WO2022168963A1 - ガラス組成物ならびにガラス繊維およびその製造方法 - Google Patents
ガラス組成物ならびにガラス繊維およびその製造方法 Download PDFInfo
- Publication number
- WO2022168963A1 WO2022168963A1 PCT/JP2022/004565 JP2022004565W WO2022168963A1 WO 2022168963 A1 WO2022168963 A1 WO 2022168963A1 JP 2022004565 W JP2022004565 W JP 2022004565W WO 2022168963 A1 WO2022168963 A1 WO 2022168963A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- glass
- less
- glass composition
- content
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims abstract description 273
- 239000000203 mixture Substances 0.000 title claims abstract description 135
- 239000003365 glass fiber Substances 0.000 title claims abstract description 77
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 14
- XOLBLPGZBRYERU-UHFFFAOYSA-N SnO2 Inorganic materials O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910001887 tin oxide Inorganic materials 0.000 claims abstract description 8
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 claims abstract description 7
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 claims abstract description 7
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 6
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 claims abstract description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052593 corundum Inorganic materials 0.000 claims abstract description 4
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 4
- 229910001845 yogo sapphire Inorganic materials 0.000 claims abstract description 4
- 229910052681 coesite Inorganic materials 0.000 claims abstract description 3
- 229910052906 cristobalite Inorganic materials 0.000 claims abstract description 3
- 229910052682 stishovite Inorganic materials 0.000 claims abstract description 3
- 229910052905 tridymite Inorganic materials 0.000 claims abstract description 3
- 238000004031 devitrification Methods 0.000 claims description 32
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 30
- 238000002844 melting Methods 0.000 claims description 23
- 230000008018 melting Effects 0.000 claims description 23
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 17
- 239000006060 molten glass Substances 0.000 claims description 10
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 8
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 claims description 8
- 239000004615 ingredient Substances 0.000 claims description 5
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims description 4
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims description 4
- 239000000395 magnesium oxide Substances 0.000 description 44
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 44
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 44
- 239000004744 fabric Substances 0.000 description 36
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 34
- 239000000292 calcium oxide Substances 0.000 description 33
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 33
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- 238000000034 method Methods 0.000 description 20
- 239000000835 fiber Substances 0.000 description 18
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 16
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 15
- 238000009987 spinning Methods 0.000 description 15
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 13
- 239000000460 chlorine Substances 0.000 description 11
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 11
- 239000002994 raw material Substances 0.000 description 11
- 238000011282 treatment Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 229910010413 TiO 2 Inorganic materials 0.000 description 7
- 239000002585 base Substances 0.000 description 7
- 238000005191 phase separation Methods 0.000 description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 239000011342 resin composition Substances 0.000 description 6
- 239000011787 zinc oxide Substances 0.000 description 6
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 5
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 5
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 5
- 229910052801 chlorine Inorganic materials 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 5
- 239000011737 fluorine Substances 0.000 description 5
- 238000004020 luminiscence type Methods 0.000 description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000003892 spreading Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000004513 sizing Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- 239000000156 glass melt Substances 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 238000009941 weaving Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000002419 bulk glass Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(II) oxide Inorganic materials [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000006025 fining agent Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 description 1
- UFQXGXDIJMBKTC-UHFFFAOYSA-N oxostrontium Chemical compound [Sr]=O UFQXGXDIJMBKTC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- NOTVAPJNGZMVSD-UHFFFAOYSA-N potassium monoxide Inorganic materials [K]O[K] NOTVAPJNGZMVSD-UHFFFAOYSA-N 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten(VI) oxide Inorganic materials O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
- C03C3/093—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/095—Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/11—Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
- C03C3/112—Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
- C03C3/115—Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron
- C03C3/118—Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2213/00—Glass fibres or filaments
Definitions
- the present invention relates to a glass composition, a glass fiber composed of the composition, and a method for producing the glass fiber.
- Resin compositions are widely used as electrical insulating members and mechanical members in various parts of electronic devices.
- electrical insulating members include SMT (surface mount technology), FPC (flexible printed circuits), between boards, CPU (central processing unit) sockets, memory cards, card edges, connector housings used for optical connectors, LCD (liquid crystal display) Backlights, coils, flats, transformers, reactance bobbins used in magnetic heads, relay cases, relay base switches, reflow dip switches, switches used in tact switches, sensor cases, capacitor casings, volume casings, trimmer casings is.
- mechanical parts are lens holders and pickup bases for optical pickups, insulators and terminals for micromotors, and drums for laser printers.
- Resin compositions are also used as films such as base films for FPCs and base films for copper-clad laminates. Also, there is a substrate made of a resin composition as a type of printed circuit board provided in electronic equipment. Printed wiring boards before electronic components are mounted also include substrates made of resin compositions. Hereinafter, both printed circuit boards and printed wiring boards are collectively referred to as "printed boards" in this specification.
- the above resin composition contains thermoplastic resin and glass fiber, and if necessary, further contains curing agents, modifiers, and the like.
- Inorganic fillers may also be included in printed circuit boards.
- a glass filler may be used as the inorganic filler.
- resin compositions are required to have a low dielectric constant. Streamlining is required.
- Patent Literature 1 discloses a glass fiber composed of a glass composition having a low dielectric constant.
- the glass composition is required to have properties suitable for mass production.
- long glass fibers are obtained by spinning a molten glass base in a refractory kiln.
- the glass fibers are likely to be cut due to air bubbles present in the glass base.
- a glass composition with a low dielectric constant has a relatively high viscosity, and bubbles generated during melting of glass raw materials tend to remain in the glass base. There is room for improvement in techniques for producing glass fibers composed of low dielectric constant glass compositions.
- One of the objects of the present invention is to provide a glass composition that can be stably produced as a low dielectric constant glass fiber.
- the inventor of the present invention adopted tin oxide as a fining agent and determined the range of the T-SnO 2 content (T-SnO 2 is the total tin oxide converted to SnO 2 ), thereby making such a glass composition I found what I got.
- the glass composition of the present invention expressed in mass%, 45 ⁇ SiO 2 ⁇ 80, 10 ⁇ B2O3 ⁇ 40 , 0.1 ⁇ Al2O3 ⁇ 20 , 0.1 ⁇ (MgO+CaO) ⁇ 10, 0 ⁇ (Li 2 O+Na 2 O+K 2 O) ⁇ 5, 0.1 ⁇ T—SnO 2 ⁇ 2, (However, T-SnO 2 is total tin oxide converted to SnO 2 ) contains the ingredients of by mass, 0 ⁇ MgO/(MgO+CaO) ⁇ 0.50 holds.
- the glass fiber of the present invention is a glass fiber composed of the glass composition described above.
- the method for producing glass fibers of the present invention is a method for producing glass fibers, comprising the steps of melting the glass composition of the present invention and forming the melted glass composition into glass fibers.
- a glass composition from which low dielectric constant glass fibers can be stably produced it is possible to obtain a glass composition from which low dielectric constant glass fibers can be stably produced. Also, a glass composition that emits light when irradiated with ultraviolet rays is obtained. Luminescence by ultraviolet irradiation is useful for use as pigments, materials for sensors, materials for lighting, materials for construction, and the like.
- substantially not contained means that the content is less than 0.1% by mass, preferably less than 0.05% by mass, more preferably less than 0.01% by mass, and still more preferably 0.005% by mass %, particularly preferably less than 0.003% by weight, most preferably less than 0.001% by weight.
- Consists substantially means that ingredients other than the listed ingredients, such as impurities that are unavoidably mixed from industrial raw materials, manufacturing equipment, etc., are allowed to the extent that they can be considered “substantially free” It is the purpose.
- the content of each component, properties and other preferable ranges can be grasped by arbitrarily combining the upper and lower limits described individually below.
- SiO 2 Silicon dioxide
- SiO 2 is a component that forms the skeleton of glass and is the main component (the component with the highest content) of the glass composition.
- SiO 2 is a component that adjusts the devitrification temperature and viscosity during glass formation, and is a component that has the effect of lowering the dielectric constant.
- SiO 2 content is 45% by mass or more and 80% by mass or less, the increase in the devitrification temperature of the glass is suppressed, and the melting point of the glass does not become excessively high, thereby increasing the uniformity in melting the raw materials. .
- the lower limit of the SiO 2 content is preferably 48% by mass or more, more preferably 50% by mass or more, 51% by mass or more, 52% by mass or more, 53% by mass or more, 54% by mass or more, and further 55% by mass or more. It can be.
- the upper limit of the SiO 2 content is preferably 75% by mass or less, more preferably 70% by mass or less, even more preferably 65% by mass or less, particularly preferably 60% by mass or less, and most preferably 58% by mass or less.
- the content of SiO 2 may be 48% by mass or more and 55% by mass or less.
