving cylinder 41.
  • the first lens unit L1, the third lens unit L3, the fourth lens unit L4, and the fifth lens unit L5 are passed through the cam followers 12, 32, and 42 and the cam grooves 61, 62, and 63. Moves in the direction of the optical axis.
  • FIG. 2 is a diagram illustrating an example of the external configuration of the rotating cylinder 6 and the second lens fixing cylinder 21.
  • the rotating cylinder 6 rotates in the circumferential direction of the optical axis AX by a force applied to the zoom operation ring 5a.
  • the rotary cylinder 6 and the zoom operation ring 5a are engaged by the rotation interlocking part 131, and the rotational force applied to the zoom operation ring 5a is transmitted to the rotary cylinder 6 via the rotation interlocking part 131.
  • the rotary cylinder 6 rotates about the optical axis AX.
  • the zoom operation ring 5a and the rotary cylinder 6 are mechanically interlocked to move each lens group.
  • each lens group is electrically moved using an actuator.
  • the actuator when it is detected that the user has performed a zoom operation using an operation unit such as a zoom operation ring, a zoom lever, or a touch panel, the actuator may be driven to rotate the rotating cylinder. Alternatively, the actuator may be driven to move each movable cylinder. The rotation cylinder 6 is restricted from moving in the optical axis direction with respect to the second lens fixed cylinder 21.
  • the rotary cylinder 6 includes at least one of a first cam groove 61a, a first cam groove 61b, and a first cam groove 61c.
  • the first cam groove 61a, the first cam groove 61b, and the first cam groove 61c are disposed at positions on the circumference that are different from each other around the optical axis AX.
  • the first cam groove 61a, the first cam groove 61b, and the first cam groove 61c are also collectively referred to as the first cam groove 61.
  • the first cam groove 61 engages with the cam follower 12 provided on the inner peripheral side of the first lens moving cylinder 11.
  • the rotary cylinder 6 includes at least one of the second cam groove 62a, the second cam groove 62b, and the second cam groove 62c.
  • the second cam groove 62a, the second cam groove 62b, and the second cam groove 62c are arranged at positions on the circumference that are different from each other about the optical axis AX.
  • the second cam groove 62a, the second cam groove 62b, and the second cam groove 62c are also collectively referred to as the second cam groove 62.
  • the second cam groove 62 engages with the cam follower 32 provided in the third and fifth lens moving cylinders 31.
  • the rotary cylinder 6 includes at least one of a third cam groove 63a, a third cam groove 63b, and a third cam groove 63c.
  • the third cam groove 63a, the third cam groove 63b, and the third cam groove 63c are disposed at positions on the circumference that are different from each other around the optical axis AX.
  • the third cam groove 63a, the third cam groove 63b, and the third cam groove 63c are not distinguished, they are collectively referred to as the third cam groove 63.
  • the third cam groove 63 engages with the cam follower 42 provided in the fourth lens moving cylinder 41.
  • the first cam groove 61, the second cam groove 62, and the third cam groove 63 described above are through holes.
  • the first cam groove 61 may not be provided in the rotary cylinder 6 and may be provided in another cylinder.
  • the cam groove is not necessarily a through hole, and may be a groove in which at least a part does not penetrate the cylindrical body.
  • FIG. 3 is a diagram illustrating an example of a cross section of the lens barrel 1.
  • the second lens fixed cylinder 21 includes at least one rectilinear groove out of the rectilinear groove 141a, the rectilinear groove 141b, and the rectilinear groove 141c.
  • the rectilinear groove 141a, the rectilinear groove 141b, and the rectilinear groove 141c are through holes extending in the optical axis direction.
  • the rectilinear groove 141a, the rectilinear groove 141b, and the rectilinear groove 141c are also collectively referred to as the rectilinear groove 141.
  • the cam follower 32 provided on the outer peripheral side of the third and fifth lens moving cylinders 31 passes through the rectilinear groove 141 and engages with the second cam groove 62 provided in the rotating cylinder 6. That is, the cam follower 32 is disposed in the rectilinear groove 141.
  • the cam follower 42 provided on the outer peripheral side of the fourth lens moving cylinder 41 passes through the rectilinear groove 141 and engages with the third cam groove 63 provided in the rotating cylinder 6. That is, the cam follower 42 is disposed in the rectilinear groove 141.
  • FIG. 6 is a diagram illustrating an example of an external configuration of the third and fifth lens moving cylinders 31.
  • FIG. 7 is a diagram illustrating an example of the third and fifth lens moving cylinders 31 and the fourth lens moving cylinder 41 viewed from the optical axis direction.
  • the third and fifth lens moving cylinders 31 include at least one of a cam follower 32a, a cam follower 32b, and a cam follower 32c shown in FIG. In the following description, when the cam follower 32a, the cam follower 32b, and the cam follower 32c are not distinguished, they are also collectively referred to as the cam follower 32.
  • the third and fifth lens moving cylinders 31 include a hole 33a, a hole 33b, and a hole 33c.
  • the hole 33 when the hole 33a, the hole 33b, and the hole 33c are not distinguished, they are collectively referred to as the hole 33.
  • the cam follower 42 provided in the fourth lens moving cylinder 41 passes through the hole 33 and the rectilinear groove 141 provided in the second lens fixing cylinder 21 and engages with the third cam groove 63 provided in the rotating cylinder 6. That is, the cam follower 42 is disposed in the hole 33.
  • the cam follower 32 and the cam follower 42 of the fourth lens moving cylinder 41 are arranged at the same angular position in the circumferential direction around the optical axis AX. That is, the cam follower 32 and the cam follower 42 are arranged side by side in the optical axis direction.
  • the angle position will be described with a line drawn in the vertical direction from the optical axis AX as 0 degrees.
  • the cam follower 32a and the cam follower 42a are disposed at an angle position of ⁇ 71.
  • the cam follower 32b and the cam follower 42b are disposed at an angle position of ⁇ 72.
  • the cam follower 32c and the cam follower 42c are arranged at an angular position of ⁇ 73.
  • the arrangement of the cam follower 32 and the cam follower 42 need not be limited to the same angular position, and may be shifted.
  • FIG. 8 is a diagram illustrating an example of an external configuration of the fourth lens moving cylinder 41.
  • the focus lens unit 400 includes a fourth lens unit L4, a fourth lens holding frame 40, a fourth lens moving cylinder 41, and an actuator 43.
  • the fourth lens moving cylinder 41 includes at least one of a cam follower 42a, a cam follower 42b, and a cam follower 42c.
  • a cam follower 42a when the cam follower 42a, the cam follower 42b, and the cam follower 42c are not distinguished, they are collectively referred to as the cam follower 42.
  • the rotation of the fourth lens moving cylinder 41 around the optical axis AX with respect to the third and fifth lens moving cylinders 31 is restricted because the cam follower 42 is restricted by the rectilinear groove 141.
  • the actuator 43 is disposed inside the fourth lens moving cylinder 41 in the radial direction.
  • the actuator 43 is connected to the control unit 101 via a flexible substrate (connection unit) FPC. That is, the flexible substrate FPC electrically connects the actuator 43 and the control unit 101.
  • the fourth lens unit L4 is moved in the optical axis direction by the actuator 43.
  • FIG. 9 is a diagram illustrating an example of the relationship between the actuator 43 and the fourth lens unit L4.
  • An example of the actuator 43 is a stepping motor.
  • the actuator 43 may be an ultrasonic motor, a voice coil motor, a piezoelectric actuator, a linear actuator, or the like.
  • the focus lens unit 400 includes a fourth lens holding frame 40, a support plate 325, a drive source 320, a drive shaft 323, a rack member 324, an elastic member 321, a guide shaft 322a, and a guide shaft 322b.
  • the actuator 43 is fixed to the fourth lens moving cylinder 41 via the support plate 325.
  • the support plate 325 supports the drive source 320 and the drive shaft 323.
  • the fourth lens holding frame 40 holds the fourth lens group L4.
  • the drive shaft 323 is connected to the drive source 320.
  • the drive shaft 323 is connected to the fourth lens holding frame 40 via the rack member 324 and the connection portion 327a.
  • the drive shaft 323 moves the fourth lens holding frame 40 in the optical axis direction by the driving force supplied from the driving source 320.
  • the guide shaft 322a and the guide shaft 322b support the fourth lens holding frame 40, respectively.
  • the fourth lens holding frame 40 includes a support branch 328.
  • the support branch 328 contacts the guide shaft 322b according to the attitude of the lens barrel 1.
  • the support branch 328 supports the fourth lens holding frame 40 by contacting the guide shaft 322b.
  • the guide shaft 322a and the guide shaft 322b are the fourth when the camera to which the lens barrel 1 is attached is in the normal position and when the camera to which the lens barrel 1 is attached is at a position where the normal position is tilted 90 degrees. It arrange
  • the guide shaft 322a and the guide shaft 322b guide the fourth lens unit L4 in the optical axis direction.
  • FIG. 4 is a diagram illustrating an example of a development view of the rotating cylinder 6.
  • the cam follower 32 of the third and fifth lens moving cylinders penetrates the rectilinear groove 141 provided in the second lens fixing cylinder 21 and engages with the second cam groove 62.
  • the cam follower 32 is restricted by the rectilinear groove 141 from rotating in the circumferential direction around the optical axis AX.
  • the cam follower 32 moves in the optical axis direction along the locus of the second cam groove 62.
  • the cam follower 42 of the fourth lens moving cylinder 41 passes through the hole 33 provided in the third and fifth lens moving cylinders 31 and the rectilinear groove 141 provided in the second lens fixing cylinder 21 and engages with the third cam groove 63. .
  • the cam follower 42 is restricted from rotating in the circumferential direction about the optical axis AX by the rectilinear groove 141.
  • the cam follower 42 moves in the optical axis direction along the locus of the third cam groove 63.
  • the cam follower 12 of the first lens moving cylinder 11 is engaged with the first cam groove 61. Therefore, when the rotary cylinder 6 rotates in conjunction with the zoom operation ring 5a operated by the user, the first lens moving cylinder 11, the third and fifth lens moving cylinders 31, and the fourth lens moving cylinder 41 move in the optical axis direction. To do.
  • FIG. 5 is a diagram illustrating an example of the amount of defocusing of the lens barrel 1 when the shape of the cam groove of the second cam groove 62 and the shape of the cam groove of the third cam groove 63 are the same.
  • FIG. 5A is a graph showing the relationship between the shooting distance and the amount of focus shift.
  • the horizontal axis indicates the shooting distance, and the vertical axis indicates the amount of focus shift.
  • the three bar graphs show, in order from the left, the case of wide angle, intermediate, and telephoto.
  • the amount of focus shift differs depending on the focal length even at the same shooting distance.
  • FIG. 5B shows the relationship between the rotation angle of the rotary cylinder 6, the amount of movement of the third lens unit L3 or the fifth lens unit L5 in the optical axis direction, and the amount of movement of the fourth lens unit L4 in the optical axis direction.
  • FIG. The horizontal axis represents the rotation angle of the rotary cylinder 6, and the vertical axis represents the amount of movement of the third lens unit L3 or the fifth lens unit L5 and the amount of movement of the fourth lens unit L4.
  • the amount of movement of the lens unit L5) in the optical axis direction is the same as the amount of movement of the fourth lens unit L4 in the optical axis direction due to zooming.
  • the defocus amount is as shown in FIG.
  • FIG. 10 is a diagram illustrating an example of a development view of the rotating cylinder 106.
  • the rotating cylinder 106 includes a first cam groove 161a, a first cam groove 161b, and a first cam groove 161c.
  • first cam groove 161a, the first cam groove 161b, and the first cam groove 161c are not distinguished, they are collectively referred to as the first cam groove 161.
  • the rotary cylinder 106 includes a second cam groove 162a, a second cam groove 162b, and a second cam groove 162c.
  • the second cam groove 162a, the second cam groove 162b, and the second cam groove 162c are not distinguished, they are collectively referred to as the second cam groove 162.
  • the rotating cylinder 106 includes a third cam groove 163a, a third cam groove 163b, and a third cam groove 163c.
  • a third cam groove 163a when the third cam groove 163a, the third cam groove 163b, and the third cam groove 163c are not distinguished, they are collectively referred to as a third cam groove 163.
  • the locus of the second cam groove 162 and the locus of the third cam groove 163 are different from each other.
  • the shape of the cam groove of the second cam groove 162 and the shape of the cam groove of the third cam groove 163 are different from each other.
  • the shape of the third cam groove 163 is a shape corresponding to the focus shift amount of the lens barrel 1.
  • the shape corresponding to the focus shift amount is a shape designed so that the focus shift amount falls within a predetermined focus shift range.
  • the optical performance of the lens barrel 1 can be improved by narrowing the range of the predetermined defocus amount or keeping it within the range of the depth of focus.
  • FIG. 11 is a diagram illustrating an example of the amount of defocusing of the lens barrel 1 depending on the shape of the cam groove of the second cam groove 162 and the shape of the cam groove of the third cam groove 163.
  • FIG. 11A is a graph showing the relationship between the shooting distance and the amount of focus shift.
  • the third cam groove 163 is formed so that the amount of focus shift becomes zero when the shooting distance is infinity. In addition, it does not necessarily have to be 0, and there may be a slight amount of defocus.
  • the third cam groove 163 it is not necessary to drive the actuator 43 by zoom tracking when zooming is performed with the shooting distance being infinite. The zoom tracking will be described later.
  • FIG. 11B shows the relationship between the rotation angle of the rotating cylinder 106, the amount of movement of the third lens unit L3 or the fifth lens unit L5 in the optical axis direction, and the amount of movement of the fourth lens unit L4 in the optical axis direction.
  • FIG. 11B shows the relationship between the rotation angle of the rotating cylinder 106, the amount of movement of the third lens unit L3 or the fifth lens unit L5 in the optical axis direction, and the amount of movement of the fourth lens unit L4 in the optical axis direction.
  • FIG. 11B shows the relationship between the rotation angle of the rotating cylinder 106, the amount of movement of the third lens unit L3 or the fifth lens unit L5 in the optical axis direction, and the amount of movement of the fourth lens unit L4 in the optical axis direction.
  • FIG. 11B shows the relationship between the rotation angle of the rotating cylinder 106, the amount of movement of the third lens unit L3 or the fifth lens unit L5 in the optical axis direction, and the amount of movement of the fourth
  • the fourth lens unit L4 can be driven with a different movement locus from the front and rear lens units L3 or L5. Thereby, the amount of focus shift can be adjusted.
  • the amount of focus shift becomes 0 when the shooting distance is infinite.
  • the zooming is performed while the movement amount of the third lens unit L3 or the fifth lens unit L5 due to zooming is small.
  • the amount of movement of the fourth lens unit L4 in the optical axis direction can be increased. This makes it easier to adjust the amount of defocus compared to when the focus lens unit moves together with other lens units during zooming. Therefore, it becomes easy to design a zoom lens with a high magnification and / or a lens barrel with a shorter shortest shooting distance.
