WO2018216482A1 - ガスメータ - Google Patents

ガスメータ Download PDF

Info

Publication number
WO2018216482A1
WO2018216482A1 PCT/JP2018/018058 JP2018018058W WO2018216482A1 WO 2018216482 A1 WO2018216482 A1 WO 2018216482A1 JP 2018018058 W JP2018018058 W JP 2018018058W WO 2018216482 A1 WO2018216482 A1 WO 2018216482A1
Authority
WO
WIPO (PCT)
Prior art keywords
meter
flow rate
gas
fluid
inlet
Prior art date
Application number
PCT/JP2018/018058
Other languages
English (en)
French (fr)
Inventor
杉山 正樹
博昭 片瀬
永沼 直人
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017100534A external-priority patent/JP2018194507A/ja
Priority claimed from JP2017100535A external-priority patent/JP2018194508A/ja
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP18804993.6A priority Critical patent/EP3633329B1/en
Priority to CN201880028568.0A priority patent/CN110573843A/zh
Priority to US16/499,942 priority patent/US11060895B2/en
Publication of WO2018216482A1 publication Critical patent/WO2018216482A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/005Valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/18Supports or connecting means for meters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow

Definitions

  • the present invention relates to a gas meter that incorporates a flow rate measurement unit that measures the flow rate of a fluid such as gas and has a shut-off function.
  • a flow rate measuring unit capable of independently measuring a flow rate and a gas meter using the same have been proposed as applications.
  • the gas meter has a built-in shutoff valve for shutting off the gas when there is an abnormality by monitoring the gas flow rate as a safety function.
  • FIG. 7 illustrates such a gas meter, and a flow rate measuring unit 403 is accommodated in a gas meter 400 having an inlet 401 and an outlet 402.
  • a shutoff valve 405 is connected to the inlet 401, and the gas that has entered from the inlet 401 diffuses into the main body of the gas meter 400 through a passage in the shutoff valve 405.
  • the gas, which is the fluid to be measured, diffused into the main body of the gas meter 400 flows in from the introduction part 403a of the flow rate measurement unit 403 and flows out from the outlet part 403b connected to the outlet pipe 404 (for example, see Patent Document 1).
  • the gas meter 500 has a configuration in which a shut-off valve 502 and a flow rate measurement unit 503 are attached to the middle of a straight tubular pipe 501 (see, for example, Patent Document 2).
  • the gas diffused into the gas meter 400 via the shutoff valve 405 is flow rate measuring unit from various directions. Since the gas flows into the gas meter 403, the gas meter 400 is influenced by the shape and size of the gas meter 400, and it is difficult to make the gas flow into the flow rate measuring unit 403 constant. It was necessary to individually optimize the shape, flow coefficient, etc.
  • an opening 501a for attaching the flow rate measuring unit 50 to the pipe 501 and an opening 501b for attaching the shut-off valve 502 are configured separately. Therefore, there is a problem that it is difficult to reduce the size of the gas meter. Or since it was necessary to ensure the airtightness with respect to a gas leak in each of the opening parts 501a and 501b, there existed a subject that a seal structure became complicated.
  • the present invention provides a gas meter that has a shut-off function, can stably measure the flow rate regardless of the shape of the built-in gas meter, and can be miniaturized.
  • a gas meter includes a meter main body having a meter inlet through which a fluid to be measured flows and a meter outlet through which the fluid to be measured flows out, an extending portion extending from the meter inlet into the housing, and a meter main body
  • a flow rate measurement unit having a straight tubular measurement flow path provided with an introduction part and a lead-out part for a fluid to be measured, and a shut-off valve disposed in an internal passage of the extension part.
  • the introduction part is hermetically connected to the extension part and communicates with the internal passage.
  • the flow of gas from the shutoff valve to the flow measurement unit is constant, enabling stable flow measurement regardless of the shape of the gas meter, and the shutoff valve and flow metering unit can be directly connected in the shortest distance.
  • the gas meter can be miniaturized.
  • the shut-off valve and the flow rate measuring unit can be directly connected in the shortest distance, so that the gas meter can be downsized.
  • a gas meter includes a meter main body having a meter inlet through which a fluid to be measured flows in and a meter outlet through which the fluid to be measured flows out, and an extending portion extending from the meter outlet into the meter main body.
  • a flow rate measurement unit having a straight tubular measurement flow path provided with an introduction part and a lead-out part for the fluid to be measured, and a shutoff valve disposed in the internal passage of the extension part.
  • the flow rate measuring unit is characterized in that the lead-out portion is hermetically connected to the extension portion and communicated with the internal passage.
  • the gas meter of the present invention since the shut-off valve and the flow rate measuring unit can be directly connected in the shortest distance, the gas meter can be reduced in size.
  • FIG. 1 is a side sectional view of an essential part of a gas meter according to a first embodiment of the present invention.
  • FIG. 2 is a side sectional view of the gas meter according to the first embodiment of the present invention.
  • FIG. 3 is a side sectional view of an essential part of a gas meter according to the second embodiment of the present invention.
  • FIG. 4 is a side sectional view of the gas meter according to the second embodiment of the present invention.
  • FIG. 5 is a side sectional view of a main part of a gas meter according to the third embodiment of the present invention.
