WO2018221503A1 - セパレータ - Google Patents

セパレータ Download PDF

Info

Publication number
WO2018221503A1
WO2018221503A1 PCT/JP2018/020518 JP2018020518W WO2018221503A1 WO 2018221503 A1 WO2018221503 A1 WO 2018221503A1 JP 2018020518 W JP2018020518 W JP 2018020518W WO 2018221503 A1 WO2018221503 A1 WO 2018221503A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
porous layer
porous
less
mpa
Prior art date
Application number
PCT/JP2018/020518
Other languages
English (en)
French (fr)
Inventor
裕一 二宮
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2019521229A priority Critical patent/JP7070565B2/ja
Priority to KR1020197033635A priority patent/KR102498466B1/ko
Priority to CN201880033960.4A priority patent/CN110679007B/zh
Publication of WO2018221503A1 publication Critical patent/WO2018221503A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a separator, and more particularly to a battery separator preferably used for a non-aqueous electrolyte battery such as a lithium ion battery.
  • a microporous membrane mainly containing a thermoplastic resin is widely used as a material separation membrane, a permselective membrane or a separation membrane.
  • Examples of such applications include battery separators used in lithium ion secondary batteries, nickel-hydrogen secondary batteries, nickel-cadmium secondary batteries and polymer secondary batteries, separators for electric double layer capacitors, reverse osmosis filtration membranes And various filters such as ultrafiltration membranes and microfiltration membranes, moisture-permeable waterproof clothing, medical materials, and the like.
  • a separator for lithium ion secondary battery it has ion permeability by impregnation with electrolyte, has excellent electrical insulation, interrupts current at a temperature of about 120 to 150 ° C when the temperature inside the battery is abnormally high, and excessively
  • a polyolefin microporous membrane having a pore closing function that suppresses the temperature rise is suitably used.
  • Lithium-ion secondary battery separators are deeply involved in battery characteristics, battery productivity, and battery safety. Excellent mechanical characteristics, heat resistance, electrode adhesion, dimensional stability, hole blocking characteristics (shutdown characteristics), etc. Is required. So far, for example, it has been studied to impart functions such as heat resistance and electrode adhesion to a battery separator by providing a porous layer on the surface of a polyolefin microporous film as a porous substrate. Coating with polyamidoimide resin, polyimide resin, polyamide resin, etc. to impart heat resistance, and fluorine resin, acrylic resin, etc. dispersed and dissolved in organic solvent, water, etc. to impart electrode adhesion The thing which formed the porous layer by apply
  • the porous layer is also becoming thinner.
  • the speed of the conveyance speed exceeding 40 m / min is increasing. If any defect occurs in the porous layer existing on the separator surface in the manufacturing process of the secondary battery, the resistance between the positive electrode and the negative electrode becomes non-uniform, resulting in poor insulation of the battery cell.
  • a negative electrode active material is applied to both surfaces of a current collector made of copper foil, and the wound negative electrode material wound body 11 is wound.
  • a positive electrode active material is applied to both surfaces of a current collector made of aluminum foil, and the wound positive electrode material winding body 31 and the two separator winding bodies 21 and 41 are passed through the respective movement paths, and then two nip rolls 51.
  • Four materials are gathered together at 52 and 52, and a flat wound cell 71 is created by winding an ellipse around the first pin 65 disposed on the first winder 61 (FIG. 2).
  • the turret 60 turns (FIG.
  • the aggregated negative electrode material 1, positive electrode material 3, two separators 2, and the separator 4 are cut, and the second winder 62 is disposed in the second winder 62.
  • the production of the flat wound cell 72 is started (FIG. 4).
  • a flat wound cell is produced.
  • the flat type wound cell rotates about the center of gravity of the ellipse or turns the turret 60 to switch from the first winder 61 to the second winder 62.
  • the positive electrode material 3, the negative electrode material 1, the two separators 2, and the separator 4 are wound while repeating the acceleration, deceleration, and stop of the movement path.
  • the present invention provides a separator having a low insulation failure rate of battery cells even if a minute solid or projection such as dust is present in any of the movement paths of the separator.
  • the present inventor moves at high speed when there are minute solids and protrusions such as fallen objects and dust of the positive electrode material and the negative electrode material in the cell assembly process.
  • the solids and protrusions come into contact with the surface of the separator, and the porous layer is peeled off linearly along the machine direction (MD) of the separator (FIG. 5). did.
  • the present invention comprises a film-like porous substrate having a plurality of pores, and a porous layer containing an adhesive resin formed on at least one surface of the porous substrate, and has a machine direction (MD).
  • a separator having a Young's modulus of 500 MPa or more and a critical damage load of 3 mN or more.
  • a preferred aspect of the present invention is: (1) The porous layer contains a filler, and the proportion of the filler in the porous layer is 10% by volume or more and 99% by volume or less, (2) From the direction perpendicular to the porous layer, the pressure was continuously applied for 1 hour or more at a pressure of 0.1 MPa or more and 2 MPa or less in an environment of 10 ° C.
  • the elongation at break in the machine direction (MD) is 10% or more and 150% or less, (4) The thickness of the porous layer is 0.05 ⁇ m or more and 3 ⁇ m or less, (5) the adhesive resin contained in the porous layer contains a resin containing a fluorine atom; (6) the adhesive resin contained in the porous layer contains an acrylic resin; It is.
  • the present invention even if a minute solid or projection such as dust is present in any of the separator movement paths, the film peeling of the porous layer that occurs linearly along the machine direction (MD) of the separator is suppressed.
  • a separator having a low insulation failure rate of battery cells can be provided.
  • the present invention has been intensively studied to provide a separator having a low insulation failure rate of battery cells, and a film-like porous substrate having a plurality of pores, and at least one surface of the porous substrate. And a formed porous layer containing an adhesive resin.
  • the Young's modulus in the machine direction (MD) is 500 MPa or more, and the critical damage load is 3 mN or more. It is.
  • the porous substrate is a porous film-like substrate having a network structure that is irregularly connected three-dimensionally, and is one of the elements constituting the separator.
  • Examples of the porous substrate include a film and a non-woven fabric.
  • the type of the porous substrate is not particularly limited, but a porous substrate made of a polyolefin resin is preferably exemplified.
  • Examples of the polyolefin resin include polyethylene, polypropylene, polybutylene, and polypentene.
  • the mass average molecular weight (Mw) of the polyolefin resin is not particularly limited, but is usually in the range of 1 ⁇ 10 4 to 1 ⁇ 10 7 , preferably in the range of 1 ⁇ 10 4 to 5 ⁇ 10 6 , more preferably. Is in the range of 1 ⁇ 10 5 to 5 ⁇ 10 6 .
  • the mass mean molecular weight (Mw) said here is calculated
  • the polyolefin resin preferably includes polyethylene, but as the polyethylene, ultra high molecular weight polyethylene, high density polyethylene having a density of 0.942 or more, medium density polyethylene having a density of 0.925 or more and less than 0.942, and a density of 0.925.
  • the low density polyethylene below is mentioned.
  • the polymerization catalyst is not particularly limited, and examples thereof include polyethylene produced by a polymerization catalyst such as a Ziegler-Natta catalyst, a Phillips catalyst, or a metallocene catalyst. These polyethylenes may be not only ethylene homopolymers but also copolymers containing small amounts of other ⁇ -olefins.
  • ⁇ -olefins other than ethylene include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, (meth) acrylic acid, esters of (meth) acrylic acid, styrene, etc. Can be suitably used.
