WO2018216184A1 - 駐車制御方法及び駐車制御装置 - Google Patents

駐車制御方法及び駐車制御装置 Download PDF

Info

Publication number
WO2018216184A1
WO2018216184A1 PCT/JP2017/019630 JP2017019630W WO2018216184A1 WO 2018216184 A1 WO2018216184 A1 WO 2018216184A1 JP 2017019630 W JP2017019630 W JP 2017019630W WO 2018216184 A1 WO2018216184 A1 WO 2018216184A1
Authority
WO
WIPO (PCT)
Prior art keywords
parking
vehicle
area
obstacle
operator
Prior art date
Application number
PCT/JP2017/019630
Other languages
English (en)
French (fr)
Inventor
康啓 鈴木
早川 泰久
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201780090726.0A priority Critical patent/CN110621550B/zh
Priority to EP17911131.5A priority patent/EP3632750B1/en
Priority to JP2019519916A priority patent/JP6773221B2/ja
Priority to US16/615,624 priority patent/US10773714B2/en
Priority to MX2019013511A priority patent/MX2019013511A/es
Priority to BR112019024686-0A priority patent/BR112019024686B1/pt
Priority to CA3064523A priority patent/CA3064523C/en
Priority to KR1020197033261A priority patent/KR102170988B1/ko
Priority to RU2019143447A priority patent/RU2736520C1/ru
Priority to PCT/JP2017/019630 priority patent/WO2018216184A1/ja
Priority to MYPI2019006616A priority patent/MY196832A/en
Publication of WO2018216184A1 publication Critical patent/WO2018216184A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/027Parking aids, e.g. instruction means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/06Automatic manoeuvring for parking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/027Parking aids, e.g. instruction means
    • B62D15/0285Parking performed automatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0033Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement by having the operator tracking the vehicle either by direct line of sight or via one or more cameras located remotely from the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/14Traffic control systems for road vehicles indicating individual free spaces in parking areas
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/168Driving aids for parking, e.g. acoustic or visual feedback on parking space
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/50Barriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/803Relative lateral speed
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads

