WO2018212263A1 - フッ素系重合体含有光硬化性組成物 - Google Patents

フッ素系重合体含有光硬化性組成物 Download PDF

Info

Publication number
WO2018212263A1
WO2018212263A1 PCT/JP2018/019036 JP2018019036W WO2018212263A1 WO 2018212263 A1 WO2018212263 A1 WO 2018212263A1 JP 2018019036 W JP2018019036 W JP 2018019036W WO 2018212263 A1 WO2018212263 A1 WO 2018212263A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
group
acrylate
photocurable composition
functional group
Prior art date
Application number
PCT/JP2018/019036
Other languages
English (en)
French (fr)
Inventor
拓郎 田仲
安藤 達也
Original Assignee
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社 filed Critical Jnc株式会社
Priority to CN201880032036.4A priority Critical patent/CN110621711A/zh
Priority to JP2019518850A priority patent/JPWO2018212263A1/ja
Publication of WO2018212263A1 publication Critical patent/WO2018212263A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/12Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings

Definitions

  • the present invention relates to a fluoropolymer-containing photocurable composition. Furthermore, this invention relates to the cured film obtained from a fluoropolymer containing photocurable composition.
  • Patent Document 1 discloses a coating film made of a silicone-containing fluorine-based copolymer or a composition containing the same, and the number of Si atoms and F atom atoms present on the coating film surface measured by XPS. A coating film in which the number occupies a certain proportion has been proposed.
  • Patent Document 2 discloses a structural unit derived from fluorosilsesquioxane having one addition-polymerizable functional group in the molecule, a structural unit derived from organopolysiloxane having an addition-polymerizable functional group, and addition polymerization.
  • An addition copolymer comprising a monomer-derived constitutional unit and a constitutional unit having a group having a polymerizable unsaturated bond in the side chain as an essential component has excellent water and oil repellency, and surface modification. It is disclosed that it is useful as a quality agent.
  • Patent Document 3 discloses a polymerizable unsaturated monomer having a fluorinated alkyl group having 4 to 6 carbon atoms, a polymerizable unsaturated monomer having a silicone group, and a polymerization having a reactive functional group.
  • a polymer obtained by copolymerizing a polymerizable unsaturated monomer as an essential monomer component is reacted with a functional group having reactivity with the reactive functional group and a compound having a polymerizable unsaturated group.
  • an active energy ray-curable composition containing a fluorine-containing polymerizable resin comprising a polymer obtained by the above process.
  • JP 2006-167490 A International Publication No. 2008/072766 JP 2013-87213 A
  • the cured film obtained from the active energy ray-curable composition proposed in Patent Document 2 can have properties of repelling dirt caused by magic and the like and having good wiping properties.
  • coating materials for protecting the display.
  • the display of portable electronic devices such as smartphones and tablets, which are often used outdoors, has been increasing. It is required to protect from dirt and scratches at a high level for comfortable use.
  • optical members such as eyeglasses and sunglasses are becoming thinner and higher in performance, and there is a further demand for transparency and wear resistance of the protective material.
  • the present invention has high transparency that can be used for displays of portable electronic devices such as smartphones and tablets, optical members such as glasses and sunglasses, and wear resistance that can be sufficiently protected from dirt and scratches. It aims at providing the resin composition for coating with high property, and a coating material.
  • the present inventors can obtain a specific fluorine-based polymer (A) and a urethane (meth) acrylate (B) by combining them and curing a composition containing the same.
  • the present inventors have found that the cured film has excellent transparency and wear resistance and completed the present invention.
  • the fluorine-based polymer (A) is represented by the formula (1), the structural unit A-1 derived from fluorosilsesquioxane having one addition polymerizable functional group in the molecule, and the addition polymerizable unit
  • a photocurable composition which is a polymer comprising a structural unit A-2 having a group derived from a monomer and having a group having a polymerizable unsaturated bond in a side chain.
  • R f 1 to R f 7 are each independently a fluoroalkyl having 1 to 20 carbon atoms in which any methylene may be replaced by oxygen; at least one hydrogen is fluorine or trifluoromethyl) Substituted fluoroaryl having 6 to 20 carbon atoms; or a fluoroarylalkyl having 7 to 20 carbon atoms in which at least one hydrogen in the aryl is replaced by fluorine or trifluoromethyl, and A 1 is addition polymerizable Indicates a functional group.
  • R f 1 to R f 7 in formula (1) are each independently 3,3,3-trifluoropropyl, 3,3,4,4,4-pentafluorobutyl, 3,3,4 , 4,5,5,6,6,6-nonafluorohexyl, tridecafluoro-1,1,2,2-tetrahydrooctyl, heptadecafluoro-1,1,2,2-tetrahydrodecyl,
  • R f 1 to R f 7 in formula (1) are each independently 3,3,3-trifluoropropyl, 3,3,4,4,5,5,6,6,6-nona
  • the fluoropolymer (A) is a polymer further comprising a structural unit A-3 derived from an organopolysiloxane having an addition polymerizable functional group represented by the following formula (2): [1] -The photocurable composition in any one of [4].
  • n is an integer from 1 to 1,000;
  • R 1 and R 2 are each independently methyl, phenyl or 3,3,3-trifluoropropyl;
  • R 3 and R 4 are Each independently methyl or phenyl;
  • R 5 is methyl, ethyl, propyl, butyl, isobutyl, phenyl, 3,3,3-trifluoropropyl, 3,3,4,4,4-pentafluorobutyl, 3 , 3,4,4,5,5,6,6,6-nonafluorohexyl, tridecafluoro-1,1,2,2-tetrahydrooctyl, heptadecafluoro-1,1,2,2-tetrahydrodecyl Henicosafluoro-1,1,2,2-tetrahydrododecyl, pentacosafluoro-1,1,2,2-tetrahydrotetradecyl, (3-heptafluoroisopropoxy) propyl,
  • Curable composition [10] The photocurable composition according to [9], which contains 50% by weight to 98% by weight of urethane (meth) acrylate (B) with respect to 100% by weight of the total solid content. [11] A cured film obtained by curing the photocurable composition according to any one of [1] to [10]. [12] Contains a fluoropolymer (A), a hexafunctional urethane (meth) acrylate (B) having a viscosity at 40 ° C.
  • a cured film obtained by curing a photocurable composition A cured film having ⁇ haze of 3 or less in Evaluation Method 1 for the photocurable composition.
  • the fluorine-containing polymer (A) is represented by the formula (1), the structural unit A-1 derived from fluorosilsesquioxane having one addition polymerizable functional group in the molecule, an addition polymerizable monomer A structural unit derived from an organic polysiloxane having an addition polymerizable functional group represented by formula (2) and a structural unit A-2 having a group having a polymerizable unsaturated bond in the side chain -3,
  • R f 1 to R f 7 are each independently 3,3,3-trifluoropropyl, 3,3,4,4,5,5,6,6,6-nonafluorohexyl.
  • a 1 is an addition polymerizable functional group;
  • a group having a polymerizable unsaturated bond of A-2 is (meth) acryl bonded to the main chain via a urethane bond,
  • n is an integer of 1 to 1,000, R 1 , R 2 , R 3 and R 4 are each simultaneously methyl, R 5 is butyl, and
  • a 2 is (meth) Acrylic.
  • Turbidity (haze) (%) was measured for this cured film-coated PET according to ASTM D1044, a Taber abrasion test was performed with a load of 1 kg (9.8 N) applied, and then conformed to ASTM D1044. Then, the haze (%) is measured, and the difference ⁇ haze (%) is obtained.
  • ⁇ haze (%) (haze after performing Taber abrasion test under load of 1 kg (9.8 N) (%))
  • [13] A laminate comprising the cured film according to [11] or [12].
  • An optical member comprising the cured film according to [11] or [12] or the laminate according to [13].
  • the cured film obtained by curing the photopolymerizable composition containing the fluoropolymer of the present invention has excellent transparency and wear resistance.
  • addition polymerization means that addition polymerization is possible
  • addition polymerization monomer means a monomer capable of addition polymerization
  • addition polymerizable functional group means addition polymerization.
  • the photocurable composition (hereinafter also referred to as the composition of the present invention) according to an embodiment of the present invention is a fluorine-based polymer (A) (hereinafter also referred to as the polymer A or (A) component), It contains a urethane (meth) acrylate (B) (hereinafter also referred to as the (B) component) and a photopolymerization initiator (C) (hereinafter also referred to as the (C) component), and the fluoropolymer (A).
  • A fluorine-based polymer
  • B urethane
  • C photopolymerization initiator
  • the polymer includes a structural unit A-2 having a group, and the structural unit A-1 is derived from a fluorosilsesquioxane represented by the following formula (1).
  • “derived” means a polymerized residue when each monomer constitutes the fluoropolymer (A).
  • R f 1 to R f 7 are each independently a fluoroalkyl having 1 to 20 carbon atoms in which any methylene may be replaced by oxygen; at least one hydrogen is fluorine or trifluoromethyl
  • a 1 is addition polymerizable Indicates a functional group.
  • the fluoropolymer (A) of the present invention includes, for example, an addition polymerizable monomer ( ⁇ ) having a fluorine atom and an addition polymerizable monomer having a functional group capable of introducing a group having a polymerizable unsaturated bond. Is preferably obtained by introducing a group having a polymerizable unsaturated bond into the precursor via this functional group.
  • the cage structure is classified into T 8 , T 10 , T 12 type and the like.
  • the fluorosilsesquioxane used in the present invention has a cage structure of T 8 type [(R—SiO 1.5 ) 8 ].
  • the fluorosilsesquioxane is characterized by having one addition polymerizable functional group. That is, one of R in silsesquioxane [(R—SiO 1.5 ) n ] is an addition polymerizable functional group.
  • R in silsesquioxane [(R—SiO 1.5 ) n ] is an addition polymerizable functional group.
  • the above addition-polymerizable functional group include a group having a terminal olefin type or an internal olefin type radical polymerizable functional group; a group having a cationic polymerizable functional group such as vinyl ether or propenyl ether; and vinyl carboxyl or cyanoacryloyl And a group having an anion polymerizable functional group such as a radical polymerizable functional group.
  • the radical polymerizable functional group is not particularly limited as long as it is a radical polymerizable group.
  • methacryloyl, acryloyl, allyl, styryl, ⁇ -methylstyryl, vinyl, vinyl ether, vinyl ester, acrylamide, methacrylamide, N— Vinylamide, maleic acid ester, fumaric acid ester, N-substituted maleimide and the like are included, and among them, a group containing (meth) acrylic or styryl is preferable.
  • (meth) acryl is a general term for acrylic and methacrylic and means acrylic and / or methacrylic. The same shall apply hereinafter.
  • Examples of the radical polymerizable functional group having the (meth) acryl include a group represented by the following formula (3).
  • Y 1 represents alkylene having 2 to 10 carbons, preferably alkylene having 2 to 6 carbons, and more preferably alkylene (propylene) having 3 carbons.
  • the R 6 is hydrogen, alkyl having 1 to 5 carbon atoms, or an aryl having 6 to 10 carbon atoms, alkyl preferably hydrogen or a C 1-3, hydrogen or methyl are more preferred.
  • the alkyl having 1 to 5 carbon atoms may be linear or branched.
  • Y 2 represents a single bond or alkylene having 1 to 10 carbon atoms, preferably a single bond or alkylene having 1 to 6 carbon atoms, more preferably a single bond or alkylene having 1 or 2 carbon atoms, A bond or alkylene having 2 carbon atoms (ethylene) is particularly preferred.
  • Vinyl is bonded to any carbon of the benzene ring, and preferably bonded to carbon in the para position with respect to Y 2 .
  • the fluoroalkyl may be linear or branched. This fluoroalkyl has 1 to 20 carbon atoms, preferably 3 to 14 carbon atoms. Furthermore, any methylene of the fluoroalkyl may be replaced with oxygen. Here, methylene includes —CH 2 —, —CFH—, or —CF 2 —. That is, “any methylene may be replaced with oxygen” means that —CH 2 —, —CFH—, or —CF 2 — may be replaced with —O—. However, in fluoroalkyl, two oxygens are not bonded (—O—O—). That is, the fluoroalkyl may have an ether bond.
  • the methylene adjacent to Si is not replaced with oxygen, and the end opposite to Si is CF 3 .
  • -CH 2 - or, more -CFH- is replaced by oxygen, -CF 2 - Write is replaced by oxygen is preferred.
  • fluoroalkyl examples include 3,3,3-trifluoropropyl, 3,3,4,4,4-pentafluorobutyl, 3,3,4,4,5,5,6,6, 6-nonafluorohexyl, tridecafluoro-1,1,2,2-tetrahydrooctyl, heptadecafluoro-1,1,2,2-tetrahydrododecyl, henicosafluoro-1,1,2,2-tetrahydro Dodecyl, pentacosafluoro-1,1,2,2-tetrahydrotetradecyl, (3-heptafluoroisopropoxy) propyl and the like are included.
  • perfluoroalkyl ethyl are preferred examples, -CH 2 -CH 2 - to the fluoroalkyl group may be bonded groups via, -CH 2 - fluoroalkyl group is linked via a It may be a group.
  • the aforementioned fluoroarylalkyl is an alkyl containing an aryl containing fluorine, and preferably has 7 to 20 carbon atoms, more preferably 7 to 10 carbon atoms.
  • the fluorine contained is preferably one in which any one or more hydrogens in aryl are replaced with fluorine or trifluoromethyl.
  • Examples of the aryl moiety include phenyl, naphthyl and the like, as well as heteroaryl, and examples of the alkyl moiety include methyl, ethyl, propyl and the like.
  • the fluoroaryl is one in which any one or two or more hydrogens in the aryl are replaced with fluorine or trifluoromethyl, and the number of carbon atoms is preferably 6 to 20, and more preferably Is 6.
  • aryl include phenyl, naphthyl and the like, as well as heteroaryl.
  • fluorophenyl such as pentafluorophenyl and trifluoromethylphenyl.
  • fluoroalkyl fluoroarylalkyl, and fluoroaryl contained in fluorosilsesquioxane
  • a preferred group is fluoroalkyl, more preferably perfluoroalkylethyl.
  • fluorosilsesquioxane has a T 8 type structure, one addition polymerizable functional group, and R f 1 to R f 7 are each independently fluoroalkyl, fluoroaryl. It has alkyl and / or fluoroaryl, and is represented by the following structural formula (1).
  • a 1 is an addition polysynthetic functional group, preferably the aforementioned radical polymerizable functional group, and R f 1 to R f 7 are each independently an arbitrary methylene as an oxygen
  • a fluoroalkyl having 1 to 20 carbons which may be replaced by: a fluoroaryl having 6 to 20 carbons in which at least one hydrogen is replaced by fluorine or trifluoromethyl; or at least one hydrogen in the aryl is
  • R 7 is a fluoroarylalkyl having 7 to 20 carbon atoms replaced by fluorine or trifluoromethyl, and R f 1 to R f 7 may be different groups or all may be the same group.
  • R f 1 to R f 7 in formula (1) are each independently 3,3,3-trifluoropropyl, 3,3,4,4,4-pentafluorobutyl, 3,3,4,4, 5,5,6,6,6-nonafluorohexyl, tridecafluoro-1,1,2,2-tetrahydrooctyl, heptadecafluoro-1,1,2,2-tetrahydrodecyl, henicosafluoro-1 , 1,2,2-tetrahydrododecyl, pentacosafluoro-1,1,2,2-tetrahydrotetradecyl, (3-heptafluoroisopropoxy) propyl, pentafluorophenylpropyl, pentafluorophenyl, and ⁇ , ⁇ , It is preferably selected from the group consisting of ⁇ -trifluoromethylphenyl, and R f 1 to R f 7 are each independently 3,3,3-trifluoropro More
  • Structural Unit A-2 ⁇ Addition polymerizable monomer having a functional group capable of introducing a group having a polymerizable unsaturated bond>
  • the polymer (A) containing the group which has a polymerizable unsaturated bond in a side chain can obtain the polymer which has a functional group which can introduce
  • the functional group into which such a group having a polymerizable unsaturated bond can be introduced include a group having active hydrogen and a monovalent functional group containing a cyclic ether.
  • Active hydrogen is hydrogen bonded to an atom (eg, nitrogen atom, sulfur atom, oxygen atom) whose electronegativity value is greater than or equal to carbon among hydrogen atoms existing in the molecule of an organic compound. It is. Therefore, a preferred precursor for obtaining the polymer (A) is a polymer containing a group having active hydrogen, and a fluorosilsesquioxane ( ⁇ ) having one addition polymerizable functional group in the molecule, active An addition polymerizable monomer ( ⁇ ) containing a hydrogen-containing group or a monovalent functional group containing a cyclic ether as an essential component, preferably together with an organopolysiloxane ( ⁇ ) having an addition polymerizable functional group described later.
  • a polymer precursor used in the composition of the invention can be obtained.
  • Examples of the group having active hydrogen include —OH, —SH, —COOH, —NH, —NH 2 , —CONH 2 , —NHCONH—, —NHCOO—, Na + [CH (COOC 2 H 5 )], —CH 2 NO 2 , —OOH, —SiOH, —B (OH) 2 , —SH and the like can be mentioned, carboxyl, amino and hydroxyl are preferable, and hydroxyl is more preferable.
  • the addition polymerizable monomer ( ⁇ ) containing a group having active hydrogen may be a compound having a group having active hydrogen and an addition polymerizable double bond in the molecule, and includes a group having active hydrogen. Any of vinyl compounds, vinylidene compounds, and vinylene compounds may be used. An acrylic acid derivative or a styrene derivative containing a group having active hydrogen is preferable.
  • examples of the monovalent functional group containing a cyclic ether include groups such as glycidyl, epoxycyclohexyl, and oxetanyl.
  • Examples of the addition polymerizable monomer containing a group having active hydrogen include monomers disclosed in JP-A-9-208681, JP-A-2002-348344, and JP-A-2006-158961. Specific examples include the following monomers.
  • Examples of the carboxyl group-containing vinyl monomer include (meth) acrylic acid, (anhydrous) maleic acid, maleic acid monoalkyl ester, fumaric acid, fumaric acid monoalkyl ester, crotonic acid, itaconic acid, itaconic acid monoalkyl ester, itacone Examples include acid glycol monoether, citraconic acid, citraconic acid monoalkyl ester, hexamethan (meth) acrylate, and cinnamic acid.
  • hydroxyl group-containing vinyl monomer examples include a hydroxyl group-containing monofunctional vinyl monomer and a hydroxyl group-containing polyfunctional vinyl monomer.
  • a hydroxyl group-containing monofunctional vinyl monomer a vinyl monomer having one vinyl group is used.
  • hydroxystyrene N-methylol (meth) acrylamide, hydroxyethyl (meth) acrylate (HEMA), hydroxypropyl (meth) acrylate 4-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, (meth) allyl alcohol, crotyl alcohol, isocrotyl alcohol, 1-buten-3-ol, 2 -Buten-1-ol, 2-butene-1,4-diol, propargyl alcohol, 2-hydroxyethylpropenyl ether (2-propenoxyethanol), 16-hydroxyhexadecane metaa Etc.
  • hydroxyl group-containing polyfunctional vinyl monomer a vinyl monomer having a plurality of vinyl groups is used.
  • amino group-containing vinyl monomers examples include aminoethyl (meth) acrylate, aminoisopropyl (meth) acrylate, aminobutyl (meth) acrylate, aminohexyl methacrylate, N-aminoethyl (meth) acrylamide, (meth) allylamine, crotylamine Aminostyrene, methyl ⁇ -acetaminoacrylate, N-allylphenylenediamine, 16-methacryloylhexadecanamine, and the like.
  • the addition polymerizable monomer which is a (meth) acrylic acid derivative having a monovalent functional group containing a cyclic ether includes epoxy-containing (meth) acrylates such as glycidyl (meth) acrylate; 3,4-epoxycyclohexyl Cycloaliphatic epoxy-containing (meth) acrylates such as methyl (meth) acrylate; Oxetanyl-containing (meth) acrylates such as 3-ethyl-3- (meth) acryloyloxymethyloxetane; 4- (meth) acryloyloxymethyl-2- And dioxolane-containing (meth) acrylates such as methyl-2-ethyl-1,3-dioxolane.
  • epoxy-containing (meth) acrylates such as glycidyl (meth) acrylate
  • 3,4-epoxycyclohexyl Cycloaliphatic epoxy-containing (meth) acrylates such as methyl (me
  • the fluoropolymer (A) further includes a structural unit A-3 derived from an organopolysiloxane ( ⁇ ) having an addition polymerizable functional group represented by the following formula (2).
  • n is an integer of 1 to 1,000;
  • R 1 and R 2 are each independently methyl, phenyl or 3,3,3-trifluoropropyl;
  • R 3 and R 4 Each independently is methyl or phenyl;
  • R 5 is methyl, ethyl, propyl, butyl, isobutyl, phenyl, 3,3,3-trifluoropropyl, 3,3,4,4,4-pentafluorobutyl 3,3,4,4,5,5,6,6,6-nonafluorohexyl, tridecafluoro-1,1,2,2-tetrahydrooctyl, heptadecafluoro-1,1,2,2- Tetrahydrodecyl, henicosafluoro-1,1,2,2-tetrahydrododecyl, pentacosafluoro-1,1,2,2-tetrahydrotetradecyl, (3-heptafluoroisopropoxy ) Propyl, pent
  • a 2 in the above formula (2) is a radical polymerizable functional group, more preferably the A 2 contains a (meth) acrylic or styryl, A 2 is represented by the following formula (3), (4 ) Or (5) is more preferred. Further, from the viewpoint of slipperiness, R 1 , R 2 , R 3 and R 4 in formula (2) are each simultaneously methyl, and A 2 is more preferably (meth) acryl. R 5 is preferably butyl. n is preferably 50 to 100.
  • Y 1 represents alkylene having 2 to 10 carbon atoms
  • R 6 represents hydrogen, alkyl having 1 to 5 carbon atoms, or aryl having 6 to 10 carbon atoms.
  • 7 represents hydrogen, alkyl having 1 to 5 carbon atoms, or aryl having 6 to 10 carbon atoms
  • X 1 represents alkylene having 2 to 20 carbon atoms
  • Y represents —OCH 2 CH 2 —, —OCH (CH 3 ) CH 2 — or —OCH 2 CH (CH 3 ) —
  • p is an integer of 0 to 3
  • Y 2 represents a single bond or an alkylene having 1 to 10 carbon atoms.
  • the alkyl having 1 to 5 carbon atoms may be linear or branched.
  • Y 1 is preferably alkylene having 2 to 6 carbon atoms
  • R 6 is preferably hydrogen or methyl
  • X 1 is —CH 2 CH 2 CH 2 —
  • Y is preferably —OCH 2 CH 2 —
  • p is preferably 0 or 1
  • R 7 is preferably hydrogen or methyl
  • Y 2 in formula (5) is a single bond or alkylene having 1 or 2 carbon atoms. preferable.
  • the combination of the preferable aspect of each said organic group is contained in this invention.
  • organopolysiloxane ( ⁇ ) preferably used in the present invention examples include Silaplane FM0711 (manufactured by JNC Corporation), Silaplane FM0721 (manufactured by JNC Corporation), Silaplane FM0725 (manufactured by JNC Corporation), Silaplane TM0701 (manufactured by JNC Corporation), Silaplane TM0701T (manufactured by JNC Corporation) and the like are included.
  • addition polymerizable monomer ( ⁇ ) having no group having active hydrogen (meth) acrylic acid compound having one addition polymerizable double bond and having no group having active hydrogen and one addition Examples thereof include a styrene compound having a polymerizable double bond and not having a group having active hydrogen.
  • (meth) acrylic acid compounds include methyl (meth) acrylate (MMA), ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl ( (Meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, n-heptyl (meth) acrylate, n-octyl (meth) acrylate, Alkyl (meth) acrylates such as 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, stearyl (meth) acrylate
  • examples of the (meth) acrylic acid compound having one addition polymerizable double bond and no active hydrogen group include a (meth) acrylic acid compound having a silsesquioxane skeleton.
  • Specific examples of the (meth) acrylic acid compound having such a silsesquioxane skeleton include 3- (3,5,7,9,11,13,15-heptaethylpentacyclo [9.5.1.1 3]. , 9.15,15.1 7,13 ] octasiloxane- 1-yl) propyl (meth) acrylate, 3- (3,5,7,9,11,13,15-heptaisobutyl-pentacyclo [9.
  • Examples of the styrene compound having one addition polymerizable double bond and not having a group having active hydrogen further include a styrene compound containing silsesquioxane.
  • Examples of styrene derivatives containing such silsesquioxanes include 1- (4-vinylphenyl) -3,5,7,9,11,13,15-heptaethylpentacyclo [9.5.1.1 3, 9 . 1 5,15 . 1 7,13 ] octasiloxane, 1- (4-vinylphenyl) -3,5,7,9,11,13,15-heptaisobutylpentacyclo [9.5.1.1 3,9 . 1 5,15 .