  • FIG. 6 is a side sectional view of a gas meter according to the third embodiment of the present invention.
  • FIG. 7 is a sectional view of a gas meter using a conventional flow rate measurement unit.
  • FIG. 8 is a cross-sectional view of a gas meter using another conventional flow rate measurement unit.
  • the gas meter is connected to a pipe for delivering a fluid, and measures the flow rate of the fluid flowing through the pipe.
  • the gas meter incorporates a flow rate measurement unit, and the flow rate measurement unit measures the flow rate of the fluid. That is, it is assumed that the flow rate measurement unit is a part of the gas meter.
  • FIG. 1 is a side sectional view of a main part of a gas meter 100 according to the first embodiment.
  • FIG. 2 is a side sectional view including the shutoff valve 14 and the flow rate measurement unit 10 of the gas meter 100 according to the first embodiment.
  • the gas meter 100 is provided with a meter inlet 101 and a meter outlet 102 on the same surface (upper part in FIGS. 1 and 2) of the meter main body 103, and inside the meter main body 103, a flow rate measuring unit 10 and a shut-off valve 14. Are stored in a connected state.
  • the meter inlet 101 is formed with an extending portion 101 a extending into the meter main body 103.
  • a screw 101d for connecting to the pipe is formed at the inlet portion of the meter inlet 101, and the meter inlet 101 is configured integrally with the extending portion 101a.
  • An internal passage 101b is formed in the extending portion 101a.
  • the extension part outlet 101 c of the extension part 101 a is connected to the introduction part 12 a of the flow rate measurement unit 10, and the internal passage 101 b communicates with the measurement flow path 12.
  • the extending portion 101a is provided with a mounting portion 101e of the driving device 19, and the flange 19a of the driving device 19 is airtightly fixed to the mounting portion 101e with a screw or the like (not shown) across the O-ring 19b.
  • a valve seat 17 is formed in the middle of the internal passage 101b, and the valve body 15 driven by the driving device 19 comes into contact with the valve seat 17 so that the internal passage 101b is shut off and gas flows in from the meter inlet 101. To block the flow.
  • the drive device 19 includes a motor 16 including a stator 16a, a rotor 16b, and a rotary shaft 16c, and a female screw 15a provided on the tip of the rotary shaft 16c.
  • the female screw 15a of the valve body 15 is screwed to rotate the rotary shaft 16c. It consists of a linear motion mechanism that converts to linear motion, and moves the valve body 15.
  • the flow rate measurement unit 10 includes a measurement flow path 12 having a gas introduction section 12a and a derivation section 12b that is a fluid to be measured, and a flow measurement block 13 that measures the flow rate of the gas flowing through the measurement flow path 12.
  • the flow rate measurement unit 10 uses a measurement method using ultrasonic waves. Specifically, using a pair of ultrasonic transmitters / receivers 13a and 13b provided in the flow measurement block 13, for example, ultrasonic waves transmitted from one ultrasonic transmitter / receiver 13a into the measurement channel 12 propagate in the gas. Then, the time from reflection to the inner wall 12c of the measurement flow channel 12 facing and propagating through the gas and being received by the other ultrasonic transceiver 13b is measured. Then, the gas flow rate is obtained from this time, and the gas flow rate is finally obtained.
  • the gas as the fluid to be measured flows directly into the measurement flow path without diffusing into the meter body 103 by directly connecting the shutoff valve 14 and the flow rate measurement unit 10. Therefore, the flow is constant without being affected by the shape of the meter body 103. Therefore, regardless of the shape of the gas meter main body, stable flow rate measurement is possible, and the shutoff valve 14 and the flow rate measurement unit 10 can be directly connected in the shortest distance, so that the gas meter 100 can be downsized.
  • FIG. 3 is a side sectional view of a main part of a gas meter 200 according to the second embodiment.
  • FIG. 4 is a side sectional view including the shutoff valve 14 and the flow rate measurement unit 10 of the gas meter 200 according to the second embodiment.
  • a meter inlet 201 and a meter outlet 202 are provided on opposing surfaces (left and right in FIGS. 3 and 4) of the meter main body 203 so that the center line thereof is a straight line.
  • the flow rate measuring unit 10 and the shutoff valve 14 are stored in a connected state.
  • the meter body 203 includes a lower case 204 and an upper case 205, and a meter inlet 201 and a meter outlet 202 are provided on the lower case 204 side.
  • the meter inlet 201 is formed with an extending portion 201 a that extends into the meter body 203.
  • a screw 201d for connecting to a pipe is formed at the inlet portion of the meter inlet 201, and the meter inlet 201 is configured integrally with the extending portion 201a.
  • An internal passage 201b is formed in the extending portion 201a.
  • the extension part outlet 201 c of the extension part 201 a is connected to the introduction part 12 a of the flow rate measurement unit 10, and the internal passage 201 b communicates with the measurement flow path 12.
  • the extending portion 201a is provided with a mounting portion 201e of the driving device 19, and the flange 19a of the driving device 19 is airtightly fixed to the mounting portion 201e with a screw or the like (not shown) across the O-ring 19b.
  • a valve seat 17 is formed in the middle of the internal passage 201b, and the valve body 15 driven by the driving device 19 comes into contact with the valve seat 17 so that the internal passage 201b is shut off and gas flows in from the meter inlet 201. To block the flow.
  • FIG. 5 is a side cross-sectional view of the main part of the gas meter 210 in the third embodiment.