- B2O3 Diboron trioxide
- B 2 O 3 is a component that forms the skeleton of glass.
- B 2 O 3 is also a component that adjusts the devitrification temperature and viscosity during glass formation, and is a component that has the effect of lowering the dielectric constant.
- B 2 O 3 is likely to volatilize when the glass composition is melted, and if its content is too high, it becomes difficult to obtain sufficient homogeneity as a glass composition. Also, an excessive B 2 O 3 content lowers the water resistance of the glass.
- the lower limit of the B 2 O 3 content is preferably 15% by mass or more, more preferably 20% by mass or more, still more preferably 24% by mass or more, particularly preferably 25% by mass or more, and most preferably greater than 26% by mass. preferable.
- the upper limit of the B 2 O 3 content is preferably 35% by mass or less, more preferably 32% by mass or less, even more preferably 30% by mass or less, particularly preferably 29% by mass or less, and even if it is 28% by mass or less. good.
- the content of B 2 O 3 may be 29% by mass or more in some cases.
- Aluminum oxide (Al 2 O 3 ) is a component that forms the skeleton of glass.
- Al 2 O 3 is also a component that adjusts the devitrification temperature and viscosity during glass formation, and is a component that improves the water resistance of the glass.
- Al 2 O 3 is a component that adjusts the dielectric constant of glass.
- the lower limit of the Al 2 O 3 content is preferably 1% by mass or more, more preferably 5% by mass or more, still more preferably 8% by mass or more, particularly preferably 10% by mass or more, and most preferably 12% by mass or more.
- the upper limit of the content of Al 2 O 3 is preferably 18% by mass or less, more preferably 16% by mass or less, still more preferably 15% by mass or less, 14% by mass or less, and may be 13% by mass or less.
- MgO, CaO Magnesium oxide (MgO) and calcium oxide (CaO) are components that adjust the devitrification temperature and viscosity during glass formation while maintaining the heat resistance of the glass. Moreover, MgO and CaO are components that improve the water resistance of the glass. Furthermore, MgO and CaO are components that adjust the dielectric constant of the glass.
- the sum of the contents of MgO and CaO (MgO + CaO), which are components that adjust the dielectric constant and water resistance of the glass, is important.
- the sum of the contents of MgO and CaO (MgO + CaO) is 0.1% by mass or more and 10% by mass or less, the devitrification temperature of the glass is suppressed from rising, and the melting point of the glass does not become excessively high. Increased uniformity in melting. Furthermore, in this range, the water resistance of the glass increases.
- the lower limit of the sum of the contents of MgO and CaO is preferably 1% by mass or more, more preferably 1.5% by mass or more, further preferably 2% by mass or more, and particularly preferably 2.5% by mass or more. 3 mass % or more is most preferable.
- the upper limit of the sum of the contents of MgO and CaO (MgO + CaO) is preferably 8% by mass or less, and may be 7% by mass or less, 6% by mass or less, less than 5% by mass, or even 4.5% by mass or less. .
- addition of MgO and the addition of CaO can have the same effect, but from the viewpoint of further lowering the dielectric constant, the addition of MgO is more advantageous than the addition of CaO. Moreover, addition of MgO is more advantageous than addition of CaO from the viewpoint of further improving water resistance. However, from the viewpoint of suppressing the occurrence of phase separation of the glass, addition of CaO may be more advantageous than addition of MgO in the case of glass fibers having a low dielectric constant. Occurrence of phase separation in the glass may impair the homogeneity of the glass and may make it difficult to spin the glass fiber.
- MgO / (MgO + CaO) ⁇ 0.50 0 ⁇ MgO / (MgO + CaO) ⁇ 0.25, particularly 0 ⁇ MgO / (MgO + CaO) ⁇ 0.21
- MgO and CaO such that 0 ⁇ MgO/(MgO+CaO) ⁇ 0.2.
- MgO is a component that adjusts the devitrification temperature and viscosity during glass formation while maintaining the heat resistance of the glass. MgO is a component that improves the water resistance of glass. Furthermore, MgO is a component that adjusts the dielectric constant of glass. MgO is a component that suppresses phase separation of glass. On the other hand, excessive MgO content increases the dielectric constant of the glass. Therefore, the lower limit of the MgO content can be 0.1% by mass or more, 0.5% by mass or more, 1% by mass or more, 1.5% by mass or more, 2% by mass or more, and 2.5% by mass. It can be more than that. The upper limit of the MgO content may be 10% by mass or less, 8% by mass or less, 6% by mass or less, less than 5% by mass, 4.5% by mass or less, 4% by mass or less, and further 3% by mass or less. sell.
- CaO is a component that adjusts the devitrification temperature and viscosity during glass formation while maintaining the heat resistance of the glass. CaO is a component that improves the water resistance of glass. Furthermore, CaO is a component that adjusts the dielectric constant of glass. CaO is a component that suppresses phase separation of glass. On the other hand, excessive CaO content increases the dielectric constant of the glass. Therefore, the lower limit of the CaO content can be 0.1% by mass or more, 0.5% by mass or more, 1% by mass or more, 2% by mass or more, 3% by mass or more, and 4% by mass or more. .
- the upper limit of the CaO content can be 10% by mass or less, 8% by mass or less, 6% by mass or less, or even less than 5% by mass.
- the upper limit of the CaO content may be less than 4% by mass, less than 2% by mass, or even less than 1% by mass.
- the glass composition may further contain strontium oxide (SrO).
- SrO is a component that adjusts the devitrification temperature and viscosity during glass formation.
- SrO is a component that suppresses phase separation of glass.
- the upper limit of the SrO content can be 5% by mass or less, 3% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, or even less than 0.1% by mass. Possible.
- SrO may be substantially absent. However, in certain embodiments, particularly those with MgO of 1 wt. The content of SrO at which this effect appears remarkably is 1% by mass or more and 2% by mass or more.
- the glass composition may further contain barium oxide (BaO).
- BaO is a component that adjusts the devitrification temperature and viscosity during glass formation.
- BaO is a component that suppresses the phase separation of the glass.
- excessive BaO content increases the dielectric constant of the glass. Therefore, the upper limit of the BaO content can be 5% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, or even less than 0.1% by mass. BaO may be substantially free.
- the lower limit of the BaO content is 0.05% by mass or more, 0.1% by mass or more, for example 0.1% by mass. 1% by mass or more, or 0.2% by mass or more and less than 1% by mass.
- the glass composition may further contain zinc oxide (ZnO).
- ZnO is a component that adjusts the devitrification temperature and viscosity during glass formation.
- ZnO is a component that adjusts the dielectric constant of glass.
- the upper limit of the ZnO content can be 5% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, or even less than 0.1% by mass.
- ZnO may be substantially free.
- Alkali metal oxides (Li 2 O, Na 2 O, K 2 O) are components that adjust the devitrification temperature and viscosity during glass formation while maintaining the heat resistance of the glass.
- Li 2 O is a component that adjusts the devitrification temperature and viscosity during glass formation.
- excessive Li 2 O content increases the dielectric constant of the glass.
- excessive Li 2 O content lowers the water resistance of the glass. Therefore, the lower limit of the content of Li 2 O may be 0.1% by mass or more, 0.2% by mass or more, 0.3% by mass or more, 0.4% by mass or more, or even 0.5% by mass. % or more.
- the upper limit of the content of Li 2 O may be 5% by mass or less, 4% by mass or less, 3% by mass or less, 2% by mass or less, 1.5% by mass or less, or even 1% by mass or less.
- Na 2 O is a component that adjusts the devitrification temperature and viscosity during glass formation.
- excessive Na 2 O content increases the dielectric constant of the glass.
- excessive Na 2 O content lowers the water resistance of the glass. Therefore, the upper limit of the content of Na 2 O can be 4% by mass or less, 2% by mass or less, 1.5% by mass or less, 1% by mass or less, 0.5% by mass or less, or even 0.2% by mass. % by mass or less.
- K 2 O is a component that adjusts the devitrification temperature and viscosity during glass formation.
- excessive K 2 O content increases the dielectric constant of the glass.
- excessive K 2 O content lowers the water resistance of the glass. Therefore, the upper limit of the K 2 O content can be 4% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, 0.2% by mass or less, or even 0.1% by mass. % by weight.
- K 2 O may be substantially absent.
- the lower limit of the total content of alkali metal oxides may be 0.1% by mass or more, 0.2% by mass or more, 0.3% by mass or more, and 0.4% by mass. % or more, or even 0.5 mass % or more.
- the upper limit of (Li 2 O + Na 2 O + K 2 O) may be 5% by mass or less, 4% by mass or less, 3% by mass or less, 2% by mass or less, 1.5% by mass or less, or even 1% by mass or less.