  • Polyethylene may be a single material, but is preferably a mixture of two or more types of polyethylene.
  • a mixture of two or more types of ultrahigh molecular weight polyethylene having different Mw, a mixture of similar high density polyethylene, a mixture of similar medium density polyethylene, and a mixture of low density polyethylene may be used.
  • a mixture of two or more polyethylenes selected from the group consisting of high-density polyethylene, medium-density polyethylene, and low-density polyethylene may be used.
  • Mw is considered from the viewpoint of maintaining the shape of the polyolefin porous film and maintaining the insulation between the electrodes in the high temperature region above the shutdown temperature, and the response to the temperature rise of the shutdown phenomenon.
  • a mixture of ultra high molecular weight polyethylene of 5 ⁇ 10 5 or more and polyethylene having Mw of 1 ⁇ 10 4 or more and less than 5 ⁇ 10 5 is preferable.
  • the Mw of the ultrahigh molecular weight polyethylene is preferably in the range of 5 ⁇ 10 5 to 1 ⁇ 10 7 , and more preferably in the range of 1 ⁇ 10 6 to 5 ⁇ 10 6 .
  • any of high density polyethylene, medium density polyethylene and low density polyethylene can be used, and it is particularly preferable to use high density polyethylene.
  • polyethylene with Mw of 1 ⁇ 10 4 or more and less than 5 ⁇ 10 5 two or more types having different Mw may be used, or two or more types having different densities may be used.
  • the content of ultra high molecular weight polyethylene in the polyethylene mixture is preferably 1% by weight or more, more preferably in the range of 10 to 80% by weight, based on the total polyethylene mixture.
  • the polyolefin resin may contain polypropylene together with polyethylene for the purpose of improving the meltdown resistance and the high temperature storage characteristics of the battery.
  • the Mw of polypropylene is preferably in the range of 1 ⁇ 10 4 to 4 ⁇ 10 6 .
  • As the polypropylene a homopolymer or a block copolymer and / or a random copolymer containing other ⁇ -olefin can also be used.
  • the other ⁇ -olefin is preferably ethylene.
  • the content of polypropylene is preferably 80% by weight or less based on 100% by weight of the entire polyolefin mixture (mixture of polyethylene and polypropylene).
  • the polyolefin resin may contain a polyolefin imparting shutdown characteristics for improving characteristics as a battery separator.
  • low-density polyethylene can be used as the polyolefin imparting shutdown characteristics.
  • the low density polyethylene at least one selected from the group consisting of branched / linear, ethylene / ⁇ -olefin copolymers produced by a single site catalyst is preferable.
  • the addition amount of the low density polyethylene is preferably 20% by weight or less, based on 100% by weight of the whole polyolefin. When the addition amount of the low density polyethylene exceeds 20% by weight, film breakage tends to occur during stretching, which is not preferable.
  • the polyethylene composition containing the ultra high molecular weight polyethylene includes, as an optional component, poly 1-butene having an Mw in the range of 1 ⁇ 10 4 to 4 ⁇ 10 6 and an Mw in the range of 1 ⁇ 10 3 to 4 ⁇ 10 4 . And at least one polyolefin selected from the group consisting of ethylene / ⁇ -olefin copolymers having an Mw in the range of 1 ⁇ 10 4 to 4 ⁇ 10 6 may be added. The amount of these optional components added is preferably 20% by weight or less, based on 100% by weight of the polyolefin composition.
  • the separator of the present invention is characterized by having a predetermined Young's modulus. To achieve this Young's modulus, the degree of stretching of the porous substrate is adjusted, It is preferable that the material itself has a predetermined Young's modulus (that is, 500 MPa or more in the machine direction (MD) of the separator) described later.
  • the porous substrate has a network structure that is irregularly connected three-dimensionally, and the porosity is preferably 20 to 80%. It is preferable that the porosity of the porous substrate is 20% or more because a good air permeability of the separator can be realized, and an increase in electrical resistance due to the film can be suppressed and a large current can flow. Moreover, when the porosity of the porous substrate is 80% or less, it is preferable because sufficient mechanical strength of the separator can be obtained. The porosity is more preferably 25 to 65%, particularly preferably 30 to 55%.
  • the porosity is a ratio (volume%) of the vacant portion occupying in the porous substrate, and the following equation is used from the results obtained by measuring the sample volume (cm 3 ) and mass (g). The porosity (%) was calculated.
  • Porosity (%) (1 ⁇ mass / (resin density ⁇ sample volume)) ⁇ 100
  • the porous layer is a layer formed on at least one surface of the porous substrate, and may be formed on only one surface of the porous substrate or on both surfaces.
  • the thickness of the porous layer is preferably 0.05 ⁇ m or more and 3 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 2.5 ⁇ m or less.
  • the thickness of the porous layer is 0.05 ⁇ m or more, good adhesion to the electrode can be obtained and the mechanical strength can be maintained, and preferably, the thickness of the porous layer is 3 ⁇ m or less. It is preferable because the membrane resistance of the separator can be kept small.
  • the porous layer includes an adhesive resin.
  • the adhesive resin include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-trichloroethylene copolymer, polyimide, polymethyl methacrylate, polybutyl acrylate, polyacrylonitrile, polyvinyl pyrrolidone, and polyvinyl acetate.
  • Ethylene vinyl acetate copolymer polyethylene oxide, polyamideimide, polyimide, polyarylate, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethyl pullulan, cyanoethyl polyvinyl alcohol, cyanoethyl cellulose, cyanoethyl sucrose, pullulan, carboxy And methyl cellulose.
  • resins containing fluorine atoms and / or acrylic resins are preferable, and polyvinylidene fluoride (PVDF) is particularly preferable. These resins can be used alone or in combination of two or more.
  • the porous layer may contain a filler in addition to the adhesive resin.
  • the filler include inorganic particles and organic particles, and inorganic particles are more preferable.
  • inorganic particles include, but are not limited to, calcium carbonate, calcium phosphate, amorphous silica, crystalline glass filler, kaolin, talc, titanium dioxide, alumina, boehmite, silica-alumina composite oxide particles, Examples thereof include barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfide, and mica.
  • Examples of the heat-resistant crosslinked polymer particles include crosslinked polystyrene particles, crosslinked acrylic particles, and crosslinked methyl methacrylate particles.
  • Examples of the shape of the inorganic particles include a true spherical shape, a substantially spherical shape, a plate shape, a needle shape, and a polyhedral shape, but are not particularly limited.
  • the porous layer contains a filler
  • the internal short circuit caused by the growth of dendritic crystals (dendrites) of the electrode is suppressed, and when the secondary battery undergoes an internal short circuit and thermal runaway occurs, a polyolefin porous substrate Can be prevented from shrinking.
  • These fillers can be used alone or in combination of two or more.
  • the filler content in the porous layer is preferably 10 to 99% by volume, more preferably 20 to 90% by volume, and even more preferably 30 to 80% by volume. When the heat-resistant content in the porous layer is within these ranges, the generation of dendrites can be effectively suppressed, or the polyolefin porous substrate can be prevented from shrinking when thermal runaway occurs. it can.
  • the separator of the present invention is characterized in that the Young's modulus in the machine direction (MD) is 500 MPa or more. According to the study by the present inventors, when the Young's modulus in the machine direction (MD) of the separator is 500 MPa or more, in the manufacturing process of the secondary battery, a minute solid such as dust in one of the separator transport paths. Even if there are objects and protrusions, film peeling of the linear porous layer along the machine direction of the separator can be suppressed. The reason why such an effect is obtained is not necessarily clear, but the following can be considered.
  • the separator has a high Young's modulus in the machine direction (MD) and deformation of the surface layer of the separator is suppressed even when a minute solid is in contact, such defects, that is, cracks, cracks, tears, etc. It is considered that the occurrence of the above is suppressed.