  • Octasiloxane having a 4-vinylphenyl group such as 1 7,13 ] octasiloxane; and 3- (3,5,7,9,11,13,15-heptaethyl pentacyclo [9.5.1.1 3,9 .1 5,15 .1 7,13] octasiloxane-1-yl) ethyl styrene, 3- (3,5,7,9,11,13,15 - hepta isobutyl penta cyclo [9.5.1.1 3,9 .1 5,15 .1 7,13] octasiloxane-1-yl) ethyl styrene, 3- (3,5,7,9,11, 13,15- hepta isooctyl penta cyclo [9.5.1.1 3,9 .1 5,15 .1 7,13] octasiloxane-1-yl) ethyl styrene
  • an optional addition polymerizable monomer it has a main chain derived from styrene, (meth) acrylic acid ester, siloxane, and alkylene oxide, such as ethylene oxide, propylene oxide, etc., and one polymerizable double monomer.
  • a macromonomer having a bond is also exemplified.
  • Examples of the addition polymerizable monomer ( ⁇ ) include compounds having two addition polymerizable double bonds.
  • Examples of compounds having two addition polymerizable double bonds include 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) Acrylate, polyethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, hydroxypivalate ester neopentyl Glycol di (meth) acrylate, trimethylolpropane di (meth) acrylate, bis [(meth) acryloyloxyethoxy] bisphenol A, bis [(meth) acryloyloxyethoxy] tetrabrom
  • Examples of the addition polymerizable monomer ( ⁇ ) include compounds having three or more addition polymerizable double bonds.
  • Examples of compounds having three or more addition polymerizable double bonds include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol monohydroxypenta (meth) ) Acrylate, tris (2-hydroxyethylisocyanate) tri (meth) acrylate, tris (diethylene glycol) trimaleate tri (meth) acrylate, 3,7,14-tris [(((meth) acryloyloxypropyl) dimethylsiloxy)] -1,3,5,7,9,11,14- hepta ethyl tricyclo [7.3.3.1 5 and 11] hept siloxane, 3,7,14- tris [(((meth)
  • macromonomers having a main chain derived from styrene, (meth) acrylic acid ester, siloxane, and alkylene oxide such as ethylene oxide and propylene oxide, and having three or more polymerizable double bonds. Is done.
  • Examples of the addition polymerizable monomer ( ⁇ ) include a compound containing fluorine.
  • the compound containing fluorine may be a compound having a fluorine atom group and an addition polymerizable double bond in the molecule, and may be any of a vinyl compound, a vinylidene compound, and a vinylene compound having a fluorine atom.
  • An acrylic acid derivative or a styrene derivative having a fluorine atom is preferable.
  • Typical examples of the addition polymerizable monomer having a fluorine atom include fluoroalkyl (meth) acrylate, fluorostyrene and fluorine-containing polyether compounds.
  • Examples of such an addition polymerizable monomer having a fluorine atom are JP-A-10-251352, JP-A-2004-036771, JP-A-2004-155847, JP-A-2005-029743, JP-A-2006-117742, JP-A-2006-.
  • monomers disclosed in Japanese Patent Application Laid-Open No. 2005-350560 Specific examples include the following monomers.
  • fluoroalkyl (meth) acrylate examples include 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoro-n-propyl (meth) acrylate, 2,2,3, 3-tetrafluoro-t-pentyl (meth) acrylate, 2,2,3,4,4,4-hexafluorobutyl (meth) acrylate, 2,2,3,4,4,4-hexafluoro-t- Hexyl (meth) acrylate, 2,3,4,5,5,5-hexafluoro-2,4-bis (trifluoromethyl) pentyl (meth) acrylate, 2,2,3,3,4,4-hexa Fluorobutyl (meth) acrylate, 2,2,2,2 ', 2', 2'-hexafluoroisopropyl (meth) acrylate, 2,2,3,3,4,4,4-heptafluor Butyl (meth) acrylate, 2,2,
  • fluorostyrene examples include fluoroalkyl styrene such as p-trifluoromethyl styrene, p-heptafluoropropyl styrene, and p-pentafluoroethyl styrene.
  • fluorine-containing polyether compound examples include 1H, 1H-perfluoro-3,6-dioxaheptyl (meth) acrylate, 1H, 1H-perfluoro-3,6-dioxaoctyl (meth) acrylate, 1H , 1H-perfluoro-3,6-dioxadecanyl (meth) acrylate, 1H, 1H-perfluoro-3,6,9-trioxadecanyl (meth) acrylate, 1H, 1H-perfluoro-3,6,9 -Trioxaundecanyl (meth) acrylate, 1H, 1H-perfluoro-3,6,9-trioxatridecanyl (meth) acrylate, 1H, 1H-perfluoro-3,6,9-trioxatridecanyl (meth) acrylate, 1H, 1H-perfluoro-3,6,9,12-tetra Ox
  • Such an addition polymerizable monomer having a fluorine atom can also be synthesized by reacting a fluorine compound having a hydroxyl group with an acid halide having an addition polymerizable functional group.
  • the fluorine compound having a hydroxyl group include (HO) C (CF 3 ) 2 CH 3 , (HO) C (CF 3 ) 2 CH 2 CH 3 , (HO) C (CF 3 ) 2 CH 2 O— Examples thereof include a compound having a CH 2 group, (HO) C (CF 3 ) 2 CH 2 CH 2 O—CH 3 and the like. It is also commercially available from Exfluor Research Corporation and can be purchased and used.
  • the fluorine compound having a hydroxyl group can be synthesized and used, and a synthesis method is described in JP-A-10-147639.
  • examples of the addition polymerizable monomer ( ⁇ ) include a compound having a hydrophilic group.
  • an oxyalkylene group-containing monomer such as methoxypolyethylene glycol mono (meth) acrylate may be mentioned.
  • the said addition polymerizable monomer ((delta)) may be used individually by 1 type, and may be used in combination of multiple types. When a plurality of types are used in combination, various composition ratios can be appropriately adjusted according to the properties of the target polymer.
  • the precursor of the fluoropolymer (A) (hereinafter also referred to as polymer (A)) used in the present invention is derived from fluorosilsesquioxane ( ⁇ ) having one addition polymerizable functional group in the molecule.
  • Addition polymerizable monomer having a structural unit (structural unit A-1) and a functional group capable of introducing a group having a polymerizable unsaturated bond preferably an addition polymerizable monomer containing a group having active hydrogen ( ⁇ ) -Derived structural units (structural units (A-2 ′)) as essential components, and even random copolymers such as block copolymers can be used as random copolymers. Although it may be, it is preferably a random copolymer. Further, the fluoropolymer (A) may have a cross-linked structure or a graft copolymer.
  • the proportion of the structural unit A-2 ′ contained in the polymer (A) used in the present invention is not particularly limited as long as it is within the range (b) above, and the polymer used in the present invention is used as a coating agent.
  • a group having a polymerizable unsaturated bond may be included to such an extent that preferable reactivity with the binder resin monomer can be obtained.
  • the fluorine-based polymer (A) used in the present invention further contains an arbitrary structural unit (D), the structural unit A-1 or the structural unit contained in the fluorine-based polymer (A) or its precursor is also included.
  • the molar ratios of A-2 (or structural unit A-2 ′) and structural unit (A-3) are the same.
  • the weight average molecular weight of the fluoropolymer (A) varies depending on the content of the structural unit A-2, but is about 1,000 to 1,000,000 as a guide.
  • the molecular weight distribution (Mw / Mn) of the fluoropolymer (A) is about 1.01 to 3.0 as a guide.
  • the precursor of the fluorine-based polymer (A) is, for example, fluorosilsesquioxane ( ⁇ ) having one addition polymerizable functional group in the molecule, addition polymerizable monomer having a group having active hydrogen ( ⁇ ), An organopolysiloxane having an addition-polymerizable functional group ( ⁇ ), and when using a plurality of types of monomers as an optional addition-polymerizable monomer ( ⁇ ), the ratio of each monomer is What is necessary is just to determine suitably according to the characteristic of the copolymer to do. In view of simplicity and versatility, radical copolymerization is preferred.
  • the addition polymerization can be performed using a polymerization initiator.
  • the polymerization initiator used include 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (2-butyronitrile), Azo compounds such as dimethyl-2,2'-azobisisobutyrate and 1,1'-azobis (cyclohexane-1-carbonitrile); benzoyl peroxide, lauryl peroxide, octanoyl peroxide, acetyl peroxide, di -Peroxides such as t-butyl peroxide, t-butyl cumyl peroxide, dicumyl peroxide, t-butyl peroxyacetate, t-butyl peroxybenzoate, t-butyl peroxyneodecanoate; and tetraethyl Radicals such as dithiocarbamates such as thiuram
  • Living radical polymerization is represented by atom transfer radical polymerization; reversible addition-fragmentation chain transfer; iodine transfer polymerization; iniferter polymerization, and can be performed using a polymerization initiator described in the following references A to C.
  • Cited document A supervised by Mikiharu Tsunoike, Takeshi Endo, radical polymerization handbook, issued August 10, 1999, issued by NTS).
  • Cited document B HANDBOOK OF RADICAL POLYMERIZATION, K.K. Matyjaszewski, T .; P. Davis, Eds.
  • Cited document C JP-A-2005-105265 Active energy ray polymerization can be performed using the compound described in the cited document D as an active energy ray polymerization initiator.
  • Cited document D Photopolymer social gathering, Photosensitive material list book, published on March 31, 1996 by Bunshin Publishing).
  • the active energy ray refers to an energy ray that can generate an active species by decomposing a compound that generates an active species.
  • active energy rays include optical energy rays such as visible rays, ultraviolet rays, infrared rays, X rays, ⁇ rays, ⁇ rays, ⁇ rays, and electron beams.
  • Specific examples of the active energy ray polymerization initiator used are not particularly limited as long as they are compounds that generate radicals upon irradiation with ultraviolet rays or visible rays.
  • Examples of the compound used as the active energy ray polymerization initiator include benzophenone, Michler's ketone, 4,4'-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropyl xanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, 2 -Hydroxy-2-methylpropiophenone, 2-hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, isopropyl benzoin ether, isobutyl benzoin ether, 2,2-diethoxyacetophenone, 2 , 2-dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropa -1-one, 2-benzyl-2
  • the amount of the polymerization initiator used in the above addition polymerization may be about 0.01 to 10 mol% with respect to the total number of moles of monomers.
  • a chain transfer agent may be used.
  • the molecular weight can be appropriately controlled by using the chain transfer agent.
  • chain transfer agents include thio- ⁇ -naphthol, thiophenol, butyl mercaptan, ethyl thioglycolate, mercaptoethanol, mercaptoacetic acid, isopropyl mercaptan, t-butyl mercaptan, dodecanethiol, thiomalic acid, pentaerythritol tetra (3 -Mercaptans such as mercaptopropionate) and pentaerythritol tetra (3-mercaptoacetate); disulfides such as diphenyl disulfide, diethyl dithioglycolate and diethyl disulfide; and the like, toluene, methyl isobutyrate, Carbon tetrachloride, isopropylbenzene, diethyl ketone, chloroform, ethylbenzene, butyl chloride, sec-butyl alcohol,
  • Chain transfer agents can be used alone or in admixture of two or more.
  • the specific production method of the fluorine-based polymer (A) may be the same as the production method of a normal addition polymer, for example, solution polymerization method, emulsion polymerization method, suspension polymerization method, bulk polymerization method, A bulk-suspension polymerization method or a polymerization method using supercritical CO 2 can be used.
  • a solution polymerization method for example, an addition polymerizable monomer containing a fluorosilsesquioxane ( ⁇ ) having one addition polymerizable functional group in the molecule and a group having active hydrogen in a suitable solvent.
  • solvent used in the above polymerization reaction examples include hydrocarbon solvents (benzene, toluene, etc.), ether solvents (diethyl ether, tetrahydrofuran, diphenyl ether, anisole, dimethoxybenzene, etc.), halogenated hydrocarbon solvents (salt chloride).
  • the reaction temperature is not particularly limited and may be about 0 to 200 ° C. as a guide, and preferably room temperature to about 150 ° C.
  • the polymerization reaction can be performed under reduced pressure, normal pressure, or increased pressure depending on the type of monomer and the type of solvent.
  • the polymerization reaction is preferably performed in an inert gas atmosphere such as nitrogen or argon. This is because the generated radicals are inactivated by contact with oxygen to suppress the polymerization rate from decreasing, and a polymer having a molecular weight appropriately controlled is obtained.
  • the polymerization reaction is preferably carried out in a polymerization system from which dissolved oxygen is removed under reduced pressure (after removing dissolved oxygen under reduced pressure, the polymerization reaction may be carried out under reduced pressure as it is).
  • the polymer obtained in the solution may be purified or isolated by a conventional method, or may be used for forming a coating film as it is.
  • a purification method by reprecipitation operation is preferred. This purification method is performed as follows. First, in the polymerization reaction solution containing the polymer and the unreacted monomer, a solvent that does not dissolve the polymer but dissolves the unreacted monomer, a so-called precipitant is added to this solution to remove only the polymer. Precipitate.
  • a preferred amount of the precipitating agent is 20 to 50 times based on the weight of the polymerization reaction solution.
  • a preferred precipitant is a solvent that is compatible with the solvent used in the polymerization, does not dissolve the polymer at all, dissolves only unreacted monomers, and has a relatively low boiling point.
  • preferred precipitating agents are lower alcohols and aliphatic hydrocarbons. Particularly preferred precipitating agents are methanol, ethanol, 2-propanol, hexane, and heptane. These may be used alone or in combination of two or more. In the case of using a mixture, Solmix AP-1, A-11, etc. commercially available as denatured alcohol may be purchased from Nippon Alcohol Sales Co., Ltd. And in order to raise the removal efficiency of an unreacted monomer further, what is necessary is just to increase the repetition frequency of reprecipitation operation. By this method, only the polymer can be precipitated in a poor solvent, and the unreacted monomer and the polymer can be easily separated by a filtration operation.
  • the group having a polymerizable unsaturated bond is a functional group (group having an active hydrogen) capable of introducing a precursor of a fluoropolymer and a group having a polymerizable unsaturated bond of the structural unit (E). It can introduce
  • Examples of the compound having a functional group that reacts with a group having active hydrogen and a group having a polymerizable unsaturated bond in the same molecule include, for example, an isocyanate compound having a polymerizable unsaturated bond, and a polymerizable unsaturated bond.
  • the acid halide which has, the carboxylic acid compound which has a polymerizable unsaturated bond, the carboxylic acid ester compound which has a polymerizable unsaturated bond, and an epoxy compound can be mentioned.
  • the group having such a polymerizable unsaturated bond is preferably a radical polymerizable group, and examples thereof include (meth) acryl, allyl, and styryl.
  • isocyanate compound having (meth) acryl a compound having the following structure can be used.
  • R 8 and R 9 are each independently hydrogen or methyl
  • B is oxygen, alkylene having 1 to 3 carbons, or —OR 10 —
  • R 10 is alkylene having 2 to 12 carbons Represents oxyalkylene having 2 to 12 carbon atoms and arylene having 6 to 12 carbon atoms.
  • isocyanate compound having styryl a compound having the following structure can be used.
  • R 11 is alkylene having 1 to 10 carbon atoms
  • R 12 is hydrogen or methyl.
  • Specific examples of the isocyanate compound having a polymerizable unsaturated bond that can be suitably used include 2-isocyanatoethyl methacrylate, 2-isocyanatoethyl acrylate, 1,1-bis (acryloyloxymethyl) ethyl isocyanate, 4- ( 2-isocyanatoisopropyl) styrene, preferably 2-isocyanatoethyl methacrylate, 2-isocyanatoethyl acrylate, 1,1-bis (acryloyloxymethyl) ethyl isocyanate.
  • a urethanization catalyst can be used for the purpose of promoting the reaction.
  • the urethanization catalyst include organometallic urethanization catalysts and tertiary amine urethanization catalysts.
  • organometallic urethanization catalysts examples include tin acetate, tin octylate, tin oleate, tin laurate, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin dichloride, lead octoate, lead naphthenate, nickel naphthenate, naphthenic acid Mention may be made of organometallic urethanization catalysts such as cobalt.
  • Tertiary amine urethanization catalysts include triethylenediamine, N, N, N ′, N ′, N′-pentamethyldipropylenetriamine, N, N, N ′, N ′, N′-pentamethyldiethylenetriamine, N , N, N ′, N′-tetramethylhexamethylenediamine, bis (dimethylaminoethyl) ether, 2- (N, Ndimethylamino) -ethyl-3- (N, Ndimethylamino) propylether, N, N '-Dimethylcyclohexylamine, N, N-dicyclohexylmethylamine, methylenebis (dimethylcyclohexyl) amine, triethylamine, N, N-dimethylacetylamine, N, N-dimethyldodecylamine, N, N-dimethylhexadecylamine, N, N, N '
  • the catalyst can be used in an arbitrary amount with respect to the isocyanate group, but is preferably 0.0001 to 1 mol%, more preferably 0.001 to 1 mol% based on the isocyanate group.
  • a solvent may be used as necessary.
  • the solvent used may be any solvent that is inert with respect to groups having active hydrogen and isocyanate groups.
  • aromatic hydrocarbon solvents such as toluene and xylene
  • ester solvents such as ethyl acetate and butyl acetate.
  • Ketone solvents such as methyl ethyl ketone and cyclohexanone, glycol ether ester solvents such as ethylene glycol ethyl ether acetate, propylene glycol methyl ether acetate and ethyl-3-ethoxypropionate, ether solvents such as tetrahydrofuran and dioxane, dimethylformamide, Examples thereof include polar solvents such as dimethylacetamide, N-methylpyrrolidone and furfural, and these may be used alone or in combination of two or more.
  • the amount of the solvent used may be an amount that makes the concentration of the polymer containing the group having active hydrogen about 10 to 80% by weight.
  • the reaction temperature is generally 0 to 120 ° C., preferably 20 to 100 ° C. If it is less than 0 ° C, the reaction becomes very slow, and if it exceeds 120 ° C, polymerization may be caused.
  • a polymerization inhibitor may be present for the purpose of suppressing polymerization during the reaction between an isocyanate group and a group having active hydrogen.
  • Polymerization inhibitors include p-benzoquinone, naphthoquinone, phenanthraquinone, p-xyloquinone, p-toluquinone, 2,6-dichloroquinone, 2,5-diphenyl-p-benzoquinone, 2,5-diacetoxy-p- Benzoquinone, 2,5-dicaproxy-p-benzoquinone, 2,5-diacyloxy-p-benzoquinone, hydroquinone, pt-butylcatechol, 2,5-t-butylhydroquinone, mono-t-butylhydroquinone or 2,5 -Di-t-amylhydroquinone and the like can be mentioned, and the amount used is 10 to 10, with respect to the total amount of the precursor of the fluoropolymer (A) and the isocyanate compound having a polymerizable unsaturated bond.
  • 000 ppm preferably 50 to
  • examples of the acid halide having a polymerizable unsaturated bond include acrylic chloride, methacryl chloride, styrene carbonyl chloride, styrene sulfonyl chloride, 2-methacryloyloxyethyl succinyl chloride, and 2-methacryloyloxyethyl hexahydrophthalyl chloride.
  • bromide compounds such as acrylic bromide, methacryl bromide, styrene carbonyl bromide, styrene sulfonyl bromide, 2-methacryloyloxyethyl succinyl bromide, and 2-methacryloyloxyethyl hexahydrophthalyl bromide. From the viewpoint of curability, halides of acrylic acid and methacrylic acid are preferred.
  • esterification reaction is a dehydrohalogenation reaction between an acid halide and a group having active hydrogen (preferably a hydroxyl group).
  • the base as the hydrogen halide scavenger is not particularly limited, and a known one can be used.
  • bases that are preferably used include trialkylamines such as trimethylamine, triethylamine, and tripropylamine, pyridine, tetramethylurea, sodium hydroxide, sodium carbonate, and the like.
  • the amount of the base is preferably 1 mol or more per 1 mol of the carboxylic acid chloride. In this reaction, it is generally preferable to use an organic solvent.
  • solvents examples include aliphatic or aromatic hydrocarbons or halogenated hydrocarbons such as benzene, toluene, xylene, hexane, heptane, petroleum ether, chloroform, methylene chloride, and ethylene chloride.
  • Ethers such as diethyl ether, dioxane and tetrahydrofuran; N, N-dialkylformamides such as N, N-dimethylformamide and N, N-diethylformamide; dimethyl sulfoxide and the like.
  • the temperature in this reaction can be selected from a wide range.
  • reaction time varies depending on the kind of raw material, it is usually selected from the range of 5 minutes to 24 hours, preferably 1 to 4 hours. Further, stirring is preferably performed during the reaction. Usually, after the reaction, the reaction product can be separated by washing with water and drying, and then distilling off the solvent. It can also be used for the esterification reaction.
  • Examples of the carboxylic acid compound having a polymerizable unsaturated bond include acrylic acid, methacrylic acid, and vinyl benzoic acid.
  • esterification reaction is a dehydration condensation reaction between a carboxylic acid compound and a group having active hydrogen (preferably a hydroxyl group).
  • Examples of the carboxylic acid ester compound having a polymerizable unsaturated bond include methyl (meth) acrylate, ethyl (meth) acrylate, 1-propyl (meth) acrylate, 1-butyl (meth) acrylate, and t-butyl (meth). Examples include acrylate and 2-ethylhexyl (meth) acrylate.
  • esterification reaction is an ester exchange reaction between a carboxylic acid ester compound and a group having active hydrogen (preferably a hydroxyl group).
  • Examples of the epoxy compound having a polymerizable unsaturated bond include glycidyl (meth) acrylate and 3,4-epoxycyclohexylmethyl (meth) acrylate.
  • a part of the isocyanate group of a compound having a plurality of isocyanate groups such as isophorone diisocyanate is urethanated with a hydroxyl group-containing addition polymerizable monomer such as 2-hydroxyethyl acrylate to obtain an isocyanate compound having a polymerizable unsaturated bond.
  • a fluorinated polymer (A) having a polymerizable unsaturated bond in the side chain can be obtained by utilizing a urethanization reaction between the isocyanate compound and a group having active hydrogen (preferably a hydroxyl group).
  • the resin composition has a total solid content (in the present invention, the remaining component obtained by removing the solvent from the photocurable composition is referred to as “solid content”) to 100% by weight.
  • the fluorine-containing polymer (A) is preferably contained in an amount of 0.01 to 3% by weight, more preferably 0.5 to 2% by weight.
  • the photocurable resin composition which is one Embodiment of this invention contains hexafunctional urethane (meth) acrylate (B).
  • the fluorine-based polymer in the above-mentioned Patent Document 2, it can be used alone as a surface modifier, and if necessary, other resins (hereinafter referred to as binder resins) or resin monomers (hereinafter referred to as binder resins). Monomer), and can be used as a surface modifier (so-called coating agent) by dissolving or dispersing in various solvents as required. Specifically, it removes dirt caused by magic, etc.
  • the present inventors surprisingly combine the specific fluorine-based polymer (A) with the hexafunctional urethane (meth) acrylate (B).
  • the urethane (meth) acrylate (B) is hexafunctional and preferably has a viscosity at 40 ° C. of 20,000 mPa ⁇ s or less, more preferably 10,000 mPa ⁇ s or less. More preferably, it is 8,000 mPa ⁇ s or less.
  • the viscosity in 40 degreeC is 2,000 mPa * s or more.
  • the viscosity is 40 ° C. and measured with an E-type viscometer.
  • urethane (meth) acrylate (B) you may synthesize
  • urethane (meth) acrylate (with respect to 100% by weight of the total solid content (remaining component obtained by removing the solvent from the photocurable composition) in the resin composition) B) is preferably contained in an amount of 50 to 98% by weight, more preferably 53 to 98% by weight, and even more preferably 55 to 97% by weight.
