WO2018216637A1 - ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法 - Google Patents

ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法 Download PDF

Info

Publication number
WO2018216637A1
WO2018216637A1 PCT/JP2018/019408 JP2018019408W WO2018216637A1 WO 2018216637 A1 WO2018216637 A1 WO 2018216637A1 JP 2018019408 W JP2018019408 W JP 2018019408W WO 2018216637 A1 WO2018216637 A1 WO 2018216637A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
fiber
glass composition
composition
content
Prior art date
Application number
PCT/JP2018/019408
Other languages
English (en)
French (fr)
Inventor
禎之 伊中
崇治 宮崎
幸司 林
陸 澤井
慶東 名和
大介 西中
知喜 関田
Original Assignee
日本板硝子株式会社
ユニチカ株式会社
ユニチカグラスファイバー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社, ユニチカ株式会社, ユニチカグラスファイバー株式会社 filed Critical 日本板硝子株式会社
Priority to CN201880033881.3A priority Critical patent/CN110770182A/zh
Priority to KR1020197037990A priority patent/KR102381123B1/ko
Priority to JP2019520230A priority patent/JP6775159B2/ja
Priority to US16/617,402 priority patent/US11174191B2/en
Priority to EP18805453.0A priority patent/EP3632863A4/en
Publication of WO2018216637A1 publication Critical patent/WO2018216637A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Definitions