Definitions

  • the present invention relates to a parking control method and a parking control device.
  • Patent Document 1 A parking assist technology for stopping a vehicle when an obstacle is detected is known.
  • the problem to be solved by the present invention is to continue the movement of the vehicle depending on the situation when an obstacle is detected.
  • the present invention calculates a first area that can be observed by an operator outside the vehicle and a second area that cannot be observed, and determines a first degree of approach of the vehicle in the first area with respect to an obstacle.
  • the said subject is solved by calculating a parking path
  • parking control in the first region that can be observed by the operator, parking control can be continued even if an obstacle exists.
  • FIG. 1 is a block diagram showing an example of a parking control system according to the present embodiment according to the present invention.
  • FIG. 2A is a diagram for explaining a first detection method of an operator's position.
  • FIG. 2B is a diagram for explaining a second detection method of the operator's position.
  • FIG. 2C is a diagram for explaining a third method for detecting the position of the operator.
  • FIG. 2D is a diagram for explaining a fourth method for detecting the position of the operator.
  • FIG. 3A is a diagram for explaining a first obstacle detection method.
  • FIG. 3B is a diagram for explaining a second obstacle detection method.
  • FIG. 4A is a diagram for explaining a first calculation method for the first region and the second region (dead angle).
  • FIG. 4B is a diagram for explaining a second calculation method for the first region and the second region (dead angle).
  • FIG. 4C is a diagram for explaining a third calculation method for the first region and the second region (dead angle).
  • FIG. 5 is a flowchart illustrating an example of a control procedure of the parking control system according to the present embodiment.
  • FIG. 6 is a flowchart showing a first example of a method for setting the degree of approach to an obstacle.
  • FIG. 7A is a first diagram for explaining a method for setting the degree of approach to an obstacle.
  • FIG. 7B is a second diagram for explaining a method for setting the degree of approach to an obstacle.
  • FIG. 7C is a third diagram for explaining a method for setting the degree of approach to an obstacle.
  • FIG. 7A is a first diagram for explaining a method for setting the degree of approach to an obstacle.
  • FIG. 7B is a second diagram for explaining a method for setting the degree of approach to an obstacle.
  • FIG. 7D is a fourth diagram for explaining a method for setting the degree of approach to an obstacle.
  • FIG. 7E is a fifth diagram for explaining a method for setting the degree of approach to an obstacle.
  • FIG. 8 is a flowchart showing a method for setting the deceleration timing.
  • FIG. 9A is a first diagram for explaining a method for setting the deceleration start timing.
  • FIG. 9B is a second diagram for explaining a method for setting the deceleration start timing.
  • FIG. 9C is a third diagram for explaining a method for setting the deceleration start timing.
  • FIG. 9D is a fourth diagram for illustrating a method for setting the deceleration start timing.
  • FIG. 9E is a fifth diagram for illustrating the method for setting the deceleration start timing.
  • FIG. 9A is a first diagram for explaining a method for setting the deceleration start timing.
  • FIG. 9B is a second diagram for explaining a method for setting the deceleration
  • FIG. 10 is a flowchart showing a deceleration setting method.
  • FIG. 11A is a first diagram for explaining a deceleration setting method.
  • FIG. 11B is a second diagram for explaining a deceleration setting method.
  • FIG. 12 is a flowchart illustrating a first example of a parking route calculation method.
  • FIG. 13A is a first diagram for describing a first example of a calculation method of a parking route.
  • FIG. 13B is a second diagram for explaining a first example of a parking route calculation method.
  • FIG. 14 is a flowchart illustrating a second example of a parking route calculation method.
  • FIG. 15A is a first diagram for describing a second example of a calculation method of a parking route.
  • FIG. 15A is a first diagram for describing a second example of a calculation method of a parking route.
  • FIG. 15A is a first diagram for describing a second example of a calculation method of a parking route.
  • FIG. 15B is a second diagram for explaining a second example of the parking route calculation method.
  • FIG. 15C is a third diagram for explaining a second example of the parking route calculation method.
  • FIG. 15D is a fourth diagram for describing a second example of the parking route calculation method.
  • FIG. 15E is a fifth diagram for describing a second example of the parking route calculation method.
  • FIG. 16 is a flowchart illustrating a third example of a parking route calculation method.
  • FIG. 17 is a diagram for explaining a third example of a parking route calculation method.
  • FIG. 18 is a flowchart illustrating a fourth example of the parking route calculation method.
  • FIG. 19A is a first diagram for explaining a fourth example of a parking route calculation method.
  • FIG. 19A is a first diagram for explaining a fourth example of a parking route calculation method.
  • FIG. 19B is a second diagram for explaining a fourth example of the parking route calculation method.
  • FIG. 20 is a flowchart illustrating a fifth example of the parking route calculation method.
  • FIG. 21A is a first diagram for describing a fifth example of a parking route calculation method.
  • FIG. 21B is a second diagram for explaining a fifth example of the parking route calculation method.
  • FIG. 21C is a third diagram for explaining a fifth example of the parking route calculation method.
  • FIG. 22 is a flowchart illustrating a sixth example of the parking route calculation method.
  • FIG. 23A is a first diagram for explaining a sixth example of the parking route calculation method.
  • FIG. 23B is a second diagram for explaining a sixth example of the parking route calculation method.
  • FIG. 23C is a diagram illustrating a presentation example of the operation position.
  • the parking control device may be applied to a portable operation terminal (a device such as a smartphone or a PDA: Personal Digital Assistant) capable of exchanging information with the in-vehicle device.
  • a portable operation terminal a device such as a smartphone or a PDA: Personal Digital Assistant
  • the parking control method according to the present invention can be used in a parking control device described later.
  • FIG. 1 is a block diagram of a parking control system 1000 having a parking control device 100 according to an embodiment of the present invention.
  • the parking control system 1000 of this embodiment includes a camera 1a to 1d, a distance measuring device 2, an information server 3, an operation terminal 5, a parking control device 100, a vehicle controller 70, a drive system 40, a steering angle.
  • a sensor 50 and a vehicle speed sensor 60 are provided.
  • the parking control device 100 according to the present embodiment controls the operation of moving (parking) the vehicle to the parking space based on the operation command input from the operation terminal 5.
  • the operation terminal 5 is a computer having a portable input function and a communication function that can be taken out of the vehicle.
  • the operation terminal 5 receives an input of an operator's operation command for controlling the driving (operation) of the vehicle for parking.
  • Driving includes parking (incoming and outgoing) operations.
  • the operator inputs a command including an operation command for executing parking through the operation terminal 5.
  • the operation command includes execution / stop of parking control, selection / change of the target parking space, selection / change of the parking route, and other information necessary for parking.
  • the operator can also cause the parking control device 100 to recognize an instruction including an operation command by using the gesture of the operator without using the operation terminal 5.
  • the operation terminal 5 includes a communication device and can exchange information with the parking control device 100 and the information server 3.
  • the operation terminal 5 transmits an operation command input outside the vehicle to the parking control device 100 via the communication network, and causes the parking control device 100 to input the operation command.
  • the operation terminal 5 communicates with the parking control device 100 using a signal including a unique identification symbol.
  • the operation terminal 5 includes a display 53.
  • the display 53 presents an input interface and various information. When the display 53 is a touch panel type display, it has a function of receiving an operation command.
  • the operation terminal 5 receives an input of an operation command used in the parking control method of the present embodiment, and is a smartphone installed with an application for sending the operation command to the parking control device 100, a portable device such as a PDA: Personal Digital Assistant. It may be a type of device.
  • the information server 3 is an information providing device provided on a communicable network.
  • the information server includes a communication device 31 and a storage device 32.
  • the storage device 32 includes readable map information 33, parking lot information 34, and obstacle information 35.
  • the parking control device 100 and the operation terminal 5 can access the storage device 32 of the information server 3 and acquire each information.
  • the parking control device 100 of this embodiment includes a control device 10, an input device 20, and an output device 30. Each component of the parking control device 100 is connected by a CAN (Controller Area ⁇ ⁇ ⁇ Network) or other vehicle-mounted LAN in order to exchange information with each other.
  • the input device 20 includes a communication device 21.
  • the communication device 21 receives the operation command transmitted from the external operation terminal 5 and inputs it to the input device 20.
  • the subject who inputs the operation command to the external operation terminal 5 may be a human (user, occupant, driver, parking facility worker).
  • the input device 20 transmits the received operation command to the control device 10.
  • the output device 30 includes a display 31.
  • the output device 30 transmits parking control information to the driver.
  • the display 31 of the present embodiment is a touch panel display having an input function and an output function.
  • the display 31 functions as the input device 20. Even when the vehicle is controlled based on an operation command input from the operation terminal 5, an occupant can input an operation command such as an emergency stop via the input device 20.
  • the control device 10 of the parking control device 100 of the present embodiment includes a ROM 12 that stores a parking control program, and an operation circuit that functions as the parking control device 100 of the present embodiment by executing the program stored in the ROM 12. And a RAM 13 that functions as an accessible storage device.
  • the parking control program of this embodiment is a first area that can be observed from the operator M based on the positional relationship between the observation position set based on the position of the operator M and the positions of obstacles around the vehicle V. And calculating the parking path and the parking path so that the first approach degree to the obstacle of the vehicle in the first area is higher than the second approach degree to the obstacle of the vehicle in the second area.
  • This is a program for executing vehicle parking control according to a command.
  • the parking control program calculates a parking route and the parking route so that at least a part of the vehicle exists in the first region in at least a part of the parking route of the vehicle, and executes the parking control of the vehicle according to the control command. It is.
  • the first area and the second area can be calculated by using the detection result of the obstacle such as the size and shape of the obstacle in addition to the position of the obstacle.
  • the parking control device 100 of the present embodiment is of a remote control type that sends an operation command from the outside, controls the movement of the vehicle, and parks the vehicle in a predetermined parking space. The occupant may be outside the passenger compartment or in the passenger compartment.
  • the parking control device 100 of the present embodiment may be an automatic control type in which a steering operation and an accelerator / brake operation are automatically performed.
  • the parking control device 100 may be a semi-automatic type in which a steering operation is automatically performed and an accelerator / brake operation is performed by a driver.
  • the user may arbitrarily select the target parking space, or the parking control device 100 or the parking facility side may automatically set the target parking space.
  • the control device 10 of the parking control device 100 performs observation position setting processing, first and / or second area calculation processing, parking route calculation processing, control command calculation processing, and parking control processing.
  • a function to be executed is provided.
  • the control device 10 further includes a function of executing an obstacle detection process and calculating a parking route in consideration of the position of the obstacle.
  • Each process described above is executed by cooperation of software for realizing each process and the hardware described above.
  • the control device 10 calculates the observation position based on the position of the operator M.
  • the control device 10 acquires the position of the operator M.
  • the position of the operator M may be detected directly based on a sensor signal from a sensor provided in the vehicle V, or the position of the operation terminal 5 possessed by the operator M is detected and the position of the operation terminal 5 is determined. Based on this, the position of the operator M may be calculated.
  • the operation terminal 5 may be provided at a predetermined position or may be possessed by the operator M. When the operation terminal 5 is provided at a predetermined position, the operator M moves to the arrangement position of the operation terminal 5 and uses the operation terminal 5.
  • the position of the operation terminal 5 can be the position of the operator M.
  • the position of the operator M is detected based on the detection results of the plurality of distance measuring devices 2 provided on the vehicle V and / or the captured images of the camera 1.
  • the position of the operator M can be detected based on the captured images of the cameras 1a to 1d.
  • a radar device such as a millimeter wave radar, a laser radar, an ultrasonic radar, or a sonar can be used. Since the plurality of distance measuring devices 2 and their detection results can be identified, the position of the operator M can be detected based on the detection results.
  • the distance measuring device 2 may be provided at the same position as the cameras 1a to 1d or at different positions.
  • the control device 10 can also detect the gesture of the operator M based on the captured images of the cameras 1a to 1d and identify the operation command associated with the gesture.
  • the operation terminal 5 or the position of the operator M carrying the operation terminal 5 is detected based on the communication radio waves between the antennas 211 provided at different positions of the vehicle V and the operation terminal 5. Also good.
  • the strength of the received radio wave of each antenna 211 is different.
  • the position of the operation terminal 5 can be calculated based on the intensity difference between the received radio waves of each antenna 211.
  • the two-dimensional position and / or the three-dimensional position of the operation terminal 5 or the operator M can be calculated from the intensity difference between the received radio waves of each antenna 211.
  • a predetermined position (direction / distance: D1, D2) with respect to the driver's seat DS of the vehicle V may be designated in advance as the operation position of the operator M or the arrangement position of the operation terminal 5.
  • the operator M temporarily stops the vehicle V at a specified position, gets off the vehicle, and operates the operation terminal 5 provided at a predetermined position, the operator M or the operation possessed by the operator M with respect to the vehicle V
  • the initial position of the terminal 5 can be detected.
  • FIG. 1 as illustrated in FIG.
  • image information indicating an operation position (operation position of the operator M) with respect to the vehicle V is displayed on the display 53 of the operation terminal 5.
  • This display control may be executed by an application stored on the operation terminal 5 side, or may be executed based on a command from the control device 10.
  • the observation position of the operator M is calculated in order to calculate the first area that the operator M can visually recognize or the second area (the blind spot: blind area) that the operator M cannot visually recognize.
  • the detected two-dimensional position of the operator M may be calculated as the observation position.
  • the eye position (height information) of the operator M may be taken into consideration.
  • a position corresponding to the position of the eye of the operator M is calculated as an observation position.
  • the observation position may be calculated using the height of the operator M set in advance and the average height of the adult.
  • the position information detection signal of the operation terminal 5 includes height information
  • the position of the operation terminal 5 may be set as the observation position.
  • Obstacles include parking lot walls, pillars and other structures, installations around the vehicle, pedestrians, other vehicles, parked vehicles, and the like.
  • the obstacle is detected based on the detection results of the plurality of distance measuring devices 2 provided in the vehicle V and the captured image of the camera 1.
  • the distance measuring device 2 detects the presence / absence of an object, the position of the object, the size of the object, and the distance to the object based on the received signal of the radar device.
  • the presence / absence of the object, the position of the object, the size of the object, and the distance to the object are detected based on the captured images of the cameras 1a to 1d.
  • Obstacles may be detected using a motion stereo technique using the cameras 1a to 1d. This detection result is used to determine whether or not the parking space is vacant (whether or not it is parked). As illustrated in FIG. 3B, an obstacle including a structure such as a parking lot wall or a pillar can be detected based on the parking lot information 34 acquired from the storage device 32 of the information server 3.
  • the parking lot information includes location information of each parking lot (parking lot), an identification number, a passage, a pillar, a wall, and a storage space in the parking facility.
  • the information server 3 may be managed by a parking lot.
  • the control device 10 calculates a first region that the operator M can observe from the calculated observation position of the operator M.
  • the control device 10 calculates, as the first region, a region where the visual field is not obstructed by an obstacle when the operator M observes from the observation position.
  • the control device 10 calculates, as the second region, a region where the visual field is blocked by an obstacle when the operator M observes from the observation position.
  • the second region that cannot be observed or visually recognized by the operator M can be calculated from the positional relationship with the obstacle.
  • the control device 10 calculates, as the second region, a region where the visual field is blocked by the vehicle that is the operation target when the operator M observes from the observation position.
  • the second region that cannot be observed by the operator M can be calculated from the positional relationship with the vehicle to be parked.
  • other vehicles that are not subject to operation belong to obstacles.
  • the control device 10 may calculate the second area first and set the other areas as the first area. Further, the second region may be set wider in consideration of the detection accuracy of the obstacle and the detection accuracy of the position of the operator M.
  • FIG. 4A shows an example in which a blind spot occurs due to the structure of the parking lot.
  • the vehicle M1 moves on the parking route RT, and the operator M standing on the side of the vehicle V1 operates the operation terminal 5.
  • the control device 10 calculates, as the first area VA, an area that can be predicted to be visible without being blocked by another object.
  • the parking lot wall W blocks the view of the operator M.
  • the control device 10 calculates, as the second area BA, an area that is predicted to be hidden behind the wall W and cannot be visually recognized.
  • the control device 10 calculates, as the first area VA, an area that can be predicted to be visible without being blocked by another object.
  • the vehicle V ⁇ b> 2 at the predicted return position on the parking route blocks the field of view of the operator M.
  • the control device 10 calculates, as the second area BA, an area that is predicted to be hidden behind the vehicle V2 and cannot be visually recognized.
  • the control device 10 stores vehicle information such as the height and size of the vehicle used in the calculation of the second area BA in advance.
  • the vehicle information may be information unique to the vehicle or may be information defined according to the vehicle type. As shown in FIG. 4C, based on the strength of the received radio waves, the generation of reflected waves, the interference, the occurrence of multipath, etc. Then, the presence of the concave portion may be determined from the position of the wall of the parking lot or the shape of the space, and the presence of the blind spot may be determined based on the determination result.
  • the control device 10 determines the parking route and the parking route so that the first approach degree to the obstacle of the vehicle V in the first area VA is higher than the second approach degree to the obstacle of the vehicle V in the second area BA.
  • the control command to be moved is calculated.
  • the control device 10 calculates a parking route RT in which at least a part of the vehicle V exists in the first area VA and a control command for moving the vehicle V according to the parking route RT in at least a part of the parking route RT of the vehicle V. To do.
  • the control command includes a speed when moving on the parking route RT, acceleration / deceleration, execution position (timing) of acceleration / deceleration control, switching position, steering amount, and the like.
  • FIG. 2 is a flowchart showing a control procedure of parking control processing executed by the parking control system 1000 according to the present embodiment.
  • the trigger for starting the parking control process is not particularly limited, and may be that the start switch of the parking control device 100 is operated.
  • the parking control device 100 of the present embodiment has a function of automatically moving the vehicle V to the parking space based on an operation command acquired from outside the vehicle.
  • the control device 10 of the parking control device 100 acquires distance measurement signals by the distance measuring devices 2 attached to a plurality of locations of the vehicle V in step 101, respectively.
  • the control device 10 acquires captured images captured by the cameras 1a to 1d attached to a plurality of locations of the vehicle V.
  • the camera 1a is disposed on the front grill portion of the vehicle V
  • the camera 1d is disposed in the vicinity of the rear bumper
  • the cameras 1b and 1c are disposed below the left and right door mirrors.
  • the cameras 1a to 1d cameras having wide-angle lenses with a large viewing angle can be used.
  • the cameras 1a to 1d capture images of the boundaries of the parking space around the vehicle V and the objects existing around the parking space.
  • the cameras 1a to 1d are CCD cameras, infrared cameras, and other imaging devices.
  • the control device 10 detects a parking space where parking is possible.
  • the control device 10 detects a frame (area) of the parking space based on the captured images of the cameras 1a to 1d.
  • the control device 10 detects a free parking space using the detection data of the distance measuring device 2 and the detection data extracted from the captured image.