  • FIG. 12 is a development view of the rotating cylinder 206 in the second modification.
  • the rotating cylinder 206 includes a first cam groove 261a, a first cam groove 261b, and a first cam groove 261c.
  • first cam groove 261a, the first cam groove 261b, and the first cam groove 261c are not distinguished, they are collectively referred to as the first cam groove 261.
  • first cam groove 61, the first cam groove 161, and the first cam groove 261 are not distinguished from each other, they are collectively referred to as a first cam groove.
  • the rotary cylinder 206 includes a second cam groove 262a, a second cam groove 262b, and a second cam groove 262c.
  • a second cam groove 262a, the second cam groove 262b, and the second cam groove 262c are collectively referred to as a second cam groove 262.
  • the second cam groove 62, the second cam groove 162, and the second cam groove 262 are also collectively referred to as a second cam groove.
  • the rotating cylinder 206 includes a third cam groove 263a, a third cam groove 263b, and a third cam groove 263c.
  • a third cam groove 263 when the third cam groove 63, the third cam groove 163, and the third cam groove 263 are not distinguished from each other, they are collectively referred to as a third cam groove.
  • the shape of the second cam groove 262 and the shape of the third cam groove 263 are different from each other.
  • the shape of the third cam groove 263 is such that the amount of focus shift of the lens barrel 1 is set to a predetermined value or less.
  • the predetermined value may be an arbitrary standard such as 0.5, 0.4, or 0.3.
  • FIG. 13 is a diagram showing an example of the amount of defocus of the lens barrel 1 by the shape of the cam groove of the second cam groove 262 and the shape of the cam groove of the third cam groove 263.
  • FIG. 13A is a graph showing the relationship between the shooting distance and the amount of focus shift.
  • the third cam groove 263 is formed so that the amount of defocus is equal to or less than a predetermined value at all shooting distances and focal lengths. With such a third cam groove 263, the drive amount of the actuator 43 by zoom tracking when zooming can be reduced regardless of the shooting distance. Further, the driving amount of the actuator 43 can be averaged.
  • FIG. 13B shows the relationship between the rotation angle of the rotating cylinder 206, the amount of movement of the third lens unit L3 or the fifth lens unit L5 in the optical axis direction, and the amount of movement of the fourth lens unit L4 in the optical axis direction.
  • FIG. 13B Since the shapes of the second cam groove 262 and the third cam groove 263 are different, the movement amounts of the third lens group L3 (or the fifth lens group L5) and the fourth lens group L4 due to zooming are different. Accordingly, at any shooting distance, the fourth lens unit L4 can be moved so that the amount of defocus due to zooming is equal to or less than a predetermined value.
  • the shape of the cam groove of the second cam groove and the shape of the cam groove of the third cam groove can be made different from each other, the amount of defocus at a certain rotation angle of the rotary cylinder 6 can be adjusted.
  • the fourth lens group L4 which is a focus lens
  • the cylinder that holds the focus lens is composed of different parts from the cylinder that holds the other lenses.
  • the rotating cylinder 6, the rotating cylinder 106, and the rotating cylinder 206 include a third cam groove corresponding to the fourth lens moving cylinder 41 and a second cam groove corresponding to the third and fifth lens moving cylinders 31. Therefore, the fourth lens moving cylinder 41 and the third and fifth lens moving cylinders 31 can advance and retreat in the optical axis direction independently of each other.
  • the rotary cylinder 6, the rotary cylinder 106, and the rotary cylinder 206 have a third cam groove for setting the movement amount of the fourth lens moving cylinder 41 by zooming and the movement amount of the third and fifth lens moving cylinders 31 by zooming.
  • the focus lens and a lens other than the focus lens are arranged in the same tube, the focus lens and the other lens move together during zooming. In such a case, the amount of focus shift caused by zooming cannot be adjusted. In particular, in a zoom lens with a high magnification and / or a lens with a short shooting distance, the amount of focus shift becomes large.
  • the present embodiment by designing the shapes of the second cam groove and the third cam groove, the movement locus of the focus lens and the movement locus of other lenses other than the focus lens can be individually set. Thereby, the amount of focus shift can be adjusted. That is, it is possible to design a lens barrel in which the focus shift amount is 0 when the shooting distance is infinite, or a lens barrel in which the focus shift amount is a predetermined value or less at any shooting distance.
  • the lens barrel 1 includes a control unit 101.
  • the control unit 101 includes, for example, a microcomputer (CPU, processor, circuit), a memory, and the like, and executes processing for realizing the focusing function of the fourth lens unit L4. Further, the control unit 101 executes control of communication with the camera connected to the lens barrel 1 and other processing.
  • the control unit 101 is provided in the second lens fixed cylinder 21. In other embodiments, the control unit 101 may be provided in another cylinder or component.
  • the control unit 101 controls the actuator 43 so that the shooting distance (focus position) during zooming does not change during zooming. For example, when the zoom operation ring 5a rotates, the fourth lens unit L4 moves in the optical axis direction via the cam follower 42 and the like. At this time, as shown in FIG. 5A, FIG. 11A, and FIG. Therefore, the control unit 101 drives the actuator 43 to move the fourth lens unit L4 in the optical axis direction so that the photographing distance of the lens barrel 1 does not shift. Specifically, the zoom detection unit 9a detects the rotation of the zoom operation ring 5a.
  • the zoom detection unit 9 a is provided in the second lens fixed cylinder 21 and detects the amount of movement of the third and fifth lens moving cylinders 31 with respect to the second lens fixed cylinder 21.
  • the rotation amount and rotation angle of the zoom operation ring 5a and the rotating cylinder 6 may be detected.
  • the control unit 101 controls the actuator 43 based on the detection value detected by the zoom detection unit 9a, and moves the fourth lens unit L4 to a position where the shooting distance does not change. Accordingly, the control unit 101 moves the fourth lens unit L4 to a position corresponding to the detection value detected by the zoom detection unit 9a.
  • the position corresponding to the detection value detected by the zoom detection unit 9a is the position of the fourth lens unit L4 where the shooting distance does not change before and after zooming.
  • the control unit 101 moves the fourth lens unit L4 so that the photographing distance does not change due to zooming of the lens barrel 1.
  • Such an operation for maintaining the in-focus state is referred to as a zoom tracking operation.
  • the zoom tracking operation the lens barrel 1 functions as a zoom lens whose focus position does not change even when zooming.
  • the length LX of the hole 33 in the optical axis direction is the amount of movement in the optical axis direction of the third and fifth lens moving barrels 31 that move along the second cam groove, and the fourth length that moves along the third cam groove.
  • the length is in accordance with the difference from the movement amount of the lens moving cylinder 41 in the optical axis direction.
  • the length corresponding to the difference in movement amount is a length obtained by adding a clearance of a part to the difference in movement amount.
  • the movement amounts in the optical axis direction of the third and fifth lens moving cylinders 31 and the fourth lens moving cylinder 41 that are advanced and retracted in the optical axis direction by the rotating cylinder 106 and the rotating cylinder 206 described above are different from each other.
  • the length LX of the hole 33 in the optical axis direction is determined based on the amount of movement of the cam follower 32 engaged with the second cam groove in the optical axis direction and the movement of the cam follower 42 engaged with the third cam groove in the optical axis direction.
  • the length LX of the hole 33 in the optical axis direction may be set so that the cam follower 42 and the third and fifth lens moving cylinders 31 do not interfere with each other.
  • the length may be set in accordance with the difference between the movement amount of the third and fifth lens moving cylinders 31 and the movement amount of the fourth lens moving cylinder 41.
  • FIG. 14 is a diagram illustrating an example of a cross section of the lens barrel 1 on the image plane side.
  • the third and fifth lens moving cylinders 31 include at least one first engaging portion 211.
  • the first engaging portion 211 is provided on the inner peripheral side of the third and fifth lens moving cylinders 31 and has a convex shape (key, convex portion) extending in the optical axis direction.
  • the fourth lens moving cylinder 41 includes at least one second engaging portion 311 that engages with the first engaging portion 211.
  • the second engaging portion 311 is provided on the outer peripheral side of the fourth lens moving cylinder 41 and has a concave shape (groove, concave portion) extending in the optical axis direction.
  • the third and fifth lens moving cylinders 31 may include a concave second engaging portion 311
  • the fourth lens moving cylinder 41 may include a convex first engaging portion 211.
  • the rotation of the fourth lens moving cylinder 41 around the optical axis AX is restricted by the cam follower 42 and the rectilinear groove 141. Thereby, it is possible to prevent the optical performance from being deteriorated due to the fourth lens moving cylinder 41 being displaced in the rotation direction. Furthermore, when the first engaging portion 211 and the second engaging portion 311 are engaged, the rotation of the fourth lens moving cylinder 41 around the optical axis AX is restricted. Thereby, deterioration of the optical performance due to the fourth lens moving cylinder 41 being displaced in the rotation direction can be further suppressed.
  • the fourth lens moving cylinder 41 includes a raised portion (convex portion) 312 along the second engaging portion 311 at a position away from the second engaging portion 311 in the circumferential direction. Since the fourth lens moving cylinder 41 includes the raised portion 312a and the raised portion 312b, it is possible to suppress the disengagement between the second engaging portion 311 and the first engaging portion 211. For this reason, for example, even when an impact is applied from the outside, the fourth lens moving cylinder 41 is unlikely to be disengaged from the second engaging portion 311 and the first engaging portion 211. Thereby, deterioration of the optical performance of the lens barrel 1 can be suppressed.
  • the third and fifth lens moving cylinders 31 include at least one third engaging portion 212.
  • the third engaging portion 212 is provided on the outer peripheral side of the third and fifth lens moving cylinders 31 and has a convex shape (key, convex portion) extending in the optical axis direction.
  • the second lens fixing cylinder 21 includes at least one fourth engaging portion 111 (not shown) that engages with the third engaging portion 212.
  • the fourth engaging portion 111 is provided on the inner peripheral side of the second lens fixed cylinder 21 and has a concave shape (groove, concave portion) extending in the optical axis direction.
  • the third and fifth lens moving cylinders 31 may include a concave fourth engaging portion 111
  • the second lens fixed cylinder 21 may include a convex third engaging portion 212.
  • the rotational displacement about the optical axis AX between the third and fifth lens moving barrels 31 and the second lens fixed barrel 21 is achieved. Can be suppressed.
  • the rotation of the third and fifth lens moving cylinders 31 around the optical axis AX is restricted by the cam follower 32 and the rectilinear groove 141. Thereby, it is possible to prevent the optical performance from being deteriorated due to the third and fifth lens moving cylinders 31 being displaced in the rotation direction.
  • the third engaging portion 212 and the fourth engaging portion 111 are engaged to restrict the rotation of the third and fifth lens moving cylinders 31 around the optical axis AX. Thereby, it is possible to further suppress the deterioration of the optical performance due to the third and fifth lens moving cylinders 31 being displaced in the rotation direction.
  • the flexible substrate FPC electrically connects the actuator 43 and the control unit 101. Specifically, through a first through hole (hole) 214 provided in the third and fifth lens moving cylinders 31 and a second through hole (hole) 215 (not shown) provided in the second lens fixing cylinder 21.
  • the actuator 43 is connected to the control unit 101.
  • the flexible substrate FPC includes a substrate end FO1 shown in FIG.
  • the substrate end FO ⁇ b> 1 is disposed on the radially outer surface of the surfaces of the third and fifth lens moving cylinders 31 through the first through hole 214.
  • the substrate end FO1 is moved along the optical axis of the third and fifth lens moving cylinders 31 that move along the second cam groove, and the fourth lens moving cylinder 41 that moves along the third cam groove.
  • a bent portion FR having a length corresponding to the difference from the movement amount in the optical axis direction is provided.
  • the substrate end FO1 disposed on the radially outer side of the third and fifth lens moving cylinders 31 through the first through hole 214 is connected to another flexible substrate (not shown) via a connector.
  • Another flexible substrate (not shown) is connected to the control unit 101 through the second through hole 215 provided in the second lens fixing cylinder 21.
  • the second lens fixing cylinder 21 includes the second through hole 215, so that the flexible substrate can be passed from the inside in the radial direction of the second lens fixing cylinder 21.
  • the third and fifth lens moving cylinders 31 are provided with the first through-holes 214 so that the end portions of the substrate can be passed from the radially inner side of the third and fifth lens moving cylinders 31.
  • the control part 101 is electrically connected by the flexible substrate FPC between the actuator 43 arrange
  • the actuator 43 is disposed on the fourth lens moving cylinder 41.
  • the actuator 43 is disposed between the cam follower 42 and the second engagement portion 311 in the circumferential direction of the optical axis AX.
  • the actuator 43 is arranged in a predetermined angle range based on the imaging field angle SA.
  • the imaging angle of view SA is an angle of view corresponding to a horizontally long image to be captured.
  • the predetermined angle range refers to the + Z direction with respect to the longitudinal direction of the imaging field angle SA or the longitudinal direction of the imaging field angle SA in the range obtained by extending the diagonal line of the imaging field angle SA into four parts. -An angle range in the Z direction.
  • the predetermined angle range is arranged in the range RA1 or RA2.
  • the arrangement position of the actuator is desirably within a predetermined angle range in which the influence of the ghost is reduced.
  • the fourth lens moving cylinder 41 includes a light shielding portion 313 that is disposed at a position parallel to the optical axis direction that covers at least a part of the actuator 43.
  • the light shielding portion 313 is a member having a length corresponding to a position where the fourth lens unit L4 in the fourth lens moving cylinder 41 moves forward and backward.
  • the light shielding portion 313 has a shape that covers the drive shaft 323 of the actuator 43.
  • the light shielding unit 313 suppresses light emitted to the drive shaft 323. Thereby, the 4th lens moving cylinder 41 can suppress the light which affects a picked-up image.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Lens Barrels (AREA)
  • Structure And Mechanism Of Cameras (AREA)