  • the upper limit of the Young's modulus in the machine direction (MD) is not particularly specified, but about 3000 MPa can be mentioned for the purpose of reducing the defect rate due to wrinkles or breakage in the battery cell assembly process.
  • the Young's modulus in the machine direction (MD) of the porous substrate may be increased, or the Young's modulus in the machine direction (MD) of the porous layer. May be increased, or both.
  • the Young's modulus in the machine direction (MD) of the porous substrate is 500 MPa or more.
  • the molecular weight of the resin, the processing temperature, the stretching ratio, etc. may be adjusted by a known method so that the Young's modulus in the machine direction (MD) of the porous substrate satisfies the above conditions.
  • the Young's modulus is measured by the method described in Examples described later.
  • the breaking elongation in the machine direction (MD) is 10% or more and 150% or less. Preferably, they are 20% or more and 110% or less, More preferably, they are 30% or more and 100% or less.
  • the elongation at break is less than 10%, when a minute solid or protrusion existing in the separator conveyance line comes into contact with the separator, the separator itself may be broken. If it is larger than 150%, the degree of deformation (strain) of the separator due to the solid matter may be increased, resulting in film peeling of the porous layer. When the content is in the range of 10% or more and 150% or less, the separator is not broken and the peeling of the porous layer can be suppressed.
  • the breaking elongation is calculated by the method described in Examples described later.
  • the separator of the present invention preferably has a critical damage load of 3 mN or more that causes peeling of the porous layer existing on the surface in the scratch test.
  • the critical damage load is more preferably 3 mN or more.
  • the upper limit of the critical damage load is not particularly limited, but is preferably 500 mN, and more preferably 300 mN.
  • the critical damage load is more preferably 20 mN or more.
  • Such a critical damage load can be obtained by, for example, an ultra-thin scratch tester sold by Anton Paar and the like.
  • the scratch test referred to in this application is based on the ASTM D7187-15 test, and a 90 ° diamond conical indenter 9 having a radius of curvature of 10 ⁇ m shown in FIG. At a speed of 4 mm / min.
  • the film surface is scratched to measure the vertical load when the porous film is damaged, that is, the critical damage load.
  • the critical damage load is measured by the method described in Examples described later.
  • the separator of the present invention is characterized in that it is continuously pressed for 1 hour or more at a pressure of 0.1 MPa or more and 2 MPa or less in an environment of 10 to 30 ° C. from a direction perpendicular to the porous layer.
  • the lower limit of the pressure is 0.1 MPa, and preferably 0.3 MPa. By being more than this lower limit, it is possible to apply a sufficient pressure between the porous layer and the base material, so that film peeling can be suppressed.
  • the upper limit of the pressure is 2 MPa, preferably 1.5 MPa, in order to prevent deformation of the porous structure of the porous substrate and the porous layer.
  • the pressurizing temperature is preferably in the range of 10 ° C to 30 ° C. If the pressing time is short, the effect of suppressing peeling of the film may not be sufficient, and it is preferably 1 hour or longer.
  • the upper limit is not particularly limited, but it is preferably 1 ⁇ 10 4 hours or less in order to prevent the porosity of the porous film itself from decreasing if the time for pressing is too long.
  • a flat plate press apparatus can be used.
  • the reel is wound so that the pressure at the winding core portion and / or the intermediate portion of the reel-shaped wound body is within the above range, and the temperature environment is set.
  • a method of applying pressure over the entire length of the wound body by rewinding may be used.
  • a method of winding so that the pressure of the winding core portion as the reel-shaped winding body is within the above range for example, on the surface of the winding core and / or the intermediate portion of the reel-shaped winding body.
  • a pressure measuring film manufactured by FUJIFILM Corporation, Prescale (registered trademark)
  • conditions for the pressure range are found in advance by a known method such as separator tension, touch roll pressure, winding speed, It can obtain by winding up on the conditions.
  • the porous layer is formed by applying a coating liquid containing a resin to the surface of the porous substrate.
  • the coating liquid is prepared by dissolving or dispersing the resin or the like in a solvent that can dissolve the resin used for forming the porous layer and is miscible with water.
  • Examples of the method for applying the coating liquid to the surface of the porous substrate include normal coating methods known in the art. Examples of such methods include dip coating, wire bar, and gravure. Examples include a coating method, a kiss method, a die coating method, a roll coating method, and a comma coating method.
  • the porous substrate After applying the coating liquid to one or both sides of the porous substrate, the porous substrate is immersed in an aqueous solvent. Then, the applied resin is solidified into a three-dimensional network. Thereby, a porous layer is formed.
  • the aqueous solvent is a solvent containing water that is a poor solvent for the resin. Examples of the solvent that can coexist with water include alcohols, acetone, N-methyl-2-pyrrolidone and the like. After forming a porous layer on the surface of the porous substrate, it is dried with hot air at 100 ° C. or lower.
  • Negative Electrode 98 parts by mass of artificial graphite and 1.0 part by mass of styrene butadiene latex were added to and mixed with an aqueous solution containing 1.0 part by mass of carboxymethyl cellulose to obtain a negative electrode mixture-containing slurry.
  • This negative electrode mixture-containing slurry is uniformly applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 ⁇ m and dried to form a negative electrode layer.
  • the density of the negative electrode layer excluding the body was 1.45 g / cm 3 to produce a negative electrode.
  • Flat wound cell assembly A flat wound body was produced by using a battery cell winding device for the above-described positive electrode and tab attached to the negative electrode and a separator produced by the method described below. Thereafter, the flat wound body was installed in an aluminum laminated bag, and this was used as a test flat wound cell.
  • Insulation failure inspection method Using a withstand voltage test apparatus (TOS5051A, manufactured by Kikusui Electronics Co., Ltd.), a positive voltage terminal and a negative electrode terminal of the flat wound cell were loaded with a voltage of 50 V for 10 seconds and no current flowed. Was passed, and the current flowed was rejected.
  • TOS5051A withstand voltage test apparatus
  • Example preparation Preparation of coating liquid 50 parts by volume of vinylidene fluoride-hexafluoropropylene copolymer resin (manufactured by Kureha Co., Ltd., product name KF polymer W # 9300), 50 parts by volume of alumina particles having a particle size (D50) of 1.0 ⁇ m, Was added and mixed and dispersed in N-methyl-2-pyrrolidone so that the active ingredient was 10% by mass to obtain a coating solution.
  • V50 particle size
  • Examples 1 and 2 Comparative Example 1
  • Example 3 A test piece was prepared in the same manner as in Example 1 except that the pressing time in Example 2 was changed to 10 minutes, the same evaluation was performed, and the results are shown in Table 1.
  • the separators of the present invention in which the Young's modulus in the machine direction (MD) of Examples 1 to 3 is 500 MPa or more have high resistance to scratches, and can be used to manufacture secondary batteries and the like.
  • MD machine direction
  • the separator transport line peeling of the porous film can be suppressed, and the production yield of secondary batteries and the like can be improved.
  • it turns out that it can improve further by applying a pressure of a perpendicular direction with a porous layer.
  • the separator of the present invention can be suitably used as a battery separator that is preferably used for non-aqueous electrolyte batteries such as lithium ion batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