  • the control device 10 detects a parking space that is an empty vehicle (no other vehicle is parked) in the parking space and that can calculate a route for completing parking as a parking space.
  • the fact that the parking route can be calculated means that the locus of the route from the current position to the target parking space can be drawn on the road surface coordinates without interfering with obstacles (including parked vehicles).
  • Step 103 the control device 10 transmits the parking available space to the operation terminal 5, displays it on the display 53, and requests the operator to input the selection information of the target parking space for parking the vehicle.
  • the target parking space may be automatically selected by the control device 10 or the parking facility side.
  • the parking space is set as the target parking space.
  • step 104 the passenger is dismounted. After this, the vehicle is moved to the target parking space by remote control.
  • the target parking space may be selected after the passenger gets off the vehicle.
  • step 105 the control device 10 detects the position of the operator M by the above-described method, and calculates the observation position VP based on the position of the operator M.
  • step 106 the control device 10 detects the position where the obstacle is present by the method described above.
  • a first area that the operator M can observe from the observation position VP is calculated.
  • the first area is calculated based on the position of the obstacle.
  • the control device 10 calculates a second region in which the operator M cannot observe from the observation position VP.
  • the second area is calculated based on the position of the obstacle.
  • the position of the obstacle is the position of the area where the obstacle exists, that is, the coordinate value of the area occupied by the obstacle in three-dimensional coordinates.
  • the control device 10 calculates a parking route from the stop position of the vehicle to the target parking space.
  • the parking route includes a turn-back position necessary for moving to the parking space.
  • the parking route is defined as a line, and is defined as a belt-like area corresponding to the occupied area of the vehicle corresponding to the vehicle width.
  • the occupied area of the vehicle is defined in consideration of the vehicle width and a margin width secured for movement.
  • the control device 10 calculates a control command for the vehicle moving on the parking route.
  • the control command includes an operation command for any one or more of a vehicle steering amount, a steering speed, a steering acceleration, a shift position, a speed, an acceleration, and a deceleration.
  • the control command includes the execution timing or execution position of the vehicle operation command.
  • “degree of approach” is defined as a value for quantitatively evaluating the approach / separation relationship between the obstacle and the vehicle in the parking control.
  • the control device 10 calculates a parking route based on the degree of approach between the vehicle V and the obstacle.
  • the degree of approach between the vehicle V and the obstacle is an index indicating the degree of approach between the vehicle V and the obstacle that is allowed when the parking route is calculated.
  • “The degree of approach is high” indicates that the vehicle and the obstacle are approaching.
  • “Low access” indicates that the vehicle is separated from the obstacle.
  • the degree of approach can be a marginal distance that the vehicle V approaches the obstacle, a turning distance from the obstacle to the turning point, or a separation distance from the obstacle to the parking route.
  • the control apparatus 10 calculates
  • the first approach degree is a degree of approach of the vehicle to the obstacle in the first region
  • the second approach degree is a degree of approach of the vehicle to the obstacle in the second region.
  • the control device 10 calculates the first approach degree and the second approach degree so that the first approach degree is higher than the second approach degree, and calculates the parking route based on the first approach degree and the second approach degree.
  • the degree of approach between the vehicle and the obstacle in the first region is allowed to be larger than the degree of approach between the vehicle and the obstacle in the second region.
  • a parking route in which the vehicle is closer to the obstacle than in the second area is calculated. If the second area does not exist, the first approach degree is set higher than the preset standard approach degree, and the first approach degree between the vehicle and the obstacle is less than the standard approach degree. V's parking route is calculated.
  • FIG. 7A shows the positions of the vehicles V1, V2, and VP that move for parking.
  • a situation in which an obstacle is approached on the parking route can be visually recognized from the observation position of the operator based on the position of the operator M until the vehicle is parked.
  • a blind spot due to the wall W as an obstacle is not formed.
  • a first area VA that can be observed.
  • FIG. 7A is an example in which the blind spot by the vehicle V is not set as the second region. In a situation where the operator M can estimate the blind spot caused by the vehicle V, the blind spot caused by the vehicle V does not have to be set as the second region in this way.
  • the first approach degree to the obstacle of the vehicle V in the first area VA is set as the first approach degree to the obstacle of the vehicle V in the second area BA. It is set to be higher than 2 approach degrees (first approach degree> second approach degree).
  • the second area (dead angle) is not detected, the first approach degree is set. The closer the margin distance to the obstacle of the vehicle V, the higher the degree of approach.
  • FIG. 7B shows the positions of the vehicles V1, V2, and VP that move for parking.
  • the right front part of the vehicle V2 at the turn-back position belongs to the second area BA formed by the wall W.
  • the control apparatus 10 sets the 2nd approach degree in the right front part in which the distance of the vehicle V2 and the wall W becomes the shortest.
  • the second approach degree may be set for each part of the vehicle V, or may be set as a value applied to the entire vehicle.
  • the control device 10 sets the second margin distance R2 as the second approach degree to a value longer than the first margin distance R1 shown in FIG. 7A (second margin distance R2> first margin distance R1). Accordingly, the first approach degree of the vehicle V to the obstacle in the first area VA can be set higher than the second approach degree of the vehicle V to the obstacle in the second area BA.
  • FIG. 7C shows a case where a second region that cannot be observed is formed by the vehicle V to be controlled. Even in such a case, the second area is detected, and it is determined that the vehicle V belongs to the second area. This is a scene in which the vehicle V and a part of the periphery thereof cannot be observed. In the situation shown in the figure, when viewed from the operator's observation position based on the position of the operator M, the left front, front front, and right front of the vehicle V2 at the turn-back position belong to the second area BA formed by the vehicle V2. .
  • the control device 10 sets a second margin distance R21 in the right front portion where the distance between the vehicle V2 and the wall W is equal to or less than a predetermined value, and a second margin distance R22 in the left front portion.
  • the control device 10 sets the second margin distances R21 and R22 to a value longer than the first margin distance R1 shown in FIG. 7A (second margin distances R21 and R22> first margin distance R1).
  • FIG. 7D also shows a case where a second region that cannot be observed is formed by the vehicle V to be controlled.
  • the operator M since the operator M is located on the side of the vehicle V to be controlled, the opposite side of the vehicle V and its surroundings cannot be observed.
  • the left side of the vehicle V1 when going straight to the turn-back position belongs to the second area BA formed by the vehicle V2.
  • the control device 10 sets the second approach degree R23 in the right side portion of the vehicle V2.
  • the control device 10 sets the second margin distance R23 to a value longer than the first margin distance R1 shown in FIG. 7A (second margin distance R23> first margin distance R1).
  • FIG. 7E shows a case where a second region that cannot be observed is formed by the vehicle V to be controlled, and an obstacle OB other than the wall W is present in the second region.
  • the second area BA is formed in front of the vehicle V2 at the turn-back position.
  • An obstacle OB exists in the second area BA.
  • the degree of approach is also defined between the obstacle OB and the vehicle V2.
  • the control device 10 sets a second margin distance R24 between the vehicle V2 and the obstacle OB.
  • the control device 10 sets the second margin distance R24 to a value longer than the first margin distance R1 shown in FIG. 7A (second margin distance R24> first margin distance R1).
  • the first approach to the obstacle of the vehicle V in the first region that can be observed from the observation position is higher than the second approach to the obstacle of the vehicle V in the second region that cannot be observed from the observation position.
  • the first approach degree is the degree of approach with an obstacle when the vehicle V travels in the first area
  • the second approach degree is the degree of approach with an obstacle when the vehicle V travels in the second area. It is good. In the region where the operator M can observe, the vehicle and the obstacle are allowed to approach closer than in the region where the operator M cannot observe. Thereby, the approach degree of a vehicle and an obstruction can be adjusted according to the observation condition of the operator M.
  • the vehicle and the obstacle are moved closer to each other than the second area, so that even if there is an obstacle, parking control is performed even if the obstacle exists. Can be continued.
  • the clearance (margin distance) between the vehicle and the obstacle is generally set in consideration of safety. The larger the clearance (margin distance), the better the safety, but the possibility and frequency of the parking control process will be increased, and additional operations and instructions from the operator will be required. Ease is sacrificed.
  • the first approach applied in the first region is changed to a value relatively higher than the second approach applied in the second region.
  • the first approach degree is a first marginal distance that the vehicle V in the first area VA approaches the obstacle
  • the second approach degree is the vehicle V in the second area BA approaching the obstacle.
  • the second margin distance can be expressed by a length (distance).
  • the first margin distance is set to be shorter than the second margin distance.
  • the first approach degree is a first turning distance from the obstacle to the first turning position belonging to the first area VA
  • the second approaching degree is a second turning distance from the obstacle to the second turning position belonging to the second area. This is the turning distance.
  • the parking route used for the parking control process includes a turn-back position where the progress is switched.
  • the position of the vehicle V2 in FIG. 7A corresponds to the first return position
  • the position of the vehicle V2 in FIG. 7B corresponds to the second return position.
  • the switching position is most likely to approach the obstacle.
  • the degree of approach is set higher than when at least a part of the vehicle V exists in the second area at the second turning position. To do.
  • the control device 10 sets the first turning distance shorter than the second turning distance. Thereby, in the 1st field VA, it is permitted that the 1st return position and an obstacle approach relatively, and parking control processing can be continued.
  • the first turning distance and the second turning distance may be set as the distance from the obstacle to the closest outer shape of the vehicle V.
  • the first approach degree is a first separation distance from the obstacle to the parking route RT
  • the second approach degree is a second separation distance from the obstacle to the parking route RT.
  • the predetermined distance can be set in advance by the size of the vehicle and the clearance (margin distance) with respect to the obstacle.
  • the first separation distance when the parking route exists in the first area is set shorter than the second separation distance when the parking route exists in the second area.
  • the clearance (margin distance) for the obstacle in the first separation distance is set shorter than the clearance (margin distance) for the obstacle in the second separation distance.
  • control device 10 In step 108 of FIG. 5, the control device 10 generates a control command for moving the parking route RT to the vehicle.
  • a control command generation subroutine will be described.
  • the control command includes any one or more of a deceleration start timing, a deceleration completion distance, a deceleration, and a target speed when approaching an obstacle.
  • step 140 of FIG. 8 the existence of the first area is confirmed, and in step 141, the existence of the second area is confirmed.
  • step 142 control device 10 generates a control command including a deceleration start timing for starting deceleration of the vehicle.
  • the deceleration start timing is an aspect of the degree of approach. Delaying the deceleration start timing for starting the deceleration performed when approaching the obstacle starts the deceleration after approaching the obstacle. Delaying the deceleration start timing increases the degree of approach. On the other hand, if the deceleration start timing is advanced, the degree of approach is lowered.
  • FIG. 9A and 9B show a parking route RT that passes through the first area VA and the second area BA.
  • FIG. 9A shows a state where an obstacle OB2 exists in front of the vehicle V2 at the turning-back position. The obstacle OB2 belongs to the second area VA.
  • FIG. 9B shows a state in which an obstacle OB1 belonging to the first area VA exists in front of the vehicle V2 at the turn-back position.
  • the control device 10 sets the first deceleration start timing T1 or the second deceleration start timing T2.
  • the first deceleration start timing T1 is a timing for starting deceleration when approaching an obstacle
  • the second deceleration start timing T2 is a timing for starting deceleration when approaching an obstacle.
  • the control device 10 calculates the control command so that the first deceleration start timing T1 is later than the second deceleration start timing T2.
  • FIG. 9C shows the second deceleration start timing T2 when the obstacle OB2 exists.
  • FIG. 9D shows the first deceleration start timing T1 when the obstacle OB1 exists.
  • the first deceleration start timing T1 is later than the second deceleration start timing T2.
  • the distance between the position of the vehicle V and the obstacle OB1 at the first deceleration start timing T1 is shorter than the distance between the position of the vehicle V and the obstacle OB2 at the second deceleration start timing T2.
  • the control device 10 moves the parking route to the vehicle according to the calculated control command.
  • the passage time of the first region can be shortened.
  • the time required from parking start to parking completion can be shortened.
  • a control command for parking control processing including the first deceleration timing T1 is generated.
  • the deceleration start timing can be expressed by a time corresponding to the approach speed between the vehicle and the obstacle.
  • the time according to the approach speed is calculated as TTC: Time-To-Collision, which is the time until the collision.
  • the first deceleration start timing is set as the first TTC
  • the second deceleration timing is set as the second TTC.
  • the vehicle V starts to decelerate the obstacle at the timing when the calculated TTC is shorter than the set first TTC or second TTC.
  • the deceleration start timing for starting the deceleration performed when approaching the obstacle is delayed compared to the second region, and the vehicle approaches the obstacle. Will start decelerating. Delaying the deceleration start timing increases the degree of approach. On the other hand, if the deceleration start timing is advanced, the degree of approach is lowered.
  • Fig. 9E shows the change over time of the speed in the control command.
  • a control command when traveling in the first region is indicated by a solid line
  • a control command when traveling in the second region (dead angle) is indicated by a broken line.
  • the first deceleration start timing T1 in the first region is a time later than the second deceleration start timing T2 in the second region.
  • the deceleration completion distance can be set from the same viewpoint.
  • the control device 10 generates a control command including a deceleration completion distance to a deceleration completion point that completes the deceleration of the vehicle.
  • the deceleration completion distance is an aspect of the degree of approach. Shortening the deceleration completion distance from the point where the deceleration performed when approaching the obstacle is completed to the position of the obstacle means that the deceleration is completed in a state as close as possible to the obstacle. Shortening the deceleration completion distance increases the degree of approach. On the other hand, increasing the deceleration completion distance lowers the degree of approach. This process can be performed together with or instead of step 142 in FIG. 8 described above. By making the first deceleration completion distance shorter than the second deceleration completion distance, the movement of the vehicle in the parking control can be continued by approaching the obstacle as much as possible.
  • step 150 of FIG. 10 the presence of the first region is confirmed, and in step 151, the presence of the second region is confirmed.
  • the control device 10 generates a control command including the vehicle deceleration.
  • the deceleration is an aspect of the degree of approach.
  • the high deceleration performed when approaching an obstacle means that the degree of approach, which is the degree of approach to the obstacle, is high.
  • a low deceleration means that the degree of approach, which is the degree of approach to an obstacle, is low.
  • 11A and 11B show a parking route RT that passes through the first area VA and the second area BA.
  • step 152 the control device 10 sets the first deceleration S1 and the second deceleration S2.
  • the first deceleration S1 is a deceleration when approaching the obstacle
  • the second deceleration S2 is a deceleration when approaching the obstacle.
  • the deceleration includes the speed at the time of deceleration or the acceleration at the time of deceleration.
  • the control device 10 calculates the control command so that the first deceleration S1 is higher than the second deceleration S2.
  • a control command in which the second deceleration S2 ( ⁇ S1) is set is generated
  • a control command in which the first deceleration S1 (> S2) is set is generated.
  • FIG. 9E described above shows the first deceleration m1 and the second deceleration m2.
  • FIG. 9E shows the change over time of the speed in the control command, the control command when traveling in the first region is indicated by a solid line, and the control command when traveling in the second region (dead angle) is indicated by a broken line.
  • the first deceleration m1 in the first region is larger than the second deceleration m2 in the second region.
  • the control device 10 moves the parking route to the vehicle according to the calculated control command.
  • the passage time of the first region can be shortened.
  • the time required from parking start to parking completion can be shortened.
  • the relative speed limit value of the vehicle V relative to the operator can be set from the same viewpoint.
  • the relative speed limit value is a value that defines a limit on the relative speed between the vehicle and the operator.
  • the control device 10 sets the first relative speed limit value of the vehicle in the first area and the second relative speed control value of the vehicle in the second area. This process can be performed together with or instead of step 142 in FIG. 8 described above.
  • the first relative speed limit value higher than the second relative speed limit value, the passage time of the first region can be shortened. As a result, the time required from parking start to parking completion can be shortened.
  • the control device 10 calculates the parking route RT so that at least a part of the vehicle V exists in the first area VA in at least a part of the parking route RT of the vehicle.
  • the control device 10 calculates the parking route RT so that a part of the vehicle V can be seen from the observation position at least temporarily while the vehicle V is moving on the parking route RT. Thereby, the operator can confirm the presence and position of the vehicle V during the parking control process.
  • a parking route RT in which the operator cannot confirm the presence and position of the vehicle V during the parking control process is not calculated.
  • the parking route RT may be calculated such that the length of the route in which at least a part of the vehicle V exists in the first area VA is a predetermined ratio with respect to the entire length of the parking route RT.
  • the predetermined ratio is preferably high (close to 1), but is set in consideration of the balance with the possibility of calculating the parking route RT.
  • the parking route with the highest ratio may be selected from among the parking routes RT that can be calculated within a range in which the number of turnovers does not increase.
  • the parking route RT is calculated so that at least a part of the vehicle V exists in the first area VA.
  • the control device 10 determines whether or not at least a part of the temporarily calculated parking route RT is included in the second area BA.
  • FIG. 13A shows an example in which all of the calculated parking route RT1 is included in the second area BA. It may be a case where a part of the parking route RT1 belongs to the second area BA.
  • the parking route RT is calculated as a correction plan so that a part of the vehicle V exists in the first area VA in at least a part of the parking route RT1.
  • the parking route is updated in step 192.
  • the left front portion V121 of the moving vehicle V12 newly calculates a parking route RT2 as a correction plan belonging to the first area VA.
  • the parking route RT2 the rear portion V21 on the left side of the vehicle V2 at the turning-back position belongs to the first area VA.
  • the parking route RT2 is employed instead of the temporarily calculated parking route RT1.
  • the parking control process can be executed with the parking route RT that is easy for the operator to observe.
  • the operator can easily confirm the position and movement of the vehicle V.
  • the parking route RT is calculated so that at least a part of the vehicle V exists in the first area VA at the turn-back position included in the parking route RT.
  • the control device 10 determines whether or not the vehicle V is in the second region at the turn-back position included in the parking route RT.
  • the turn-back position is a position where the vehicle V is farthest from the operator and is difficult to observe. Since the direction is changed at the turn-back position, the operator tends to pay the most attention.
  • the control device 10 calculates a parking route RT at which the operator can easily observe the vehicle V at the switching position.
  • step 202 the control device 10 sets the turning position so that at least a part of the vehicle exists in the first area VA at the turning position.
  • step 203 a route including the return position is calculated.
  • most of the vehicle V2 at the turning-back position is included in the second area BA.
  • the parking route RT is calculated such that the left rear portion V21 which is at least a part of the vehicle V belongs to the first area VA.
  • the presence of at least a part of the vehicle V in the observable first area VA allows the operator to perform a parking operation while predicting the position of the vehicle V. When the vehicle V cannot be seen at all, it is difficult to predict the position of the vehicle V, so that it is difficult to continue the parking operation.
  • the parking route RT may be calculated so that the entire vehicle belongs to the first area VA, that is, a part of the vehicle V is not included in the second area BA.