Abstract

レンズ鏡筒(1)は、第1レンズ(L4)と、前記第1レンズを駆動するアクチュエータ(43)と、第1カムフォロア(42)及び前記アクチュエータを保持し、光軸方向に移動する第1筒(41)と、第2レンズ(L3)と、第2カムフォロア(32)及び前記第2レンズを保持し、前記第1カムフォロアが配される第1穴部(33)を有し、光軸方向に移動する第2筒(31)と、を備える。

Description

レンズ鏡筒及び撮像装置
 本発明は、レンズ鏡筒及び撮像装置に関する。
 本願は、2017年06月02日に出願された特願2017-110463号に基づき優先権を主張し、その内容をここに援用する。
 従来、複数のレンズのうちの、第1ズームレンズと、第2ズームレンズとの間に配置されるフォーカスレンズを光軸方向に移動させることにより、フォーカスを調整するインナーフォーカスタイプのレンズ鏡筒が知られている(例えば、特許文献1)。
 一方、ズームレンズにおいては、ズーム中に撮影距離が変わると被写体のピントが合わなくなってしまう。
特開2010-44102号公報
 本発明の一態様は、第1レンズと、前記第1レンズを駆動するアクチュエータと、第1カムフォロア及び前記アクチュエータを保持し、光軸方向に移動する第1筒と、第2レンズと、第2カムフォロア及び前記第2レンズを保持し、前記第1カムフォロアが配される第1穴部を有し、光軸方向に移動する第2筒と、を備えるレンズ鏡筒である。
レンズ鏡筒の望遠端撮像状態及び広角端撮像状態を示す断面図である。 回転筒と、第2レンズ固定筒との外観構成の一例を示す図である。 レンズ鏡筒の断面の一例を示す図である。 回転筒の展開図の一例を示す図である。 第2カム溝のカム溝の形状と第3カム溝のカム溝の形状とが同一である場合のレンズ鏡筒のピントズレ量の一例を示す図である。 第3・5レンズ移動筒の外観構成の一例を示す図である。 光軸方向から見た第3・5レンズ移動筒と第4レンズ移動筒との一例を示す図である。 第4レンズ移動筒の外観構成の一例を示す図である。 アクチュエータと、第4レンズ群との関係の一例を示す図である。 第1変形例における回転筒の展開図を示す図である。 第2カム溝のカム溝の形状及び第3カム溝のカム溝の形状による、レンズ鏡筒のピントズレ量の一例を示す図である。 第2変形例における回転筒の展開図を示す図である。 第2カム溝のカム溝の形状及び第3カム溝のカム溝の形状によるレンズ鏡筒のピントズレ量の一例を示す図である。 レンズ鏡筒の像面側の断面の一例を示す図である。 カメラ(撮像装置)の一例を模式的に示す図である。
 以下、図面を参照してレンズ鏡筒について説明する。なお、以下に示す各図には、説明と理解を容易にするために、XYZ直交座標系を設けている。この座標系では、撮影者が光軸AXを水平として横長の画像を撮像する場合のカメラ(撮像装置)の位置(以下、正位置という)において被写体に向かう方向を-X方向とする。また、撮影者から見て左側に向かう方向を+Y方向とする。さらに、正位置において鉛直に向かう方向を+Z方向とする。また、以下の説明では、光軸AXと平行な方向のことを、単に光軸方向とも記載する。
[1.レンズ群構成]
 図1は、レンズ鏡筒1の望遠端撮像状態及び広角端撮像状態を示す断面図である。図1において、紙面上半分は広角端撮像状態のレンズ鏡筒1を示し、紙面下半分は望遠端撮像状態のレンズ鏡筒1を示す。レンズ鏡筒1は、カメラ本体に着脱可能である。他の例において、レンズ鏡筒1はカメラ本体に固定されていて着脱不可能なカメラであってもよい。図15に示すカメラ(撮像装置)500の一例において、カメラ本体(本体部)510は撮像素子520及び表示部530等を備えている。
 レンズ鏡筒1は、複数のレンズ群を備える変倍光学系を備える。一例では、レンズ鏡筒1は、-X側から+X方向に、第1レンズ群L1と、第2レンズ群L2と、第3レンズ群L3と、第4レンズ群L4と、第5レンズ群L5とを備えるズームレンズを備える。
 第1レンズ群L1、第3レンズ群L3、第4レンズ群L4及び第5レンズ群L5は、ズーム時に光軸方向に移動するレンズ群である。第2レンズ群L2は、ズーム時に光軸方向に移動しない、固定のレンズ群である。第4レンズ群L4は、フォーカスレンズを含み、フォーカス時に光軸方向に移動する。
 第1レンズ群L1は、第1レンズ保持枠10に保持される。第1レンズ保持枠10は、第1レンズ移動筒11に保持される。第1レンズユニット100は、第1レンズ群L1と第1レンズ保持枠10と第1レンズ移動筒11とを有する。
 第2レンズ群L2は、第2レンズ保持枠20に保持される。第2レンズ保持枠20は、第2レンズ固定筒21に保持される。第2レンズユニット200は、第2レンズ群L2と第2レンズ保持枠20と第2レンズ固定筒21とを有する。
 第3レンズ群L3は、第3レンズ群L3aと第3レンズ群L3bと第3レンズ群L3cとを有する。第3レンズ群L3aはVRレンズ群(防振レンズ群)である。第3レンズ群L3bと第3レンズ群L3cとの間には絞りユニット8が配置される。第3レンズ群L3a、L3b、L3cは、それぞれ第3レンズ保持枠30a、30b、30cに保持される。第3レンズ保持枠30a、30b、30cは、第3・5レンズ移動筒31に保持される。
 第5レンズ群L5は、第5レンズ保持枠50に保持される。第5レンズ保持枠50は、第3・5レンズ移動筒31に保持される。つまり、第3レンズ群L3及び第5レンズ群L5の両方が、各レンズ保持枠を介して、第3・5レンズ移動筒31に保持される。第3・5レンズユニット300は、第3レンズ群L3a~L3cと第3レンズ保持枠30a~30cと第5レンズ群L5と第5レンズ保持枠50と第3・5レンズ移動筒31とを有する。本実施形態において、第3・5レンズ移動筒31が第3レンズ群L3及び第5レンズ群L5を備え一体で移動する。本発明はこれに限定されない。他の実施形態において、第3レンズ群L3と第5レンズ群L5とが別々の移動筒に備えられ、別々に移動するように構成してもよい。
 第4レンズ群L4は、第4レンズ保持枠40に保持される。第4レンズ保持枠40は、第4レンズ移動筒41に保持される。第4レンズ移動筒41はアクチュエータ43を保持する。第4レンズ群L4及び第4レンズ保持枠40は、アクチュエータ43によって光軸方向に移動する。フォーカスレンズユニット400は、第4レンズ群L4と第4レンズ保持枠40と第4レンズ移動筒41とアクチュエータ43とを有する。
 ズーミングによって、レンズ鏡筒1の焦点距離が変化する。また、フォーカシングによって、レンズ鏡筒1の撮影距離(又はフォーカス位置)が変化する。ここでいう撮影距離とは、カメラから被写体までの距離である。より具体的には、カメラの基準位置から、フォーカスを合わせた被写体までの距離である。フォーカス位置とは、フォーカスを合わせた被写体の位置である。
 レンズ鏡筒1は、第3レンズ群L3と、ズームレンズである第5レンズ群L5との間にフォーカスレンズである第4レンズ群L4が配置される、いわゆるインナーフォーカスタイプのレンズ鏡筒である。
[2.全体構成]
 次に、レンズ鏡筒1が備える各構成部材について説明する。
 図1に示すように、レンズ鏡筒1は、第1レンズユニット100と、第2レンズユニット200と、第3・5レンズユニット300と、フォーカスレンズユニット400と、ズーム操作環5aと、フォーカス操作環5bと、回転筒6と、中固定筒7と、絞りユニット8と、ズーム検出部9aと、フォーカス検出部9b(図8参照)と、マウント900とを備える。
 ズーム操作環5a及びフォーカス操作環5bは、撮影者の操作に応じてレンズ群の光軸AXの周方向に回転する。ズーム操作環5aの回転に伴い第1レンズ群L1、第3レンズ群L3、第4レンズ群L4及び第5レンズ群L5が光軸方向に移動し、レンズ鏡筒1の焦点距離を変更する。また、フォーカス操作環5bの回転に伴いアクチュエータ43が駆動し、第4レンズ群L4は光軸方向に移動する。これによりフォーカス動作が行われる。
 絞りユニット8は、第3レンズ群L3bと第3レンズ群L3cとの間に配置され、光量を調整する。ズーム検出部9aは、例えばポテンショメータがあげられる。ズーム検出部9aは、第2レンズ固定筒21に備えられ、ズーム操作環5aの回転量や焦点距離を検出することができる。例えば、ズーム検出部9aは、第3・5レンズ移動筒31に形成されたズーム検出用のカム(図示せず)に関係する。フォーカス検出部9b(図8参照)は、例えばフォトインタラプタがあげられる。フォーカス検出部9bは、第4レンズ移動筒41に備えられ、フォーカス操作環5bの回転量を検出する。例えば、フォーカス検出部9bは、フォーカス操作環5bに備えられた遮光板に関係する。
 第1レンズ移動筒11の少なくとも一部は、ズーム操作環5aの径方向内側(内周側)に配置される。回転筒6の少なくとも一部は、ズーム操作環5aの径方向内側に配置される。第2レンズ固定筒21の少なくとも一部は、回転筒6の径方向内側に配置される。第3・5レンズ移動筒31の少なくとも一部は、第2レンズ固定筒21の径方向内側に配置される。第4レンズ移動筒41の少なくとも一部は、第3・5レンズ移動筒31の径方向内側に配置される。
 図2に示すように、回転筒6は、第1カム溝61と第2カム溝62と第3カム溝63とを備える。第1カム溝61は、第1レンズ移動筒11が備えるカムフォロア12と係合する。第2カム溝62は、第3・5レンズ移動筒31が備えるカムフォロア32と係合する。第3カム溝63は、第4レンズ移動筒41が備えるカムフォロア42と係合する。ズーム操作環5aの回転に伴い、回転筒6も回転する。回転筒6の回転に伴い、各カムフォロア12・32・42と各カム溝61・62・63を介して第1レンズ群L1と第3レンズ群L3と第4レンズ群L4と第5レンズ群L5は光軸方向に移動する。
[2-1.回転筒6]
 図2は、回転筒6と、第2レンズ固定筒21との外観構成の一例を示す図である。回転筒6は、ズーム操作環5aに加えられた力によって、光軸AXの周方向に回転する。具体的には、回転筒6とズーム操作環5aとは、回転連動部131によって係合されており、ズーム操作環5aに加えられた回転力が回転連動部131を介して回転筒6に伝えられることにより、回転筒6は光軸AXを中心にして回転する。本実施形態において、ズーム操作環5aと回転筒6とがメカ的に連動して各レンズ群を移動させる。本発明はこれに限定されない。他の実施形態において、アクチュエータを利用して電気的に各レンズ群を移動させる構成でもよい。一例において、ズーム操作環、ズームレバー、又はタッチパネル等の操作部を使ってユーザがズーム操作したことを検知した場合、アクチュエータを駆動し、回転筒を回転させてもよい。または、アクチュエータを駆動し、各移動筒を移動させてもよい。回転筒6は、第2レンズ固定筒21に対する光軸方向の移動が規制されている。