セパレータの移動経路のいずれかに塵などといった微少な固形物や突起物が存在したとしても多孔層の膜剥がれを抑制し、電池セルの絶縁不良率が低いセパレータを提供する。複数の気孔を有するフィルム状の多孔性基材と、前記多孔性基材の少なくとも一面に形成された、接着性樹脂を含む多孔層と、を備え、機械方向(MD)のヤング率が500MPa以上であり、臨界損傷荷重が3mN以上であることを特徴とするセパレータ。

Description

セパレータ
 本発明は、セパレータに関するものであり、より詳しくはリチウムイオン電池などの非水電解質電池に好ましく用いられるバッテリー用セパレータに関する。
 熱可塑性樹脂を主として含む微多孔膜は、物質の分離膜、選択透過膜や隔離膜などとして広く用いられている。このような用途の一例として、リチウムイオン二次電池、ニッケル-水素二次電池、ニッケル-カドミウム二次電池やポリマー二次電池等に用いる電池用セパレータ、電気二重層コンデンサ用セパレータ、逆浸透濾過膜、限外濾過膜、精密濾過膜等の各種フィルター、透湿防水衣料、医療用材料等を挙げることができる。
 特にリチウムイオン二次電池用セパレータとしては、電解液の含浸によりイオン透過性を有し、電気絶縁性に優れ、電池内部の異常昇温時に120~150℃程度の温度において電流を遮断し、過度の昇温を抑制する孔閉塞機能を備えているポリオレフィン製微多孔膜が好適に使用されている。
 リチウムイオン二次電池用セパレータは、電池特性、電池生産性及び電池安全性に深く関わっており、優れた機械的特性、耐熱性、電極接着性、寸法安定性、孔閉塞特性(シャットダウン特性)等が要求される。これまでに、例えば、ポリオレフィン製微多孔膜を多孔性基材として、その表面に多孔層を設けることで電池用セパレータに耐熱性や電極接着性といった機能を付与することが検討されている。耐熱性を付与するために、ポリアミドイミド樹脂、ポリイミド樹脂、ポリアミド樹脂等などや、電極接着性を付与するために、フッ素樹脂、アクリル樹脂などを有機溶剤や水等に分散、溶解させた塗工液を多孔性基材の表面に塗布することで多孔層を形成させたものが提案され実用化されている(例えば、特許文献1参照)。
 近年では、二次電池における容量エネルギー密度を上げるためにセパレータの薄肉化が求められており、それに伴い多孔層も薄肉化が進んでいる。また、二次電池の生産性を上げるために40m/分を超える搬送速度の高速化が進んでいる。二次電池の製造工程にて、セパレータ表面に存在する多孔層に何らかの欠陥を生じると、正極および負極の電極間の抵抗が不均一となり、電池セルの絶縁不良原因となる。
 扁平型捲回セルの組み立て工程において、具体的には、図1を参照すると、銅箔よりなる集電体の両面に負極活物質を塗布し、巻き取られた負極材捲回体11と、アルミニウム箔よりなる集電体の両面に正極活物質を塗布し、巻き取られた正極材捲回体31および2つのセパレータ捲回体21および41が、それぞれの移動経路を経て、2つのニップロール51および52で4つの材料が集約され、第1のワインダー61に配置された第1のピン65を軸とし、楕円状に巻き取る(図2)ことにより、扁平状の捲回セル71が作成される。所定量巻き取られると、ターレット60が旋回し(図3)、集約された負極材1、正極材3および2つのセパレータ2、セパレータ4が切断され、第2のワインダー62に配置された第2のピン66に接続され、再び、楕円状に巻き取られ、扁平型捲回セル72の作成が開始される(図4)。これを連続的に繰り返すことにより、扁平型捲回セルが作製される。このとき、扁平型捲回セルは、楕円の重心を軸に回転運動をしたり、ターレット60を旋回して、第1のワインダー61から第2のワインダー62への切り替えを行ったりしているため、正極材3、負極材1、および2つのセパレータ2、セパレータ4は、移動経路を加速、減速および停止を繰り返しながら巻き取られている。
 ここで、移動経路のいずれかに、正極材3および負極材1の脱落物、塵などといった微少な固形物や突起物が存在すると、絶縁不良を生じ二次電池の歩留まりを低下させることが問題となっている。
日本国特許第6054001号公報
 本発明は、前記従来技術の背景に鑑み、セパレータの移動経路のいずれかに塵などといった微少な固形物や突起物が存在したとしても電池セルの絶縁不良率が低いセパレータを提供することを課題とする。
 本発明者は、かかる課題を解決するために鋭意検討を重ねた結果、セルの組み立て工程に正極材や負極材の脱落物、塵などといった微少な固形物や突起物が存在すると、高速で移動するセパレータの表面にその固形物や突起物が接触することになり、セパレータの機械方向(MD)に沿って線状に多孔層の膜剥がれが生じる(図5)ことを見出し、本発明に想到した。
 すなわち本発明は、複数の気孔を有するフィルム状の多孔性基材と、前記多孔性基材の少なくとも一面に形成された、接着性樹脂を含む多孔層と、を備え、機械方向(MD)のヤング率が500MPa以上であり、臨界損傷荷重が3mN以上であることを特徴とするセパレータ、である。本発明の好ましい様態は、
(1)前記多孔層はフィラーを含有し、前記多孔層における前記フィラーの割合が10体積%以上99体積%以下であること、
(2)多孔層と垂直の方向から、10℃~30℃の環境下で0.1MPa以上、2MPa以下の圧力で連続して1時間以上加圧されたこと、
(3)機械方向(MD)の破断伸度が10%以上、150%以下であること、
(4)前記多孔層の厚さが0.05μm以上3μm以下であること、
(5)前記多孔層に含まれる接着性樹脂がフッ素原子を含む樹脂を含有すること、
(6)前記多孔層に含まれる接着性樹脂がアクリル樹脂を含有すること、
である。
 本発明によれば、セパレータの移動経路のいずれかに塵などといった微少な固形物や突起物が存在したとしてもセパレータの機械方向(MD)に沿って線状に生じる多孔層の膜剥がれを抑制し、電池セルの絶縁不良率が低いセパレータを提供することができる。
扁平型捲回セルの組み立て工程を示す概略図である。 図1の第1のワインダー61が90°回転した状態の概略図である。 ターレット60が旋回している状態を示す概略図である。 第2のワインダー62が扁平状に捲回している状態を示す概略図である。 多孔層の膜剥がれ箇所の電子顕微鏡像である。 スクラッチ試験の概略図である。 臨界損傷荷重測定における実施例1の光学顕微鏡像である。 臨界損傷荷重測定における実施例2の光学顕微鏡像である。 臨界損傷荷重測定における比較例1の光学顕微鏡像である。 臨界損傷荷重測定における実施例3の光学顕微鏡像である。
 本発明は、前記課題、つまり電池セルの絶縁不良率が低いセパレータを提供することについて、鋭意検討し、複数の気孔を有するフィルム状の多孔性基材と、前記多孔性基材の少なくとも一面に形成された、接着性樹脂を含む多孔層と、を備え、機械方向(MD)のヤング率が500MPa以上であり、臨界損傷荷重が3mN以上であることにより、かかる課題を解決できることを究明したものである。
 以下、本発明のセパレータの一実施形態について説明するが、本発明は、以下の実施形態に何ら限定されることなく、本発明の範囲において適宜変更を加えて実施することができる。なお、本明細書及び特許請求の範囲に使われた用語や単語は通常的又は辞書的な意味に限定して解釈されてはならず、発明者は自らの発明を最善の方法で説明するために用語の概念を適切に定義することができるという原則に則して、本発明の技術的思想に符合する意味と概念とに解釈されなければならない。
(多孔性基材)