- Alkali metal oxides (Li 2 O+Na 2 O+K 2 O) may be substantially absent. However, when the uniform melting of the glass raw materials and the stable production of the glass composition are particularly important, (Li 2 O+Na 2 O+K 2 O) may be 1% by mass or more.
- the lower limit of the ratio Li 2 O/(Li 2 O+Na 2 O) of the alkali metal oxide content expressed in mass % may be 0.01 or more, 0.02 or more, or 0.05 or more.
- the upper limit of Li 2 O/(Li 2 O+Na 2 O) may be 0.9 or less, 0.8 or less, or 0.6 or less.
- the mixed alkali effect appears to be well known as the mixed alkali effect, which is when the alkali metal oxide content exceeds, for example, 10% by weight, and when the content is 5% by weight or less, was not known. Also, it should be noted that the mixed alkali effect at such a low alkali is remarkable especially when this ratio is changed from 0 to 0.01.
- the glass composition may further contain titanium oxide ( TiO2 ).
- TiO 2 is a component that improves the meltability and chemical durability of the glass and improves the ultraviolet absorption properties of the glass.
- excessive TiO 2 content increases the dielectric constant of the glass.
- the lower limit of the content of TiO 2 can be 0.1% by mass or more.
- the upper limit of the content of TiO 2 may be 5% by mass or less, 2% by mass or less, less than 1% by mass, less than 0.5% by mass, or 0.2% by mass or less. Within these upper limits, the increase in devitrification temperature due to the inclusion of TiO 2 can be suppressed.
- the upper limit of the content of TiO 2 may be less than 0.1% by mass. TiO 2 may be substantially free.
- the glass composition may further contain zirconium oxide (ZrO2).
- ZrO 2 is a component that adjusts the devitrification temperature and viscosity during glass formation.
- excessive ZrO 2 content increases the dielectric constant of the glass.
- the upper limit of the content of ZrO 2 may be 5% by mass or less, 2% by mass or less, less than 1% by mass, less than 0.5% by mass, 0.2% by mass or less, or even less than 0.1% by mass. Possible. Within these upper limits, it is possible to suppress an increase in the devitrification temperature of the molten glass, which would affect the production of the glass composition, due to the inclusion of ZrO 2 .
- ZrO 2 may be substantially free.
- the glass composition may further contain iron oxide.
- Iron (Fe) contained in the glass composition usually exists in the form of Fe 2+ or Fe 3+ .
- Fe 3+ is a component that enhances the ultraviolet absorption properties of the glass composition
- Fe 2+ is a component that enhances the heat ray absorption properties of the glass composition. Even if Fe is not intentionally included, it may be unavoidably mixed with industrial raw materials. If the Fe content is small, coloring of the glass composition can be prevented.
- the upper limit of the Fe content can be 5% by mass or less, or 2% by mass or less expressed by T-Fe 2 O 3 (T-Fe 2 O 3 is the total iron oxide converted to Fe 2 O 3 ).
- T-Fe 2 O 3 may be 0.1% by mass or more. T--Fe 2 O 3 may reinforce the refining effect of T--SnO 2 depending on the glass composition. Specifically, T-Fe 2 O 3 is 0.1% by mass or more, for example, 0.1% by mass or more and 1% by mass or less, and 0 ⁇ MgO/(MgO+CaO) ⁇ 0.2, or even 0 A glass composition satisfying ⁇ MgO/(MgO+CaO) ⁇ 0.15 is particularly suitable for stable production.
- the content of T--SnO 2 may be 0.15% by weight or more, or even 0.2% by weight or more, due to the reinforcing effect of T--Fe 2 O 3 .
- the content of T--SnO 2 may be 0.15% by weight or more, or even 0.2% by weight or more, due to the reinforcing effect of T--Fe 2 O 3 .
- it is less than 0.5% by mass stable production is possible.
- the glass composition of this embodiment contains tin oxide.
- Sn in glass usually exists in the form of Sn 2+ and/or Sn 4+ .
- SnO 2 is a component that removes bubbles present in the glass substrate. It is also a component that improves the water resistance of glass.
- Sn in the glass is a component that emits light when irradiated with ultraviolet rays.
- the content of T--SnO 2 total tin oxide converted to SnO 2
- the glass composition cannot be sufficiently clarified by tin oxide.
- the content of T-SnO 2 exceeds 2% by mass, the devitrification temperature of the glass composition becomes high, or the glass tends to undergo phase separation.
- the lower limit of the content of T-SnO 2 is preferably 0.1% by mass or more, 0.2% by mass or more, 0.22% by mass or more, 0.25% by mass or more, 0.3% by mass or more, 0.2% by mass or more, It may be 35% by mass or more, 0.4% by mass or more, or even 0.5% by mass or more.
- the lower limit of the content of T--SnO 2 may be 0.6% by mass or more, further 0.65% by mass or more, and in some cases 0.8% by mass or more.
- the upper limit of the content of T-SnO 2 is preferably 1.8% by mass or less, more preferably 1.6% by mass or less, 1.4% by mass or less, 1.3% by mass or less, and less than 1.2% by mass. is more preferable, 1.0% by mass or less and 0.8% by mass or less is particularly preferable, and 0.5% by mass or less and 0.3% by mass or less is most preferable.
- An example of a glass composition suitable for stable production of low dielectric constant glass fibers has a T—SnO 2 content of 0.5% by mass or more and 0 ⁇ MgO/(MgO+CaO) ⁇ 0.2.
- T—SnO 2 content 0.5% by mass or more and 0 ⁇ MgO/(MgO+CaO) ⁇ 0.2.
- this glass composition may contain T--Fe 2 O 3 within the above range, but may be substantially free of it.
- This example of the glass composition may contain CeO 3 to be described later within the range described later, but may not substantially contain CeO 3 .
- Another example of a glass composition suitable for stable production of low dielectric constant glass fibers includes a T—SnO 2 content of 0.3% by mass or more, further 0.4% by mass or more, and MgO of not substantially included.
- This glass composition example may also contain T--Fe 2 O 3 within the above range, but may be substantially free of it.
- This example of the glass composition may also contain CeO 3 to be described later within the range described later, but it does not matter if it does not substantially contain CeO 3 .
- a glass composition suitable for stable production of low dielectric constant glass fibers includes a T—SnO 2 content of 0.6% by mass or more, more preferably 0.65% by mass or more, particularly 0.7% by mass or more. % by mass or more, and in some cases 0.8% by mass or more, and (Li 2 O+Na 2 O+K 2 O) is contained in the range of 0.3% by mass or more, and further 0.35% by mass or more.
- This glass composition example may also contain T--Fe 2 O 3 within the above range, but may be substantially free of it.
- This example of the glass composition may also contain CeO 3 to be described later within the range described later, but it does not matter if it does not substantially contain CeO 3 .
- ⁇ T For stable production of low-permittivity glass fibers, ⁇ T, which will be described later, should be large.
- An example of a glass composition suitable for securing a large ⁇ T satisfies the following formulas on a mass basis. 0.1 ⁇ T—SnO 2 ⁇ 0.5 0.1 ⁇ (T—Fe 2 O 3 +T—SnO 2 ) ⁇ 0.6 0.1 ⁇ (Li2O + Na2O + K2O) ⁇ 1
- a glass composition that satisfies each of the above formulas is suitable for achieving characteristics such as, for example, a dielectric constant at 1 GHz of 5.0 or less, further 4.8 or less, and a ⁇ T of 100 ° C. or more, further 140 ° C. or more. .
- ⁇ T is also affected by components not shown in the above formula.
- the low dielectric constant contains undesirable components, such as when the fourth equation below also holds together with the above three equations, the low dielectric constant A high rate and a high ⁇ T can be compatible.
- the glass composition may further contain cerium oxide ( CeO2).
- CeO2 is a fining component. If the content of CeO 2 is small, coloring of the glass composition can be prevented. Therefore, the lower limit of the CeO 2 content can be 0.1% by mass or more.
- the upper limit of the content of CeO 2 may be 5% by mass or less, 2% by mass or less, 1% by mass or less, or less than 0.5% by mass.
- the upper limit of the content of CeO 2 may be less than 0.1% by mass.
- CeO 2 may be substantially free.
- the glass composition may further contain fluorine and/or chlorine.
- Fluorine and chlorine may be contained as molecules (F 2 and Cl 2 , respectively), and may be contained as anions (F ⁇ and Cl ⁇ , respectively).
- fluorine and chlorine contained in molecules and anions are sometimes collectively referred to as F 2 and Cl 2 , respectively.
- their contents are expressed in terms of mass percentages converted to molecules. Since fluorine (F 2 ) is easily volatilized, there is a possibility that fluorine (F 2 ) may scatter during melting, and there is also the problem that it is difficult to control the content in the glass.