  • the photopolymerization initiator (C) is used for the purpose of mixing the fluoropolymer (A) and the urethane (meth) acrylate (B) and accelerating their curing.
  • a photopolymerization initiator that generates radicals by ultraviolet rays or visible light is preferable.
  • the active energy ray polymerization initiator described in the section ⁇ Fluoropolymer (A)> can be used.
  • the fluoropolymer-containing photocurable composition according to an embodiment of the present invention is other than (A) to (C) from the viewpoint of adjusting various physical properties of the composition and from the viewpoint of curing during the subsequent film formation.
  • Other components may be further contained. Examples of such other components include solvents, resins other than the fluororesin (A), inorganic fine particles, and the like.
  • Agents, surfactants, plasticizers, ultraviolet absorbers, antioxidants, antistatic agents, silane coupling agents, inorganic fillers typified by silica and alumina, and organic fillers may be further included. .
  • the composition of the present invention preferably contains inorganic fine particles (D) (hereinafter also referred to as component (D)) from the viewpoint of improving the wear resistance.
  • inorganic fine particles (D) include silica and alumina.
  • the average particle size of the inorganic fine particles (D) is not limited as long as it is nano-order, but is preferably 1 to 100 nm, more preferably 1 to 40 nm, and further preferably 1 to 20 nm from the viewpoint of transparency. Further, it is preferable that the particle size distribution is narrow.
  • the shape of the inorganic fine particles (D) is not particularly limited, but may be any shape such as a spherical shape, an indeterminate shape, and a flake shape.
  • the average particle size of the inorganic fine particles (D) means the average maximum diameter of the inorganic fine particles (D).
  • the inorganic fine particles (D) may be surface-treated with a silane coupling agent or the like, and surface-modified colloidal silica is preferable.
  • the content of the inorganic fine particles (D) as the component (D) is preferably 5 to 50% by weight, preferably 10 to 45% by weight, based on the total solid content of the composition. It is more preferable.
  • inorganic fine particles (D) may be added to the resin composition, or a commercial product in which the inorganic fine particles (D) are dispersed in the resin may be used.
  • commercial products include nano silica-dispersed epoxy resins manufactured by EVONIKINDUSTRIES [Nanopox (registered trademark) series (C620, F400, E500, E600, E430)], acrylate, in which 40% by mass of nanosilica is dispersed in an epoxy resin.
  • Nanocyl (registered trademark) series C130, C140, C145, C146, C150, C153, C155, C165, C350 in which 50% by mass of nanosilica is dispersed in a resin.
  • a reactive binder resin a binder resin having a functional group capable of reacting with the polymer
  • the polymer can be more firmly fixed to the substrate.
  • the surface can be modified without deteriorating the original characteristics of the resin by selecting a binder resin that has these characteristics. can do.
  • the composition of the present invention may be used as a coating agent (protective coating agent or the like) in the composition containing only the components (A) to (C) as in 1) above, but 2)
  • the binder resin monomer hereinafter referred to as a reactive binder resin
  • the binder resin monomer that can react with the fluoropolymer (A) as in 3) above may be used as a coating agent by mixing with other binder resins as in May also be used as a coating agent.
  • the binder resin may be any of a thermoplastic resin, a thermosetting resin, and an active energy ray curable resin, and may be a plurality of types of resins.
  • binder resins include polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, acrylonitrile-styrene resin, acrylonitrile-butadiene-styrene resin, poly (meth) acrylate resin, ultra high molecular weight polyethylene, poly-4-methyl Pentene, syndiotactic polystyrene, polyamide (nylon 6: DuPont brand name, nylon 6,6: DuPont brand name, nylon 6,10: DuPont brand name, nylon 6, T: DuPont brand name, nylon MXD6: DuPont product name), polyester (polyethylene terephthalate, polybutylene terephthalate, polyethylene 2,6-naphthalenedicarboxylate, etc.), polyacetal, polycarbonate
  • a reactive binder resin monomer may be mixed and used.
  • the fluoropolymer having a polymerizable unsaturated bond in the side chain and the reactive binder resin monomer are cross-linked between the resin obtained by curing and the fluoropolymer, resulting in mechanical properties, surface -A composite resin excellent in interface characteristics and compatibility can be obtained.
  • a coating (composite film) made of a composite resin with a binder resin can be formed on the substrate by applying the solution containing the solution to the substrate and drying and curing the coating film.
  • the formed composite film has high antifouling properties and wear resistance.
  • the reactive binder resin monomer include a monomer that forms a UV curable resin capable of radical curing by ultraviolet irradiation.
  • Examples of resins that can be radically cured by ultraviolet irradiation include (meth) acrylate monomers, unsaturated polyester resins, polyester (meth) acrylate resins, epoxy (meth) acrylate resins, and urethane (meth) acrylate resins other than the component (B). And resins having an unsaturated bond capable of radical polymerization.
  • Examples of the (meth) acrylate monomer include compounds obtained by reacting a polyhydric alcohol with an ⁇ , ⁇ -unsaturated carboxylic acid.
  • the condensation product (unsaturated polyester) by esterification reaction of a polyhydric alcohol and unsaturated polybasic acid (and saturated polybasic acid as needed) was melt
  • the unsaturated polyester can be produced by polycondensation of an unsaturated acid such as maleic anhydride and a diol such as ethylene glycol.
  • a polybasic acid having a polymerizable unsaturated bond such as fumaric acid, maleic acid, and itaconic acid or its anhydride is used as an acid component, and ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1, 2 -Butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, cyclohexane
  • Polyhydric alcohols such as 1,4-dimethanol, ethylene oxide adduct of bisphenol A and propylene oxide adduct of bisphenol A are reacted as alcohol components, and phthalic acid, isophthalic acid, terephthalic acid, Such as tetrahydrophthalic acid, adipic acid, sebacic acid Polymerizable not have an unsaturated bond
  • the polyester (meth) acrylate resin includes (1) a terminal carboxyl group polyester obtained from a saturated polybasic acid and / or an unsaturated polybasic acid and a polyhydric alcohol, and an ⁇ , ⁇ -unsaturated carboxylic ester group.
  • saturated polybasic acid used as a raw material for the polyester (meth) acrylate examples include polybasic compounds having no polymerizable unsaturated bond such as phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, adipic acid, and sebacic acid. Examples thereof include polymerizable unsaturated polybasic acids such as fumaric acid, maleic acid and itaconic acid, and anhydrides thereof. Further, the polyhydric alcohol component is the same as the unsaturated polyester.
  • the epoxy (meth) acrylate resin that can be used in the present invention is a polymerization produced by a ring-opening reaction between a compound having a glycidyl group (epoxy group) and a carboxyl group of a carboxyl compound having a polymerizable unsaturated bond such as acrylic acid. And those having a polymerizable unsaturated bond (vinyl ester) dissolved in a polymerizable monomer.
  • the vinyl ester is produced by a known method, and examples thereof include epoxy (meth) acrylate obtained by reacting an epoxy resin with an unsaturated monobasic acid such as acrylic acid or methacrylic acid.
  • epoxy resins may be reacted with bisphenol (for example, A type) or dibasic acid such as adipic acid, sebacic acid, dimer acid (Haridimer 270S: Harima Kasei Co., Ltd.) to impart flexibility.
  • bisphenol for example, A type
  • dibasic acid such as adipic acid, sebacic acid, dimer acid (Haridimer 270S: Harima Kasei Co., Ltd.
  • examples of the epoxy resin as a raw material include bisphenol A diglycidyl ether and high molecular weight homologues thereof, and novolak glycidyl ethers.
  • urethane (meth) acrylate resin for example, after reacting a polyisocyanate and a polyhydroxy compound or a polyhydric alcohol, a hydroxyl group-containing (meth) acryl compound and, if necessary, a hydroxyl group-containing allyl ether compound are reacted. And a radical-polymerizable unsaturated group-containing oligomer that can be obtained.
  • polyisocyanate examples include 2,4-tolylene diisocyanate and its isomers, diphenylmethane diisocyanate, hexamethylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, dicyclohexylmethane diisocyanate, naphthalene diisocyanate, Phenylmethane triisocyanate, Vernock D-750, Crisbon NK (trade name; manufactured by DIC Corporation), Desmodur L (trade name; manufactured by Sumika Covestro Urethane Co., Ltd.), Coronate L (trade name; Tosoh Corporation) ), Takenate D102 (trade name; manufactured by Mitsui Chemicals), Isonate 143L (trade name; manufactured by Dow Chemical Japan Co., Ltd.), and the like.
  • polyhydroxy compound examples include polyester polyol, polyether polyol, and the like.
  • polyhydric alcohols include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, 2-methyl-1,3-propanediol, 1,3- Butanediol, adduct of bisphenol A and propylene oxide or ethylene oxide, 1,2,3,4-tetrahydroxybutane, glycerin, trimethylolpropane, 1,3-butanediol, 1,2-cyclohexane glycol, 1,3 -Cyclohexane glycol, 1,4-cyclohexane glycol, para-xylene glycol, bicyclohexyl-4,4-diol, 2,6-decalin glycol, 2,7-decalin glycol, etc.
  • the hydroxyl group-containing (meth) acrylic compound is not particularly limited, but is preferably a hydroxyl group-containing (meth) acrylic acid ester, specifically, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxy Propyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, tris (hydroxyethyl) isocyanuric acid di (meth) acrylate, pentaerythritol tri ( And (meth) acrylate.
  • a hydroxyl group-containing (meth) acrylic acid ester specifically, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxy Propyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, tris (hydroxyethy
  • silanol having a fluorine-containing hydrocarbon group and hexamethylcyclotrisiloxane are polymerized to obtain chlorosilane having a polymerizable unsaturated group.
  • examples thereof include fluorine-based silicon compounds that can be obtained by reaction to stop polymerization.
  • the fluorine-based silicon compound preferably includes compounds represented by the following formulas (I-1) and (I-2) (both n represents 0 to 500, and R 13 represents hydrogen or methyl). It is done.
  • the resin composition of the present invention includes a fluoropolymer-containing photocurable resin composition in terms of adjusting the concentration of the fluoropolymer and various physical properties of the fluoropolymer-containing photocurable composition, and the subsequent film formation. From the viewpoint of curing, a solvent can be included. Further, the fluoropolymer and the binder resin monomer may be dissolved in a solvent and used.
  • solvents used include hydrocarbon solvents (benzene, toluene, etc.), ether solvents (diethyl ether, tetrahydrofuran, diphenyl ether, anisole, dimethoxybenzene, etc.), halogenated hydrocarbon solvents (methylene chloride, chloroform, chlorobenzene).
  • ketone solvents acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.
  • alcohol solvents methanol, ethanol, propanol, isopropanol, butyl alcohol, t-butyl alcohol, etc.
  • glycol ether solvents ethylene glycol monomethyl ether, ethylene
  • Glycol monoethyl ether ethylene glycol monobutyl ether
  • propylene glycol monomethyl ether propylene glycol monopropyl ether
  • nitrile solvents acetonitrile, propionitrile, benzonitrile, etc.
  • ester solvents ethyl acetate, butyl acetate, etc.
  • carbonate solvents ethylene carbonate, propylene carbonate, etc.
  • amide solvents N, N-dimethylformamide, N, N-dimethylacetamide
  • Examples of the curing aid for improving the curability of the fluororesin-containing photocurable composition and improving the adhesion to the base material contained in the composition of the present invention include two thiols in one molecule.
  • the compound which has the above is mentioned. More specifically, hexanedithiol, decanedithiol, 1,4-dimethylmercaptobenzene, butanediol bisglycolate, ethylene glycol bisthioglycolate, trimethylolpropane tristhioglycolate, butanediol bisthiopropionate, Methylolpropane tristhiopropionate, trimethylolpropane tristhioglycolate, pentaerythritol tetrakisthiopropionate, pentaerythritol tetrakisthioglyconate, trishydroxyethyltristhiopropionate, 1,4-bis (3-mercaptobut
  • the film of the present invention and the laminate having the film are obtained from the composition of the present invention described above. More specifically, the film of the present invention is obtained by a step of forming a film of the composition of the present invention and a step of curing the film.
  • the film can be formed by, for example, coating, and the film can be usually cured by one or more of drying, heating, and active energy ray irradiation.
  • the method for applying the composition of the present invention to the substrate is not particularly limited, but spin coating, roll coating, slit coating, dipping, spray coating, gravure coating, reverse coating, rod coating, bar coating, and the like.
  • Examples include a coating method, a die coating method, a kiss coating method, a reverse kiss coating method, an air knife coating method, and a curtain coating method.
  • substrates to be applied include transparent glass substrates such as white plate glass, blue plate glass, silica coated blue plate glass; polycarbonate, polyester, acrylic resin, vinyl chloride resin, polyamide resin, polyamideimide, polyimide, triacetate, diacetate, etc.
  • Synthetic resin sheet, film Synthetic resin sheet, film; cycloolefin resin containing norbornene resin (trade name: ZEONOR, ZEONEX, Nippon Zeon Co., Ltd., trade name: ARTON, JSR Corporation, methacrylstyrene, polysulfone, alicyclic acrylic Transparent resin substrates used for optical applications such as resins and polyarylates; Metal substrates such as aluminum plates, copper plates, nickel plates, and stainless steel plates; Other ceramic substrates, semiconductor substrates having photoelectric conversion elements; urethane rubber, styrene rubber, etc. . These base materials may be pretreated.
  • Examples of the pretreatment include chemical treatment with a silane coupling agent, sandblast treatment, corona discharge treatment, ultraviolet treatment, plasma treatment, ion plating, sputtering, gas treatment. Phase reaction method, vacuum deposition, etc. are included.
  • the applied solution can be dried in an environment of room temperature to about 200 ° C.
  • a photoinitiator is used, after application
  • the active energy ray source there are no particular restrictions on the active energy ray source, but depending on the nature of the active energy ray polymerization initiator used, for example, low pressure mercury lamp, high pressure mercury lamp, ultra high pressure mercury lamp, metal halide lamp, carbon arc, xenon arc, gas laser, solid state laser , Electron beam irradiation device, LED lamp and the like.
  • a base material a fluoropolymer (A), a hexafunctional urethane (meth) acrylate (B) having a viscosity at 40 ° C. of 20,000 mPa ⁇ s or less, a photopolymerization initiator ( C)
  • the fluorine-based polymer (A) is a structural unit A-1 derived from fluorosilsesquioxane having one addition-polymerizable functional group in the molecule represented by formula (1), an addition-polymerizable monomer.
  • a cured film having a thickness of 5 ⁇ m made of the photocurable composition is formed on a polyethylene terephthalate (PET) film substrate having a thickness of 100 ⁇ m.
  • PET polyethylene terephthalate
  • the turbidity (haze) of the cured film-coated PET was measured according to ASTM D1044, subjected to a Taber abrasion test under a load of 1 kg (9.8 N), and then subjected to haze according to ASTM D1044. (%) Is measured, and the difference ⁇ haze is obtained.
  • ⁇ haze (%) (haze after performing Taber abrasion test under load of 1 kg (9.8 N) (%))
  • a laminate including a cured film obtained by curing the composition of the present invention is also preferable.
  • the optical member containing the said laminated body is also preferable. That is, the coating (cured film) obtained from the composition of the present invention can be used as a coating for optical resins used for automobile top coats, hard coats, lenses, etc. for the purpose of preventing dirt, and for protection used in displays. Examples thereof include a film, a coating for a protective film, and a coating for preventing the touch panel from being damaged.
  • Viscosity of urethane (meth) acrylate The viscosity at 40 ° C. was measured using an E-type viscometer “TV-22” manufactured by Toki Sangyo Co., Ltd.
  • Film thickness The film thickness of the coated surface and the uncoated surface was measured with a Nikon Digimicro "MF-501 + counter TC-101" and calculated from the difference in film thickness.
  • Turbidity (haze) Haze was measured based on ASTM D1003 using a Nippon Denshoku Industries Co., Ltd. haze meter “NDH5000”.
  • Total light transmittance Total light transmittance was measured based on ASTM D1003 using a Nippon Denshoku Industries Co., Ltd. haze meter "NDH5000”.
  • Abrasion resistance (Taber abrasion test) Using a Taber abrasion tester “No. 101” manufactured by Yasuda Seiki Seisakusho Co., Ltd., using a wear ring of CS-10 based on ASTM D1044 and applying a load of 1 kg (9.8 N) on the cured film The haze after 100 rotations was measured, and the difference from the haze value measured before the test was calculated. In the evaluation criteria, when the haze difference was 3% or less, the wear resistance was good.
  • the mixture was set in an oil bath, the temperature was raised, and when the liquid temperature reached 35 ° C., 35.24 g of acryloyloxyethyl isocyanate (AOI, manufactured by Showa Denko KK) was introduced to start the reaction. After reacting at 45 ° C. for 5 hours, the reaction was terminated by cooling to room temperature and introducing 12.00 g of methanol (MeOH). 4-Methyl-2-pentanone (MIBK) was added and diluted to 30% by weight.
  • the obtained polymer (A1) had a weight average molecular weight of 39,700 and a molecular weight distribution of 1.85, as determined by GPC analysis.
  • Example 1 (Coating preparation) Polymer (A1) obtained in Production Example 1 as component (A), and hexafunctional urethane acrylate EXCELATE RUA- having a viscosity of 7,700 mPa ⁇ s measured with an E-type viscometer at 40 ° C. as component (B) 076MG (manufactured by Asia Industries Co., Ltd.), Irgacure 127 (manufactured by BASF Japan Co., Ltd.) as component (C), and propylene glycol monomethyl ether so that the solid content concentration is 35% by weight with the blending amounts shown in Table 1. To obtain a coating solution. (Curing cured film) The resulting coating solution was added to R.I. D.
  • a coating rod (# 10) manufactured by Specialties, it was applied onto a 210 cm ⁇ 297 cm side of a polyethylene terephthalate film (thickness: 100 ⁇ m, Cosmo Shine (trade name) A4300) manufactured by Toyobo Co., Ltd.
  • the obtained film with a coating film was dried in a high temperature chamber at 80 ° C. for 3 minutes, and using a conveyor type UV irradiation apparatus attached with a high-pressure mercury lamp (H08-L41, rated 160 W / cm) manufactured by Iwasaki Electric Co., Ltd.
  • the laminate was irradiated with ultraviolet rays at an illuminance of 200 mW / cm 2 and an exposure amount of 500 mJ / cm 2 to obtain a transparent hard coat layer having a thickness of 5 ⁇ m.
  • the exposure amount was measured with an illuminometer (UVPF-A1 / PD-365) manufactured by Iwasaki Electric Co., Ltd.
  • UVPF-A1 / PD-365 manufactured by Iwasaki Electric Co., Ltd.
  • the obtained cured film was evaluated for optical properties (total light transmittance, haze) and mechanical properties (abrasion resistance) by the above methods.
  • the composition of the coating solution is shown in Table 1, and the evaluation results are shown in Table 2.
  • Example 2 Coating was performed in the same manner as in Experimental Example 1 except that the amount of component (B) was changed and propylene glycol monomethyl ether-dispersed silica sol PGM-AC-2140Y (Nissan Chemical Industries, Ltd.) was added as component (D). The liquid was prepared, the coating film was created and hardened
  • Example 4 A coating liquid was prepared in the same manner as in Experimental Example 1 except that the monofunctional monomer alicyclic acrylate monomer SR217 (manufactured by Sartomer, USA) was blended and the blending amount of component (B) was changed. The cured film obtained and cured was evaluated. The composition of the coating solution is shown in Table 1, and the evaluation results are shown in Table 2.
  • Example 5 (A) Except not having mix
  • the composition of the coating solution is shown in Table 1, and the evaluation results are shown in Table 2.
  • Example 6 A coating liquid was prepared, a coating film was prepared and cured in the same manner as in Experimental Example 1 except that the blending amount of the component was changed and NK ester A-DPH was blended. evaluated.
  • the composition of the coating solution is shown in Table 1, and the evaluation results are shown in Table 2.
  • Example 7 The component (B) was changed to 6-functional urethane acrylate Shimitsu (registered trademark) UV-7600B (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) having a viscosity of 35,300 mPa ⁇ s measured with an E-type viscometer at 40 ° C.
  • a coating solution was prepared in the same manner as in Experimental Example 1 except that a coating film was prepared and cured, and the resulting cured film was evaluated.
  • the composition of the coating solution is shown in Table 1, and the evaluation results are shown in Table 2.
  • Example 8 Experimental example except that component (B) was changed to 10-functional urethane acrylate EXCELATE RUA-077 (manufactured by Asia Industry Co., Ltd.) whose viscosity measured with an E-type viscometer at 40 ° C. was 11,300 mPa ⁇ s.
  • a coating solution was prepared, a coating film was prepared and cured, and the obtained cured film was evaluated.
  • the composition of the coating solution is shown in Table 1, and the evaluation results are shown in Table 2.
  • Example 9 Component (B) was added to a 10-functional urethane acrylate purple light (registered trademark) UV-1700B (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) having a viscosity measured by an E-type viscometer at 40 ° C of 11,000 mPa ⁇ s. Except having changed, it carried out similarly to Experimental example 1, prepared the coating liquid, produced and hardened
  • the component (B) is a 4- to 5-functional urethane acrylate with a viscosity measured by an E-type viscometer at 40 ° C. of 63,700 mPa ⁇ s. Shigemi (registered trademark) UV-7650B (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.)
  • the coating liquid was prepared in the same manner as in Experimental Example 1 except that it was changed to), a coating film was prepared and cured, and the resulting cured film was evaluated.
  • the composition of the coating solution is shown in Table 1, and the evaluation results are shown in Table 2.
  • the cured film obtained from the photocurable composition of the present invention has high transparency, excellent wear resistance, and is very useful as a coating. Used for optical top resin coating for automobile top coat, hard coat, lens, etc. for scratch prevention, protection film used for display, protective film coating, touch panel coating for scratch prevention, etc. Is possible. In particular, by using a cured film obtained from the photocurable composition of the present invention, it is possible to protect mobile electronic devices such as smartphones and tablets, glasses, sunglasses, etc., which are used outdoors, from scratches and use them more comfortably. I can do it.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

