WO2018221512A1 - サマリウム-鉄-窒素磁石粉末及びその製造方法 - Google Patents

サマリウム-鉄-窒素磁石粉末及びその製造方法 Download PDF

Info

Publication number
WO2018221512A1
WO2018221512A1 PCT/JP2018/020553 JP2018020553W WO2018221512A1 WO 2018221512 A1 WO2018221512 A1 WO 2018221512A1 JP 2018020553 W JP2018020553 W JP 2018020553W WO 2018221512 A1 WO2018221512 A1 WO 2018221512A1
Authority
WO
WIPO (PCT)
Prior art keywords
samarium
iron
powder
phase
nitrogen magnet
Prior art date
Application number
PCT/JP2018/020553
Other languages
English (en)
French (fr)
Inventor
周祐 岡田
健太 高木
靖 榎戸
佳則 藤川
龍司 橋本
Original Assignee
国立研究開発法人産業技術総合研究所
Tdk株式会社
周祐 岡田
健太 高木
靖 榎戸
佳則 藤川
龍司 橋本
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所, Tdk株式会社, 周祐 岡田, 健太 高木, 靖 榎戸, 佳則 藤川, 龍司 橋本 filed Critical 国立研究開発法人産業技術総合研究所
Priority to CN201880034395.3A priority Critical patent/CN110662617B/zh
Priority to US16/615,511 priority patent/US11361888B2/en
Priority to JP2019521233A priority patent/JP6845491B2/ja
Publication of WO2018221512A1 publication Critical patent/WO2018221512A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a method for producing samarium-iron-nitrogen magnet powder and samarium-iron-nitrogen magnet powder.
  • neodymium-iron-boron magnets are used for various purposes as high-performance magnets.
  • dysprosium-iron-boron magnets have a low Curie temperature of 312 ° C and low heat resistance, so dysprosium is added for use in environments exposed to high temperatures such as motors. There is a need to. Here, dysprosium has a low output, and its production area is limited.
  • a samarium-iron-nitrogen magnet has been developed as a high-performance magnet that does not contain dysprosium and has high heat resistance.
  • the samarium-iron-nitrogen magnet has the same saturation magnetization as the neodymium-iron-boron magnet, has a high Curie temperature of 477 ° C, has a small temperature change in the magnet characteristics, and is regarded as a theoretical value of coercive force.
  • the anisotropic magnetic field is a very high value of 260 kOe, which is about three times that of a neodymium-iron-boron magnet. For this reason, samarium-iron-nitrogen magnets are expected to have high heat resistance (see, for example, Patent Documents 1 to 4 and Non-Patent Documents 1 to 3).
  • samarium-iron-nitrogen magnet powder As a method for producing samarium-iron-nitrogen magnet powder, samarium-iron oxide powder prepared by coprecipitation or the like is reduced and diffused to form samarium-iron alloy powder, which is nitrided, then unreacted calcium and There is a method of washing away calcium oxide which is a by-product. In this method, it is possible to produce fine samarium-iron-nitrogen magnet powder without grinding. As a result, the samarium-iron-nitrogen magnet powder having a high coercive force can be produced because there are few edges in the samarium-iron-nitrogen magnet powder that can be a source of distortion and reverse magnetic domain generation.
  • the samarium-iron-nitrogen magnet powder currently on the market has a coercive force of about 15 kOe, it is difficult to use at temperatures exceeding 100 ° C. For this reason, samarium-iron-nitrogen magnet powder having a high coercive force is required.
  • An object of one embodiment of the present invention is to provide a samarium-iron-nitrogen magnet powder having a high coercive force.
  • a nonmagnetic phase is formed on the surface of the samarium-iron-nitrogen magnet phase, and the arithmetic average roughness Ra is 3.5 nm or less.
  • Another aspect of the present invention is a method for producing a samarium-iron-nitrogen magnet powder by reducing and diffusing a precursor powder of a samarium-iron alloy to produce a samarium-iron alloy powder;
  • a samarium-iron-nitrogen magnet powder having a high coercive force can be provided.
  • FIG. 2 is an FE-SEM reflected electron image of a cross section of the samarium-iron-nitrogen magnet powder of Example 1.
  • FIG. 4 is an FE-SEM reflected electron image of a cross section of the samarium-iron-nitrogen magnet powder of Example 2.
  • FIG. 3 is an FE-SEM reflected electron image of a cross section of the samarium-iron-nitrogen magnet powder of Comparative Example 1.
  • FIG. 4 is an FE-SEM reflected electron image of a cross section of the samarium-iron-nitrogen magnet powder of Comparative Example 2.
  • FIG. 2 is a result of STEM image and line analysis of a cross section of the samarium-iron-nitrogen magnet powder of Example 1.
  • FIG. 3 is a result of STEM image and line analysis of a cross section of the samarium-iron-nitrogen magnet powder of Example 2.
  • FIG. 6 is a result of STEM image and line analysis of a cross section of the samarium-iron-nitrogen magnet powder of Comparative Example 1.
  • FIG. 4 is a result of STEM image and line analysis of a cross section of the samarium-iron-nitrogen magnet powder of Comparative Example 2.
  • 2 is an X-ray diffraction pattern of the samarium-iron-nitrogen magnet powder of Example 1.
  • FIG. 3 is an X-ray diffraction pattern of samarium-iron-nitrogen magnet powder of Example 2.
  • 3 is an X-ray diffraction pattern of a samarium-iron-nitrogen magnet powder of Comparative Example 1.
  • 3 is an X-ray diffraction pattern of a samarium-iron-nitrogen magnet powder of Comparative Example 2.
  • 6 is a graph showing the relationship between the average particle size and coercivity of samarium-iron-nitrogen magnet powder.
  • the present inventors have determined whether the samarium-iron-nitrogen magnet powder has a layer formed on the surface of the samarium-iron-nitrogen magnet powder. It was found that it affects the surface smoothness. Further, the present inventors have found that the surface smoothness of the samarium-iron-nitrogen magnet powder greatly affects the coercive force of the samarium-iron-nitrogen magnet powder.
  • the present inventors have found that the coercive force of the samarium-iron-nitrogen magnet powder is increased by forming a nonmagnetic phase on the surface of the samarium-iron-nitrogen magnet phase, and have reached the present invention.
  • the size and surface state of magnet powder are important in addition to the crystal structure of magnet powder.
  • the anisotropic magnetic field of the defect portion is reduced, so that the coercive force of the magnet powder is reduced.
  • the surface of the magnet powder is desirably a smooth surface with few defects.
  • samarium-iron-nitrogen magnet powder In order to produce samarium-iron-nitrogen magnet powder, in this embodiment, samarium-iron oxide powder and / or samarium-iron hydroxide powder produced by a wet synthesis method are subjected to pre-reduction and reduction diffusion. , Nitriding, cleaning and dehydrogenation. Thereby, a fine powder can be produced, without implementing refinement
  • a samarium-iron-nitrogen magnet powder having a submicron size with an average particle size of less than 1 ⁇ m can be produced.
  • the present inventors have produced a samarium-iron-nitrogen magnet powder having an average particle size of 0.65 ⁇ m and a coercive force of 24.7 kOe (see, for example, Non-Patent Document 1).
  • the present inventors investigated the influence of the surface of the samarium-iron-nitrogen magnet powder on the coercive force and developed a method for controlling the surface. Worked on.
  • the samarium-rich phase has the general formula SmFe x N y (x is 7 or less, and y is 0 to 3).
  • the samarium-iron-nitrogen magnet phase contains a larger amount of samarium than the samarium-iron-nitrogen magnet phase represented by Th 2 Zn 17 , TbCu 7 , but the magnet properties are inferior to the samarium-iron-nitrogen magnet phase. . For this reason, dissolution treatment with a weak acid such as dilute acetic acid aqueous solution having a pH of 5 to 7 is performed on the samarium-rich phase (see, for example, Patent Document 1).
  • the present inventors investigated in detail the samarium-rich phase, the influence of the samarium-rich phase on the surface of the samarium-iron-nitrogen magnet powder, and the influence of the surface of the samarium-iron-nitrogen magnet powder on the coercive force. As a result, it was found that when samarium-iron-nitrogen magnet powder was produced by a conventional production method, an SmFe 5 phase (soft magnetic phase) was present on the surface of the samarium-iron-nitrogen magnet phase.
  • the surface of the samarium-iron-nitrogen magnet powder is roughened and the coercive force of the samarium-iron-nitrogen magnet powder is reduced. I found out. Therefore, by demagnetizing the samarium-rich phase to form a nonmagnetic phase on the surface of the samarium-iron-nitrogen magnet phase, the arithmetic average roughness Ra is 3.5 nm or less, and the samarium- It has been found that iron-nitrogen magnet powder can be obtained.
  • a nonmagnetic phase is formed on the surface of the samarium-iron-nitrogen magnet phase. That is, the samarium-iron-nitrogen magnet powder of this embodiment has a core-shell structure, and a nonmagnetic phase (shell) is formed on at least a part of the surface of the samarium-iron-nitrogen magnet phase (core). Yes.
  • the samarium-iron-nitrogen magnet powder of this embodiment has substantially no SmFe 5 phase formed on the surface.
  • the arithmetic average roughness Ra of the samarium-iron-nitrogen magnet powder of this embodiment is 3.5 nm or less, preferably 2 nm or less, and more preferably 1 nm or less.
  • the samarium-iron-nitrogen magnet powder has irregularities on the surface due to oxidation or the like, so the arithmetic average roughness Ra exceeds 3.5 nm, and the coercive force of the samarium-iron-nitrogen magnet powder decreases.
  • the nonmagnetic phase when a nonmagnetic phase is formed on the surface of the samarium-iron-nitrogen magnet phase, the surface smoothness of the samarium-iron-nitrogen magnet phase is maintained regardless of the thickness of the nonmagnetic phase. Therefore, the thickness of the nonmagnetic phase does not particularly affect the coercive force of the samarium-iron-nitrogen magnet powder.
  • the nonmagnetic phase is preferably thin.
  • the arithmetic average roughness Ra of the samarium-iron-nitrogen magnet powder can be measured using a transmission electron microscope (TEM) or a scanning transmission electron microscope (STEM).
  • the arithmetic average roughness Ra can be obtained based on the definition of the arithmetic average roughness Ra of JIS B0601.
  • an average line (waviness curve) is obtained from the cross-sectional curve of the measurement surface, and the average line is subtracted from the cross-sectional curve, that is, the average line is replaced with a straight line to obtain a roughness curve.
  • the direction that coincides with the average line replaced with a straight line is defined as the X axis
  • the direction perpendicular to the X axis and parallel to the cross section is defined as the Z axis.
  • Only the reference length l is extracted from the roughness curve in the X-axis direction, and the average line in this extracted portion can be expressed by the following equation (1).
  • the arithmetic mean roughness Ra is a value obtained by averaging the absolute value of the deviation between Z 0 and Z (x), can be calculated by the following equation (2).
  • the measurement surface is observed in a cross section, and an average line and a roughness curve are obtained from the cross section curve.
  • a region of 150 nm is arbitrarily selected on the X-axis, and 50 X values (X 1 to X 50 ) are taken at regular intervals within the selected region, and Z values (Z (x 1 ) To Z (x 50 )). From the measured Z value, Z 0 can be obtained by the following equation (3).
  • the coercivity of the samarium-iron-nitrogen magnet powder is related to the surface smoothness of the samarium-iron-nitrogen magnet powder. For this reason, the nonmagnetic phase may be formed on at least a part of the surface of the samarium-iron-nitrogen magnet phase.