  • the control apparatus 10 calculates the parking route RT so that the specific part of the vehicle V exists in the first area VA. As illustrated in FIG. 15C, the control device 10 calculates the parking route RT so that the side mirror portion with high possibility of contact belongs to the first area VA.
  • the specific portion can be a portion protruding outward in the outer shape of the vehicle V that has a high possibility of approaching an obstacle.
  • the above-described side mirror part, bicycle hanger provided at the rear part of the vehicle, spare tire holder, and the like can be used as specific parts. Thereby, the operator can park by remote operation, observing the specific part which pays attention.
  • Control device 10 may predefine a specific part of vehicles V contained in the 1st field VA according to a parking mode. As shown in FIG. 15D, the control device 10 defines the left and right rear parts (corner parts) as specific parts when reversing and performing forward parking. When a right turn is performed, a right front part, a mirror part, or a right rear part can be defined as a specific part. When a left turn is performed, the left front part, mirror part, or left rear part can be defined as a specific part. That is, in the case of right turn in forward parking, the right mirror part can be set as the specific part. When performing reverse parking, the control device 10 calculates the parking route RT so that the left and right rear portions belong to the first area VA. Thereby, the operator can park by remote operation, observing the specific part which pays attention according to a parking mode.
  • the control device 10 calculates the parking route so that at least a part of the vehicle V exists in the first region. As shown in FIG. 15E, when the vehicle V moves on the temporarily calculated parking route RT, the control device 10 determines that the distance between the parking wall W as the obstacle and the vehicle V is less than a predetermined value. When this is done, the parking route RT is calculated so that the right rear portion V21, which is at least part of the vehicle V, belongs to the first area VA. The control device 10 may calculate the parking route RT so that the part of the vehicle V that is closest to the obstacle belongs to the first area VA.
  • the parking route RT is calculated so that the right rear portion V21 of the vehicle that is closest to the wall W belongs to the first area VA.
  • the operator can park by remote operation, observing the site
  • the position of the vehicle V is determined by setting the parking route RT (occupied area at the time of parking) so that a part of the vehicle V exists in the first area VA.
  • the parking route RT cannot be calculated due to the approach to the obstacle is suppressed, and the possibility that the parking control process of the vehicle V is executed is improved.
  • the control device 10 sets the parking path RT so that a part of the parking path becomes the first area.
  • the second target speed when traveling on the parking route RT2 belonging to the second area BA is set lower than the first target speed on the parking route RT1 belonging to the first area VA.
  • the process proceeds to step 302 to further determine whether or not the parking route can be set in the first area VA. To do. If the entire parking route can be set in the first area VA, the parking route is calculated in step 303.
  • the target speed of the parking route belonging to the second area is changed relatively low.
  • the parking route RT2 (shown by a solid line) belonging to the second area BA is displayed.
  • the target speed of the vehicle V when traveling is lower than the target speed of the vehicle V when traveling on the parking route RT1 (shown by a broken line) belonging to the first area VA.
  • the speed of the vehicle V is reduced, so that the operator can carefully observe the movement of the vehicle V.
  • the control device 10 changes the parking position TP to change the parking path TP.
  • the direction of the parking route RT is changed by shifting the switch-back position to the downstream side (traveling direction side).
  • step 401 it is determined whether or not the angle between the direction of the vehicle V with reference to the observation position and at least a part of the direction of the parking route RT is less than a predetermined angle. If so, the process proceeds to step 402, and it is determined whether or not the switching position TP can be changed.
  • step 403 the process proceeds to step 403 to calculate a parking route based on the changed return position. If the switching position cannot be changed due to interference with other obstacles, etc., the process proceeds to step 404 where the direction connecting the observation position (operator M or operation terminal 5) and the vehicle V is less than a predetermined angle. Decrease the target speed of the parking route.
  • FIG. 19A shows a case where the angle between the direction of the vehicle V based on the observation position and at least a part of the parking route RT is less than a predetermined angle. As shown in FIG. 19A, in such a case, the second area BA (dead angle) is formed by the vehicle V to be controlled.
  • the control device 10 shifts the turn-back position TP1 to the turn-back position TP2 on the downstream side in the traveling direction, that is, the back side of the recess formed by the wall W in the drawing. By doing so, the angle of the parking route RT can be changed. Since the angle between the direction of the vehicle V relative to the observation position shown in FIG. 19B and the direction of the parking route RT2 is relatively larger than that of FIG. 19A, the time during which the vehicle V generates the second area BA is short. Thus, the area of the second area BA is also reduced. By changing the turn-back position, the moving direction of the vehicle V and the line-of-sight direction of the operator can be shifted, so that the second area BA can be prevented from being generated by the vehicle V to be controlled.
  • the control device 10 changes the angle / curvature of the parking route RT when the angle between the direction of the vehicle V with respect to the observation position and at least a part of the parking route RT is less than a predetermined angle.
  • step 501 the angle between the direction of the vehicle V with respect to the observation position and at least a part of the direction of the parking route RT is less than a predetermined angle.
  • step 502 the process proceeds to step 502 to determine whether or not the direction of the parking route RT can be changed. If the direction of the parking route RT can be changed, the process proceeds to step 503, where the parking route RT based on the changed angle / curvature is calculated.
  • step 504 the process proceeds to step 504, and the target speed of the parking route that is less than the predetermined angle with the direction connecting the operator M and the vehicle V is lowered. If the angle / curvature of the parking route cannot be changed due to interference with other obstacles in step 502, the process proceeds to step 504, where the direction connecting the operator M and the vehicle V is set to a predetermined angle. Lower the target speed for less than the parking route.
  • FIG. 21A shows a case where there is a region Q1 in which the angle between the direction of the vehicle V with reference to the observation position and at least a part of the parking route RT is less than a predetermined angle.
  • the second area BA (dead angle) is formed by the vehicle V to be controlled.
  • FIG. 21B by changing the curvature of the parking route RT2, the angle between the direction of the vehicle V with respect to the observation position and the direction of the parking route RT2 is increased. The time (time to pass through the region Q1 shown in FIG. 21A) occurs.
  • Step 504 of FIG. 20 the target speed of the parking route RT that is less than a predetermined angle with the direction connecting the observation position and the vehicle V is lowered. Thereby, the target speed of the parking route RT included in the second region generated by the vehicle V can be lowered. As shown in FIG. 21C, the target speed of the parking route RT3 included in the second area BA can be lowered.
  • the same processing is performed when the parking route RT cannot be updated (No in step 502).
  • the speed of the vehicle V is reduced, so that the operator can carefully observe the movement of the vehicle V.
  • the control device 10 has a second region that cannot be observed from a second observation position that is different from the first observation position, rather than the area of the second region that cannot be observed from the first observation position that is set based on the position of the operator M.
  • the second observation position is sent to the operation terminal 5.
  • the operator M is prompted to move by indicating a new second operation position.
  • an instruction to change the observation position may be given to the operator M via the operation terminal 5.
  • step 601 of FIG. 22 when the area of the second region calculated at the first observation position is larger than the area of the second region calculated at the second observation position, the control device 10 proceeds to step 602. Change the observation position. Based on the second observation position 51 ′ shown in FIG.
  • step 108 the control device 10 generates a control command for moving the vehicle V on the calculated parking route.
  • the specification information of the vehicle necessary for the control command is stored in advance by the control device 10.
  • the control command includes the vehicle steering amount, steering speed, steering acceleration, shift position, speed (including zero), acceleration, deceleration, and other operations associated with the timing or position when the vehicle travels on the parking route. Includes instructions.
  • the vehicle can be moved (parked) in the target parking space by the vehicle executing an operation command associated with the parking route and the parking route.
  • the parking control device 100 performs parking by transmitting a target parking space setting command, a parking control processing start command, a parking interruption / cancellation command, and the like from the outside to the vehicle V1 without boarding the vehicle V1. Carry out parking control processing by remote control.
  • the control device 10 presents the parking route on the display 53 of the operation terminal 5.
  • step 110 when the operator confirms the parking route and an execution command is input, the process proceeds to step 111.
  • the operation terminal 5 sends the operator's execution command to the parking control device 100 of the vehicle V.
  • the parking control device 100 of the vehicle V starts parking control.
  • the control device 10 periodically calculates the first area (and / or the second area).
  • the first region that can be visually recognized from the observation position and the second region that cannot be visually recognized change according to changes in the position of the obstacle and the position of the vehicle V.
  • the control device 10 calculates the first area (or the second area) at a predetermined cycle in order to cope with the change in the situation.
  • the control device 10 determines whether or not there is a change in the first area or the second area. If there is a change, the positional relationship between the position of the parking route (including the return position) and the second region also changes, so the parking route is calculated again. When a new appropriate parking route can be calculated, a new parking route is adopted.
  • the control device 10 calculates a control command for the new parking route.
  • the control device 10 updates the parking route and control command calculated in step 108 to a new parking route and control command corresponding to the first area or the second area that has changed over time. If there is no change in the first area or the second area in step 113, it is not necessary to calculate a new parking route and control command, and the routine proceeds to step 115.
  • step 115 the control device 10 monitors changes in the first region and the second region until the vehicle V reaches the turn-back position.
  • step 116 the shift change included in the control command is executed.
  • step 117 the parking control is completed by continuously executing the control command.
  • the parking control device 100 of the present embodiment controls the operation of the drive system 40 via the vehicle controller 70 in accordance with the control command so that the vehicle V1 moves along the parking route.
  • the parking control device 100 instructs the drive system 40 of the vehicle V1 such as an EPS motor while feeding back the output value of the steering angle sensor 50 provided in the steering device so that the travel locus of the vehicle V1 matches the calculated parking route.
  • the signal is calculated, and this command signal is sent to the drive system 40 or the vehicle controller 70 that controls the drive system 40.
  • the parking control device 100 of this embodiment includes a parking control control unit.
  • the parking control unit obtains shift range information from the AT / CVT control unit, wheel speed information from the ABS control unit, rudder angle information from the rudder angle control unit, engine speed information from the ECM, and the like. Based on these, the parking control control unit calculates and outputs instruction information regarding automatic steering to the EPS control unit, instruction information such as a warning to the meter control unit, and the like.
  • the control device 10 acquires, via the vehicle controller 70, each information acquired by the steering angle sensor 50, the vehicle speed sensor 60, and other sensors provided in the steering device of the vehicle V1.
  • the drive system 40 of this embodiment moves (runs) the vehicle V1 from the current position to the target parking space by driving based on the control command signal acquired from the parking control device 100.
  • the steering device of the present embodiment is a drive mechanism that moves the vehicle V in the left-right direction.
  • the EPS motor included in the drive system 40 controls the steering amount by driving the power steering mechanism included in the steering device based on the control command signal acquired from the parking control device 100, and moves the vehicle V1 to the target parking space Mo. Control operations when moving.
  • movement method of the vehicle V1 for parking are not specifically limited, The method known at the time of application can be applied suitably.
  • the accelerator / brake is operated.
  • the vehicle is automatically controlled based on the designated control vehicle speed (set vehicle speed), and the operation of the steering device automatically controls the movement of the vehicle according to the vehicle speed.
  • the parking control method of the embodiment of the present invention is used in the parking control device as described above, the following effects can be obtained. Since the parking control device 100 of the present embodiment is configured and operates as described above, the following effects are achieved.
  • the parking control method of the present embodiment calculates a first area that can be observed by the operator based on a positional relationship between the position of the obstacle and the position of the operator, and a second area that cannot be observed from the observation position. Then, the parking route and the control command for moving the parking route are calculated such that the first approach degree to the obstacle in the first region is higher than the second approach degree to the obstacle in the second region.
  • the first approach degree in the first region that can be observed from the observation position of the operator is set higher than the second approach degree in the second region that cannot be observed from the observation position of the operator. In the region where the operator M can observe, the vehicle and the obstacle are allowed to approach closer than in the region where the operator M cannot observe.
  • the approach degree of a vehicle and an obstruction can be adjusted according to the observation condition of the operator M.
  • the vehicle and the obstacle are moved closer to each other than the second area, so that even if there is an obstacle, parking control is performed even if the obstacle exists. Can be continued.
  • the parking control process is not interrupted uniformly because of the presence of the obstacle.
  • the first approach applied in the first region is changed to a value relatively higher than the second approach applied in the second region, so that the parking control process is continued. It is possible to increase the number of scenes that can be used, and to achieve both comfort, ease of use, and safety.
  • the first approach degree is a first margin distance where the vehicle approaches the obstacle
  • the second approach degree is the second approach degree where the vehicle approaches the obstacle. Let it be a margin. Since the parking route is calculated so that the first margin distance is shorter than the second margin distance, the parking control process is continued by allowing the vehicle V and the obstacle to approach in the first area VA. Can do.
  • the first approach degree is the first return distance between the first return position belonging to the first area and the obstacle
  • the second approach degree is the first return distance belonging to the second area.
  • the second turning distance between the turning position and the obstacle is taken as the second turning distance. Since the parking route is calculated so that the first turning distance becomes shorter than the second turning distance, the first turning position and the obstacle are allowed to relatively approach in the first area VA, and parking control is performed. Processing can be continued.
  • the first approach degree is the first separation distance from the obstacle to the parking route
  • the second approach degree is the second separation distance from the obstacle to the parking route.
  • the parking route is calculated so that the first separation distance is shorter than the second separation distance.
  • the first separation distance when the parking route exists in the first area is set shorter than the second separation distance when the parking route exists in the second area.
  • the first approach degree is the first deceleration start timing for starting deceleration when approaching the obstacle
  • the second approach degree is decelerated when approaching the obstacle. Is the second deceleration start timing.
  • a control command is generated so that the first deceleration start timing is later than the second deceleration start timing.
  • the first approach degree is the first deceleration completion distance from the obstacle to the first deceleration completion point in the first area
  • the second approach degree is the first approach from the obstacle.
  • the second deceleration completion distance to the second deceleration completion point in area 2 is used.
  • a control command is generated so that the first deceleration completion distance is shorter than the second deceleration completion distance.
  • the first approach is the first deceleration when approaching the obstacle
  • the second approach is the second deceleration when approaching the obstacle.
  • a control command is generated so that the first deceleration is higher than the second deceleration.
  • the control command in the parking control method of the present embodiment includes a first relative speed limit value between the vehicle and the operator belonging to the first area, and a second relative speed limit value between the vehicle and the operator belonging to the second area. And the control command is generated so that the first relative speed limit value is higher than the second relative speed limit value.
  • the parking route RT is calculated so that at least a part of the vehicle V exists in the first area VA in at least a part of the parking route RT of the vehicle.
  • the control device 10 calculates the parking route RT so that a part of the vehicle V can be seen from the observation position at least temporarily while the vehicle V is moving on the parking route RT. Thereby, the operator can confirm the presence and position of the vehicle V during the parking control process.
  • a parking route RT in which the operator cannot confirm the presence and position of the vehicle V during the parking control process is not calculated.
  • the parking route RT is calculated so that at least a part of the vehicle V exists in the first area VA at the turn-back position included in the parking route RT.
  • the parking route RT calculated based on a preset rule, even if the turning position belongs to the second area (dead angle), the left rear portion V21 that is at least a part of the vehicle V is the first area VA.
  • a parking route RT that belongs to is calculated.
  • the presence of at least a part of the vehicle V in the observable first area VA allows the operator to perform a parking operation while predicting the position of the vehicle V. When the vehicle V cannot be seen at all, it is difficult to predict the position of the vehicle V, so that it is difficult to continue the parking operation.
  • the possibility of performing the parking operation can be ensured.
  • the parking route RT is calculated so that the specific part of the vehicle V exists in the first area VA.
  • the control device 10 calculates the parking route RT so that a specific part (for example, a side mirror part) where attention is paid to contact belongs to the first area VA. Thereby, the operator can park by remote operation, observing the specific part which pays attention.
  • the specific part of the vehicle V included in the first area VA may be defined in advance according to the parking mode.
  • the left and right rear parts are defined as specific parts.
  • the control device 10 calculates the parking route RT so that the left and right rear portions belong to the first area VA. Thereby, the operator can park by remote operation, observing the specific part which pays attention according to a parking mode.
  • the parking route Change RT when the angle between the direction of the vehicle V based on the position of the operator and at least a part of the parking route RT is less than a predetermined angle, the parking route Change RT.
  • the moving direction of the vehicle V and the line of sight of the operator can be shifted. It can be prevented from occurring.
  • the parking control method of the present embodiment when at least a part of the parking route RT belongs to the second area BA (blind area), at least a part of the vehicle V exists in the first area VA.
  • the parking route RT is calculated. Since the parking route RT is corrected when at least a part of the parking route RT belongs to the second area BA, the parking control process can be executed with the parking route RT that is easy for the operator to observe. When parking by remote operation, the operator can easily confirm the position and movement of the vehicle V.
  • a parking route RT is calculated such that the left rear portion V21 which is at least a part of the vehicle V belongs to the first region VA.
  • the presence of at least a part of the vehicle V in the observable first area VA allows the operator to perform a parking operation while predicting the position of the vehicle V.
  • the vehicle V cannot be seen at all, it is difficult to predict the position of the vehicle V, so that it is difficult to continue the parking operation.
  • the possibility of performing the parking operation can be ensured.
  • the parking route RT2 (The target speed of the vehicle V when traveling along a solid line) is lower than the target speed of the vehicle V when traveling along a parking route RT1 (indicated by a broken line) belonging to the first area VA.
  • the speed of the vehicle V is reduced, so that the operator can carefully observe the movement of the vehicle V.
  • the second observation position that is different from the first observation position than the area of the second region that cannot be observed from the first observation position set based on the position of the operator M.
  • the second observation position is sent to the operation terminal 5.
  • the second area which is a blind spot that cannot be observed, can be reduced, and the vehicle V can be parked by a parking route that is easy for the operator to grasp.
  • the parking control device 100 in which the method of this embodiment is executed also exhibits the operations and effects described in 1 to 17 above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mathematical Physics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