- the upper limit of the F2 content may be 5% by mass or less, 2 % by mass or less, 1% by mass or less, 0.5% by mass or less, 0.2% by mass or less, or even less than 0.1% by mass. Possible. F 2 may be substantially free. Since chlorine (Cl 2 ) is easily volatilized, there is a possibility that chlorine (Cl 2 ) may scatter during melting, and there is also the problem that it is difficult to control the content in the glass.
- the upper limit of the Cl2 content can be 5% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, 0.2% by mass or less, or even less than 0.1% by mass. Possible. Cl 2 may be substantially free.
- the glass composition may further contain diphosphorus pentoxide ( P2O5 ).
- Diphosphorus pentoxide is a component that forms the skeleton of glass, and is also a component that adjusts the devitrification temperature and viscosity during glass formation.
- P 2 O 5 is a component that adjusts the dielectric constant of the glass. In general, when the content of P 2 O 5 exceeds 2% by mass, the furnace walls of the melting kiln and the thermal storage kiln are eroded when the glass is melted, and the life of the kiln can be significantly shortened.
- the upper limit of the content of P 2 O 5 may be 5% by mass or less, 2% by mass or less, less than 1% by mass, less than 0.5% by mass, 0.2% by mass or less, or even 0.1% by mass. can be less than P 2 O 5 may be substantially free.
- the glass composition contains, as other components, at least selected from La2O3 , WO3 , Nb2O5 , Y2O3 , MoO3 , Ta2O5 , MnO2 , Cr2O3 , CuO and CoO.
- 1 type can be contained at a content of 0% by mass or more and 5% by mass or less. Acceptable contents of these components can be less than 2 wt%, less than 1 wt%, less than 0.5 wt%, or even less than 0.1 wt% for each.
- the total allowable content of these components may be 5% by weight or less, less than 2% by weight, less than 1% by weight, less than 0.5% by weight, or even less than 0.1% by weight. .
- each of the above other components may be substantially absent.
- the glass composition may contain at least one selected from Br 2 , I 2 , As 2 O 3 and Sb 2 O 3 as an additive at a content of 0% by mass or more and 1% by mass or less. Acceptable contents of these components may be less than 0.5% by weight, less than 0.2% by weight, or even less than 0.1% by weight for each.
- the total permissible content of these components may be 1 wt% or less, or less than 0.5 wt%, less than 0.2 wt%, or even less than 0.1 wt%. However, each of the above other components may be substantially absent.
- the glass composition can contain H 2 O, OH, H 2 , CO 2 , CO, He, Ne, Ar and N 2 at a content of 0% by mass or more and 0.1% by mass or less. Acceptable contents of these components may be less than 0.05% by weight, less than 0.03% by weight, or even less than 0.01% by weight for each.
- the total permissible content of these components may be 0.1 wt% or less, or less than 0.05 wt%, less than 0.03 wt%, or even less than 0.01 wt%. However, each of the above other components may be substantially absent.
- the glass composition may contain trace amounts of precious metal elements.
- noble metal elements such as Pt, Rh, Au, and Os can each be included at a content of 0% by mass or more and 0.1% by mass or less.
- Acceptable contents of these components may be less than 0.1 wt%, less than 0.05 wt%, less than 0.03 wt%, or even less than 0.01 wt% for each.
- the total permissible content of these components may be 0.1 wt% or less, or less than 0.05 wt%, less than 0.03 wt%, or even less than 0.01 wt%.
- each of the above other components may be substantially absent.
- the temperature at which the molten glass has a viscosity of 1000 dPa ⁇ sec (1000 poise) is called the working temperature of the glass and is the most suitable temperature for molding the glass.
- the working temperature of the glass is 1100° C. or higher, the variation in the diameter of the glass fibers can be reduced. If the working temperature is 1450° C. or less, the fuel cost for melting the glass can be reduced, the glass manufacturing equipment is less likely to be corroded by heat, and the life of the equipment is extended.
- the lower working temperature can be 1100° C. or higher, 1150° C. or higher, 1200° C.
- the upper working temperature limit can be 1450°C or less, 1420°C or less, 1400°C or less, 1380°C or less, or even less than 1350°C.
- ⁇ T can be 0° C. or higher, 10° C. or higher, 20° C. or higher, 30° C. or higher, 40° C. or higher, 50° C. or higher, in some cases 100° C. or higher, or even 140° C. or higher.
- ⁇ T can be 500° C. or less, 400° C. or less, 300° C. or less, or even 200° C. or less.
- the glass composition of the present embodiments can have a low dielectric constant.
- the dielectric constant at a measurement frequency of 1 GHz is 5.5 or less, 5.2 or less, 5.0 or less, 4.9 or less, 4.8 or less, 4.7 or less, 4.6 or less, or 4.5 or less. Yes, and in some cases 4.4 or less.
- permittivity means relative permittivity, but in this specification it is simply referred to as permittivity according to common practice.
- Dielectric constants are values at room temperature (25° C.).
- the glass fiber of this embodiment is composed of the glass composition described above. According to the present embodiment, even when the fiber diameter is small, the occurrence of devitrification and the inclusion of bubbles in the glass fiber can be further suppressed, so the glass fiber of the present embodiment can be a glass fiber with a small fiber diameter.
- the average fiber diameter of glass fibers is, for example, 1 to 6 ⁇ m.
- the average fiber diameter may be 3 ⁇ m or more, 4.6 ⁇ m or less, or even 4.3 ⁇ m or less.
- a glass composition having a characteristic temperature suitable for mass production is suitable for stable production as thin glass fibers.
- the average fiber diameter is even smaller, for example 3.9 ⁇ m or less, or even 3.5 ⁇ m or less.
- Glass fibers are, for example, long glass fibers (filaments).
- a preferred application of the glass fiber of the present embodiment is a printed circuit board. Glass fibers with low dielectric constant and small fiber diameter are suitable for use in printed circuit boards. However, the application is not limited to printed circuit boards.
- the glass fiber can be glass yarn.
- the glass yarn of the present embodiment may contain glass fibers other than the glass fibers of the present embodiment, but may be composed only of the glass fibers of the present embodiment, specifically long glass fibers. This glass yarn suppresses the occurrence of defects such as glass fiber breakage and fluffing, and has high productivity.
- the number of long glass fibers (number of filaments) contained in the glass yarn is, for example, 30-200.
- the number of filaments may be, for example, 30-100, 30-70, or further 30-60.
- An appropriate number is advantageous in forming the glass cloth more easily and reliably, and in reducing the thickness of the printed circuit board.
- the composition and application of the glass yarn are not limited to these examples.
- the glass yarn containing glass fiber may have a count of 1 to 6 tex, or even 1 to 3 tex. A suitable count is advantageous in forming a thin glass cloth more easily and reliably and in achieving a thinner printed circuit board.
- the glass yarn may have a strength of 0.4 N/tex or more, further 0.6 N/tex or more, particularly 0.7 N/tex or more.
- the glass fiber of this embodiment can be produced by applying a known method.
- a known method for example, when producing glass fibers having an average fiber diameter of about 1 to 6 ⁇ m, the following method can be employed. That is, a method in which the glass composition is put into a glass melting furnace and melted to form molten glass, and then the molten glass is pulled out from a number of spinning nozzles provided at the bottom of a heat-resistant bushing in the spinning furnace and formed into a filament. be. Glass fibers can thus be produced.
- the glass fibers can be long glass fibers (filaments).
- the melting temperature in the melting kiln is, for example, 1300 to 1700°C, preferably 1400 to 1700°C, more preferably 1500 to 1700°C.
- the fiber diameter of the glass fibers to be formed is small, the occurrence of minute devitrification and inclusion of bubbles in the glass fibers can be further suppressed, and the spinning tension can be prevented from becoming excessively high.
- the properties (eg strength) and quality of the glass fibers produced can be reliably ensured.
- a winding rotating device called a collet is used for winding glass fibers, but if the spinning tension is excessively increased, the filament caused by the depressions between the fingers occurs in the wound glass fibers. It leads to quality deterioration of the glass fiber.
- the collet is a device having a plurality of fingers on the outer circumference of the collet body that move radially outward during rotation and that sink into the collet body when stopped. Degradation of glass fibers can lead to, for example, poor appearance and/or poor opening in the glass cloth.
- the above problems can be alleviated.
- the appearance and/or the openability of the glass cloth using the glass fiber are also improved.
- a glass strand can be formed by applying a sizing agent to the surface of the glass fiber formed by spinning and bundling a plurality of glass fibers, for example 10 to 120 glass fibers.
- This strand contains the glass fibers of the present embodiments.