  • the present invention relates to a glass composition, a glass fiber composed of the composition, and a glass cloth. Moreover, this invention relates to the manufacturing method of glass fiber.
  • a kind of printed circuit board (printed circuit board) included in electronic equipment is a substrate composed of resin, glass fiber, inorganic filler, and, if necessary, additional materials such as curing agents and modifiers. is there. Also, some printed wiring boards (printed wiring boards) before electronic components are mounted have the same configuration as the above-described substrate. Hereinafter, in this specification, both the printed circuit board and the printed wiring board are collectively referred to as “printed board”.
  • the glass fiber functions as an insulator, a heat-resistant body, and a reinforcing material for the board.
  • a glass fiber is contained in a printed circuit board as a glass cloth which woven the glass thread
  • Glass may also be used for inorganic fillers used in printed circuit boards.
  • a typical example is flaky glass.
  • the molded body is required to have the same characteristics as the glass fiber used for the printed board, for example, a low dielectric constant.
  • the glass molded body must be made thinner and thinner.
  • Patent Documents 1 to 3 disclose glass fibers composed of a low dielectric constant glass composition.
  • the present invention is a glass composition having a low dielectric constant, and can suppress the occurrence of yarn breakage during spinning even when the fiber diameter of the glass fiber to be formed is small. It aims at providing the glass composition which can suppress generation
  • the present invention Displayed in weight% 50 ⁇ SiO 2 ⁇ 56 20 ⁇ B 2 O 3 ⁇ 30 10 ⁇ Al 2 O 3 ⁇ 20 3.5 ⁇ MgO + CaO ⁇ 10 0 ⁇ R 2 O ⁇ 1.0 Including Furthermore, Fe 2 O 3 is contained, A glass composition having a dielectric constant of less than 5.0 at a frequency of 1 MHz; I will provide a.
  • R is at least one element selected from Li, Na and K.
  • the present invention provides: Glass fibers composed of the glass composition of the present invention, I will provide a.
  • the present invention provides: A glass cloth composed of the glass fiber of the present invention, I will provide a.
  • the present invention provides: A method for producing glass fiber, comprising a step of melting the glass composition of the present invention at a temperature of 1400 ° C. or higher, and obtaining glass fibers having an average fiber diameter of 3 to 6 ⁇ m, I will provide a.
  • the present invention is a low dielectric constant glass composition, and even when the fiber diameter of the glass fiber to be formed is small, the occurrence of yarn breakage during spinning can be suppressed, and the yarn breakage during processing of the glass fiber, And the glass composition which can suppress generation
  • the glass composition of the present disclosure is expressed in wt%, 50 ⁇ SiO 2 ⁇ 56 20 ⁇ B 2 O 3 ⁇ 30 10 ⁇ Al 2 O 3 ⁇ 20 3.5 ⁇ MgO + CaO ⁇ 10 0 ⁇ R 2 O ⁇ 1.0 Including Furthermore, Fe 2 O 3 is contained, A glass composition having a dielectric constant of less than 5.0 at a frequency of 1 MHz.
  • R is at least one element selected from Li, Na and K.
  • dielectric constant means the relative dielectric constant, which is a ratio to the dielectric constant of the vacuum, but is simply expressed as “dielectric constant” in the present specification in accordance with the common practice of those skilled in the art.
  • the dielectric constant in this specification is a value at room temperature (25 ° C.).
  • SiO 2 is an essential component for forming a glass network structure. SiO 2 has the effect of lowering the dielectric constant of the glass composition. If the content of SiO 2 is less than 50%, it is difficult to make the dielectric constant of the glass composition at a frequency of 1 MHz less than 5.0. On the other hand, when the content of SiO 2 exceeds 56%, the viscosity at the time of melting increases, making it difficult to produce a homogeneous glass composition when producing glass fibers. This tendency is particularly strong when glass fibers are formed by the direct melt method. When the homogeneity of the glass composition is lowered, yarn breakage is induced when spinning glass fibers, particularly glass fibers having a small fiber diameter.
  • the homogeneity of the glass composition when processing the glass fiber after spinning, for example, when a plurality of formed glass fibers are aligned to form a glass yarn, and the glass yarn is woven to form a glass cloth. In this case, defects such as yarn breakage and fluffing are induced. Due to the decrease in homogeneity, sufficient characteristics as glass fibers may not be obtained. Further, when the content of SiO 2 exceeds 56%, and defoaming of molten glass in the viscosity during melting becomes high (bubble-escaping property) is lowered, formation suppressing contamination of bubbles in the glass fibers is It may be insufficient.
  • the content of SiO 2 is set to 50% or more and 56% or less. Since the homogeneity of the glass composition can be further improved, the upper limit of the content of SiO 2 is preferably 54% or less. The content of SiO 2 may be 50% or more and 54% or less.
  • B 2 O 3 is an essential component for forming a glass network structure.
  • B 2 O 3 lowers the dielectric constant of the glass composition, lowers the viscosity of the glass composition at the time of melting, improves the defoaming property (bubble removal property), and suppresses the mixing of bubbles in the formed glass fiber. Has an effect.
  • B 2 O 3 is a component that easily volatilizes during melting of the glass composition. When the content of B 2 O 3 is less than 20%, it is difficult to make the dielectric constant of the glass composition at a frequency of 1 MHz less than 5.0.
  • the viscosity of the glass composition at the time of melting becomes high, so that it becomes difficult to obtain sufficient homogeneity as a glass composition, or the mixing of bubbles in the formed glass fiber becomes insufficient.
  • the content of B 2 O 3 exceeds 30%, by volatilization of B 2 O 3 at the time of melting the glass composition may not sufficiently homogeneity is obtained as a glass composition.
  • the content of SiO 2 and Al 2 O 3 is relatively increased, and in particular, in the region where the content of Al 2 O 3 is remarkably increased, the loss is lost. Permeability tends to occur.
  • the content of B 2 O 3 exceeds 30%, the glass composition is likely to undergo phase separation, chemical durability of the glass composition tends to decrease.
  • the glass fiber When glass fiber is used for a printed circuit board, it is desired that the glass fiber has high chemical durability, particularly when the fiber diameter of the glass fiber is small.
  • the upper limit of the content of B 2 O 3 is preferably 29.5% or less, more preferably 29% or less, further preferably 28.5% or less, and particularly preferably 28% or less.
  • the lower limit of the content of B 2 O 3 is preferably 22% or more, more preferably 25% or more, and further preferably more than 25%.
  • the content of B 2 O 3 can take a range in which these upper and lower limits shown above are arbitrarily combined. The same applies to the other components other than B 2 O 3 that the range of the content can be taken by arbitrarily combining the upper limit and the lower limit shown in the present specification.
  • the content of B 2 O 3 may be 25% or more and 30% or less, may be more than 25% and 30% or less. Further, the content of B 2 O 3 may be 25% or more and 28% or less, may be more than 25% and 28% or less. Furthermore, the content of B 2 O 3 may be 26% or more and 30% or less, or 26% or more and 29% or less.
  • Al 2 O 3 is an essential component for forming a glass network structure.
  • Al 2 O 3 has an effect of increasing the chemical durability of the glass composition.
  • Al 2 O 3 increases the viscosity of the glass composition at the time of melting, and easily causes devitrification of the glass composition at the time of spinning. If the content of Al 2 O 3 is less than 10%, the chemical durability of the glass composition tends to decrease. In addition, when the content of Al 2 O 3 is set to less than 10%, the content of SiO 2 and B 2 O 3 which are other network components, particularly the content of SiO 2 is inevitably increased. The viscosity of the glass composition at the time of melting increases.
  • the viscosity of the glass composition at the time of melting becomes high, it becomes difficult to obtain sufficient homogeneity as the glass composition, and the suppression of foam mixing in the formed glass fiber may be insufficient.
  • the content of Al 2 O 3 is set to more than 20%, the content of SiO 2 and B 2 O 3 , which are other network components, decreases, so that the dielectric constant of the glass composition increases and the frequency is 1 MHz. It becomes difficult to make the dielectric constant at less than 5.0.
  • the content of Al 2 O 3 exceeds 20%, it becomes difficult to obtain sufficient homogeneity as a glass composition by increasing the viscosity of the glass composition at the time of melting. Inhibition of foam mixing may be insufficient.
  • the upper limit of the content of Al 2 O 3 is preferably 18% or less, and more preferably 15% or less.
  • the lower limit of the content of Al 2 O 3 is preferably 12% or more.
  • the content of Al 2 O 3 may be 12% or more and 15% or less.
  • MgO and CaO are components having an action of improving the meltability of the glass raw material and lowering the viscosity of the glass composition at the time of melting.
  • MgO and CaO increase the dielectric constant of the glass composition.
  • the total content of MgO and CaO is less than 3.5%, it becomes difficult to obtain sufficient homogeneity as a glass composition by increasing the viscosity of the glass composition at the time of melting. Inhibition of foam mixing may be insufficient.
  • the total content of MgO and CaO exceeds 10%, the dielectric constant of the glass composition increases and it becomes difficult to make the dielectric constant at a frequency of 1 MHz less than 5.0.
  • the lower limit of the total content of MgO and CaO is preferably 5.5% or more, and more preferably 6.0% or more.
  • the upper limit of the total content of MgO and CaO is preferably 8.0% or less, and more preferably 7.4% or less.
  • the glass composition of the present disclosure preferably includes both MgO and CaO.
  • the lower limit of the MgO content is preferably 0.5% or more.
  • the upper limit of the MgO content is preferably 1.9% or less, more preferably 1.8% or less, and even more preferably 1.7% or less. It is preferably 1.6% or less.
  • the content of MgO may be 0.5% or more and 1.9% or less, or 1.2% or more and 1.9% or less.
  • the lower limit of the MgO content may be 1.5% or more, or may be more than 1.5%.
  • CaO The action of CaO that improves the meltability of the glass raw material and lowers the viscosity of the glass composition at the time of melting is greater than that of MgO and ZnO described later.
  • the lower limit of the CaO content is preferably 3.0% or more because the viscosity of the glass composition at the time of melting can suppress the mixing of bubbles into the glass fiber and the homogeneity as the glass composition can be further improved. .
  • the phase separation of a glass composition is suppressed as the content rate of CaO is 3.0% or more.
  • the upper limit of the content rate of CaO is preferably 5.5% or less.
  • the content of CaO may be 3.0% or more and 5.5% or less.
  • CaO has a smaller degree of increasing the dielectric loss tangent of the glass composition than MgO and ZnO.
  • R 2 O is a component that improves the meltability of the glass raw material and lowers the viscosity of the glass composition during melting.
  • R 2 O increases the dielectric constant and dielectric loss tangent of the glass composition.
  • R is at least one element selected from Li, Na and K.
  • the lower limit of the content of R 2 O is 0.1% or more because the viscosity of the glass composition at the time of melting can suppress the mixing of bubbles into the glass fiber and the homogeneity as the glass composition can be further improved.
  • the glass composition of the present disclosure preferably contains Li 2 O and Na 2 O as R 2 O.
  • the glass composition of the present disclosure may be a composition that is substantially free of K 2 O.
  • the glass composition of the present disclosure includes Li 2 O, since the viscosity is lowered to the glass composition can be suppressed incorporation of bubbles into the glass fiber, it is possible to further improve the homogeneity of the glass composition at the time of melting,
  • the lower limit of the content of Li 2 O is preferably 0.1% or more.
  • the upper limit of the content of Li 2 O is preferably 0.5% or less.
  • the content of Li 2 O may be 0.1% or more and 0.5% or less.
  • the glass composition of the present disclosure contains Na 2 O
  • the viscosity of the glass composition at the time of melting can be reduced, so that mixing of bubbles into the glass fiber can be suppressed, and the homogeneity as the glass composition can be further improved.
  • the lower limit of the Na 2 O content is preferably 0.1% or more.
  • the upper limit of the Na 2 O content is preferably 0.3% or less.
  • the content of Na 2 O may be 0.1% or more and 0.3% or less.
  • Fe 2 O 3 is an essential component that improves the meltability of the glass raw material by heat ray absorption and improves the homogeneity of the glass composition at the time of melting.
  • the effect of improving the homogeneity by Fe 2 O 3 extends not only to the homogeneity of the composition but also to the improvement of the homogeneity of the heat distribution during the spinning of the glass fiber, based on the heat ray absorbing action. Thereby, even when the fiber diameter of the glass fiber to be formed is small, occurrence of yarn breakage of the glass fiber at the time of spinning is suppressed (spinning operability is improved).
  • the lower limit of the content of Fe 2 O 3 is preferably 0.05% or more, more preferably 0.10% or more, since sufficient heat ray absorption action can be secured and the homogeneity of the glass composition at the time of melting can be further improved.
  • the content of Fe 2 O 3 Is preferably 0.3% or less, more preferably 0.25% or less, and still more preferably 0.20% or less.
  • the content of Fe 2 O 3 means the content of total iron oxide in terms of Fe 2 O 3.
  • Fe in the glass composition may take a form other than Fe 3+ (for example, Fe 2+ ).
  • the effect of improving the homogeneity by Fe 2 O 3 extends to the suppression of the generation of the above-mentioned fine crystals and the above-mentioned suppression of the mixing of bubbles. It extends to the improvement of sex. Thereby, even when the fiber diameter of the glass fiber to form is small, the effect mentioned above is achieved.
  • the glass composition of the present disclosure may be a glass composition containing ZnO or a glass composition substantially free of ZnO.
  • ZnO is a component which has the effect
  • ZnO increases the dielectric constant of the glass composition.
  • the upper limit of the ZnO content is preferably 3.5% or less from the viewpoint of suppressing an increase in the dielectric constant of the glass composition. That is, the content of ZnO may be 0% or more and 3.5% or less.
  • the viscosity of the glass composition at the time of melting can be reduced, so that mixing of bubbles into the glass fiber can be suppressed, and the homogeneity as the glass composition can be further improved.
  • the lower limit of the content of may be 1.5% or more.
  • the upper limit of the ZnO content may be 1.5% or less, may be less than 1.5%, and may be 1.0% or less.
  • the contents of SiO 2 , B 2 O 3 and Al 2 O 3 are expressed in weight%, and 50 ⁇ SiO 2 ⁇ 54, 25 ⁇ B 2 O 3 ⁇ 30, and 12 ⁇ , respectively.
  • B content of 2 O 3 and Al 2 O 3 is, and in weight%, 25 ⁇ B 2 O 3 ⁇ 27 , respectively, and 14 ⁇ Al 2 O 3 ⁇ 15 .
  • mixing of bubbles in the formed glass fiber can be more reliably suppressed.
  • the content of B 2 O 3 is, in% by weight, is 25 ⁇ B 2 O 3 ⁇ 26.6 .
  • the content of Al 2 O 3 is, in% by weight is preferably 14 ⁇ Al 2 O 3 ⁇ 15 . In this form, mixing of bubbles in the formed glass fiber can be further suppressed.
  • the content of SiO 2 is, in% by weight, is 50 ⁇ SiO 2 ⁇ 52.5.
  • the content of B 2 O 3 and / or Al 2 O 3 is preferably in the preferable range described above. In this form, mixing of bubbles in the formed glass fiber can be further suppressed.
  • MgO, CaO, Li 2 O and Na 2 O content is, in% by weight, respectively 0.5 ⁇ MgO ⁇ 1.9,3.0 ⁇ CaO ⁇ 5.5, 0.1 ⁇ Li 2 O ⁇ 0.5, and a 0.1 ⁇ Na 2 O ⁇ 0.3.
  • MgO, CaO, ZnO, Li 2 O and Na 2 O content is, in% by weight, respectively 0.5 ⁇ MgO ⁇ 1.9,3.0 ⁇ CaO ⁇ 5. 5, 0 ⁇ ZnO ⁇ 3.5, 0.1 ⁇ Li 2 O ⁇ 0.5, and 0.1 ⁇ Na 2 O ⁇ 0.3.
  • the MgO content may be expressed as wt%, 0.5 ⁇ MgO ⁇ 1.3, and 0.5 ⁇ MgO ⁇ 1.0. In this form, mixing of bubbles in the formed glass fiber can be further suppressed.
  • the MgO content and the total content of Li 2 O and Na 2 O are expressed in weight%, and 1.2 ⁇ MgO ⁇ 1.5 and 0.4 ⁇ Li, respectively. 2 O + Na 2 O ⁇ 0.8. In this form, mixing of bubbles in the formed glass fiber can be further suppressed.
  • ZnO may be focused on the balance of the modifying components, and in one embodiment, the ZnO content is expressed as wt% and 1.5 ⁇ ZnO ⁇ 3.5. In this form, mixing of bubbles in the formed glass fiber can be further suppressed.
  • ZnO is not substantially contained, and the content of MgO, expressed as wt%, is 1.2 ⁇ MgO ⁇ 1.9, and more preferably 1.2 ⁇ MgO ⁇ 1. 6, more preferably 1.3 ⁇ MgO ⁇ 1.6. At this time, the total content of MgO and CaO is particularly preferably 5.5% or more.