  • FIG. 6 is a side cross-sectional view including the shutoff valve 24 and the flow rate measurement unit 20 of the gas meter 210 in the third embodiment.
  • the gas meter 210 has a meter inlet 211 and a meter outlet 212 provided on opposite surfaces (left and right in FIGS. 5 and 6) of the meter main body 213 so that the center line thereof is a straight line.
  • the flow rate measuring unit 20 and the shutoff valve 24 are stored in a connected state.
  • the meter body 213 includes a lower case 214 and an upper case 215, and a meter inlet 211 and a meter outlet 212 are provided on the lower case 214 side.
  • the meter outlet 212 is formed with an extending portion 212a that extends into the meter body 213.
  • a screw 212d for connecting to the pipe is formed at the outlet portion of the meter outlet 212, and the meter outlet 212 is airtightly connected to the shutoff valve 24 by an O-ring (not shown) or the like. is doing.
  • the shut-off valve 24 and the extending part 212a may be integrally formed as shown in the figure.
  • An internal passage 212b is formed in the extending portion 212a.
  • the inlet 212c of the extension part 212a is connected to the lead-out part 22b of the flow rate measurement unit 20, and the internal passage 212b communicates with the measurement flow path 22.
  • the extension portion 212a is provided with a mounting portion 212e of the driving device 29, and the flange 29a of the driving device 29 is airtightly fixed to the mounting portion 212e of the meter outlet 212 with a screw or the like not shown across the O-ring 29b. Has been.
  • a valve seat 27 is formed in the middle of the internal passage 212b, and the gas flowing out from the meter outlet 212 when the valve body 25 driven by the driving device 29 comes into contact with the valve seat 27 to shut off the internal passage 212b. To block the flow.
  • the motor 26 including the stator 26a, the rotor 26b, and the rotating shaft 26c and the female screw 25a of the valve body 25 are screwed into the male screw 26d provided at the tip of the rotating shaft 26c, thereby rotating the rotating shaft 26c.
  • It consists of a linear motion mechanism that converts to linear motion, and moves the valve body 25.
  • the flow rate measurement unit 20 includes a measurement flow path 22 having a gas introduction portion 22a and a derivation portion 22b that is a fluid to be measured, and a flow rate measurement block 23 that measures the flow rate of the gas flowing through the measurement flow path 22.
  • the flow rate measurement unit 20 uses a measurement method using ultrasonic waves. Specifically, using a pair of ultrasonic transmitters / receivers 23a and 23b provided in the flow measurement block 23, for example, an ultrasonic wave transmitted from one ultrasonic transmitter / receiver 23a into the measurement flow path 22 propagates in the gas. Then, the time from reflection to the inner wall 22c of the opposing measurement flow path 22 and further propagation in the gas until reception by the other ultrasonic transceiver 23b is measured. Then, the gas flow rate is obtained from this time, and the gas flow rate is finally obtained.
  • the shutoff valve 24 and the flow rate measuring unit 20 can be directly connected by connecting the shutoff valve 24 and the flow rate measuring unit 20 directly, so that the gas meter 210 can be downsized. It becomes. Furthermore, it becomes possible to attach the gas meter 210 in the middle of the straight pipe, and the degree of freedom of installation is increased.
  • the gas meter includes a meter main body having a meter inlet through which a fluid to be measured flows in and a meter outlet through which the fluid to be measured flows out, and an extension extending from the meter inlet to the inside of the housing.
  • the gas meter is provided in the meter body, and includes a flow rate measurement unit having a straight tubular measurement channel having an introduction part and a lead-out part for a fluid to be measured, and a shut-off valve disposed in an internal passage of the extension part. Is provided.
  • the flow rate measurement unit has an introduction part hermetically connected to the extension part and communicates with the internal passage.
  • the gas flow from the shut-off valve to the flow rate measurement unit is constant, so that stable flow rate measurement is possible regardless of the shape of the gas meter, and the shut-off valve and the flow rate measuring unit can be directly connected in the shortest distance. Therefore, the gas meter can be miniaturized.
  • the meter inlet and the meter outlet are linearly arranged in the first disclosure, and the flow rate measurement unit is substantially the same as the center line connecting the meter inlet and the meter outlet. You may arrange
  • the third disclosure includes a meter main body having a meter inlet through which a fluid to be measured flows and a meter outlet through which the fluid to be measured flows out, and an extending portion extending from the meter outlet to the inside of the meter main body.
  • the gas meter is provided in the meter body, and includes a flow rate measurement unit having a straight tubular measurement channel having an introduction part and a lead-out part for a fluid to be measured, and a shut-off valve disposed in an internal passage of the extension part. Is provided. Further, in the flow rate measurement unit, the lead-out portion is hermetically connected to the extension portion and communicates with the internal passage.
  • This configuration allows the shut-off valve and the flow metering unit to be directly connected in the shortest distance, enabling the gas meter to be miniaturized.
  • a gas meter according to a fourth disclosure is the gas meter according to the third disclosure, wherein the meter inlet and the meter outlet are arranged in a substantially straight line, and the flow rate measurement unit includes a center line connecting the meter inlet and the meter outlet. You may arrange
  • the gas meter having a shut-off function can be miniaturized.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Measuring Volume Flow (AREA)