透明性、耐摩耗性に優れ、眼鏡やサングラスなどの光学部材や携帯電子機器のディスプレイの保護コート剤として有用な光硬化性組成物を提供する。フッ素系重合体(A)、ウレタン(メタ)アクリレート(B)および光重合開始剤(C)を含有する光硬化性組成物であって、フッ素系重合体(A)が、分子内に一つの付加重合性官能基を有するフルオロシルセスキオキサンに由来する構成単位A-1、付加重合性単量体由来の構成単位であって側鎖に重合性不飽和結合を有する基を有する構成単位A-2を含む重合体であり、前記構成単位A-1が下記式(1)で表されるフルオロシルセスキオキサンに由来する、光硬化性組成物。 (式中、Rf 1~Rf 7はそれぞれ独立して、任意のメチレンが酸素で置き換えられていてもよい、炭素数1~20のフルオロアルキル;少なくとも1つの水素がフッ素もしくはトリフルオロメチルで置き換えられた、炭素数6~20のフルオロアリール;またはアリール中の少なくとも1つの水素がフッ素もしくはトリフルオロメチルで置き換えられた、炭素数7~20のフルオロアリールアルキルを示し、A1は付加重合性官能基を示す。)

Description

フッ素系重合体含有光硬化性組成物
 本発明は、フッ素系重合体含有光硬化性組成物に関する。さらに本発明は、フッ素系重合体含有光硬化性組成物より得られる硬化膜に関する。
 従来、各種の基材の表面に皮膜を形成して基材の保護、撥水性、撥油性、絶縁性、非粘着性、防汚性などを付与する表面改質剤の研究が種々行われている。方法としては、例えばフッ素樹脂、シリコーン樹脂などからなる塗料を基材に塗布して撥水性を改良する方法がある。
 例えば、特許文献1には、シリコーン含有フッ素系共重合体又はそれを含む組成物からなる塗膜であって、XPSで測定された塗膜表面に存在するSi原子の原子数及びF原子の原子数が一定割合を占める塗膜が提案されている。
 また、特許文献2には、分子内に一つの付加重合性官能基を有するフルオロシルセスキオキサン由来の構成単位と、付加重合性官能基を有するオルガノポリシロキサン由来の構成単位と、付加重合性単量体由来の構成単位であって側鎖に重合性不飽和結合を有する基を有する構成単位とを必須成分とした付加共重合体が、優れた撥水・撥油性を有し、表面改質剤として有用であることが開示されている。
 また、特許文献3には、炭素原子数4~6のフッ素化アルキル基を有する重合性不飽和単量体と、シリコーン基を有する重合性不飽和単量体と、反応性官能基を有する重合性不飽和単量体とを必須の単量体成分として共重合させて得られる重合体に、前記反応性官能基に対して反応性を有する官能基及び重合性不飽和基を有する化合物を反応させて得られる重合体からなる含フッ素重合性樹脂を含有する活性エネルギー線硬化性組成物が提案されている。
特開2006-167490号公報 国際公開第2008/072766号 特開2013-87213号公報
 特許文献2において提案されている活性エネルギー線硬化性組成物から得られる硬化膜は、マジックなどによる汚れをはじき、また拭き取り性も良好であるという特性を有することが出来る。
 近年、電子機器の小型化、薄型化に伴い、そのディスプレイを保護するためのコーティング材料への要求はますます高まり、特に、屋外での使用も多いスマートフォンやタブレットなどの携帯電子機器のディスプレイをより快適に使用するために高いレベルで汚れや傷から守ることが要求されている。また、眼鏡やサングラスなどの光学部材も薄型化、高性能化が進んでおり、保護材への透明性と耐摩耗性の要求がより一層要求されている。
 そこで、本発明は、スマートフォンやタブレットなど、携帯電子機器のディスプレイや、眼鏡やサングラスなどの光学部材などに使用可能な高い透明性を有し、かつ十分に汚れや傷から守ることが出来る耐摩耗性の高いコーティングのための樹脂組成物および、コーティング材料を提供することを目的とする。
 本発明者らは、上記の観点から鋭意研究した結果、特定のフッ素系重合体(A)とウレタン(メタ)アクリレート(B)とを組み合わせることにより、それを含む組成物を硬化して得られる硬化膜が優れた透明性、耐摩耗性を有することを見出し、本発明を完成させた。
 すなわち、本発明の実施形態には、以下の構成が含まれる。
[1] フッ素系重合体(A)、ウレタン(メタ)アクリレート(B)および光重合開始剤(C)を含有する光硬化性組成物であって、
 フッ素系重合体(A)が、式(1)で表される、分子内に一つの付加重合性官能基を有するフルオロシルセスキオキサンに由来する構成単位A-1、および、付加重合性単量体由来の構成単位であって側鎖に重合性不飽和結合を有する基を有する構成単位A-2を含む重合体である光硬化性組成物。
Figure JPOXMLDOC01-appb-C000005

(式中、R ~R はそれぞれ独立して、任意のメチレンが酸素で置き換えられていてもよい、炭素数1~20のフルオロアルキル;少なくとも1つの水素がフッ素もしくはトリフルオロメチルで置き換えられた、炭素数6~20のフルオロアリール;またはアリール中の少なくとも1つの水素がフッ素もしくはトリフルオロメチルで置き換えられた、炭素数7~20のフルオロアリールアルキルを示し、Aは付加重合性官能基を示す。)
[2] 式(1)におけるR ~R がそれぞれ独立して、3,3,3-トリフルオロプロピル、3,3,4,4,4-ペンタフルオロブチル、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル、トリデカフルオロ-1,1,2,2-テトラヒドロオクチル、ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル、ヘンイコサフルオロ-1,1,2,2-テトラヒドロドデシル、ペンタコサフルオロ-1,1,2,2-テトラヒドロテトラデシル、(3-ヘプタフルオロイソプロポキシ)プロピル、ペンタフルオロフェニルプロピル、ペンタフルオロフェニル、およびα,α,α-トリフルオロメチルフェニルからなる群より選ばれる、[1]に記載の光硬化性組成物。
[3] 式(1)におけるR ~R がそれぞれ独立して、3,3,3-トリフルオロプロピル、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル、およびトリデカフルオロ-1,1,2,2-テトラヒドロオクチルからなる群より選ばれる、[1]に記載の光硬化性組成物。
[4] 前記構成単位A-2の重合性不飽和結合を有する基がウレタン結合を介して主鎖と結合された(メタ)アクリルである、[1]~[3]のいずれかに記載の光硬化性組成物。
[5] フッ素系重合体(A)が、下記式(2)で表される付加重合性官能基を有するオルガノポリシロキサンに由来する構成単位A-3をさらに含む重合体である、[1]~[4]のいずれかに記載の光硬化性組成物。
Figure JPOXMLDOC01-appb-C000006

(式中、nは1~1,000の整数であり;RおよびRは、それぞれ独立してメチル、フェニルまたは3,3,3-トリフルオロプロピルであり;RおよびRは、それぞれ独立してメチルまたはフェニルであり;Rはメチル、エチル、プロピル、ブチル、イソブチル、フェニル、3,3,3-トリフルオロプロピル、3,3,4,4,4-ペンタフルオロブチル、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル、トリデカフルオロ-1,1,2,2-テトラヒドロオクチル、ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル、ヘンイコサフルオロ-1,1,2,2-テトラヒドロドデシル、ペンタコサフルオロ-1,1,2,2-テトラヒドロテトラデシル、(3-ヘプタフルオロイソプロポキシ)プロピル、ペンタフルオロフェニルプロピル、ペンタフルオロフェニル、およびα,α,α-トリフルオロメチルフェニルからなる群より選ばれ;Aは付加重合性官能基である。)
[6] 式(2)におけるR、R、RおよびRは、それぞれ同時にメチルであり、Aが(メタ)アクリルである、[5]に記載の光硬化性組成物。
[7] さらに、無機の微粒子(D)を含有する、[1]~[6]のいずれかに記載の光硬化性組成物。
[8] 前記無機の微粒子(D)が、表面改質されたコロイダルシリカである、[7]に記載の光硬化性組成物。
[9] ウレタン(メタ)アクリレート(B)が、40℃における粘度が20,000mPa・s以下の6官能のウレタン(メタ)アクリレートである、[1]~[8]のいずれかに記載の光硬化性組成物。
[10] 全固形分100重量%に対して、ウレタン(メタ)アクリレート(B)を50重量%~98重量%含む、[9]に記載の光硬化性組成物。
[11] [1]~[10]のいずれかに記載の光硬化性組成物を硬化してなる硬化膜。
[12] フッ素系重合体(A)、40℃における粘度が20,000mPa・s以下の6官能のウレタン(メタ)アクリレート(B)、光重合開始剤(C)および無機微粒子(D)を含む光硬化性組成物を硬化してなる硬化膜であって、
 該光硬化性組成物について、評価法1におけるΔヘーズが3以下である硬化膜。
 フッ素系重合体(A)が、式(1)で表される、分子内に一つの付加重合性官能基を有するフルオロシルセスキオキサンに由来する構成単位A-1、付加重合性単量体由来の構成単位であって側鎖に重合性不飽和結合を有する基を有する構成単位A-2および式(2)で表される付加重合性官能基を有するオルガノポリシロキサンに由来する構成単位A-3を含む重合体であり、
 式(1)において、R ~R がそれぞれ独立して、3,3,3-トリフルオロプロピル、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル、またはトリデカフルオロ-1,1,2,2-テトラヒドロオクチルであり;Aが付加重合性官能基であり、
 A-2の重合性不飽和結合を有する基がウレタン結合を介して主鎖と結合された(メタ)アクリルであり、
 式(2)において、nは1~1,000の整数であり、R、R、RおよびRは、それぞれ同時にメチルであり、Rはブチルであり、Aが(メタ)アクリルである。
Figure JPOXMLDOC01-appb-C000007