  • the coverage of the samarium-iron-nitrogen magnet powder with the nonmagnetic phase is preferably 50% or more, more preferably 60% or more, from the viewpoint of the coercive force of the samarium-iron-nitrogen magnet powder. % Or more is more preferable.
  • the nonmagnetic phase is a phase obtained by demagnetizing the samarium-rich phase, and is a phase having a lower magnetization than the SmFe 5 phase, but a lower magnetization is preferable.
  • the samarium-iron-nitrogen magnet means a magnet containing samarium, iron and nitrogen.
  • the element composition and crystal phase of the nonmagnetic phase are not particularly limited, but the nonmagnetic phase is preferably a samarium oxide phase.
  • the peak intensity derived from the Sm 2 Fe 17 N 3 phase is c
  • the peak intensity derived from the Sm 2 O 3 phase is e.
  • Formula e / c ⁇ 0.05 It is preferable to satisfy. Thereby, the coercive force of the samarium-iron-nitrogen magnet powder can be increased.
  • the samarium-iron-nitrogen magnet powder of this embodiment may further contain rare earth elements such as neodymium and praseodymium, and iron group elements other than iron.
  • the crystal structure of the samarium-iron-nitrogen magnet may be either a Th 2 Zn 17 structure or a TbCu 7 structure.
  • the method for producing a samarium-iron-nitrogen magnet powder includes a step of producing a samarium-iron alloy powder by reducing diffusion of a samarium-iron alloy precursor powder, a step of nitriding the samarium-iron alloy powder, A step of demagnetizing the samarium-rich phase present on the surface of the prepared samarium-iron alloy powder.
  • the method for producing a samarium-iron-nitrogen magnet powder includes a step of washing a powder in which the samarium-rich phase is demagnetized with a solvent capable of dissolving a calcium compound, and dehydrogenating the washed powder. Process. This makes it possible to produce a samarium-iron-nitrogen magnet powder that is fine and has a high coercive force without being pulverized.
  • the samarium-iron alloy precursor powder is not particularly limited as long as the samarium-iron alloy powder can be produced by reduction diffusion, but the samarium-iron oxide powder and / or samarium-iron water is not particularly limited. An oxide powder etc. are mentioned, You may use 2 or more types together.
  • the samarium-iron alloy powder means an alloy powder containing samarium and iron.
  • the samarium-iron alloy powder may further contain rare earth elements such as neodymium and praseodymium, and iron group elements other than iron.
  • the samarium-iron alloy precursor powder can be produced by a coprecipitation method. Specifically, first, by adding a precipitation agent such as alkali to a solution containing samarium salt and iron salt, a precipitate composed of a compound of samarium and iron (mainly hydroxide) is precipitated, and then filtered. Collect the precipitate by centrifugation, etc. Next, the precipitate is washed, and then dried in a hot air oven to obtain samarium-iron (water) oxide.
  • a precipitation agent such as alkali
  • a precipitate composed of a compound of samarium and iron (mainly hydroxide) is precipitated, and then filtered. Collect the precipitate by centrifugation, etc.
  • the precipitate is washed, and then dried in a hot air oven to obtain samarium-iron (water) oxide.
  • samarium-iron (water) oxide is coarsely pulverized with a blade mill or the like, and then finely pulverized with a bead mill or the like to produce samarium-iron oxide powder and / or samarium-iron hydroxide powder.
  • the counter ions in the samarium salt and iron salt may be inorganic ions such as chloride ions, sulfate ions, nitrate ions, or organic ions such as alkoxides.
  • an organic solvent such as water or ethanol can be used as the solvent contained in the solution containing the samarium salt and the iron salt.
  • alkali for example, alkali metal and alkaline earth metal hydroxides or ammonia can be used.
  • a compound such as urea that decomposes to generate alkali by an external action such as heat can be used as a precipitant.
  • vacuum drying may be used instead of drying in a hot air oven.
  • Samarium salt is added to a suspension containing iron hydroxide particles or iron oxide particles as a samarium-iron alloy precursor powder other than samarium-iron oxide powder and / or samarium-iron hydroxide powder, and evaporated to dryness.
  • a (water) iron oxide-samarium compound powder prepared by adding a precipitant may be used.
  • a (water) iron oxide-samarium compound powder prepared by adding an iron salt to a suspension containing samarium compound particles with a controlled particle size and evaporating to dryness or adding a precipitating agent is obtained as samarium-iron. It may be used as an alloy precursor powder.
  • a method for reducing and diffusing the precursor powder of samarium-iron alloy is not particularly limited, but it is heated to a temperature not lower than the melting point of calcium (about 850 ° C.) in an inert gas atmosphere using calcium or calcium hydride. Methods and the like. At this time, samarium reduced by calcium diffuses in the calcium melt and reacts with iron to produce samarium-iron alloy powder.
  • reduction diffusion is performed at 850 ° C. to 950 ° C. for about 30 minutes to 2 hours in an inert gas atmosphere.
  • the precursor powder of the samarium-iron alloy contains iron oxide or an iron compound, it is preferably pre-reduced before reducing diffusion and reduced to iron. Thereby, the particle size of the samarium-iron alloy powder can be reduced.
  • the method of pre-reducing the samarium-iron alloy precursor powder is not particularly limited, and examples thereof include a method of heat treatment at a temperature of 400 ° C. or higher in a reducing atmosphere such as hydrogen.
  • pre-reduction is performed at 500 ° C. to 800 ° C. in a hydrogen atmosphere. To do.
  • a method of nitriding the samarium-iron alloy powder is not particularly limited, and examples thereof include a method of heat treatment at 300 to 500 ° C. in an atmosphere of ammonia, a mixed gas of ammonia and hydrogen, nitrogen, a mixed gas of nitrogen and hydrogen, or the like. It is done.
  • the nitrogen content in the samarium-iron-nitrogen magnet phase affects the magnetic properties of the samarium-iron-nitrogen magnet powder. It is known that the most suitable samarium-iron-nitrogen magnet phase for increasing the coercive force of samarium-iron-nitrogen magnet powder is the Sm 2 Fe 17 N 3 phase. For this reason, it is important to control the nitrogen content in the samarium-iron-nitrogen magnet phase. When samarium-iron alloy powder is nitrided using ammonia, it can be nitrided in a short time, but the nitrogen content in the samarium-iron-nitrogen magnet phase is higher than that of the Sm 2 Fe 17 N 3 phase. May also increase.
  • a samarium-rich phase exists on the surface of the nitrided samarium-iron alloy powder.
  • an SmFe 5 phase is formed on the surface of the samarium-iron-nitrogen magnet phase, and samarium-iron -The coercive force of the nitrogen magnet powder decreases. For this reason, before the nitrided samarium-iron alloy powder is washed, for example, it is exposed to an oxidizing atmosphere to gradually oxidize the samarium-rich phase.
  • a samarium oxide phase is formed on the surface of the samarium-iron-nitrogen magnet phase, and as a result, a samarium-iron-nitrogen magnet powder having a high coercive force is obtained.
  • the oxidizing atmosphere is not particularly limited, and an inert gas atmosphere containing moisture or an inert gas atmosphere containing a trace amount of oxygen can be used.
  • an element capable of demagnetizing the samarium-rich phase by reacting with the samarium-rich phase is treated with a wet process such as an impregnation method or a sputtering method. It may be added to the surface of the nitrided samarium-iron alloy powder by a dry process and heat-treated.
  • the powder in which the samarium-rich phase is demagnetized contains calcium compounds such as calcium oxide, unreacted metallic calcium, calcium nitride obtained by nitriding metallic calcium, and calcium hydride. Therefore, in order to produce a samarium-iron-nitrogen magnet powder, the powder in which the samarium-rich phase has been made non-magnetic is washed with a solvent capable of dissolving the calcium compound to remove the calcium compound. Is preferred. Thereby, the magnetization of the samarium-iron-nitrogen magnet powder can be increased.
  • the solvent capable of dissolving the calcium compound is not particularly limited, and examples thereof include water and alcohol. Among these, water is preferable because of its good cost and solubility of calcium compounds.
  • most of the calcium compounds can be removed by first adding a powder in which the samarium-rich phase is demagnetized to water and repeating stirring and decantation. Next, the remaining calcium compound can be removed by adding water to the powder from which most of the calcium compound has been removed, adding a dilute acetic acid aqueous solution or the like while stirring, and adjusting the pH to 7.
  • the washed powder is preferably vacuum-dried.
  • the temperature at which the washed powder is vacuum-dried is preferably from room temperature to 100 ° C. Thereby, oxidation of the washed powder can be suppressed.
  • washed powder may be vacuum dried after being replaced with an organic solvent having high volatility such as alcohols and miscible with water.
  • the method for dehydrogenating the washed powder is not particularly limited, and examples thereof include a heat treatment method in a vacuum or an inert gas atmosphere.
  • Example 1 The following steps were carried out in the glove box without exposure to air.
  • the samarium-iron oxide powder was pre-reduced in a hydrogen stream at 700 ° C. for 6 hours to obtain a samarium oxide-iron powder.
  • the samarium-iron alloy powder was cooled to room temperature, then replaced with a hydrogen atmosphere, and the temperature was raised to 380 ° C.
  • the samarium-iron alloy powder was nitrided by switching to an ammonia-hydrogen mixed gas stream with a volume ratio of 1: 2, raising the temperature to 420 ° C. and holding for 1 hour.
  • the nitrogen content of the nitrided samarium-iron alloy powder was optimized by switching to a hydrogen stream and annealing at 420 ° C. for 1 hour.
  • the hydrogen was removed by switching to an argon stream and annealing at 420 ° C. for 0.5 hour.
  • the powder with the nitrogen content optimized is gradually oxidized in an inert gas atmosphere containing 10% by volume of air, then taken out into the air and left to stand overnight to oxidize the samarium-rich phase and make it nonmagnetic Turned into.
  • the powder in which the samarium-rich phase was demagnetized was returned to the glove box and washed with pure water.
  • the water remaining in the washed powder was replaced with 2-propanol, followed by vacuum drying at room temperature.
  • the dried powder was dehydrogenated in vacuum at 200 ° C. for 3 hours to produce a samarium-iron-nitrogen magnet powder.
  • Example 2 The samarium-iron-nitrogen powder was washed in the same manner as in Example 1 except that the powder in which the samarium-rich phase was demagnetized was washed with pure water, and then diluted with an aqueous solution of acetic acid to adjust the pH to 7 and held for 15 minutes. Magnet powder was produced.
  • Example 3 Samarium-iron--similar to Example 1 except that the samarium-rich phase was oxidized by exposing the powder with the optimized nitrogen content to an argon atmosphere containing moisture overnight. Nitrogen magnet powder was produced. Here, argon containing moisture was produced by passing argon through water.