Abstract

ガスメータは、被計測流体が流入するメータ入口(101)と流出するメータ出口(102)を有するメータ本体(103)と、メータ入口(101)からメータ本体(103)内部に延出された延出部(101a)とを備える。また、ガスメータは、メータ本体(103)内に内装され、被計測流体の導入部(12a)と導出部(12b)を備えた直管状の計測流路(12)を有する流量計測ユニット(10)と、延出部(101a)の内部通路(101b)に配置された遮断弁(14)とを備える。さらに、流量計測ユニット(10)は、導入部(12a)が延出部(101a)に気密に接続され、内部通路(101b)に連通する。

Description

ガスメータ
 本発明は、ガスなどの流体の流量を計測する流量計測ユニットが組み込まれ、遮断機能を有するガスメータに関する。
 ガスメータ等の流量計において、超音波やフローセンサーを用いた所謂電子化メータが実用化され、応用として、単独で流量計測可能な流量計測ユニット及びこれを用いたガスメータが提案されている。
 また、ガスメータは保安機能としてガスの流量を監視して異常があった場合にガスを遮断する為の遮断弁が内蔵されている。
 図7はこのようなガスメータを図示したもので、入口401と出口402を有するガスメータ400内に、流量計測ユニット403が収容されている。入口401には、遮断弁405が接続されており、入口401から入ったガスは遮断弁405内の通路を経由して、ガスメータ400の本体内に拡散する。ガスメータ400の本体内に拡散した被計測流体であるガスは流量計測ユニット403の導入部403aから流入し、出口パイプ404に接続された導出部403bから流出する(例えば、特許文献1参照)。
 また、別の形態として、図8に示すようなガスメータ500も提案されている。ガスメータ500は、直管状のパイプ501の途中に遮断弁502及び流量計測ユニット503を外部から取り付けた構成としている(例えば、特許文献2参照)。
特開2012-18031号公報 特開2012-247299号公報
 しかしながら、特許文献1に記載のガスメータの場合は、流量計測ユニット403と遮断弁405が離れているために、遮断弁405を経由してガスメータ400内に拡散したガスは様々な方向から流量計測ユニット403に流入する為に、ガスメータ400の内部の形状、大きさの影響を受け、流量計測ユニット403へのガスの流入状態を一定にするのが難しく、ガスメータの本体形状に合わせて流量計測ユニット403の形状、或いは流量係数等を個々に最適化する必要があった。
 また、特許文献2に記載のガスメータの場合は、パイプ501に流量計測ユニット50を取り付けるための開口部501aと遮断弁502を取り付けるための開口部501bが別々に構成されている。そのため、ガスメータの小型化が困難であるという課題があった。或いは、開口部501a、501bのそれぞれにガス漏れに対しての気密を確保する必要があるため、シール構成が複雑になるという課題があった。
 本発明は、遮断機能を有すると共に、内蔵されるガスメータの形状に関わらず、安定した流量計測を可能で、しかも、小形化が可能なガスメータを提供する。
 本発明の一態様のガスメータは、被計測流体が流入するメータ入口と被計測流体が流出するメータ出口を有するメータ本体と、メータ入口から筐体内部に延出された延出部と、メータ本体内に内装され、被計測流体の導入部と導出部を備えた直管状の計測流路を有する流量計測ユニットと、延出部の内部通路に配置された遮断弁と、を備え、計測ユニットは、導入部が延出部に気密に接続され、内部通路に連通したものである。
 これによって、遮断弁から流量計測ユニットに至るガスの流れが一定となるので、ガスメータの形状に関わらず、安定した流量計測が可能となると共に、遮断弁と流量計量ユニットを最短距離で直結できるのでガスメータの小型化が可能となる。
 また、遮断弁から計測流路に至るガスの流れが一定となるので、ガスメータの形状に関わらず、安定した流量計測が可能となる。
 本発明のガスメータによると、ガスメータ本体の形状に関わらず、安定した流量計測が可能となると共に、遮断弁と流量計量ユニットを最短距離で直結できるのでガスメータの小型化が可能となる。
 また、本発明の別の一態様のガスメータは、被計測流体が流入するメータ入口と被計測流体が流出するメータ出口を有するメータ本体と、メータ出口からメータ本体内部に延出された延出部と、メータ本体内に内装され、被計測流体の導入部と導出部を備えた直管状の計測流路を有する流量計測ユニットと、延出部の内部通路に配置された遮断弁と、を備え、流量計測ユニットは、導出部が延出部に気密に接続され、内部通路に連通したことを特徴とするものである。
 これによって、流量計測部と遮断弁の一体化ができ、加えて遮断弁と流量計量ユニットを最短距離で直結できるのでガスメータの小型化が可能となる。
 また、遮断弁によりガスの流れが一定となるので、ガスメータの形状に関わらず、安定した流量計測が可能となる。
 本発明のガスメータによると、遮断弁と流量計量ユニットを最短距離で直結できるのでガスメータの小型化が可能となる。
図1は、本発明の第1の実施の形態におけるガスメータの要部側面断面図である。 図2は、本発明の第1の実施の形態におけるガスメータの側面断面図である。 図3は、本発明の第2の実施の形態におけるガスメータの要部側面断面図である。 図4は、本発明の第2の実施の形態におけるガスメータの側面断面図である。 図5は、本発明の第3の実施の形態におけるガスメータの要部側面断面図である。 図6は、本発明の第3の実施の形態におけるガスメータの側面断面図である。 図7は、従来の流量計測ユニットを用いるガスメータの断面図である。 図8は、従来の別の流量計測ユニットを用いるガスメータの断面図である。