Figure JPOXMLDOC01-appb-C000008

[評価法1]
 厚さ100μmのポリエチレンテレフタレート(PET)フィルム基材上に、前記光硬化性組成物よりなる5μmの厚さの硬化膜を形成する。
 この硬化膜付きPETに対し、ASTM D1044に準拠して濁度(ヘーズ)(%)を測定し、1kg(9.8N)の荷重をかけた状態でテーバー摩耗試験を行った後にASTM D1044に準拠してヘーズ(%)を測定し、その差Δヘーズ(%)を求める。
Δヘーズ(%)=(1kg(9.8N)の荷重をかけた状態でテーバー摩耗試験を行った後のヘーズ(%))-(テーバー摩耗試験を行う前のヘーズ(%))
[13] [11]または[12]に記載の硬化膜を含む積層体。
[14] [11]もしくは[12]に記載の硬化膜、または[13]に記載の積層体を含む光学部材。
 本発明のフッ素系重合体含有光硬化性組成物を硬化することにより得られる硬化膜は、優れた透明性、耐摩耗性を有する。
 以下、本発明の実施の形態について詳細に説明するが、以下の説明は、本発明の実施態様の一例(代表例)であり、本発明はこれらの内容に何ら限定されない。また、本発明の実施態様は適宜組み合わせることもできる。
 本発明において、付加重合性とは、付加重合しうることを意味し、付加重合性単量体とは、付加重合しうる単量体を意味し、付加重合性官能基とは、付加重合しうる官能基を意味する。
 本発明の一実施形態である光硬化性組成物(以下、本発明の組成物ともいう。)は、フッ素系重合体(A)(以下、重合体Aまたは(A)成分ともいう。)、ウレタン(メタ)アクリレート(B)(以下、(B)成分ともいう。)および光重合開始剤(C)(以下、(C)成分ともいう。)を含有し、フッ素系重合体(A)が、分子内に一つの付加重合性官能基を有するフルオロシルセスキオキサンに由来する構成単位A-1、付加重合性単量体由来の構成単位であって側鎖に重合性不飽和結合を有する基を有する構成単位A-2を含む重合体であり、前記構成単位A-1が下記式(1)で表されるフルオロシルセスキオキサンに由来する。なお、「由来する」とは、各モノマーがフッ素系重合体(A)を構成したときの重合残基を意味する。
Figure JPOXMLDOC01-appb-C000009

(式中、R ~R はそれぞれ独立して、任意のメチレンが酸素で置き換えられていてもよい、炭素数1~20のフルオロアルキル;少なくとも1つの水素がフッ素もしくはトリフルオロメチルで置き換えられた、炭素数6~20のフルオロアリール;またはアリール中の少なくとも1つの水素がフッ素もしくはトリフルオロメチルで置き換えられた、炭素数7~20のフルオロアリールアルキルを示し、Aは付加重合性官能基を示す。)
 「フッ素系重合体(A)中の構成単位A-1のモル分率(%)」を「a」で表し、「重合体中の構成単位A-2のモル分率(%)」を「b」で表し、「後述する、重合体中の構成単位A-3のモル分率(%)」を「c」で表し、「後述する、重合体中の構成単位D(構成単位A-1~A-3以外の構成単位)のモル分率(%)」を「d」で表すと、それぞれ、0<a<100、0<b<100、0≦c<100、0≦d<100、a+b+c+d=100を満たす。
 本発明のフッ素系重合体(A)は、例えば、フッ素原子を有する付加重合性単量体(α)と重合性不飽和結合を有する基を導入できる官能基を有する付加重合性単量体とを共重合させて前駆体の重合体を得、この官能基を介して前駆体に重合性不飽和結合を有する基を導入することによって得ることが好ましい。
<フッ素系重合体(A)>
構成単位A-1の説明
<分子内に一つの付加重合性官能基を有するフルオロシルセスキオキサン(α)>
 フルオロシルセスキオキサンは、分子構造にシルセスキオキサン骨格を有する。シルセスキオキサンとは、[(R-SiO1.5]で示される(Rは任意の置換基である)ポリシロキサンの総称である。このシルセスキオキサンの構造は、そのSi-O-Si骨格に応じて、一般的にランダム構造、ラダー構造、カゴ構造に分類される。さらに、カゴ構造はT、T10、T12型などに分類される。その中で、本発明に使用されるフルオロシルセスキオキサンは、T型[(R-SiO1.5]のカゴ構造を有する。
 上記のフルオロシルセスキオキサンは、1つの付加重合性官能基を有することを特徴とする。すなわち、シルセスキオキサン[(R-SiO1.5]のRのうちの1つが付加重合性官能基である。
 上記の付加重合性官能基の例としては、末端オレフィン型または内部オレフィン型のラジカル重合性官能基を有する基;ビニルエーテル、プロペニルエーテルなどのカチオン重合性官能基を有する基;およびビニルカルボキシル、シアノアクリロイルなどのアニオン重合性官能基を有する基が含まれるが、好ましくはラジカル重合性官能基が挙げられる。
 上記のラジカル重合性官能基には、ラジカル重合する基であれば特に制限はなく、例えばメタクリロイル、アクリロイル、アリル、スチリル、α-メチルスチリル、ビニル、ビニルエーテル、ビニルエステル、アクリルアミド、メタクリルアミド、N-ビニルアミド、マレイン酸エステル、フマル酸エステル、N-置換マレイミドなどが含まれ、中でも(メタ)アクリルまたはスチリルを含む基が好ましい。ここに(メタ)アクリルとは、アクリルおよびメタクリルの総称であり、アクリル及び/又はメタクリルを意味する。以下、同様とする。
 上記の(メタ)アクリルを有するラジカル重合性官能基の例には、以下の式(3)に示される基が含まれる。
 式(3)においてYは、炭素数2~10のアルキレンを示し、炭素数2~6のアルキレンが好ましく、炭素数3のアルキレン(プロピレン)がさらに好ましい。またRは、水素、炭素数1~5のアルキル、または炭素数6~10のアリールを示し、水素または炭素数1~3のアルキルが好ましく、水素またはメチルがより好ましい。ここで、炭素数1~5のアルキルは、直鎖状または分岐鎖状のいずれでもよい。
 また、上記のスチリルを有するラジカル重合性官能基の例には、以下の式(5)に示される基が含まれる。式(5)においてYは、単結合または炭素数1~10のアルキレンを示し、単結合または炭素数1~6のアルキレンが好ましく、単結合または炭素数1あるいは2のアルキレンがより好ましく、単結合または炭素数2のアルキレン(エチレン)が特に好ましい。またビニルは、ベンゼン環のいずれかの炭素に結合しており、好ましくはYに対してパラ位の炭素に結合している。
Figure JPOXMLDOC01-appb-C000010
 前記のフルオロシルセスキオキサンは、前記の付加重合性官能基以外のRがすべてフルオロアルキル、フルオロアリールアルキル及び/又はフルオロアリールである。
 上記のフルオロアルキルは、直鎖状または分岐鎖状のいずれでもよい。このフルオロアルキルの炭素数は1~20であり、好ましくは3~14である。さらに、このフルオロアルキルの任意のメチレンが酸素で置き換えられていてもよい。ここでメチレンとは、-CH-、-CFH-または-CF-を含む。つまり、「任意のメチレンが酸素で置き換えられてもよい」とは、-CH-、-CFH-または-CF-が-O-で置き換えられてもよいことを意味する。ただし、フルオロアルキルにおいて、2つの酸素が結合(-O-O-)していることはない。すなわちフルオロアルキルはエーテル結合を有していてもよい。また、好ましいフルオロアルキルにおいては、Siに隣接するメチレンは酸素で置き換えられることはなく、Siとは反対側の末端はCFである。さらに、-CH-または-CFH-が酸素で置き換えられるよりは、-CF-が酸素で置き換えられる方が好ましい。かかるフルオロアルキルの好ましい具体例には、3,3,3-トリフルオロプロピル、3,3,4,4,4-ペンタフルオロブチル、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル、トリデカフルオロ-1,1,2,2-テトラヒドロオクチル、ヘプタデカフルオロ-1,1,2,2-テトラヒドロドデシル、ヘンイコサフルオロ-1,1,2,2-テトラヒドロドデシル、ペンタコサフルオロ-1,1,2,2-テトラヒドロテトラデシル、(3-ヘプタフルオロイソプロポキシ)プロピルなどが含まれる。中でも、パーフルオロアルキルエチルが好ましく例示されるが、-CH-CH-を介してフルオロアルキル基が結合した基であってもよいし、-CH-を介してフルオロアルキル基が結合した基であってもよい。
 前記のフルオロアリールアルキルは、フッ素を含有するアリールを含むアルキルであって、その炭素数が7~20であるのが好ましく、さらに7~10がより好ましい。含まれるフッ素はアリール中の任意の1または2以上の水素が、フッ素またはトリフルオロメチルとして置き換えられたものが好ましい。アリール部分の例にはフェニル、ナフチルなどのほか、ヘテロアリールも含まれ、アルキル部分の例には、メチル、エチルおよびプロピルなどが含まれる。
 また、前記のフルオロアリールは、アリール中の任意の1または2以上の水素が、フッ素またはトリフルオロメチルで置き換えられているものであり、その炭素数は6~20であることが好ましく、より好ましくは6である。かかるアリールの例にはフェニル、ナフチルなどのほか、ヘテロアリールも含まれる。具体的にはペンタフルオロフェニルなどのフルオロフェニルや、トリフルオロメチルフェニルが挙げられる。
 フルオロシルセスキオキサンに含まれる前記のフルオロアルキル、フルオロアリールアルキル、またはフルオロアリールのうち、好ましい基はフルオロアルキルであり、より好ましくはパーフルオロアルキルエチルである。
 前述の通り、フルオロシルセスキオキサンは、T型の構造を有し、1つの付加重合性官能基を有し、かつR ~R はそれぞれ独立して、フルオロアルキル、フルオロアリールアルキル及び/又はフルオロアリールを有し、以下の構造式(1)で表わされる。
Figure JPOXMLDOC01-appb-C000011
 上記の式(1)において、Aは付加重合成官能基であり、前述のラジカル重合性官能基であることが好ましく、R ~R はそれぞれ独立して、任意のメチレンが酸素で置き換えられていてもよい、炭素数1~20のフルオロアルキル;少なくとも1つの水素がフッ素もしくはトリフルオロメチルで置き換えられた、炭素数6~20のフルオロアリール;またはアリール中の少なくとも1つの水素がフッ素もしくはトリフルオロメチルで置き換えられた、炭素数7~20のフルオロアリールアルキルであり、R ~R は、それぞれ相違する基であっても、すべて同一の基であってもよい。
 式(1)におけるR ~R がそれぞれ独立して、3,3,3-トリフルオロプロピル、3,3,4,4,4-ペンタフルオロブチル、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル、トリデカフルオロ-1,1,2,2-テトラヒドロオクチル、ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル、ヘンイコサフルオロ-1,1,2,2-テトラヒドロドデシル、ペンタコサフルオロ-1,1,2,2-テトラヒドロテトラデシル、(3-ヘプタフルオロイソプロポキシ)プロピル、ペンタフルオロフェニルプロピル、ペンタフルオロフェニル、およびα,α,α-トリフルオロメチルフェニルからなる群より選ばれることが好ましく、R ~R がそれぞれ独立して、3,3,3-トリフルオロプロピル、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル、およびトリデカフルオロ-1,1,2,2-テトラヒドロオクチルからなる群より選ばれることがより好ましい。
 上記の分子内に一つの付加重合性官能基を有するフルオロシルセスキオキサン(α)は、例えば、特開2004-123698号公報を参照して、合成することが出来る。
構成単位A-2の説明
<重合性不飽和結合を有する基を導入できる官能基を有する付加重合性単量体>
 上述の通り、側鎖に重合性不飽和結合を有する基を含む重合体(A)は、重合性不飽和結合を有する基を導入できる官能基を有する重合体を前駆体として得ることができる。このような重合性不飽和結合を有する基を導入できる官能基としては、活性水素を有する基や環状エーテルを含む一価の官能基を挙げることができる。活性水素とは、有機化合物の分子内に存在している水素原子のうち、電気陰性度の値が炭素以上である原子(例えば窒素原子、硫黄原子、酸素原子)と結合している水素のことである。従って、重合体(A)を得るための好ましい前駆体は活性水素を有する基を含む重合体であり、上記分子内に一つの付加重合性官能基を有するフルオロシルセスキオキサン(α)、活性水素を有する基や環状エーテルを含む一価の官能基を含む付加重合性単量体(ε)を必須成分として、好ましくは、後述する付加重合性官能基を有するオルガノポリシロキサン(γ)と共に本発明の組成物に用いられる重合体の前駆体を得ることができる。
 活性水素を有する基としては、-OH、-SH、-COOH、-NH、-NH、-CONH、-NHCONH-、-NHCOO-、Na[CH(COOC)]、-CHNO、-OOH、-SiOH、-B(OH)、-SHなどが挙げられ、カルボキシル、アミノ、ヒドロキシルが好ましく、ヒドロキシルがより好ましい。活性水素を有する基を含む付加重合性単量体(ε)としては、分子内に活性水素を有する基と付加重合性二重結合とを有する化合物であればよく、活性水素を有する基を含む、ビニル化合物、ビニリデン化合物、ビニレン化合物のいずれでもよい。好ましくは、活性水素を有する基を含む、アクリル酸誘導体、またはスチレン誘導体である。
 また、環状エーテルを含む一価の官能基としてはグリシジル、エポキシシクロヘキシル、オキセタニルなどの基が挙げられる。
 活性水素を有する基を含む付加重合性単量体としては、特開平9-208681、特開2002-348344、および特開2006-158961に開示された単量体を挙げることができる。
 具体的には以下のような単量体が挙げられる。
 カルボキシル基含有ビニルモノマーとしては、例えば、(メタ)アクリル酸、(無水)マレイン酸、マレイン酸モノアルキルエステル、フマル酸、フマル酸モノアルキルエステル、クロトン酸、イタコン酸、イタコン酸モノアルキルエステル、イタコン酸グリコールモノエーテル、シトラコン酸、シトラコン酸モノアルキルエステル、(メタ)アクリル酸ヘキサデカン及び桂皮酸などが挙げられる。
 水酸基含有ビニルモノマーとしては、ヒドロキシル基含有単官能ビニルモノマー及びヒドロキシル基含有多官能ビニルモノマーなどが用いられる。ヒドロキシル基含有単官能ビニルモノマーとしては、ビニル基を一個有するビニルモノマーが用いられ、例えば、ヒドロキシスチレン、N-メチロール(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリレート(HEMA)、ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、(メタ)アリルアルコール、クロチルアルコール、イソクロチルアルコール、1-ブテン-3-オール、2-ブテン-1-オール、2-ブテン-1,4-ジオール、プロパルギルアルコール、2-ヒドロキシエチルプロペニルエーテル(2-プロペノキシエタノール)、16-ヒドロキシヘキサデカンメタアクリレート及び庶糖アリルエーテルなどが挙げられる。ヒドロキシル基含有多官能ビニルモノマーとしては、ビニル基を複数個有するビニルモノマーが用いられ、例えば、グリセリンジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリルスリトールトリ(メタ)アクリレート、ジグリセリントリ(メタ)アクリレート、ソルビタントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、テトラグリセリンペンタ(メタ)アクリレート、グリセリンジ(メタ)アリルエーテル、トリメチロールプロパンジ(メタ)アリルエーテル、ペンタエリルスリトールトリ(メタ)アリルエーテル、ジグリセリントリ(メタ)アリルエーテル、ソルビタントリ(メタ)アリルエーテル、ジペンタエリスリトールペンタ(メタ)アリルエーテル及びテトラグリセリンペンタ(メタ)アリルエーテルなどが挙げられる。
 アミノ基含有ビニルモノマーとしては、例えば、アミノエチル(メタ)アクリレート、アミノイソプロピル(メタ)アクリレート、アミノブチル(メタ)アクリレート、アミノヘキシルメタクリレート、N-アミノエチル(メタ)アクリルアミド、(メタ)アリルアミン、クロチルアミン、アミノスチレン、メチルα-アセトアミノアクリレート、N-アリルフェニレンジアミン及び16-メタアクリロイルヘキサデカンアミンなどが挙げられる。
 また、環状エーテルを含む一価の官能基を有する(メタ)アクリル酸誘導体である付加重合性単量体には、グリシジル(メタ)アクリレートなどのエポキシ含有(メタ)アクリレート;3,4-エポキシシクロヘキシルメチル(メタ)アクリレートなどの脂環式エポキシ含有(メタ)アクリレート;3-エチル-3-(メタ)アクリロイルオキシメチルオキセタンなどのオキセタニル含有(メタ)アクリレート;4-(メタ)アクリロイルオキシメチル-2-メチル-2-エチル-1,3-ジオキソランなどのジオキソラン含有(メタ)アクリレート;などが挙げられる。
構成単位A-3の説明
<付加重合性官能基を有するオルガノポリシロキサン(γ)>
 本発明において、フッ素系重合体(A)が、下記式(2)で表される付加重合性官能基を有するオルガノポリシロキサン(γ)に由来する構成単位A-3をさらに含むことが好ましい。
Figure JPOXMLDOC01-appb-C000012