- a strand is wound around a tube (e.g., a paper tube) on a collet that rotates at high speed to form a cake, then the strand is unwound from the outer layer of the cake, air-dried while being twisted, and then rewound onto a bobbin or the like.
- a glass yarn can be formed by twisting.
- the glass cloth of this embodiment is composed of the glass fibers described above.
- the glass cloth of the present embodiment may also have the aforementioned properties such as the low dielectric constant possessed by the glass composition of the present embodiment.
- the weave structure of the glass cloth of the present embodiment is, for example, plain weave, satin weave, twill weave, basket weave, or ribbed weave, preferably plain weave. However, the weave structure is not limited to these examples.
- the glass yarn may contain glass fibers other than the glass fibers of the present embodiment, but may be composed only of the glass fibers of the present embodiment, specifically long glass fibers. In the glass cloth of the present embodiment, defects such as glass fiber breakage and fluffing are suppressed, and the productivity is high.
- the thickness of the glass cloth is 20 ⁇ m or less, 7 to 20 ⁇ m, and further 8 to 15 ⁇ m as measured according to the provisions of item 7.10.1 of JIS R3420:2013. .
- This preferred form of glass cloth is suitable for thinning printed circuit boards.
- the mass of the glass cloth is 20 g/m 2 or less, 8 to 20 g/m 2 , or 8 to 20 g/m 2 in terms of the cloth mass measured according to JIS R3420:2013 item 7.2. 13 g/m 2 .
- This preferred form of glass cloth is suitable for use in thin printed circuit boards.
- the number of glass fibers (woven density) per unit length (25 mm) of the glass cloth is, for both warp and weft, 80 to 130, 80 to 110, or even 90 to 110 per length of 25 mm. is.
- the glass cloth of this preferred form has a reduced thickness and a large number of entanglement points of the warp and weft to make it difficult for the glass cloth to bend and to suppress the occurrence of pinholes when impregnated with a resin. Suitable for
- the air permeability of the glass cloth is 200 cm 3 /(cm 2 ⁇ sec) or less, 50 to 200 cm 3 /(cm 2 ⁇ sec), further 50 to 150 cm 3 /(cm 2 ⁇ sec). .
- This preferred form of glass cloth is suitable for reducing the thickness and suppressing the pinholes described above.
- the glass composition of the present embodiment or the glass raw material prepared so as to obtain the glass composition of the present embodiment is melted as described above. Temperatures, ie above 1400° C., preferably between 1400 and 1650° C., may be applied to obtain glass fibers.
- the glass cloth of this embodiment can be produced by a known method using the glass fiber of this embodiment.
- An example of the manufacturing method is a method in which, after warping and sizing the glass yarn, wefts of the glass yarn are driven using the glass yarn as the warp.
- Various looms such as jet looms, sulzer looms and rapier looms, can be used for weft driving.
- Specific examples of jet looms include air jet looms and water jet looms.
- the loom for manufacturing the glass cloth is not limited to these.
- the glass cloth of this embodiment may be subjected to fiber opening treatment.
- the fiber opening process is advantageous for thinning the glass cloth.
- a specific method of the fiber-spreading treatment is not particularly limited, and for example, fiber-spreading by pressure of water flow, fiber-spreading by high-frequency vibration using water or the like as a medium, and fiber-spreading by pressurization using rolls or the like can be applied. Degassed water, ion-exchanged water, deionized water, electrolytic cation water, electrolytic anion water, or the like can be used as the water used as a medium for opening.
- the fiber opening treatment may be performed at the same time as the weaving of the glass cloth or after weaving. Further, the fiber-opening treatment may be performed simultaneously with various treatments such as heat cleaning and surface treatment, or may be performed after various treatments.
- a treatment for removing the substance may be further carried out.
- the glass cloth that has undergone the removal treatment is excellent in terms of impregnation with the matrix resin and adhesion with the resin when it is used for a printed circuit board.
- the woven glass cloth may be surface-treated with a silane coupling agent or the like.
- the surface treatment can be carried out by known means, specifically, a method of impregnating a glass cloth with a silane coupling agent, a coating method, a spraying method, or the like.
- the glass cloth of this embodiment is suitable for printed circuit boards. When used for printed circuit boards, it is possible to make effective use of the characteristics that it has a low dielectric constant and can be composed of glass fibers with a small fiber diameter. However, the application is not limited to printed circuit boards.
- the prepreg of this embodiment can be composed of the glass cloth of this embodiment.
- the prepregs of the present embodiments may also have the properties described above, such as the low dielectric constant of the glass compositions of the present embodiments.
- the method for manufacturing the prepreg of the present embodiment is not particularly limited, and any conventionally known manufacturing method may be adopted.
- the resin with which the prepreg of the present embodiment is impregnated is not particularly limited as long as it is a synthetic resin that can be combined with the glass cloth of the present embodiment. mentioned. It is desirable to use a resin having a low dielectric constant that matches the glass cloth of this embodiment having a low dielectric constant.
- the printed circuit board of this embodiment can be made of the glass cloth of this embodiment.
- a printed circuit board according to the present embodiments may also have the properties described above, such as the low dielectric constant possessed by the glass composition of the present embodiments.
- the method for manufacturing the substrate of this embodiment is not particularly limited, and any conventionally known manufacturing method may be employed. For example, there is a method of producing a prepreg containing a resin impregnated in glass cloth and then curing the prepreg.
- Examples 1-21 and Comparative Examples 1-5 Ordinary glass raw materials such as silica sand were blended so as to have the compositions shown in Tables 1 to 3, and batches of glass raw materials were produced for each of Examples and Comparative Examples. Using an electric furnace, each batch was heated to 1550-1600° C. to melt and held for about 4 hours until the composition became homogeneous. Then, part of the melted glass (glass melt) was poured onto an iron plate and slowly cooled to room temperature in an electric furnace to obtain a bulk glass composition (plate-like object, glass sample).
- a bulk glass composition plate-like object, glass sample
- the relationship between viscosity and temperature was examined by the usual platinum ball pulling method, and the working temperature was determined from the results.
- the platinum sphere pulling-up method refers to the relationship between the applied load (resistance) when a platinum sphere is immersed in molten glass and pulled up in uniform motion, the gravity force acting on the platinum sphere, the buoyancy force, etc. This is a method of measuring viscosity by applying Stokes' law, which indicates the relationship between the viscosity and the falling velocity of fine particles when they settle in a fluid.
- a glass composition pulverized to a particle size of 1.0 to 2.8 mm is placed in a platinum boat, held in an electric furnace with a temperature gradient (800 to 1400 ° C.) for 2 hours, and placed at the position where crystals appear.
- the devitrification temperature was obtained from the corresponding maximum temperature of the electric furnace.
- the maximum temperature of the electric furnace corresponding to the position where cloudiness appeared was taken as the devitrification temperature.
- the particle size is a value measured by a sieving method. Note that the temperature (temperature distribution in the electric furnace) that varies depending on the location in the electric furnace is measured in advance, and the glass composition placed at a predetermined location in the electric furnace is measured in advance. It is heated at the temperature in place.
- the temperature difference ⁇ T is the working temperature minus the devitrification temperature.
- the dielectric constant at a frequency of 1 GHz was measured using a dielectric constant measuring device based on the cavity resonator perturbation method.
- the measurement temperature was 25° C.
- the size of the measurement sample was a rectangular parallelepiped with a 100 mm high square bottom having a side of 1.5 mm.
- the number of bubbles was obtained as follows. Ordinary glass raw materials such as silica sand were prepared, and batches of glass raw materials were produced for each of the examples and comparative examples. Using an electric furnace, 150 g of each batch was heated to the test temperature of 1600° C. to melt and held for 2 hours until the composition was uniform. After that, part of the melted glass (glass melt) was poured onto an iron plate and slowly cooled to room temperature in an electric furnace to obtain a glass sample. The number of bubbles in this glass sample was observed with an optical microscope, and the number of bubbles per 100 g of glass was calculated. The number of bubbles in 100 g of glass was rated as A when less than 2000, B when 2000 or more and less than 5000, C when 5000 or more and less than 10000, and D when 10000 or more.
- the glass composition was irradiated with an ultraviolet lamp with a wavelength of 254 nm, the presence or absence of light emission and its color were visually observed.
- the temperature difference ⁇ T (working temperature - devitrification temperature) of the glass compositions obtained in Examples 1 to 21 was 7°C to 285°C.
- the permittivity at a frequency of 1 GHz of the glass compositions obtained in Examples 1-21 was 4.4-5.0.
- the bubble numbers of the glass compositions obtained in Examples 1-21 were A-C. All of the glass compositions obtained in Examples 1 to 21 exhibited luminescence due to ultraviolet rays.