 以下、添付の図面を参照しながら、本発明によるガスメータの実施の形態を説明する。同じ構成要素には同じ参照符号を付す。既に説明した構成要素については再度の説明を省略する。なお、本発明は、以下で説明する実施の形態によって限定されるものではない。
 本明細書において、ガスメータは流体を配送する配管と接続され、配管を流れる流体の流量を計測する。ガスメータには流量計測ユニットが組み込まれており、流量計測ユニットが流体の流量を計測する。つまり、流量計測ユニットはガスメータの一部品であるとする。
 (第1の実施の形態)
 図1は第1の実施の形態におけるガスメータ100の要部側面断面図である。図2は第1の実施の形態におけるガスメータ100の遮断弁14及び流量計測ユニット10を含めた側面断面図である。
 ガスメータ100は、メータ入口101とメータ出口102をメータ本体103の同一の面(図1、図2においては上部)に設けて有り、このメータ本体103の内部に、流量計測ユニット10と遮断弁14が連結した状態で収納されている。
 メータ入口101には、メータ本体103内部に延出された延出部101aが形成されている。本実施の形態においては、メータ入口101の入口部分には配管との接続を行うためのネジ101dが形成されているとともに、メータ入口101は延出部101aと一体に構成されている。
 延出部101a内部には、内部通路101bが形成されている。そして、延出部101aの延出部出口101cが流量計測ユニット10の導入部12aと接続されており、内部通路101bは計測流路12と連通している。また、延出部101aには駆動装置19の取付部101eが設けられており、駆動装置19のフランジ19aがOリング19bを挟んで図示しないビス等で取付部101eに気密に固定されている。また、内部通路101bの途中には弁座17が形成されており、駆動装置19により駆動する弁体15が弁座17に当接することで内部通路101bが遮断されてメータ入口101から流入するガスの流れを遮断する。
 駆動装置19は、ステーター16a、ローター16b、回転軸16cからなるモータ16と、回転軸16cの先端に設けた雄ねじ16dに弁体15の雌ネジ15aが螺合して、回転軸16cの回転を直線運動に変換する直動機構とからなり、弁体15を移動させる。
 流量計測ユニット10は、被計測流体であるガスの導入部12aと導出部12bを有する計測流路12、及び計測流路12を流れるガスの流量を計測する流量計測ブロック13から構成されている。
 流量計測ユニット10は、超音波を利用した計測方法を用いる。具体的には、流量計測ブロック13に設けた一対の超音波送受信器13a、13bを用い、例えば一方の超音波送受信器13aから計測流路12内に送信された超音波がガス中を伝播し、対向する計測流路12の内壁12cに反射して更にガス中を伝播して他方の超音波送受信器13bで受信されるまでの時間を計測する。そして、この時間によりガスの流速を求めて、最終的にガスの流量を求める。
 以上の様に、本実施の形態のガスメータ100によると、遮断弁14と流量計測ユニット10を直結することで被計測流体であるガスはメータ本体103内部に拡散することなく直接計測流路に流入するため、メータ本体103の形状の影響を受けずに一定の流れとなる。従って、ガスメータ本体の形状に関わらず、安定した流量計測が可能となると共に、遮断弁14と流量計測ユニット10を最短距離で直結できるのでガスメータ100の小型化が可能となる。
 (第2の実施の形態)
 図3は第2の実施の形態におけるガスメータ200の要部側面断面図である。図4は第2の実施の形態におけるガスメータ200の遮断弁14及び流量計測ユニット10を含めた側面断面図である。
 ガスメータ200は、メータ入口201とメータ出口202とがその中心線が直線になるようにメータ本体203の対向する面(図3、図4においては左右)に設けて有り、このメータ本体203の内部に、流量計測ユニット10と遮断弁14が連結した状態で収納されている。なお、メータ本体203は、下ケース204、上ケース205からなり、下ケース204側にメータ入口201とメータ出口202が設けてある。
 メータ入口201には、メータ本体203内部に延出された延出部201aが形成されている。本実施の形態においては、メータ入口201の入口部分には配管との接続を行うためのネジ201dが形成されているとともに、メータ入口201は延出部201aと一体に構成されている。
 延出部201a内部には、内部通路201bが形成されている。そして、延出部201aの延出部出口201cが流量計測ユニット10の導入部12aと接続されており、内部通路201bは計測流路12と連通している。また、延出部201aには駆動装置19の取付部201eが設けられており、駆動装置19のフランジ19aがOリング19bを挟んで図示しないビス等で取付部201eに気密に固定されている。また、内部通路201bの途中には弁座17が形成されており、駆動装置19により駆動する弁体15が弁座17に当接することで内部通路201bが遮断されてメータ入口201から流入するガスの流れを遮断する。
 以上の構成により、第1の実施の形態と同様の効果を得ることが出来、また。図4に示すように、メータ入口201、導入部12a、導出部12b、メータ出口202の中心が同一直線状となるように配置されているので、第1の実施の形態に比べ、更なる小形化が可能となる。更に、直線状配管の途中にガスメータを取り付けることが可能となり、設置の自由度が高まる。