  • the glass composition of the present disclosure can further include the following components as long as the effects of the present invention are obtained.
  • At least one selected from ZrO 2 , SO 2 , La 2 O 3 , WO 3 , Nb 2 O 5 , Y 2 O 3 and MoO 3 is used in an amount of 0%.
  • the content may be 1% or less.
  • Glass compositions of the present disclosure as additives, at least one member selected from SnO 2, As 2 O 3 and Sb 2 O 3, can each include at a content of less than 1% 0%.
  • the glass composition of the present disclosure includes, as other components, Cr 2 O 3 , H 2 O, OH, H 2 , CO 2 , CO, He, Ne, Ar, and N 2 , 0% or more and 0.1%, respectively. It can contain with the following content rates.
  • the glass composition of the present disclosure may contain a trace amount of a noble metal element.
  • a noble metal element such as Pt, Rh, and Os can be included at a content of 0% or more and 0.1% or less.
  • the glass composition of the present disclosure may consist essentially of the above-described components.
  • the content rate of each component which a glass composition contains, and the balance between each component can take the numerical range mentioned above including a preferable range.
  • “substantially” means that the content of impurities is, for example, less than 0.1%, preferably less than 0.05%. Impurities are derived from, for example, glass raw materials, glass composition manufacturing apparatuses, glass composition forming apparatuses, and the like.
  • glass composition substantially composed of each component described above is expressed by weight%, 50 ⁇ SiO 2 ⁇ 54, 25 ⁇ B 2 O 3 ⁇ 30, 12 ⁇ Al 2 O 3 ⁇ 15, 0. 5 ⁇ MgO ⁇ 1.9,3.0 ⁇ CaO ⁇ 5.5,0.1 ⁇ Li 2 O ⁇ 0.5,0.1 ⁇ Na 2 O ⁇ 0.3, and 0.05 ⁇ Fe 2 O It is a glass composition substantially consisting of 3 ⁇ 0.3 and having a dielectric constant of less than 5.0 at a frequency of 1 MHz.
  • the upper limit of the content of SiO 2 is set to 54% or less, particularly 53% or less, or 52% or less, the viscosity of the glass at the time of melting is lowered, but at first glance, it seems disadvantageous for securing a low dielectric constant. I can see.
  • the lower limit of the B 2 O 3 content is set to 25. % Or more, particularly more than 25%, 26% or more, or 27% or more can further reduce the viscosity of the glass during melting while securing a low dielectric constant.
  • the glass viscosity can be further reduced, even when the fiber diameter of the low dielectric glass fiber to be formed is small, the occurrence of yarn breakage during spinning can be more reliably suppressed, and the glass fiber can be processed during processing. Generation of defects such as yarn breakage and fluffing can be more reliably suppressed.
  • a glass fiber spinning viscosity range of 10 3 to 10 4 d ⁇ Pa ⁇ s is known as a standard.
  • a glass fiber having a small fiber diameter for example, a glass fiber having an average fiber diameter of 3 to 4.3 ⁇ m
  • the collet described later becomes smaller as the fiber diameter becomes smaller. It has been clarified that winding is likely to occur at the time of winding by, yarn string caused by dents between fingers tends to be attached, and the appearance and / or opening failure of glass fiber tends to occur.
  • a viscosity lower than the above-mentioned viscosity range which has been conventionally used as a standard, for example, about 10 2.3 to 10 2.8 d ⁇ Pa ⁇ s, preferably 10 2.5 to 10 2.7 d. ⁇ If spinning at Pa ⁇ s is possible, the occurrence of yarn breakage during spinning can be more reliably suppressed, and the occurrence of defects such as yarn breakage and fluffing during glass fiber processing can be more reliably suppressed. There was found. However, simply raising the spinning temperature to perform spinning at the above low viscosity may hinder the operation of the spinning device due to the high glass melting temperature.
  • the viscosity of the glass at the time of melting can be further reduced, the above low viscosity can be realized in a temperature range in which spinning can be stably performed (for example, a spinning temperature of about 1350 to 1450 ° C.). Even when the fiber diameter is small, the occurrence of yarn breakage during spinning can be more reliably suppressed, and the occurrence of defects such as yarn breakage and fluffing during glass fiber processing can be more reliably suppressed.
  • Glass compositions of the present disclosure may be a composition containing no F 2 substantially.
  • Patent Document 2 Japanese Patent Publication No. 2010-508226
  • the meltability of the glass composition is improved and the viscosity at the time of melting is lowered.
  • attempts have been made to reduce the amount of bubbles and scum generated during melting.
  • the glass composition of the present disclosure based on the balance of the content of each component described above, a low dielectric constant can be achieved even when F 2 is not substantially included, and the glass fiber formed has a small fiber diameter.
  • the occurrence of yarn breakage during spinning can be suppressed, and the occurrence of defects such as yarn breakage and fluffing during processing of glass fiber after spinning can be suppressed.
  • the glass composition of the present disclosure may be a composition that does not substantially contain SrO and / or BaO.
  • the glass composition of Patent Document 3 Japanese Patent Application Laid-Open No. 2009-286686
  • a low dielectric constant can be achieved and the fiber diameter of the glass fiber to be formed, even if SrO and / or BaO are substantially not included. Even when the diameter is small, occurrence of yarn breakage during spinning can be suppressed, and occurrence of defects such as yarn breakage and fluffing during processing of glass fiber after spinning can be suppressed.
  • F 2 , SrO and BaO, alkali metal oxides, as well as for the purpose of avoiding as much as possible the content of MgO and CaO, would have been added to the conventional glass compositions. This is because alkali metal oxides, MgO and CaO have a strong effect of increasing the dielectric constant while improving the meltability and defoaming property of the glass composition.
  • F 2 , SrO and BaO are known as harmful substances, and it is desired to avoid inclusion in the glass composition as much as possible. From this point of view, the glass composition of the present disclosure which may be a composition substantially free of F 2 , SrO and BaO is advantageous.
  • the harmful substances including F 2 if the glass composition contains, when reusing the glass fiber composed of the composition, or at the time of disposal, as hazardous materials does not flow out to the surrounding environment Special attention is required.
  • recovery installation is forced so that a harmful
  • substantially free means a content rate of less than 0.1%, preferably less than 0.05%. This is to allow the inclusion of impurities. Impurities are derived from, for example, glass raw materials, glass composition manufacturing apparatuses, glass composition forming apparatuses, and the like.
  • the glass composition of the present disclosure is a glass composition containing Fe 2 O 3 as an essential component, not as an impurity.
  • the glass composition of the present disclosure is selected from ZnO, SrO, Cr 2 O 3 , As 2 O 3 , Sb 2 O 3 , P 2 O 5 , ZrO 2 , Cl 2 , SO 3 , MoO 2 , and F 2.
  • the glass composition which does not contain at least 1 sort (s) substantially substantially may be sufficient.
  • the glass composition of the present disclosure may be a glass composition that does not substantially contain TiO 2 .
  • the dielectric constant of the glass composition of the present disclosure is less than 5.0 as a value at a frequency of 1 MHz, and may be 4.9 or less, and further 4.8 or less.
  • the glass composition of the present disclosure can also be used for producing glass molded bodies other than glass fibers.
  • the glass molded body is, for example, flaky glass. That is, the glass composition of the present disclosure may be a glass composition for glass fibers, a glass composition for glass molded bodies, or a glass composition for flaky glass.
  • the same effect as in the case of glass fibers can be obtained by using the glass composition of the present disclosure for the production of glass molded bodies such as flaky glass. Specifically, even when the thickness of the glass molded body to be formed is small, generation of cracks during the formation of the molded body can be suppressed, and when the glass molded body after formation is used, for example, a printed board as an inorganic filler The occurrence of cracks and the like during use can be suppressed. “Thickness is small” means a thickness of about 0.1 to 2.0 ⁇ m, for example.
  • the glass composition of the present disclosure may be a glass composition in which devitrification does not occur even when held at at least one temperature selected from 1150 ° C., 1200 ° C., and 1250 ° C. for 2 hours. It can be a glass composition in which devitrification does not occur when it is kept at any temperature of 1 ° C. and 1250 ° C. for 2 hours.
  • These glass compositions, especially the latter glass composition can suppress the occurrence of devitrification during molding (spinning) into glass fibers, particularly glass fibers having a small fiber diameter. Similarly, it is possible to suppress the occurrence of devitrification at the time of molding into a glass molded body having a small thickness, for example, a flaky glass having a small thickness.
  • 1150 ° C., 1200 ° C., and 1250 ° C. are one mode of temperature conditions assuming that a glass fiber having a small fiber diameter is spun, specifically, one of glass temperatures in a fiberizing process in a melt spinning apparatus.
  • 1150 ° C., 1200 ° C., and 1250 ° C. are modes of temperature conditions assuming that a glass molded body having a small thickness, for example, a glass flake having a small thickness, is specifically formed.
  • a glass temperature in the molding process in the melt molding apparatus corresponds to an embodiment of the glass temperature in the molding process in the melt molding apparatus.
  • the glass fiber having a small fiber diameter means, for example, a glass fiber having an average fiber diameter of 3 to 6 ⁇ m. That is, the glass composition of the present disclosure may be a glass composition for glass fibers having a small fiber diameter, and more specifically, a glass composition for glass fibers having an average fiber diameter of 3 to 6 ⁇ m. . Moreover, when using the glass fiber manufactured from the glass composition of this indication for a printed circuit board as mentioned above, the effect of this invention becomes more remarkable. From this viewpoint, the glass composition of the present disclosure may be a glass composition for glass fiber used for a printed circuit board (for example, a printed wiring board or a printed circuit board).
  • a printed circuit board for example, a printed wiring board or a printed circuit board
  • the glass molded body manufactured from the glass composition of the present disclosure (glass molded body composed of the glass composition of the present disclosure) is used for a printed board, the effect of the present invention becomes more remarkable.
  • the glass composition of the present disclosure may be a glass composition for a glass molded body used for a printed board.
  • the glass composition of the present disclosure may be a glass composition for printed circuit boards.
  • the glass fiber of this indication is constituted by the glass composition of this indication. As long as it is comprised with the glass composition of this indication, the specific structure of glass fiber is not limited. As described above, according to the glass composition of the present disclosure, occurrence of yarn breakage during spinning can be suppressed even when the fiber diameter of the glass fiber to be formed is small. For this reason, the glass fiber of this indication may be a glass fiber with a small fiber diameter, and a low dielectric constant glass fiber with a small fiber diameter is one form of the glass fiber of this indication.
  • the average fiber diameter of the glass fiber of the present disclosure is, for example, 3 to 6 ⁇ m, and may be 3 to 4.6 ⁇ m, further 3 to 4.3 ⁇ m depending on the composition of the glass composition.
  • the number of bubbles present per volume 1 cm 3 is is for example 200 cm -3 or less, depending on the composition of the glass composition, 170cm -3 or less, even further than 160cm -3 or less Good.
  • the average fiber diameter of these glass fibers is, for example, 3 to 6 ⁇ m, and may be 3 to 4.6 ⁇ m, and further 3 to 4.3 ⁇ m depending on the composition of the glass composition.
  • the value of the dielectric constant at a frequency of 1 MHz is, for example, less than 5.0, and may be 4.9 or less, and further 4.8 or less depending on the composition of the glass composition.
  • the glass fiber of the present disclosure can be a long glass fiber (filament).
  • the glass fiber of the present disclosure may be a long glass fiber having the above-described properties, for example, a long glass fiber having a small fiber diameter and a low dielectric constant.
  • Patent Document 1 Japanese Patent Laid-Open No. 62-226839 discloses only spinning glass fibers having a relatively large fiber diameter (8 to 13 ⁇ m).
  • Patent Document 1 no assumption or consideration is given to the production of glass fibers having a small fiber diameter (for example, glass fibers having an average fiber diameter of 3 to 6 ⁇ m).
  • glass fibers having a small fiber diameter are produced using the glass composition specifically disclosed in Patent Document 1, yarn breakage during spinning and strength reduction due to fine crystals (devitrification) occur. .
  • the application of the glass fiber of the present disclosure is, for example, a printed circuit board.
  • the glass fiber of the present disclosure is used for a printed circuit board, the feature that it can be a glass fiber having a low dielectric constant and a small fiber diameter is more advantageous.
  • the use of the glass fiber of the present disclosure is not limited to a printed circuit board.
  • the glass fiber of the present disclosure can be a glass yarn.
  • the glass yarn includes the glass fiber of the present disclosure, typically a long glass fiber.
  • this glass yarn can also contain glass fibers other than the glass fiber of this indication, in order to utilize the characteristic of the glass fiber of this indication mentioned above more, it is preferable to be comprised from the glass fiber of this indication.
  • This glass yarn is highly productive because the occurrence of defects such as yarn breakage and fluffing at the time of formation is suppressed.
  • the number of long glass fibers (the number of filaments) included is 30 to 200.
  • the use of the glass yarn containing the glass fiber of this indication is a printed circuit board, for example.
  • the number of filaments can be, for example, 30 to 100, 30 to 70, and further 30 to 60.
  • a thin glass cloth can be formed more easily and reliably, and can be reliably handled by making the printed circuit board thinner.
  • the configuration and application of the glass yarn comprising the glass fiber of the present disclosure is not limited to these examples.
  • the count is 1 to 6 tex, and may be 1 to 3 tex.
  • the count is within these ranges, for example, a thin glass cloth can be formed more easily and reliably, and can be reliably handled by making the printed circuit board thinner.
  • the strength may be 0.4 N / tex or more, 0.6 N / tex or more, and further 0.7 N / tex or more.
  • the glass fiber of this indication may have the intensity
  • the glass yarn containing the glass fiber of the present disclosure may have these exemplified characteristics in any combination.
  • the glass fiber of the present disclosure can be produced by, for example, a known method using the glass composition of the present disclosure.
  • the glass composition of the present disclosure is put into a glass melting furnace and melted to form molten glass, and then the bottom part of the heat-resistant bushing in the spinning furnace It is possible to adopt a method in which molten glass is drawn out from a large number of spinning nozzles provided in, and formed into a yarn shape.
  • the glass fiber formed by this method may be a long glass fiber (filament).
  • the melting temperature in the melting furnace is, for example, 1300 to 1650 ° C., preferably 1400 to 1650 ° C., and more preferably 1500 to 1650 ° C.
  • the melting temperature is within these ranges, even when the fiber diameter of the glass fiber to be formed is small, for example, a yarn at the time of spinning at a high speed of 2000 m / min or more, preferably 2500 m / min to 4000 m / min, even if the fiber diameter is small.
  • the occurrence of breakage can be further suppressed, and an excessive increase in spinning tension can be suppressed. For this reason, the characteristic (for example, intensity
  • the above-described further effect achieved when the glass composition of the present disclosure is used and the glass composition is melted at the melting temperature in the above range to form glass fibers having a small fiber diameter is as follows. Based on the examination shown in. In order to produce a glass fiber having a small fiber diameter, a method of increasing the drawing speed (spinning speed) of the molten glass from the spinning furnace or decreasing the temperature of the spinning nozzle can be considered. However, with the former method, there is a case where a sufficient glass melting time for accelerating defoaming of the molten glass in the spinning furnace may not be ensured.
  • the fiber strength is lowered even when the yarn breaks during spinning due to the mixing of bubbles or when glass fibers are obtained without yarn breakage.