  • Example 4 When demagnetizing the samarium-rich phase, except that the powder with an appropriate nitrogen content was oxidized by exposing it to an argon atmosphere containing 1% by volume of oxygen overnight, the same as in Example 1, A samarium-iron-nitrogen magnet powder was prepared.
  • Example 5 A samarium-iron-nitrogen magnet powder was produced in the same manner as in Example 1 except that the temperature for reducing diffusion of the samarium oxide-iron powder was changed to 950 ° C.
  • the samarium-iron-nitrogen magnet powder had an average particle size of 0.97 ⁇ m, a magnetization of 132 emu / g under a magnetic field of 90 kOe, and a coercive force of 23.7 kOe.
  • Example 6 The samarium-iron-nitrogen was washed in the same manner as in Example 1 except that the powder in which the samarium-rich phase was demagnetized was washed with pure water, then diluted with aqueous acetic acid solution to adjust the pH to 6 and held for 5 minutes. Magnet powder was produced.
  • Example 7 A samarium-iron-nitrogen magnet was obtained in the same manner as in Example 1 except that the powder in which the samarium-rich phase was demagnetized was washed with pure water, and then diluted with an aqueous acetic acid solution to adjust the pH to 6 and maintained for 15 minutes. A powder was prepared.
  • Example 1 A samarium-iron-nitrogen magnet powder was produced in the same manner as in Example 1 except that the samarium-rich phase was not demagnetized.
  • Example 2 instead of demagnetizing the samarium-rich phase, Example 1 except that the samarium-rich phase was removed by immersing the powder with the optimized nitrogen content in a dilute acetic acid aqueous solution having a pH of 5 for 15 minutes. Similarly, samarium-iron-nitrogen magnet powder was prepared.
  • Example 3 A samarium-iron-nitrogen magnet powder was produced in the same manner as in Example 5 except that the samarium-rich phase was not demagnetized.
  • the samarium-iron-nitrogen magnet powder had an average particle size of 0.96 ⁇ m, a magnetization of 139 emu / g under a magnetic field of 90 kOe, and a coercive force of 19.7 kOe.
  • the average particle diameter of the samarium-iron-nitrogen magnet powder was obtained by measuring 200 or more particles randomly selected from the SEM image of the samarium-iron-nitrogen magnet powder and then arithmetically averaging them.
  • a samarium-iron-nitrogen magnet powder was mixed with a thermoplastic resin and then oriented in a magnetic field of 20 kOe to prepare a sample.
  • VSM vibrating sample magnetometer
  • a sample was placed in the direction of easy magnetization under the conditions of a temperature of 27 ° C. and a maximum applied magnetic field of 90 kOe, and the magnet characteristics (magnetization and retention) of the samarium-iron-nitrogen magnet powder were measured. Magnetic force) was measured.
  • a samarium-iron-nitrogen magnet powder was kneaded with an epoxy resin, solidified and then polished, and a cross section for observation was prepared using a focused ion beam (FIB). Next, the surface structure of the samarium-iron-nitrogen magnet powder was observed using a field emission scanning electron microscope (FE-SEM).
  • a thin piece is prepared using FIB, and the surface structure of samarium-iron-nitrogen magnet powder is observed using a scanning transmission electron microscope (STEM), and energy dispersive X-ray spectroscopy (EDX) is used. The composition was line analyzed.
  • STEM scanning transmission electron microscope
  • EDX energy dispersive X-ray spectroscopy
  • FIG. 1 to 4 show FE-SEM backscattered electron images of cross sections of samarium-iron-nitrogen magnet powders of Examples 1 and 2 and Comparative Examples 1 and 2.
  • FIG. 1 to 4 show FE-SEM backscattered electron images of cross sections of samarium-iron-nitrogen magnet powders of Examples 1 and 2 and Comparative Examples 1 and 2.
  • FIG. 1 to 4 show FE-SEM backscattered electron images of cross sections of samarium-iron-nitrogen magnet powders of Examples 1 and 2 and Comparative Examples 1 and 2.
  • the samarium-iron-nitrogen magnet powders of Examples 1 and 2 and Comparative Example 1 have a nonmagnetic phase and SmFe 5 phase of several nm to 30 nm formed on the surface, respectively. It was done.
  • the non-magnetic phase and the SmFe 5 phase are observed to be whiter than the samarium-iron-nitrogen magnet phase in the FE-SEM reflected electron image because the average atomic weight is different from that of the samarium-iron-nitrogen magnet phase.
  • the coverage by the nonmagnetic phase (or SmFe 5 phase) of the samarium-iron-nitrogen magnet powder was obtained by arithmetic averaging.
  • FIGS. 5 to 8 show STEM images of the cross sections of the samarium-iron-nitrogen magnet powders of Examples 1 and 2 and Comparative Examples 1 and 2, and the results of line analysis at the locations indicated by arrows.
  • the thicknesses of the nonmagnetic phase and the SmFe 5 phase of the samarium-iron-nitrogen magnet powders of Examples 1 and 2 and Comparative Example 1 were estimated from the difference in spectral position as a result of the line analysis in FIGS. They were 1.7 nm, 1.8 nm, and 1.6 nm, respectively.
  • a borosilicate glass capillary with an inner diameter of 0.3 mm is filled with samarium-iron-nitrogen magnet powder, and a large Debye-Scherrer camera is installed at SPring-8, Beamline BL02B2 of the Japan Institute of High-Intensity Optical Science (JASR).
  • JASR Japan Institute of High-Intensity Optical Science
  • FIGS. 9 to 12 show X-ray diffraction patterns of the samarium-iron-nitrogen magnet powders of Examples 1 and 2 and Comparative Examples 1 and 2.
  • FIG. 9 shows X-ray diffraction patterns of the samarium-iron-nitrogen magnet powders of Examples 1 and 2 and Comparative Examples 1 and 2.
  • FIGS. 9 to 12 the crystal phases belonging to each other are shown except for the peak derived from the Sm 2 Fe 17 N 3 phase.
  • the samarium-iron-nitrogen magnet powder of Example 1 is obtained by demagnetizing the samarium-rich phase, so that the SmFe 5 phase that is a soft magnetic phase is formed on the surface of the Sm 2 Fe 17 N 3 phase. It can be seen that samarium oxide (Sm 2 O 3 ) phase, which is a nonmagnetic phase, is formed. For this reason, the coercive force of the samarium-iron-nitrogen magnet powder of Comparative Example 1 is 23.2 kOe, whereas the coercive force of the samarium-iron-nitrogen magnet powder of Example 1 is 27.3 kOe. This shows that a nonmagnetic phase must be formed on the surface of the samarium-iron-nitrogen magnet phase in order to increase the coercive force of the samarium-iron-nitrogen magnet powder.
  • the samarium-iron-nitrogen magnet powder of Example 1 contains calcium carbonate. This is because the carbon contained in the nitrided samarium-iron alloy powder reacts with carbon dioxide in the air and hardly dissolves in water when exposed to the air when demagnetizing the samarium-rich phase. This is probably because calcium was generated. Although calcium carbonate does not affect the coercive force of the samarium-iron-nitrogen magnet powder, it is preferable to remove the calcium carbonate in order to reduce the magnetization of the samarium-iron-nitrogen magnet powder.
  • the samarium-iron-nitrogen magnet powder of Example 2 was selectively removed by adding a dilute acetic acid aqueous solution to a pH of 7. As a result, the magnetization was improved. You can see that
  • Table 1 shows the characteristics of the samarium-iron-nitrogen magnet powders of Examples 1 to 7 and Comparative Examples 1 to 3.
  • C, d, and e are the peak intensities derived from the (101) plane reflection of the Sm 2 Fe 17 N 3 phase near 9.75 ° in the X-ray diffraction pattern of the samarium-iron-nitrogen magnet powder, The intensity of the peak derived from the (104) plane reflection of the SmFe 5 phase near 9.53 ° and the intensity of the peak derived from the (222) plane reflection of the Sm 2 O 3 phase near 9.02 °.
  • the peak intensity is a value after the background intensity is removed.
  • the intensity of the background is obtained by measuring the X-ray diffraction pattern under the same conditions as when measuring the X-ray diffraction pattern of the sample without filling the glass capillary used to measure the X-ray diffraction pattern. Is done.
  • the samarium-iron-nitrogen magnet powder of Comparative Example 1 has a coercive force higher than that of the samarium-iron-nitrogen magnet powder of Comparative Example 2 because the SmFe 5 phase is formed on the surface. For this reason, in order to increase the coercive force of samarium-iron-nitrogen magnet powder, the surface of samarium-iron-nitrogen magnet powder is required to be smooth. It can be said that a layer is required to be formed on the surface of the film.
  • the samarium-iron-nitrogen magnet powder of Example 1 is formed by demagnetizing the samarium-rich phase so that the SmFe 5 phase is not formed on the surface and the Sm 2 O 3 phase is formed. Compared with the samarium-iron-nitrogen magnet powder of Comparative Example 1, the coercive force is high.
  • the samarium-rich phase is made non-magnetic so that the SmFe 5 phase is not formed on the surface and the Sm 2 O 3 phase is formed.
  • the coercive force is high.
  • the samarium-iron-nitrogen magnet powders of Examples 1 to 7 have an e / c of 0.051 to 0.251, it can be seen that an Sm 2 O 3 phase is formed on the surface.
  • the samarium-iron-nitrogen magnet powders of Comparative Examples 1 to 3 have an e / c of 0.006 to 0.017, so that the Sm 2 O 3 phase is substantially formed on the surface. I understand that there is no.
  • the samarium-iron-nitrogen magnet powder has a nonmagnetic phase formed on the surface, and the smooth surface is effective for increasing the coercive force.
  • Table 2 shows the relationship between the atmosphere in which the samarium-rich phase is demagnetized and the magnetic properties of the samarium-iron-nitrogen magnet powder.
  • FIG. 13 shows the relationship between the average particle size and coercivity of samarium-iron-nitrogen magnet powder.
  • the samarium-iron-nitrogen magnet powders of Examples 1 to 7 have clearly higher coercive force than the samarium-iron-nitrogen magnet powders of Non-Patent Documents 1 to 3 and Patent Document 2.
  • Non-Patent Document 1 uses an acetic acid aqueous solution to remove the samarium-rich phase, the surface of the samarium-iron-nitrogen magnet powder is partially roughened and retained as in Comparative Example 2. It is thought that the magnetic force has decreased.
  • Patent Documents 3 and 4 report examples in which the weather resistance is improved by making the surface of the samarium-iron-nitrogen magnet powder a nonmagnetic phase.
  • Patent Document 3 the samarium-rich phase is oxidized after being removed with dilute acetic acid aqueous solution, and in Patent Document 4, after coarse samarium-iron-nitrogen magnet powder is pulverized with an attritor, non-phosphoric acid due to orthophosphate is used. A magnetic film is formed.
  • the samarium-iron-nitrogen magnet powders of Patent Documents 3 and 4 are expected to be rough on the surface, as in Comparative Example 2, and increase the coercive force even if a nonmagnetic phase is formed on the surface. I can't. That is, if the surface of the samarium-iron-nitrogen magnet powder becomes rough, even if a nonmagnetic phase is formed on the surface, the surface smoothness is low and the coercive force cannot be increased.
  • samarium-iron-nitrogen magnet powder has a higher Curie temperature and a smaller change in coercive force with temperature than neodymium magnets, it is possible to produce a magnet having both high magnetic properties and heat resistance.
  • Such magnets are used, for example, as raw materials for sintered magnets and bond magnets used in home appliances such as air conditioners, production robots, automobiles, etc., and used in motors, sensors and the like that require high magnetic properties and heat resistance. be able to.