 式(2)中、nは1~1,000の整数であり;RおよびRは、それぞれ独立してメチル、フェニルまたは3,3,3-トリフルオロプロピルであり;RおよびRは、それぞれ独立してメチルまたはフェニルであり;Rはメチル、エチル、プロピル、ブチル、イソブチル、フェニル、3,3,3-トリフルオロプロピル、3,3,4,4,4-ペンタフルオロブチル、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル、トリデカフルオロ-1,1,2,2-テトラヒドロオクチル、ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル、ヘンイコサフルオロ-1,1,2,2-テトラヒドロドデシル、ペンタコサフルオロ-1,1,2,2-テトラヒドロテトラデシル、(3-ヘプタフルオロイソプロポキシ)プロピル、ペンタフルオロフェニルプロピル、ペンタフルオロフェニル、またはα,α,α-トリフルオロメチルフェニルであり;Aは付加重合性官能基である。
 また、上記式(2)においてAがラジカル重合性官能基であることが好ましく、Aが(メタ)アクリルまたはスチリルを含むことがより好ましく、Aが、下記式(3)、(4)または(5)で示されるいずれかであることがさらに好ましい。
 また、滑り性の観点から、式(2)におけるR、R、RおよびRは、それぞれ同時にメチルであり、Aが(メタ)アクリルであることがより好ましい。また、Rがブチルであることが好ましい。nが50~100であることが好ましい。
Figure JPOXMLDOC01-appb-C000013
 式(3)において、Yが炭素数2~10のアルキレンを示し、Rが水素、炭素数1~5のアルキル、または炭素数6~10のアリールを示し、式(4)において、Rは水素、炭素数1~5のアルキル、または炭素数6~10のアリールを示し、Xは炭素数が2~20のアルキレンを示し、Yは-OCHCH-、-OCH(CH)CH-、または-OCHCH(CH)-であり、pは0~3の整数であり、式(5)において、Yが単結合または炭素数1~10のアルキレンを示す。ここで、炭素数1~5のアルキルは、直鎖状または分岐鎖状のいずれでもよい。
 本発明では、上記式(3)において、Yは炭素数2~6のアルキレンが好ましく、Rは水素またはメチルが好ましく、式(4)において、Xは-CHCHCH-が好ましく、Yは-OCHCH-が好ましく、pは0または1が好ましく、Rは水素またはメチルが好ましく、式(5)においてYは単結合または炭素数1あるいは2のアルキレンが好ましい。また、上記の各有機基の好ましい態様の組み合わせは本発明に含まれる。
 本発明で好ましく用いられるオルガノポリシロキサン(γ)の例には、サイラプレーン FM0711(JNC(株)製)、サイラプレーン FM0721(JNC(株)製)、サイラプレーン FM0725 (JNC(株)製)、サイラプレーン TM0701(JNC(株)製)、サイラプレーン TM0701T(JNC(株)製)などが含まれる。
構成単位A-4の説明
<任意の付加重合性単量体(δ)>
 本発明に用いられるフッ素系重合体(A)の前駆体においては、前記の付加重合性単量体(α)、(ε)、(γ)に加え、樹脂との相溶性、レベリング性、共重合体中の重合性不飽和結合を有する基の含有量などをコントロールするため、必要に応じて単量体(α)、(β)、(γ)以外の付加重合性単量体(δ)も任意の割合で併用することができる。
 活性水素を有する基を有しない付加重合性単量体(δ)としては、1つの付加重合性二重結合を有し、活性水素を有する基を有しない(メタ)アクリル酸化合物及び1つの付加重合性二重結合を有し、活性水素を有する基を有しないスチレン化合物が挙げられる。かかる(メタ)アクリル酸化合物の具体例には、メチル(メタ)アクリレート(MMA)、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、n-ヘプチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ステアリル(メタ)アクリレートなどのアルキル(メタ)アクリレート;フェニル(メタ)アクリレート、トルイル(メタ)アクリレートなどのアリール(メタ)アクリレート;ベンジル(メタ)アクリレートなどのアリールアルキル(メタ)アクリレート;2-メトキシエチル(メタ)アクリレート、3-メトキシプロピル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレートなどのアルコキシアルキル(メタ)アクリレート;(メタ)アクリル酸のエチレンオキサイド付加物;などが含まれる。
 さらに、1つの付加重合性二重結合を有し、活性水素を有する基を有しない(メタ)アクリル酸化合物の例には、シルセスキオキサン骨格を有する(メタ)アクリル酸化合物がある。かかるシルセスキオキサン骨格を有する(メタ)アクリル酸化合物の具体例には、3-(3,5,7,9,11,13,15-ヘプタエチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)プロピル(メタ)アクリレート、3-(3,5,7,9,11,13,15-ヘプタイソブチル-ペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)プロピル(メタ)アクリレート、3-(3,5,7,9,11,13,15-ヘプタイソオクチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)プロピル(メタ)アクリレート、3-(3,5,7,9,11,13,15-ヘプタシクロペンチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)プロピル(メタ)アクリレート、3-(3,5,7,9,11,13,15-ヘプタフェニルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)プロピル(メタ)アクリレート、3-[(3,5,7,9,11,13,15-ヘプタエチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル]プロピル(メタ)アクリレート、3-[(3,5,7,9,11,13,15-ヘプタイソブチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル]プロピル(メタ)アクリレート、3-[(3,5,7,9,11,13,15-ヘプタイソオクチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル]プロピル(メタ)アクリレート、3-[(3,5,7,9,11,13,15-ヘプタシクロペンチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル]プロピル(メタ)アクリレート、3-[(3,5,7,9,11,13,15-ヘプタフェニルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル]プロピル(メタ)アクリレートなどが含まれる。
 上記の1つの付加重合性二重結合を有し、活性水素を有する基を有しないスチレン化合物の具体例には、スチレン、ビニルトルエン、α-メチルスチレン、p-クロルスチレン;などが含まれる。
 上記の1つの付加重合性二重結合を有し、活性水素を有する基を有しないスチレン化合物の例としては、さらに、シルセスキオキサンを含むスチレン化合物が含まれる。かかるシルセスキオキサンを含むスチレン誘導例には、1-(4-ビニルフェニル)-3,5,7,9,11,13,15-ヘプタエチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン、1-(4-ビニルフェニル)-3,5,7,9,11,13,15-ヘプタイソブチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン、1-(4-ビニルフェニル)-3,5,7,9,11,13,15-ヘプタイソオクチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン、1-(4-ビニルフェニル)-3,5,7,9,11,13,15-ヘプタシクロペンチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン、および1-(4-ビニルフェニル)-3,5,7,9,11,13,15-ヘプタフェニルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサンなどの、4-ビニルフェニル基を有するオクタシロキサン(T型シルセスキオキサン);および、3-(3,5,7,9,11,13,15-ヘプタエチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)エチルスチレン、3-(3,5,7,9,11,13,15-ヘプタイソブチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)エチルスチレン、3-(3,5,7,9,11,13,15-ヘプタイソオクチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)エチルスチレン、3-(3,5,7,9,11,13,15-ヘプタシクロペンチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタオクタシロキサン-1-イル)エチルスチレン、3-(3,5,7,9,11,13,15-ヘプタフェニルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イル)エチルスチレン、3-((3,5,7,9,11,13,15-ヘプタエチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル)エチルスチレン、3-((3,5,7,9,11,13,15-ヘプタイソブチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル)エチルスチレン、3-((3,5,7,9,11,13,15-ヘプタイソオクチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル)エチルスチレン、3-((3,5,7,9,11,13,15-ヘプタシクロペンチルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル)エチルスチレン、および3-((3,5,7,9,11,13,15-ヘプタフェニルペンタシクロ[9.5.1.13,9.15,15.17,13]オクタシロキサン-1-イルオキシ)ジメチルシリル)エチルスチレンなどの、4-ビニルフェニルエチル基を有するオクタシロキサン(T型シルセスキオキサン);などが含まれる。
 さらに、任意の付加重合性単量体として、スチレン、(メタ)アクリル酸エステル、シロキサン、及びアルキレンオキサイド、例えばエチレンオキサイド、プロピレンオキサイドなどから誘導された主鎖を有し、一つの重合性二重結合を有するマクロ単量体も例示される。
 付加重合性単量体(δ)の例には、二つの付加重合性二重結合を有する化合物も含まれる。
 二つの付加重合性二重結合を有する化合物の例には、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ビス[(メタ)アクリロイルオキシエトキシ]ビスフェノールA、ビス[(メタ)アクリロイルオキシエトキシ]テトラブロモビスフェノールA、ビス[(メタ)アクロキシポリエトキシ]ビスフェノールA、1,3-ビス(ヒドロキシエチル)5,5-ジメチルヒダントイン、3-メチルペンタンジオールジ(メタ)アクリレート、ヒドロキシピバリン酸エステルネオペンチルグリコール化合物のジ(メタ)アクリレートおよびビス[(メタ)アクリロイルオキシプロピル]テトラメチルジシロキサンなどのジ(メタ)アクリレート系単量体、ジビニルベンゼンが含まれる。
 さらに、スチレン、(メタ)アクリル酸エステル、シロキサン、及びアルキレンオキサイド、例えばエチレンオキサイド、プロピレンオキサイドなどから誘導された主鎖を有し、二つの重合性二重結合を有するマクロ単量体も例示される。
 付加重合性単量体(δ)の例には、付加重合性二重結合を三つ以上有する化合物も含まれる。付加重合性二重結合を三つ以上有する化合物の例には、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、トリス(2-ヒドロキシエチルイソシアネート)トリ(メタ)アクリレート、トリス(ジエチレングリコール)トリメレートトリ(メタ)アクリレート、3,7,14-トリス[(((メタ)アクリロイルオキシプロピル)ジメチルシロキシ)]-1,3,5,7,9,11,14-ヘプタエチルトリシクロ[7.3.3.15,11]ヘプタシロキサン、3,7,14-トリス[(((メタ)アクリロイルオキシプロピル)ジメチルシロキシ)]-1,3,5,7,9,11,14-ヘプタイソブチルトリシクロ[7.3.3.15,11]ヘプタシロキサン、3,7,14-トリス[(((メタ)アクリロイルオキシプロピル)ジメチルシロキシ)]-1,3,5,7,9,11,14-ヘプタイソオクチルトリシクロ[7.3.3.15,11]ヘプタシロキサン、3,7,14-トリス[(((メタ)アクリロイルオキシプロピル)ジメチルシロキシ)]-1,3,5,7,9,11,14-ヘプタシクロペンチルトリシクロ[7.3.3.15,11]ヘプタシロキサン、3,7,14-トリス[(((メタ)アクリロイルオキシプロピル)ジメチルシロキシ)]-1,3,5,7,9,11,14-ヘプタフェニルトリシクロ[7.3.3.15,11]ヘプタシロキサン、オクタキス(3-(メタ)アクリロイルオキシプロピルジメチルシロキシ)オクタシルセスキオキサンおよびオクタキス(3-(メタ)アクリロイルオキシプロピル)オクタシルセスキオキサンが含まれる。
 さらに、スチレン、(メタ)アクリル酸エステル、シロキサン、及びアルキレンオキサイド、例えばエチレンオキサイド、プロピレンオキサイドなどから誘導された主鎖を有し、重合性二重結合を三つ以上有するマクロ単量体も例示される。
 付加重合性単量体(δ)の例には、フッ素を含有する化合物も含まれる。フッ素を含有する化合物としては、分子内にフッ素原子を有する基と付加重合性二重結合とを有する化合物であればよく、フッ素原子を有するビニル化合物、ビニリデン化合物、ビニレン化合物のいずれでもよい。好ましくは、フッ素原子を有する、アクリル酸誘導体またはスチレン誘導体である。
 フッ素原子を有する付加重合性単量体の代表例としては、例えばフルオロアルキル(メタ)アクリレート、フルオロスチレンおよび含フッ素ポリエーテル化合物を挙げることができる。
 このようなフッ素原子を有する付加重合性単量体としては、特開平10-251352、特開2004-043671、特開2004-155847、特開2005-029743、特開2006-117742、特開2006-299016、および特開2005-350560に開示された単量体を挙げることができる。
 具体的には以下のような単量体が挙げられる。
 フルオロアルキル(メタ)アクリレートとしては、例えば、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロ-n-プロピル(メタ)アクリレート、2,2,3,3-テトラフルオロ-t-ペンチル(メタ)アクリレート、2,2,3,4,4,4-ヘキサフルオロブチル(メタ)アクリレート、2,2,3,4,4,4-ヘキサフルオロ-t-ヘキシル(メタ)アクリレート、2,3,4,5,5,5-ヘキサフルオロ-2,4-ビス(トリフルオロメチル)ペンチル(メタ)アクリレート、2,2,3,3,4,4-ヘキサフルオロブチル(メタ)アクリレート、2,2,2,2′,2′,2′-ヘキサフルオロイソプロピル(メタ)アクリレート、2,2,3,3,4,4,4-ヘプタフルオロブチル(メタ)アクリレート、2,2,3,3,4,4,5,5-オクタフルオロペンチル(メタ)アクリレート、2,2,3,3,4,4,5,5,5-ノナフルオロペンチル(メタ)アクリレート、2,2,3,3,4,4,5,5,6,6,7,7-ドデカフルオロヘプチル(メタ)アクリレート、3,3,4,4,5,5,6,6,7,7,8,8-ドデカフルオロオクチル(メタ)アクリレート、3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロオクチル(メタ)アクリレート、2,2,3,3,4,4,5,5,6,6,7,7,7-トリデカフルオロヘプチル(メタ)アクリレート、3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-ヘキサデカフルオロデシル(メタ)アクリレート、3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロデシル(メタ)アクリレート、3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11-オクタデカフルオロウンデシル(メタ)アクリレート、3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-ノナデカフルオロウンデシル(メタ)アクリレート、3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12-エイコサフルオロドデシル(メタ)アクリレートなどが挙げられる。
 フルオロスチレンとしては、例えば、p-トリフルオロメチルスチレン、p-ヘプタフルオロプロピルスチレン、p-ペンタフルオロエチルスチレンなどのフルオロアルキルスチレンなどが挙げられる。