  • the tension (spinning tension) generated in the fiber during spinning increases as the spinning speed increases. This also leads to yarn breakage during spinning, a decrease in strength of the obtained glass fiber, and a decrease in the quality of the fiber.
  • the spinning tension is excessively increased, the quality deterioration of the glass fiber is caused as follows, for example.
  • a winding rotating body device For winding the spun glass fiber, a winding rotating body device called a collet, more specifically, a plurality of fingers that move toward the outside of the diameter when the collet rotates and sink into the collet main body side when stopped Is generally used on the outer periphery of the collet body.
  • a winding rotating body device called a collet, more specifically, a plurality of fingers that move toward the outside of the diameter when the collet rotates and sink into the collet main body side when stopped Is generally used on the outer periphery of the collet body.
  • Patent Document 1 after melting a glass raw material at a temperature of 1300 to 1350 ° C., glass fibers having a relatively large fiber diameter (8 to 13 ⁇ m) are spun.
  • the glass composition of the present disclosure and melting the composition at the melting temperature in the range described above, for example, (I) the above-described effect achieved by the glass composition of the present disclosure (II) The effect of ensuring sufficient defoaming properties by reducing the viscosity of the molten glass while ensuring sufficient glass melting time for promoting defoaming of the molten glass in the spinning furnace, and (III) Even when the drawing speed is increased, the effect of suppressing an excessive increase in the spinning tension is achieved.
  • the glass composition of the present disclosure and melting the composition at the melting temperature in the above-described range, for example, even when the fiber diameter of the glass fiber to be formed is small, the yarn breakage during spinning is further reduced. It is possible to reliably suppress, an excessive increase in spinning tension is prevented, and the properties (for example, strength) and quality of the obtained glass fiber can be more reliably ensured. Moreover, by the quality improvement of glass fiber, the external appearance in the glass cloth using the said glass fiber and / or the fiber opening property become favorable, for example.
  • the present specification describes a glass composition of the present disclosure (or a glass raw material that becomes a glass composition of the present disclosure by melting) at 1400 ° C. or higher, preferably 1400 to 1650 ° C., more preferably 1500.
  • a method for producing glass fiber in which a molten glass is formed by melting at a melting temperature of ⁇ 1650 ° C., and a glass fiber is obtained by spinning the formed molten glass.
  • glass fibers having a small fiber diameter more specifically glass fibers having an average fiber diameter of, for example, 3 to 6 ⁇ m, 3 to 4.6 ⁇ m, and further 3 to 4.3 ⁇ m may be formed.
  • the dielectric constant of the glass fiber to be formed may be a value at a frequency of 1 MHz, for example, less than 5.0, 4.9 or less, and further 4.8 or less.
  • the glass fiber to be formed may be a long fiber.
  • the spinning temperature in this production method can be, for example, a temperature at which the viscosity of the glass composition is 10 2.3 to 10 2.8 d ⁇ Pa ⁇ s, preferably 10 2.5 to 10 2.7 d ⁇ Pa ⁇ s.
  • the spinning speed in this production method can be, for example, 2000 m / min or more, and can be 2500 to 4000 m / min.
  • the nozzle diameter of the spinning bushing can be appropriately adjusted by a known method.
  • a glass strand can be formed by applying a sizing agent to the surface of the glass fiber formed by spinning and bundling a plurality of glass fibers, for example, 10 to 120 glass fibers.
  • the glass strand includes the glass fiber of the present disclosure.
  • the formed glass strand is wound around a tube (for example, a paper tube tube) on a collet that rotates at high speed to form a cake. Subsequently, the strand is unwound from the outer layer of the cake and air-dried while twisting.
  • a glass yarn can be formed by winding it around a bobbin and twisting it.
  • the glass cloth of this indication is constituted by the glass fiber of this indication.
  • the woven structure of the glass cloth of the present disclosure is, for example, a plain weave, satin weave, twill weave, oblique weave, or koji.
  • the woven structure of the glass cloth of the present disclosure is not limited to these examples.
  • plain weave is preferable.
  • the glass cloth of this indication may contain glass fibers other than the glass fiber of this indication, since each effect mentioned above becomes more reliable, it is preferred that only the glass fiber of this indication is included as glass fiber. .
  • the glass cloth of the present disclosure may be a glass cloth composed of low dielectric constant glass fibers having a small fiber diameter.
  • the glass cloth of the present disclosure is highly productive because the occurrence of defects such as yarn breakage and fluffing at the time of formation is suppressed.
  • the glass cloth of this indication is not limited to these examples, as long as it contains the glass fiber of this indication.
  • the thickness of the glass cloth of the present disclosure is, for example, 20 ⁇ m or less as measured in accordance with the provisions of item 7.10.1 of JIS R3420: 2013. Depending on the configuration of the glass fiber and the glass cloth, the thickness is 7 to It may be 20 ⁇ m, and further 8 to 15 ⁇ m. By realizing a glass cloth having these thicknesses, it is possible to more reliably cope with the thinning of the printed circuit board.
  • the mass of the glass cloth of the present disclosure is, for example, 20 g / m 2 or less in terms of the mass of the cloth measured according to the provisions of item 7.2 of JIS R3420: 2013. It may be 20 g / m 2 , or 8 to 13 g / m 2 .
  • the number (weave density) of glass fibers per unit length (25 mm) in the glass cloth of the present disclosure is, for example, 80 to 130 per 25 mm length for both warp and weft, depending on the configuration of the glass fibers and glass cloth. 80 to 110, or 90 to 110.
  • glass cloths having these woven densities pinholes when glass cloth is impregnated by reducing the thickness of glass cloth and increasing the number of entanglement points of warps and wefts to prevent the glass cloth from being bent. It is possible to more surely suppress the occurrence of the above.
  • the air permeability of the glass cloth of the present disclosure is, for example, 200 cm 3 / (cm 2 ⁇ sec) or less. Depending on the configuration of the glass fiber and the glass cloth, 50 to 200 cm 3 / (cm 2 ⁇ sec), or 50 It may be ⁇ 150 cm 3 / (cm 2 ⁇ sec). In the glass cloth having such air permeability, it is possible to more surely balance the reduction of the thickness of the glass cloth and the generation of the pinhole. In addition, in order to open these air permeability so that the glass cloth has, the glass composition of the present disclosure or the glass raw material that becomes the glass composition of the present disclosure by melting is described above when spinning the glass fiber. It is preferable to melt at a melting temperature of 1400 ° C. or higher, preferably 1400 to 1650 ° C.
  • the glass cloth of the present disclosure can be manufactured by a known method using the glass fiber of the present disclosure.
  • An example of a manufacturing method is a method in which a warp yarn of a glass yarn containing the glass fiber of the present disclosure is driven using the warping step and a gluing step on the glass yarn containing the glass fiber of the present disclosure as a warp. It is.
  • Various looms such as a jet loom (more specific examples are an air jet loom and a water jet loom), a sulzer loom, and a rapier loom can be used for driving the weft.
  • the manufacturing method of the glass cloth of this indication is not limited to the said example.
  • the glass cloth of the present disclosure may be subjected to a fiber opening process.
  • the thickness of the glass cloth can be made thinner.
  • the specific method of the fiber-opening treatment is not limited. For example, fiber-opening by water pressure; water (more specific examples include deaerated water, ion-exchanged water, deionized water, electrolytic cation water, electrolytic negative (Ionized water) or the like as a medium for opening by high-frequency vibration; opening by pressing using a roll or the like;
  • the fiber opening process may be performed simultaneously with the weaving of the glass cloth or after the weaving. Further, the fiber opening process may be performed simultaneously with various processes such as heat cleaning and surface treatment, or the fiber opening process may be performed after various processes.
  • a process for removing the substance such as a heat cleaning process can be further performed.
  • the glass cloth that has been subjected to the removal treatment is used for a printed circuit board, for example, the impregnation property of the matrix resin and the adhesion with the resin are improved.
  • the woven glass cloth may be surface-treated with a silane coupling agent or the like. The surface treatment can be carried out by known means, and more specifically by a method of impregnating a glass cloth with a silane coupling agent, a coating method, a spraying method, and the like.
  • the application of the glass cloth of the present disclosure is, for example, a printed circuit board, and when used for a printed circuit board, it is more advantageous that the glass cloth has a low dielectric constant and can be composed of a glass fiber having a small fiber diameter.
  • the use of the glass cloth of this indication is not limited to a printed circuit board.
  • Examples 1 to 5, Comparative Examples 1 and 2 glass raw materials were weighed so as to have the respective compositions shown in Table 1 below (units of content of components are% by weight) and mixed so as to be in a homogeneous state, thereby producing glass raw material mixed batches. .
  • the prepared mixed batch was put into a platinum rhodium crucible and heated in an air atmosphere in an indirect heating electric furnace set at 1600 ° C. for 3 hours or more to obtain a molten glass.
  • the obtained molten glass was poured into a refractory mold and cast-molded, and the obtained molded body was gradually cooled to room temperature in a slow cooling furnace to obtain a glass composition sample used for evaluation.
  • the glass sample thus produced was evaluated for the number of bubbles, devitrification, and dielectric constant at a frequency of 1 MHz by the following procedure. The evaluation results are shown in Table 1.
  • the composition is a glass composition in which devitrification did not occur at at least one heating temperature selected from 1150 ° C., 1200 ° C. and 1250 ° C. at a heating temperature of 2 hours in the electric furnace, and in particular, It was a glass composition in which devitrification did not occur at the heating temperature. For this reason, the glass composition in which devitrification has not occurred at any heating temperature of 1150 ° C., 1200 ° C., and 1250 ° C.
  • the dielectric constant at a frequency of 1 MHz was measured according to the standard of ASTM D150-87. The measurement temperature was 25 ° C. The smaller the dielectric constant of the glass composition is, the smaller the dielectric loss of the printed circuit board including glass fibers made of the glass composition is.
  • the number of confirmed bubbles was in the range of about 145 to 165 cm ⁇ 3 , and any glass composition was made of fiber. Even when holding for 2 hours at 1150 ° C., 1200 ° C., and 1250 ° C., which is a condition assuming that a glass fiber having a small diameter is spun, the transparent glass state is maintained without precipitation of white crystals. It was.
  • the number of confirmed bubbles increased as compared to the glass compositions of Examples 1 to 5 and Comparative Example 1, and the evaluation of devitrification was “impossible ( ⁇ )”. became. Further, the dielectric constants of the glass compositions of Examples 1 to 5 and Comparative Example 1 at a frequency of 1 MHz were all about 4.8.
  • glass fibers were produced from the glass composition pellets of Examples 1 to 5 and Comparative Examples 1 and 2 as follows. First, pellets of each composition were put into a glass melting furnace and melted at a melting temperature of 1550 ° C. Next, at a spinning temperature at which the viscosity is about 10 2.6 d ⁇ Pa ⁇ s, the molten glass is drawn out from a number of nozzles provided at the bottom of the heat-resistant bushing in the spinning furnace and rotated at high speed while applying a bundling agent. A glass strand (average fiber diameter: 4.1 ⁇ m, number of filaments: 50) was wound around a tube on the collet to form a cake.
  • the spinning temperature becomes excessively high and the spinning apparatus cannot be operated, so that the viscosity is about 10 3 d ⁇ Pa ⁇ s.
  • the spinning temperature was as follows. Next, the strands were sequentially unwound from the outer layer of the formed cake, air-dried while twisted, and then wound around a bobbin to obtain twisted yarn (number 1.7 tex).
  • the glass composition of the obtained glass yarn was the same as the glass composition of the pellet used for manufacture of each glass yarn.
  • the obtained glass yarn was woven using an air jet loom as warp and weft, and the number of warps per unit length (25 mm) (warp density, the same applies hereinafter) was 95, per unit length (25 mm).
  • a plain weave glass cloth having 95 wefts (weft density, hereinafter the same) was formed.
  • the silane coupling agent as a surface treatment agent is applied to the glass cloth after the sizing agent is removed.
  • a fiber cloth was obtained by performing a fiber opening process by water flow processing. Each glass cloth obtained had a warp density of 95/25 mm, a weft density of 95/25 mm, a thickness of 15 ⁇ m, and a mass of 12.7 g / m 2 .
  • the evaluation results of each glass fiber, glass yarn and glass cloth are summarized in Table 2 below.
  • the evaluation method for each evaluation item is as follows.
  • Glass fiber spinning operability is the same as the spinning speed and winding time (that is, the same length when there is no yarn breakage), with a predetermined length without yarn breakage during spinning within the operation time (12 hours or more). Evaluation was based on the ratio of the number of cakes of a predetermined length that could be collected without thread breakage to the ideal number of cakes when it was assumed that the number of cakes could be collected. Evaluation was carried out in the following five stages. 5: The ratio is 70% or more 4: The ratio is 60% or more and less than 70% 3: The ratio is 50% or more and less than 60% 2: The ratio is 40% or more and less than 50% 1: The ratio is less than 40%
  • the average fiber diameter of the glass fibers was evaluated as follows. Prepare two pieces of the obtained glass cloth cut into a 30 cm square size, one for warp observation and the other for weft observation, embedded in epoxy resin (manufactured by Marumoto Struers, trade name 3091), respectively. And cured. Next, each cured product was polished to such an extent that warps or wefts could be observed, and the polished surface was observed with a scanning electron microscope (SEM; manufactured by JEOL Ltd., trade name JSM-6390A) at a magnification of 500 times. At this time, 20 warp yarns and weft yarns were randomly selected, the diameters of all the selected glass fibers were measured, and the average value was calculated, which was taken as the average fiber diameter of the glass fibers.
  • SEM scanning electron microscope
  • the strength of the glass yarn was evaluated as follows.
  • the tensile strength of the obtained glass yarn was determined according to JIS R3420: 2013, item 7.4.3, using a circular clamp with a radius of 13 mm, a test speed of 250 mm / min, and a gripping interval of 250 mm. Next, the obtained tensile strength was divided by the count of the glass yarn to obtain the strength (unit: N / tex) of the glass yarn.
  • the degree of fluffing generated in the obtained glass yarn was evaluated by the number of fluffs per unit length (100 m). Specifically, the glass yarn wound on the bobbin is unwound at a speed of 100 m / min, passed through a tension bar, and then the number of fluff generated in the glass yarn is counted by a sensor. Obtained by converting per length.
  • the glass compositions of Examples 1 to 5 and Comparative Example 1 were all glass compositions in which the occurrence of devitrification and the mixing of bubbles were suppressed. Compared with the glass composition, the glass compositions of Examples 1 to 5 further improved the spinning operability by further suppressing yarn breakage during spinning, and fuzzed during processing of glass fibers (during the formation of glass yarn). The occurrence of was suppressed. In addition, the glass composition of Comparative Example 2 in which the evaluation of devitrification was “impossible ( ⁇ )” had low spinning operability, and a lot of fluffing occurred during processing of glass fibers (when forming glass yarn). The appearance of the glass cloth was inferior.
  • the glass composition of the present disclosure can be used for producing glass fibers, for example, glass fibers for printed circuit boards. Moreover, the glass composition of this indication can be utilized for manufacture of a glass molded object, for example, flake shaped glass.
  • the flaky glass can be used, for example, as an inorganic filler for printed circuit boards.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