 回転筒6は、第1カム溝61aと、第1カム溝61bと、第1カム溝61cとのうちの少なくとも1つを備える。第1カム溝61aと、第1カム溝61bと、第1カム溝61cとは、それぞれ光軸AXを中心とする円周上の角度違いの位置に配置される。以下の説明では、第1カム溝61aと、第1カム溝61bと、第1カム溝61cとを区別しない場合には、総称して第1カム溝61とも記載する。第1カム溝61は、第1レンズ移動筒11の内周側に備えられたカムフォロア12と係合する。
 回転筒6は、第2カム溝62aと、第2カム溝62bと、第2カム溝62cとのうちの少なくとも1つを備える。第2カム溝62aと、第2カム溝62bと、第2カム溝62cとは、それぞれ光軸AXを中心とする円周上の角度違いの位置に配置される。以下の説明では、第2カム溝62aと、第2カム溝62bと、第2カム溝62cとを区別しない場合には、総称して第2カム溝62とも記載する。第2カム溝62は、第3・5レンズ移動筒31が備えるカムフォロア32と係合する。
 回転筒6は、第3カム溝63aと、第3カム溝63bと、第3カム溝63cとのうちの少なくとも1つを備える。第3カム溝63aと、第3カム溝63bと、第3カム溝63cとは、それぞれ光軸AXを中心とする円周上の角度違いの位置に配置される。以下の説明では、第3カム溝63aと、第3カム溝63bと、第3カム溝63cとを区別しない場合には、総称して第3カム溝63とも記載する。第3カム溝63は、第4レンズ移動筒41が備えるカムフォロア42と係合する。
 本実施形態において、上述した、第1カム溝61、第2カム溝62及び第3カム溝63は、貫通孔である。他の実施形態において、第1カム溝61は、回転筒6に備えられなくてもよく、別の筒に備えられてもよい。また、カム溝は、必ずしも貫通孔の必要はなく、少なくとも一部が筒体を貫通していない溝でもよい。
[2-2.第2レンズ固定筒21]
 次に、図2、図3等を参照して、第2レンズ固定筒21について説明する。図3は、レンズ鏡筒1の断面の一例を示す図である。第2レンズ固定筒21は、直進溝141aと、直進溝141bと、直進溝141cとのうちの少なくとも1つの直進溝を備える。直進溝141a、直進溝141b及び直進溝141cは、光軸方向に延びる貫通孔である。以下の説明では、直進溝141aと、直進溝141bと、直進溝141cとを区別しない場合には、総称して直進溝141とも記載する。第3・5レンズ移動筒31の外周側に備えられたカムフォロア32は、直進溝141を貫通して、回転筒6が備える第2カム溝62と係合する。つまり、カムフォロア32は、直進溝141に配置される。第4レンズ移動筒41の外周側に備えられたカムフォロア42は、直進溝141を貫通して、回転筒6が備える第3カム溝63と係合する。つまり、カムフォロア42は、直進溝141に配置される。
[2-3.第3・5レンズ移動筒31]
 次に、図2、図6、図7等を参照して、第3・5レンズ移動筒31について説明する。図6は、第3・5レンズ移動筒31の外観構成の一例を示す図である。図7は、光軸方向から見た第3・5レンズ移動筒31と第4レンズ移動筒41との一例を示す図である。第3・5レンズ移動筒31は、カムフォロア32aと、カムフォロア32bと、図6に示すカムフォロア32cとのうちの少なくとも1つのカムフォロアを備える。以下の説明では、カムフォロア32aと、カムフォロア32bと、カムフォロア32cとを区別しない場合には、総称してカムフォロア32とも記載する。
 第3・5レンズ移動筒31は、穴部33aと、穴部33bと、穴部33cとを備える。以下の説明では、穴部33aと、穴部33bと、穴部33cとを区別しない場合には、総称して穴部33とも記載する。第4レンズ移動筒41が備えるカムフォロア42は、穴部33と、第2レンズ固定筒21が備える直進溝141と、を貫通して、回転筒6が備える第3カム溝63と係合する。つまり、カムフォロア42は、穴部33に配置される。
 ここで、カムフォロア32と、第4レンズ移動筒41のカムフォロア42とは、光軸AXを中心にした周方向の互いに同一の角度位置に配置される。つまり、カムフォロア32とカムフォロア42とは、光軸方向に並んで配置される。ここで、光軸AXから鉛直方向に引いた線を0度として、この角度位置について説明する。カムフォロア32a及びカムフォロア42aはθ71の角度位置に配置される。カムフォロア32b及びカムフォロア42bはθ72の角度位置に配置される。カムフォロア32c及びカムフォロア42cはθ73の角度位置に配置される。他の例において、カムフォロア32とカムフォロア42との配置は、同一の角度位置に限定される必要はなく、ずれていてもよい。
[2-4.フォーカスレンズユニット400]
 次に、図2、図3、図8等を参照して、フォーカスレンズユニット400の構成について説明する。図8は、第4レンズ移動筒41の外観構成の一例を示す図である。フォーカスレンズユニット400は、第4レンズ群L4と、第4レンズ保持枠40と、第4レンズ移動筒41と、アクチュエータ43とを含む。
[2-4-1.第4レンズ移動筒41]
 第4レンズ移動筒41は、カムフォロア42aと、カムフォロア42bと、カムフォロア42cとのうちの少なくとも1つのカムフォロアを備える。以下の説明では、カムフォロア42aと、カムフォロア42bと、カムフォロア42cとを区別しない場合には、総称してカムフォロア42とも記載する。第4レンズ移動筒41は、カムフォロア42が直進溝141によって回転規制されているため、第3・5レンズ移動筒31に対する光軸AXを中心にした回転が規制される。
 第4レンズ移動筒41の径方向内側にアクチュエータ43が配置される。アクチュエータ43は、制御部101と、フレキシブル基板(接続部)FPCを介して接続される。つまり、フレキシブル基板FPCは、アクチュエータ43と制御部101とを電気的に接続する。第4レンズ群L4は、アクチュエータ43によって、光軸方向に移動される。
[2-4-2.アクチュエータ43]
 ここで、図9を参照して、アクチュエータ43と、第4レンズ群L4とについて説明する。図9は、アクチュエータ43と、第4レンズ群L4との関係の一例を示す図である。アクチュエータ43は、例えば、ステッピングモータがあげられる。他の例において、アクチュエータ43は、超音波モータ、ボイスコイルモータ、圧電アクチュエータ、又はリニアアクチュエータ等でもよい。
 フォーカスレンズユニット400は、第4レンズ保持枠40と、支持プレート325と、駆動源320と、駆動シャフト323と、ラック部材324と、弾性部材321と、案内シャフト322aと案内シャフト322bとを備える。
 アクチュエータ43は、支持プレート325を介して、第4レンズ移動筒41に固定される。支持プレート325は、駆動源320と、駆動シャフト323とを支持する。第4レンズ保持枠40は、第4レンズ群L4を保持する。駆動シャフト323は、駆動源320と接続される。また、駆動シャフト323は、ラック部材324と、接続部327aとを介して、第4レンズ保持枠40と接続される。また、駆動シャフト323は、駆動源320から供給される駆動力によって、第4レンズ保持枠40を光軸方向に移動させる。
 案内シャフト322a及び案内シャフト322bは、第4レンズ保持枠40をそれぞれ支持する。第4レンズ保持枠40は、支持枝328を備える。支持枝328は、レンズ鏡筒1の姿勢に応じて、案内シャフト322bと接触する。支持枝328は、案内シャフト322bと接触することにより、第4レンズ保持枠40を支持する。
 案内シャフト322a及び案内シャフト322bは、レンズ鏡筒1が取り付けられるカメラが正位置にあるときと、レンズ鏡筒1が取り付けられるカメラが正位置を90度倒した位置にあるときとで、第4レンズ群L4を保持する力が変わらないように配置される。案内シャフト322a及び案内シャフト322bは、第4レンズ群L4を光軸方向に案内する。
[3.回転筒6の詳細]
 ここで、図4を参照して、回転筒6の詳細について説明する。図4は、回転筒6の展開図の一例を示す図である。
 上述したように、第3・5レンズ移動筒のカムフォロア32は、第2レンズ固定筒21が備える直進溝141を貫通して、第2カム溝62と係合する。カムフォロア32は、直進溝141によって、光軸AXを中心にした周方向の回転が規制されている。カムフォロア32は、第2カム溝62の軌跡に沿って光軸方向に移動する。
 第4レンズ移動筒41のカムフォロア42は、第3・5レンズ移動筒31が備える穴部33と第2レンズ固定筒21が備える直進溝141を貫通して、第3カム溝63と係合する。カムフォロア42は、直進溝141によって、光軸AXを中心にした周方向の回転が規制されている。カムフォロア42は、第3カム溝63の軌跡に沿って光軸方向に移動する。第1レンズ移動筒11のカムフォロア12は、第1カム溝61と係合する。よって、ユーザが操作したズーム操作環5aと連動して回転筒6が回転すると、第1レンズ移動筒11と第3・5レンズ移動筒31と第4レンズ移動筒41とは光軸方向に移動する。
 次に、図4、5、10-13を参照して、第2カム溝62のカム溝の形状及び第3カム溝63のカム溝の形状による、レンズ鏡筒1のピントずれ量(バリフォーカル量)の一例を示す。図5は、第2カム溝62のカム溝の形状と第3カム溝63のカム溝の形状とが同一である場合のレンズ鏡筒1のピントズレ量の一例を示す図である。
 図5(A)は、撮影距離とピントズレ量との関係を示すグラフである。横軸が撮影距離、縦軸がピントズレ量を示す。また、3つの棒グラフは左から順に広角時、中間時、望遠時の場合を示す。ピントズレ量は、同じ撮影距離であっても、焦点距離によって互いに異なる。