- the glass composition obtained in Comparative Example 1 had a T--SnO 2 content outside the composition range defined in the present invention. Therefore, the number of bubbles in the glass composition obtained in Comparative Example 1 was D, which was larger than the number of bubbles in the glass compositions obtained in Examples 1-21. Moreover, in the glass composition obtained in Comparative Example 1, no luminescence due to ultraviolet rays was observed.
- the glass composition obtained in Comparative Example 2 had a T--SnO 2 content outside the composition range specified in the present invention. Therefore, the number of bubbles in the glass composition obtained in Comparative Example 2 was D, which was larger than the number of bubbles in the glass compositions obtained in Examples 1-21. Moreover, in the glass composition obtained in Comparative Example 2, no luminescence due to ultraviolet rays was observed.
- the glass composition obtained in Comparative Example 3 had a T--SnO 2 content outside the composition range defined in the present invention. Therefore, the number of bubbles in the glass composition obtained in Comparative Example 3 was D, which was larger than the number of bubbles in the glass compositions obtained in Examples 1-21. Moreover, in the glass composition obtained in Comparative Example 3, no luminescence due to ultraviolet rays was observed.
- the glass composition obtained in Comparative Example 4 had a T--SnO 2 content outside the composition range specified in the present invention. Therefore, ⁇ T of the glass composition obtained in Comparative Example 4 was less than 0° C., which was smaller than ⁇ T of the glass compositions obtained in Examples 1-21.
- the glass composition obtained in Comparative Example 5 had a T--SnO 2 content outside the composition range specified in the present invention. Therefore, the number of bubbles in the glass composition obtained in Comparative Example 5 was D, which was larger than the number of bubbles in the glass compositions obtained in Examples 1-21.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
Abstract
Description
45≦SiO2≦80、
10≦B2O3≦40、
0.1≦Al2O3≦20、
0.1≦(MgO+CaO)≦10、
0≦(Li2O+Na2O+K2O)≦5、
0.1≦T-SnO2≦2、
(ただし、T-SnO2は、SnO2に換算した全酸化錫である)
の成分を含有し、
質量基準で、
0≦MgO/(MgO+CaO)≦0.50
が成立する。
<ガラス組成>
(SiO2)
二酸化ケイ素(SiO2)は、ガラスの骨格を形成する成分であり、ガラス組成の主成分(含有率が最も大きい成分)である。また、SiO2は、ガラス形成時の失透温度および粘度を調整する成分であり、誘電率を下げる作用を有する成分である。SiO2の含有率が45質量%以上80質量%以下では、ガラスの失透温度の上昇が抑えられるとともに、ガラスの融点が過度に高くなることがなく、原料を熔融する際の均一性が増す。SiO2の含有率の下限は、48質量%以上が好ましく、50質量%以上がより好ましく、51質量%以上、52質量%以上、53質量%以上、54質量%以上、さらに55質量%以上であってもよい。SiO2の含有率の上限は、75質量%以下が好ましく、70質量%以下がより好ましく、65質量%以下がさらに好ましく、60質量%以下が特に好ましく、58質量%以下が最も好ましい。SiO2の含有率は、48質量%以上55質量%以下であってもよい。
三酸化二ホウ素(B2O3)は、ガラスの骨格を形成する成分である。また、B2O3は、ガラス形成時の失透温度および粘度を調整する成分でもあり、誘電率を下げる作用を有する成分である。一方で、B2O3は、ガラス組成物の熔融時に揮発しやすく、その含有率が過大となると、ガラス組成物として十分な均質性が得られ難くなる。また、過度のB2O3の含有は、ガラスの耐水性を低下させる。B2O3の含有率が10質量%以上40質量%以下では、ガラスの失透温度の上昇が抑えられるとともに、ガラスの融点が過度に高くなることがなく、原料を熔融する際の均一性が増す。さらに、この範囲ではガラスの耐水性が高くなる。B2O3の含有率の下限は、15質量%以上が好ましく、20質量%以上がより好ましく、24質量%以上がさらに好ましく、25質量%以上が特に好ましく、26質量%より大きいことが最も好ましい。B2O3の含有率の上限は、35質量%以下が好ましく、32質量%以下がより好ましく、30質量%以下がさらに好ましく、29質量%以下が特に好ましく、28質量%以下であってもよい。B2O3の含有率は、場合によっては29質量%以上であってもよい。
酸化アルミニウム(Al2O3)は、ガラスの骨格を形成する成分である。また、Al2O3は、ガラス形成時の失透温度および粘度を調整する成分でもあり、ガラスの耐水性を向上させる成分である。さらに、Al2O3は、ガラスの誘電率を調整する成分である。Al2O3の含有率が0.1質量%以上20質量%以下では、ガラスの失透温度の上昇が抑えられるとともに、ガラスの耐水性が高くなる。また、ガラスの融点が過度に高くなることがなく、原料を熔融する際の均一性が増す。Al2O3の含有率の下限は、1質量%以上が好ましく、5質量%以上がより好ましく、8質量%以上がさらに好ましく、10質量%以上が特に好ましく、12質量%以上が最も好ましい。Al2O3の含有率の上限は、18質量%以下が好ましく、16質量%以下がより好ましく、15質量%以下がさらに好ましく、14質量%以下、さらに13質量%以下であってもよい。
酸化マグネシウム(MgO)および酸化カルシウム(CaO)は、ガラスの耐熱性を維持しつつ、ガラス形成時の失透温度および粘度を調整する成分である。また、MgOはおよびCaOは、ガラスの耐水性を向上させる成分である。さらに、MgOおよびCaOは、ガラスの誘電率を調整する成分である。
ガラス組成は、酸化ストロンチウム(SrO)をさらに含有しうる。SrOは、ガラス形成時の失透温度および粘度を調整する成分である。また、SrOは、ガラスの分相を抑制する成分である。一方で、過度のSrOの含有はガラスの誘電率を上昇させる。このため、SrOの含有率の上限は、5質量%以下でありうるし、3質量%以下、2質量%以下、1質量%以下、0.5質量%以下、さらには0.1質量%未満でありうる。SrOは、実質的に含まれていなくてもよい。しかしながら特定の実施形態、とくにMgOが1質量%以下の実施形態においては、驚くべきことにSrOの適量の含有が、予想に反し誘電率を低減させる。この効果が顕著に表れるSrOの含有率は、1質量%以上、2質量%以上である。
ガラス組成は、酸化バリウム(BaO)をさらに含有しうる。BaOは、ガラス形成時の失透温度および粘度を調整する成分である。また、BaOは、ガラスの分相を抑制する成分である。一方で、過度のBaOの含有はガラスの誘電率を上昇させる。このため、BaOの含有率の上限は、5質量%以下でありうるし、2質量%以下、1質量%以下、0.5質量%以下、さらには0.1質量%未満でありうる。BaOは、実質的に含まれていなくてもよい。ガラス原料の均一な熔融およびガラス組成物の安定的な製造を特に重要視する場合は、BaOの含有率の下限を0.05質量%以上、0.1質量%以上、例えば0.1質量%以上1質量%未満、さらに0.2質量%以上1質量%未満、としてもよい。
ガラス組成は、酸化亜鉛(ZnO)をさらに含有しうる。ZnOは、ガラス形成時の失透温度および粘度を調整する成分である。また、ZnOは、ガラスの誘電率を調整する成分である。一方で、過度のZnOの含有はガラスの誘電率を上昇させる。このため、ZnOの含有率の上限は、5質量%以下でありうるし、2質量%以下、1質量%以下、0.5質量%以下、さらには0.1質量%未満でありうる。ZnOは、実質的に含まれていなくてもよい。
アルカリ金属酸化物(Li2O、Na2O、K2O)は、ガラスの耐熱性を維持しつつ、ガラス形成時の失透温度および粘度を調整する成分である。