車両Vの外の操作者Mから操作指令を取得し、操作端末5の位置を検出し、障害物の位置を検出し、障害物の位置と操作者Mの位置との位置関係に基づいて操作者Mから観察可能な第1領域と、第1領域以外の領域であって、操作者から観察不能な第2領域と算出し、第1領域における車両の障害物に対する第1接近度が、第2領域における車両の障害物に対する第2接近度よりも高くなるように駐車経路RT及び駐車経路を移動させる制御命令を算出し、制御命令に従って、車両Vを駐車させる。

Description

駐車制御方法及び駐車制御装置
 本発明は、駐車制御方法及び駐車制御装置に関する。
 障害物を検出した場合に車両を停止させる駐車支援技術が知られている(特許文献1)。
特開2008-74296号公報
 しかしながら、従来の技術では、障害物が検出された場合には、車両の移動を継続できる状況であっても、画一的に車両が停止される。
 本発明が解決しようとする課題は、障害物が検出された場合に、状況に応じて車両の移動を継続することである。
 本発明は、車両外部の操作者から観察可能な第1領域と、観察不能な第2領域とを算出し、第1領域における車両の障害物に対する第1接近度を、第2領域における車両の障害物に対する第2接近度よりも高くなるように駐車経路を算出することにより、上記課題を解決する。
 本発明によれば、操作者から観察可能な第1領域においては、障害物が存在したとしても駐車制御の継続が可能となる。
図1は、本発明に係る本実施形態の駐車制御システムの一例を示すブロック構成図である。 図2Aは、操作者の位置の第1の検出手法を説明するための図である。 図2Bは、操作者の位置の第2の検出手法を説明するための図である。 図2Cは、操作者の位置の第3の検出手法を説明するための図である。 図2Dは、操作者の位置の第4の検出手法を説明するための図である。 図3Aは、障害物の第1の検出手法を説明するための図である。 図3Bは、障害物の第2の検出手法を説明するための図である。 図4Aは、第1領域と第2領域(死角)の第1の算出手法を説明するための図である。 図4Bは、第1領域と第2領域(死角)の第2の算出手法を説明するための図である。 図4Cは、第1領域と第2領域(死角)の第3の算出手法を説明するための図である。 図5は、本実施形態の駐車制御システムの制御手順の一例を示すフローチャートである。 図6は、障害物との接近度の設定手法の第1の例を示すフローチャートである。 図7Aは、障害物との接近度の設定手法を説明するための第1の図である。 図7Bは、障害物との接近度の設定手法を説明するための第2の図である。 図7Cは、障害物との接近度の設定手法を説明するための第3の図である。 図7Dは、障害物との接近度の設定手法を説明するための第4の図である。 図7Eは、障害物との接近度の設定手法を説明するための第5の図である。 図8は、減速タイミングの設定手法を示すフローチャートである。 図9Aは、減速開始タイミングの設定手法を説明するための第1の図である。 図9Bは、減速開始タイミングの設定手法を説明するための第2の図である。 図9Cは、減速開始タイミングの設定手法を説明するための第3の図である。 図9Dは、減速開始タイミングの設定手法を説明するための第4の図である。 図9Eは、減速開始タイミングの設定手法を説明するための第5の図である。 図10は、減速度の設定手法を示すフローチャートである。 図11Aは、減速度の設定手法を説明するための第1の図である。 図11Bは、減速度の設定手法を説明するための第2の図である。 図12は、駐車経路の算出手法の第1の例を示すフローチャートである。 図13Aは駐車経路の算出手法の第1の例を説明するための第1の図である。 図13Bは駐車経路の算出手法の第1の例を説明するための第2の図である。 図14は、駐車経路の算出手法の第2の例を示すフローチャートである。 図15Aは駐車経路の算出手法の第2の例を説明するための第1の図である。 図15Bは駐車経路の算出手法の第2の例を説明するための第2の図である。 図15Cは駐車経路の算出手法の第2の例を説明するための第3の図である。 図15Dは駐車経路の算出手法の第2の例を説明するための第4の図である。 図15Eは駐車経路の算出手法の第2の例を説明するための第5の図である。 図16は、駐車経路の算出手法の第3の例を示すフローチャートである。 図17は駐車経路の算出手法の第3の例を説明するための図である。 図18は、駐車経路の算出手法の第4の例を示すフローチャートである。 図19Aは駐車経路の算出手法の第4の例を説明するための第1の図である。 図19Bは駐車経路の算出手法の第4の例を説明するための第2の図である。 図20は、駐車経路の算出手法の第5の例を示すフローチャートである。 図21Aは駐車経路の算出手法の第5の例を説明するための第1の図である。 図21Bは駐車経路の算出手法の第5の例を説明するための第2の図である。 図21Cは駐車経路の算出手法の第5の例を説明するための第3の図である。 図22は、駐車経路の算出手法の第6の例を示すフローチャートである。 図23Aは駐車経路の算出手法の第6の例を説明するための第1の図である。 図23Bは駐車経路の算出手法の第6の例を説明するための第2の図である。 図23Cは操作位置の提示例を示す図である。
 以下、本発明の実施形態を図面に基づいて説明する。
 本実施形態では、本発明に係る駐車制御装置を、駐車制御システムに適用した場合を例にして説明する。駐車制御装置は、車載装置と情報の授受が可能な可搬の操作端末(スマートフォン、PDA:Personal Digital Assistantなどの機器)に適用してもよい。また、本発明に係る駐車制御方法は後述する駐車制御装置において使用できる。
 図1は、本発明の一実施形態に係る駐車制御装置100を有する駐車制御システム1000のブロック図である。本実施形態の駐車制御システム1000は、カメラ1a~1dと、測距装置2と、情報サーバ3と、操作端末5と、駐車制御装置100と、車両コントローラ70と、駆動システム40と、操舵角センサ50と、車速センサ60とを備える。本実施形態の駐車制御装置100は、操作端末5から入力された操作指令に基づいて、駐車スペースに車両を移動させる(駐車させる)動作を制御する。
 操作端末5は、車両の外部に持ち出し可能な携帯型の入力機能及び通信機能を備えるコンピュータである。操作端末5は、駐車のための車両の運転(動作)を制御するための操作者の操作指令の入力を受け付ける。運転には駐車(入庫及び出庫)の操作を含む。操作者は、操作端末5を介して駐車を実行させるための操作指令を含む命令を入力する。操作指令は、駐車制御の実行・停止、目標駐車スペースの選択・変更、駐車経路の選択・変更、その他の駐車に必要な情報を含む。なお、操作者は、操作端末5を用いることなく、操作者のジェスチャなどにより操作指令を含む命令を、駐車制御装置100に認識させることもできる。
 操作端末5は通信機を備え、駐車制御装置100、情報サーバ3と情報の授受が可能である。操作端末5は、通信ネットワークを介して、車外で入力された操作指令を駐車制御装置100へ送信し、操作指令を駐車制御装置100に入力させる。操作端末5は、固有の識別記号を含めた信号を用いて、駐車制御装置100と交信する。
 操作端末5は、ディスプレイ53を備える。ディスプレイ53は、入力インターフェイス、各種情報を提示する。ディスプレイ53がタッチパネル型のディスプレイである場合には、操作指令を受け付ける機能を有する。
 操作端末5は、本実施形態の駐車制御方法に用いられる操作指令の入力を受け付けるとともに、駐車制御装置100へ向けて操作指令を送出するアプリケーションがインストールされたスマートフォン、PDA:Personal Digital Assistantなどの携帯型の機器であってもよい。
 情報サーバ3は、通信可能なネットワーク上に設けられた情報提供装置である。情報サーバは、通信装置31と、記憶装置32を備える。記憶装置32には、読み取り可能な地図情報33と、駐車場情報34と、障害物情報35とを備える。駐車制御装置100、操作端末5は、情報サーバ3の記憶装置32にアクセスして各情報を取得できる。
 本実施形態の駐車制御装置100は、制御装置10と、入力装置20と、出力装置30とを備える。駐車制御装置100の各構成は、相互に情報の授受を行うためにCAN(Controller Area Network)その他の車載LANによって接続される。入力装置20は、通信装置21を備える。通信装置21は、外部の操作端末5から送信された操作指令を受信し、入力装置20に入力する。外部の操作端末5に操作指令を入力する主体は人間(ユーザ、乗員、ドライバ、駐車施設の作業員)であってもよい。入力装置20は、受け付けた操作指令を制御装置10に送信する。出力装置30は、ディスプレイ31を含む。出力装置30は、駐車制御情報をドライバに伝える。本実施形態のディスプレイ31は、入力機能及び出力機能を備えるタッチパネル型のディスプレイである。ディスプレイ31が入力機能を備える場合には、ディスプレイ31が入力装置20として機能する。操作端末5から入力された操作指令に基づいて車両が制御されている場合であっても、乗員が入力装置20を介して緊急停止などの操作指令を入力できる。
 本実施形態の駐車制御装置100の制御装置10は、駐車制御プログラムが格納されたROM12と、このROM12に格納されたプログラムを実行することで、本実施形態の駐車制御装置100として機能する動作回路としてのCPU11と、アクセス可能な記憶装置として機能するRAM13とを備える、特徴的なコンピュータである。
 本実施形態の駐車制御プログラムは、操作者Mの位置に基づいて設定された観察位置と車両Vの周囲に存在する障害物の位置との位置関係より、操作者Mから観察可能な第1領域を算出し、第1領域における車両の障害物に対する第1接近度が、第2領域における車両の障害物に対する第2接近度よりも高くなるように、駐車経路および前記駐車経路を算出し、制御命令に従って車両の駐車制御を実行させるプログラムである。駐車制御プログラムは、車両の駐車経路の少なくとも一部において、車両の少なくとも一部が第1領域に存在するように駐車経路および前記駐車経路を算出し、制御命令に従って車両の駐車制御を実行させるプログラムである。このプログラムは本実施形態の駐車制御装置100の制御装置10により実行される。第1領域及び第2領域は、障害物の位置に加えて、障害物の大きさ、形状などの障害物の検出結果を用いて算出できる。
 本実施形態の駐車制御装置100は、外部から操作指令を送り、車両の動きを制御して、車両を所定の駐車スペースに駐車させるリモートコントロールタイプのものである。乗員は車室外にいてもよいし、車室内にいてもよい。
 本実施形態の駐車制御装置100は、操舵操作、アクセル・ブレーキ操作が自動的に行われる自動制御タイプであってもよい。駐車制御装置100は、操舵操作を自動で行い、アクセル・ブレーキ操作をドライバが行う半自動タイプであってもよい。
 本実施形態の駐車制御プログラムでは、ユーザが目標駐車スペースを任意に選択してもよいし、駐車制御装置100又は駐車設備側が目標駐車スペースを自動的に設定してもよい。
 本実施形態に係る駐車制御装置100の制御装置10は、観察位置の設定処理、第1及び/又は第2領域の算出処理、駐車経路の算出処理、制御命令の算出処理、及び駐車制御処理を実行させる機能を備える。制御装置10は、さらに障害物検出処理を実行させ、障害物の位置を考慮して駐車経路を算出させる機能を備える。各処理を実現するためのソフトウェアと上述したハードウェアの協働により、上記各処理を実行する。
 図2A~図2Dに基づいて、観察位置の設定処理を説明する。制御装置10は、操作者Mの位置に基づいて観察位置を算出する。制御装置10は、操作者Mの位置を取得する。操作者Mの位置は、車両Vに設けられたセンサからのセンサ信号に基づいて直接検出してもよいし、操作者Mが所持する操作端末5の位置を検出し、操作端末5の位置に基づいて操作者Mの位置を算出してもよい。操作端末5は、所定の位置に備え付けられていてもよいし、操作者Mが所持してもよい。操作端末5が所定の位置に備え付けられている場合には、操作端末5の配置位置に操作者Mが移動し、操作端末5を使用する。これらの場合は、操作端末5の位置を操作者Mの位置とすることができる。
 図2Aに示すように、車両Vに設けられた複数の測距装置2の検出結果及び/又はカメラ1の撮像画像に基づいて操作者Mの位置を検出する。各カメラ1a~1dの撮像画像に基づいて操作者Mの位置を検出できる。測距装置2は、ミリ波レーダー、レーザーレーダー、超音波レーダーなどのレーダー装置又はソナーを用いることができる。複数の測距装置2及びその検出結果は識別可能であるので、検出結果に基づいて操作者Mの位置を検出できる。カメラ1についても同様に、測距装置2は、カメラ1a~1dと同じ位置に設けてもよいし、異なる位置に設けてもよい。また、制御装置10は、カメラ1a~1dの撮像画像に基づいて、操作者Mのジェスチャを検出し、ジェスチャに対応づけられた操作指令を識別することもできる。
 図2Bに示すように、車両Vの異なる位置に設けられたアンテナ211のそれぞれと操作端末5との通信電波に基づいて操作端末5又は操作端末5を所持する操作者Mの位置を検出してもよい。複数のアンテナ211が一の操作端末5と通信する場合には、各アンテナ211の受信電波の強度が異なる。各アンテナ211の受信電波の強度差に基づいて、操作端末5の位置を算出できる。各アンテナ211の受信電波の強度差から、操作端末5又は操作者Mの二次元位置及び/又は三次元位置を算出できる。
 図2Cに示すように、車両Vの運転席DSに対して所定の位置(方向・距離:D1,D2)を操作者Mの操作位置又は操作端末5の配置位置として予め指定してもよい。例えば、操作者Mが、指定位置に車両Vを一時停止し、降車して所定位置に設けられた操作端末5を操作する場合には、車両Vに対する操作者M又は操作者Mが所持する操作端末5の初期位置を検出できる。
 同様に、図2Dに示すように、車両Vに対する操作位置(操作者Mの立ち位置:Operation Position)を示す画像情報を操作端末5のディスプレイ53に表示する。この表示制御は、操作端末5側にストアされたアプリケーションにより実行されてもよいし、制御装置10の指令に基づいて実行されてもよい。
 本実施形態では、操作者Mが視認できる第1領域、又は操作者Mが視認できない第2領域(死角:ブラインドエリア)を算出するために操作者Mの観察位置を算出する。第1領域(又は第2領域)を算出する際に、検出された操作者Mの二次元位置を観測位置と算出してもよい。また、操作者Mの目の位置(高さ情報)を考慮してもよい。上記手法により得た操作端末5の二次元位置に基づいて、操作者Mの目の位置に相当する位置を観察位置として算出する。観察位置は、予め設定された操作者Mの身長、成人の平均的な身長を用いて算出してもよい。操作端末5の位置情報の検出信号が高さ情報を含む場合には、操作端末5の位置を観察位置としてもよい。
 図3A,図3Bに基づいて障害物の検出処理について説明する。障害物は、駐車場の壁、柱などの構造物、車両周囲の設置物、歩行者、他車両、駐車車両等を含む。
 図3Aに示すように、車両Vに設けられた複数の測距装置2の検出結果、カメラ1の撮像画像に基づいて障害物を検出する。測距装置2は、レーダー装置の受信信号に基づいて物体の存否、物体の位置、物体の大きさ、物体までの距離を検出する。各カメラ1a~1dの撮像画像に基づいて物体の存否、物体の位置、物体の大きさ、物体までの距離を検出する。なお、障害物の検出は、カメラ1a~1dによるモーションステレオの技術を用いて行ってもよい。この検出結果は、駐車スペースが空いているか否か(駐車中か否か)の判断に用いられる。
 図3Bに示すように、情報サーバ3の記憶装置32から取得した駐車場情報34に基づいて、駐車場の壁、柱などの構造物を含む障害物を検出できる。駐車場情報は、各駐車場(パーキングロット)の配置、識別番号、駐車施設における通路、柱、壁、収納スペースなどの位置情報を含む。情報サーバ3は駐車場が管理するものであってもよい。
 次に、第1領域及び/又は第2領域の算出処理について説明する。制御装置10は、障害物の位置と操作者Mの位置との位置関係に基づいて、算出された操作者Mの観察位置から操作者Mが観察可能な第1領域を算出する。制御装置10は、操作者Mが観察位置から観察したときにその視野が障害物によって遮られない領域を第1領域として算出する。制御装置10は、操作者Mが観察位置から観察したときにその視野が障害物によって遮られる領域を第2領域として算出する。操作者Mから観察できない又は視認できない第2領域を、障害物との位置関係から算出できる。また、障害物だけではなく、操作対象である車両Vにより生じる死角も視認できない第2領域として設定してもよい。制御装置10は、操作者Mが観察位置から観察したときにその視野が操作対象である車両によって遮られる領域を第2領域として算出する。操作者Mから観察できない第2領域を、駐車させる車両との位置関係から算出できる。ちなみに操作対象ではない他車両は障害物に属する。制御装置10は演算負荷の低減の観点から、先に第2領域を算出し、それ以外の領域を第1領域としてもよい。また、障害物の検出精度や操作者Mの位置の検出精度を考慮して、第2領域を広めに設定してもよい。
 図4Aには、駐車場の構造によって死角が生じる場合の例を示す。図4Aに示す例では、車両V1が駐車経路RTを移動する場合であって、車両V1の側方に立つ操作者Mが操作端末5を操作する。制御装置10は、操作者Mが観察位置VPから観察したときに、他の物体に遮られることなく視認できると予測できる領域を第1領域VAとして算出する。図4Aの例においては、駐車場の壁Wが操作者Mの視野を遮る。制御装置10は、操作者Mが観察位置VPから観察したときに、壁Wに隠れて視認できないと予測される領域を第2領域BAとして算出する。
 図4Bには、制御対象となる車両自体によって死角が生じる場合の例を示す。制御装置10は、操作者Mが観察位置VPから観察したときに、他の物体に遮られることなく視認できると予測できる領域を第1領域VAとして算出する。図4Bの例においては、予測された駐車経路上の切り返し位置における車両V2が操作者Mの視野を遮る。制御装置10は、操作者Mが観察位置VPから観察したときに、車両V2に隠れて視認できないと予測される領域を第2領域BAとして算出する。第2領域BAの算出において用いられる車両の高さ、大きさなどの車両情報は、予め制御装置10が記憶する。車両情報は、車両固有の情報であってもよいし、車種などに応じて定義された情報であってもよい。
 図4Cに示すように、操作端末5の通信装置51,アンテナ511と駐車制御装置100の通信装置21,アンテナ211との受信電波の強度、反射波の発生、干渉、マルチパスの発生などに基づいて、駐車場の壁の位置又は空間の形状から凹部の存在を判定して、その判定結果に基づいて死角の存在を判断してもよい。
 制御装置10は、第1領域VAにおける車両Vの障害物に対する第1接近度が、第2領域BAにおける車両Vの障害物に対する第2接近度よりも高くなるように、駐車経路及び駐車経路を移動させる制御命令を算出する。制御装置10は、車両Vの駐車経路RTの少なくとも一部において、車両Vの少なくとも一部が第1領域VAに存在する駐車経路RTと、駐車経路RTに従って車両Vを移動させる制御命令とを算出する。制御命令には、駐車経路RTを移動する際の速度、加減速度、加減速制御の実行位置(タイミング)、切り返し位置、操舵量などを含む。
 以下、図2に示すフローチャートに基づいて駐車制御の制御手順を説明する。
 図2は、本実施形態に係る駐車制御システム1000が実行する駐車制御処理の制御手順を示すフローチャートである。駐車制御処理の開始のトリガは、特に限定されず、駐車制御装置100の起動スイッチが操作されたことをトリガとしてもよい。
 本実施形態の駐車制御装置100は、車外から取得した操作指令に基づいて、車両Vを自動的に駐車スペースへ移動させる機能を備える。
 ステップ101において、本実施形態に係る駐車制御装置100の制御装置10は、ステップ101において、車両Vの複数個所に取り付けられた測距装置2によって測距信号をそれぞれ取得する。制御装置10は、車両Vの複数個所に取り付けられたカメラ1a~1dによって撮像された撮像画像をそれぞれ取得する。特に限定されないが、車両Vのフロントグリル部にカメラ1aを配置し、リアバンパ近傍にカメラ1dを配置し、左右のドアミラーの下部にカメラ1b、1cを配置する。カメラ1a~1dとして、視野角の大きい広角レンズを備えたカメラを使用できる。カメラ1a~1dは、車両Vの周囲の駐車スペースの境界線及び駐車スペースの周囲に存在する物体を撮像する。カメラ1a~1dは、CCDカメラ、赤外線カメラ、その他の撮像装置である。
 ステップ102において、制御装置10は、駐車可能な駐車スペースを検出する。制御装置10は、カメラ1a~1dの撮像画像に基づいて、駐車スペースの枠(領域)を検出する。制御装置10は、測距装置2の検出データ、撮像画像から抽出された検出データを用いて、空いている駐車スペースを検出する。制御装置10は、駐車スペースのうち、空車(他車両が駐車していない)であり、駐車を完了させるための経路が算出可能である駐車スペースを、駐車可能スペースとして検出する。
 本実施形態において駐車経路が算出可能であるとは、障害物(駐車車両を含む)と干渉することなく、現在位置から目標駐車スペースに至る経路の軌跡を路面座標に描けることである。
 ステップ103において、制御装置10は、駐車可能スペースを、操作端末5に送信し、そのディスプレイ53に表示し、車両を駐車させる目標駐車スペースの選択情報の入力を操作者に要求する。目標駐車スペースは、制御装置10、駐車施設側が自動的に選択してもよい。一の駐車スペースを特定する操作指令が操作端末5に入力された場合には、その駐車スペースを目標駐車スペースとして設定する。
 本実施形態では、ステップ104において、乗員を降車させる。この後は、リモートコントロールにより目標駐車スペースに車両を移動させる。目標駐車スペースは、乗員が降車後に選択してもよい。
 ステップ105において、制御装置10は、先述した手法により操作者Mの位置を検出し、操作者Mの位置に基づいて観察位置VPを算出する。ステップ106において、制御装置10は、先述した手法により障害物が存在する位置を検出する。
 ステップ107において、操作者Mが観察位置VPから観察可能な第1領域を算出する。第1領域は、障害物の位置に基づいて算出される。制御装置10は、操作者Mが観察位置VPから観察不可能な第2領域を算出する。第2領域は、障害物の位置に基づいて算出される。障害物の位置とは、障害物の存在する領域の位置、つまり、三次元座標における障害物の占有領域の座標値である。
 ステップ108において、制御装置10は、車両の停止位置から目標駐車スペースに至る駐車経路を算出する。駐車経路は、駐車スペースに移動するために必要な切り返し位置を含む。このとき、駐車経路は線として定義されるとともに、車幅に応じた車両の占有領域に応じた帯状の領域として定義される。車両の占有領域は、車幅と移動のために確保される余裕幅とを考慮して定義される。このステップにおいて、制御装置10は、駐車経路上を移動する車両の制御命令を算出する。制御命令は、車両の操舵量、操舵速度、操舵加速度、シフトポジション、速度、加速度、及び減速度のうちの何れか一つ以上についての動作命令を含む。また、制御命令は、上記車両の動作命令の実行タイミング又は実行位置を含む。