 図5(B)は、回転筒6の回転角と、第3レンズ群L3又は第5レンズ群L5の光軸方向の移動量及び第4レンズ群L4の光軸方向の移動量と、の関係を示す図である。横軸が回転筒6の回転角、縦軸が第3レンズ群L3又は第5レンズ群L5の移動量及び第4レンズ群L4の移動量を示す。第2カム溝62のカム溝の形状と、第3カム溝63のカム溝の形状とが互いに同一である場合、図5(B)に示すようにズーミングによる第3レンズ群L3(又は第5レンズ群L5)の光軸方向の移動量と、ズーミングによる第4レンズ群L4の光軸方向の移動量とが同じである。第2カム溝62のカム溝の形状と第3カム溝63のカム溝の形状とが同一である場合、ピントズレ量は図5(A)に示すようになる。
 [3-1.回転筒6の第1変形例]
 図10、図11を参照して、回転筒6の変形例である回転筒106について説明する。回転筒106は、第2カム溝と第3カム溝との形状が異なる。図10は、回転筒106の展開図の一例を示す図である。
 回転筒106は、第1カム溝161aと、第1カム溝161bと、第1カム溝161cとを備える。以下の説明では、第1カム溝161aと、第1カム溝161bと、第1カム溝161cとを区別しない場合には、総称して第1カム溝161とも記載する。回転筒106は、第2カム溝162aと、第2カム溝162bと、第2カム溝162cとを備える。以下の説明では、第2カム溝162aと、第2カム溝162bと、第2カム溝162cとを区別しない場合には、総称して第2カム溝162とも記載する。回転筒106は、第3カム溝163aと、第3カム溝163bと、第3カム溝163cとを備える。以下の説明では、第3カム溝163aと、第3カム溝163bと、第3カム溝163cとを区別しない場合には、総称して第3カム溝163とも記載する。
 第2カム溝162の軌跡と、第3カム溝163の軌跡とは互いに異なる。言い換えると、第2カム溝162のカム溝の形状と、第3カム溝163のカム溝の形状とが互いに異なる。
 ここで、第3カム溝163の形状は、レンズ鏡筒1のピントのズレ量に応じた形状である。ピントのズレ量に応じた形状とは、ピントのズレ量が、所定のピントズレ量の範囲内に収まるように設計された形状である。この所定のピントズレ量の範囲を狭くしたり焦点深度の範囲内に収めたりすることにより、レンズ鏡筒1の光学性能を高めることができる。
 図11は、第2カム溝162のカム溝の形状及び第3カム溝163のカム溝の形状による、レンズ鏡筒1のピントズレ量の一例を示す図である。
 図11(A)は、撮影距離とピントズレ量との関係を示すグラフである。図11(A)に示すように、第3カム溝163は、撮影距離が無限遠の場合にピントズレ量が0となるように形成されている。なお、必ずしも0でなくてもよく、少しピントズレ量があってもよい。このような第3カム溝163にすると、撮影距離が無限遠の状態でズーミングされた場合に、ズームトラッキングでアクチュエータ43を駆動しなくてすむ。ズームトラッキングについては後述する。
 図11(B)は、回転筒106の回転角と、第3レンズ群L3又は第5レンズ群L5の光軸方向の移動量及び第4レンズ群L4の光軸方向の移動量との関係を示す図である。上述したように、第3カム溝163のカム溝の形状は、ピントのズレ量に応じた形状である。第2カム溝162と第3カム溝163との形状が異なるので、ズーミングによる第3レンズ群L3(又は第5レンズ群L5)と第4レンズ群L4との移動量は異なっている。
 つまり、第4レンズ群L4を、前後のレンズ群L3又はL5と異なる移動軌跡で駆動することができる。これにより、ピントズレ量を調整することができる。上述した第1変形例では、撮影距離が無限遠のときに、ピントズレ量が0となる。
 また、第2カム溝162の形状と第3カム溝163の形状とが互いに異なることにより、ズーミングによる第3レンズ群L3又は第5レンズ群L5の光軸方向の移動量を小さくしたまま、ズーミングによる第4レンズ群L4の光軸方向の移動量を大きくすることができる。これにより、ズーミング時にフォーカスレンズ群が他のレンズ群と一体で移動する場合と比較して、ピントズレ量を調整しやすくなる。よって、高倍率のズームレンズ、及び/又はより短い最短撮影距離のレンズ鏡筒を設計することが容易となる。
[3-2.回転筒6の第2変形例]
 次に、図12、図13を参照して、回転筒6の第2変形例について説明する。上述したように、第1変形例は撮影距離が無限遠の場合にピントズレ量が0となるように第3カム溝163が形成されている。第2変形例の第3カム溝はいずれの撮影距離の場合でもピントズレ量が小さくなるように形成されている。図12は、第2変形例における回転筒206の展開図を示す図である。
 回転筒206は、第1カム溝261aと、第1カム溝261bと、第1カム溝261cとを備える。以下の説明では、第1カム溝261aと、第1カム溝261bと、第1カム溝261cとを区別しない場合には、総称して第1カム溝261とも記載する。また、以下の説明では、上述した第1カム溝61と、第1カム溝161と、第1カム溝261とを区別しない場合には、総称して第1カム溝とも記載する。
 回転筒206は、第2カム溝262aと、第2カム溝262bと、第2カム溝262cとを備える。以下の説明では、第2カム溝262aと、第2カム溝262bと、第2カム溝262cとを区別しない場合には、総称して第2カム溝262とも記載する。また、以下の説明では、上述した第2カム溝62と、第2カム溝162と、第2カム溝262とを区別しない場合には、総称して第2カム溝とも記載する。
 回転筒206は、第3カム溝263aと、第3カム溝263bと、第3カム溝263cとを備える。以下の説明では、第3カム溝263aと、第3カム溝263bと、第3カム溝263cとを区別しない場合には、総称して第3カム溝263とも記載する。また、以下の説明では、上述した第3カム溝63と、第3カム溝163と、第3カム溝263とを区別しない場合には、総称して第3カム溝とも記載する。
 第2カム溝262の形状と、第3カム溝263の形状とは互いに異なる。この第3カム溝263の形状は、レンズ鏡筒1のピントのズレ量が所定値以下になるようにされた形状である。所定値は例えば、0.5、0.4、又は0.3等の任意の基準でよい。
 図13は、第2カム溝262のカム溝の形状及び第3カム溝263のカム溝の形状によるレンズ鏡筒1のピントズレ量の一例を示す図である。
 図13(A)は、撮影距離とピントズレ量との関係を示すグラフである。図13(A)に示すように、第3カム溝263は、全ての撮影距離及び焦点距離の場合にピントズレ量が所定値以下となるように形成されている。このような第3カム溝263にすると、撮影距離に関わらず、ズーミングされたときのズームトラッキングによるアクチュエータ43の駆動量を少なくすることができる。また、アクチュエータ43の駆動量を平均化することができる。
 図13(B)は、回転筒206の回転角と、第3レンズ群L3又は第5レンズ群L5の光軸方向の移動量及び第4レンズ群L4の光軸方向の移動量と、の関係を示す図である。第2カム溝262と第3カム溝263との形状が異なるので、ズーミングによる第3レンズ群L3(又は第5レンズ群L5)と第4レンズ群L4との移動量は異なっている。これにより、いずれの撮影距離の場合でも、ズーミングによるピントズレ量が所定値以下になるように第4レンズ群L4を移動することができる。
 第2カム溝のカム溝の形状と、第3カム溝のカム溝の形状とを、互いに異ならせることができれば、回転筒6のある回転角度におけるピントズレ量を調節できる。
 (1)以上説明したように、フォーカスレンズである第4レンズ群L4は、他のレンズ群(L1、L2、L3、L5)とは異なる筒に保持されている。言い換えると、フォーカスレンズを保持する筒は、他のレンズを保持する筒とは異なる部品で構成されている。これにより、フォーカスレンズを移動するためのカム溝を形成できるため、他のレンズの移動軌跡に関わらずフォーカスレンズの移動軌跡を決めることができる。レンズ設計の自由度をあげることができる。
 (2)回転筒6、回転筒106及び回転筒206は、第4レンズ移動筒41に対応する第3カム溝と、第3・5レンズ移動筒31に対応する第2カム溝とを備える。よって、第4レンズ移動筒41と、第3・5レンズ移動筒31とは、互いに独立して光軸方向に進退することができる。
 (3)回転筒6、回転筒106及び回転筒206は、ズーミングによる第4レンズ移動筒41の移動量を設定する第3カム溝と、ズーミングによる第3・5レンズ移動筒31の移動量を設定する第2カム溝とを備える。これにより、第4レンズ移動筒41の移動量と、第3・5レンズ移動筒31の移動量とを、それぞれ所望の移動量に設定することができる。つまり、フォーカスレンズの移動量と、他のレンズの移動量とを、それぞれ所望の移動量に設定することができる。また、設計の自由度を上げることができる。
 (4)フォーカスレンズとフォーカスレンズ以外の他のレンズとが、同じ筒に配置されている場合、ズーミング時にフォーカスレンズと他のレンズとが一体で移動する。このような場合には、ズーミングによって生じるピントズレ量を調整することができない。特に、高倍率のズームレンズ、及び/又は撮影距離が短いレンズでは、ピントズレ量が大きくなってしまう。本実施形態では、第2カム溝と第3カム溝の形状をそれぞれ設計することにより、フォーカスレンズの移動軌跡とフォーカスレンズ以外の他のレンズの移動軌跡とを個別に設定することができる。これにより、ピントズレ量を調整することができる。つまり、撮影距離が無限遠の場合にピントズレ量が0になるレンズ鏡筒、又はいずれの撮影距離の場合でもピントズレ量が所定値以下になるレンズ鏡筒等を設計することができる。
[4.ズームトラッキング]
 図2に戻り、レンズ鏡筒1は、制御部101を備える。制御部101は、例えば、マイコン(CPU、プロセッサ、回路)、及びメモリ等によって構成されており、第4レンズ群L4のフォーカシングの機能を実現するための処理を実行する。また、制御部101は、レンズ鏡筒1と接続されるカメラとの通信の制御、及びその他の処理を実行する。本実施形態では、制御部101は第2レンズ固定筒21に備えられている。他の実施形態において、制御部101はその他の筒や部品に備えられていてもよい。