ガラス組成は、酸化チタン(TiO2)をさらに含有しうる。TiO2は、ガラスの熔融性および化学的耐久性を向上させ、ガラスの紫外線吸収特性を向上させる成分である。一方で、過度のTiO2の含有はガラスの誘電率を上昇させる。TiO2の含有率の下限は、0.1質量%以上でありうる。TiO2の含有率の上限は、5質量%以下でありうるし、2質量%以下、1質量%未満、0.5質量%未満、0.2質量%以下でありうる。これらの上限の範囲において、TiO2の含有による、失透温度の上昇を抑制できる。TiO2の含有率の上限は、0.1質量%未満であってもよい。TiO2は、実質的に含まれていなくてもよい。
ガラス組成は、酸化ジルコニウム(ZrO2)をさらに含有しうる。ZrO2は、ガラス形成時の失透温度および粘度を調整する成分である。一方で、過度のZrO2の含有はガラスの誘電率を上昇させる。ZrO2の含有率の上限は、5質量%以下でありうるし、2質量%以下、1質量%未満、0.5質量%未満、0.2質量%以下、さらには0.1質量%未満でありうる。これらの上限の範囲において、ZrO2の含有による、ガラス組成物の製造に影響を与えるような熔融ガラスの失透温度の上昇を抑制できる。ZrO2は、実質的に含まれていなくてもよい。
ガラス組成は、酸化鉄をさらに含有し得る。ガラス組成物中に含まれる鉄(Fe)は、通常、Fe2+またはFe3+の状態で存在する。Fe3+はガラス組成物の紫外線吸収特性を高める成分であり、Fe2+はガラス組成物の熱線吸収特性を高める成分である。Feは、意図的に含ませなくとも、工業用原料により不可避的に混入する場合がある。Feの含有量が少なければ、ガラス組成物の着色を防止することができる。Feの含有率の上限は、T-Fe2O3(T-Fe2O3は、Fe2O3に換算した全酸化鉄)により表示して5質量%以下でありうるし、2質量%以下、1質量%未満、0.5質量%未満、さらには0.2質量%以下でありうる。T-Fe2O3は0.1質量%以上であってもよい。T-Fe2O3は、ガラス組成物によってはT-SnO2による清澄効果を補強することがある。具体的には、T-Fe2O3が0.1質量%以上、例えば0.1質量%以上1質量%以下、であって、0≦MgO/(MgO+CaO)≦0.2、さらには0≦MgO/(MgO+CaO)≦0.15が成立するガラス組成は、安定的な製造に特に適している。この特に適したガラス組成において、T-SnO2の含有率は、0.15質量%以上、さらに0.2質量%以上であってもよく、T-Fe2O3の補強効果があるために例えば0.5質量%未満であっても、安定的に製造することが可能となる。
本実施形態のガラス組成物は、酸化錫を含有する。ガラス中のSnは、通常、Sn2+及び/又はSn4+の状態で存在する。SnO2はガラス素地中に存在する泡を脱泡する成分である。また、ガラスの耐水性を向上させる成分である。さらに、ガラス中のSnは紫外線の照射により発光する成分である。ガラス組成では、酸化錫について、T-SnO2(SnO2に換算した全酸化錫)の含有率の範囲を0.1質量%以上2質量%以下とする。T-SnO2の含有率が0.1質量%未満では、酸化錫によるガラス組成物の十分な清澄効果が得られない。T-SnO2の含有率が2質量%を超えると、ガラス組成物の失透温度が高くなり、またはガラスが分相し易くなる。
0.1≦T-SnO2≦0.5
0.1≦(T-Fe2O3+T-SnO2)≦0.6
0.1≦(Li2O+Na2O+K2O)≦1
上記各式が成立するガラス組成は、例えば1GHzにおける誘電率が5.0以下、さらに4.8以下であって、ΔTが100℃以上、さらに140℃以上、である特性の達成に適している。
0.1≦(SrO+BaO)≦5
ガラス組成は、酸化セリウム(CeO2)をさらに含有しうる。CeO2は、清澄成分である。CeO2の含有量が少なければ、ガラス組成物の着色を防止することができる。このため、CeO2の含有率の下限は、0.1質量%以上でありうる。CeO2の含有率の上限は、5質量%以下でありうるし、2質量%以下、1質量%以下、0.5質量%未満でありうる。CeO2の含有率の上限は、0.1質量%未満であってもよい。CeO2は、実質的に含まれていなくてもよい。
ガラス組成は、フッ素および/または塩素をさらに含有しうる。フッ素や塩素は分子(それぞれF2やCl2)として含有されていてもよく、陰イオン(それぞれF-やCl-)として含有されていてもよい。本明細書においては、分子や陰イオンで含まれるフッ素や塩素を総称して、それぞれF2やCl2と表記することがある。また、それらの含有率について、分子に換算した質量百分率で表示する。フッ素(F2)は、揮発し易いため、溶融時に飛散する可能性があるとともに、ガラス中の含有量を管理し難いという問題もある。F2の含有率の上限は、5質量%以下でありうるし、2質量%以下、1質量%以下、0.5質量%以下、0.2質量%以下、さらには0.1質量%未満でありうる。F2は、実質的に含まれていなくてもよい。塩素(Cl2)は、揮発し易いため、溶融時に飛散する可能性があるとともに、ガラス中の含有量を管理し難いという問題もある。Cl2の含有率の上限は、5質量%以下でありうるし、2質量%以下、1質量%以下、0.5質量%以下、0.2質量%以下、さらには0.1質量%未満でありうる。Cl2は、実質的に含まれていなくてもよい。
ガラス組成は、五酸化二リン(P2O5)をさらに含有しうる。五酸化二リンは、ガラスの骨格を形成する成分であり、ガラス形成時の失透温度および粘度を調整する成分でもある。また、P2O5は、ガラスの誘電率を調整する成分である。一般に、P2O5の含有率が2質量%を超えると、ガラスを溶融する際に溶融窯および蓄熱窯の炉壁が浸食され、窯の寿命が著しく低下しうる。P2O5の含有率の上限は、5質量%以下でありうるし、2質量%以下、1質量%未満、0.5質量%未満、0.2質量%以下、さらには0.1質量%未満でありうる。P2O5は、実質的に含まれていなくてもよい。
ガラス組成は、その他の成分として、La2O3、WO3、Nb2O5、Y2O3、MoO3、Ta2O5、MnO2、Cr2O3、CuOおよびCoOから選ばれる少なくとも1種を、それぞれ0質量%以上5質量%以下の含有率で含有しうる。これらの成分の許容される含有率は、それぞれについて2質量%未満でありうるし、1質量%未満、0.5質量%未満、さらには0.1質量%未満でありうる。これらの成分の許容される含有率の合計は、5質量%以下でありうるし、2%質量%未満、1質量%未満、0.5質量%未満、さらには0.1質量%未満でありうる。ただし、上記その他の成分は、それぞれ実質的に含まれていなくてもよい。
本実施形態のガラス組成物がとりうる特性について、以下、説明する。
(熔融特性)
熔融ガラスの粘度が1000dPa・sec(1000poise)となるときの温度は、当該ガラスの作業温度と呼ばれ、ガラスの成形に最も適する温度である。ガラス繊維を製造する場合、ガラスの作業温度が1100℃以上であれば、ガラス繊維径のばらつきを小さくできる。作業温度が1450℃以下であれば、ガラスを熔融する際の燃料費を低減でき、ガラス製造装置が熱による腐食を受け難くなり、装置寿命が延びる。作業温度の下限は、1100℃以上でありうるし、1150℃以上、1200℃以上、1250℃以上、さらには1300℃以上でありうる。作業温度の上限は、1450℃以下でありうるし、1420℃以下、1400℃以下、1380℃以下、さらには1350℃未満でありうる。
本実施形態のガラス組成物は低い誘電率を有しうる。測定周波数1GHzの誘電率は、5.5以下、5.2以下、5.0以下、4.9以下、4.8以下、4.7以下、4.6以下、さらには4.5以下であり、場合によっては4.4以下である。誘電率は、厳密には比誘電率を意味するが、本明細書では慣用に従って単に誘電率と表記する。誘電率は室温(25℃)での値である。
<ガラス繊維>
本実施形態のガラス繊維は、上述したガラス組成物により構成される。本実施形態によれば、繊維径が小さい場合においても当該ガラス繊維における失透の発生及び泡の混入をより抑制できることから、本実施形態のガラス繊維は繊維径の小さいガラス繊維でありうる。
本実施形態のガラスクロスは、上述したガラス繊維により構成される。本実施形態のガラスクロスは、本実施形態のガラス組成物が有する低い誘電率等の上述の特性も有し得る。本実施形態のガラスクロスの織組織は、例えば、平織、朱子織、綾織、斜子織、畦織であり、好ましくは平織である。ただし、織組織はこれらの例に限定されない。ガラスヤーンは、本実施形態のガラス繊維以外のガラス繊維を含むこともできるが、本実施形態のガラス繊維、具体的にはガラス長繊維のみから構成されていてもよい。本実施形態のガラスクロスは、ガラス繊維の糸切れ、毛羽立ち等の欠点の発生が抑制されたものとなり、生産性も高い。
本実施形態のプリプレグは、本実施形態のガラスクロスにより構成され得る。本実施形態のプリプレグは、本実施形態のガラス組成物が有する低い誘電率等の上述の特性も有し得る。本実施形態のプリプレグの製造方法は、特に限定されず、従来公知の任意の製造方法が採用されればよい。本実施形態のプリプレグに含浸される樹脂としては、本実施形態のガラスクロスと複合し得る合成樹脂であれば特に限定されず、例えば、熱硬化性樹脂、熱可塑性樹脂、これらの複合樹脂等が挙げられる。低誘電率を有する本実施形態のガラスクロスに合わせた低誘電率を有する樹脂を使用することが望ましい。
本実施形態のプリント基板は、本実施形態のガラスクロスにより構成され得る。本実施形態によるプリント基板は、本実施形態のガラス組成物が有する低い誘電率等の上述の特性も有し得る。本実施形態の基板の製造方法は、特に限定されず、従来公知の任意の製造方法が採用されればよい。例えば、ガラスクロスに含浸された樹脂を含むプリプレグを製造したあとに硬化する方法等が挙げられる。
表1~表3に示した組成となるように、珪砂等の通常のガラス原料を調合し、実施例および比較例毎にガラス原料のバッチを作製した。電気炉を用いて、各バッチを1550~1600℃まで加熱して溶融させ、組成が均一になるまで約4時間そのまま維持した。その後、溶融したガラス(ガラス溶融物)の一部を鉄板上に流し出し、電気炉中で室温まで徐冷し、バルクとしてのガラス組成物(板状物、ガラス試料)を得た。
Claims (19)
- 質量%で表して、
45≦SiO2≦80、
10≦B2O3≦40、
0.1≦Al2O3≦20、
0.1≦(MgO+CaO)≦10、
0≦(Li2O+Na2O+K2O)≦5、
0.1≦T-SnO2≦2、
(ただし、T-SnO2は、SnO2に換算した全酸化錫である)
の成分を含有し、
質量基準で、
0≦MgO/(MgO+CaO)≦0.50
が成立する、ガラス組成物。 - 質量%で表して、