 多孔性基材は、三次元的に不規則に連結した網目構造を有する多孔質フィルム状の基材であり、セパレータを構成する要素の一つである。多孔性基材としては膜や不織布等を挙げることができ、特にその種類を限定しないが、ポリオレフィン樹脂からなる多孔性基材が好ましく例示される。ポリオレフィン樹脂としては、ポリエチレン、ポリプロピレン、ポリブチレン、及びポリペンテン等が挙げられる。
 ポリオレフィン樹脂の質量平均分子量(Mw)は特に制限されないが、通常1×10~1×10の範囲内であり、好ましくは1×10~5×10の範囲内であり、より好ましくは1×10~5×10の範囲内である。なお、ここで言う質量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)法により、単分散ポリスチレン標準試料を用いて得られた検量線から求められる。
 ポリオレフィン樹脂はポリエチレンを含むことが好ましいが、ポリエチレンとしては超高分子量ポリエチレン、密度が0.942以上の高密度ポリエチレン、密度が0.925以上0.942未満の中密度ポリエチレン及び密度が0.925未満の低密度ポリエチレンなどが挙げられる。また重合触媒にも特に制限はなく、チーグラー・ナッタ触媒、フィリップス触媒、メタロセン触媒などの重合触媒によって製造されたポリエチレンが挙げられる。これらのポリエチレンはエチレンの単独重合体のみならず、他のα-オレフィンを少量含有する共重合体であってもよい。エチレン以外のα-オレフィンとしてはプロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、(メタ)アクリル酸、(メタ)アクリル酸のエステル、スチレン等が好適に使用できる。
 ポリエチレンは単一物でもよいが、2種以上のポリエチレンからなる混合物であることが好ましい。ポリエチレン混合物としてはMwの異なる2種類以上の超高分子量ポリエチレンの混合物、同様な高密度ポリエチレンの混合物、同様な中密度ポリエチレンの混合物及び低密度ポリエチレンの混合物を用いてもよいし、超高分子量ポリエチレン、高密度ポリエチレン、中密度ポリエチレン及び低密度ポリエチレンからなる群から選ばれた2種以上ポリエチレンの混合物を用いてもよい。
 なかでもポリエチレンの混合物としては、シャットダウン現象の温度上昇に対する応答性(シャットダウン速度)や、シャットダウン温度以上の高温領域でポリオレフィン多孔質膜の形状を維持し電極間の絶縁性を維持する観点からMwが5×10以上の超高分子量ポリエチレンとMwが1×10以上、5×10未満のポリエチレンからなる混合物が好ましい。超高分子量ポリエチレンのMwは5×10~1×10の範囲内であることが好ましく、1×10~5×10の範囲内であることがより好ましい。Mwが1×10以上、5×10未満のポリエチレンとしては、高密度ポリエチレン、中密度ポリエチレン及び低密度ポリエチレンのいずれも使用することが出来るが、特に高密度ポリエチレンを使用することが好ましい。Mwが1×10以上、5×10未満のポリエチレンとしてはMwが異なるものを2種以上使用してもよいし、密度の異なるものを2種以上使用してもよい。ポリエチレン混合物のMwの上限を5×10にすることにより、溶融押出を容易にすることが出来る。ポリエチレン混合物中の超高分子量ポリエチレンの含有量は、ポリエチレンの混合物全体に対し1重量%以上であることが好ましく、10~80重量%の範囲であることがより好ましい。
 ポリオレフィン樹脂には、耐メルトダウン特性と電池の高温保存特性の向上を目的として、ポリエチレンとともにポリプロピレンを含んでいてもよい。ポリプロピレンのMwは1×10~4×10の範囲内であることが好ましい。ポリプロピレンとしては単独重合体または他のα-オレフィンを含むブロック共重合体およびまたはランダム共重合体も使用することが出来る。他のα-オレフィンとしてはエチレンが好ましい。ポリプロピレンの含有量はポリオレフィン混合物(ポリエチレンとポリプロピレンの混合物)全体を100重量%として80重量%以下にすることが好ましい。
 ポリオレフィン樹脂には、電池用セパレータとしての特性向上のためシャットダウン特性を付与するポリオレフィンを含んでいてもよい。シャットダウン特性を付与するポリオレフィンとしては、例えば低密度ポリエチレンを用いることが出来る。低密度ポリエチレンとしては、分岐状、線状、シングルサイト触媒により製造されたエチレン/α-オレフィン共重合体からなる群から選ばれた少なくとも1種が好ましい。低密度ポリエチレンの添加量はポリオレフィン全体を100重量%として20重量%以下であることが好ましい。低密度ポリエチレンの添加量が20重量%を超えると延伸時に破膜が起こり易くなり好ましくない。
 上記超高分子量ポリエチレンを含むポリエチレン組成物には、任意成分としてMwが1×10~4×10の範囲内のポリ1-ブテン、Mwが1×10~4×10の範囲内のポリエチレンワックス、およびMwが1×10~4×10の範囲内のエチレン/α―オレフィン共重合体からなる群から選ばれた少なくとも1種のポリオレフィンを添加しても良い。これらの任意成分の添加量は、ポリオレフィン組成物を100重量%として20重量%以下であることが好ましい。
 ポリオレフィン等の樹脂を原料として膜状の多孔性基材を製造する場合、流動パラフィン等の可塑剤と一緒に樹脂を溶融してからこれをT-ダイから押し出してシート化し、得られたシートを延伸した後、シートに含まれる可塑剤を抽出する方法を例示できるが、これに限定されない。後に説明するように、本発明のセパレータは所定のヤング率を有することを特徴とするものであるが、このヤング率を実現するために多孔性基材の延伸の程度を調節し、多孔性基材自体が後述する所定のヤング率(すなわち、セパレータの機械方向(MD)において500MPa以上)を備えるようにすることが好ましい。
 上記のように、多孔性基材は三次元的に不規則に連結した網目構造を有するが、その空孔率は20~80%であることが好ましい。多孔性基材の空孔率が20%以上であることにより、セパレータの良好な透気度を実現でき、膜による電気抵抗の上昇を抑制して大電流を流すことができるので好ましい。また、多孔性基材の空孔率が80%以下であることにより、セパレータの十分な機械的強度が得られ好ましい。空孔率は25~65%がより好ましく、30~55%が特に好ましい。なお、空孔率とは、多孔性基材に占める空孔部分の割合(体積%)であり、試料体積(cm)と質量(g)を測定し得られた結果から次式を用いて空孔率(%)を算出した。
 空孔率(%)=(1-質量/(樹脂密度×試料体積))×100
(多孔層)
 多孔層は、上記多孔性基材の少なくとも一面に形成された層であり、多孔性基材の片面のみに形成されてもよいし、両面に形成されてもよい。
 多孔層の厚さとしては、0.05μm以上3μm以下が好ましく、0.1μm以上2.5μm以下がより好ましい。多孔層の厚さが0.05μm以上であることにより、電極との間で良好な接着性が得られ、機械的強度を維持できるので好ましく、多孔層の厚さが3μm以下であることにより、セパレータの膜抵抗を小さく抑えることができるので好ましい。
(接着性樹脂)