Abstract

本発明の一態様は、サマリウム-鉄-窒素磁石粉末において、サマリウム-鉄-窒素磁石相の表面に、非磁性相が形成されており、算術平均粗さRaが3.5nm以下である。

Description

サマリウム-鉄-窒素磁石粉末及びその製造方法
 本発明は、サマリウム-鉄-窒素磁石粉末及びサマリウム-鉄-窒素磁石粉末の製造方法に関する。
 現在、高性能な磁石として、ネオジム-鉄-ボロン磁石が様々な用途で利用されている。
 しかしながら、ネオジム-鉄-ボロン磁石は、キュリー温度が312℃という低い値であり、耐熱性が低いため、モーター等、高温に曝される環境下での使用するためには、ディスプロシウムを添加する必要がある。ここで、ディスプロシウムは、産出量が少ない上、産地が限定されており、供給上の懸念がある。
 そこで、ディスプロシウムが添加されておらず、耐熱性が高く、高性能な磁石として、サマリウム-鉄-窒素磁石が開発されている。
 サマリウム-鉄-窒素磁石は、ネオジム-鉄-ボロン磁石と同等の飽和磁化を有し、キュリー温度が477℃という高い値であり、磁石特性の温度変化が小さく、保磁力の理論値とされる異方性磁界がネオジム-鉄-ボロン磁石の約3倍となる260kOeという非常に高い値である。このことから、サマリウム-鉄-窒素磁石は、耐熱性が高い磁石として期待されている(例えば、特許文献1~4、非特許文献1~3参照)。
 サマリウム-鉄-窒素磁石粉末の製造方法として、共沈法等により作製されたサマリウム-鉄酸化物粉末を還元拡散して、サマリウム-鉄合金粉末とし、これを窒化した後、未反応のカルシウム及び副生成物である酸化カルシウムを洗浄除去する方法がある。この方法では、微細なサマリウム-鉄-窒素磁石粉末を、粉砕せずに、製造することが可能である。これにより、サマリウム-鉄-窒素磁石粉末内の歪や逆磁区発生源となりうるエッジが少ないことから、保磁力が高いサマリウム-鉄-窒素磁石粉末を製造することができる。
特開平10-60505号公報 特開2007-270303号公報 特開2004-31761号公報 特開2003-7521号公報
Journal of Alloys and Compounds 695 (2017) 1617-1623 Scripta Materialia 120 (2016) 27-30 Proceedings of the 22th International Workshop on Rare-Earth Permanent Magnets and their Applications (2012) 48-53
 しかしながら、現在市販されているサマリウム-鉄-窒素磁石粉末は、保磁力が15kOe程度であるため、100℃を超える温度下で使用することが難しい。このため、保磁力が高いサマリウム-鉄-窒素磁石粉末が必要とされている。
 本発明の一態様は、保磁力が高いサマリウム-鉄-窒素磁石粉末を提供することを目的とする。
 本発明の一態様は、サマリウム-鉄-窒素磁石粉末において、サマリウム-鉄-窒素磁石相の表面に、非磁性相が形成されており、算術平均粗さRaが3.5nm以下である。
 本発明の他の一態様は、サマリウム-鉄-窒素磁石粉末の製造方法において、サマリウム-鉄合金の前駆体粉末を還元拡散することにより、サマリウム-鉄合金粉末を作製する工程と、該サマリウム-鉄合金粉末を窒化する工程と、該窒化されたサマリウム-鉄合金粉末の表面に存在するサマリウムリッチ相を非磁性化する工程と、該サマリウムリッチ相が非磁性化された粉末を、カルシウム化合物を溶解させることが可能な溶媒で洗浄する工程と、該洗浄された粉末を脱水素する工程を含む。
 本発明の一態様によれば、保磁力が高いサマリウム-鉄-窒素磁石粉末を提供することができる。
実施例1のサマリウム-鉄-窒素磁石粉末の断面のFE-SEM反射電子像である。 実施例2のサマリウム-鉄-窒素磁石粉末の断面のFE-SEM反射電子像である。 比較例1のサマリウム-鉄-窒素磁石粉末の断面のFE-SEM反射電子像である。 比較例2のサマリウム-鉄-窒素磁石粉末の断面のFE-SEM反射電子像である。 実施例1のサマリウム-鉄-窒素磁石粉末の断面のSTEM像及びライン分析の結果である。 実施例2のサマリウム-鉄-窒素磁石粉末の断面のSTEM像及びライン分析の結果である。 比較例1のサマリウム-鉄-窒素磁石粉末の断面のSTEM像及びライン分析の結果である。 比較例2のサマリウム-鉄-窒素磁石粉末の断面のSTEM像及びライン分析の結果である。 実施例1のサマリウム-鉄-窒素磁石粉末のX線回折パターンである。 実施例2のサマリウム-鉄-窒素磁石粉末のX線回折パターンである。 比較例1のサマリウム-鉄-窒素磁石粉末のX線回折パターンである。 比較例2のサマリウム-鉄-窒素磁石粉末のX線回折パターンである。 サマリウム-鉄-窒素磁石粉末の平均粒径と保磁力の関係を示すグラフである。
 本発明者らは、高性能なサマリウム-鉄-窒素磁石粉末の作製を検討する中で、サマリウム-鉄-窒素磁石相の表面に形成されている層の有無がサマリウム-鉄-窒素磁石粉末の表面平滑性に影響することを見出した。また、本発明者らは、サマリウム-鉄-窒素磁石粉末の表面平滑性がサマリウム-鉄-窒素磁石粉末の保磁力に大きく影響を及ぼすことを見出した。さらに、本発明者らは、サマリウム-鉄-窒素磁石相の表面に非磁性相を形成することにより、サマリウム-鉄-窒素磁石粉末の保磁力が高くなることを見出し、本発明に至った。
 磁石粉末の保磁力を高くするためには、磁石粉末の結晶構造に加え、磁石粉末のサイズや表面状態が重要であることが広く知られている。特に、磁石粉末の表面に、凹凸、歪等の欠陥が存在すると、欠陥の部分の異方性磁界が低下するため、磁石粉末の保磁力が低下する。このことから、磁石粉末の表面は、欠陥が少ない平滑な面であることが望ましい。
 サマリウム-鉄-窒素磁石粉末を作製するために、本実施形態では、湿式合成法で作製されたサマリウム-鉄酸化物粉末及び/又はサマリウム-鉄水酸化物粉末に対して、予還元、還元拡散、窒化、洗浄、脱水素を実施する。これにより、粉砕等の微細化処理を実施することなく、微粉末を作製することができる。その結果、粉砕によるダメージがないため、表面の欠陥が少なく、保磁力が高いサマリウム-鉄-窒素磁石粉末が得られる。
 特に、酸化サマリウム-鉄粉末を還元拡散する温度を950℃以下とすることにより、平均粒径が1μmを下回るサブミクロンサイズのサマリウム-鉄-窒素磁石粉末を作製することができる。サマリウム-鉄-窒素磁石粉末の平均粒径が微細である程、サマリウム-鉄-窒素磁石粉末の保磁力を高くすることができる。具体的には、本発明者らは、平均粒径0.65μm、保磁力24.7kOeのサマリウム-鉄-窒素磁石粉末を作製している(例えば、非特許文献1参照)。
 保磁力が一層高いサマリウム-鉄-窒素磁石粉末を作製するために、本発明者らは、サマリウム-鉄-窒素磁石粉末の表面の保磁力に及ぼす影響の調査と、表面の制御方法の開発に取り組んだ。
 酸化サマリウム-鉄粉末を還元拡散すると、酸化サマリウムが還元されることにより生成したサマリウムが鉄と合金化されることにより、サマリウム-鉄合金粉末が得られる。このとき、磁化が高い鉄相(軟磁性相)が残留すると、サマリウム-鉄-窒素磁石粉末の保磁力、残留磁化、角形性等の磁石特性が大きく低下する。このため、通常、サマリウムを量論比よりも過剰に加えるが、過剰に加えられたサマリウムは、サマリウムリッチ相を形成する。
 ここで、サマリウムリッチ相は、一般式
 SmFe(xは7以下であり、yは0~3である。)
で表される結晶構造がThZn17、TbCuで表されるサマリウム-鉄-窒素磁石相よりもサマリウムを多く含むが、サマリウム-鉄-窒素磁石相よりも磁石特性が劣るとされている。このため、サマリウムリッチ相に対して、pHが5~7の希酢酸水溶液等の弱酸による溶解処理が実施されている(例えば、特許文献1参照)。
 本発明者らは、サマリウムリッチ相と、サマリウムリッチ相がサマリウム-鉄-窒素磁石粉末の表面に与える影響、サマリウム-鉄-窒素磁石粉末の表面が保磁力に与える影響を詳細に調査した。その結果、従来の製造方法により、サマリウム-鉄-窒素磁石粉末を製造した場合には、サマリウム-鉄-窒素磁石相の表面に、SmFe相(軟磁性相)が存在することを見出した。また、サマリウムリッチ相に対して、pHが7未満である弱酸による溶解処理を実施すると、サマリウム-鉄-窒素磁石粉末の表面に荒れが生じ、サマリウム-鉄-窒素磁石粉末の保磁力が低下することを見出した。そこで、サマリウムリッチ相を非磁性化することにより、サマリウム-鉄-窒素磁石相の表面に、非磁性相を形成すると、算術平均粗さRaが3.5nm以下であり、保磁力が高いサマリウム-鉄-窒素磁石粉末が得られることを見出した。
 以下、本実施形態のサマリウム-鉄-窒素磁石粉末及びその製造方法について、詳細に説明する。なお、重複説明は、適宜省略する。また、2つの数値の間に「~」を記載して数値範囲を表す場合には、この2つの数値も数値範囲に含まれるものとする。
 〔サマリウム-鉄-窒素磁石粉末〕
 本実施形態のサマリウム-鉄-窒素磁石粉末は、サマリウム-鉄-窒素磁石相の表面に、非磁性相が形成されている。すなわち、本実施形態のサマリウム-鉄-窒素磁石粉末は、コア・シェル構造を有し、サマリウム-鉄-窒素磁石相(コア)の表面の少なくとも一部に非磁性相(シェル)が形成されている。
 なお、本実施形態のサマリウム-鉄-窒素磁石粉末は、表面にSmFe相が実質的に形成されていない。
 本実施形態のサマリウム-鉄-窒素磁石粉末の算術平均粗さRaは、3.5nm以下であり、2nm以下であることが好ましく、1nm以下であることがより好ましい。
 ここで、サマリウム-鉄-窒素磁石相の表面に、非磁性相が形成されていない場合、サマリウム-鉄-窒素磁石粉末は、酸化等により、表面に凹凸が形成されるため、算術平均粗さRaが3.5nmを超え、サマリウム-鉄-窒素磁石粉末の保磁力が低下する。
 一方、サマリウム-鉄-窒素磁石相の表面に、非磁性相が形成されている場合、非磁性相の厚さに関わらず、サマリウム-鉄-窒素磁石相の表面平滑性が保持される。このことから、非磁性相の厚さは、サマリウム-鉄-窒素磁石粉末の保磁力に特に影響を及ぼさない。ここで、非磁性相が厚くなると、サマリウム-鉄-窒素磁石粉末の磁化が低下することから、非磁性相は薄いことが好ましい。