本開示のガラス組成物は、重量%で表示して、50≦SiO2≦56、20≦B2O3≦30、10≦Al2O3≦20、3.5≦MgO+CaO≦10、0≦R2O≦1.0を含み、さらにFe2O3を含有し、周波数1MHzにおける誘電率にして5.0未満の誘電率を有する。Rは、Li、Na及びKから選ばれる少なくとも1種の元素である。本開示のガラス組成物は、低誘電率のガラス組成物であって、形成するガラス繊維の繊維径が小さい場合においても紡糸時の糸切れの発生を抑制できると共に、ガラス繊維の加工時における糸切れ、及び毛羽立ち等の欠点の発生を抑制できるガラス組成物である。

Description

ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法
 本発明は、ガラス組成物と、当該組成物により構成されるガラス繊維、及びガラスクロスとに関する。また、本発明は、ガラス繊維の製造方法に関する。
 電子機器が備えるプリント回路板(printed circuit board)の一種に、樹脂、ガラス繊維、及び無機充填材、並びに、必要に応じて、硬化剤及び改質剤等の更なる材料から構成される基板がある。また、電子部品が実装される前のプリント配線板(printed wiring board)にも、上記基板と同様の構成を有するものがある。以下、本明細書では、プリント回路板及びプリント配線板の双方を合わせて、「プリント基板(printed board)」と記載する。プリント基板においてガラス繊維は、絶縁体、耐熱体、及び基板の補強材として機能する。ガラス繊維は、例えば、複数のガラス繊維を引き揃えたガラス糸(ガラスヤーン)を製織したガラスクロスとして、プリント基板に含まれる。近年、電子機器の小型化の要求と、高機能化を目的としたプリント基板の高実装化の要求とに応えるために、プリント基板の薄型化が進んでいる。プリント基板の薄型化のためには、繊維径のより小さなガラス繊維が必要とされる。また、大容量のデータを高速で伝送処理する要求が急激に高まっている等の理由から、プリント基板に使用するガラス繊維には低誘電率化が求められている状況にある。
 プリント基板に使用される無機充填剤にもガラスが用いられることがある。典型的な例は、フレーク状ガラスである。フレーク状ガラス等のガラス成形体をプリント基板の無機充填剤に使用する場合、当該成形体には、プリント基板に用いられるガラス繊維と同様の特性、例えば低い誘電率、が要求される。また、プリント基板の薄型化に対応するためには、より薄肉化された、厚さの小さいガラス成形体としなければならない。
 低誘電率のガラス組成物から構成されるガラス繊維が、特許文献1~3に開示されている。
特開昭62-226839号公報 特表2010-508226号公報 特開2009-286686号公報
 従来の低誘電率ガラス組成物では、繊維径の小さなガラス繊維を形成しようとすると、紡糸時の糸切れが発生しやすい傾向にある。また、形成した複数のガラス繊維を引き揃えてガラスヤーンを形成する際、及び/又は形成したガラスヤーンを製織してガラスクロスとする際に、ガラス繊維の糸切れ、及び毛羽立ち等の欠点が発生しやすい傾向がある。
 本発明は、低誘電率のガラス組成物であって、形成するガラス繊維の繊維径が小さい場合においても紡糸時の糸切れの発生を抑制できると共に、ガラス繊維の加工時における糸切れ、及び毛羽立ち等の欠点の発生を抑制できるガラス組成物の提供を目的とする。
 本発明は、
 重量%で表示して、
  50≦SiO2≦56
  20≦B23≦30
  10≦Al23≦20
 3.5≦MgO+CaO≦10
   0≦R2O≦1.0
を含み、
 さらにFe23を含有し、
 周波数1MHzにおける誘電率が5.0未満であるガラス組成物、
 を提供する。
 ただし、Rは、Li、Na及びKから選ばれる少なくとも1種の元素である。
 別の側面において、本発明は、
 上記本発明のガラス組成物から構成されるガラス繊維、
 を提供する。
 また別の側面において、本発明は、
 上記本発明のガラス繊維から構成されるガラスクロス、
 を提供する。
 さらに別の側面において、本発明は、
 上記本発明のガラス組成物を1400℃以上の温度で熔融する工程を含み、平均繊維径が3~6μmのガラス繊維を得る、ガラス繊維の製造方法、
 を提供する。
 本発明によれば、低誘電率のガラス組成物であって、形成するガラス繊維の繊維径が小さい場合においても紡糸時の糸切れの発生を抑制できると共に、ガラス繊維の加工時における糸切れ、及び毛羽立ち等の欠点の発生を抑制できるガラス組成物を提供できる。
 [ガラス組成物]
 本開示のガラス組成物は、重量%で表示して、
  50≦SiO2≦56
  20≦B23≦30
  10≦Al23≦20
 3.5≦MgO+CaO≦10
   0≦R2O≦1.0
を含み、
 さらにFe23を含有し、
 周波数1MHzにおける誘電率が5.0未満であるガラス組成物である。ただし、Rは、Li、Na及びKから選ばれる少なくとも1種の元素である。
 なお、「誘電率」は、真空の誘電率との比である比誘電率を正確には意味するが、本明細書では当業者の慣用に従い、単に「誘電率」と表記する。本明細書における誘電率は、室温(25℃)での値である。
 本開示のガラス組成物について、組成の限定理由を説明する。以下の記述において、組成を示す「%」表示は、全て重量%である。
 (SiO2
 SiO2は、ガラスの網目構造を形成する必須成分である。SiO2は、ガラス組成物の誘電率を下げる作用を有する。SiO2の含有率が50%未満では、ガラス組成物の周波数1MHzにおける誘電率を5.0未満とすることが困難となる。一方、SiO2の含有率が56%を超えると、熔融時の粘性が高くなることで、ガラス繊維を製造する際に均質なガラス組成物とすることが難しくなる。特に、ダイレクトメルト法によるガラス繊維の形成時に、この傾向が強くなる。ガラス組成物の均質性が低下すると、ガラス繊維、なかでも繊維径の小さいガラス繊維、の紡糸時に糸切れが誘発される。また、ガラス組成物の均質性が低下すると、紡糸後のガラス繊維の加工時、例えば、形成した複数のガラス繊維を引き揃えてガラスヤーンとする際、及びガラスヤーンを製織してガラスクロスとする際、における糸切れ、及び毛羽立ち等の欠点が誘発される。均質性の低下によって、ガラス繊維として十分な特性が得られなくなることもある。また、SiO2の含有率が56%を超えると、熔融時の粘性が高くなることで熔融ガラスの脱泡性(泡抜け性)が低下して、形成したガラス繊維における泡の混入の抑制が不十分となることがある。泡を含むガラス繊維がホローファイバーとしてプリント基板に使用された場合、スルーホール形成に用いる金属が繊維内に侵入して導通不良となり、プリント基板の信頼性を著しく低下させる。ガラス繊維、とりわけプリント基板に使用するガラス繊維、に対する泡の混入はできるだけ避けなければならない。したがって、SiO2の含有率は、50%以上56%以下に定める。ガラス組成物の均質性をより向上できることから、SiO2の含有率の上限は54%以下が好ましい。SiO2の含有率は、50%以上54%以下であってもよい。
 (B23
 B23は、ガラスの網目構造を形成する必須成分である。B23は、ガラス組成物の誘電率を下げると共に、熔融時のガラス組成物の粘性を下げ、脱泡性(泡抜け性)を向上させ、形成したガラス繊維における泡の混入を抑制する作用を有する。一方で、B23は、ガラス組成物の熔融時に揮発しやすい成分である。B23の含有率が20%未満では、周波数1MHzにおけるガラス組成物の誘電率を5.0未満とすることが困難である。これに加えて、熔融時におけるガラス組成物の粘性が高くなることで、ガラス組成物として十分な均質性が得られ難くなったり、形成したガラス繊維における泡の混入の抑制が不十分となったりすることがある。一方、B23の含有率が30%を超えると、ガラス組成物の熔融時におけるB23の揮発によって、ガラス組成物として十分な均質性が得られないことがある。例えば、B23が揮発した領域では、SiO2及びAl23の含有率が相対的に増加することになり、なかでもAl23の含有率が顕著に増加した領域では、失透が生じやすくなる。また、B23の含有率が30%を超えると、ガラス組成物が分相しやすくなり、ガラス組成物としての化学的耐久性が低下しがちである。プリント基板にガラス繊維を使用する場合、特にガラス繊維の繊維径が小さいときには、高い化学的耐久性をガラス繊維が有することが望まれる。B23の含有率の上限は、これらの観点から、29.5%以下が好ましく、29%以下がより好ましく、28.5%以下がさらに好ましく、28%以下が特に好ましい。一方、ガラス組成物の均質性をより向上できることから、B23の含有率の下限は22%以上が好ましく、25%以上がより好ましく、25%を超えることがさらに好ましい。B23の含有率は、上記示されたこれらの上限及び下限を任意に組み合わせた範囲をとることができる。本明細書に示された上限及び下限を任意に組み合わせた含有率の範囲をとりうることは、B23以外の他の成分についても同様である。B23の含有率は、25%以上30%以下であってもよく、25%を超え30%以下であってもよい。また、B23の含有率は、25%以上28%以下であってもよく、25%を超え28%以下であってもよい。更に、B23の含有率は、26%以上30%以下であってもよく、26%以上29%以下であってもよい。
 (Al23
 Al23は、ガラスの網目構造を形成する必須成分である。Al23は、ガラス組成物の化学的耐久性を高める作用を有する。一方で、Al23は、熔融時のガラス組成物の粘性を高めると共に、紡糸時におけるガラス組成物の失透を起こりやすくする。Al23の含有率が10%未満では、ガラス組成物の化学的耐久性が低下する傾向がある。また、Al23の含有率を10%未満に定めた場合、他の網目成分であるSiO2及びB23の含有率、特にSiO2の含有率、の増加が余儀なくされることで、熔融時のガラス組成物の粘性が高くなる。熔融時のガラス組成物の粘性が高くなると、ガラス組成物として十分な均質性を得ることが難しくなり、形成したガラス繊維における泡の混入の抑制が不十分となることがある。一方、Al23の含有率を20%超に定めると、他の網目成分であるSiO2及びB23の含有率が低下することでガラス組成物の誘電率が上昇し、周波数1MHzにおける誘電率を5.0未満とすることが困難になる。また、Al23の含有率が20%を超えると、熔融時のガラス組成物の粘性が高くなることで、ガラス組成物として十分な均質性を得ることが難しくなり、形成したガラス繊維における泡の混入の抑制が不十分となることがある。また、この場合、ガラス組成物の失透が発生しやすくなる。ガラス組成物の均質性をより向上できることから、Al23の含有率の上限は18%以下が好ましく、15%以下がより好ましい。また、ガラス組成物の均質性をより向上できることから、Al23の含有率の下限は12%以上が好ましい。Al23の含有率は、12%以上15%以下であってもよい。
 (MgO+CaO)
 MgO及びCaOは、ガラス原料の熔融性を向上させると共に、熔融時のガラス組成物の粘性を下げる作用を有する成分である。一方で、MgO及びCaOは、ガラス組成物の誘電率を上昇させる。MgO及びCaOの含有率の合計が3.5%未満では、熔融時のガラス組成物の粘性が高くなることで、ガラス組成物として十分な均質性を得ることが難しくなり、形成したガラス繊維における泡の混入の抑制が不十分となることがある。一方、MgO及びCaOの含有率の合計が10%を超えると、ガラス組成物の誘電率が上昇し、周波数1MHzにおける誘電率を5.0未満とすることが困難になる。MgO及びCaOの含有率の合計の下限は、5.5%以上が好ましく、6.0%以上がより好ましい。MgO及びCaOの含有率の合計の上限は、8.0%以下が好ましく、7.4%以下がより好ましい。本開示のガラス組成物は、MgO及びCaOの双方を含むことが好ましい。
 (MgO)
 熔融時におけるガラス組成物の粘性が下がることでガラス繊維への泡の混入を抑制でき、ガラス組成物としての均質性をより向上できることから、MgOの含有率の下限は0.5%以上が好ましい。また、周波数1MHzにおける誘電率5.0未満をより確実に達成できることから、MgOの含有率の上限は1.9%以下が好ましく、1.8%以下がより好ましく、1.7%以下がさらに好ましく、1.6%以下が特に好ましい。MgOの含有率は、0.5%以上1.9%以下であってもよいし、1.2%以上1.9%以下であってもよい。他の成分とのバランスによっては、MgOの含有率の下限は1.5%以上であってもよく、1.5%超であってもよい。
 (CaO)
 ガラス原料の熔融性を向上させると共に、熔融時におけるガラス組成物の粘性を下げるCaOの作用は、MgO及び後述のZnOに比べて大きい。熔融時におけるガラス組成物の粘性が下がることでガラス繊維への泡の混入を抑制でき、ガラス組成物としての均質性をより向上できることから、CaOの含有率の下限は3.0%以上が好ましい。また、CaOの含有率が3.0%以上であると、ガラス組成物の分相が抑制される。また、周波数1MHzにおける誘電率5.0未満をより確実に達成できることから、CaOの含有率の上限は5.5%以下が好ましい。CaOの含有率は、3.0%以上5.5%以下であってもよい。なお、CaOは、MgO及びZnOに比べて、ガラス組成物の誘電正接を増加させる程度が小さい。
 (R2O)
 R2Oは、ガラス原料の熔融性を向上させると共に、熔融時におけるガラス組成物の粘性を下げる作用を有する成分である。一方で、R2Oは、ガラス組成物の誘電率及び誘電正接を上昇させる。Rは、Li、Na及びKから選ばれる少なくとも1種の元素である。R2Oの含有率が1.0%を超えると、ガラス組成物の誘電率が上昇し、周波数1MHzにおける誘電率を5.0未満とすることが困難になる。熔融時におけるガラス組成物の粘性が下がることでガラス繊維への泡の混入を抑制でき、ガラス組成物としての均質性をより向上できることから、R2Oの含有率の下限は0.1%以上が好ましく、0.2%以上がより好ましい。また、ガラス組成物の誘電率の上昇を抑制する観点から、R2Oの含有率の上限は0.8%以下が好ましい。本開示のガラス組成物は、R2Oとして、Li2O及びNa2Oを含むことが好ましい。本開示のガラス組成物は、K2Oを実質的に含まない組成物であってもよい。
 (Li2O)
 本開示のガラス組成物がLi2Oを含む場合、熔融時におけるガラス組成物の粘性が下がることでガラス繊維への泡の混入を抑制でき、ガラス組成物としての均質性をより向上できることから、Li2Oの含有率の下限は0.1%以上が好ましい。また、ガラス組成物の誘電率の上昇を抑制する観点から、Li2Oの含有率の上限は0.5%以下が好ましい。Li2Oの含有率は、0.1%以上0.5%以下であってもよい。
 (Na2O)
 本開示のガラス組成物がNa2Oを含む場合、熔融時におけるガラス組成物の粘性が下がることでガラス繊維への泡の混入を抑制でき、ガラス組成物としての均質性をより向上できることから、Na2Oの含有率の下限は0.1%以上が好ましい。また、ガラス組成物の誘電率の上昇を抑制する観点から、Na2Oの含有率の上限は0.3%以下が好ましい。Na2Oの含有率は、0.1%以上0.3%以下であってもよい。
 (Fe23
 Fe23は、熱線吸収によってガラス原料の熔融性を向上させると共に、熔融時におけるガラス組成物の均質性を向上させる必須成分である。Fe23による均質性向上の効果は、その熱線吸収作用に基づき、組成としての均質性向上だけではなく、ガラス繊維の紡糸時における熱分布の均質性向上にも及ぶ。これにより、形成するガラス繊維の繊維径が小さい場合においても、紡糸時におけるガラス繊維の糸切れの発生が抑制される(紡糸操業性が向上する)。また、機械的特性、例えば強度、の均質性が向上したガラス繊維の製造が実現し、紡糸後の加工時における糸切れ、及び毛羽立ち等の欠点の発生が抑制される(加工生産性が向上する)。十分な熱線吸収作用を確保し、熔融時におけるガラス組成物の均質性をより向上できることから、Fe23の含有率の下限は0.05%以上が好ましく、0.10%以上がより好ましい。Fe23による過度の熱線吸収作用を抑制し、熔融時に熱源から離れた位置にあるガラス組成物に対しても熱源からの熱線をより確実に到達させる観点から、Fe23の含有率の上限は0.3%以下が好ましく、0.25%以下がより好ましく、0.20%以下が更に好ましい。本明細書において、Fe23の含有率とは、Fe23に換算した全酸化鉄の含有率を意味する。ガラス組成物中のFeは、Fe3+以外の形態(例えばFe2+)をとりうる。
 形成するガラス繊維の繊維径が小さい場合、特許文献1に開示されているような比較的大きな繊維径を有するガラス繊維(繊維径にして8~13μm)の紡糸では影響しないような微小な結晶(失透)が、紡糸時の糸切れに影響する。また、微小な結晶の発生は、繊維径の小さいガラス繊維を紡糸する場合に熔融ガラスの引出量を小さくしなければならない、即ち、ガラス組成物を失透温度域に長時間滞留させなければならないことも要因の一つとなっている。引出量の減少について、例えば、平均繊維径9μmのガラス繊維を紡糸する際の引出量に対する平均繊維径3μmのガラス繊維を紡糸する際の引出量の比は、32/92と非常に大きい。
 Fe23による均質性向上の効果は、上記微小な結晶の発生の抑制、及び上述した泡の混入の抑制に及ぶことはもちろん、単なるこれらの発生及び混入の抑制を超えたガラス繊維の均質性の向上にまで及ぶ。これにより、形成するガラス繊維の繊維径が小さい場合においても、上述した効果が達成される。
 (ZnO)
 本開示のガラス組成物は、ZnOを含むガラス組成物であってもよいし、ZnOを実質的に含有しないガラス組成物であってもよい。ZnOは、ガラス原料の熔融性を向上させると共に、熔融時におけるガラス組成物の粘性を下げる作用を有する成分である。一方で、ZnOは、ガラス組成物の誘電率を上昇させる。本開示のガラス組成物がZnOを含む場合、ガラス組成物の誘電率の上昇を抑制する観点から、ZnOの含有率の上限は3.5%以下が好ましい。即ち、ZnOの含有率は、0%以上3.5%以下であってもよい。本開示のガラス組成物がZnOを含む場合、熔融時におけるガラス組成物の粘性が下がることでガラス繊維への泡の混入を抑制でき、ガラス組成物としての均質性をより向上できる観点から、ZnOの含有率の下限は1.5%以上であってもよい。また、他の成分とのバランスによっては、ZnOの含有率の上限は1.5%以下であってもよいし、1.5%未満、更には1.0%以下であってもよい。
 (網目成分のバランス)
 以下、本開示のガラス組成物における網目成分のバランスの例を、各網目成分の含有率により示す。
 ある一つの形態では、SiO2、B23及びAl23の含有率が、重量%で表示して、それぞれ50≦SiO2≦54、25≦B23≦30、及び12≦Al23≦15である。
 ある一つの形態では、B23及びAl23の含有率が、重量%で表示して、それぞれ25≦B23≦27、及び14≦Al23≦15である。この形態では、形成したガラス繊維における泡の混入をより確実に抑制できる。
 ある一つの形態では、B23の含有率が、重量%で表示して、25≦B23≦26.6である。このとき、Al23の含有率が、重量%で表示して、14≦Al23≦15であることが好ましい。この形態では、形成したガラス繊維における泡の混入をより抑制できる。
 ある一つの形態では、SiO2の含有率が、重量%で表示して、50≦SiO2≦52.5である。このとき、B23及び/又はAl23の含有率が、上述した好ましい範囲にあることが好ましい。この形態では、形成したガラス繊維における泡の混入をより抑制できる。
 (修飾成分のバランス)
 以下、本開示のガラス組成物における修飾成分のバランスの例を、各修飾成分の含有率により示す。
 ある一つの形態では、MgO、CaO、Li2O及びNa2Oの含有率が、重量%で表示して、それぞれ0.5≦MgO≦1.9、3.0≦CaO≦5.5、0.1≦Li2O≦0.5、及び0.1≦Na2O≦0.3である。
 ある一つの形態では、MgO、CaO、ZnO、Li2O及びNa2Oの含有率が、重量%で表示して、それぞれ0.5≦MgO≦1.9、3.0≦CaO≦5.5、0≦ZnO≦3.5、0.1≦Li2O≦0.5、及び0.1≦Na2O≦0.3である。
 ある一つの形態では、MgOの含有率が、重量%で表示して、0.5≦MgO≦1.3であり、0.5≦MgO≦1.0であってもよい。この形態では、形成したガラス繊維における泡の混入をより抑制できる。