 多孔層は接着性樹脂を備えている。接着性樹脂としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-トリクロロエチレン共重合体、ポリイミド、ポリメチルメタクリレート、ポリブチルアクリレート、ポリアクリロニトリル、ポリビニルピロリドン、ポリビニルアセテート、エチレンビニルアセテート共重合体、ポリエチレンオキシド、ポリアミドイミド、ポリイミド、ポリアリーレート、セルロースアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート、シアノエチルプルラン、シアノエチルポリビニルアルコール、シアノエチルセルロース、シアノエチルスクロース、プルラン、カルボキシメチルセルロース等を挙げることができる。これらの中でも、フッ素原子を含む樹脂、および/またはアクリル樹脂が好ましく、特にポリフッ化ビニリデン(PVDF)を好ましく挙げることができる。これらの樹脂は、単独で、又は二種以上を組み合わせて用いることができる。
(フィラー)
 多孔層は、前記接着性樹脂に加え、フィラーを含んでもよい。前記フィラーとしては、無機粒子及び有機粒子が挙げられ、無機粒子がより好ましい。無機粒子としては、特に限定するものではないが、例えば、炭酸カルシウム、リン酸カルシウム、非晶性シリカ、結晶性のガラスフィラー、カオリン、タルク、二酸化チタン、アルミナ、ベーマイト、シリカーアルミナ複合酸化物粒子、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン、マイカ等を挙げることができる。また、必要に応じて耐熱性架橋高分子粒子を添加してもよい。耐熱性架橋高分子粒子としては、架橋ポリスチレン粒子、架橋アクリル粒子、架橋メタクリル酸メチル粒子などが挙げられる。無機粒子の形状は、真球形状、略球形状、板状、針状、多面体形状が挙げられるが、特に限定されない。
 多孔層がフィラーを含むことにより、電極の樹枝状結晶(デンドライト)の成長に起因する内部短絡を抑制し、二次電池が、内部短絡して熱暴走が生じたとき、ポリオレフィン製多孔質基材が収縮するのを抑制することができる。これらのフィラーは、一種又は二種以上を組み合わせて用いることができる。多孔層におけるフィラーの含有量は、10~99体積%が好ましく、20~90体積%がより好ましく、30~80体積%がさらに好ましい。多孔層における耐熱性の含有量がこれらの範囲であることにより、デンドライトの発生を効果的に抑制したり、熱暴走が生じたとき、ポリオレフィン製多孔質基材が収縮するのを抑制することができる。
(ヤング率)
 本発明のセパレータは、機械方向(MD)のヤング率が500MPa以上であることを特徴とする。本発明者らの検討によれば、セパレータの機械方向(MD)のヤング率が500MPa以上であることにより、二次電池の製造過程において、セパレータの搬送経路のいずれかに塵などといった微少な固形物や突起物が存在しても、セパレータの機械方向に沿った線状の多孔層の膜剥がれを抑制することができる。このような効果の得られる理由は必ずしも明らかでないが、概ね次のようなことが考えられる。まず、セパレータの搬送ラインに存在する微少な固形物や突起物がセパレータに接触すると、その固形物によるセパレータの表層部に微細な変形(ひずみ)が生じると考えられるが、その変形の程度が大きい場合には、その変形に多孔層が追従することができず、多孔層自体に割れ、クラック、破れ等の損傷が生じると考えられる。そして、高速搬送されるセパレータにおいて、このような割れ、クラック、破れが連続して生じた場合には多孔層の膜剥がれになると考えられる。一方、セパレータの機械方向(MD)のヤング率が高く、微少な固形物が接触してもセパレータの表層部の変形が抑制される場合には、このような欠陥、すなわち、割れ、クラック、破れ等の発生が抑制されると考えられる。機械方向(MD)のヤング率の上限としては特に規定するものではないが、電池セル組立工程におけるシワや折れなどによる不良率を低減する目的で、3000MPa程度を挙げることができる。
 セパレータの機械方向(MD)のヤング率を上記のようにするために、多孔性基材の機械方向(MD)のヤング率を高めてもよいし、多孔層の機械方向(MD)のヤング率を高めてもよいし、その両方であってもよい。これらの中でも、多孔性基材の機械方向(MD)のヤング率を500MPa以上とするのが簡便である。この場合、多孔性基材の機械方向(MD)のヤング率が上記の条件を満たすように、樹脂の分子量、加工温度、延伸の倍率等、公知の方法で調節すればよい。
 ヤング率は、後述する実施例に記載の方法により測定される。
(破断伸度)
 本発明のセパレータは、機械方向(MD)の破断伸度が10%以上、150%以下である。好ましくは、20%以上、110%以下であり、より好ましくは、30%以上、100%以下である。破断伸度が10%未満であると、セパレータの搬送ラインに存在する微少な固形物や突起物がセパレータに接触したとき、セパレータ自体に破れが生じてしまう場合がある。150%より大きいと、前記固形物によるセパレータの変形(ひずみ)の程度が大きくなって多孔層の膜剥がれを生じる場合がある。10%以上、150%以下の範囲であることにより、セパレータの破れがなく、多孔層の膜剥がれを抑制することができる。
 破断伸度は、後述する実施例に記載の方法により算出される。
(臨界損傷荷重)
 本発明のセパレータは、スクラッチ試験において、その表面に存在する多孔層の剥離を生じる臨界損傷荷重が3mN以上であることが好ましい。本発明のセパレータがこのような条件を満たすことにより、二次電池の製造過程における機械方向(MD)に沿った線状の欠陥の発生を抑制することができる。上記臨界損傷荷重は、3mN以上であることがより好ましい。また、上記臨界損傷荷重の上限は、特に制限するものではないが、500mNであることが好ましく、300mNであることがさらに好ましい。本発明のセパレータがこのような条件を満たすことにより、二次電池の製造過程における機械方向(MD)に沿った線状の欠陥の発生を抑制することができる。上記臨界損傷荷重は、20mN以上であることがより好ましい。なお、このような臨界損傷荷重は、例えば、アントンパール社等が販売している超薄膜スクラッチ試験機により求めることができる。本願でいうスクラッチ試験とは、具体的には、ASTM D7187-15試験に準じ、図6に示す曲率半径10μmの90°ダイヤモンド円錐圧子9をセパレータ表面8に0.3mNで押し付け、垂直方向の荷重を100mN/min(25mN/mm)で増加させながら速度4mm/min.で膜面を引っ掻き、前記多孔膜の損傷が生じたときの垂直方向の荷重、すなわち、臨界損傷荷重を測定するものである。
 臨界損傷荷重は、後述する実施例に記載の方法により測定される。
(多孔層と垂直方向の圧力)
 本発明のセパレータは、前記多孔層と垂直の方向から、10℃~30℃の環境下で0.1MPa以上、2MPa以下の圧力で連続して1時間以上加圧されたことを特徴とする。圧力の下限値は、0.1MPaであり、好ましくは、0.3MPaである。この下限値以上であることにより、多孔層と基材の層間に十分な圧力を掛けることができる為、膜剥がれを抑制することができる。圧力の上限値は、多孔質基材および多孔層の多孔質構造が変形することを防止する上で、2MPaであり、好ましくは、1.5MPaである。加圧する温度は、10℃~30℃の範囲であることが好ましい。加圧する時間は、短いと膜の剥がれを抑制する効果が十分でない場合があり、1時間以上であることが好ましい。上限は、特に限定するものではないが、加圧する時間が長すぎると、多孔性フィルム自体の空孔率が減少してしまうことを防止する上で、1×10時間以下であることが好ましい。加圧する方法としては、たとえば、平板プレス装置を用いたりすることができる。あるいは、多孔層を形成する際、リール状の捲回体として巻き芯部分、及び/又はリール状の捲回体の中間部位の圧力が、前記範囲内になるように巻取り、前記温度の環境で1時間以上経過後、再び巻き返しを行うことによって、捲回体の全長に亘って圧力を掛ける方法でもよい。なお、リール状の捲回体として巻き芯部分の圧力が、前記範囲内になるように巻取る方法としては、例えば、巻取りコアの表面、及び/又はリール状の捲回体の中間部位に、圧力測定フィルム(富士フイルム(株)製、プレスケール(登録商標))を配置し、セパレータの張力、タッチロール圧力、巻取り速度等公知の方法により前記圧力の範囲となる条件を予め見出し、その条件で巻き取ることにより得ることができる。