 駐車制御においては、移動開始から駐車完了に至るまで、制御対象車両と障害物との過剰な接近、接触を避ける必要がある。駐車経路を算出する場合には、検出された障害物と車両との間に一定の接近関係/離隔関係が維持されることが前提となる。本実施形態では、駐車制御における障害物と車両との間の接近関係/離隔関係を定量的に評価するための値として「接近度」を定義する。
 制御装置10は、車両Vと障害物との接近度に基づいて駐車経路を算出する。車両Vと障害物との接近度とは、駐車経路を算出する際に許容される、車両Vと障害物との接近の程度を示す指標である。
 「接近度が高い」とは、車両と障害物とが接近していることを示す。「接近度が低い」とは、車両と障害物とが離隔していることを示す。
 接近度は、障害物に対して車両Vが接近する余裕距離、障害物から切り返しポイントまでの切り返し距離、障害物から駐車経路までの離隔距離とすることができる。
 制御装置10は、第1接近度と第2接近度を求める。第1接近度は、第1領域における車両の障害物に対する接近の度合いであり、第2接近度は、第2領域における車両の障害物に対する接近の度合い度である。制御装置10は、第1接近度が第2接近度よりも高くなるように第1接近度と第2接近度を求め、第1接近度と第2接近度に基づいて駐車経路を算出する。第1領域における車両と障害物の接近の程度が、第2領域における車両と障害物の接近の程度よりも大きくなることを許容する。第1領域においては第2領域よりも車両が障害物に接近した駐車経路が算出される。なお、第2領域が存在しない場合には、第1接近度を予め設定された標準接近度よりも高く設定し、車両と障害物との第1接近度が標準接近度未満となるように車両Vの駐車経路を算出する。
 図6のステップ120において、図5のステップ107で第1領域が検出されたことを確認する。ステップ121において、第2領域が検出されたことを確認する。
 図7Aには駐車のために移動する車両V1,V2,VPの位置を示す。同図に示す状況では、操作者Mの位置に基づく操作者の観察位置から車両が駐車されるまで駐車経路上で障害物に接近する状況が視認できる。同図に示す状況では、障害物としての壁Wによる死角は形成されない。操作者Mの観察位置と壁Wとの間は観察可能な第1領域VAである。なお、図7Aは、車両Vによる死角を第2領域として設定していない例である。操作者Mが車両Vによる死角を推定できる状況では、このように、車両Vによる死角を第2領域として設定してしなくてもよい。
 第1領域VA及び第2領域BAが検出された場合には、ステップ122において、第1領域VAにおける車両Vの障害物に対する第1接近度を、第2領域BAにおける車両Vの障害物に対する第2接近度よりも高く設定する(第1接近度>第2接近度)。ステップ123において、第2領域(死角)が検出されない場合には、第1接近度を設定する。車両Vの障害物に対する余裕距離が短いほど、接近度が高くなる。
 図7Bには駐車のために移動する車両V1,V2,VPの位置を示す。同図に示す状況では、操作端末5の位置に基づく操作者Mの観察位置から見ると、切り返し位置の車両V2の右側前方部分が壁Wによって形成された第2領域BAに属する。制御装置10は、車両V2と壁Wとの距離が最も短くなる右側前方部分における第2接近度を設定する。第2接近度は車両Vの部位ごとに設定してもよいし、車両全体に適用される値として設定してもよい。制御装置10は、第2接近度として第2余裕距離R2を図7Aに示す第1余裕距離R1よりも長い値にする(第2余裕距離R2>第1余裕距離R1)。これによって、第1領域VAにおける車両Vの障害物に対する第1接近度を、第2領域BAにおける車両Vの障害物に対する第2接近度よりも高く設定することができる。
 図7Cは、制御対象の車両Vにより観察不能な第2領域が形成される場合を示す。このような場合も、第2領域は検出され、車両Vは第2領域に属すると判断される。車両V及びその周囲の一部が観察できない場面である。同図に示す状況では、操作者Mの位置に基づく操作者の観察位置から見ると、切り返し位置の車両V2の左側前方、正面前方、右側前方が車両V2によって形成された第2領域BAに属する。制御装置10は、車両V2と壁Wとの距離が所定値以下となる右側前方部分における第2余裕距離R21と、左側前方部分における第2余裕距離R22とを設定する。制御装置10は、第2余裕距離R21,R22を図7Aに示す第1余裕距離R1よりも長い値にする(第2余裕距離R21、R22>第1余裕距離R1)。
 図7Dも、制御対象となる車両Vにより観察不能な第2領域が形成される場合を示す。本例では、操作者Mが制御対象の車両Vの側方に位置するため車両Vの反対側及びその周囲が観察できない場面である。同図に示す状況では、操作者Mの観察位置から見ると、切り返し位置へ進む直進時の車両V1の左側側方が車両V2によって形成された第2領域BAに属する。制御装置10は、車両V2の右側側方部分における第2接近度R23を設定する。制御装置10は、第2余裕距離R23を図7Aに示す第1余裕距離R1よりも長い値にする(第2余裕距離R23>第1余裕距離R1)。
 図7Eにおいては、制御対象となる車両Vにより観察不能な第2領域が形成され、さらに、第2領域に壁W以外の障害物OBが存在する場合を示す。同図に示す状況では、操作端末5の位置に基づく操作者Mの観察位置から見ると、切り返し位置における車両V2によってその前方に第2領域BAが形成されている。その第2領域BA内に障害物OBが存在する。この障害物OBと車両V2との間にも接近度は定義される。制御装置10は、車両V2と障害物OBとの間における第2余裕距離R24を設定する。制御装置10は、第2余裕距離R24を図7Aに示す第1余裕距離R1よりも長い値にする(第2余裕距離R24>第1余裕距離R1)。
 本実施形態では、観察位置から観察可能な第1領域における車両Vの障害物に対する第1接近度を、観察位置から観察不能な第2領域における車両Vの障害物に対する第2接近度よりも高く設定する。第1接近度は、車両Vが第1領域を走行する際の障害物との接近の度合いとし、第2接近度は、車両Vが第2領域を走行する際の障害物との接近の度合いとしてもよい。操作者Mが観察可能である領域内においては、観察不能である領域内よりも車両と障害物が接近することを許容する。これにより、操作者Mの観察状況に応じて車両と障害物との接近度を調整することができる。
 操作者が観察可能な第1領域においては、車両と障害物とを第2領域よりも接近させて移動させるので、障害物が存在する場合であっても、障害物が存在したとしても駐車制御の継続が可能となる。状況によっては、車両と障害物が接近することを許容するので、障害物が存在することを理由に一律に駐車制御処理が中断されることがない。車両と障害物とのクリアランス(余裕距離)は、一般に、安全を考慮して設定される。クリアランス(余裕距離)が大きい値であるほど安全は担保できるが、駐車制御処理が中断される可能性や頻度が高くなり、操作者の操作や指示が追加して必要となるため、快適さや使いやすさが犠牲となる。本実施形態の駐車制御方法によれば、第1領域において適用される第1接近度を第2領域において適用される第2接近度よりも相対的に高い値に変更するので、駐車制御処理が続行される場面を増やして、快適さや使いやすさと安全性とを両立させることができる。
 特に限定されないが、第1接近度は、第1領域VAにおける車両Vが障害物に接近する第1余裕距離であり、第2接近度は、第2領域BAにおける車両Vが障害物に接近する第2余裕距離である。第1余裕距離は、長さ(距離)により表現できる。第1余裕距離は第2余裕距離よりも短くなるように設定する。
 第1接近度は、障害物から第1領域VAに属する第1切り返し位置までの第1切り返し距離であり、第2接近度は、障害物から第2領域に属する第2切り返し位置までの第2切り返し距離である。駐車制御処理に用いられる駐車経路は、進行を切り替える切り返し位置を含む。図7Aの車両V2の位置が第1切り返し位置に相当し、図7Bの車両V2の位置が第2切り返し位置に相当する。駐車経路において、切り返し位置は最も障害物に接近する可能性が高い。第1切り返し位置で車両Vの少なくとも一部が第1領域内に存在する場合には、第2切り返し位置で車両Vの少なくとも一部が第2領域内に存在する場合よりも接近度を高く設定する。制御装置10は、第1切り返し距離を、第2切り返し距離よりも短く設定する。これにより、第1領域VA内では第1切り返し位置と障害物とが相対的に接近することを許容して、駐車制御処理を続行させることができる。なお、第1切り返し距離および、第2切り返し距離は、障害物から最も近い車両Vの外形までの距離として設定しても良い。
 第1接近度は、障害物から駐車経路RTまでの第1離隔距離であり、第2接近度は、障害物から駐車経路RTまでの第2離隔距離である。駐車経路を算出する際には、駐車経路上の各地点が障害物RTから所定距離だけ離れるように生成する。所定距離は、車両の大きさと障害物に対するクリアランス(余裕距離)で予め設定できる。駐車経路が第1領域内に存在する場合の第1離隔距離は、駐車経路が第2領域内に存在する場合の第2離隔距離よりも短く設定する。具体的には、第1離隔距離の中の障害物に対するクリアランス(余裕距離)を、第2離隔距離の中の障害物に対するクリアランス(余裕距離)よりも短く設定する。これにより、第1領域VA内では第2領域BAよりも、駐車経路と障害物とが接近することを許容して、駐車制御処理を続行させることができる。
 次に制御命令の算出について説明する。
 図5のステップ108において、制御装置10は、駐車経路RTを車両に移動させる制御命令を生成する。制御命令生成のサブルーチンを説明する。制御命令は、障害物に接近する際の減速開始タイミング、減速完了距離、減速度、及び目標速度のうちの何れか一つ以上を含む。
 まず、制御命令における減速開始タイミングの設定手法を説明する。
 図8のステップ140において第1領域の存在を確認し、ステップ141で第2領域の存在を確認する。ステップ142で制御装置10は、車両の減速を開始する減速開始タイミングを含む制御命令を生成する。減速開始タイミングは、接近度の一態様である。障害物に接近する際に行われる減速を開始する減速開始タイミングを遅くするということは、障害物に近づいてから減速を開始することになる。減速開始タイミングを遅くすることは、接近度を高くすることになる。他方、減速開始タイミングを早くすることは接近度を低くすることになる。
 図9A、図9Bは、第1領域VAと第2領域BAを通過する駐車経路RTを示す。図9Aは、切り返し位置における車両V2の前方に障害物OB2が存在する状態を示す。障害物OB2は、第2領域VAに属する。図9Bは、切り返し位置における車両V2の前方であって、第1領域VAに属する障害物OB1が存在する状態を示す。
 ステップ142において、制御装置10は、第1減速開始タイミングT1又は第2減速開始タイミングT2を設定する。第1減速開始タイミングT1は、障害物に接近する際に減速を開始するタイミングであり、第2減速開始タイミングT2は、障害物に接近する際に減速を開始するタイミングである。制御装置10は、第1減速開始タイミングT1が第2減速開始タイミングT2よりも遅いタイミングとなるように制御命令を算出する。図9Cには、障害物OB2が存在する場合の第2減速開始タイミングT2を示す。図9Dには、障害物OB1が存在する場合の第1減速開始タイミングT1を示す。第1減速開始タイミングT1は、第2減速開始タイミングT2よりも遅いタイミングである。第1減速開始タイミングT1における車両Vの位置と障害物OB1との距離は、第2減速開始タイミングT2における車両Vの位置と障害物OB2との距離よりも短い。制御装置10は、算出した制御命令に従って、駐車経路を車両に移動させる。第1減速開始タイミングを第2減速開始タイミングよりも遅くすることにより、第1領域の通過時間を短縮できる。その結果、駐車開始から駐車完了までに要する時間を短くすることができる。なお、第1領域のみが検出された場合には、第1減速タイミングT1を含む駐車制御処理の制御命令を生成する。
 また、減速開始タイミングは、車両と障害物の接近速度に応じた時間により表現することができる。接近速度に応じた時間は、衝突までの時間であるTTC:Time-To-Collisionとして算出する。第1減速開始タイミングを第1TTCとして設定し、第2減速タイミングを第2TTCとして設定する。車両Vは障害物に対して、設定された第1TTC又は第2TTCよりも、算出されたTTCが短くなったタイミングで減速を開始する。第1TTCを第2TTCよりも短く設定することで、第1領域では、第2領域と比べて、障害物に接近する際に行われる減速を開始する減速開始タイミングが遅くなり、障害物に近づいてから減速を開始することになる。減速開始タイミングを遅くすることは、接近度を高くすることになる。他方、減速開始タイミングを早くすることは接近度を低くすることになる。
 図9Eに、制御指令における速度の経時的変化を示す。第1領域を走行するときの制御指令を実線で示し、第2領域(死角)を走行するときの制御指令を破線で示す。同図に示すように、第1領域における第1減速開始タイミングT1は、第2領域における第2減速開始タイミングT2よりも遅い時間である。
 同様の観点から減速完了距離を設定することができる。制御装置10は、車両の減速を完了させる減速完了ポイントまでの減速完了距離を含む制御命令を生成する。減速完了距離は、接近度の一態様である。障害物に接近する際に行われる減速を完了させるポイントから障害物の位置までの減速完了距離を短くするということは、障害物にできる限り近づいた状態で減速を完了するということになる。減速完了距離を短くすることは、接近度を高くすることになる。他方、減速完了距離を長くすることは接近度を低くすることになる。本処理は、上述した図8のステップ142とともに、又はこれに代えて行うことができる。第1減速完了距離を第2減速完了距離よりも短くすることにより、障害物にできるだけ接近することにより、駐車制御における車両の移動を続行できる。
 次に、制御命令における減速度の設定手法を説明する。
 図10のステップ150において第1領域の存在を確認し、ステップ151で第2領域の存在を確認する。制御装置10は、車両の減速度を含む制御命令を生成する。減速度は、接近度の一態様である。障害物に接近する際に行われる減速度が高いということは、障害物に接近する度合いである接近度が高いということである。他方、減速度が低いことは障害物に接近する度合いである接近度を低いということである。
 図11A,図11Bは第1領域VAと第2領域BAを通過する駐車経路RTを示す。図11Aは、切り返し位置における車両V2の前方に障害物OB2が存在する状態を示す。障害物OB2は、第2領域VAに属する。図11Bは、切り返し位置における車両V2の前方であって、第1領域VAに属する障害物OB1が存在する状態を示す。
 ステップ152において、制御装置10は、第1減速度S1と第2減速度S2を設定する。第1減速度S1は障害物に接近する際の減速度であり、第2減速度S2は障害物に接近する際の減速度である。減速度は、減速時の速度又は減速時の加速度を含む。制御装置10は、第1減速度S1が第2減速度S2よりも高い値となるように制御命令を算出する。図11Aの状況においては、第2減速度S2(<S1)が設定された制御命令が生成され、図11Bの状況においては、第1減速度S1(>S2)が設定された制御命令が生成される。先述した図9Eに、第1減速度m1と第2減速度m2を示す。図9Eは、制御指令における速度の経時的変化を示し、第1領域を走行するときの制御指令を実線で示し、第2領域(死角)を走行するときの制御指令を破線で示す。同図に示すように、第1領域における第1減速度m1は、第2領域における第2減速度m2よりも大きい。
 制御装置10は、算出した制御命令に従って、駐車経路を車両に移動させる。第1減速度を第2減速度よりも高くすることにより、第1領域の通過時間を短縮できる。その結果、駐車開始から駐車完了までに要する時間を短くすることができる。なお、第1領域のみが検出された場合には、第1減速度S1を含む駐車制御処理の制御命令を生成する。
 同様の観点から操作者に対する車両Vの相対速度制限値を設定できる。相対速度制限値は、車両と操作者との相対速度の制限を規定する値である。制御装置10は、第1領域における車両の第1相対速度制限値と、第2領域における車両の第2相対速度制御値とを設定する。本処理は、上述した図8のステップ142とともに、又はこれに代えて行うことができる。第1相対速度制限値を第2相対速度制限値よりも高くすることにより、第1領域の通過時間を短縮できる。その結果、駐車開始から駐車完了までに要する時間を短くすることができる。
 続いて、車両の駐車経路RTの算出手法に例を説明する。
 制御装置10は、車両の駐車経路RTの少なくとも一部において、車両Vの少なくとも一部が第1領域VAに存在するように駐車経路RTを算出する。制御装置10は、車両Vが駐車経路RTを移動している間の少なくとも一時的に、観察位置から車両Vの一部が見えるように駐車経路RTを算出する。これにより、駐車制御処理中に操作者が車両Vの存在及び位置を確認することができる。駐車制御処理中に操作者が車両Vの存在及び位置を確認できない駐車経路RTが算出されることがない。
 なお、駐車経路RTの全長に対して、車両Vの少なくとも一部が第1領域VAに存在する経路の長さが、所定の割合であるように駐車経路RTを算出するようにしてもよい。所定の割合は高い(1に近い)ほうが好ましいが、駐車経路RTが算出できる可能性とのバランスを考慮して設定する。例えば、切り返し回数が増加しない範囲で算出可能な駐車経路RTのうち、最も割合が高い駐車経路を選択するようにしてもよい。
 本実施形態では、駐車経路RTの少なくとも一部が第2領域BA(ブラインドエリア)に属する場合に、車両Vの少なくとも一部が第1領域VAに存在するように駐車経路RTを算出する。
 図12のステップ190において、制御装置10は、仮に算出した駐車経路RTの少なくとも一部が第2領域BAに含まれているか否かを判断する。図13Aは、仮に算出した駐車経路RT1の全部が第2領域BAに含まれている場合の例を示す。駐車経路RT1の一部が第2領域BAに属している場合であってもよい。ステップ191において、駐車経路RT1の少なくとも一部において、車両Vの一部が第1領域VAに存在するように駐車経路RTを補正案として算出する。新たな駐車経路が採用可能な場合にはステップ192において、駐車経路を更新する。図13Bに示す例では、移動中の車両V12の左側のフロント部V121が第1領域VAに属する補正案としての駐車経路RT2を新たに算出する。この駐車経路RT2では切り返し位置における車両V2の左側のリア部V21が第1領域VAに属する。補正案の駐車経路RT2が、障害物(駐車車両を含む)と干渉することなく駐車目標位置VPまで生成できた場合には、仮に算出された駐車経路RT1に代えて、駐車経路RT2が採用される。
 駐車経路RTの少なくとも一部が第2領域BAに属する場合に、駐車経路RTを補正するので、操作者が観察しやすい駐車経路RTで駐車制御処理を実行できる。リモート操作で駐車する際に、操作者が車両Vの位置や動きを確認しやすい。
 本実施形態では、駐車経路RTに含まれる切り返し位置において、車両Vの少なくとも一部が第1領域VAに存在するように駐車経路RTを算出する。
 図14のステップ201において、制御装置10は、駐車経路RTに含まれる切り返し位置において、車両Vが第2領域内であるか否かを判断する。切り返し位置は、車両Vが最も操作者から離隔し、観察しにくい位置である可能性が高い。切り返し位置では方向転換が行われるので、操作者は最も注意を払う傾向がある。
 制御装置10は、切り返し位置において、操作者が車両Vを観察しやすい駐車経路RTを算出する。ステップ202において、制御装置10は、切り返し位置において、車両の少なくとも一部が第1領域VAに存在するように、切り返し位置を設定する。ステップ203において、その切り返し位置を含む経路を算出する。
 図15Aに示す例では、切り返し位置における車両V2のほとんどが第2領域BAに含まれている。このような場合であっても車両Vの少なくとも一部である左側リア部V21が第1領域VAに属するような駐車経路RTを算出する。車両Vの少なくとも一部が観察可能な第1領域VAに存在することによって、操作者は、車両Vの位置を予測しながら駐車操作をすることができる。車両Vが全く見えない場合には、車両Vの位置を予測することすらできないため、駐車操作の継続が困難になるが、本手法によれば駐車操作が実行できる可能性を確保できる。
 もちろん、図15Bに示すように、車両の全部が第1領域VAに属するように、つまり、車両Vの一部が第2領域BAに含まれないように駐車経路RTを算出してもよい。
 制御装置10は、車両Vの特定部位が第1領域VAに存在するように駐車経路RTを算出する。制御装置10は、図15Cに示すように、接触の可能性が高いサイドミラー部が第1領域VAに属するように駐車経路RTを算出する。特定部位は、車両Vの外形において、障害物と接近する可能性が高い、外側に出っ張っている部分とすることができる。先述したサイドミラー部、車両のリア部に設けられた自転車のハンガー、スペアタイヤのホルダなどを特定部位とすることができる。これにより、操作者は、注意を払う特定部位を観察しながらリモート操作で駐車できる。
 制御装置10は、第1領域VAに含まれる車両Vの特定部位を駐車態様に応じて予め定義してもよい。図15Dに示すように、制御装置10は、後退して前向き駐車をする際には左右のリア部(コーナー部)を特定部位として定義する。右旋回が行われる場合には、右側のフロント部、ミラー部又は右側のリア部を特定部位として定義できる。左旋回が行われる場合には、左側のフロント部、ミラー部又は左側のリア部を特定部位として定義できる。つまり、前進駐車で右旋回の場合には、右側のミラー部を特定部位とすることができる。制御装置10は後退駐車をする際には左右リア部が第1領域VAに属するように駐車経路RTを算出する。これにより、操作者は、駐車態様に応じて注意を払う特定部位を観察しながらリモート操作で駐車できる。
 制御装置10は、車両Vとその周囲において検出された障害物との距離が所定値未満である場合に、車両Vの少なくとも一部が第1領域に存在するように駐車経路を算出する。図15Eに示すように、制御装置10は、仮に算出した駐車経路RT上を車両Vが移動した場合に、障害物としての駐車場の壁Wと車両Vとの距離が所定値未満になると判断したときには、車両Vの少なくとも一部である右側リア部V21が第1領域VAに属するように駐車経路RTを算出する。制御装置10は、車両Vのうち障害物との距離が最も近くなる部位を第1領域VAに属するように駐車経路RTを算出してもよい。本例では、車両Vが最も接近する障害物は駐車場の壁Wであるから、壁Wに最も接近する車両の右側リア部V21が第1領域VAに属するように駐車経路RTを算出する。これにより、操作者は、車両Vと障害物との位置関係に応じて注意を払うべき部位を観察しながらリモート操作で駐車できる。