 (第3の実施の形態)
 図5は第3の実施の形態におけるガスメータ210の要部側面断面図である。図6は第3の実施の形態におけるガスメータ210の遮断弁24及び流量計測ユニット20を含めた側面断面図である。
 ガスメータ210は、メータ入口211とメータ出口212とがその中心線が直線になるようにメータ本体213の対向する面(図5、図6においては左右)に設けて有り、このメータ本体213の内部に、流量計測ユニット20と遮断弁24が連結した状態で収納されている。なお、メータ本体213は、下ケース214と上ケース215からなり、下ケース214側にメータ入口211とメータ出口212が設けてある。
 メータ出口212には、メータ本体213内部に延出された延出部212aが形成されている。本実施の形態においては、メータ出口212の出口部分には配管との接続を行うためのネジ212dが形成されているとともに、メータ出口212は遮断弁24と、図示しないOリング等で気密に接続している。遮断弁24と延出部212aは図示するように一体に構成してもよい。
 延出部212a内部には、内部通路212bが形成されている。そして、延出部212aの入口212cが流量計測ユニット20の導出部22bと接続されており、内部通路212bは計測流路22と連通している。また、延出部212aには駆動装置29の取付部212eが設けられており、駆動装置29のフランジ29aがOリング29bを挟んで図示しないビス等でメータ出口212の取付部212eに気密に固定されている。また、内部通路212bの途中には弁座27が形成されており、駆動装置29により駆動する弁体25が弁座27に当接することで内部通路212bが遮断されてメータ出口212から流出するガスの流れを遮断する。
 駆動装置29は、ステーター26a、ローター26b、回転軸26cからなるモータ26と、回転軸26cの先端に設けた雄ねじ26dに弁体25の雌ネジ25aが螺合して、回転軸26cの回転を直線運動に変換する直動機構とからなり、弁体25を移動させる。
 流量計測ユニット20は、被計測流体であるガスの導入部22aと導出部22bを有する計測流路22、及び計測流路22を流れるガスの流量を計測する流量計測ブロック23から構成されている。
 流量計測ユニット20は、超音波を利用した計測方法を用いる。具体的には、流量計測ブロック23に設けた一対の超音波送受信器23a、23bを用い、例えば一方の超音波送受信器23aから計測流路22内に送信された超音波がガス中を伝播し、対向する計測流路22の内壁22cに反射して更にガス中を伝播して他方の超音波送受信器23bで受信されるまでの時間を計測する。そして、この時間によりガスの流速を求めて、最終的にガスの流量を求める。
 以上の様に、本実施の形態のガスメータ210によると、遮断弁24と流量計測ユニット20を直結することで遮断弁24と流量計測ユニット20を最短距離で直結できるのでガスメータ210の小型化が可能となる。更に、直線状配管の途中にガスメータ210を取り付けることが可能となり、設置の自由度が高まる。
 以上説明したように、第1の開示におけるガスメータは、被計測流体が流入するメータ入口と被計測流体が流出するメータ出口を有するメータ本体と、メータ入口から筐体内部に延出された延出部とを備える。また、ガスメータは、メータ本体内に内装され、被計測流体の導入部と導出部を備えた直管状の計測流路を有する流量計測ユニットと、延出部の内部通路に配置された遮断弁とを備える。さらに、流量計測ユニットは、導入部が延出部に気密に接続され、内部通路に連通している。
 この構成により、遮断弁から流量計測ユニットに至るガスの流れが一定となるので、ガスメータの形状に関わらず、安定した流量計測が可能となると共に、遮断弁と流量計量ユニットを最短距離で直結できるのでガスメータの小型化を図ることができる。
 第2の開示におけるガスメータは、第1の開示において、メータ入口とメータ出口が直線状に配置され、流量計測ユニットは、計測流路の中心線がメータ入口とメータ出口とを結ぶ中心線と略一致するように配置してもよい。
 第3の開示は、被計測流体が流入するメータ入口と被計測流体が流出するメータ出口を有するメータ本体と、メータ出口からメータ本体内部に延出された延出部とを備える。また、ガスメータは、メータ本体内に内装され、被計測流体の導入部と導出部を備えた直管状の計測流路を有する流量計測ユニットと、延出部の内部通路に配置された遮断弁とを備える。さらに、流量計測ユニットは、導出部が延出部に気密に接続され、内部通路に連通している。
 この構成により、遮断弁と流量計量ユニットを最短距離で直結できるのでガスメータの小型化が可能となる。
 第4の開示におけるガスメータは、第3の開示において、メータ入口とメータ出口が略直線状に配置され、流量計測ユニットは、計測流路の中心線がメータ入口とメータ出口とを結ぶ中心線と略一致するように配置してもよい。
 本発明にかかるガスメータによると、遮断機能を有するガスメータの小形化が可能となる。
 10、20 流量計測ユニット
 12、22 計測流路
 12a、22a 導入部
 12b、22b 導出部
 14、24 遮断弁
 19、29 駆動装置
 100、200、210 ガスメータ
 101、201、211 メータ入口
 101a、201a、212a 延出部
 101b、201b、212b 内部通路
 102、202、212 メータ出口
 103、203、213 メータ本体