(多孔層の形成方法)
 多孔層は、樹脂を含む塗工液を多孔性基材の表面に塗布して形成される。塗工液は、多孔層の形成に用いる樹脂を溶解することができ、かつ水と混和する溶媒で樹脂等を溶解又は分散して調製される。塗工液を多孔性基材の表面に塗布する方法としては、当業界に知られた通常のコーティング方法を挙げることができ、そのような方法の一例として、ディップコーティング法、ワイヤーバー法、グラビアコーティング法、キス法、ダイコーティング法、ロールコーティング法、コンマコーティング法が挙げられる。
 塗工液を多孔性基材の片面又は両面に塗布した後、この多孔性基材は、水系溶媒に浸漬される。すると、塗工された樹脂が三次元網目状に凝固する。これにより、多孔層が形成される。水系溶媒とは、樹脂にとって貧溶媒となる水を含む溶媒である。水と共存させることのできる溶媒としては、アルコール類、アセトン、N-メチル-2-ピロリドン等を例示できる。多孔性基材の表面に多孔層を形成させた後、100℃以下の熱風により乾燥させる。
 以下、実施例に基づいて本発明を説明するが、本発明は実施例に限定されるものではない。
[評価の方法]
 各評価は、以下のように行った。
(ヤング率、破断伸度、引張強度)
 多孔性基材、又はセパレータを長さ150mm×幅10mmの矩形に切り出しサンプルとした。引張試験機((株)オリエンテック製テンシロンUCT-100)を用いて、初期チャック間距離50mmとし、引張速度を300mm/分として25℃、65%HR環境下で引張試験を行った。サンプルの歪と応力の傾きからJIS K 7161-1(2014)に従いヤング率を算出し、サンプルが破断したときの破断伸度及び引張強度を測定した。なお、各実施例・比較例の引張試験において、少なくとも伸張率2%までは線形弾性領域にあることを確認した。測定は各サンプル5回ずつ行い、その平均値で評価を行い、表1にその結果を記載した。
(突刺強度)
 多孔性基材又はセパレータを、球状の先端表面(曲率半径:0.5mm)を有する直径1mmの針を用いて2mm/秒の速度で突き刺したときに測定される最大荷重を突刺強度とし、測定は各サンプル5回ずつ行い、その平均値で評価を行い、表1にその結果を記載した。
(臨界損傷荷重測定)
 セパレータをスライドガラス上にUV硬化型エポキシアクリレート接着剤((株)ユニック製、ユニソーラー・ハード)を20μm厚さになるように塗布して固定し、アントンパール社製ナノスクラッチテスターNST3を用いて機械方向(MD)に圧子を走査し、多孔質コーティング膜の臨界損傷荷重測定を行った。試験条件は次の通りとした。
 圧子        :10μm 90°ダイヤモンド円錐
 初期荷重    :0.3mN
 最終荷重    :50mN
 荷重レート  :100mN/min(25mN/mm)
 走査速度    :4mm/min
 上記臨界損傷荷重測定の結果、多孔性基材から多孔層の剥離が生じ始めたときの荷重を臨界損傷荷重とし、測定は各サンプル5回ずつ行い、その平均値で評価を行い、表1にその結果を記した。また臨界損傷荷重測定後の光学顕微鏡像を図7~図10に示した。
(電池セルの電気絶縁性)
正極の作製
 PVDFを1.2質量部含むNMP溶液をコバルト酸リチウム97質量部、カーボンブラック1.8質量部に加えて混合し、正極合剤含有スラリーとした。この正極合剤含有スラリーを、厚みが20μmのアルミ箔からなる正極集電体の両面に均一に塗布して乾燥して正極層を形成し、その後、ロールプレス機により圧縮成型して集電体を除いた正極層の密度を3.6g/cmにして正極を作製した。
負極の作製
 カルボキシメチルセルロースを1.0質量部含む水溶液を人造黒鉛98質量部、スチレンブタジエンラテックス1.0質量部を加えて混合して負極合剤含有スラリーとした。この負極合剤含有スラリーを、厚みが10μmの銅箔からなる負極集電体の両面に均一に塗付して乾燥して負極層を形成し、その後、ロールプレス機により圧縮成形して集電体を除いた負極層の密度を1.45g/cmにして、負極を作製した。
扁平捲回セル組み立て
 上記正極、負極にタブ付けされたものと後述の方法で作製されたセパレータを、電池セル捲回装置を使用して扁平巻回体を作製した。その後、アルミラミネート袋内に上記扁平巻回体を設置し、これを試験用扁平捲回セルとした。
絶縁不良の検査方法
 耐電圧試験装置(菊水電子(株)製、TOS5051A)を用いて、前記扁平捲回セルの正極端子と負極端子に50Vの電圧を10秒間負荷し、電流が流れなかったものを合格、電流が流れたものを不合格とした。
判定方法
 前記絶縁不良の検査で、不合格の数量が扁平捲回セル1000個あたり、5個以下である場合を「◎」、6個以上15個以下を「○」、16個以上である場合を「×」とした。
(試料の作製)
塗工液の調製
 フッ化ビニリデン-ヘキサフルオロプロピレン共重合樹脂((株)クレハ製、製品名KFポリマーW#9300)50体積部と、粒径(D50)1.0μmのアルミナ粒子50体積部とを、有効成分が10質量%となるようにN-メチル-2-ピロリドンに加えて混合及び分散させ、塗工液とした。
[実施例1~2、比較例1]
 ヤング率の異なる3種のポリエチレン製多孔性基材(厚さ7μm、東レバッテリーセパレータフィルム株式会社製、商品名セティーラ(登録商標))のそれぞれについて、ダイコーターを用いて両面に上記塗工液を塗布した。その後、水系溶媒に浸漬して相分離させ、水洗及び乾燥を行うことにより、片面あたりの膜厚が1.5μmの積層膜を形成した。次いで、精密プレス装置(新東工業(株)製;CYPT10)を用いて、25℃で0.3MPaの条件で、セパレータの垂直方向に1時間圧力を掛けた。これらを実施例1、実施例2、及び比較例1のセパレータとした。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[実施例3]
 実施例2のプレス時間を10分間に変更した以外は、実施例1と同様に試験片を作成し、同様の評価を行ない、結果を表1に示した。
 表1および図7~図10から明らかなとおり、実施例1~3の機械方向(MD)のヤング率が500MPa以上である本発明のセパレータは、引っ掻きに対する耐性が高く、二次電池等の製造過程において、セパレータの搬送ライン上に微少な固形物や突起等があった場合でも多孔膜の剥がれを抑制することができ、二次電池等の製造歩留まりを向上できることがわかる。また、多孔層と垂直方向の圧力を掛けることにより、更に良化できることがわかる。
 本出願は、2017年5月30日出願の日本特許出願(特願2017-106635)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のセパレータは、リチウムイオン電池などの非水電解質電池に好ましく用いられるバッテリー用セパレータとして好適に用いることができる。