 車両Vと障害物とが接近する場合には、第1領域VA内に車両Vの一部が存在するように駐車経路RT(駐車時における占有領域)を設定することにより、車両Vの位置を観察可能とすることで、車両Vと障害物が接近することを許容することができる。障害物との接近を理由に駐車経路RTが算出不能となることを抑制し、車両Vの駐車制御処理が実行される可能性を向上させる。
 制御装置10は、駐車経路の一部が第2領域に属する場合には、駐車経路の一部が第1領域となるように駐車経路RTを設定する。この場合に、第2領域BAに属する駐車経路RT2を走行する際の第2目標速度は、第1領域VAに属する駐車経路RT1における第1目標速度よりも低く設定される。
 図16に示すように、ステップ301において、駐車経路が第2領域BAに属すると判断された場合には、ステップ302に進み、駐車経路を第1領域VA内に設定できるか否かをさらに判断する。駐車経路の全部を第1領域VAに設定できるのであれば、ステップ303において駐車経路を算出する。駐車経路の一部が第2領域BAに属してしまう場合には、第2領域に属する駐車経路の目標速度を相対的に低く変更する。
 図17に示すように、駐車経路の一部が第2領域BAに属し、他の一部が第1領域VAに属する場合には、第2領域BAに属する駐車経路RT2(実線で示す)を走行する際の車両Vの目標速度は、第1領域VAに属する駐車経路RT1(破線で示す)を走行する際の車両Vの目標速度よりも低い。視認により観察できない第2領域BAにおいては、車両Vの速度を低下させるので、操作者は車両Vの動きを注意深く観察できる。
 制御装置10は、観察位置を基準とした車両Vの方向と、駐車経路RTの少なくとも一部の方向との角度が所定角度未満である場合には、切り返し位置TPを変更することにより、駐車経路RTの方向を変更する。切り返し位置を下流側(進行方向側)にシフトすることにより、駐車経路RTの方向を変更する。
 図18に示すように、ステップ401において、観察位置を基準とした車両Vの方向と、駐車経路RTの少なくとも一部の方向との角度が所定角度未満であるか否かを判断する。そうであればステップ402に進み、切り返し位置TPを変更できるか否かを判断する。切り返し位置を変更できる場合には、ステップ403に進み、変更後の切り返し位置に基づく駐車経路を算出する。他の障害物に干渉するなどの理由により、切り返し位置の変更ができない場合には、ステップ404に進み、観察位置(操作者M又は操作端末5)と車両Vとを結ぶ方向と所定角度未満の駐車経路の目標速度を低くする。
 図19Aは観察位置を基準とした車両Vの方向と、駐車経路RTの少なくとも一部の方向との角度が所定角度未満である場合を示す。図19Aに示すように、このような場合は、制御対象となる車両Vにより第2領域BA(死角)が形成される。制御装置10は切り返し位置TP1を、進行方向の下流側、図中では壁Wにより形成される凹部の奥側の切り返し位置TP2にシフトする。このようにすることで駐車経路RTの角度を変更することができる。図19Bに示す観察位置を基準とした車両Vの方向と、駐車経路RT2の方向との角度は、図19Aのそれよりも相対的に大きいので、車両Vにより第2領域BAが生じる時間は短くなり、第2領域BAの面積も小さくなる。
 切り返し位置を変更することにより、車両Vの移動方向と、操作者の視線方向とをずらすことができるので、制御対象となる車両Vによって第2領域BAが生じることを防止できる。
 制御装置10は、観察位置を基準とした車両Vの方向と、駐車経路RTの少なくとも一部の方向との角度が所定角度未満である場合には、駐車経路RTの角度・曲率を変更することにより、駐車経路RTの方向を変更する
 図20に示すように、ステップ501において、観察位置を基準とした車両Vの方向と、駐車経路RTの少なくとも一部の方向との角度が所定角度未満であるか否かを判断する。そうであればステップ502に進み、駐車経路RTの方向を変更できるか否かを判断する。駐車経路RTの方向を変更できる場合には、ステップ503に進み、変更後の角度・曲率に基づく駐車経路RTを算出する。新たな駐車経路RTが算出された場合でも、観察位置を基準とした車両Vの方向と、駐車経路RTの少なくとも一部の方向との角度が所定角度未満である部分が残ることがある。その場合は、ステップ504に進み、操作者Mと車両Vとを結ぶ方向と所定角度未満の駐車経路の目標速度を低くする。また、ステップ502において、他の障害物に干渉するなどの理由により、駐車経路の角度・曲率の変更ができない場合には、ステップ504に進み、操作者Mと車両Vとを結ぶ方向と所定角度未満の駐車経路の目標速度を低くする。
 図21Aは観察位置を基準とした車両Vの方向と、駐車経路RTの少なくとも一部の方向との角度が所定角度未満である領域Q1が存在する場合を示す。先述したとおり、このような場合は、制御対象となる車両Vにより第2領域BA(死角)が形成される。図21Bに示すように、駐車経路RT2の曲率を変更することにより、観察位置を基準とした車両Vの方向と、駐車経路RT2の方向との角度は大きくなるので、車両Vにより第2領域BAが生じる時間(図21Aに示す領域Q1を通過する時間)は短くなる。
 駐車経路RTの角度・曲率を変更することにより、車両Vの移動方向と、操作者の視線方向とをずらすことができるので、制御対象となる車両Vによって第2領域BAが生じることを防止できる。
 また、図20のステップ504では、観察位置と車両Vとを結ぶ方向と所定角度未満の駐車経路RTの目標速度を低くする。これにより、車両Vによって生成される第2領域に含まれる駐車経路RTの目標速度を低くできる。図21Cに示すように、第2領域BAに含まれる駐車経路RT3の目標速度を低くできる。もちろん、駐車経路RTを更新できなかった場合(ステップ502でNo)の場合にも同様の処理がなされる。視認により観察できない第2領域BAにおいては、車両Vの速度を低下させるので、操作者は車両Vの動きを注意深く観察できる。
 制御装置10は、操作者Mの位置に基づいて設定された第1観察位置から観察不能な第2領域の面積よりも、第1観察位置とは異なる第2観察位置から観察不能な第2領域の面積が小さい場合には、第2観察位置を操作端末5に送出する。
 操作者Mの位置を移動させるために、新たな第2操作位置を示すことにより、操作者Mに移動を促す。または、操作端末5を介して操作者Mに観察位置を変更する命令を与えても良い。
 図22のステップ601において、制御装置10は、第1観察位置において算出された第2領域の面積が第2観察位置において算出された第2領域の面積よりも大きい場合には、ステップ602に進み、観察位置を変更する。図23Aに示す第1観察位置51に基づいて算出される、操作者Mから障害物(壁W)によって視認できない第2領域BAの面積よりも、図23Bに示す第2観察位置51´に基づいて算出される、操作者Mから障害物(壁W)によって視認できない第2領域BA´の面積のほうが小さい。このような場合には、観察位置の基準となる操作者Mの位置を変更させる。操作端末5は操作者Mに携帯されるので、操作端末5を介して操作者Mに移動を要請する情報を提供する。例えば、図23Cに示すように、新たな第2操作位置を示すことにより、操作者Mに移動を促す。これにより、観察不能な第2領域を小さくすることができ、操作者Mが把握しやすい駐車経路により車両Vを駐車させることができる。
 ステップ108において、制御装置10は、算出した駐車経路の上を車両Vに移動させるための制御命令を生成する。制御命令に必要な車両の諸元情報は、予め制御装置10が記憶する。制御命令は、車両が駐車経路を走行する際における、タイミング又は位置に対応づけられた車両の操舵量、操舵速度、操舵加速度、シフトポジション、速度(ゼロを含む)、加速度、減速度その他の動作命令を含む。この駐車経路及び駐車経路に対応づけられた動作命令が車両によって実行されることにより、目標駐車スペースに車両を移動させる(駐車させる)ことができる。
 図5に戻り、ステップ109以降の処理を説明する。本実施形態の駐車制御装置100は、車両V1に搭乗することなく、外部から車両V1に目標駐車スペースの設定指令、駐車制御処理の開始指令、駐車中断・中止指令などを送信して駐車を行うリモートコントロールによる駐車制御処理を実行する。ステップ109において、制御装置10は、操作端末5のディスプレイ53に駐車経路を提示する。ステップ110において、操作者が駐車経路を確認し、実行命令が入力された場合には、ステップ111に進む。操作端末5は操作者の実行命令を車両Vの駐車制御装置100へ送出する。車両Vの駐車制御装置100は、駐車制御を開始する。
 ステップ112において、制御装置10は、第1領域(及び/又は第2領域)を周期的に算出する。観察位置からの視認可能な第1領域と視認不可能な第2領域は、障害物の位置、車両Vの位置の変化に応じて変化する。制御装置10は、状況の変化に対応するために、第1領域(又は第2領域)を所定周期で算出する。ステップ113において、制御装置10は、第1領域又は第2領域に変化があるか否かを判断する。変化があれば、駐車経路(切り返し位置を含む)の位置と第2領域との位置関係にも変化があるので、駐車経路を再度算出する。新たに適切な駐車経路が算出できた場合には、新たな駐車経路を採用する。制御装置10は新たな駐車経路について制御命令を算出する。ステップ113において、制御装置10は、ステップ108で算出した駐車経路及び制御命令を、時間の経過に伴い変化した第1領域又は第2領域に応じた新たな駐車経路及び制御命令に更新する。ステップ113において第1領域又は第2領域に変化がなければ、新たな駐車経路及び制御命令を算出する必要はないのでステップ115へ進む。
 ステップ115において、制御装置10は、車両Vが切り返し位置に到達するまで、第1領域及び第2領域の変化を監視する。車両が切り返し位置に到達したら、ステップ116において、制御命令に含まれるシフトチェンジを実行する。その後、ステップ117において制御命令を継続的に実行することで駐車制御を完了させる。
 本実施形態の駐車制御装置100は、車両V1が駐車経路に沿って移動するように、制御命令に従い、車両コントローラ70を介して駆動システム40の動作を制御する。駐車制御装置100は、計算された駐車経路に車両V1の走行軌跡が一致するように操舵装置が備える操舵角センサ50の出力値をフィードバックしながらEPSモータなどの車両V1の駆動システム40への指令信号を演算し、この指令信号を駆動システム40又は駆動システム40を制御する車両コントローラ70へ送出する。
 本実施形態の駐車制御装置100は、駐車制御コントロールユニットを備える。駐車制御コントロールユニットは、AT/CVTコントロールユニットからのシフトレンジ情報、ABSコントロールユニットからの車輪速情報、舵角コントロールユニットからの舵角情報、ECMからのエンジン回転数情報等を取得する。駐車制御コントロールユニットは、これらに基づいて、EPSコントロールユニットへの自動操舵に関する指示情報、メータコントロールユニットへの警告等の指示情報等を演算し、出力する。制御装置10は、車両V1の操舵装置が備える操舵角センサ50、車速センサ60その他の車両が備えるセンサが取得した各情報を、車両コントローラ70を介して取得する。
 本実施形態の駆動システム40は、駐車制御装置100から取得した制御指令信号に基づく駆動により、車両V1を現在位置から目標駐車スペースに移動(走行)させる。本実施形態の操舵装置は、車両Vの左右方向への移動を行う駆動機構である。駆動システム40に含まれるEPSモータは、駐車制御装置100から取得した制御指令信号に基づいて操舵装置のステアリングが備えるパワーステアリング機構を駆動して操舵量を制御し、車両V1を目標駐車スペースMoへ移動する際の操作を制御する。なお、駐車をさせるための車両V1の制御内容及び動作手法は特に限定されず、出願時において知られた手法を適宜に適用できる。
 本実施形態における駐車制御装置100は、車両V1の位置P4と目標駐車スペースMoの位置とに基づいて算出された経路に沿って、車両V1を目標駐車スペースへ移動させる際に、アクセル・ブレーキが指定された制御車速(設定車速)に基づいて自動的に制御されるとともに、ステアリング装置の操作が車速に応じて自動で車両の動きを制御する。
 本発明の実施形態の駐車制御方法は、以上のように駐車制御装置において使用されるので、以下の効果を奏する。本実施形態の駐車制御装置100は、以上のように構成され動作するので、以下の効果を奏する。
 [1]本実施形態の駐車制御方法は、障害物の位置と操作者の位置との位置関係に基づいて操作者から観察可能な第1領域と、観察位置から観察不能な第2領域と算出し、第1領域における車両の障害物に対する第1接近度が、第2領域における車両の障害物に対する第2接近度よりも高くなるように駐車経路および駐車経路を移動させる制御命令を算出する。
 本実施形態では、操作者の観察位置から観察可能な第1領域における第1接近度を、操作者の観察位置から観察不能な第2領域における第2接近度よりも高く設定する。操作者Mが観察可能である領域内においては、観察不能である領域内よりも車両と障害物が接近することを許容する。これにより、操作者Mの観察状況に応じて車両と障害物との接近度を調整することができる。
 操作者が観察可能な第1領域においては、車両と障害物とを第2領域よりも接近させて移動させるので、障害物が存在する場合であっても、障害物が存在したとしても駐車制御の継続が可能となる。状況によっては、車両と障害物が接近することを許容するので、障害物が存在することを理由に一律に駐車制御処理が中断されることがない。本駐車制御方法によれば、第1領域において適用される第1接近度を、第2領域において適用される第2接近度よりも相対的に高い値に変更するので、駐車制御処理が続行される場面を増やして、快適さや使いやすさと安全性とを両立させることができる。
 [2]本実施形態の駐車制御方法では、第1接近度は、障害物に対して車両が接近する第1余裕距離とし、第2接近度は、障害物に対して車両が接近する第2余裕距離とする。第1余裕距離が第2余裕距離よりも短くなるように駐車経路を算出するので、第1領域VA内では車両Vと障害物とが接近することを許容して、駐車制御処理を続行させることができる。
 [3]本実施形態の駐車制御方法では、第1接近度は、第1領域に属する第1切り返し位置と障害物との第1切り返し距離とし、第2接近度は、第2領域に属する第2切り返し位置と障害物との第2切り返し距離とする。第1切り返し距離が第2切り返し距離よりも短くなるように駐車経路を算出するので、第1領域VA内では第1切り返し位置と障害物とが相対的に接近することを許容して、駐車制御処理を続行させることができる。
 [4]本実施形態の駐車制御方法では、第1接近度は、障害物から駐車経路までの第1離隔距離とし、第2接近度は、障害物から駐車経路までの第2離隔距離とする。第1離隔距離が第2離隔距離よりも短くなるように駐車経路を算出する。
 駐車経路を算出する際には、駐車経路上の各地点が障害物RTから所定距離だけ離れていることが条件となる。駐車経路が第1領域内に存在する場合の第1離隔距離は、駐車経路が第2領域内に存在する場合の第2離隔距離よりも短く設定される。これにより、第1領域VA内では第2領域BAよりも、駐車経路と障害物とが接近することを許容して、駐車制御処理を続行させることができる。
 [5]本実施形態の駐車制御方法では、第1接近度は、障害物に接近する際に減速を開始する第1減速開始タイミングとし、第2接近度は、障害物に接近する際に減速を開始する第2減速開始タイミングとする。第1減速開始タイミングが第2減速開始タイミングよりも遅いタイミングとなるように制御命令を生成する。第1減速開始タイミングを第2減速開始タイミングよりも遅くすることにより、第1領域の通過時間を短縮できる。その結果、駐車開始から駐車完了までに要する時間を短くすることができる。
 [6]本実施形態の駐車制御方法では、第1接近度は、障害物から第1領域内の第1減速完了ポイントまでの第1減速完了距離とし、第2接近度は、障害物から第2領域内の第2減速完了ポイントまでの第2減速完了距離とする。第1減速完了距離が第2減速完了距離よりも短くなるように制御命令を生成する。第1減速完了距離を第2減速完了距離よりも短くすることにより、障害物にできるだけ接近することにより、駐車制御における車両の移動を続行できる。
 [7]本実施形態の駐車制御方法では、第1接近度は、障害物に接近する際の第1減速度とし、第2接近度は、障害物に接近する際の第2減速度とする。第1減速度が第2減速度よりも高くなるように制御命令を生成する。第1減速度を第2減速度よりも高くすることにより、第1領域の通過時間を短縮できる。その結果、駐車開始から駐車完了までに要する時間を短くすることができる。
 [8]本実施形態の駐車制御方法における制御命令は第1領域に属する車両と操作者との第1相対速度制限値と、第2領域に属する車両と操作者との第2相対速度制限値とを含み、第1相対速度制限値が第2相対速度制限値よりも高くなるように、制御命令を生成する。第1相対速度制限値を第2相対速度制限値よりも高くすることにより、第1領域の通過時間を短縮できる。その結果、駐車開始から駐車完了までに要する時間を短くすることができる。
 [9]本実施形態の駐車制御方法によれば、車両の駐車経路RTの少なくとも一部において、車両Vの少なくとも一部が第1領域VAに存在するように駐車経路RTを算出する。制御装置10は、車両Vが駐車経路RTを移動している間の少なくとも一時的に、観察位置から車両Vの一部が見えるように駐車経路RTを算出する。これにより、駐車制御処理中に操作者が車両Vの存在及び位置を確認することができる。駐車制御処理中に操作者が車両Vの存在及び位置を確認できない駐車経路RTが算出されることがない。
 [10]本実施形態の方法によれば、駐車経路RTに含まれる切り返し位置において、車両Vの少なくとも一部が第1領域VAに存在するように駐車経路RTを算出する。予め設定された規則に基づいて算出された駐車経路RTにおいて、切り返し位置が第2領域(死角)に属する場合であっても、車両Vの少なくとも一部である左側リア部V21が第1領域VAに属するような駐車経路RTを算出する。車両Vの少なくとも一部が観察可能な第1領域VAに存在することによって、操作者は、車両Vの位置を予測しながら駐車操作をすることができる。車両Vが全く見えない場合には、車両Vの位置を予測することすらできないため、駐車操作の継続が困難になるが、本手法によれば駐車操作が実行できる可能性を確保できる。
 [11]本実施形態の方法によれば、車両Vの特定部位が第1領域VAに存在するように駐車経路RTを算出する。制御装置10は、接触に注意が払われる特定部位(例えば、サイドミラー部)が第1領域VAに属するように駐車経路RTを算出する。これにより、操作者は、注意を払う特定部位を観察しながらリモート操作で駐車できる。
 [12]本実施形態の方法によれば、第1領域VAに含まれる車両Vの特定部位を駐車態様に応じて予め定義してもよい。例えば、後退駐車をする際には左右のリア部(コーナー部)を特定部位として定義する。制御装置10は後退駐車をする際には左右リア部が第1領域VAに属するように駐車経路RTを算出する。これにより、操作者は、駐車態様に応じて注意を払う特定部位を観察しながらリモート操作で駐車できる。
 [13]本実施形態の方法によれば、車両Vとその周囲において検出された障害物との距離が所定値未満である場合に、車両Vの少なくとも一部が第1領域に存在するように駐車経路を算出する。これにより、操作者は、車両Vと障害物との位置関係に応じて注意を払うべき部位を観察しながらリモート操作で駐車できる。
 [14]本実施形態の方法によれば、操作者の位置を基準とした車両Vの方向と、駐車経路RTの少なくとも一部の方向との角度が所定角度未満である場合には、駐車経路RTを変更する。切り返し位置の変更又は駐車経路RTの傾きや曲率を変更することにより、車両Vの移動方向と、操作者の視線方向とをずらすことができるので、制御対象となる車両Vによって第2領域BAが生じることを防止できる。
 [15]本実施形態の駐車制御方法によれば、駐車経路RTの少なくとも一部が第2領域BA(ブラインドエリア)に属する場合に、車両Vの少なくとも一部が第1領域VAに存在するように駐車経路RTを算出する。駐車経路RTの少なくとも一部が第2領域BAに属する場合に、駐車経路RTを補正するので、操作者が観察しやすい駐車経路RTで駐車制御処理を実行できる。リモート操作で駐車する際に、操作者が車両Vの位置や動きを確認しやすい。車両Vの少なくとも一部である左側リア部V21が第1領域VAに属するような駐車経路RTを算出する。車両Vの少なくとも一部が観察可能な第1領域VAに存在することによって、操作者は、車両Vの位置を予測しながら駐車操作をすることができる。車両Vが全く見えない場合には、車両Vの位置を予測することすらできないため、駐車操作の継続が困難になるが、本手法によれば駐車操作が実行できる可能性を確保できる。
 [16]本実施形態の方法によれば、駐車経路の一部が第2領域BAに属し、他の一部が第1領域BAに属する場合には、第2領域BAに属する駐車経路RT2(実線で示す)を走行する際の車両Vの目標速度は、第1領域VAに属する駐車経路RT1(破線で示す)を走行する際の車両Vの目標速度よりも低い。視認により観察できない第2領域BAにおいては、車両Vの速度を低下させるので、操作者は車両Vの動きを注意深く観察できる。
 [17]本実施形態の方法によれば、操作者Mの位置に基づいて設定された第1観察位置から観察不能な第2領域の面積よりも、第1観察位置とは異なる第2観察位置から観察不能な第2領域の面積が小さい場合には、第2観察位置を操作端末5に送出する。観察不能な死角である第2領域を小さくすることができ、操作者が把握しやすい駐車経路により車両Vを駐車させることができる。
 [18]本実施形態の方法が実行される駐車制御装置100においても、上記1から17に記載した作用及び効果を奏する。
 なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
1000…駐車制御システム
100…駐車制御装置
 10…制御装置
  11…CPU
  12…ROM
  13…RAM
   132…記憶装置
   133…地図情報
   134…駐車場情報
   135…障害物情報
 20…入力装置
  21…通信装置
   211…アンテナ
 30…出力装置
  31…ディスプレイ
1a~1d…カメラ
2…測距装置
3…情報サーバ
 31…通信装置
 32…記憶装置
 33…地図情報
 34…駐車場情報
 35…障害物情報
5…操作端末
 51…通信装置
  511…アンテナ
 52…入力装置
 53…ディスプレイ
200…車載装置
 40…駆動システム
 50…操舵角センサ
 60…車速センサ
 70…車両コントローラ
 V…車両
 VA…第1領域
 BA…第2領域