 含フッ素ポリエーテル化合物の具体例としては、1H,1H-パーフルオロ-3,6-ジオキサヘプチル(メタ)アクリレート、1H,1H-パーフルオロ-3,6-ジオキサオクチル(メタ)アクリレート、1H,1H-パーフルオロ-3,6-ジオキサデカニル(メタ)アクリレート、1H,1H-パーフルオロ-3,6,9-トリオキサデカニル(メタ)アクリレート、1H,1H-パーフルオロ-3,6,9-トリオキサウンデカニル(メタ)アクリレート、1H,1H-パーフルオロ-3,6,9-トリオキサトリデカニル(メタ)アクリレート、1H,1H-パーフルオロ-3,6,9,12-テトラオキサトリデカニル(メタ)アクリレート、1H,1H-パーフルオロ-3,6,9,12-テトラオキサテトラデカニル(メタ)アクリレート、1H,1H-パーフルオロ-3,6,9,12-テトラオキサヘキサデカニル(メタ)アクリレート、1H,1H-パーフルオロ-3,6,9,12,15-ペンタオキサヘキサデカニル(メタ)アクリレート、1H,1H-パーフルオロ-3,6,9,12,15-ペンタオキサヘプタデカニル(メタ)アクリレート、1H,1H-パーフルオロ-3,6,9,12,15-ペンタオキサノナデカニル(メタ)アクリレート、1H,1H-パーフルオロ-3,6,9,12,15,18-ヘキサオキサイコサニル(メタ)アクリレート、1H,1H-パーフルオロ-3,6,9,12,15,18-ヘキサオキサドコサニル(メタ)アクリレート、1H,1H-パーフルオロ-3,6,9,12,15,18,21-ヘプタオキサトリコサニル(メタ)アクリレート、1H,1H-パーフルオロ-3,6,9,12,15,18,21-ヘプタオキサペンタコサニル(メタ)アクリレート等を挙げることができる。
 また、このようなフッ素原子を有する付加重合性単量体は、水酸基を有するフッ素化合物と、付加重合性官能基を有する酸ハロゲン化物と反応させて合成することもできる。
 このような水酸基を有するフッ素化合物としては、(HO)C(CFCH、(HO)C(CFCHCH、(HO)C(CFCHO-CH-基を有する化合物、(HO)C(CFCHCHO-CHなどが挙げられる。
 また、Exfluor Research Corporationより市販されており、購入して使用することもできる。
 また、前記の水酸基を有するフッ素化合物は、合成して使用することもでき、特開平10-147639に合成方法が記載されている。
 また、付加重合性単量体(δ)の例には、親水性基を有する化合物も含まれる。例えば、メトキシポリエチレングリコールモノ(メタ)アクリレートのようなオキシアルキレン基含有単量体が挙げられる。
 なお、上記付加重合性単量体(δ)は1種類を単独で用いてもよく、複数種を組み合わせて用いてもよい。複数種を組み合わせて用いる場合には、目的とする重合体の特性に応じて各種の組成比を適宜調整して用いることができる。
<フッ素系重合体(A)の前駆体>
 本発明に用いられるフッ素系重合体(A)(以下、重合体(A)ともいう)の前駆体は、分子内に一つの付加重合性官能基を有するフルオロシルセスキオキサン(α)由来の構成単位(構成単位A-1)と、重合性不飽和結合を有する基を導入できる官能基を有する付加重合性単量体、好ましくは活性水素を有する基を含む付加重合性単量体(ε)由来の構成単位(構成単位(A-2’))とを必須成分とする付加共重合体であって、ブロック共重合などの定序性共重合体であっても、ランダム共重合体であってもよいが、好ましくはランダム共重合体である。また、フッ素系重合体(A)は架橋構造を有していても、グラフト共重合体であってもよい。
 本発明に用いられる重合体(A)の前駆体における、構成単位A-1と構成単位A-2’のモル比率は任意であり、(a):(b)=約0.001:99.999~約99.999:0.001であればよい。構成単位A-3を含む場合は、構成単位A-1と構成単位A-2’及び構成単位A-3のモル比率は任意であり、(a):(b)=約0.001:99.999~約99.999:0.001、(b):(c)=約0.001:99.999~約99.999:0.001、(a):(c)=約0.001:99.999~約99.999:0.001であればよい。
 本発明に用いられる重合体(A)に含まれる構成単位A-2’の割合は上記(b)の範囲であれば特に制限されず、本発明に用いられる重合体は、塗布剤として使用される際に配合するバインダー樹脂との結合性を図る上で、バインダー樹脂単量体との好ましい反応性が得られる程度に、重合性不飽和結合を有する基を含んでいればよい。
 後述するように、本発明の組成物を表面改質剤として用いる場合には、(a):(b)=約1:99~約99:1であることが好ましく、構成単位A-3を含む場合は、(a):(b)=約1:99~約99:1、(b):(c)=約1:99~約99:1、(a):(c)=約1:99~約99:1であることが好ましい。
 なお、本発明に用いられるフッ素系重合体(A)が任意の構成単位(D)をさらに含む場合も、フッ素系重合体(A)またはその前駆体に含まれる構成単位A-1、構成単位A-2(または構成単位A-2’)及び構成単位(A-3)の上記モル比率は同様である。
 フッ素系重合体(A)の重量平均分子量は、構成単位A-2の含有率などによって異なるが、目安として約1000~100万である。一方、フッ素系重合体(A)の分子量分布(Mw/Mn)は、目安として約1.01~3.0程度である。
 フッ素系重合体(A)の前駆体は、例えば、分子内に一つの付加重合性官能基を有するフルオロシルセスキオキサン(α)、活性水素を有する基を有する付加重合性単量体(ε)、付加重合性官能基を有するオルガノポリシロキサン(γ)、任意の付加重合性単量体(δ)として複数種の単量体を用いる場合は、各々の単量体の比率は、目的とする共重合体の特性に応じて適宜決定すればよい。そして簡便性と汎用性に鑑みると、ラジカル共重合が好ましい。
 付加重合は、重合開始剤を用いて行うことができる。
 用いられる重合開始剤の例には、2,2′-アゾビスイソブチロニトリル、2,2′-アゾビス(2,4-ジメチルバレロニトリル)、2,2′-アゾビス(2-ブチロニトリル)、ジメチル-2,2′-アゾビスイソブチレート、1,1′-アゾビス(シクロヘキサン-1-カルボニトリル)などのアゾ化合物;ベンゾイルパーオキサイド、ラウリルパーオキサイド、オクタノイルパーオキサイド、アセチルパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド、t-ブチルパーオキシアセテート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシネオデカノエートなどの過酸化物;およびテトラエチルチウラムジスルフィドなどのジチオカルバメート;などのラジカル重合開始剤が含まれる。
 さらに重合反応の例には、リビングラジカル重合、および活性エネルギー線重合などが含まれる。
 リビングラジカル重合は、原子移動ラジカル重合;可逆的付加開裂連鎖移動;ヨウ素移動重合;イニファータ重合に代表され、以下の引用文献A~Cに記載されている重合開始剤を用いて行うことができる。
・引用文献A:  蒲池幹治、遠藤剛監修、ラジカル重合ハンドブック、1999年8月10日発行、エヌティーエス発行)。
・引用文献B:  HANDBOOK OF RADICAL POLYMERIZATION, K. Matyjaszewski, T. P. Davis, Eds., John Wiley and Sons, Canada 2002
・引用文献C:  特開2005-105265
  活性エネルギー線重合は、引用文献Dに記載の化合物を活性エネルギー線重合開始剤として用いて行うことができる。
・引用文献D:  フォトポリマー懇話会編、感光材料リストブック、1996年3月31日、ぶんしん出版発行)。
 本発明において、活性エネルギー線とは、活性種を発生する化合物を分解して活性種を発生させることのできるエネルギー線をいう。このような活性エネルギー線としては、可視光線、紫外線、赤外線、X線、α線、β線、γ線、電子線などの光エネルギー線が挙げられる。
 用いられる活性エネルギー線重合開始剤の具体例としては、紫外線や可視光線の照射によりラジカルを発生する化合物であれば特に限定しない。活性エネルギー線重合開始剤として用いられる化合物としては、ベンゾフェノン、ミヒラーズケトン、4,4′-ビス(ジエチルアミノ)ベンゾフェノン、キサントン、チオキサントン、イソプロピルキサントン、2,4-ジエチルチオキサントン、2-エチルアントラキノン、アセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒドロキシ-2-メチル-4′-イソプロピルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、カンファーキノン、ベンズアントロン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1,4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、4,4′-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4,4′-トリ(t-ブチルペルオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2-(4′-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3′,4′-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2′,4′-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2′-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4′-ペンチルオキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、4-[p-N,N-ジ(エトキシカルボニルメチル)]-2,6-ジ(トリクロロメチル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(2′-クロロフェニル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(4′-メトキシフェニル)-s-トリアジン、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-メルカプトベンゾチアゾール、3,3′-カルボニルビス(7-ジエチルアミノクマリン)、2-(o-クロロフェニル)-4,4′,5,5′-テトラフェニル-1,2′-ビイミダゾール、2,2′-ビス(2-クロロフェニル)-4,4′,5,5′-テトラキス(4-エトキシカルボニルフェニル)-1,2′-ビイミダゾール、2,2′-ビス(2,4-ジクロロフェニル)-4,4′,5,5′-テトラフェニル-1,2′-ビイミダゾール、2,2′-ビス(2,4-ジブロモフェニル)-4,4′,5,5′-テトラフェニル-1,2′-ビイミダゾール、2,2′-ビス(2,4,6-トリクロロフェニル)-4,4′,5,5′-テトラフェニル-1,2′-ビイミダゾール、3-(2-メチル-2-ジメチルアミノプロピオニル)カルバゾール、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-n-ドデシルカルバゾール、1-ヒドロキシシクロヘキシルフェニルケトン、ビス(η-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、などである。これらの化合物は単独で使用してもよく、2つ以上を混合して使用することも有効である。3,3′,4,4′-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3′,4,4′-テトラ(t-ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3′-ジ(メトキシカルボニル)-4,4′-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4′-ジ(メトキシカルボニル)-4,3′-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、4,4′-ジ(メトキシカルボニル)-3,3′-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノンなどが好ましい。
 上記の付加重合において用いられる重合開始剤の量は、単量体の総モル数に対して約0.01~10mol%とすればよい。
 また前記付加重合において、連鎖移動剤を用いてもよい。連鎖移動剤を用いることで、分子量を適切に制御することができる。連鎖移動剤の例には、チオ-β-ナフトール、チオフェノール、ブチルメルカプタン、エチルチオグリコレート、メルカプトエタノール、メルカプト酢酸、イソプロピルメルカプタン、t-ブチルメルカプタン、ドデカンチオール、チオリンゴ酸、ペンタエリスリトールテトラ(3-メルカプトプロピオネート)、ペンタエリスリトールテトラ(3-メルカプトアセテート)などのメルカプタン類;ジフェニルジサルファイド、ジエチルジチオグリコレート、ジエチルジサルファイドなどのジサルファイド類;などのほか、トルエン、メチルイソブチレート、四塩化炭素、イソプロピルベンゼン、ジエチルケトン、クロロホルム、エチルベンゼン、塩化ブチル、s-ブチルアルコール、メチルエチルケトン、メチルイソブチルケトン、塩化プロピレン、メチルクロロホルム、t-ブチルベンゼン、ブチルアルコール、イソブチルアルコール、酢酸、酢酸エチル、アセトン、ジオキサン、四塩化エタン、クロロベンゼン、メチルシクロヘキサン、t-ブチルアルコール、ベンゼンなどが含まれる。特にメルカプト酢酸は、重合体の分子量を下げて、分子量分布を均一にさせ得る。
 連鎖移動剤は単独でも、または2種以上を混合しても使用することができる。
 フッ素系の重合体(A)の具体的な製造方法は、通常の付加重合体の製造方法と同様にすればよく、例えば、溶液重合法、乳化重合法、懸濁重合法、塊状重合法、塊状-懸濁重合法、超臨界COを用いた重合法を用いることができる。
 溶液重合法による場合には、例えば、適切な溶媒中に、分子内に一つの付加重合性官能基を有するフルオロシルセスキオキサン(α)、および活性水素を有する基を含む付加重合性単量体(ε)と、必要に応じて用いることのできる付加重合性官能基を有するオルガノポリシロキサン(γ)、任意の付加重合性単量体(δ)と、さらに重合開始剤、および連鎖移動剤などを溶解して、加熱または活性エネルギー線を照射して付加重合反応させればよい。
 上記の重合反応に用いられる溶媒の例には、炭化水素系溶媒(ベンゼン、トルエンなど)、エーテル系溶媒(ジエチルエーテル、テトラヒドロフラン、ジフェニルエーテル、アニソール、ジメトキシベンゼンなど)、ハロゲン化炭化水素系溶媒(塩化メチレン、クロロホルム、クロロベンゼンなど)、ケトン系溶媒(アセトン、メチルエチルケトン、メチルイソブチルケトンなど)、アルコール系溶媒(メタノール、エタノール、プロパノール、イソプロパノール、ブチルアルコール、t-ブチルアルコールなど)、ニトリル系溶媒(アセトニトリル、プロピオニトリル、ベンゾニトリルなど)、エステル系溶媒(酢酸エチル、酢酸ブチルなど)、カーボネート系溶媒(エチレンカーボネート、プロピレンカーボネートなど)、アミド系溶媒(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド)、ハイドロクロロフルオロカーボン系溶媒(HCFC-141b、HCFC-225)、ハイドロフルオロカーボン(HFCs)系溶媒(炭素数2~4、5および6以上のHFCs)、パーフルオロカーボン系溶媒(パーフルオロペンタン、パーフルオロヘキサン)、脂環式ハイドロフルオロカーボン系溶媒(フルオロシクロペンタン、フルオロシクロブタン)、酸素含有フッ素系溶媒(フルオロエーテル、フルオロポリエーテル、フルオロケトン、フルオロアルコール)、芳香族系フッ素溶媒(α,α,α-トリフルオロトルエン、ヘキサフルオロベンゼン)、水が含まれる。これらを単独で使用してもよく、二種以上を併用してもよい。
 用いられる溶媒の量は、単量体濃度を約10~80重量%とする量であればよい。
 反応温度は特に制限されず、目安として約0~200℃であればよく、室温~約150℃が好ましい。重合反応は、単量体の種類や、溶媒の種類に応じて、減圧、常圧または加圧下で行うことができる。
 重合反応は、窒素、アルゴンなどの不活性ガス雰囲気下で行われることが好ましい。発生したラジカルが酸素と接触して失活し、重合速度が低下するのを抑制し、分子量が適切に制御された重合体を得るためである。さらに重合反応は、減圧下で溶存酸素を除去された重合系内で行われることが好ましい(減圧下で溶存酸素を除去した後、そのまま減圧下において重合反応を行ってもよい)。
 溶液中に得られた重合体は、常法により精製または単離されてもよく、その溶液のまま塗膜形成などに用いられてもよい。
 フッ素系重合体(A)を精製する場合は、再沈殿操作による精製法が好ましい。この精製法は次のように行われる。まず、重合体および未反応の単量体を含む重合反応液に、重合体は溶解しないけれども未反応の単量体は溶解するような溶剤、いわゆる沈殿剤をこの溶液に加えて重合体のみを沈殿させる。沈殿剤の好ましい使用量は、前記の重合反応液の重量に基づいて20~50倍である。好ましい沈殿剤は、重合時に用いる溶剤と相溶し、重合体を全く溶解せず、未反応の単量体のみを溶解し、沸点も比較的低い溶剤である。好ましい沈殿剤の例は低級アルコール類および脂肪族炭化水素である。特に好ましい沈殿剤はメタノール、エタノール、2-プロパノール、ヘキサン、およびヘプタンである。これらは単独で使用しても、2種類以上を混合して使用してもよい。また、混合して使用する場合は、日本アルコール販売(株)より、変性アルコールとして市販されているソルミックスAP-1、A-11などを購入して使用してもよい。そして、未反応単量体の除去効率をさらにあげるためには、再沈殿操作の繰り返し回数を多くすればよい。この方法により、重合体のみを貧溶剤中で析出させることが可能であり、濾過操作によって容易に未反応単量体と重合体とを分離することができる。
<本発明に用いられるフッ素系重合体(A)>
 重合性不飽和結合を有する基は、前述したように、フッ素系重合体の前駆体と、構成単位(E)の重合性不飽和結合を有する基を導入できる官能基(活性水素を有する基)と反応する官能基と重合性不飽和結合を有する基を同一分子内に有する化合物とを反応させることにより導入することができる。
 このような、活性水素を有する基と反応する官能基と重合性不飽和結合を有する基を同一分子内に有する化合物としては、例えば重合性不飽和結合を有するイソシアネート化合物、重合性不飽和結合を有する酸ハロゲン化物、重合性不飽和結合を有するカルボン酸化合物、重合性不飽和結合を有するカルボン酸エステル化合物およびエポキシ化合物を挙げることができる。このような重合性不飽和結合を有する基としては、ラジカル重合性基が好ましく、(メタ)アクリル、アリル、スチリルなどが挙げられる。
 (メタ)アクリルを有するイソシアネート化合物としては、以下の構造を有する化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000014