 なお、サマリウム-鉄-窒素磁石粉末の算術平均粗さRaは、透過型電子顕微鏡(TEM)又は走査型透過電子顕微鏡(STEM)を用いて測定することができる。
 また、算術平均粗さRaを測定する面(以下、測定面という)が断面である場合は、JIS B0601の算術平均粗さRaの定義に基づいて、算術平均粗さRaを求めることができる。
 具体的には、測定面の断面曲線から平均線(うねり曲線)を求め、断面曲線から平均線を差し引く、すなわち、平均線を直線に置き換えることにより、粗さ曲線を得る。そして、JIS B0601で定義された座標系に従って、直線に置き換えた平均線に一致する方向をX軸、X軸に垂直で断面と平行な方向をZ軸とする。粗さ曲線からX軸の方向に基準長さlだけを抜き取り、この抜き取り部分における平均線は、以下の式(1)によって示すことができる。
Figure JPOXMLDOC01-appb-M000001
このとき、算術平均粗さRaは、Z(x)とZとの偏差の絶対値を平均した値であり、以下の式(2)によって求めることができる。
Figure JPOXMLDOC01-appb-M000002
 具体的には、例えば、TEM等のように、高倍率で観察することが可能な顕微鏡を用いて、測定面を断面で観察し、断面曲線から平均線及び粗さ曲線を得る。X軸上に任意に150nmの領域を選択し、選択した領域内において、一定の間隔で50個のX値(X~X50)をとり、それぞれのX値におけるZ値(Z(x)~Z(x50))を測定する。測定したZ値から、Zは、以下の式(3)によって求めることができる。
 Z=(1/50)×{Z(x)+Z(x)+Z(x)+・・・+Z(x50)}・・・式(3)
求められたZを用いて、算術平均粗さRaは、以下の式(4)によって求めることができる。
 Ra=(1/50)×{|Z(x)-Z|+|Z(x)-Z|+・・・+|Z(x50)-Z|}・・・式(4)
 サマリウム-鉄-窒素磁石粉末の保磁力は、サマリウム-鉄-窒素磁石粉末の表面平滑性と関係がある。このため、非磁性相は、サマリウム-鉄-窒素磁石相の表面の少なくとも一部に形成されていればよい。
 サマリウム-鉄-窒素磁石粉末の非磁性相による被覆率は、サマリウム-鉄-窒素磁石粉末の保磁力の観点から、50%以上であることが好ましく、60%以上であることがより好ましく、80%以上であることがさらに好ましい。
 ここで、サマリウム-鉄-窒素磁石相の表面に、非磁性相の代わりに、鉄相、SmFe相等の軟磁性相が形成されると、サマリウム-鉄-窒素磁石粉末の保磁力が低下する。
 非磁性相とは、サマリウムリッチ相を非磁性化することにより得られる相であり、SmFe相よりも磁化が低い相であるが、磁化が低い方が好ましい。
 なお、本願明細書及び特許請求の範囲において、サマリウム-鉄-窒素磁石とは、サマリウム、鉄及び窒素を含む磁石を意味する。
 非磁性相の元素組成や結晶相は、特に限定されないが、非磁性相は、酸化サマリウム相であることが好ましい。
 本実施形態のサマリウム-鉄-窒素磁石粉末の平均粒径及び保磁力を、それぞれX[μm]及びY[kOe]とすると、式
 Y=a×ln(X)+b
(式中、aが-9以上-6以下であり、bが22以上である。)
を満たすことが好ましい。これにより、サマリウム-鉄-窒素磁石粉末の保磁力を高くすることができる。
 本実施形態のサマリウム-鉄-窒素磁石粉末のX線回折パターンにおける、SmFe17相に由来するピークの強度をcとし、SmFe相に由来するピークの強度をdとすると、式
 d/c<0.05
を満たすことが好ましい。これにより、サマリウム-鉄-窒素磁石粉末の保磁力を高くすることができる。
 本実施形態のサマリウム-鉄-窒素磁石粉末のX線回折パターンにおける、SmFe17相に由来するピークの強度をcとし、Sm相に由来するピークの強度をeとすると、式
 e/c≧0.05
を満たすことが好ましい。これにより、サマリウム-鉄-窒素磁石粉末の保磁力を高くすることができる。
 本実施形態のサマリウム-鉄-窒素磁石粉末は、ネオジム、プラセオジム等の希土類元素、鉄以外の鉄族元素をさらに含んでいてもよい。また、サマリウム-鉄-窒素磁石の結晶構造は、ThZn17構造及びTbCu構造のいずれであってもよい。
 〔サマリウム-鉄-窒素磁石粉末の製造方法〕
 サマリウム-鉄-窒素磁石粉末の製造方法は、サマリウム-鉄合金の前駆体粉末を還元拡散することにより、サマリウム-鉄合金粉末を作製する工程と、サマリウム-鉄合金粉末を窒化する工程と、窒化されたサマリウム-鉄合金粉末の表面に存在するサマリウムリッチ相を非磁性化する工程を含む。また、サマリウム-鉄-窒素磁石粉末の製造方法は、サマリウムリッチ相が非磁性化された粉末を、カルシウム化合物を溶解させることが可能な溶媒で洗浄する工程と、洗浄された粉末を脱水素する工程を含む。これにより、粉砕することなく、微細で、保磁力が高いサマリウム-鉄-窒素磁石粉末を製造することができる。
 〔サマリウム-鉄合金の前駆体粉末の作製〕
 サマリウム-鉄合金の前駆体粉末としては、還元拡散することにより、サマリウム-鉄合金粉末を生成することが可能であれば、特に限定されないが、サマリウム-鉄酸化物粉末及び/又はサマリウム-鉄水酸化物粉末等が挙げられ、二種以上併用してもよい。
 なお、本願明細書及び特許請求の範囲において、サマリウム-鉄合金粉末とは、サマリウム及び鉄を含む合金粉末を意味する。
 サマリウム-鉄合金粉末は、ネオジム、プラセオジム等の希土類元素、鉄以外の鉄族元素をさらに含んでいてもよい。
 サマリウム-鉄合金の前駆体粉末は、共沈法により作製することができる。具体的には、まず、サマリウム塩と鉄塩とを含む溶液にアルカリ等の沈澱剤を添加することにより、サマリウムと鉄の化合物(主に水酸化物)からなる沈澱を析出させた後、ろ過、遠心分離等で沈殿を回収する。次に、沈殿を洗浄した後、熱風オーブンで乾燥させることにより、サマリウム-鉄(水)酸化物が得られる。さらに、サマリウム-鉄(水)酸化物をブレードミル等で粗粉砕した後に、ビーズミル等で微粉砕することにより、サマリウム-鉄酸化物粉末及び/又はサマリウム-鉄水酸化物粉末を作製する。
 なお、サマリウム塩及び鉄塩における対イオンは、塩化物イオン、硫酸イオン、硝酸イオン等の無機イオンであってもよいし、アルコキシド等の有機イオンであってもよい。
 サマリウム塩と鉄塩とを含む溶液に含まれる溶媒としては、水、エタノール等の有機溶媒を用いることができる。
 アルカリとしては、例えば、アルカリ金属及びアルカリ土類金属の水酸化物やアンモニアを使用することができる。
 なお、アルカリの代わりに、熱等の外的作用により、分解してアルカリを生成する尿素等の化合物を沈澱剤として使用することもできる。
 また、熱風オーブンで乾燥させる代わりに、真空乾燥させてもよい。
 サマリウム-鉄酸化物粉末及び/又はサマリウム-鉄水酸化物粉末以外のサマリウム-鉄合金の前駆体粉末として、水酸化鉄粒子又は酸化鉄粒子を含む懸濁液にサマリウム塩を加え、蒸発乾固させる、又は、沈澱剤を加えることにより作製した(水)酸化鉄-サマリウム化合物粉末を用いてもよい。
 また、粒径を制御したサマリウム化合物粒子を含む懸濁液に鉄塩を加え、蒸発乾固させる、又は、沈澱剤を加えることにより作製した(水)酸化鉄-サマリウム化合物粉末を、サマリウム-鉄合金の前駆体粉末として、用いてもよい。
 〔還元拡散〕
 サマリウム-鉄合金の前駆体粉末を還元拡散する方法としては、特に限定されないが、カルシウム又は水素化カルシウムを用いて、不活性ガス雰囲気中でカルシウムの融点以上の温度(約850℃)まで加熱する方法等が挙げられる。このとき、カルシウムにより還元されたサマリウムがカルシウム融液中を拡散し、鉄と反応することにより、サマリウム-鉄合金粉末が生成する。
 還元拡散温度とサマリウム-鉄合金粉末の粒径との間には相関があり、還元拡散温度が高い程、サマリウム-鉄合金粉末の粒径が大きくなる。
 例えば、平均粒径が1μm以下のSmFe17粉末を得るためには、不活性ガス雰囲気下、850℃~950℃で30分~2時間程度還元拡散する。
 〔予還元〕
 サマリウム-鉄合金の前駆体粉末が酸化鉄又は鉄化合物を含む場合は、還元拡散する前に予還元し、鉄に還元することが好ましい。これにより、サマリウム-鉄合金粉末の粒径を小さくすることができる。
 サマリウム-鉄合金の前駆体粉末を予還元する方法としては、特に限定されないが、水素等の還元性雰囲気中、400℃以上の温度で熱処理する方法等が挙げられる。
 例えば、熱処理炉を用いて、平均粒径が1μm以下であり、鉄、サマリウム-鉄酸化物及びサマリウム酸化物からなる複合粉末を得るためには、水素雰囲気中、500℃~800℃で予還元する。
 〔窒化〕
 サマリウム-鉄合金粉末を窒化する方法としては、特に限定されないが、アンモニア、アンモニアと水素の混合ガス、窒素、窒素と水素の混合ガス等の雰囲気下、300~500℃で熱処理する方法等が挙げられる。
 サマリウム-鉄-窒素磁石相中の窒素含有量は、サマリウム-鉄-窒素磁石粉末の磁石特性に影響を及ぼす。サマリウム-鉄-窒素磁石粉末の保磁力を高くするために最適なサマリウム-鉄-窒素磁石相は、SmFe17相であることが知られている。このため、サマリウム-鉄-窒素磁石相中の窒素含有量を制御することが重要である。なお、アンモニアを用いて、サマリウム-鉄合金粉末を窒化する場合、短時間で窒化することが可能であるが、サマリウム-鉄-窒素磁石相中の窒素含有量がSmFe17相よりも多くなる場合がある。この場合は、サマリウム-鉄合金粉末を窒化した後に、水素中でアニールすることにより、過剰な窒素を結晶格子中から排出させることが可能であることが知られている。このため、短時間で単相のSmFe17相を形成するためには、アンモニアを用いて、サマリウム-鉄合金粉末を窒化する方法が好ましい。
 例えば、まず、アンモニア-水素混合気流下、350℃~450℃で10分~2時間窒化した後、引き続き同一の温度で水素気流下に切り替え、30分~2時間アニールすることにより、サマリウム-鉄-窒素磁石相中の窒素含有量を適正化する。次に、アルゴン気流下に切り替え、同一の温度で0~1時間熱処理することにより、水素を除去する。