Claims (18)

  1.  車両の外の操作者から取得した操作指令に基づいて前記車両を駐車させる駐車制御方法であって、
     前記操作者の位置を検出し、
     前記車両の周囲に存在する障害物の位置を検出し、
     前記障害物の位置と前記操作者の位置との位置関係に基づいて、前記操作者から観察可能な第1領域と、前記第1領域以外の領域であって前記操作者から観察不能な第2領域とを算出し、
     前記第1領域における前記車両の前記障害物に対する第1接近度が、前記第2領域における前記車両の前記障害物に対する第2接近度よりも高くなるように、駐車経路および前記駐車経路を移動させる制御命令を算出し、
     前記制御命令に従って、前記車両を駐車させる駐車制御方法。
  2.  前記第1接近度は、前記障害物に対して前記車両が接近する第1余裕距離であり、
     前記第2接近度は、前記障害物に対して前記車両が接近する第2余裕距離であり、
     前記第1余裕距離は前記第2余裕距離よりも短くなるように前記駐車経路を算出する請求項1に記載の駐車制御方法。
  3.  算出される前記駐車経路は切り返し位置を含み、
     前記第1接近度は、前記第1領域に属する第1切り返し位置と前記障害物との第1切り返し距離であり、
     前記第2接近度は、前記第2領域に属する第2切り返し位置と前記障害物との第2切り返し距離であり、
     前記第1切り返し距離は前記第2切り返し距離よりも短くなるように前記駐車経路を算出する請求項1又は2に記載の駐車制御方法。
  4.  前記第1接近度は、前記障害物から前記駐車経路までの第1離隔距離であり、
     前記第2接近度は、前記障害物から前記駐車経路までの第2離隔距離であり、
     前記第1離隔距離が前記第2離隔距離よりも短くなるように前記駐車経路を算出する請求項1~3の何れか一項に記載の駐車制御方法。
  5.  前記制御命令は減速制御を開始する減速開始タイミングを含み、
     前記第1接近度は、前記障害物に接近する際に減速を開始する第1減速開始タイミングであり、
     前記第2接近度は、前記障害物に接近する際に減速を開始する第2減速開始タイミングであり、
     前記第1減速開始タイミングは前記第2減速開始タイミングよりも遅いタイミングとなるように前記制御命令を生成する請求項1~4の何れか一項に記載の駐車制御方法。
  6.  前記制御命令は減速制御を完了する減速完了ポイントと前記障害物の間の減速完了距離を含み、
     前記第1接近度は、前記障害物から前記第1領域内の第1減速完了ポイントまでの第1減速完了距離であり、
     前記第2接近度は、前記障害物から前記第2領域内の第2減速完了ポイントまでの第2減速完了距離であり、
     前記第1減速完了距離は前記第2減速完了距離よりも短くなるように前記制御命令を生成する請求項1~5の何れか一項に記載の駐車制御方法。
  7.  前記制御命令は減速度を含み、
     前記第1接近度は、前記障害物に接近する際の第1減速度であり、
     前記第2接近度は、前記障害物に接近する際の第2減速度であり、
     前記第1減速度は、前記第2減速度よりも高くなるように前記制御命令を生成する請求項1~6の何れか一項に記載の駐車制御方法。
  8.  前記制御命令は、前記操作者に対する前記車両の相対速度制限値を含み、
     前記相対速度制限値は、前記第1領域に属する前記車両と前記操作者との第1相対速度制限値を含み、
     前記相対速度制限値は、前記第2領域に属する前記車両と前記操作者との第2相対速度制限値を含み、
     前記第1相対速度制限値は前記第2相対速度制限値よりも高い前記制御命令を生成する請求項1~7の何れか一項に記載の駐車制御方法。
  9.  前記車両の前記駐車経路の少なくとも一部において、前記車両の少なくとも一部が前記第1領域に存在するように前記駐車経路を算出する請求項1~8の何れか一項に記載の駐車制御方法。
  10.  前記駐車経路に含まれる切り返し位置において、前記車両の少なくとも一部が前記第1領域に存在するように前記駐車経路を算出する請求項9に記載の駐車制御方法。
  11.  前記車両の特定部位が前記第1領域に存在するように前記駐車経路を算出する請求項9又は10に記載の駐車制御方法。
  12.  前記特定部位は、前記車両の駐車態様に応じて予め設定される請求項11に記載の駐車制御方法。
  13.  前記車両と前記障害物との距離が所定値未満である場合に、前記車両の少なくとも一部が前記第1領域に存在するように前記駐車経路を算出する請求項9~12の何れか一項に記載の駐車制御方法。
  14.  前記操作者の位置を基準とした前記車両の方向と、前記駐車経路の少なくとも一部の方向との角度が所定角度未満である場合には、前記駐車経路を変更する請求項9~13の何れか一項に記載の駐車制御方法。
  15.  前記第1領域以外の領域であって、前記操作者のから観察不能な前記第2領域を算出し、
     前記車両の前記駐車経路の少なくとも一部が前記第2領域に属する場合に、前記車両の少なくとも一部が前記第1領域に存在するように前記駐車経路を算出する請求項9~14の何れか一項に記載の駐車制御方法。
  16.  前記第2領域に属する前記駐車経路における第2目標速度は、前記第1領域に属する前記駐車経路における第1目標速度よりも低く設定される請求項15に記載の駐車制御方法。
  17.  前記操作者の位置に基づいて設定された第1観察位置から観察不能な前記第2領域の面積よりも、前記第1観察位置とは異なる第2観察位置から観察不能な前記第2領域の面積が小さい場合には、前記第2観察位置を前記操作者が所持する操作端末に送出する請求項15又は16に記載の駐車制御方法。
  18.  車両の外の操作者から取得した操作指令に基づいて前記車両を駐車させる制御命令を実行させる制御装置を備える駐車制御装置であって、
     前記制御装置は、
     前記操作者の位置を検出し、
     前記車両の周囲に存在する障害物の位置を検出し、
     前記障害物の位置と前記操作者の位置との位置関係に基づいて、前記操作者から観察可能な第1領域と、前記第1領域以外の領域であって、前記操作者から観察不能な第2領域と算出し、
     前記第1領域における前記車両の前記障害物に対する第1接近度が、前記第2領域における前記車両の前記障害物に対する第2接近度よりも高くなるように、駐車経路及び前記駐車経路を移動させる制御命令を算出し、
     前記制御命令に従って、前記車両を駐車させる駐車制御装置。
PCT/JP2017/019630 2017-05-25 2017-05-25 駐車制御方法及び駐車制御装置 WO2018216184A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CN201780090726.0A CN110621550B (zh) 2017-05-25 2017-05-25 泊车控制方法以及泊车控制装置
EP17911131.5A EP3632750B1 (en) 2017-05-25 2017-05-25 Parking control method and parking control apparatus
JP2019519916A JP6773221B2 (ja) 2017-05-25 2017-05-25 駐車制御方法及び駐車制御装置
US16/615,624 US10773714B2 (en) 2017-05-25 2017-05-25 Parking control method and parking control apparatus
MX2019013511A MX2019013511A (es) 2017-05-25 2017-05-25 Metodo de control de estacionamiento y aparato de control de estacionamiento.
BR112019024686-0A BR112019024686B1 (pt) 2017-05-25 2017-05-25 Método de controle de estacionamento e aparelho de controle de estacionamento
CA3064523A CA3064523C (en) 2017-05-25 2017-05-25 Parking control method and parking control apparatus
KR1020197033261A KR102170988B1 (ko) 2017-05-25 2017-05-25 주차 제어 방법 및 주차 제어 장치
RU2019143447A RU2736520C1 (ru) 2017-05-25 2017-05-25 Способ управления парковкой и аппаратура управления парковкой
PCT/JP2017/019630 WO2018216184A1 (ja) 2017-05-25 2017-05-25 駐車制御方法及び駐車制御装置
MYPI2019006616A MY196832A (en) 2017-05-25 2017-05-25 Parking control method and parking control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/019630 WO2018216184A1 (ja) 2017-05-25 2017-05-25 駐車制御方法及び駐車制御装置

Publications (1)

Publication Number Publication Date
WO2018216184A1 true WO2018216184A1 (ja) 2018-11-29

Family

ID=64396565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019630 WO2018216184A1 (ja) 2017-05-25 2017-05-25 駐車制御方法及び駐車制御装置

Country Status (11)

Country Link
US (1) US10773714B2 (ja)
EP (1) EP3632750B1 (ja)
JP (1) JP6773221B2 (ja)
KR (1) KR102170988B1 (ja)
CN (1) CN110621550B (ja)
BR (1) BR112019024686B1 (ja)
CA (1) CA3064523C (ja)
MX (1) MX2019013511A (ja)
MY (1) MY196832A (ja)
RU (1) RU2736520C1 (ja)
WO (1) WO2018216184A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2736960C1 (ru) * 2017-08-10 2020-11-23 Ниссан Мотор Ко., Лтд. Способ управления парковкой и устройство управления парковкой
KR102077573B1 (ko) * 2018-01-31 2020-02-17 엘지전자 주식회사 자동 주차 시스템 및 차량
US10967851B2 (en) * 2018-09-24 2021-04-06 Ford Global Technologies, Llc Vehicle system and method for setting variable virtual boundary
JP7100604B2 (ja) * 2019-03-29 2022-07-13 本田技研工業株式会社 車両制御システム
US11312369B2 (en) * 2019-08-09 2022-04-26 Hyundai Motor Company Apparatus for controlling parking of a vehicle, system having the same and method for the same
US11904840B2 (en) * 2019-10-11 2024-02-20 Aisin Corporation Parking assistance device, parking assistance method, and parking assistance program
CN111959497A (zh) * 2020-06-29 2020-11-20 北京百度网讯科技有限公司 自动泊车方法和装置、电子设备、存储介质
CN112158197B (zh) * 2020-08-21 2021-08-27 恒大新能源汽车投资控股集团有限公司 一种车辆盲区障碍物规避方法、装置及系统
MX2022008716A (es) * 2021-07-20 2023-01-23 Polaris Inc Control de vehiculo automatico.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074296A (ja) 2006-09-22 2008-04-03 Denso Corp 駐車支援機能付き車両
JP2008174192A (ja) * 2007-01-22 2008-07-31 Aisin Aw Co Ltd 駐車支援方法及び駐車支援装置
JP2010018167A (ja) * 2008-07-10 2010-01-28 Toyota Motor Corp 駐車支援装置
JP2017030481A (ja) * 2015-07-31 2017-02-09 アイシン精機株式会社 駐車支援装置
WO2017057060A1 (ja) * 2015-09-30 2017-04-06 ソニー株式会社 運転制御装置、および運転制御方法、並びにプログラム
WO2017068698A1 (ja) * 2015-10-22 2017-04-27 日産自動車株式会社 駐車支援方法及び駐車支援装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295033A (ja) * 2006-04-20 2007-11-08 Toyota Motor Corp 遠隔操作制御装置およびその操作端末
KR101593113B1 (ko) * 2014-09-22 2016-02-11 주식회사 케이티 조향 보조 시스템 및 이를 위한 휴대용 통신 단말
CN104442554A (zh) * 2014-10-24 2015-03-25 中国人民解放军理工大学 一种汽车盲区检测及安全行驶方法与系统
JP6517561B2 (ja) 2015-03-27 2019-05-22 クラリオン株式会社 車両制御装置
CN106553645B (zh) * 2016-11-30 2018-11-20 浙江吉利控股集团有限公司 自动泊车控制系统及基于该系统的控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074296A (ja) 2006-09-22 2008-04-03 Denso Corp 駐車支援機能付き車両
JP2008174192A (ja) * 2007-01-22 2008-07-31 Aisin Aw Co Ltd 駐車支援方法及び駐車支援装置
JP2010018167A (ja) * 2008-07-10 2010-01-28 Toyota Motor Corp 駐車支援装置
JP2017030481A (ja) * 2015-07-31 2017-02-09 アイシン精機株式会社 駐車支援装置
WO2017057060A1 (ja) * 2015-09-30 2017-04-06 ソニー株式会社 運転制御装置、および運転制御方法、並びにプログラム
WO2017068698A1 (ja) * 2015-10-22 2017-04-27 日産自動車株式会社 駐車支援方法及び駐車支援装置

Also Published As

Publication number Publication date
EP3632750A4 (en) 2020-05-06
JPWO2018216184A1 (ja) 2020-03-19
CA3064523C (en) 2023-04-04
BR112019024686B1 (pt) 2023-03-28
CN110621550A (zh) 2019-12-27
RU2736520C1 (ru) 2020-11-17
MX2019013511A (es) 2020-02-13
MY196832A (en) 2023-05-03
CA3064523A1 (en) 2018-11-29
JP6773221B2 (ja) 2020-10-21
KR20190134772A (ko) 2019-12-04
CN110621550B (zh) 2020-11-13
US20200079361A1 (en) 2020-03-12
EP3632750A1 (en) 2020-04-08
KR102170988B1 (ko) 2020-10-28
EP3632750B1 (en) 2021-05-05
BR112019024686A2 (pt) 2020-06-09
US10773714B2 (en) 2020-09-15

Similar Documents

Publication Publication Date Title
JP6773221B2 (ja) 駐車制御方法及び駐車制御装置
JP6760499B2 (ja) 駐車制御方法及び駐車制御装置
JP6617773B2 (ja) 駐車支援方法及び駐車支援装置
JP6547836B2 (ja) 駐車支援方法及び駐車支援装置
JP6835219B2 (ja) 駐車制御方法及び駐車制御装置
WO2018066069A1 (ja) 駐車制御方法及び駐車制御装置
WO2017068695A1 (ja) 駐車支援方法及び駐車支援装置
JP6819790B2 (ja) 駐車制御方法及び駐車制御装置
US11046307B2 (en) Parking control method and parking control device
EP3730353B1 (en) Parking control method and parking control device
US11305756B2 (en) Parking control method and parking control apparatus
WO2019069430A1 (ja) 駐車制御方法及び駐車制御装置
JP6852564B2 (ja) 駐車制御方法及び駐車制御装置
JP6996228B2 (ja) 駐車制御方法及び駐車制御装置
JP7081149B2 (ja) 駐車制御方法及び駐車制御装置
WO2017068700A1 (ja) 駐車スペース検出方法および装置
JP2019018796A (ja) 駐車制御方法及び駐車制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911131

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019519916

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197033261

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3064523

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019024686

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017911131

Country of ref document: EP

Effective date: 20200102

ENP Entry into the national phase

Ref document number: 112019024686

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191122