45≦SiO2≦65、である請求項1に記載のガラス組成物。 - 質量%で表して、
20≦B2O5≦40、である請求項1に記載のガラス組成物。 - 質量%で表して、
5≦Al2O5≦20、である請求項1に記載のガラス組成物。 - 質量%で表して、
0.1≦(MgO+CaO)<5、である請求項1に記載のガラス組成物。 - 質量%で表して、
0.1≦T-SnO2≦0.5、である請求項1に記載のガラス組成物。 - 質量%で表して、
1≦SrO≦3、である請求項1に記載のガラス組成物。 - 質量%で表して、
0.05≦BaO≦1、である請求項1に記載のガラス組成物。 - 質量%で表して、
0.1≦(Li2O+Na2O+K2O)≦5、である請求項1に記載のガラス組成物。 - 質量%で表して、
0.1≦Li2O≦5、である請求項1に記載のガラス組成物。 - 質量%で表して、
0.01≦Li2O/(Li2O+Na2O)≦0.9、である請求項1に記載のガラス組成物。 - 質量%で表して、
0≦P2O5≦5、である請求項1に記載のガラス組成物。 - 質量%で表して、
0≦F2≦1、である請求項1に記載のガラス組成物。 - 質量%で表して、
0.1≦CeO2≦5、である請求項1に記載のガラス組成物。 - 前記ガラス組成物の粘度が1000dPa・secであるときの温度を作業温度としたとき、前記作業温度が1450℃以下である、請求項1に記載のガラス組成物。
- 前記ガラス組成物の粘度が1000dPa・secであるときの温度を作業温度としたとき、前記作業温度から失透温度を差し引いた温度差ΔTが0℃以上である、請求項1に記載のガラス組成物。
- 前記ガラス組成物の周波数1GHzにおける誘電率が5.5以下である、請求項1に記載のガラス組成物。
- 請求項1~17のいずれか1項に記載のガラス組成物から構成されるガラス繊維。
- 請求項1~17のいずれか1項に記載のガラス組成物を熔融する工程と、熔融した前記ガラス組成物をガラス繊維へと成形する工程と、を含む、
ガラス繊維の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022579633A JPWO2022168963A1 (ja) | 2021-02-05 | 2022-02-04 | |
EP22749834.2A EP4289801A1 (en) | 2021-02-05 | 2022-02-04 | Glass composition and glass fiber and method for producing same |
US18/263,974 US20240116803A1 (en) | 2021-02-05 | 2022-02-04 | Glass composition, glass fiber, and method for manufacturing the same |
CN202280012897.2A CN116848072A (zh) | 2021-02-05 | 2022-02-04 | 玻璃组合物、玻璃纤维及其制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021017862 | 2021-02-05 | ||
JP2021-017862 | 2021-02-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022168963A1 true WO2022168963A1 (ja) | 2022-08-11 |
Family
ID=82741203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/004565 WO2022168963A1 (ja) | 2021-02-05 | 2022-02-04 | ガラス組成物ならびにガラス繊維およびその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240116803A1 (ja) |
EP (1) | EP4289801A1 (ja) |
JP (1) | JPWO2022168963A1 (ja) |
CN (1) | CN116848072A (ja) |
TW (1) | TW202239726A (ja) |
WO (1) | WO2022168963A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62226839A (ja) | 1986-03-27 | 1987-10-05 | Nippon Sheet Glass Co Ltd | 低誘電率ガラス繊維 |
JP2012051773A (ja) * | 2010-09-02 | 2012-03-15 | Nippon Electric Glass Co Ltd | 樹脂複合体基板用ガラス |
WO2012132328A1 (ja) * | 2011-03-31 | 2012-10-04 | 日本板硝子株式会社 | 低膨張ガラス及び強化ガラス |
JP2016537289A (ja) * | 2013-11-20 | 2016-12-01 | コーニング インコーポレイテッド | 耐スクラッチアルミノホウケイ酸ガラス |
JP2018519229A (ja) * | 2015-03-24 | 2018-07-19 | コーニング インコーポレイテッド | ディスプレイガラス組成物のレーザ切断及び加工 |
JP2019501859A (ja) * | 2015-12-21 | 2019-01-24 | コーニング インコーポレイテッド | アルカリ含有量が低いホウケイ酸ガラス |
-
2022
- 2022-02-04 EP EP22749834.2A patent/EP4289801A1/en not_active Withdrawn
- 2022-02-04 US US18/263,974 patent/US20240116803A1/en active Pending
- 2022-02-04 WO PCT/JP2022/004565 patent/WO2022168963A1/ja active Application Filing
- 2022-02-04 JP JP2022579633A patent/JPWO2022168963A1/ja active Pending
- 2022-02-04 CN CN202280012897.2A patent/CN116848072A/zh active Pending
- 2022-02-07 TW TW111104340A patent/TW202239726A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62226839A (ja) | 1986-03-27 | 1987-10-05 | Nippon Sheet Glass Co Ltd | 低誘電率ガラス繊維 |
JP2012051773A (ja) * | 2010-09-02 | 2012-03-15 | Nippon Electric Glass Co Ltd | 樹脂複合体基板用ガラス |
WO2012132328A1 (ja) * | 2011-03-31 | 2012-10-04 | 日本板硝子株式会社 | 低膨張ガラス及び強化ガラス |
JP2016537289A (ja) * | 2013-11-20 | 2016-12-01 | コーニング インコーポレイテッド | 耐スクラッチアルミノホウケイ酸ガラス |
JP2018519229A (ja) * | 2015-03-24 | 2018-07-19 | コーニング インコーポレイテッド | ディスプレイガラス組成物のレーザ切断及び加工 |
JP2019501859A (ja) * | 2015-12-21 | 2019-01-24 | コーニング インコーポレイテッド | アルカリ含有量が低いホウケイ酸ガラス |
Also Published As
Publication number | Publication date |
---|---|
TW202239726A (zh) | 2022-10-16 |
JPWO2022168963A1 (ja) | 2022-08-11 |
US20240116803A1 (en) | 2024-04-11 |
EP4289801A1 (en) | 2023-12-13 |
CN116848072A (zh) | 2023-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6775159B2 (ja) | ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法 | |
JP6945205B2 (ja) | ガラス組成物、ガラス繊維、ガラスクロスおよびガラス繊維の製造方法 | |
JP7542813B2 (ja) | ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法 | |
JP5655293B2 (ja) | ガラス繊維用ガラス組成物、ガラス繊維及びガラス製シート状物 | |
JP5545590B2 (ja) | ガラス繊維用ガラス組成物、ガラス繊維及びガラス繊維シート状物 | |
WO2010109721A1 (ja) | ガラス繊維用ガラス組成物、ガラス繊維及びガラス繊維シート状物 | |
WO2022168963A1 (ja) | ガラス組成物ならびにガラス繊維およびその製造方法 | |
JP2024149728A (ja) | ガラス組成物、ガラス繊維、ガラスクロス、及びガラス繊維の製造方法 | |
JPH10120438A (ja) | ガラス組成物及びガラス繊維 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22749834 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022579633 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280012897.2 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18263974 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022749834 Country of ref document: EP Effective date: 20230905 |