 ある一つの形態では、MgOの含有率、並びにLi2O及びNa2Oの含有率の合計が、重量%で表示して、それぞれ1.2≦MgO≦1.5、及び0.4≦Li2O+Na2O≦0.8である。この形態では、形成したガラス繊維における泡の混入をより抑制できる。
 修飾成分のバランスに関してZnOに着目してもよく、ある一つの形態では、ZnOの含有率が、重量%で表示して、1.5≦ZnO≦3.5である。この形態では、形成したガラス繊維における泡の混入をより抑制できる。
 ある一つの形態では、ZnOを実質的に含まず、MgOの含有率が、重量%で表示して、1.2≦MgO≦1.9であり、より好ましくは1.2≦MgO≦1.6であり、更に好ましくは1.3≦MgO≦1.6である。このとき、MgO及びCaOの含有率の合計が5.5%以上であることが特に好ましい。
 本開示のガラス組成物は、本発明の効果が得られる限り、下記の成分を更に含むことができる。
 (その他の成分)
 本開示のガラス組成物は、その他の成分として、ZrO2、SO2、La23、WO3、Nb25、Y23及びMoO3から選ばれる少なくとも1種を、それぞれ0%以上1%以下の含有率で含むことができる。
 本開示のガラス組成物は、添加物として、SnO2、As23及びSb23から選ばれる少なくとも1種を、それぞれ0%以上1%以下の含有率で含むことができる。
 本開示のガラス組成物は、その他の成分として、Cr23、H2O、OH、H2、CO2、CO、He、Ne、Ar及びN2を、それぞれ0%以上0.1%以下の含有率で含むことができる。
 本開示のガラス組成物は、微量の貴金属元素を含有していてもよい。例えば、Pt、Rh、Os等の貴金属元素を、それぞれ0%以上0.1%以下の含有率で含むことができる。
 本開示のガラス組成物は、上述した各成分から実質的になってもよい。その場合、ガラス組成物が含む各成分の含有率、並びに各成分間のバランスは、好ましい範囲を含め、上述した数値範囲をとることができる。本明細書において「実質的になる」とは、含有率にして、例えば0.1%未満、好ましくは0.05%未満の不純物の含有を許容する趣旨である。不純物は、例えば、ガラス原料、ガラス組成物の製造装置、及びガラス組成物の成形装置等に由来する。
 上述した各成分から実質的になるガラス組成物の一例は、重量%で表示して、50≦SiO2≦54、25≦B23≦30、12≦Al23≦15、0.5≦MgO≦1.9、3.0≦CaO≦5.5、0.1≦Li2O≦0.5、0.1≦Na2O≦0.3、及び0.05≦Fe23≦0.3から実質的になり、周波数1MHzにおける誘電率が5.0未満のガラス組成物である。
 他の例は、重量%で表示して、50≦SiO2≦54、25≦B23≦30、12≦Al23≦15、0.5≦MgO≦1.9、3.0≦CaO≦5.5、0≦ZnO≦3.5、0.1≦Li2O≦0.5、0.1≦Na2O≦0.3、及び0.05≦Fe23≦0.3から実質的になり、周波数1MHzにおける誘電率が5.0未満のガラス組成物である。
 他の例は、重量%で表示して、50.0≦SiO2≦54.0、25.0≦B23≦30.0、12.0≦Al23≦15.0、0.50≦MgO≦1.90、3.00≦CaO≦5.50、0≦ZnO≦3.50、0.10≦Li2O≦0.50、0.10≦Na2O≦0.30、及び0.05≦Fe23≦0.3から実質的になり、周波数1MHzにおける誘電率が5.0未満のガラス組成物である。
 他の例は、重量%で表示して、50.0≦SiO2≦54.0、25.0≦B23≦28.0、12.0≦Al23≦15.0、0.50≦MgO≦1.50、3.00≦CaO≦5.50、0≦ZnO≦3.50、0.10≦Li2O≦0.50、0.10≦Na2O≦0.30、及び0.05≦Fe23≦0.3から実質的になり、周波数1MHzにおける誘電率が5.0未満のガラス組成物である。
 他の例は、重量%で表示して、50.0≦SiO2≦54.0、28.1≦B23≦30.0、12.0≦Al23≦15.0、0.50≦MgO≦1.90、3.00≦CaO≦5.50、0≦ZnO≦3.50、0.10≦Li2O≦0.50、0.10≦Na2O≦0.30、及び0.05≦Fe23≦0.3から実質的になり、周波数1MHzにおける誘電率が5.0未満のガラス組成物である。
 他の例は、重量%で表示して、50.0≦SiO2≦54.0、25.0≦B23≦30.0、12.0≦Al23≦15.0、1.51≦MgO≦1.90、3.00≦CaO≦5.50、0≦ZnO≦3.50、0.10≦Li2O≦0.50、0.10≦Na2O≦0.30、及び0.05≦Fe23≦0.3から実質的になり、周波数1MHzにおける誘電率が5.0未満のガラス組成物である。
 他の例は、重量%で表示して、50.0≦SiO2≦54.0、28.1≦B23≦30.0、12.0≦Al23≦15.0、1.51≦MgO≦1.90、3.00≦CaO≦5.50、0≦ZnO≦3.50、0.10≦Li2O≦0.50、0.10≦Na2O≦0.30、及び0.05≦Fe23≦0.3から実質的になり、周波数1MHzにおける誘電率が5.0未満のガラス組成物である。
 他の例は、重量%で表示して、50.0≦SiO2≦54.0、26.0≦B23≦30.0、12.0≦Al23≦15.0、1.20≦MgO≦1.90、3.50≦CaO≦5.00、0≦ZnO≦3.50、0.10≦Li2O≦0.50、0.10≦Na2O≦0.30、及び0.05≦Fe23≦0.3から実質的になり、周波数1MHzにおける誘電率が5.0未満のガラス組成物である。
 他の例は、重量%で表示して、50.0≦SiO2≦53.0、26.0≦B23≦29.0、14.0≦Al23≦15.0、1.40≦MgO≦1.90、4.50≦CaO≦5.00、0.10≦Li2O≦0.30、0.10≦Na2O≦0.30、及び0.05≦Fe23≦0.3から実質的になり、含有率比(CaO/(MgO+CaO+ZnO))が0.7~0.8であって、周波数1MHzにおける誘電率が5.0未満のガラス組成物である。
 他の例は、重量%で表示して、50.0≦SiO2≦52.0、27.0≦B23≦29.0、14.0≦Al23≦15.0、1.40≦MgO≦1.60、4.60≦CaO≦5.00、0.10≦Li2O≦0.30、0.10≦Na2O≦0.30、及び0.1≦Fe23≦0.2から実質的になり、含有率比(CaO/(MgO+CaO+ZnO))が0.70~0.80であって、周波数1MHzにおける誘電率が5.0未満のガラス組成物である。
 SiO2の含有率の上限を54%以下、とりわけ53%以下、又は52%以下に定めると、熔融時におけるガラスの粘性が下がる一方で、一見、低い誘電率の確保には不利であるようにみえる。しかし、上述のように、MgOの含有率の上限とCaOの含有率の上限との和を所定の値以下、例えば6.90%以下、としつつ、B23の含有率の下限を25%以上、とりわけ25%超、26%以上、又は27%以上とすることにより、低い誘電率を確保しつつ、熔融時におけるガラスの粘性をより一層下げることができる。そして、B23の含有率の下限を上記値に設定すると、B23の高い揮発性により、一見、ガラス組成物としての均質性が低下するようにみえる。しかし、熱線吸収作用を有するFe23を含ませること、とりわけFe23の含有率を0.05≦Fe23≦0.3、特に0.1≦Fe23≦0.2とすることにより、均質性の向上を図ることができる。SiO2の含有率の上限、CaOの含有率の上限とMgOの含有率の上限との和、B23の含有率の下限、及びFe23の含有率に関する上記制御によって、熔融時のガラスの粘性をより一層低下させることが可能になると、形成する低誘電ガラス繊維の繊維径が小さい場合においても、紡糸時の糸切れの発生をより確実に抑制でき、ガラス繊維の加工時における糸切れ、及び毛羽立ち等の欠点の発生をより確実に抑制できる。
 従来、目安となるガラス繊維の紡糸粘度域として、103~104d・Pa・sが知られている。しかし、本発明者等が鋭意検討したところ、繊維径の小さいガラス繊維、例えば平均繊維径3~4.3μmのガラス繊維、を上記粘度域で紡糸した場合、繊維径が小さくなるほど、後述のコレットによる巻き取りの際に巻き締まりが発生しやすく、フィンガー間の窪みに起因する糸癖がつきやすく、ガラス繊維の外観不良、及び/又は開繊不良が起きやすくなる傾向があることが判明した。そして、本発明者等がさらに検討を重ねた結果、従来、目安とされていた上記粘度域よりも低い粘度、例えば102.3~102.8d・Pa・s程度、好ましくは102.5~102.7d・Pa・s、での紡糸が可能となれば、紡糸時の糸切れの発生をより確実に抑制でき、ガラス繊維の加工時における糸切れ、及び毛羽立ち等の欠点の発生をより確実に抑制できることが判明した。しかし、上記低い粘度での紡糸を行うために単に紡糸温度を上昇させるだけでは、ガラスの熔融温度が高くなることで紡糸装置の運転に支障が生じることがある。しかし、熔融時におけるガラスの粘性をより一層低下させることができれば、紡糸を安定して実施できる温度範囲(例えば、紡糸温度1350~1450℃程度)において上記低い粘度を実現できることから、形成するガラス繊維の繊維径が小さい場合においても、紡糸時の糸切れの発生をより確実に抑制でき、ガラス繊維の加工時における糸切れ、及び毛羽立ち等の欠点の発生をより確実に抑制できることになる。
 本開示のガラス組成物は、F2を実質的に含まない組成物であってもよい。特許文献2(特表2010-508226号公報)のガラス組成物では、実質的に2%までのF2を含ませることで、ガラス組成物の熔融性を向上させ、熔融時の粘性を低下させて、熔融中に発生する泡、及びスカムの量を低減させることが試みられている。一方、本開示のガラス組成物では、上述した各成分の含有率のバランスに基づき、F2を実質的に含まなくとも、低い誘電率を達成できると共に、形成するガラス繊維の繊維径が小さい場合においても、紡糸時の糸切れの発生を抑制でき、紡糸後のガラス繊維の加工時における糸切れ、及び毛羽立ち等の欠点の発生を抑制できる。
 本開示のガラス組成物は、SrO及び/又はBaOを実質的に含まない組成物であってもよい。特許文献3(特開2009-286686号公報)のガラス組成物は、熔融時におけるガラス組成物の粘性を低下させることを目的として、SrO及びBaOを含んでいる。一方、本開示のガラス組成物では、上述した各成分の含有率のバランスに基づき、SrO及び/又はBaOを実質的に含まなくとも、低い誘電率を達成できると共に、形成するガラス繊維の繊維径が小さい場合においても、紡糸時の糸切れの発生を抑制でき、紡糸後のガラス繊維の加工時における糸切れ、及び毛羽立ち等の欠点の発生を抑制できる。
 F2、SrO及びBaOは、アルカリ金属酸化物、並びにMgO及びCaOの含有をできるだけ避けることを目的として、従来のガラス組成物に添加されていたと考えられる。アルカリ金属酸化物、MgO及びCaOは、ガラス組成物の熔融性及び脱泡性を向上させる一方で、誘電率を増大させる強い作用を有するためである。しかし、F2、SrO及びBaOは有害物として知られており、ガラス組成物中の含有をできるだけ避けることが望まれる。この観点からも、F2、SrO及びBaOを実質的に含まない組成物であってもよい本開示のガラス組成物は有利である。例えば、F2をはじめとする有害物をガラス組成物が含む場合、当該組成物から構成されるガラス繊維を再利用する際、又は廃棄する際には、有害物が周辺環境に流出しないように特別の注意が必要となる。また、ガラス繊維を製造する際にも、有害物が環境に排出されないように高価な回収設備の設置が余儀なくされる。
 本明細書において「実質的に含まない」とは、含有率にして0.1%未満、好ましくは0.05%未満を意味する。これは、不純物の含有を許容する趣旨である。不純物は、例えば、ガラス原料、ガラス組成物の製造装置、及びガラス組成物の成形装置等に由来する。
 本開示のガラス組成物は、不純物としてではなく、必須成分としてFe23を含ませたガラス組成物である。本開示のガラス組成物は、ZnO、SrO、Cr23、As23、Sb23、P25、ZrO2、Cl2、SO3、MoO2、及びF2から選ばれる少なくとも1種を実質的に含まないガラス組成物であってもよい。また、本開示のガラス組成物は、TiO2を実質的に含まないガラス組成物であってもよい。
 本開示のガラス組成物の誘電率は、周波数1MHzにおける値にして5.0未満であり、4.9以下、更には4.8以下であってもよい。
 本開示のガラス組成物は、ガラス繊維以外のガラス成形体の製造にも使用できる。ガラス成形体は、例えば、フレーク状ガラスである。即ち、本開示のガラス組成物は、ガラス繊維用ガラス組成物、ガラス成形体用ガラス組成物、又はフレーク状ガラス用ガラス組成物であってもよい。
 本開示のガラス組成物をフレーク状ガラス等のガラス成形体の製造に使用することにより、ガラス繊維の場合と同様の効果を得ることができる。具体的には、形成するガラス成形体の厚さが小さい場合においても、成形体の形成時における割れの発生を抑制でき、形成後のガラス成形体の使用時、例えば無機充填剤としてのプリント基板への使用時、における割れ等の発生を抑制できる。「厚さが小さい」とは、例えば、0.1~2.0μm程度の厚さを意味する。
 本開示のガラス組成物は、例えば、1150℃、1200℃、及び1250℃から選ばれる少なくとも1つの温度に2時間保持した場合にも失透が発生しないガラス組成物でありうるし、1150℃、1200℃、及び1250℃のいずれの温度に2時間保持した場合にも失透が発生しないガラス組成物でありうる。これらのガラス組成物、なかでも後者のガラス組成物では、ガラス繊維、とりわけ繊維径の小さいガラス繊維、への成形時(紡糸時)における失透の発生を抑制できる。また、同様に、厚さの小さいガラス成形体、例えば、厚さの小さいフレーク状ガラス、への成形時における失透の発生を抑制できる。なお、1150℃、1200℃、及び1250℃は、繊維径の小さいガラス繊維を紡糸することを想定した温度条件の一態様、具体的には、熔融紡糸装置における繊維化過程でのガラス温度の一態様、に対応している。また、同様に、1150℃、1200℃、及び1250℃は、厚さの小さいガラス成形体、例えば、厚さの小さいフレーク状ガラス、を成形することを想定した温度条件の一態様、具体的には、熔融成形装置における成形過程でのガラス温度の一態様、に対応している。
 「繊維径が小さいガラス繊維」とは、例えば、平均繊維径が3~6μmのガラス繊維を意味する。即ち、本開示のガラス組成物は、小繊維径ガラス繊維用ガラス組成物であってもよいし、より具体的には、平均繊維径3~6μmのガラス繊維用ガラス組成物であってもよい。また、上述のように、本開示のガラス組成物から製造したガラス繊維をプリント基板に使用する際に、本発明の効果はより顕著となる。この観点から、本開示のガラス組成物は、プリント基板(例えば、プリント配線板、プリント回路板)に使用するガラス繊維用ガラス組成物であってもよい。
 同様に、本開示のガラス組成物から製造したガラス成形体(本開示のガラス組成物から構成されるガラス成形体)をプリント基板に使用する際に、本発明の効果はより顕著となる。この観点から、本開示のガラス組成物は、プリント基板に使用するガラス成形体用ガラス組成物であってもよい。
 プリント基板に使用することに着目すると、本開示のガラス組成物は、プリント基板用ガラス組成物であってもよい。
 [ガラス繊維]
 本開示のガラス繊維は、本開示のガラス組成物により構成される。本開示のガラス組成物により構成される限り、ガラス繊維の具体的な構成は限定されない。上述のように、本開示のガラス組成物によれば、形成するガラス繊維の繊維径が小さい場合においても、紡糸時の糸切れの発生を抑制できる。このため、本開示のガラス繊維は、繊維径の小さいガラス繊維であってもよく、繊維径の小さい低誘電率のガラス繊維が、本開示のガラス繊維の一形態である。
 本開示のガラス繊維の平均繊維径は、例えば3~6μmであり、ガラス組成物の組成によっては、3~4.6μm、更には3~4.3μmであってもよい。
 本開示のガラス繊維では、体積1cm3あたりに存在する泡の数が、例えば200cm-3以下であり、ガラス組成物の組成によっては、170cm-3以下、更には160cm-3以下であってもよい。このとき、これらのガラス繊維の平均繊維径は、例えば3~6μmであり、ガラス組成物の組成によっては、3~4.6μm、更には3~4.3μmであってもよい。
 本開示のガラス繊維では、周波数1MHzにおける誘電率の値が、例えば5.0未満であり、ガラス組成物の組成によっては、4.9以下、更には4.8以下であってもよい。
 本開示のガラス組成物によれば、形成するガラス繊維の繊維径が小さい場合においても紡糸時の糸切れの発生を抑制できる。このため、本開示のガラス繊維は、ガラス長繊維(フィラメント)でありうる。本開示のガラス繊維は、上記特性を有するガラス長繊維、例えば、繊維径の小さい、低誘電率のガラス長繊維、であってもよい。
 特許文献1(特開昭62-226839号公報)には、繊維径が比較的大きい(8~13μm)ガラス繊維を紡糸することのみが開示されている。特許文献1では、繊維径が小さいガラス繊維(例えば、平均繊維径3~6μmのガラス繊維)の製造について、全く想定も考慮もされていない。特許文献1が具体的に開示するガラス組成物を用いて繊維径が小さいガラス繊維を製造する場合、微小な結晶(失透)が原因となる紡糸時の糸切れ、及び強度の低下が発生する。
 本開示のガラス繊維の用途は、例えばプリント基板である。本開示のガラス繊維をプリント基板に使用する場合、低誘電率であると共に繊維径の小さいガラス繊維でありうるという特徴がより有利となる。ただし、本開示のガラス繊維の用途は、プリント基板に限定されない。
 本開示のガラス繊維は、ガラスヤーンとすることができる。このガラスヤーンは、本開示のガラス繊維、典型的にはガラス長繊維、を含む。このガラスヤーンは、本開示のガラス繊維以外のガラス繊維を含むこともできるが、上述した本開示のガラス繊維の特徴をより活かすためには、本開示のガラス繊維から構成されることが好ましい。このガラスヤーンは、形成時におけるガラス繊維の糸切れ、及び毛羽立ち等の欠点の発生が抑制され、生産性が高い。
 本開示のガラス繊維を含むガラスヤーンの一例では、含まれるガラス長繊維の本数(フィラメント本数)が30~200である。本開示のガラス繊維を含むガラスヤーンの用途は、例えばプリント基板である。プリント基板に使用する場合、フィラメント本数を、例えば30~100、30~70、更には30~60とすることもできる。フィラメント本数がこれらの範囲にある場合、例えば、薄いガラスクロスをより容易かつ確実に形成でき、プリント基板の薄型化により確実に対応できる。本開示のガラス繊維を含むガラスヤーンの構成及び用途は、これらの例に限定されない。
 本開示のガラス繊維を含むガラスヤーンの別の一例では、その番手が1~6texであり、1~3texであってもよい。番手がこれらの範囲にある場合、例えば、薄いガラスクロスをより容易かつ確実に形成でき、プリント基板の薄型化により確実に対応できる。
 本開示のガラス繊維を含むガラスヤーンのまた別の一例では、その強度が0.4N/tex以上であり、0.6N/tex以上、更には0.7N/tex以上であってもよい。本開示のガラス繊維が、これらの範囲の強度を有していてもよい。
 本開示のガラス繊維を含むガラスヤーンは、これらの例示した特性を、任意の組み合わせで有していてもよい。
 本開示のガラス繊維は、例えば、本開示のガラス組成物を用いて公知の方法により製造できる。平均繊維径3~6μm程度のガラス繊維を製造する場合には、例えば、本開示のガラス組成物をガラス熔融窯に投入し、熔融して熔融ガラスとした後、紡糸炉における耐熱性ブッシングの底部に設けられた多数の紡糸ノズルから熔融ガラスを引き出し、糸状に成形する方法を採用できる。この方法により形成されるガラス繊維は、ガラス長繊維(フィラメント)でありうる。熔融窯における熔融温度は、例えば1300~1650℃であり、1400~1650℃が好ましく、1500~1650℃がより好ましい。熔融温度がこれらの範囲にある場合、形成するガラス繊維の繊維径が小さい場合においても、例えば、紡糸速度2000m/min以上、より好ましくは2500m/min~4000m/minという高速での紡糸時における糸切れの発生をより抑制できると共に、紡糸張力の過度の上昇を抑制できる。このため、得られたガラス繊維の特性(例えば強度)及び品質をより確実に確保できる。