 〔サマリウムリッチ相の非磁性化〕
 窒化されたサマリウム-鉄合金粉末の表面には、サマリウムリッチ相が存在する。窒化されたサマリウム-鉄合金粉末に対して、従来と同様に、洗浄、真空乾燥、脱水素を実施した場合、サマリウム-鉄-窒素磁石相の表面に、SmFe相が形成され、サマリウム-鉄-窒素磁石粉末の保磁力が低下する。このため、窒化されたサマリウム-鉄合金粉末を洗浄する前に、例えば、酸化性雰囲気に曝し、サマリウムリッチ相を徐酸化させる。これにより、サマリウム-鉄-窒素磁石相の表面に、酸化サマリウム相が形成され、その結果、保磁力が高いサマリウム-鉄-窒素磁石粉末が得られる。
 酸化性雰囲気としては、特に限定されないが、水分を含む不活性ガス雰囲気や微量の酸素を含む不活性ガス雰囲気を用いることができる。
 なお、サマリウムリッチ相を徐酸化させる代わりに、サマリウムリッチ相と反応することにより、サマリウムリッチ相を非磁性化させることが可能な元素を、含侵法等の湿式プロセス、又は、スパッタ法等の乾式プロセスにより、窒化されたサマリウム-鉄合金粉末の表面に添加し、熱処理してもよい。
 〔洗浄〕
 サマリウムリッチ相が非磁性化された粉末には、酸化カルシウム、未反応の金属カルシウム、金属カルシウムが窒化した窒化カルシウム、水素化カルシウム等のカルシウム化合物が含まれている。このため、サマリウム-鉄-窒素磁石粉末を作製するためには、サマリウムリッチ相が非磁性化された粉末を、カルシウム化合物を溶解させることが可能な溶媒で洗浄して、カルシウム化合物を除去することが好ましい。これにより、サマリウム-鉄-窒素磁石粉末の磁化を高くすることができる。
 カルシウム化合物を溶解させることが可能な溶媒としては、特に限定されないが、水、アルコール等が挙げられる。これらの中でも、コストやカルシウム化合物の溶解性が良好であることから、水が好ましい。
 例えば、まず、サマリウムリッチ相が非磁性化された粉末を水に加え、撹拌及びデカンテーションを繰り返すことにより、大部分のカルシウム化合物を除去することができる。次に、大部分のカルシウム化合物が除去された粉末に水を加え、撹拌しながら、希酢酸水溶液等を加え、pHを7に調整することにより、残留したカルシウム化合物を除去することができる。
 〔真空乾燥〕
 カルシウム化合物を溶解させることが可能な溶媒を除去するために、洗浄された粉末を真空乾燥させることが好ましい。
 洗浄された粉末を真空乾燥させる温度は、常温~100℃であることが好ましい。これにより、洗浄された粉末の酸化を抑制することができる。
 なお、洗浄された粉末をアルコール類等の揮発性が高く、水と混和することが可能な有機溶媒で置換した後、真空乾燥させてもよい。
 〔脱水素〕
 サマリウムリッチ相が非磁性化されたサマリウム-鉄合金を洗浄する際に、結晶格子中に侵入した水素を除くために、洗浄された粉末を脱水素する。これにより、サマリウム-鉄-窒素磁石粉末の保磁力を高くすることができる。
 洗浄された粉末を脱水素する方法としては、特に限定されないが、真空中又は不活性ガス雰囲気中で熱処理する方法等が挙げられる。
 以下、本発明の実施例を説明するが、本発明は、実施例に限定されない。
 〔サマリウム-鉄酸化物粉末の作製〕
 硝酸鉄九水和物65g及び硝酸サマリウム13gを水800mlに溶解させた後、撹拌しながら、2mol/L水酸化カリウム水溶液120mlを滴下し、室温下で一晩撹拌し、懸濁液を得た。懸濁液をろ過により回収し、洗浄した後、熱風乾燥オーブンで、空気中、120℃で一晩乾燥させ、サンプルを得た。得られたサンプルをブレードミルで粗粉砕した後、ステンレス鋼製のボールを用いた回転ミルで、エタノール中、微粉砕した。次に、遠心分離した後、真空乾燥させ、サマリウム-鉄酸化物粉末を作製した。サマリウム-鉄酸化物粉末は、X線回折パターンから、アモルファス状の酸化物であった。
 〔実施例1〕
 以下の工程は、グローブボックスの中で、空気に曝すことなく、実施した。
 サマリウム-鉄酸化物粉末を、水素気流中、700℃で6時間予還元し、酸化サマリウム-鉄粉末を得た。
 酸化サマリウム-鉄粉末5gと金属カルシウム2.5gを鉄製るつぼに入れ、アルゴン雰囲気中、900℃で1時間還元拡散し、サマリウム-鉄合金粉末を得た。
 サマリウム-鉄合金粉末を常温まで冷却した後、水素雰囲気に置換し、380℃まで昇温した。次に、体積比が1:2のアンモニア-水素混合気流下に切り替え、420℃まで昇温し、1時間保持することにより、サマリウム-鉄合金粉末を窒化した。さらに、水素気流下に切り替え、420℃で1時間アニールすることにより、窒化されたサマリウム-鉄合金粉末の窒素含有量を適正化した。次に、アルゴン気流下に切り替え、420℃で0.5時間アニールすることにより、水素を除去した。
 窒素含有量が適正化された粉末を、空気を10体積%含む不活性ガス雰囲気で徐酸化させた後、空気中に取り出し、一晩静置することにより、サマリウムリッチ相を酸化させ、非磁性化した。
 サマリウムリッチ相が非磁性化された粉末をグローブボックス中に戻し、純水で洗浄した。
 洗浄された粉末に残留する水を2-プロパノールで置換した後、常温で真空乾燥させた。
 乾燥した粉末を、真空中、200℃で3時間脱水素し、サマリウム-鉄-窒素磁石粉末を作製した。
 〔実施例2〕
 サマリウムリッチ相が非磁性化された粉末を純水で洗浄した後、希酢酸水溶液を加えて、pHを7とし、15分間保持した以外は、実施例1と同様にして、サマリウム-鉄-窒素磁石粉末を作製した。
 〔実施例3〕
 サマリウムリッチ相を非磁性化する際に、窒素含有量が適正化された粉末を水分を含むアルゴン雰囲気に一晩曝すことにより酸化させた以外は、実施例1と同様にして、サマリウム-鉄-窒素磁石粉末を作製した。ここで、水分を含むアルゴンは、アルゴンを水に通気することにより作製した。
 〔実施例4〕
 サマリウムリッチ相を非磁性化する際に、窒素含有量が適正化された粉末を酸素を1体積%を含むアルゴン雰囲気に一晩曝すことにより酸化させた以外は、実施例1と同様にして、サマリウム-鉄-窒素磁石粉末を作製した。
 〔実施例5〕
 酸化サマリウム-鉄粉末を還元拡散する温度を950℃に変更した以外は、実施例1と同様にして、サマリウム-鉄-窒素磁石粉末を作製した。サマリウム-鉄-窒素磁石粉末は、平均粒径が0.97μmであり、90kOeの磁場下における磁化が132emu/gであり、保磁力が23.7kOeであった。
 〔実施例6〕
 サマリウムリッチ相が非磁性化された粉末を純水で洗浄した後、希酢酸水溶液を加えて、pHを6とし、5分間保持した以外は、実施例1と同様にして、サマリウム-鉄-窒素磁石粉末を作製した。
 〔実施例7〕
 サマリウムリッチ相が非磁性化された粉末を純水で洗浄した後、希酢酸水溶液を加えてpHを6とし、15分間保持した以外は、実施例1と同様にして、サマリウム-鉄-窒素磁石粉末を作製した。
 〔比較例1〕
 サマリウムリッチ相を非磁性化しなかった以外は、実施例1と同様にして、サマリウム-鉄-窒素磁石粉末を作製した。
 〔比較例2〕
 サマリウムリッチ相を非磁性化する代わりに、窒素含有量が適正化された粉末をpHが5である希酢酸水溶液に15分間浸漬することにより、サマリウムリッチ相を除去した以外は、実施例1と同様にして、サマリウム-鉄-窒素磁石粉末を作製した。
 〔比較例3〕
 サマリウムリッチ相を非磁性化しなかった以外は、実施例5と同様にして、サマリウム-鉄-窒素磁石粉末を作製した。サマリウム-鉄-窒素磁石粉末は、平均粒径が0.96μmであり、90kOeの磁場下における磁化が139emu/gであり、保磁力が19.7kOeであった。
 次に、サマリウム-鉄-窒素磁石粉末の平均粒径、算術平均粗さRa及び磁石特性の測定方法を以下に示す。
 〔算術平均粗さRa〕
 サマリウム-鉄-窒素磁石粉末のSTEM像より、サマリウム-鉄-窒素磁石粉末の輪郭線および輪郭の凹凸に対する中心線を引き、等間隔で中心線から輪郭線までの長さを50点以上測定し、その平均値を求めて、サマリウム-鉄-窒素磁石粉末の算術平均粗さRaとした。
 〔平均粒径〕
 サマリウム-鉄-窒素磁石粉末のSEM像から無作為に選択した200個以上の粒子を測長した後、算術平均することにより、サマリウム-鉄-窒素磁石粉末の平均粒径を求めた。
 〔磁石特性〕
 サマリウム-鉄-窒素磁石粉末を熱可塑性樹脂と混合した後、20kOeの磁場中で配向させ、試料を作製した。次に、振動試料型磁力計(VSM)を用いて、温度27℃、最大印加磁場90kOeの条件で、磁化容易方向に試料を設置し、サマリウム-鉄-窒素磁石粉末の磁石特性(磁化及び保磁力)を測定した。
 次に、サマリウム-鉄-窒素磁石粉末の表面構造を観察した。
 〔表面構造〕
 サマリウム-鉄-窒素磁石粉末をエポキシ樹脂と混錬し、固化した後、研磨し、集束イオンビーム(FIB)を用いて観察用断面を作製した。次に、電界放出形走査電子顕微鏡(FE-SEM)を用いて、サマリウム-鉄-窒素磁石粉末の表面構造を観察した。
 さらに、FIBを用いて薄片を作製し、走査型透過電子顕微鏡(STEM)を用いて、サマリウム-鉄-窒素磁石粉末の表面構造を観察すると共に、エネルギー分散型X線分光法(EDX)を用いて、組成をライン分析した。
 図1~4に、実施例1、2及び比較例1、2のサマリウム-鉄-窒素磁石粉末の断面のFE-SEM反射電子像を示す。
 図1~3から、実施例1~2及び比較例1のサマリウム-鉄-窒素磁石粉末は、それぞれ厚さ数nm~30nmの非磁性相及びSmFe相が表面に形成されていることが確認された。
 ここで、非磁性相及びSmFe相は、サマリウム-鉄-窒素磁石相とは、平均原子量が異なるため、FE-SEM反射電子像において、サマリウム-鉄-窒素磁石相よりも白く観察される。
 一方、図4から、比較例2のサマリウム-鉄-窒素磁石粉末は、表面にSmFe相が形成されていないことが確認された。
 なお、サマリウム-鉄-窒素磁石粉末の断面のFE-SEM反射電子像上で、任意の粒子20個を選択し、粒子の表面長に対する、非磁性相(又はSmFe相)が存在する領域の表面長の割合を算出した後、算術平均することにより、サマリウム-鉄-窒素磁石粉末の非磁性相(又はSmFe相)による被覆率を求めた。