 制御部101は、ズーミングの際に、ズーミング中の撮影距離(フォーカス位置)が変化しないようにアクチュエータ43を制御する。例えば、ズーム操作環5aが回転すると、カムフォロア42等を介して第4レンズ群L4は光軸方向に移動する。このとき、図5(A)、図11(A)、図13(A)に示すように、ピントズレ量が生じる場合がある。そこで制御部101は、アクチュエータ43を駆動し、レンズ鏡筒1の撮影距離がずれないように第4レンズ群L4を光軸方向に移動させる。具体的には、ズーム検出部9aがズーム操作環5aの回転を検出する。例えば、ズーム検出部9aは、第2レンズ固定筒21に備えられており、第2レンズ固定筒21に対する第3・5レンズ移動筒31の移動量を検出する。または、ズーム操作環5aや回転筒6の回転量・回転角度を検出してもよい。制御部101は、ズーム検出部9aが検出した検出値に基づいて、アクチュエータ43を制御し、撮影距離が変化しない位置へ第4レンズ群L4を移動させる。これにより、制御部101は、ズーム検出部9aが検出した検出値に応じた位置に第4レンズ群L4を移動させる。ズーム検出部9aが検出した検出値に応じた位置とは、ズーミングの前後で撮影距離が変わらないような第4レンズ群L4の位置である。つまり、制御部101は、レンズ鏡筒1のズーミングによって撮影距離が変化しないように、第4レンズ群L4を移動させる。このような合焦状態を維持する動作をズームトラッキング動作と呼ぶ。ズームトラッキング動作により、レンズ鏡筒1は、ズーミングしてもフォーカス位置が変化しないズームレンズとして機能する。
[5.穴部33]
 次に、図6に戻り、穴部33について説明する。穴部33の光軸方向の長さLXは、第2カム溝に沿って移動する第3・5レンズ移動筒31の光軸方向の移動量と、第3カム溝に沿って移動する第4レンズ移動筒41の光軸方向の移動量との差に応じた長さである。移動量の差に応じた長さとは、移動量の差に部品のクリアランスなどを付加した長さである。
 上述した回転筒106や回転筒206によって光軸方向に進退される第3・5レンズ移動筒31及び第4レンズ移動筒41の光軸方向の移動量は互いに異なる。穴部33の光軸方向の長さLXを、第2カム溝に係合されるカムフォロア32の光軸方向の移動量と、第3カム溝に係合されるカムフォロア42の光軸方向の移動量との差に応じた長さにすることにより、ズーミングによって第4レンズ移動筒41が光軸方向に進退したときに、カムフォロア42と第3・5レンズ移動筒31とが干渉しない。
 穴部33の光軸方向の長さLXは、カムフォロア42と第3・5レンズ移動筒31とが干渉しない長さにすればよい。例えば、第3・5レンズ移動筒31の移動量と第4レンズ移動筒41の移動量との差に応じた長さにすればよい。
[6.光学性能の劣化を抑制する係合部]
 次に、図8と、図14とを参照して、レンズ鏡筒1の光学性能の劣化を抑制する構成について説明する。図14は、レンズ鏡筒1の像面側の断面の一例を示す図である。
 第3・5レンズ移動筒31は、第1係合部211を少なくとも1つ備える。第1係合部211は、第3・5レンズ移動筒31の内周側に設けられ、光軸方向に延びる凸形状(キー、凸部)を有する。第4レンズ移動筒41は、第1係合部211と係合する第2係合部311を少なくとも1つ備える。第2係合部311は、第4レンズ移動筒41の外周側に設けられ、光軸方向に延びる凹形状(溝、凹部)を有する。他の例において、第3・5レンズ移動筒31が凹形状の第2係合部311を備え、第4レンズ移動筒41が凸形状の第1係合部211を備えてもよい。
 第1係合部211と第2係合部311とが係合することにより、第4レンズ移動筒41と第3・5レンズ移動筒31との光軸AXを中心にした回転方向のずれを抑制することができる。
 上述したように、第4レンズ移動筒41は、カムフォロア42と直進溝141とによって、光軸AXを中心にした回転が規制されている。これにより、第4レンズ移動筒41が回転方向にずれることによる光学性能の劣化を防ぐことができる。さらに、第1係合部211と第2係合部311とが係合することにより、第4レンズ移動筒41の光軸AXを中心とした回転が規制される。これにより、第4レンズ移動筒41が回転方向にずれることによる光学性能の劣化をさらに抑制することができる。
 また、第4レンズ移動筒41は、第2係合部311から周方向に離れた位置に、第2係合部311に沿った隆起部(凸部)312を備える。第4レンズ移動筒41が隆起部312aと隆起部312bとを備えることにより、第2係合部311と第1係合部211との係合が外れることを抑制することができる。このため、第4レンズ移動筒41は、例えば、外部から衝撃が加えられたとしても、第2係合部311と第1係合部211との係合が外れにくくなる。これによりレンズ鏡筒1の光学性能の劣化を抑制することができる。
 さらに図6に示すように、第3・5レンズ移動筒31は、第3係合部212を少なくとも1つ備える。第3係合部212は、第3・5レンズ移動筒31の外周側に設けられ、光軸方向に延びる凸形状(キー、凸部)を有する。第2レンズ固定筒21は、第3係合部212と係合する第4係合部111(図示せず)を少なくとも1つ備える。第4係合部111は、第2レンズ固定筒21の内周側に設けられ、光軸方向に延びる凹形状(溝、凹部)を有する。他の例において、第3・5レンズ移動筒31が凹形状の第4係合部111を備え、第2レンズ固定筒21が凸形状の第3係合部212を備えてもよい。
 第3係合部212と第4係合部111とが係合されることにより、第3・5レンズ移動筒31と第2レンズ固定筒21との光軸AXを中心にした回転方向のずれを抑制することができる。上述したように、第3・5レンズ移動筒31は、カムフォロア32と直進溝141とによって、光軸AXを中心にした回転が規制されている。これにより、第3・5レンズ移動筒31が回転方向にずれることによる光学性能の劣化を防ぐことができる。らに、第3係合部212と第4係合部111とが係合することにより、第3・5レンズ移動筒31の光軸AXを中心とした回転が規制される。これにより、第3・5レンズ移動筒31が回転方向にずれることによる光学性能の劣化をさらに抑制することができる。
[7.フレキシブル基板]
 次に、図2と、図6と、図8を参照して、フレキシブル基板FPCの配置について説明する。フレキシブル基板FPCは、アクチュエータ43と、制御部101とを電気的に接続する。具体的には、第3・5レンズ移動筒31が備える第1の貫通孔(穴部)214と、第2レンズ固定筒21が備える不図示の第2の貫通孔(穴部)215とを通じて、アクチュエータ43が制御部101と接続される。より具体的には、フレキシブル基板FPCは、図8に示す基板端部FO1を備える。基板端部FO1は、第1の貫通孔214を通じて第3・5レンズ移動筒31の面のうち、径方向外側の面に配置される。なお、基板端部FO1は、第2カム溝に沿って移動する第3・5レンズ移動筒31の光軸方向の移動量と、第3カム溝に沿って移動する第4レンズ移動筒41の光軸方向の移動量との差に応じた長さの屈曲部FRを備える。第1の貫通孔214を通じて第3・5レンズ移動筒31の径方向外側に配置された基板端部FO1は、コネクタを介して不図示の他のフレキシブル基板に接続される。不図示の他のフレキシブル基板は、第2レンズ固定筒21が備える第2の貫通孔215を通じて、制御部101と接続される。
 第2レンズ固定筒21は、第2の貫通孔215を備えることにより、第2レンズ固定筒21の径方向内側からフレキシブル基板を通すことができる。また、第3・5レンズ移動筒31は、第1の貫通孔214を備えることにより、第3・5レンズ移動筒31の径方向内側から、基板端部を通すことができる。これにより、制御部101は、制御部101が配置される枠とは異なる枠に配置されるアクチュエータ43との間において、フレキシブル基板FPCによって電気的に接続される。したがって、制御部101と、アクチュエータ43とは互いに同一の枠に配置されなくてもよく、設計の自由度を向上させることができる。
[8.アクチュエータの配置]
 次に、図14を参照して、アクチュエータ43の配置について説明する。アクチュエータ43は、第4レンズ移動筒41に配置される。また、アクチュエータ43は、光軸AXの周方向における、カムフォロア42と第2係合部311との間に配置される。また、アクチュエータ43は、撮像画角SAに基づいた所定の角度範囲に配置される。撮像画角SAとは、撮像する横長の画像に応じた画角である。ここで、所定の角度範囲とは、撮像画角SAの対角線を延長して4分割した範囲のうち、撮像画角SAの長手方向に対して+Z方向又は撮像画角SAの長手方向に対して-Z方向の角度範囲である。この一例では、所定の角度範囲とは、範囲RA1又は範囲RA2の範囲に配置される。
 一般に、レンズ鏡筒に入射した光は、例えば、アクチュエータなどのレンズ鏡筒内部品の表面によって散乱して、この散乱光によりゴーストを生じる。レンズ鏡筒内のアクチュエータの配置位置によっては、ゴーストの影響が大きくなる。したがって、アクチュエータの配置位置は、ゴーストの影響が低減される所定の角度範囲内であることが望ましい。アクチュエータ43を、この所定の角度範囲内に配置することにより、ゴーストの影響を抑制することができる。
[8-1.遮光部]
 次に、図8を参照して、遮光部313について説明する。第4レンズ移動筒41は、アクチュエータ43の少なくとも一部を覆う光軸方向に平行な位置に配置される遮光部313を備える。遮光部313は、第4レンズ移動筒41内の第4レンズ群L4が進退する位置に応じた長さの部材である。この一例では、遮光部313は、アクチュエータ43の駆動シャフト323を覆う形状である。遮光部313は、駆動シャフト323に照射される光を抑制する。これにより、第4レンズ移動筒41は、撮像画像に影響する光を抑制することができる。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。また、説明した実施形態に限らず、これらの構成の任意の組み合わせでもよい。
 1 レンズ鏡筒 
 5a ズーム操作環
 6 回転筒 
 9b フォーカス検出部
 21 第2レンズ固定筒 
 22 穴部
 31 第3・5レンズ移動筒 
 42 カムフォロア
 43 アクチュエータ
 62,162,262 第2カム溝 
 63,163,263 第3カム溝 
 141 直進溝 
 322a,322b 案内シャフト
 400 フォーカスレンズユニット 
 FPC フレキシブル基板