 本開示のガラス組成物を使用し、上記範囲の熔融温度においてガラス組成物を熔融し、繊維径が小さいガラス繊維を形成する際に達成される上述の更なる効果は、本発明者らの以下に示す検討に基づく。繊維径が小さいガラス繊維を製造するためには、紡糸炉からの熔融ガラスの引出速度(紡糸速度)を高めたり、紡糸ノズルの温度を低下させたりする手法が考えられる。しかし、前者の手法では、熔融ガラスの脱泡を紡糸炉内で促進させるためのガラス熔融時間を十分に確保できないことがある。熔融時間を十分に確保できない場合、泡の混入に起因する紡糸時の糸切れ、あるいは糸切れなくガラス繊維が得られる場合においても繊維の強度低下につながる。また、紡糸時に繊維に生じる張力(紡糸張力)が紡糸速度の上昇に伴って大きくなり、この点も、紡糸時の糸切れ、得られたガラス繊維の強度低下、及び当該繊維の品質低下につながることがある。なお、紡糸張力が過度に増大したときのガラス繊維の品質低下は、例えば、次のように引き起こされる。紡糸したガラス繊維の巻き取りには、コレットと呼ばれる巻き取り回転体装置、より具体的には、コレットの回転時にその径外方に向かって移動するとともに停止時にコレット本体側に沈み込む複数のフィンガーをコレット本体の外周に備えた装置、が一般に使用される。紡糸張力が過度に増大すると、フィンガー間の窪みに起因する糸癖が巻き取ったガラス繊維に生じ、これがガラス繊維の品質低下につながる。この品質低下は、例えば、当該ガラス繊維を用いたガラスクロスにおける外観不良、及び/又は開繊不良につながる。
 また、後者の手法では、熔融窯内の熔融温度も低下させる必要があり、これにより、ガラス組成物の失透温度に熔融温度が近づくと共に、熔融ガラスの粘度が上昇して十分な脱泡性が確保できなくなることがある。また、粘度上昇に伴って紡糸張力も大きくなる。この結果、紡糸時の糸切れ、得られたガラス繊維の強度低下、及び当該繊維の品質低下につながることがある。
 特許文献1では、1300~1350℃の温度でガラス原料を熔融した後、繊維径が比較的大きい(8~13μm)ガラス繊維を紡糸している。これに対して、本開示のガラス組成物を使用し、上述した範囲の熔融温度にて当該組成物を熔融することにより、例えば、(I)本開示のガラス組成物により達成される上述した効果、(II)熔融ガラスの脱泡を紡糸炉内で促進させるためのガラス熔融時間を十分に確保できると共に、熔融ガラスの粘度を低下させて十分な脱泡性を確保できる効果、及び(III)引出速度を高くした場合においても紡糸張力の過度の上昇を抑制できる効果、が達成される。したがって、本開示のガラス組成物を使用し、上述した範囲の熔融温度にて当該組成物を熔融することにより、例えば、形成するガラス繊維の繊維径が小さい場合においても紡糸時の糸切れをより確実に抑制でき、紡糸張力の過度の増大が防がれ、得られたガラス繊維の特性(例えば強度)及び品質をより確実に確保できる。また、ガラス繊維の品質向上により、例えば、当該ガラス繊維を用いたガラスクロスにおける外観、及び/又は開繊性が良好となる。
 これらの観点によれば、本明細書は、本開示のガラス組成物(又は熔融により本開示のガラス組成物となるガラス原料)を、1400℃以上、好ましくは1400~1650℃、より好ましくは1500~1650℃の熔融温度で熔融して熔融ガラスを形成し、形成した熔融ガラスを紡糸してガラス繊維を得る、ガラス繊維の製造方法を開示する。このとき、繊維径の小さいガラス繊維、より具体的には、例えば3~6μm、3~4.6μm、更には3~4.3μmの平均繊維径を有するガラス繊維を形成してもよい。また、形成するガラス繊維の誘電率が、周波数1MHzにおける値にして、例えば5.0未満、4.9以下、更には4.8以下であってもよい。更に、形成するガラス繊維は、長繊維であってもよい。この製造方法における紡糸温度は、例えば、ガラス組成物の粘度が102.3~102.8d・Pa・s、好ましくは102.5~102.7d・Pa・sとなる温度とすることができる。また、この製造方法における紡糸速度は、例えば、2000m/min以上とすることができ、2500~4000m/minとすることもできる。さらに、この製造方法では、公知の手法により、紡糸ブッシングのノズル径等を適宜、調整することができる。
 紡糸により形成されたガラス繊維の表面に集束剤を塗布し、複数のガラス繊維、例えば10~120本のガラス繊維を束ねることにより、ガラスストランドを形成できる。このガラスストランドは、本開示のガラス繊維を含む。形成したガラスストランドを、高速で回転するコレット上のチューブ(例えば、紙管チューブ)に巻き取ってケーキとし、続いて、ケーキの外層からストランドを解舒して、撚りを掛けながら風乾した後、ボビン等に巻き返して撚糸することにより、ガラスヤーンを形成できる。
 [ガラスクロス]
 本開示のガラスクロスは、本開示のガラス繊維により構成される。本開示のガラスクロスの織組織は、例えば、平織、朱子織、綾織、斜子織、畦織である。ただし、本開示のガラスクロスの織組織は、これらの例に限定されない。例示した織組織のなかでは、平織が好ましい。本開示のガラスクロスは、本開示のガラス繊維以外のガラス繊維を含んでいてもよいが、上述した各効果がより確実になることから、ガラス繊維として本開示のガラス繊維のみを含むことが好ましい。本開示のガラスクロスは、繊維径の小さい低誘電率のガラス繊維から構成されるガラスクロスでありうる。本開示のガラスクロスは、形成時におけるガラス繊維の糸切れ、及び毛羽立ち等の欠点の発生が抑制され、生産性が高い。本開示のガラスクロスは、本開示のガラス繊維を含む限り、これらの例に限定されない。
 本開示のガラスクロスの厚さは、JIS R3420:2013の項目7.10.1の規定に従って測定される厚さにして、例えば20μm以下であり、ガラス繊維及びガラスクロスの構成によっては、7~20μm、更には8~15μmであってもよい。これらの厚さを有するガラスクロスを実現できることで、プリント基板の薄型化への対応がより確実となる。
 本開示のガラスクロスの質量は、JIS R3420:2013の項目7.2の規定に従って測定されるクロス質量にして、例えば20g/m2以下であり、ガラス繊維及びガラスクロスの構成によっては、8~20g/m2、更には8~13g/m2であってもよい。これらのクロス質量を有するガラスクロスを実現できることで、プリント基板の薄型化への対応がより確実となる。
 本開示のガラスクロスにおける単位長さ(25mm)あたりのガラス繊維の本数(織密度)は、経糸及び緯糸ともに、例えば、長さ25mmあたり80~130であり、ガラス繊維及びガラスクロスの構成によっては、80~110、更には90~110であってもよい。これらの織密度を有するガラスクロスでは、ガラスクロスの厚さを薄くすることと、経糸及び緯糸の交絡点を多くしてガラスクロスの目曲がりを生じ難くし、樹脂を含浸させたときのピンホールの発生を抑制することとを、より確実に両立できる。
 本開示のガラスクロスの通気度は、例えば、200cm3/(cm2・秒)以下であり、ガラス繊維及びガラスクロスの構成によっては、50~200cm3/(cm2・秒)、更には50~150cm3/(cm2・秒)であってもよい。これらの通気度を有するガラスクロスでは、ガラスクロスの厚さを薄くすることと、上記ピンホールの発生を抑制することとを、より確実に両立できる。なお、これらの通気度をガラスクロスが有するように開繊させるためには、本開示のガラス組成物、又は熔融により本開示のガラス組成物となるガラス原料を、ガラス繊維の紡糸時に、上述した1400℃以上、好ましくは1400~1650℃の熔融温度で熔融させることが好ましい。
 本開示のガラスクロスは、本開示のガラス繊維を用いて公知の方法により製造できる。製造方法の一例は、本開示のガラス繊維を含むガラスヤーンに対して整経工程、及び糊付工程を実施した後、これを経糸として、本開示のガラス繊維を含むガラスヤーンの緯糸を打ち込む方法である。緯糸の打ち込みには、各種の織機、例えばジェット織機(より具体的な例は、エアージェット織機、ウォータージェット織機)、スルザー織機、レピア織機、を使用できる。本開示のガラスクロスの製造方法は、上記例に限定されない。
 本開示のガラスクロスは開繊処理されていてもよく、この場合、例えば、ガラスクロスの厚さをより薄くできる。開繊処理の具体的な方法は限定されず、例えば、水流の圧力による開繊;水(より具体的な例は、脱気水、イオン交換水、脱イオン水、電解陽イオン水、電解陰イオン水)等を媒体とした高周波振動による開繊;ロール等を用いた加圧による開繊;である。開繊処理は、ガラスクロスの織成と同時に実施しても、織成後に実施してもよい。また、ヒートクリーニング、及び表面処理といった各種処理と同時に開繊処理を実施しても、各種処理の後に開繊処理を実施してもよい。
 織成したガラスクロスに集束剤等の物質が付着している場合、例えばヒートクリーニング処理といった当該物質を除去する処理(除去処理)を更に実施することができる。除去処理を経たガラスクロスは、例えばプリント基板に使用する際に、マトリクス樹脂の含浸性、及び当該樹脂との密着性が良好となる。除去処理の後に、又は除去処理とは別に、織成したガラスクロスをシランカップリング剤等により表面処理してもよい。表面処理は公知の手段により実施でき、より具体的には、シランカップリング剤をガラスクロスに含浸する方法、塗布する方法、及びスプレーする方法等により実施できる。
 本開示のガラスクロスの用途は、例えば、プリント基板であり、プリント基板に使用する場合には、低誘電率であるとともに繊維径の小さいガラス繊維から構成されうるという特徴がより有利となる。ただし、本開示のガラスクロスの用途は、プリント基板に限定されない。
 以下、実施例により、本発明をより詳細に説明する。本発明は、以下の実施例に限定されない。
 (実施例1~5、比較例1~2)
 最初に、以下の表1に示す各組成(成分の含有率の単位は重量%)となるようにガラス原料を秤量し、均質な状態となるように混合して、ガラス原料混合バッチを作製した。次に、作製した混合バッチを白金ロジウム製るつぼに投入し、1600℃に設定した間接加熱電気炉内で、大気雰囲気中にて3時間以上加熱して熔融ガラスとした。次に、得られた熔融ガラスを耐火性鋳型に流し出して鋳込み成形した後、得られた成形体を徐冷炉により室温まで徐冷処理して、評価に使用するガラス組成物試料とした。
 このようにして作製したガラス試料に対して、その泡数、失透性、及び周波数1MHzにおける誘電率を以下の手順で評価した。評価結果を表1に示す。
 [泡数]
 作製したガラス試料のほぼ中央に5mm四方の枠を設け、枠内に見えるガラス試料中の泡の数を実体顕微鏡を用いて数倍に拡大して計測した。これとは別に、測定個所のガラス試料の厚さを測定し、測定した厚さを用いて、上記計測した泡の数を体積1cm3当たりの泡の数に換算して、これをガラス試料に発生した泡数(単位:cm-3)とした。
 [失透性]
 作製したガラス試料1~2gを白金ロジウム板の上に載せ、1150℃、1200℃、又は1250℃に設定した電気炉内に2時間収容した後、炉より取り出して放冷した。放冷後のガラス試料の透明性を肉眼により確認して、白濁がみられた場合に「失透が発生した」と判定し、白濁が見られず透明性を保持していた場合に「失透が発生しなかった」と判定した。
 これとは別に、種々のガラス組成物を用いて平均繊維径3μmのガラス繊維を紡糸して確認したところ、このような繊維径の小さいガラス繊維を失透による糸切れを起こさずに紡糸できるガラス組成物は、上記電気炉での2時間の加熱温度にして1150℃、1200℃及び1250℃から選ばれる少なくとも1つの加熱温度において失透が発生しなかったガラス組成物であり、特に、全ての加熱温度において失透が発生しなかったガラス組成物であった。このため、1150℃、1200℃及び1250℃のいずれの加熱温度でも失透が発生しなかったガラス組成物を、繊維径の小さなガラス繊維の紡糸時においても失透の発生が特に抑制されるガラス組成物であると判断して、良(○)と評価した。一方、少なくとも1つの上記加熱温度で失透が発生したガラス組成物を可(△)と評価し、上記3つの全ての加熱温度で失透が発生したガラス組成物を、失透の発生が抑制されていないガラス組成物であると判断して、不可(×)と評価した。1150℃、1200℃及び1250℃は、繊維径の小さいガラス繊維の紡糸工程におけるブッシング立ち上げ時の昇温過程、及びガラスの繊維化過程の温度に対応している。
 [誘電率]
 周波数1MHzにおける誘電率は、ASTM D150-87の規定に準拠して測定した。測定温度は25℃とした。ガラス組成物の誘電率が小さい値であるほど、当該ガラス組成物から構成されるガラス繊維を含むプリント基板の誘電損失が小さくなる。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~5及び比較例1のガラス組成物では、確認された泡の数が145~165cm-3程度の範囲内にあるとともに、いずれのガラス組成物も、繊維径の小さいガラス繊維を紡糸することを想定した条件である1150℃、1200℃及び1250℃の各温度での2時間の保持によっても白色結晶が析出することなく、透明なガラスの状態を保持していた。比較例2のガラス組成物では、確認された泡の数が、実施例1~5及び比較例1のガラス組成物に比べて増加するとともに、失透性の評価が「不可(×)」となった。また、実施例1~5及び比較例1のガラス組成物の周波数1MHzにおける誘電率は、いずれも4.8程度であった。
 次に、実施例1~5及び比較例1,2のガラス組成物のペレットから、以下のようにしてガラス繊維を製造した。最初に、各組成物のペレットをガラス熔融窯に投入し、1550℃の熔融温度で熔融した。次に、102.6d・Pa・s程度の粘度となる紡糸温度にて、紡糸炉における耐熱ブッシングの底部に設けられた多数のノズルから熔融ガラスを引き出し、集束剤を付与しながら、高速で回転するコレット上のチューブにガラスストランド(平均繊維径4.1μm、フィラメント数50本)を巻き取ってケーキを形成した。ただし、比較例2のガラス組成物では、102.6d・Pa・s程度の粘度とすると紡糸温度が過剰に高くなり、紡糸装置の運転ができないため、103d・Pa・s程度の粘度となる紡糸温度とした。次に、形成したケーキの外層から順次ストランドを解舒し、撚りを掛けながら風乾した後、ボビンに巻き返して撚糸することでガラスヤーン(番手1.7tex)を得た。得られたガラスヤーンのガラス組成は、各々のガラスヤーンの製造に用いたペレットのガラス組成と同一であった。
 次に、得られたガラスヤーンを経糸及び緯糸としてエアージェット織機を用いて製織し、単位長さ(25mm)当たりの経糸の数(経糸密度、以下同じ)が95、単位長さ(25mm)当たりの緯糸の数(緯糸密度、以下同じ)が95である平織のガラスクロスを形成した。
 次に、形成したガラスクロスに付着している紡糸集束剤、及び製織集束剤を400℃、30時間の加熱により除去した後、表面処理剤としてシランカップリング剤を集束剤除去後のガラスクロスに塗布した。次に、水流加工により開繊処理を実施して、ガラスクロスを得た。得られた各ガラスクロスの経糸密度は95本/25mm、緯糸密度は95本/25mm、厚さは15μm、質量は12.7g/m2であった。それぞれのガラス繊維、ガラスヤーン及びガラスクロスの評価結果を、以下の表2にまとめる。各評価項目の評価法は次のとおりである。
 [ガラス繊維の紡糸操業性]
 ガラス繊維の紡糸操業性は、同一の紡糸速度、及び巻き時間(即ち、糸切れがないときは同一長さ)として、操業時間(12時間以上)内に紡糸時の糸切れなく所定の長さのケーキが採取できたと仮定したときの理想ケーキ数に対する、実際に糸切れなく採取できた所定の長さのケーキ数の比率により評価した。評価は、下記の5段階にて実施した。
 5:上記比率が70%以上
 4:上記比率が60%以上70%未満
 3:上記比率が50%以上60%未満
 2:上記比率が40%以上50%未満
 1:上記比率が40%未満
 [ガラス繊維の平均繊維径(平均フィラメント径):μm]
 ガラス繊維の平均繊維径は、次のように評価した。得られたガラスクロスを30cm角のサイズにカットしたものを2枚準備し、一方を経糸観察用、他方を緯糸観察用として、それぞれエポキシ樹脂(丸本ストルアス製、商品名3091)に包埋して硬化させた。次に、それぞれの硬化物を、経糸又は緯糸が観察可能な程度に研磨し、その研磨面を走査型電子顕微鏡(SEM;日本電子製、商品名JSM-6390A)により倍率500倍で観察した。このとき、経糸及び緯糸のそれぞれについて無作為に20本選択し、選択した全てのガラス繊維の直径を測定してその平均値を算出し、これをガラス繊維の平均繊維径とした。
 [番手:tex]
 ガラスヤーンの番手は、JIS R3420:2013の項目7.1に基づいて評価した。
 [強度:N/tex]
 ガラスヤーンの強度は、次のように評価した。得られたガラスヤーンの引張強さを、JIS R3420:2013の項目7.4.3に従い、半径13mmの円形クランプを用い、試験速度を250mm/分、つかみ間隔を250mmとして求めた。次に、求めた引張強さを当該ガラスヤーンの番手で除することにより、ガラスヤーンの強度(単位:N/tex)とした。
 [毛羽数]
 得られたガラスヤーンに発生した毛羽立ちの程度を、単位長さ(100m)あたりの毛羽数により評価した。具体的に、ボビンに巻き取られたガラスヤーンを100m/分の速度で解舒し、テンションバーを通過させた後、当該ガラスヤーンに発生した毛羽の数をセンサーにてカウントし、これを単位長さあたりに換算して求めた。
 [ガラスクロスの厚さ:μm]
 ガラスクロスの厚さは、JIS R3420:2013の項目7.10.1Aに基づいて評価した。
 [ガラスクロスの質量:g/m2
 ガラスクロスの質量は、JIS R3420:2013の項目7.2に基づいて評価した。
 [ガラスクロスの密度:単位長さ(25mm)当たりのガラス繊維の数]
 ガラスクロスの密度(織密度)は、経糸及び緯糸の各々について、JIS R3420:2013の項目7.9に基づいて評価した。
 [ガラスクロスの外観]
 ガラスクロスの外観は、目視により、以下の基準により評価した。良(○)及び優(◎)を合格とした。
 優(◎):フィンガー間の窪みに起因する糸癖が原因の縞模様がガラス糸になく、プリント基板用として全く問題ないレベルであった。
 良(○):フィンガー間の窪みに起因する糸癖が原因の縞模様がガラス糸にやや見られたものの、プリント基板用として問題ないレベルであった。
 劣(▲):フィンガー間の窪みに起因する糸癖が原因の縞模様がガラス糸に見られ、プリント基板用としてやや問題あるレベルであった。
 不可(×):フィンガー間の窪みに起因する糸癖が原因の縞模様がガラス糸に多く、プリント基板用として問題あるレベルであった。
 [ガラスクロスの開繊性]
 ガラスクロスの開繊性は、JIS R3420:2013の項目7.13に基づいて評価したガラスクロスの通気度(単位:cm3/(cm2・秒))により評価した。通気度が低いほど、ガラスクロスの開繊性が優れていることを示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例1~5及び比較例1のガラス組成物は、いずれも、失透の発生、及び泡の混入が抑制されたガラス組成物であったが、比較例1のガラス組成物に比べて実施例1~5のガラス組成物では、紡糸時の糸切れが更に抑制されることで紡糸操業性が向上するとともに、ガラス繊維の加工時(ガラスヤーン形成時)における毛羽立ちの発生が抑制された。また、失透性の評価が「不可(×)」であった比較例2のガラス組成物は、紡糸操業性が低く、ガラス繊維の加工時(ガラスヤーン形成時)における毛羽立ちの発生が多く、ガラスクロスの外観に劣っていた。
 本発明は、その意図及び本質的な特徴から逸脱しない限り、他の実施形態に適用しうる。この明細書に開示されている実施形態は、あらゆる点で説明的なものであってこれに限定されない。本発明の範囲は、上記説明ではなく添付したクレームによって示されており、クレームと均等な意味及び範囲にあるすべての変更はそれに含まれる。
 本開示のガラス組成物は、ガラス繊維、例えばプリント基板用ガラス繊維、の製造に利用できる。また、本開示のガラス組成物は、ガラス成形体、例えばフレーク状ガラス、の製造に利用できる。フレーク状ガラスは、例えば、プリント基板の無機充填材として使用できる。