 図5~8に、実施例1、2及び比較例1、2のサマリウム-鉄-窒素磁石粉末の断面のSTEM像及び矢印で示す箇所のライン分析の結果を示す。
 図5~8から、実施例1、2及び比較例1のサマリウム-鉄-窒素磁石粉末は、SmがFeよりも先に強く検出されているのに対し、比較例2のサマリウム-鉄-窒素磁石粉末は、SmとFeがほぼ同様に検出された。このことから、実施例1、2及び比較例1のサマリウム-鉄-窒素磁石粉末は、それぞれ非磁性相及びSmFe相が表面に形成されているのに対し、比較例2のサマリウム-鉄-窒素磁石粉末は、SmFe相が表面に形成されていないことがわかる。
 図5~7のライン分析の結果のスペクトルの位置の差から、実施例1、2及び比較例1のサマリウム-鉄-窒素磁石粉末の非磁性相及びSmFe相の厚さを見積もったところ、それぞれ1.7nm、1.8nm、1.6nmであった。
 図5~7のSTEM像から、実施例1~2及び比較例1のサマリウム-鉄-窒素磁石粉末は、算術平均粗さRaが1.1nm以下であることが確認された。
 一方、図8のSTEM像から、比較例2のサマリウム-鉄-窒素磁石粉末は、表面に凹凸が形成されており、算術平均粗さRaが3.9nmであることが確認された。
 次に、サマリウム-鉄-窒素磁石粉末の結晶構造を解析した。
 〔結晶構造〕
 内径0.3mmのボロシリケートガラスキャピラリーに、サマリウム-鉄-窒素磁石粉末を充填し、公益財団法人高輝度光科学研究センター(JASRI)のSPring-8、ビームライン BL02B2において、大型デバイ・シェラーカメラを用いて、放射光X線回折測定の透過法により、精密なX線回折測定を実施した。このとき、X線の波長を0.4963Åとし、検出器としては、イメージングプレートを用い、露光時間を10分間とし、測定温度を室温とした。
 図9~12に、実施例1、2及び比較例1、2のサマリウム-鉄-窒素磁石粉末のX線回折パターンを示す。
 なお、図9~12において、SmFe17相に由来するピーク以外は、それぞれ帰属する結晶相を記載している。
 図9及び図11から、実施例1のサマリウム-鉄-窒素磁石粉末は、サマリウムリッチ相を非磁性化することにより、SmFe17相の表面に、軟磁性相であるSmFe相が形成されておらず、非磁性相である酸化サマリウム(Sm)相が形成されていることがわかる。このため、比較例1のサマリウム-鉄-窒素磁石粉末の保磁力が23.2kOeであるのに対して、実施例1のサマリウム-鉄-窒素磁石粉末の保磁力が27.3kOeである。このことから、サマリウム-鉄-窒素磁石粉末の保磁力を高くするためには、サマリウム-鉄-窒素磁石相の表面に非磁性相を形成する必要があることがわかる。
 図9から、実施例1のサマリウム-鉄-窒素磁石粉末には、炭酸カルシウムが含まれていることがわかる。これは、サマリウムリッチ相を非磁性化する際に、空気中に曝すことにより、窒化されたサマリウム-鉄合金粉末に含まれる、カルシウムが空気中の二酸化炭素と反応し、水にほとんど溶解しない炭酸カルシウムが生成したためであると考えられる。炭酸カルシウムは、サマリウム-鉄-窒素磁石粉末の保磁力に影響を及ぼさないが、サマリウム-鉄-窒素磁石粉末の磁化を低下させるため、炭酸カルシウムを除去することが好ましい。
 図10から、実施例2のサマリウム-鉄-窒素磁石粉末は、希酢酸水溶液を加えて、pHを7としたことにより、炭酸カルシウムを選択的に除去されており、その結果、磁化が向上していることがわかる。
 表1に、実施例1~7及び比較例1~3のサマリウム-鉄-窒素磁石粉末の特性を示す。
Figure JPOXMLDOC01-appb-T000003
 なお、c、d及びeは、それぞれサマリウム-鉄-窒素磁石粉末のX線回折パターンにおける、9.75°付近のSmFe17相の(101)面反射に由来するピークの強度、9.53°付近のSmFe相の(104)面反射に由来するピークの強度及び9.02°付近のSm相の(222)面反射に由来するピークの強度である。
 ここで、ピークの強度とは、バックグラウンドの強度を除去した後の値である。バックグラウンドの強度は、X線回折パターンの測定に使用するガラスキャピラリーに試料を充填せずに、試料のX線回折パターンを測定する場合と同一の条件でX線回折パターンを測定することにより取得される。
 比較例1のサマリウム-鉄-窒素磁石粉末は、SmFe相が表面に形成されているため、比較例2のサマリウム-鉄-窒素磁石粉末と比較すると、保磁力が高い。このことから、サマリウム-鉄-窒素磁石粉末の保磁力を高くするためには、サマリウム-鉄-窒素磁石粉末の表面が平滑であることが求められ、そのためには、サマリウム-鉄-窒素磁石粉末の表面に層が形成されていることが必要であるといえる。
 また、実施例1のサマリウム-鉄-窒素磁石粉末は、サマリウムリッチ相を非磁性化することにより、表面に、SmFe相が形成されておらず、Sm相が形成されているため、比較例1のサマリウム-鉄-窒素磁石粉末と比較すると、保磁力が高い。
 さらに、実施例5のサマリウム-鉄-窒素磁石粉末は、サマリウムリッチ相を非磁性化することにより、表面に、SmFe相が形成されておらず、Sm相が形成されているため、比較例3のサマリウム-鉄-窒素磁石粉末と比較すると、保磁力が高い。
 ここで、比較例1、3のサマリウム-鉄-窒素磁石粉末は、d/cが0.089~0.096であることから、表面にSmFe相が形成されていることがわかる。これに対して、実施例1~7のサマリウム-鉄-窒素磁石粉末は、d/cが0.000~0.024であることから、表面にSmFe相が実質的に形成されていないことがわかる。
 また、実施例1~7のサマリウム-鉄-窒素磁石粉末は、e/cが0.051~0.251であることから、表面にSm相が形成されていることがわかる。これに対して、比較例1~3のサマリウム-鉄-窒素磁石粉末は、e/cが0.006~0.017であることから、表面にSm相が実質的に形成されていないことがわかる。
 したがって、サマリウム-鉄-窒素磁石粉末は、表面に非磁性相が形成されており、表面が平滑であることが、保磁力を高くするのに対し、有効であるといえる。
 表2に、サマリウムリッチ相を非磁性化する雰囲気とサマリウム-鉄-窒素磁石粉末の磁石特性の関係を示す。
Figure JPOXMLDOC01-appb-T000004
 実施例3、4のサマリウム-鉄-窒素磁石粉末から、二酸化炭素の存在しない酸化性雰囲気でサマリウムリッチ相を非磁性化することにより、実施例2のサマリウム-鉄-窒素磁石粉末と同様に、炭酸カルシウムを含まない磁石粉末を作製することができ、磁化と保磁力が高い磁石粉末が得られる。
 図13に、サマリウム-鉄-窒素磁石粉末の平均粒径と保磁力の関係を示す。
 図13から、実施例1~7のサマリウム-鉄-窒素磁石粉末は、非特許文献1~3、特許文献2のサマリウム-鉄-窒素磁石粉末よりも、保磁力が明らかに高いことがわかる。ここで、実施例1~7のサマリウム-鉄-窒素磁石粉末の平均粒径及び保磁力を、それぞれX[μm]及びY[kOe]とすると、X及びYの分布は、近似式
 Y=-7.693×ln(X)+23.615
により、近似することができる。
 図13に示すように、サマリウム-鉄-窒素磁石粉末の平均粒径の自然対数を横軸に、サマリウム-鉄-窒素磁石粉末の保磁力を縦軸にプロットすると、傾きが負の1次関数になることが知られている。そして、同一の平均粒径のサマリウム-鉄-窒素磁石粉末を比較した場合に、保磁力が高い方が好ましい。図13に、非特許文献1~3、特許文献2のサマリウム-鉄-窒素磁石粉末の平均粒径の自然対数と保磁力の関係を示すが、近似式
 Y=a×ln(X)+b
において、aは-7.999~-6.287であり、bは19.525~20.904である。
 これに対して、実施例1~7のサマリウム-鉄-窒素磁石粉末は、表面平滑性を改善することにより、b=23.615を達成している。さらに、aも-7.693であり、非特許文献1~3、特許文献2のサマリウム-鉄-窒素磁石粉末と比較しても、遜色ない値である。
 ここで、特許文献2及び非特許文献2、3のサマリウム-鉄-窒素磁石粉末は、サマリウムリッチ相を非磁性化していないことから、比較例1と同様に、表面にSmFe軟磁性相が形成されていることが考えられる。
 また、非特許文献1のサマリウム-鉄-窒素磁石粉末は、酢酸水溶液を用いて、サマリウムリッチ相を除去していることから、比較例2と同様に、表面の一部に荒れが生じ、保磁力が低下していると考えられる。
 なお、特許文献3及び4に、サマリウム-鉄-窒素磁石粉末の表面を非磁性相にすることにより耐候性を向上させた例が報告されている。
 しかしながら、特許文献3では、サマリウムリッチ相を希酢酸水溶液で除去した後に、酸化しており、特許文献4では、粗大なサマリウム-鉄-窒素磁石粉末をアトライタで粉砕した後に、オルトリン酸塩による非磁性被膜を形成している。
 したがって、特許文献3及び4のサマリウム-鉄-窒素磁石粉末は、比較例2と同様に、表面に荒れが生じることが予想され、表面に非磁性相を形成しても、保磁力を高くすることができない。すなわち、サマリウム-鉄-窒素磁石粉末の表面に荒れが生じると、表面に非磁性相を形成しても、表面平滑性は低く、保磁力を高くすることができない。
 以上のことから、サマリウム-鉄酸化物粉末を予還元した後、還元拡散して、サマリウム-鉄合金粉末とし、これを窒化した後、サマリウムリッチ相を非磁性化し、水でカルシウム化合物を洗浄除去し、最後に、洗浄時に結晶格子中に侵入した水素を脱水素することにより、保磁力が高いサマリウム-鉄-窒素磁石粉末が得られることが確認された。
 サマリウム-鉄-窒素磁石粉末は、ネオジム磁石に対し、キュリー温度が高く、温度に対する保磁力の変化が小さいため、高い磁気特性と耐熱性を併せ持った磁石を製造することが可能である。このような磁石は、例えば、エアコン等の家電製品、生産ロボット、自動車等に搭載され、高い磁石特性と耐熱性が求められるモーター、センサー等に使用する焼結磁石及びボンド磁石の原料として利用することができる。
 本国際出願は、2017年5月30日に出願された日本国特許出願2017-106990号に基づく優先権を主張するものであり、日本国特許出願2017-106990号の全内容を本国際出願に援用する。