Claims (12)

  1.  第1レンズと、
     前記第1レンズを駆動するアクチュエータと、
     第1カムフォロア及び前記アクチュエータを保持し、光軸方向に移動する第1筒と、
     第2レンズと、
     第2カムフォロア及び前記第2レンズを保持し、前記第1カムフォロアが配される第1穴部を有し、光軸方向に移動する第2筒と、
     を備えるレンズ鏡筒。
  2.  前記第1カムフォロアと係合する第1溝と、前記第2カムフォロアと係合する第2溝と、を有する第3筒
     を備える請求項1に記載のレンズ鏡筒。
  3.  前記第1溝の形状と前記第2溝の形状とは互いに異なる
     請求項2に記載のレンズ鏡筒。
  4.  前記第1穴部の光軸方向の長さは、前記第1溝に沿って移動する前記第1筒と前記第2溝に沿って移動する前記第2筒との間での光軸方向における移動量の差に基づく長さである
     請求項2又は請求項3に記載のレンズ鏡筒。
  5.  前記第3筒は、ズーム操作に応じて回転する
     請求項2から請求項4の何れか1項に記載のレンズ鏡筒。
  6.  前記アクチュエータを制御する制御部と、
     前記アクチュエータと前記制御部とを電気的に接続する接続部と、を備え、
     前記第2筒は、前記接続部が配される第2穴部を有する
     請求項1から請求項5の何れか1項に記載のレンズ鏡筒。
  7.  前記制御部を保持し、前記接続部が配される第3穴部を有する固定筒
     を備える請求項6に記載のレンズ鏡筒。
  8.  前記固定筒は、前記第1カムフォロア又は前記第2カムフォロアが配される直進溝を有する
     請求項7に記載のレンズ鏡筒。
  9.  前記第1筒は、光軸方向に長さを有する第1係合部を有し、
     前記第2筒は、前記第1係合部と係合する第2係合部を有する
     請求項1から請求項8の何れか1項に記載のレンズ鏡筒。
  10.  前記第1係合部は、光軸方向に延びる凸形状又は凹形状を有する
     請求項9に記載のレンズ鏡筒。
  11.  前記アクチュエータは、光軸を中心とした周方向において、前記第2カムフォロアと前記第2係合部との間に配置される
     請求項9又は請求項10に記載のレンズ鏡筒。
  12.  請求項1から請求項11の何れか1項に記載のレンズ鏡筒と、
     撮像素子を備える本体部と、
     を備える撮像装置。
PCT/JP2018/021173 2017-06-02 2018-06-01 レンズ鏡筒及び撮像装置 WO2018221723A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/310,932 US10809490B2 (en) 2017-06-02 2018-06-01 Lens barrel and imaging device
CN201880002602.7A CN109477947B (zh) 2017-06-02 2018-06-01 透镜镜筒及摄像装置
JP2018567308A JP7056585B2 (ja) 2017-06-02 2018-06-01 レンズ鏡筒及び撮像装置
US17/022,709 US11320627B2 (en) 2017-06-02 2020-09-16 Lens barrel and imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017110463 2017-06-02
JP2017-110463 2017-06-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/310,932 A-371-Of-International US10809490B2 (en) 2017-06-02 2018-06-01 Lens barrel and imaging device
US17/022,709 Continuation US11320627B2 (en) 2017-06-02 2020-09-16 Lens barrel and imaging device