Claims (4)

  1. 被計測流体が流入するメータ入口と前記被計測流体が流出するメータ出口を有するメータ本体と、
    前記メータ入口から前記メータ本体内部に延出された延出部と、
    前記メータ本体内に内装され、前記被計測流体の導入部と導出部を備えた直管状の計測流路を有する流量計測ユニットと、
    前記延出部の内部通路に配置された遮断弁と、
    を備え、
    前記流量計測ユニットは、前記導入部が前記延出部に気密に接続され、前記内部通路に連通したガスメータ。
  2. 前記メータ入口と前記メータ出口が直線状に配置され、
    前記流量計測ユニットは、前記計測流路の中心線が前記メータ入口と前記メータ出口とを結ぶ中心線と略一致するように配置された請求項1に記載のガスメータ。
  3. 被計測流体が流入するメータ入口と前記被計測流体が流出するメータ出口を有するメータ本体と、
    前記メータ出口から前記メータ本体内部に延出された延出部と、
    前記メータ本体内に内装され、前記被計測流体の導入部と導出部を備えた直管状の計測流路を有する流量計測ユニットと、
    前記延出部の内部通路に配置された遮断弁と、
    を備え、
    前記流量計測ユニットは、前記導出部が前記延出部に気密に接続され、前記内部通路に連通したガスメータ。
  4. 前記メータ入口と前記メータ出口が略直線状に配置され、
    前記流量計測ユニットは、前記計測流路の中心線が前記メータ入口と前記メータ出口とを結ぶ中心線と略一致するように配置された請求項3に記載のガスメータ。
PCT/JP2018/018058 2017-05-22 2018-05-10 ガスメータ WO2018216482A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18804993.6A EP3633329B1 (en) 2017-05-22 2018-05-10 Gas meter
CN201880028568.0A CN110573843A (zh) 2017-05-22 2018-05-10 气量计
US16/499,942 US11060895B2 (en) 2017-05-22 2018-05-10 Gas meter including a measurement unit in communication with a shutoff valve in an extended section within a meter body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-100535 2017-05-22
JP2017100534A JP2018194507A (ja) 2017-05-22 2017-05-22 ガスメータ
JP2017100535A JP2018194508A (ja) 2017-05-22 2017-05-22 ガスメータ
JP2017-100534 2017-05-22

Publications (1)

Publication Number Publication Date
WO2018216482A1 true WO2018216482A1 (ja) 2018-11-29

Family

ID=64396586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018058 WO2018216482A1 (ja) 2017-05-22 2018-05-10 ガスメータ

Country Status (4)

Country Link
US (1) US11060895B2 (ja)
EP (1) EP3633329B1 (ja)
CN (1) CN110573843A (ja)
WO (1) WO2018216482A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003185477A (ja) * 2001-12-21 2003-07-03 Yazaki Corp 流量計
JP2004151070A (ja) * 2002-09-06 2004-05-27 Yazaki Corp ガスメータ
JP2012018031A (ja) 2010-07-07 2012-01-26 Panasonic Corp 超音波式ガスメータ
US20120090404A1 (en) * 2010-10-19 2012-04-19 Sick Engineering Gmbh Ultrasonic measurement of flow velocity
WO2012063437A1 (ja) * 2010-11-10 2012-05-18 パナソニック株式会社 超音波流量計測装置
JP2012247299A (ja) 2011-05-27 2012-12-13 Panasonic Corp 超音波式流量計測ユニットおよびこれを用いたガス流量計
JP2014098563A (ja) * 2012-11-13 2014-05-29 Panasonic Corp 流量計測装置
WO2015118809A1 (ja) * 2014-02-07 2015-08-13 パナソニックIpマネジメント株式会社 ガス流量計
WO2017002281A1 (ja) * 2015-06-30 2017-01-05 パナソニックIpマネジメント株式会社 計測ユニットおよび流量計
JP2017173200A (ja) * 2016-03-25 2017-09-28 矢崎エナジーシステム株式会社 直管型ガスメータ

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09303609A (ja) * 1996-05-21 1997-11-28 Toshiba Corp 流量制御弁及びこれを用いた流量制御システム
US6220091B1 (en) * 1997-11-24 2001-04-24 Applied Materials, Inc. Liquid level pressure sensor and method
JPH11183228A (ja) * 1997-12-19 1999-07-09 Tokyo Gas Co Ltd ガスメータ
JP2001141096A (ja) * 1999-11-12 2001-05-25 Matsushita Electric Ind Co Ltd 電動機およびこれを用いた流体制御弁
JP2002148091A (ja) * 2000-11-08 2002-05-22 Tokyo Gas Co Ltd ガスメータ
US7219729B2 (en) * 2002-11-05 2007-05-22 Weatherford/Lamb, Inc. Permanent downhole deployment of optical sensors
JP3583123B1 (ja) * 2004-01-06 2004-10-27 株式会社東京フローメータ研究所 流量制御弁及び流量制御装置
US20060027267A1 (en) * 2004-07-26 2006-02-09 Karl Fritze Systems and methods for detecting and eliminating leaks in water delivery systems for use with appliances
ITBO20060403A1 (it) * 2006-05-25 2007-11-26 Alfa Centauri S P A Metodo per l'azionamento di una elettrovalvola associata ad un contatore del gas ed apparato destinato ad attuarlo
JP4492648B2 (ja) * 2007-07-12 2010-06-30 パナソニック株式会社 ガス遮断装置
CN201653593U (zh) * 2010-02-02 2010-11-24 吕金浩 超声波热量表
DE102010047680A1 (de) * 2010-10-06 2012-04-12 Hydrometer Gmbh Gaszähler
CN102121854B (zh) * 2010-12-27 2012-07-25 吉林市宏远仪表有限责任公司 超声波热量表用v型流量管
JP2012177572A (ja) * 2011-02-25 2012-09-13 Panasonic Corp 超音波式流体計測装置
WO2012137489A1 (ja) * 2011-04-05 2012-10-11 パナソニック株式会社 超音波流量計測装置
CN202209966U (zh) * 2011-06-09 2012-05-02 蒋韵坚 表阀一体化超声波热量表的流量传感器
JP2013057613A (ja) 2011-09-09 2013-03-28 Panasonic Corp 超音波流量計
ES2905838T3 (es) * 2012-05-24 2022-04-12 Air Prod & Chem Método y aparato para medir el caudal másico de un gas
KR101382277B1 (ko) * 2012-05-25 2014-04-07 박재삼 전자식 가스미터기와 이의 사용량 원격 전송 장치 및 방법
JP6101922B2 (ja) * 2012-06-05 2017-03-29 パナソニックIpマネジメント株式会社 超音波流量計測ユニット及びその製造方法
EP2749334B1 (en) * 2012-12-28 2018-10-24 Service Pétroliers Schlumberger Method and device for determining the liquid volume fraction of entrained liquid
US10126761B2 (en) * 2015-12-29 2018-11-13 Hitachi Metals, Ltd. Gas insensitive mass flow control systems and methods
US9784607B2 (en) * 2016-02-24 2017-10-10 M-Tech Instrument Corporation Holding Limited Utility mass flow gas meter
WO2017155985A1 (en) * 2016-03-07 2017-09-14 Gilbarco Inc. Fuel dispenser having acoustic waves coriolis flow meter
CN205642485U (zh) * 2016-03-31 2016-10-12 矢崎能源系统公司 气量表
CN205655877U (zh) * 2016-04-15 2016-10-19 杭州中沛电子有限公司 一种阀控型超声波水表
WO2017219142A1 (en) * 2016-06-22 2017-12-28 Homebeaver Inc. Fluid flow measuring and control devices and method
BR112019014821A2 (pt) * 2017-01-20 2020-02-27 Gilbarco Inc. Analisador, dispensador e ambiente de combustível
US11242239B2 (en) * 2017-02-14 2022-02-08 Gilbarco Inc. Fuel dispenser with fraud resistant flow control valve
US10247594B2 (en) * 2017-04-26 2019-04-02 Georg Fischer Central Plastics Llc Meter bypass adapter
WO2018216481A1 (ja) * 2017-05-22 2018-11-29 パナソニックIpマネジメント株式会社 流量計測ユニット及びこれを用いたガスメータ
WO2019090102A1 (en) * 2017-11-03 2019-05-09 Gilbarco Inc. Fuel dispenser with fraud detecting breakaway valve assembly