Claims (6)

  1.  サマリウム-鉄-窒素磁石相の表面に、非磁性相が形成されており、
     算術平均粗さRaが3.5nm以下であることを特徴とするサマリウム-鉄-窒素磁石粉末。
  2.  前記非磁性相は、酸化サマリウム相であることを特徴とする請求項1に記載のサマリウム-鉄-窒素磁石粉末。
  3.  当該サマリウム-鉄-窒素磁石粉末の平均粒径及び保磁力を、それぞれX[μm]及びY[kOe]とすると、式
     Y=a×ln(X)+b
    (式中、aが-9以上-6以下であり、bが22以上である。)
    を満たすことを特徴とする請求項1に記載のサマリウム-鉄-窒素磁石粉末。
  4.  X線回折パターンにおける、SmFe17相に由来するピークの強度をcとし、SmFe相に由来するピークの強度をdとすると、式
     d/c<0.05
    を満たすことを特徴とする請求項1に記載のサマリウム-鉄-窒素磁石粉末。
  5.  X線回折パターンにおける、SmFe17相に由来するピークの強度をcとし、Sm相に由来するピークの強度をeとすると、式
     e/c≧0.05
    を満たすことを特徴とする請求項1に記載のサマリウム-鉄-窒素磁石粉末。
  6.  サマリウム-鉄合金の前駆体粉末を還元拡散することにより、サマリウム-鉄合金粉末を作製する工程と、
     該サマリウム-鉄合金粉末を窒化する工程と、
     該窒化されたサマリウム-鉄合金粉末の表面に存在するサマリウムリッチ相を非磁性化する工程と、
     該サマリウムリッチ相が非磁性化された粉末を、カルシウム化合物を溶解させることが可能な溶媒で洗浄する工程と、
     該洗浄された粉末を脱水素する工程を含むことを特徴とするサマリウム-鉄-窒素磁石粉末の製造方法。
PCT/JP2018/020553 2017-05-30 2018-05-29 サマリウム-鉄-窒素磁石粉末及びその製造方法 WO2018221512A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880034395.3A CN110662617B (zh) 2017-05-30 2018-05-29 钐-铁-氮磁铁粉末及其制造方法
US16/615,511 US11361888B2 (en) 2017-05-30 2018-05-29 Samarium-iron-nitrogen magnet powder and method for manufacturing same
JP2019521233A JP6845491B2 (ja) 2017-05-30 2018-05-29 サマリウム−鉄−窒素磁石粉末及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017106990 2017-05-30
JP2017-106990 2017-05-30

Publications (1)

Publication Number Publication Date
WO2018221512A1 true WO2018221512A1 (ja) 2018-12-06

Family

ID=64454737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020553 WO2018221512A1 (ja) 2017-05-30 2018-05-29 サマリウム-鉄-窒素磁石粉末及びその製造方法

Country Status (4)

Country Link
US (1) US11361888B2 (ja)
JP (1) JP6845491B2 (ja)
CN (1) CN110662617B (ja)
WO (1) WO2018221512A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020183886A1 (ja) * 2019-03-12 2020-09-17
WO2021200834A1 (ja) * 2020-03-30 2021-10-07 Tdk株式会社 サマリウム-鉄-窒素系磁石及びサマリウム-鉄-窒素系磁石粉末
JP7349173B2 (ja) 2019-03-14 2023-09-22 国立研究開発法人産業技術総合研究所 準安定単結晶希土類磁石微粉及びその製造方法
JP7364158B2 (ja) 2019-12-26 2023-10-18 国立大学法人東北大学 希土類鉄窒素系磁性粉末、ボンド磁石用コンパウンド、ボンド磁石及び希土類鉄窒素系磁性粉末の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113421763B (zh) * 2021-07-02 2023-02-03 中国计量大学 一种高性能纳米晶磁体的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175023A (ja) * 1991-12-25 1993-07-13 Tdk Corp 磁石粒子、磁石粉末ならびにボンディッド磁石
JPH05190311A (ja) * 1992-01-17 1993-07-30 Tdk Corp 磁石の製造方法および磁石粉末
JP2001207201A (ja) * 1999-11-17 2001-07-31 Sumitomo Metal Mining Co Ltd 磁石用Sm−Fe−N系被覆合金粉末及びその製造方法
JP2005223263A (ja) * 2004-02-09 2005-08-18 Sumitomo Metal Mining Co Ltd 希土類永久磁石の製造方法及び得られた希土類永久磁石
JP2007119909A (ja) * 2005-09-29 2007-05-17 Sumitomo Metal Mining Co Ltd 希土類―鉄―窒素系磁石粉末およびその製造方法
JP2016037611A (ja) * 2014-08-05 2016-03-22 住友金属鉱山株式会社 希土類−鉄−窒素系磁石粉末の製造方法及び希土類−鉄−窒素系磁石粉末

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1125351A (zh) * 1994-08-29 1996-06-26 陶圣臣 制造钐铁氮永磁体方法
JPH1060505A (ja) 1996-08-22 1998-03-03 Sumitomo Metal Mining Co Ltd 永久磁石用希土類−遷移金属系合金粉の製造方法
JPH11241104A (ja) * 1997-12-25 1999-09-07 Nichia Chem Ind Ltd Sm−Fe−N系合金粉末及びその製造方法
US6432158B1 (en) * 1999-10-25 2002-08-13 Sumitomo Special Metals Co., Ltd. Method and apparatus for producing compact of rare earth alloy powder and rare earth magnet
JP3882545B2 (ja) 2000-11-13 2007-02-21 住友金属鉱山株式会社 高耐候性磁石粉及びこれを用いた磁石
JP2004031761A (ja) 2002-06-27 2004-01-29 Nichia Chem Ind Ltd 磁性粉末及びその表面処理方法
JP4623308B2 (ja) 2006-03-31 2011-02-02 戸田工業株式会社 ボンド磁石用Sm−Fe−N系磁性粒子粉末及びその製造法、ボンド磁石用樹脂組成物並びにボンド磁石
JP2010270379A (ja) * 2009-05-25 2010-12-02 Sumitomo Metal Mining Co Ltd 希土類−鉄−窒素系磁石粉末の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175023A (ja) * 1991-12-25 1993-07-13 Tdk Corp 磁石粒子、磁石粉末ならびにボンディッド磁石
JPH05190311A (ja) * 1992-01-17 1993-07-30 Tdk Corp 磁石の製造方法および磁石粉末
JP2001207201A (ja) * 1999-11-17 2001-07-31 Sumitomo Metal Mining Co Ltd 磁石用Sm−Fe−N系被覆合金粉末及びその製造方法
JP2005223263A (ja) * 2004-02-09 2005-08-18 Sumitomo Metal Mining Co Ltd 希土類永久磁石の製造方法及び得られた希土類永久磁石
JP2007119909A (ja) * 2005-09-29 2007-05-17 Sumitomo Metal Mining Co Ltd 希土類―鉄―窒素系磁石粉末およびその製造方法
JP2016037611A (ja) * 2014-08-05 2016-03-22 住友金属鉱山株式会社 希土類−鉄−窒素系磁石粉末の製造方法及び希土類−鉄−窒素系磁石粉末

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020183886A1 (ja) * 2019-03-12 2020-09-17
JP7349173B2 (ja) 2019-03-14 2023-09-22 国立研究開発法人産業技術総合研究所 準安定単結晶希土類磁石微粉及びその製造方法
JP7364158B2 (ja) 2019-12-26 2023-10-18 国立大学法人東北大学 希土類鉄窒素系磁性粉末、ボンド磁石用コンパウンド、ボンド磁石及び希土類鉄窒素系磁性粉末の製造方法
WO2021200834A1 (ja) * 2020-03-30 2021-10-07 Tdk株式会社 サマリウム-鉄-窒素系磁石及びサマリウム-鉄-窒素系磁石粉末
US20230144902A1 (en) * 2020-03-30 2023-05-11 Tdk Corporation Samarium-iron-nitrogen based magnet and samarium-iron-nitrogen based magnet powder
JP7393773B2 (ja) 2020-03-30 2023-12-07 Tdk株式会社 サマリウム-鉄-窒素系磁石及びサマリウム-鉄-窒素系磁石粉末

Also Published As

Publication number Publication date
US20200118722A1 (en) 2020-04-16
JPWO2018221512A1 (ja) 2020-03-26
CN110662617A (zh) 2020-01-07
CN110662617B (zh) 2021-10-26
US11361888B2 (en) 2022-06-14
JP6845491B2 (ja) 2021-03-17

Similar Documents

Publication Publication Date Title
WO2018221512A1 (ja) サマリウム-鉄-窒素磁石粉末及びその製造方法
US11453057B2 (en) Samarium-iron-nitrogen alloy powder and method for producing same
Okada et al. Synthesis of Sm2Fe17N3 powder having a new level of high coercivity by preventing decrease of coercivity in washing step of reduction-diffusion process
JP7017744B2 (ja) サマリウム-鉄-窒素系磁石粉末及びその製造方法並びにサマリウム-鉄-窒素系磁石及びその製造方法
JP6500387B2 (ja) 高保磁力磁石の製造方法
JP7318885B2 (ja) サマリウム-鉄-ビスマス-窒素系磁石粉末及びサマリウム-鉄-ビスマス-窒素系焼結磁石
JP2015135935A (ja) 希土類磁石
JP7196514B2 (ja) 希土類焼結磁石
CN110970187B (zh) 钐-铁-铋-氮系磁铁粉末和钐-铁-铋-氮系烧结磁铁
JP7393773B2 (ja) サマリウム-鉄-窒素系磁石及びサマリウム-鉄-窒素系磁石粉末
WO2020183886A1 (ja) 異方性磁石粉末、異方性磁石及び異方性磁石粉末の製造方法
JP2010270379A (ja) 希土類−鉄−窒素系磁石粉末の製造方法
JP6759855B2 (ja) 希土類−鉄−窒素系合金粉末の製造方法
JPWO2016151622A1 (ja) 永久磁石、モータ、および発電機
JP2015130489A (ja) Srフェライト焼結磁石、モータ及び発電機
JP7103612B2 (ja) 希土類金属-遷移金属系合金粉末の製造方法及びサマリウム-鉄合金粉末
US20230162898A1 (en) Rare earth magnet and production method thereof
JP2023019418A (ja) Sm-Fe-N系磁石
JP2023019419A (ja) Sm-Fe-N系磁石
JP2010270382A (ja) 希土類−遷移金属−窒素磁石粉末の製造方法
WO2018193900A1 (ja) 複合磁性材料、モータ、および複合磁性材料の製造方法
JP2008303409A (ja) NdFeB系ナノ粒子の製造方法
JP2001217107A (ja) 磁石組成物及びこれを用いるボンド磁石

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809284

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521233

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809284

Country of ref document: EP

Kind code of ref document: A1