Publications (1)

Publication Number Publication Date
WO2018221723A1 true WO2018221723A1 (ja) 2018-12-06

Family

ID=64454823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021173 WO2018221723A1 (ja) 2017-06-02 2018-06-01 レンズ鏡筒及び撮像装置

Country Status (4)

Country Link
US (2) US10809490B2 (ja)
JP (1) JP7056585B2 (ja)
CN (1) CN109477947B (ja)
WO (1) WO2018221723A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020136749A1 (ja) * 2018-12-26 2020-07-02 株式会社ニコン 変倍光学系、光学機器および変倍光学系の製造方法
WO2020170586A1 (ja) * 2019-02-22 2020-08-27 株式会社ニコン レンズ鏡筒及び撮像装置
WO2020189532A1 (en) 2019-03-15 2020-09-24 Ricoh Company, Ltd. Lens barrel and imaging device
US11960065B2 (en) 2018-12-26 2024-04-16 Nikon Corporation Zoom optical system, optical apparatus and method for manufacturing the zoom optical system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110568577A (zh) * 2019-10-08 2019-12-13 舜宇光学(中山)有限公司 一种镜头调焦结构
CN112799205B (zh) * 2019-11-12 2023-03-14 昆明明汇光学有限公司 一种四倍比变焦目镜

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007279584A (ja) * 2006-04-11 2007-10-25 Nikon Corp レンズ鏡筒
JP2007282092A (ja) * 2006-04-11 2007-10-25 Nikon Corp 撮像装置
JP2008046200A (ja) * 2006-08-11 2008-02-28 Konica Minolta Opto Inc レンズ鏡胴及び撮像装置
JP2015045791A (ja) * 2013-08-29 2015-03-12 Hoya株式会社 レンズ鏡筒

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5018843A (en) * 1988-12-08 1991-05-28 Nikon Corporation Zoom lens apparatus with lens units for zooming and focusing
JP4497907B2 (ja) * 2003-12-12 2010-07-07 キヤノン株式会社 レンズ装置およびカメラ
JP4594867B2 (ja) * 2006-01-16 2010-12-08 株式会社タムロン ダウンサイジングズームレンズ
JP5266948B2 (ja) 2008-08-08 2013-08-21 株式会社タムロン インナーフォーカスズームレンズ鏡筒
JP5219989B2 (ja) * 2009-12-15 2013-06-26 パナソニック株式会社 レンズ鏡筒
JP6381382B2 (ja) * 2014-09-17 2018-08-29 キヤノン株式会社 レンズ鏡筒および光学機器
JP2016114799A (ja) * 2014-12-16 2016-06-23 コニカミノルタ株式会社 ズームレンズ鏡胴及び撮像装置
US10302899B2 (en) * 2016-03-09 2019-05-28 Canon Kabushiki Kaisha Zoom-type lens barrel and image pickup apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007279584A (ja) * 2006-04-11 2007-10-25 Nikon Corp レンズ鏡筒
JP2007282092A (ja) * 2006-04-11 2007-10-25 Nikon Corp 撮像装置
JP2008046200A (ja) * 2006-08-11 2008-02-28 Konica Minolta Opto Inc レンズ鏡胴及び撮像装置
JP2015045791A (ja) * 2013-08-29 2015-03-12 Hoya株式会社 レンズ鏡筒

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7218762B2 (ja) 2018-12-26 2023-02-07 株式会社ニコン 変倍光学系および光学機器
US11906716B2 (en) 2018-12-26 2024-02-20 Nikon Corporation Zoom optical system, optical apparatus and method for manufacturing the zoom optical system
JP7491416B2 (ja) 2018-12-26 2024-05-28 株式会社ニコン 変倍光学系および光学機器
JPWO2020136749A1 (ja) * 2018-12-26 2021-09-27 株式会社ニコン 変倍光学系、光学機器および変倍光学系の製造方法
JP2023029644A (ja) * 2018-12-26 2023-03-03 株式会社ニコン 変倍光学系および光学機器
US11960065B2 (en) 2018-12-26 2024-04-16 Nikon Corporation Zoom optical system, optical apparatus and method for manufacturing the zoom optical system
WO2020136749A1 (ja) * 2018-12-26 2020-07-02 株式会社ニコン 変倍光学系、光学機器および変倍光学系の製造方法
WO2020170586A1 (ja) * 2019-02-22 2020-08-27 株式会社ニコン レンズ鏡筒及び撮像装置
JP7147955B2 (ja) 2019-02-22 2022-10-05 株式会社ニコン レンズ鏡筒及び撮像装置
JPWO2020170586A1 (ja) * 2019-02-22 2021-11-25 株式会社ニコン レンズ鏡筒及び撮像装置
US11982868B2 (en) 2019-02-22 2024-05-14 Nikon Corporation Lens barrel and imaging device
JP7484982B2 (ja) 2019-02-22 2024-05-16 株式会社ニコン レンズ鏡筒及び撮像装置
US11947184B2 (en) 2019-03-15 2024-04-02 Ricoh Company, Ltd. Lens barrel and imaging device
WO2020189532A1 (en) 2019-03-15 2020-09-24 Ricoh Company, Ltd. Lens barrel and imaging device

Also Published As

Publication number Publication date
JPWO2018221723A1 (ja) 2020-04-23
CN109477947A (zh) 2019-03-15
US11320627B2 (en) 2022-05-03
US10809490B2 (en) 2020-10-20
CN109477947B (zh) 2022-04-12
US20190179109A1 (en) 2019-06-13
JP7056585B2 (ja) 2022-04-19
US20200409031A1 (en) 2020-12-31

Similar Documents

Publication Publication Date Title
WO2018221723A1 (ja) レンズ鏡筒及び撮像装置
JP5011793B2 (ja) レンズ鏡筒及び撮像装置
JP5995521B2 (ja) レンズ鏡筒およびカメラシステム
JP6415102B2 (ja) レンズ鏡筒及びそれを有する光学機器
US8305696B2 (en) Inner focusing zoom lens
US11073674B2 (en) Lens apparatus and imaging apparatus
JP6436787B2 (ja) ズームレンズ鏡筒およびこれを用いた光学機器
JP5963533B2 (ja) レンズ鏡筒およびカメラシステム
US7574121B2 (en) Imaging device having an optical image stabilizer
JP4704071B2 (ja) 撮像装置
JP2008020488A (ja) レンズ鏡筒及び撮像装置
JP3416317B2 (ja) レンズ鏡筒及びそれを用いた光学機器
JP2022174289A (ja) レンズ鏡筒及び撮像装置
JP2016130765A (ja) レンズ鏡筒、光学機器、および、撮像装置
JP7268688B2 (ja) レンズ鏡筒および光学機器
US10345552B2 (en) Lens barrel and optical apparatus including the same
JP6136089B2 (ja) レンズ鏡筒及び撮像装置
JP2009237409A (ja) 光学機器の調整方法
JP2005274837A (ja) ズームレンズの偏芯調整方法
JP2017116715A (ja) レンズ鏡筒およびそれを有する光学機器
US20240264406A1 (en) Optical apparatus and imaging apparatus
JP2011242683A (ja) レンズ鏡筒及びそれを有する撮像装置
JP5822557B2 (ja) レンズ鏡筒および光学機器
JP5197292B2 (ja) 光学機器
WO2021140989A1 (ja) レンズ鏡筒及び光学機器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018567308

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809108

Country of ref document: EP

Kind code of ref document: A1