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003185477A (ja) * 2001-12-21 2003-07-03 Yazaki Corp 流量計
JP2004151070A (ja) * 2002-09-06 2004-05-27 Yazaki Corp ガスメータ
JP2012018031A (ja) 2010-07-07 2012-01-26 Panasonic Corp 超音波式ガスメータ
US20120090404A1 (en) * 2010-10-19 2012-04-19 Sick Engineering Gmbh Ultrasonic measurement of flow velocity
WO2012063437A1 (ja) * 2010-11-10 2012-05-18 パナソニック株式会社 超音波流量計測装置
JP2012247299A (ja) 2011-05-27 2012-12-13 Panasonic Corp 超音波式流量計測ユニットおよびこれを用いたガス流量計
JP2014098563A (ja) * 2012-11-13 2014-05-29 Panasonic Corp 流量計測装置
WO2015118809A1 (ja) * 2014-02-07 2015-08-13 パナソニックIpマネジメント株式会社 ガス流量計
WO2017002281A1 (ja) * 2015-06-30 2017-01-05 パナソニックIpマネジメント株式会社 計測ユニットおよび流量計
JP2017173200A (ja) * 2016-03-25 2017-09-28 矢崎エナジーシステム株式会社 直管型ガスメータ

Also Published As

Publication number Publication date
EP3633329B1 (en) 2021-12-15
CN110573843A (zh) 2019-12-13
US20200056916A1 (en) 2020-02-20
EP3633329A4 (en) 2020-05-06
EP3633329A1 (en) 2020-04-08
US11060895B2 (en) 2021-07-13

Similar Documents

Publication Publication Date Title
CN109477742B (zh) 具有测量通道的流量计
TWI498530B (zh) 超音波流量計
JP6060378B2 (ja) 流量計測装置
KR102189806B1 (ko) 초음파 수도미터기
WO2012164859A1 (ja) 超音波式流量計測ユニットおよびこれを用いたガス流量計
JP5728639B2 (ja) 超音波流量計
US10627271B2 (en) Hydraulic system for ultrasonic flow measurement using reflective acoustic path approach
CN106030254A (zh) 气体流量计
WO2017122239A1 (ja) ガスメータ
WO2018216482A1 (ja) ガスメータ
EP2597432A1 (en) Construction for mounting ultrasonic transducer and ultrasonic flow meter using same
JP2012177572A (ja) 超音波式流体計測装置
WO2018216481A1 (ja) 流量計測ユニット及びこれを用いたガスメータ
JP2018194507A (ja) ガスメータ
JP2014077750A (ja) 超音波メータ
WO2020203183A1 (ja) 超音波流量計
JP2018194508A (ja) ガスメータ
JP2018194505A (ja) 流量計測ユニット及びこれを用いたガスメータ
JP2018194506A (ja) 流量計測ユニット及びこれを用いたガスメータ
JP2014137724A (ja) 流体制御装置
US10974215B2 (en) Fluid mixing device
JP2017090269A (ja) 超音波流量計
KR101865801B1 (ko) 인라인 방식의 상수관로 압력 및 유량 원격 계측장치
JP2001324368A (ja) ガスメータ
JP2017096979A (ja) 超音波流量計

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18804993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018804993

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018804993

Country of ref document: EP

Effective date: 20200102