Claims (16)

  1.  重量%で表示して、
      50≦SiO2≦56
      20≦B23≦30
      10≦Al23≦20
     3.5≦MgO+CaO≦10
       0≦R2O≦1.0
    を含み、
     さらにFe23を含有し、
     周波数1MHzにおける誘電率が5.0未満であるガラス組成物。
     ただし、Rは、Li、Na及びKから選ばれる少なくとも1種の元素である。
  2.  Fe23の含有率が、重量%で表示して、0.05≦Fe23≦0.3である請求項1に記載のガラス組成物。
  3.  重量%で表示して、
      50≦SiO2≦54
      25≦B23≦30
      12≦Al23≦15
     0.5≦MgO≦1.9
     3.0≦CaO≦5.5
     0.1≦Li2O≦0.5
     0.1≦Na2O≦0.3
    である請求項1又は2に記載のガラス組成物。
  4.  重量%で表示して、
      25≦B23≦28
    である請求項1~3のいずれかに記載のガラス組成物。
  5.  重量%で表示して、
      50≦SiO2≦52.5
    である請求項1~4のいずれかに記載のガラス組成物。
  6.  重量%で表示して、
     1.2≦MgO≦1.9
    である請求項1~5のいずれかに記載のガラス組成物。
  7.  MgO及びCaOの含有率の合計が5.5重量%以上である請求項1~6のいずれかに記載のガラス組成物。
  8.  ガラス繊維用である請求項1~7のいずれかに記載のガラス組成物。
  9.  平均繊維径が3~6μmのガラス繊維用である請求項1~7のいずれかに記載のガラス組成物。
  10.  請求項1~9のいずれかに記載のガラス組成物から構成されるガラス繊維。
  11.  平均繊維径が3~6μmである請求項10に記載のガラス繊維。
  12.  平均繊維径が3~4.3μmである請求項10に記載のガラス繊維。
  13.  強度が0.4N/tex以上である請求項10~12のいずれかに記載のガラス繊維。
  14.  請求項10~13のいずれかに記載のガラス繊維から構成されるガラスクロス。
  15.  厚さが10~20μmである請求項14に記載のガラスクロス。
  16.  請求項1~9のいずれかに記載のガラス組成物を1400℃以上の温度で熔融する工程を含み、平均繊維径が3~6μmのガラス繊維を得る、ガラス繊維の製造方法。
PCT/JP2018/019408 2017-05-26 2018-05-18 ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法 WO2018216637A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880033881.3A CN110770182A (zh) 2017-05-26 2018-05-18 玻璃组合物、玻璃纤维、玻璃布以及玻璃纤维的制造方法
KR1020197037990A KR102381123B1 (ko) 2017-05-26 2018-05-18 유리 조성물, 유리 섬유, 글라스 클로스, 및 유리 섬유의 제조 방법
JP2019520230A JP6775159B2 (ja) 2017-05-26 2018-05-18 ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法
US16/617,402 US11174191B2 (en) 2017-05-26 2018-05-18 Glass composition, glass fibers, glass cloth, and method for producing glass fibers
EP18805453.0A EP3632863A4 (en) 2017-05-26 2018-05-18 GLASS COMPOSITION, GLASS FIBER, GLASS FIBER WOVEN, AND METHOD FOR MANUFACTURING A GLASS FIBER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-104524 2017-05-26
JP2017104524 2017-05-26

Publications (1)

Publication Number Publication Date
WO2018216637A1 true WO2018216637A1 (ja) 2018-11-29

Family

ID=64396490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019408 WO2018216637A1 (ja) 2017-05-26 2018-05-18 ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法

Country Status (7)

Country Link
US (1) US11174191B2 (ja)
EP (1) EP3632863A4 (ja)
JP (1) JP6775159B2 (ja)
KR (1) KR102381123B1 (ja)
CN (1) CN110770182A (ja)
TW (1) TWI730232B (ja)
WO (1) WO2018216637A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255396A1 (ja) * 2019-06-21 2020-12-24 日本板硝子株式会社 ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法
WO2020256143A1 (ja) 2019-06-21 2020-12-24 日本板硝子株式会社 ガラスフィラーとその製造方法、及びガラスフィラーを含む樹脂組成物
WO2021049369A1 (ja) * 2019-09-13 2021-03-18 日本板硝子株式会社 ガラスフィラー及び樹脂組成物
JPWO2021049370A1 (ja) * 2019-09-13 2021-03-18
CN113502624A (zh) * 2021-06-03 2021-10-15 曾龙梅 一种用于光伏板的扭刮式玻璃纤维布处理装置
US11168016B2 (en) * 2019-09-17 2021-11-09 Taiwan Glass Industry Corp. Glass material with low viscosity and low bubble content attributable to low weight percentage of silicon dioxide
WO2021251399A1 (ja) 2020-06-10 2021-12-16 日本板硝子株式会社 ガラス組成物、ガラスフィラーとその製造方法、及びガラスフィラーを含む樹脂組成物

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI722474B (zh) * 2019-07-03 2021-03-21 台灣玻璃工業股份有限公司 提高氧化硼之重量百分比以降低介電常數之玻璃材料
EP3974398B1 (en) * 2020-04-10 2023-05-03 Nitto Boseki Co., Ltd. Glass composition for glass fibers, glass fibers, glass fiber fabric, and glass fiber-reinforced resin composition
JP2022021599A (ja) * 2020-07-22 2022-02-03 旭化成株式会社 ガラスクロス、プリプレグ、及びプリント配線板
JP2022021666A (ja) * 2020-07-22 2022-02-03 旭化成株式会社 ガラスクロス、プリプレグ、及びプリント配線板
CN112125529A (zh) * 2020-10-06 2020-12-25 青岛蓝创科信新能源科技有限公司 玻璃纤维配料及其制备的玻璃纤维
CN112142335A (zh) * 2020-10-06 2020-12-29 青岛蓝创科信新能源科技有限公司 高性能玻璃纤维配料及其制备的玻璃纤维
CN113880441B (zh) * 2021-11-10 2022-08-16 泰山玻璃纤维有限公司 低介电损耗的玻璃纤维组合物
KR102639162B1 (ko) * 2021-11-25 2024-02-21 광주과학기술원 유전율이 낮은 산화물계 유리 조성물
KR102645194B1 (ko) * 2021-11-25 2024-03-07 광주과학기술원 미세기포를 포함하는 저유전성 유리섬유 및 이의 제조방법
CN118715185A (zh) 2022-03-09 2024-09-27 日本板硝子株式会社 薄片状基材及树脂组合物
WO2023176689A1 (ja) * 2022-03-16 2023-09-21 日本電気硝子株式会社 ガラス繊維
CN117825378B (zh) * 2024-03-05 2024-06-04 四川省科源工程技术测试中心有限责任公司 一种玄武岩矿石成纤能力判别方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508226A (ja) 1973-06-01 1975-01-28
JPS62226839A (ja) 1986-03-27 1987-10-05 Nippon Sheet Glass Co Ltd 低誘電率ガラス繊維
JP2003137590A (ja) * 2001-05-09 2003-05-14 Nippon Electric Glass Co Ltd 低誘電率低誘電正接ガラス、それを用いたガラス繊維及びガラス繊維織物
JP2004107112A (ja) * 2002-09-17 2004-04-08 Nippon Electric Glass Co Ltd 低誘電率低誘電正接ガラス繊維
JP2009286686A (ja) 2008-04-28 2009-12-10 Nippon Electric Glass Co Ltd ガラス繊維用ガラス組成物、ガラス繊維及びガラス繊維シート状物
JP2010508226A (ja) 2006-10-26 2010-03-18 エイジーワイ ホールディングス コーポレイション 低誘電性グラスファイバー
JP2016528152A (ja) * 2013-08-15 2016-09-15 コーニング インコーポレイテッド アルカリドープおよび無アルカリホウアルミノケイ酸ガラス

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151344A (ja) * 1982-03-03 1983-09-08 Nitto Boseki Co Ltd 耐アルカリ性ガラス組成物
JPH10167759A (ja) 1996-12-04 1998-06-23 Nitto Boseki Co Ltd 低誘電率ガラス繊維
FR2820736B1 (fr) * 2001-02-14 2003-11-14 Saint Gobain Isover Procede et dispositif de formation de laine minerale
CN1903767A (zh) * 2006-08-07 2007-01-31 珠海功控玻璃纤维有限公司 用于制备低介电常数电子玻璃纤维的玻璃组合物
CN101269915B (zh) * 2008-05-07 2010-11-10 济南大学 一种低介电常数玻璃纤维
TWI474988B (zh) * 2009-03-25 2015-03-01 Nippon Electric Glass Co 玻璃纖維用玻璃組成物、玻璃纖維以及玻璃纖維片狀物
CN102503153B (zh) 2011-10-19 2013-10-16 重庆国际复合材料有限公司 低介电常数玻璃纤维
RS57931B1 (sr) 2013-02-18 2019-01-31 As Valmieras Stikla Skiedra Termo-otporna alumosilikatna staklena vlakna, postupak njihove proizvodnje i njihova primena
CN103351102B (zh) * 2013-06-25 2016-03-30 巨石集团有限公司 一种玻璃纤维组合物及由其制成的具有低介电常数的玻璃纤维
JP6532210B2 (ja) 2014-06-03 2019-06-19 信越石英株式会社 石英ガラスクロス、それを用いたプリプレグ及び半導体パッケージ基板
WO2016183133A1 (en) * 2015-05-13 2016-11-17 Ppg Industries Ohio, Inc. USE OF MgO, ZnO, AND RARE EARTH OXIDES FOR MAKING IMPROVED LOW DIELECTRIC FIBERS WITH IMPROVED LOW THERMAL EXPANSION COEFFICIENT FOR HIGH BORON ALUMINOSILICATE COMPOSITIONS

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508226A (ja) 1973-06-01 1975-01-28
JPS62226839A (ja) 1986-03-27 1987-10-05 Nippon Sheet Glass Co Ltd 低誘電率ガラス繊維
JP2003137590A (ja) * 2001-05-09 2003-05-14 Nippon Electric Glass Co Ltd 低誘電率低誘電正接ガラス、それを用いたガラス繊維及びガラス繊維織物
JP2004107112A (ja) * 2002-09-17 2004-04-08 Nippon Electric Glass Co Ltd 低誘電率低誘電正接ガラス繊維
JP2010508226A (ja) 2006-10-26 2010-03-18 エイジーワイ ホールディングス コーポレイション 低誘電性グラスファイバー
JP2009286686A (ja) 2008-04-28 2009-12-10 Nippon Electric Glass Co Ltd ガラス繊維用ガラス組成物、ガラス繊維及びガラス繊維シート状物
JP2016528152A (ja) * 2013-08-15 2016-09-15 コーニング インコーポレイテッド アルカリドープおよび無アルカリホウアルミノケイ酸ガラス

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7370551B2 (ja) 2019-06-21 2023-10-30 日本板硝子株式会社 ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法
EP3988512A4 (en) * 2019-06-21 2023-07-26 Nippon Sheet Glass Company, Limited GLASS FILLER AS WELL AS METHOD FOR MANUFACTURING IT, AND RESIN COMPOSITION CONTAINING THIS GLASS FILLER
WO2020256143A1 (ja) 2019-06-21 2020-12-24 日本板硝子株式会社 ガラスフィラーとその製造方法、及びガラスフィラーを含む樹脂組成物
JPWO2020256142A1 (ja) * 2019-06-21 2020-12-24
KR102669498B1 (ko) 2019-06-21 2024-05-29 니혼 이타가라스 가부시키가이샤 유리 조성물, 유리 섬유, 유리 클로스, 및 유리 섬유의 제조 방법
CN114026051A (zh) * 2019-06-21 2022-02-08 日本板硝子株式会社 玻璃填料及其制造方法以及包含玻璃填料的树脂组合物
US11840477B2 (en) 2019-06-21 2023-12-12 Nippon Sheet Glass Company, Limited Glass composition, glass fiber, glass cloth, and method for producing glass fiber
WO2020255396A1 (ja) * 2019-06-21 2020-12-24 日本板硝子株式会社 ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法
US11773009B2 (en) 2019-06-21 2023-10-03 Nippon Sheet Glass Company, Limited Glass composition, glass fiber, glass cloth, and method for producing glass fiber
WO2020256142A1 (ja) 2019-06-21 2020-12-24 日本板硝子株式会社 ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法
TWI845709B (zh) * 2019-06-21 2024-06-21 日商日本板硝子股份有限公司 玻璃組成物、玻璃纖維、玻璃布、及玻璃纖維之製造方法
CN114026051B (zh) * 2019-06-21 2024-03-01 日本板硝子株式会社 玻璃填料及其制造方法以及包含玻璃填料的树脂组合物
JP2023052922A (ja) * 2019-06-21 2023-04-12 日本板硝子株式会社 ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法
JP7292634B2 (ja) 2019-06-21 2023-06-19 日本板硝子株式会社 ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法
KR20220024493A (ko) 2019-06-21 2022-03-03 니혼 이타가라스 가부시키가이샤 유리 조성물, 유리 섬유, 유리 클로스, 및 유리 섬유의 제조 방법
CN114341071A (zh) * 2019-09-13 2022-04-12 日本板硝子株式会社 玻璃填料及树脂组合物
WO2021049370A1 (ja) * 2019-09-13 2021-03-18 日本板硝子株式会社 ガラスフィラー及び樹脂組成物
JP7377275B2 (ja) 2019-09-13 2023-11-09 日本板硝子株式会社 ガラスフィラー及び樹脂組成物
JPWO2021049369A1 (ja) * 2019-09-13 2021-03-18
JPWO2021049370A1 (ja) * 2019-09-13 2021-03-18
WO2021049369A1 (ja) * 2019-09-13 2021-03-18 日本板硝子株式会社 ガラスフィラー及び樹脂組成物
US11168016B2 (en) * 2019-09-17 2021-11-09 Taiwan Glass Industry Corp. Glass material with low viscosity and low bubble content attributable to low weight percentage of silicon dioxide
WO2021251399A1 (ja) 2020-06-10 2021-12-16 日本板硝子株式会社 ガラス組成物、ガラスフィラーとその製造方法、及びガラスフィラーを含む樹脂組成物
CN113502624A (zh) * 2021-06-03 2021-10-15 曾龙梅 一种用于光伏板的扭刮式玻璃纤维布处理装置

Also Published As

Publication number Publication date
US20200087196A1 (en) 2020-03-19
CN110770182A (zh) 2020-02-07
JPWO2018216637A1 (ja) 2019-11-07
KR20200010474A (ko) 2020-01-30
KR102381123B1 (ko) 2022-03-31
US11174191B2 (en) 2021-11-16
TWI730232B (zh) 2021-06-11
EP3632863A4 (en) 2021-03-24
EP3632863A1 (en) 2020-04-08
JP6775159B2 (ja) 2020-10-28
TW201908260A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
JP6775159B2 (ja) ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法
JP6945205B2 (ja) ガラス組成物、ガラス繊維、ガラスクロスおよびガラス繊維の製造方法
US11773009B2 (en) Glass composition, glass fiber, glass cloth, and method for producing glass fiber
JP5578322B2 (ja) ガラス繊維、ガラス繊維の製造方法及びガラス繊維シート状物
JP2011105554A (ja) ガラス繊維用ガラス組成物、ガラス繊維及びガラス製シート状物
WO2021039582A1 (ja) ガラスクロス、プリプレグ、及び、ガラス繊維強化樹脂成形品
JP2024149728A (ja) ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法
WO2022168963A1 (ja) ガラス組成物ならびにガラス繊維およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805453

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019520230

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197037990

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018805453

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018805453

Country of ref document: EP

Effective date: 20200102