Claims (8)

  1.  複数の気孔を有するフィルム状の多孔性基材と、前記多孔性基材の少なくとも一面に形成された、接着性樹脂を含む多孔層と、を備え、機械方向(MD)のヤング率が500MPa以上であり、臨界損傷荷重が3mN以上であることを特徴とするセパレータ。
  2.  前記多孔層はフィラーを含有し、前記多孔層における前記フィラーの割合が10体積%以上99体積%以下であることを特徴とする請求項1に記載のセパレータ。
  3.  前記多孔層と垂直の方向から、10℃~30℃の環境下で0.1MPa以上、2MPa以下の圧力で連続して1時間以上加圧されたことを特徴とする請求項1または2記載のセパレータ。
  4.  機械方向(MD)の破断伸度が10%以上、150%以下であることを特徴とする請求項1から3のいずれか1項記載のセパレータ。
  5.  前記多孔層の厚さが0.05μm以上3μm以下であることを特徴とする請求項1から4のいずれか1項記載のセパレータ。
  6.  前記多孔層に含まれる接着性樹脂がフッ素原子を含む樹脂を含有することを特徴とする請求項1から5のいずれか1項記載のセパレータ。
  7.  前記多孔層に含まれる接着性樹脂がアクリル樹脂を含有することを特徴とする請求項1から6のいずれか1項記載のセパレータ。
  8.  二次電池用である請求項1から7のいずれか1項記載のセパレータ。
PCT/JP2018/020518 2017-05-30 2018-05-29 セパレータ WO2018221503A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019521229A JP7070565B2 (ja) 2017-05-30 2018-05-29 セパレータの製造方法
KR1020197033635A KR102498466B1 (ko) 2017-05-30 2018-05-29 세퍼레이터
CN201880033960.4A CN110679007B (zh) 2017-05-30 2018-05-29 隔膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017106635 2017-05-30
JP2017-106635 2017-05-30

Publications (1)

Publication Number Publication Date
WO2018221503A1 true WO2018221503A1 (ja) 2018-12-06

Family

ID=64455339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020518 WO2018221503A1 (ja) 2017-05-30 2018-05-29 セパレータ

Country Status (5)

Country Link
JP (1) JP7070565B2 (ja)
KR (1) KR102498466B1 (ja)
CN (1) CN110679007B (ja)
TW (1) TWI760500B (ja)
WO (1) WO2018221503A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112542653B (zh) * 2019-09-05 2023-03-14 深圳市拓邦锂电池有限公司 锂电池的抗褶皱隔膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180395A (ja) * 1997-09-09 1999-03-26 Nitto Denko Corp 多孔質膜および非水電解液電池用セパレータ
JP2013117013A (ja) * 2011-11-01 2013-06-13 Toray Ind Inc 多孔性ポリオレフィンフィルム、積層多孔性フィルムおよび蓄電デバイス
WO2014021290A1 (ja) * 2012-07-30 2014-02-06 帝人株式会社 非水電解質電池用セパレータ及び非水電解質電池
JP2017050149A (ja) * 2015-09-02 2017-03-09 旭化成株式会社 二次電池用セパレータ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918455B2 (ja) * 1976-06-30 1984-04-27 三菱マテリアル株式会社 アクチノイド金属をその溶液から回収する方法
JPS6054001B2 (ja) 1978-05-22 1985-11-28 忠一 山本 畦塗り機に於ける土寄せ兼排水溝形成装置
JP2001126697A (ja) * 1999-10-26 2001-05-11 Mitsubishi Paper Mills Ltd 非水電解液電池用セパレーターおよび非水電解液電池
KR20100135369A (ko) * 2009-06-17 2010-12-27 에스케이에너지 주식회사 고내열성 유/무기 피복층을 갖는 폴리에틸렌계 복합 미세다공막
KR101577383B1 (ko) * 2012-07-30 2015-12-14 데이진 가부시키가이샤 비수 전해질 전지용 세퍼레이터 및 비수 전해질 전지
WO2016006453A1 (ja) * 2014-07-11 2016-01-14 帝人株式会社 セパレータロール及び非水系二次電池
KR102238365B1 (ko) * 2014-11-21 2021-04-09 삼성에스디아이 주식회사 고내열성 분리막, 그 제조 방법 및 이를 구비한 이차 전지
CN104868156A (zh) * 2014-12-22 2015-08-26 上海恩捷新材料科技股份有限公司 锂离子电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180395A (ja) * 1997-09-09 1999-03-26 Nitto Denko Corp 多孔質膜および非水電解液電池用セパレータ
JP2013117013A (ja) * 2011-11-01 2013-06-13 Toray Ind Inc 多孔性ポリオレフィンフィルム、積層多孔性フィルムおよび蓄電デバイス
WO2014021290A1 (ja) * 2012-07-30 2014-02-06 帝人株式会社 非水電解質電池用セパレータ及び非水電解質電池
JP2017050149A (ja) * 2015-09-02 2017-03-09 旭化成株式会社 二次電池用セパレータ

Also Published As

Publication number Publication date
JPWO2018221503A1 (ja) 2020-04-02
TW201902004A (zh) 2019-01-01
KR102498466B1 (ko) 2023-02-10
TWI760500B (zh) 2022-04-11
JP7070565B2 (ja) 2022-05-18
CN110679007B (zh) 2023-02-28
KR20200011934A (ko) 2020-02-04
CN110679007A (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
JP5932161B1 (ja) 積層体、セパレータ及び非水二次電池
US20180013118A1 (en) Laminated porous film, separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2017170289A1 (ja) ポリオレフィン微多孔膜及びその製造方法、電池用セパレータ並びに電池
KR102231395B1 (ko) 전지용 세퍼레이터, 전극체 및 비수 전해질 이차전지
JP6988881B2 (ja) ポリエチレン微多孔膜を含む二次電池用セパレータ
JP2017152268A (ja) 電池用セパレータ
JP2018162438A (ja) ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法
JP5792914B1 (ja) 積層多孔質膜及びその製造方法
WO2017170288A1 (ja) ポリオレフィン微多孔膜及びその製造方法、電池用セパレータ並びに電池
JP7054996B2 (ja) 非水系二次電池用セパレータ、非水系二次電池および非水系二次電池用セパレータの製造方法
JP2022020843A (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP2020079426A (ja) ポリオレフィン微多孔膜
JP7324175B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP6779157B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
CN113574732B (zh) 非水系二次电池用隔膜及非水系二次电池
JP2019102126A (ja) 電池用セパレータ及び非水電解液二次電池
JP7070565B2 (ja) セパレータの製造方法
JP2016181439A (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP7324173B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP7067378B2 (ja) セパレータ
JP7482935B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP7313581B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP7483154B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
WO2023210787A1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
CA3217308A1 (en) Separator for power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18808939

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521229

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197033635

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18808939

Country of ref document: EP

Kind code of ref document: A1