 式中、R、Rは、それぞれ独立して水素またはメチルであり、Bは酸素、炭素数1~3のアルキレン、または-OR10-である;R10は炭素数2~12のアルキレン、炭素数2~12のオキシアルキレン、炭素数6~12のアリーレンを表す。
 スチリルを有するイソシアネート化合物としては、以下の構造を有する化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000015

 式中、R11は炭素数1~10のアルキレンであり、R12は水素、またはメチルである。
 好適に用いることのできる重合性不飽和結合を有するイソシアネート化合物の具体例は、2-イソシアナトエチルメタクリレート、2-イソシアナトエチルアクリレート、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート、4-(2-イソシアナトイソプロピル)スチレンであり、好ましくは2-イソシアナトエチルメタクリレート、2-イソシアナトエチルアクリレート、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネートである。
 重合性不飽和結合を有するイソシアネート化合物と活性水素を有する基とを反応させる際には、反応を促進させる目的で、ウレタン化触媒を用いることができる。
 ウレタン化触媒としては、有機金属系ウレタン化触媒と3級アミン系ウレタン化触媒を挙げることができる。
 有機金属系ウレタン化触媒としては酢酸錫、オクチル酸錫、オレイン酸錫、ラウリン酸錫、ジブチル錫ジアセテート、ジブチル錫ジラウレート、ジブチル錫ジクロライド、オクタン酸鉛、ナフテン酸鉛、ナフテン酸ニッケル、ナフテン酸コバルトなどの有機金属系ウレタン化触媒を挙げることができる。
 3級アミン系ウレタン化触媒としては、トリエチレンジアミン、N,N,N′,N′,N′-ペンタメチルジプロピレントリアミン、N,N,N′,N′,N′-ペンタメチルジエチレントリアミン、N,N,N′,N′-テトラメチルヘキサメチレンジアミン、ビス(ジメチルアミノエチル)エーテル、2-(N,Nジメチルアミノ)-エチル-3-(N,Nジメチルアミノ)プロピルエーテル、N,N′-ジメチルシクロヘキシルアミン、N,N-ジシクロヘキシルメチルアミン、メチレンビス(ジメチルシクロヘキシル)アミン、トリエチルアミン、N,N-ジメチルアセチルアミン、N,N-ジメチルドデシルアミン、N,N-ジメチルヘキサデシルアミン、N,N,N′,N′-テトラメチル-1,3-ブタンジアミン、N,N-ジメチルベンジルアミン、モルホリン、N-メチルモルホリン、N-エチルモルホリン、N-(2-ジメチルアミノエチル)モルホリン、4,4′-オキシジエチレンジモルホリン、N,N′-ジメチルピペラジン、N,N′-ジエチルピペラジン、N,-メチル-N′-ジメチルアミノエチルピペラジン、2,4,6-トリ(ジメチルアミノメチル)フェノール、テトラメチルグアニジン、3-ジメチルアミノ-N,N-ジメチルプロピオンアミド、N,N,N′,N′-テトラ(3-ジメチルアミノプロピル)メタンジアミン、N,N-ジメチルアミノエタノール、N,N,N′,N′-テトラメチル-1,3-ジアミノ-2-プロパノール、N,N,N′-トリメチルアミノエチルエタノールアミン、1,4-ビス(2-ヒドロキシプロピル)-2-メチルピペラジン、1-(2-ヒドロキシプロピル)イミダゾール、3,3-ジアミノ-N-メチルプロピルアミン、1,8-ジアザビシクロ[5.4.0]-ウンデセン-7、N-メチル-N-ヒドロキシエチルピペラジンなどを挙げることができる。
 これらは単独で用いることもできるし、2種以上を組み合わせて用いることもできる。触媒の使用量はイソシアネート基に対して任意の量を使用することができるが、好ましくはイソシアネート基に基づいて0.0001~1モル%、より好ましくは0.001~1モル%である。
 前記重合性不飽和結合を有するイソシアネート化合物を用いてフッ素系重合体(A)を得るために、必要に応じて溶剤を用いてもよい。用いられる溶剤は、活性水素を有する基、およびイソシアネート基に対して不活性な溶剤であればよく、例えば、トルエン、キシレンなどの芳香族炭化水素系溶剤、酢酸エチル、酢酸ブチルなどのエステル系溶剤、メチルエチルケトン、シクロヘキサノンなどのケトン系溶剤、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、エチル-3-エトキシプロピオネートなどのグリコールエーテルエステル系溶剤、テトラヒドロフラン、ジオキサンなどのエーテル系溶剤、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、フルフラールなどの極性溶剤などを挙げることができ、これらは単独、または2種以上を組み合わせて用いてもよい。用いられる溶媒の量は、活性水素を有する基を含む重合体の濃度を約10~80重量%とする量であればよい。
 反応温度としては、一般的に0~120℃であり、好ましくは20~100℃である。0℃未満では反応が非常に遅くなり、また120℃を越えると重合を引き起こすことがある。
 反応時のモル比としては、イソシアネート基:活性水素を有する基=100:1~0.01:1、好ましくは20:1~0.1:1である。
 また、イソシアネート基と活性水素を有する基との反応時に、重合を抑える目的で重合禁止剤を存在させてもよい。重合禁止剤としては、p-ベンゾキノン、ナフトキノン、フェナンスラキノン、p-キシロキノン、p-トルキノン、2,6-ジクロロキノン、2,5-ジフェニル-p-ベンゾキノン、2,5-ジアセトキシ-p-ベンゾキノン、2,5-ジカプロキシ-p-ベンゾキノン、2,5-ジアシロキシ-p-ベンゾキノン、ハイドロキノン、p-t-ブチルカテコール、2,5-t-ブチルハイドロキノン、モノ-t-ブチルハイドロキノン又は2,5-ジ-t-アミルハイドロキノンなどを挙げることができ、使用量としては、フッ素系重合体(A)の前駆体と、重合性不飽和結合を有するイソシアネート化合物の総量に対して、10~10,000ppm、好ましくは50~1,000ppmである。
 一方、重合性不飽和結合を有する酸ハロゲン化物としては、例えば、アクリルクロリド、メタクリルクロリド、スチレンカルボニルクロリド、スチレンスルフォニルクロリド、2-メタクリロイルオキシエチルサクシニルクロリド、及び2-メタクリロイルオキシエチルヘキサヒドロフタリルクロリドなどのクロリド化合物や、アクリルブロミド、メタクリルブロミド、スチレンカルボニルブロミド、スチレンスルフォニルブロミド、2-メタクリロイルオキシエチルサクシニルブロミド、及び2-メタクリロイルオキシエチルヘキサヒドロフタリルブロミドなどのブロミド化合物を挙げることができ、紫外線硬化性の観点からアクリル酸、およびメタクリル酸のハロゲン化物が好ましい。
 重合性不飽和結合を有する酸ハロゲン化物を用いて、側鎖に重合性不飽和結合を有するフッ素系重合体(A)を得るには、公知のエステル化反応を利用することができる。ここで、エステル化反応は、酸ハロゲン化物と活性水素を有する基(好ましくは水酸基)との脱ハロゲン化水素反応である。
 本反応においてはハロゲン化水素が副生する。一般にはこのハロゲン化水素を反応系から除くため、反応系内にハロゲン化水素捕捉剤として塩基を共存させることが好ましい。該ハロゲン化水素捕捉剤としての塩基は特に限定されず公知のものを使用することができる。一般に好適に使用される塩基として、トリメチルアミン、トリエチルアミン、トリプロピルアミンなどのトリアルキルアミン、ピリジン、テトラメチル尿素、水酸化ナトリウム、炭酸ナトリウムなどが挙げられる。塩基の量はカルボン酸塩化物1モルに対して1モル以上用いることが好ましい。
 本反応に際しては、一般に有機溶媒を用いるのが好ましい。該溶媒として好適に使用されるものを例示すれば、ベンゼン、トルエン、キシレン、ヘキサン、ヘプタン、石油エーテル、クロロホルム、塩化メチレン、塩化エチレンなどの脂肪族又は芳香族炭化水素類或いはハロゲン化炭化水素類;ジエチルエーテル、ジオキサン、テトラヒドロフランなどのエーテル類;N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミドなどの、N,N-ジアルキルホルムアミド類;ジメチルスルホキシドなどが挙げられる。
 本反応における温度は広い範囲から選択でき、一般には-20℃~100℃好ましくは0℃~50℃の範囲から選べばよい。反応時間は原料の種類によっても違うが、通常5分~24時間、好ましくは1~4時間の範囲から選べばよい。また反応中においては撹拌を行うのが好ましい。
 通常、反応後、水洗、乾燥を行った後、溶媒を留去することにより反応生成物を分離することもできるが、反応終了後、分離操作を行わずにそのまま該反応生成物を2段目のエステル化反応に供することもできる。
 重合性不飽和結合を有するカルボン酸化合物としては、例えば、アクリル酸、メタクリル酸、ビニル安息香酸などを挙げることができる。
 重合性不飽和結合を有するカルボン酸化合物を用いて、側鎖に重合性不飽和結合を有するフッ素系重合体(A)を得るには、公知のエステル化反応を利用することができる。ここで、エステル化反応は、カルボン酸化合物と活性水素を有する基(好ましくは水酸基)との脱水縮合反応である。
 重合性不飽和結合を有するカルボン酸エステル化合物としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、1-プロピル(メタ)アクリレート、1-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレートなどを挙げることができる。
 重合性不飽和結合を有するカルボン酸エステル化合物を用いて、側鎖に重合性不飽和結合を有するフッ素系重合体(A)を得るには、公知のエステル化反応を利用することができる。ここで、エステル化反応は、カルボン酸エステル化合物と活性水素を有する基(好ましくは水酸基)とのエステル交換反応である。
 重合性不飽和結合を有するエポキシ化合物としては、例えば、グリシジル(メタ)クリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレートなどを挙げることができる。
 重合性不飽和結合を有する化合物を用いて、側鎖に重合性不飽和結合を有するフッ素系重合体(A)を得るには、環状エーテルと水酸基との公知のエポキシ開環反応を利用することができる。
 また、イソホロンジイソシアネートなどのイソシアネート基を複数個有する化合物のイソシアネート基の一部を2-ヒドロキシエチルアクリレートなどの水酸基含有付加重合性単量体とウレタン化させ、重合性不飽和結合を有するイソシアネート化合物とし、さらに、上記イソシアネート化合物と活性水素を有する基(好ましくは水酸基)とのウレタン化反応を利用し、側鎖に重合性不飽和結合を有するフッ素系重合体(A)を得ることができる。
 得られる硬化膜の耐摩耗性の観点から、樹脂組成物中、全固形分(本発明においては、光硬化性組成物から溶剤を除いた残りの成分を「固形分」という)100重量%に対して、フッ素系重合体(A)を0.01重量%~3重量%含むことが好ましく、0.5重量%~2重量%含むことがより好ましい。
<ウレタン(メタ)アクリレート(B)>
 本発明の一実施形態である光硬化性樹脂組成物は、6官能のウレタン(メタ)アクリレート(B)を含む。フッ素系重合体については、上述の特許文献2において、単独で表面改質剤として用いることもでき、必要に応じて他の樹脂(以下、バインダー樹脂)、または樹脂単量体(以下、バインダー樹脂単量体)とを組み合わせ、必要に応じて各種の溶媒に溶解または分散させて表面改質剤(いわゆるコーティング剤)として使用することができ、具体的には、マジックなどによる汚れをはじき、また拭き取り性も良好であるという特性が記載されているが、本発明者らは、特定のフッ素系重合体(A)と6官能のウレタン(メタ)アクリレート(B)とを組み合わせることにより、驚くべきことに、透明性が高く、耐摩耗性に優れる硬化膜が得られることを見出したのである。
 本発明の効果発現の観点から、ウレタン(メタ)アクリレート(B)は6官能であり、40℃における粘度が20,000mPa・s以下であることが好ましく、より好ましくは10,000mPa・s以下であり、さらに好ましくは8,000mPa・s以下である。また、好ましくは、40℃における粘度が2,000mPa・s以上である。粘度は40℃で、E型粘度計により測定する。
 ウレタン(メタ)アクリレート(B)としては、合成して用いてもよいし、市販されているものを入手して用いることもできる。
 市販品としては、例えば、EXCELATE RUA-076MG、EXCELATE
 RUA-071(亜細亜工業(株)製)、EBECRYL 1290、KRM 8200(ダイセル・オルネクス(株)製)、紫光UV-7605B(日本合成化学工業(株)製)が挙げられる。
 また、得られる硬化膜の耐摩耗性の観点から、樹脂組成物中、全固形分(光硬化性組成物から溶剤を除いた残りの成分)100重量%に対して、ウレタン(メタ)アクリレート(B)を50重量%~98重量%含むことが好ましく、53重量%~98重量%含むことがより好ましく、55重量%~97重量%含むことがさらに好ましい。
<光重合開始剤(C)>
 本発明においては、フッ素系重合体(A)とウレタン(メタ)アクリレート(B)とを混合し、これらの硬化を促進させる目的で光重合開始剤(C)を用いる。このような光重合開始剤としては紫外線や可視光線でラジカルを発生する光重合開始剤が好ましい。
 光重合開始剤としては、<フッ素系重合体(A)>の項で上述した活性エネルギー線重合開始剤を使用することができる。
<その他の成分>
 本発明の一実施形態であるフッ素系重合体含有光硬化性組成物は、組成物の諸物性を調整する観点、及びその後の皮膜形成時の硬化の観点から、(A)~(C)以外の他の成分をさらに含有していてもよい。このような他の成分には、例えば溶媒や、フッ素系樹脂(A)以外の樹脂、無機微粒子等が挙げられる。また、前記フッ素系樹脂含有光硬化性組成物による防汚性、耐摩耗性に悪影響を及ぼさない範囲において、活性エネルギー線増感剤、重合禁止剤、重合開始助剤、レベリング剤、濡れ性改良剤、界面活性剤、可塑剤、紫外線吸収剤、酸化防止剤、帯電防止剤、シランカップリング剤、シリカやアルミナに代表される無機フィラー、有機フィラーなど、任意の成分をさらに含有させてもよい。
無機微粒子(D)
 本発明の組成物には、耐摩耗性向上の観点から、無機微粒子(D)(以下、(D)成分ともいう。)を含有することが好ましい。前記無機微粒子(D)としては、例えばシリカやアルミナが挙げられる。
 無機微粒子(D)の平均粒径はナノオーダーであれば限定されないが、1~100nmが好ましく、透明性の観点から、1~40nmであることがより好ましく、更に好ましくは1~20nmである。また、粒度分布は狭いほうが好ましい。
 無機微粒子(D)の形状は特に限定されないが、球状、不定形、りん片状等のいずれの形態であってもよい。密着性向上、透明性の観点から、球状が好ましい。なお、無機微粒子(D)の形状が球状以外の場合、無機微粒子(D)の平均粒径とは該無機微粒子(D)の平均最大径を意味する。
 また、無機微粒子(D)はシランカップリング剤等で表面処理されていてもよく、表面改質されたコロイダルシリカが好ましい。
 本発明の組成物において、(D)成分としての無機微粒子(D)の含有量は、組成物の固形分総量に対する重量%で、5~50重量%含むことが好ましく、10~45重量%含むことがより好ましい。
 本実施形態においては、樹脂組成物に無機微粒子(D)を添加して用いてもいいし、樹脂に無機微粒子(D)が分散されている市販品を用いてもよい。
 このような市販品としては、例えば、エポキシ樹脂中に40質量%ナノシリカが分散された、EVONIKINDUSTRIES製ナノシリカ分散エポキシ樹脂[Nanopox(登録商標)シリーズ(C620、F400、E500、E600、E430)]、アクリレート樹脂中に50質量%ナノシリカが分散された、Nanocryl(登録商標)シリーズ(C130、C140、C145、C146、C150、C153、C155、C165、C350)等が挙げられる。
 プラスチックス、ガラス、金属などの基材表面に皮膜を形成させ、耐摩耗性を発現させるためには、1)(A)成分~(C)成分のみを含む組成物として用いてもよく、2)さらに、バインダー樹脂およびバインダー樹脂単量体と組み合わせて使用してもよい。基材表面にこれらの機能を発現させるためには、基材と密着させることが重要であり、当該重合体を基材とより固定化するためには、バインダー樹脂と組み合わせて使用することが好ましく、さらに、3)当該重合体と反応しうる官能基を有するバインダー樹脂(以下、反応性バインダー樹脂)、当該重合体および反応性バインダー樹脂とを反応により架橋させる成分を選択することで、バインダー樹脂を介して当該重合体を基材とをより強固に固定化することができる。また、耐熱性、耐光性、耐擦傷性などの特性を必要とする用途の場合は、これらの特性を有するバインダー樹脂を選択することにより、その樹脂本来の特性を損なうことなく、表面を改質することができる。
 前記の通り、本発明の組成物は、前記1)のように(A)成分~(C)成分のみを含む組成物でコーティング剤(保護コート剤等)として用いてもよいが、前記2)のように他のバインダー樹脂と混合させてコーティング剤として用いてもよく、前記3)のようにフッ素系重合体(A)に対して反応し得るバインダー樹脂単量体(以下、反応性バインダー樹脂単量体ともいう)と混合させてコーティング剤として用いてもよい。
 バインダー樹脂は、熱可塑性樹脂、熱硬化性樹脂、活性エネルギー線硬化性樹脂のいずれでもよく、複数の種類の樹脂であってもよい。
 バインダー樹脂の例には、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、アクリロニトリル-スチレン樹脂、アクリロニトリル-ブタジエン-スチレン樹脂、ポリ(メタ)アクリレート樹脂、超高分子量ポリエチレン、ポリ-4-メチルペンテン、シンジオタクチックポリスチレン、ポリアミド(ナイロン6:デュポン社商品名、ナイロン6,6:デュポン社商品名、ナイロン6,10:デュポン社商品名、ナイロン6,T:デュポン社商品名、ナイロンMXD6:デュポン社商品名など)、ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン2,6-ナフタレンジカルボキシラート、など)、ポリアセタール、ポリカーボネート、ポリフェニレンオキサイド、フッ素樹脂(ポリテトラフロロエチレン、ポリフッ化ビニリデン、など)、ポリフェニレンスルフィド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリアリレート(Uポリマー:ユニチカ(株)商品名、ベクトラ:ポリプラスチックス(株)商品名、など)、ポリイミド(カプトン:東レ(株)商品名、オーラム:三井化学(株)商品名、など)、ポリエーテルイミド、ポリアミドイミド、フェノール樹脂、アルキド樹脂、メラミン樹脂、エポキシ樹脂、尿素樹脂、ビスマレイミド樹脂、ポリエステルウレタン樹脂、ポリエーテルウレタン樹脂およびシリコーン樹脂などが含まれる。
 これらの樹脂を単独で用いてもよいし、複数の樹脂を組み合わせて用いてもよい。
 また前記3)のように、反応性バインダー樹脂単量体を混合させて用いてもよい。特に、側鎖に重合性不飽和結合を有するフッ素系重合体と、反応性バインダー樹脂単量体とは、硬化により得られる樹脂とフッ素系重合体が架橋結合され、その結果、力学物性、表面・界面特性、相溶性に優れた複合樹脂を得ることができる。
 具体的には、側鎖に重合性不飽和結合を有するフッ素系重合体(A)とウレタン(メタ)アクリレート(B)、反応性バインダー樹脂単量体と、さらに光重合開始剤(C)を含む溶液を基板に塗布し、塗膜を乾燥および硬化させることで、バインダー樹脂との複合樹脂からなる皮膜(複合膜)を基板上に形成することができる。
 形成される複合膜は、高い防汚性、耐摩耗性を有する。
 反応性バインダー樹脂単量体の好ましい例には、紫外線照射によるラジカル硬化が可能なUV硬化型樹脂を形成する単量体が含まれる。
<UV硬化型樹脂を形成する単量体>
 紫外線照射によるラジカル硬化が可能な樹脂としては、(メタ)アクリレートモノマー、不飽和ポリエステル樹脂、ポリエステル(メタ)アクリレート樹脂、エポキシ(メタ)アクリレート樹脂、(B)成分以外のウレタン(メタ)アクリレート樹脂などのラジカル重合が可能な不飽和結合を有する樹脂を挙げることができる。
 前記(メタ)アクリレートモノマーとしては、多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物が挙げられる。例えば、ポリアルキレングリコールジ(メタ)アクリレート、エチレングリコール(メタ)アクリレート、プロピレングリコール(メタ)アクリレート、ポリエチレンポリトリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエトキシトリ(メタ)アクリレート、トリメチロールプロパンジエトキシトリ(メタ)アクリレート、トリメチロールプロパントリエトキシトリ(メタ)アクリレート、トリメチロールプロパンテトラエトキシトリ(メタ)アクリレート、トリメチロールプロパンペンタエトキシトリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどが挙げられる。また、シルセスキオキサン骨格を有する化合物で、官能基に(メタ)アクリレート基を有する化合物も挙げられる。
 前記不飽和ポリエステル樹脂としては、多価アルコールと不飽和多塩基酸(及び必要に応じて飽和多塩基酸)とのエステル化反応による縮合生成物(不飽和ポリエステル)を、重合性モノマーに溶解したものが挙げられる。
 前記不飽和ポリエステルとしては、無水マレイン酸などの不飽和酸とエチレングリコールなどのジオールとを重縮合させて製造できる。具体的にはフマル酸、マレイン酸、イタコン酸などの重合性不飽和結合を有する多塩基酸またはその無水物を酸成分とし、これとエチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、シクロヘキサン-1,4-ジメタノール、ビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物などの多価アルコールをアルコール成分として反応させ、また、必要に応じてフタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、アジピン酸、セバシン酸などの重合性不飽和結合を有していない多塩基酸又はその無水物も酸成分として加えて製造されるものが挙げられる。
 前記ポリエステル(メタ)アクリレート樹脂としては、(1)飽和多塩基酸及び/または不飽和多塩基酸と多価アルコールから得られる末端カルボキシル基のポリエステルにα,β-不飽和カルボン酸エステル基を含有するエポキシ化合物を反応して得られる(メタ)アクリレート、(2)飽和多塩基酸及び/または不飽和多塩基酸と多価アルコールから得られる末端カルボキシル基のポリエステルに水酸基含有アクリレートを反応させて得られる(メタ)アクリレート、(3)飽和多塩基酸及び/または不飽和多塩基酸と多価アルコールから得られる末端水酸基のポリエステルに(メタ)アクリル酸を反応して得られる(メタ)アクリレートが挙げられる。
 ポリエステル(メタ)アクリレートの原料として用いられる飽和多塩基酸としては、例えばフタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、アジピン酸、セバチン酸などの重合性不飽和結合を有していない多塩基酸またはその無水物とフマル酸、マレイン酸、イタコン酸などの重合性不飽和多塩基酸またはその無水物が挙げられる。さらに多価アルコール成分としては、前記不飽和ポリエステルと同様である。
 本発明に使用できるエポキシ(メタ)アクリレート樹脂としては、グリシジル基(エポキシ基)を有する化合物と、アクリル酸などの重合性不飽和結合を有するカルボキシル化合物のカルボキシル基との開環反応により生成する重合性不飽和結合を持った化合物(ビニルエステル)を、重合性モノマーに溶解したものが挙げられる。
 前記ビニルエステルとしては、公知の方法により製造されるものであり、エポキシ樹脂に不飽和一塩基酸、例えばアクリル酸またはメタクリル酸を反応させて得られるエポキシ(メタ)アクリレートが挙げられる。
 また、各種エポキシ樹脂をビスフェノール(例えばA型)またはアジピン酸、セバシン酸、ダイマー酸(ハリダイマー270S:ハリマ化成(株))などの二塩基酸で反応させ、可撓性を付与してもよい。
 原料としてのエポキシ樹脂としては、ビスフェノールAジグリシジルエーテル及びその高分子量同族体、ノボラック型グリシジルエーテル類などが挙げられる。
 前記ウレタン(メタ)アクリレート樹脂としては、例えば、ポリイソシアネートとポリヒドロキシ化合物あるいは多価アルコール類とを反応させた後、更に水酸基含有(メタ)アクリル化合物及び必要に応じて水酸基含有アリルエーテル化合物を反応させることによって得ることができるラジカル重合性不飽和基含有オリゴマーが挙げられる。
 前記ポリイソシアネートとしては、具体的には2,4-トリレンジイソシアネートおよびその異性体、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、水添キシリレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、ナフタリンジイソシアネート、トリフェニルメタントリイソシアネート、バーノックD-750、クリスボンNK(商品名;DIC(株)製)、デスモジュールL(商品名;住化コベストロウレタン(株)製)、コロネートL(商品名;東ソー(株)製)、タケネートD102(商品名;三井化学(株)製)、アイソネート143L(商品名;ダウ・ケミカル日本(株)製)などが挙げられる。
 前記ポリヒドロキシ化合物としては、ポリエステルポリオール、ポリエーテルポリオールなどが挙げられ、具体的にはグリセリン-エチレンオキシド付加物、グリセリン-プロピレンオキシド付加物、グリセリン-テトラヒドロフラン付加物、グリセリン-エチレンオキシド-プロピレンオキシド付加物、トリメチロールプロパン-エチレンオキシド付加物、トリメチロールプロパン-プロピレンオキシド付加物、トリメチロールプロパン-テトラヒドロフラン付加物、トリメチロールプロパン-エチレンオキシド-プロピレンオキシド付加物、ジペンタエスリトール-エチレンオキシド付加物、ジペンタエスリトール-プロピレンオキシド付加物、ジペンタエスリトール-テトラヒドロフラン付加物、ジペンタエスリトール-エチレンオキシド-プロピレンオキシド付加物などが挙げられる。
 前記多価アルコール類としては、具体的には、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、2-メチル-1,3-プロパンジオール、1,3-ブタンジオール、ビスフェノールAとプロピレンオキシドまたはエチレンオキシドとの付加物、1,2,3,4-テトラヒドロキシブタン、グリセリン、トリメチロールプロパン、1,3-ブタンジオール、1,2-シクロヘキサングリコール、1,3-シクロヘキサングリコール、1,4-シクロヘキサングリコール、パラキシレングリコール、ビシクロヘキシル-4,4-ジオール、2,6-デカリングリコール、2,7-デカリングリコールなどが挙げられる。
 前記水酸基含有(メタ)アクリル化合物としては、特に限定されるものではないが、水酸基含有(メタ)アクリル酸エステルが好ましく、具体的には、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、トリス(ヒドロキシエチル)イソシアヌル酸ジ(メタ)アクリレート、ペンタエスリトールトリ(メタ)アクリレートなどが挙げられる。
 また、前記アクリレートモノマーとしては、例えば特許第2655683号公報に開示されているように、含フッ素炭化水素基を有するシラノールとヘキサメチルシクロトリシロキサンとを重合させ、重合性不飽和基を有するクロロシランを反応させて重合を停止することによって得ることができるフッ素系ケイ素化合物が挙げられる。前記フッ素系ケイ素化合物には、好ましくは下記式(I-1)及び(I-2)(いずれもnは0~500を表し、R13は水素又はメチルを表す)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 本発明の樹脂組成物は、フッ素系重合体の濃度やフッ素系重合体含有光硬化性組成物の諸物性を調整する観点、及びその後の皮膜形成時にフッ素系重合体含有光硬化性樹脂組成物を硬化させる観点から、溶媒を含むことができる。
 また、フッ素系重合体とバインダー樹脂単量体とを溶剤に溶解させて使用してもよい。用いられる溶媒の例には、炭化水素系溶媒(ベンゼン、トルエンなど)、エーテル系溶媒(ジエチルエーテル、テトラヒドロフラン、ジフェニルエーテル、アニソール、ジメトキシベンゼンなど)、ハロゲン化炭化水素系溶媒(塩化メチレン、クロロホルム、クロロベンゼンなど)、ケトン系溶媒(アセトン、メチルエチルケトン、メチルイソブチルケトンなど)、アルコール系溶媒(メタノール、エタノール、プロパノール、イソプロパノール、ブチルアルコール、t-ブチルアルコールなど)、グリコールエーテル系溶媒(エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテルなど)、ニトリル系溶媒(アセトニトリル、プロピオニトリル、ベンゾニトリルなど)、エステル系溶媒(酢酸エチル、酢酸ブチルなど)、カーボネート系溶媒(エチレンカーボネート、プロピレンカーボネートなど)、アミド系溶媒(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド)、ハイドロクロロフルオロカーボン系溶媒(HCFC-141b、HCFC-225)、ハイドロフルオロカーボン(HFCs)系溶媒(炭素数2~4、5および6以上のHFCs)、パーフルオロカーボン系溶媒(パーフルオロペンタン、パーフルオロヘキサン)、脂環式ハイドロフルオロカーボン系溶媒(フルオロシクロペンタン、フルオロシクロブタン)、酸素含有フッ素系溶媒(フルオロエーテル、フルオロポリエーテル、フルオロケトン、フルオロアルコール)、芳香族系フッ素溶媒(α,α,α-トリフルオロトルエン、ヘキサフルオロベンゼン)、水が含まれる。これらを単独で使用してもよく、二種以上を併用してもよい。
 用いられる溶媒の量は、フッ素系重合体、およびバインダー樹脂単量体との総量が約1~50重量%であればよい。
 本発明の組成物に含有させられる、フッ素系樹脂含有光硬化性組成物の硬化性の向上及び基材への密着性を向上させる硬化助剤としては、例えば、1分子中にチオールを2個以上有する化合物が挙げられる。より具体的には、ヘキサンジチオール、デカンジチオール、1,4-ジメチルメルカプトベンゼン、ブタンジオールビスグリコレート、エチレングリコールビスチオグリコレート、トリメチロールプロパントリスチオグリコレート、ブタンジオールビスチオプロピオネート、トリメチロールプロパントリスチオプロピオネート、トリメチロールプロパントリスチオグリコレート、ペンタエリスリトールテトラキスチオプロピオネート、ペンタエリスリトールテトラキスチオグリコネート、トリスヒドロキシエチルトリスチオプロピオネート、1,4-ビス(3-メルカプトブチリルオキシ)ブタン(商品名:カレンズMT BD1、昭和電工(株)製)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)(商品名:カレンズMT PE1、昭和電工(株)製)、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン―2,4,6(1H,3H,5H)-トリオン(商品名:カレンズMT NR1、昭和電工(株)製)などが挙げられる。
<皮膜及び積層体>
 本発明の皮膜、及び皮膜を有する積層体は、前述した本発明の組成物から得られる。より具体的には、本発明の皮膜は、本発明の組成物の膜を形成する工程と、この膜を硬化させる工程とによって得られる。膜の形成は、例えば塗布によって行うことができ、膜の硬化は、通常は乾燥、加熱、及び活性エネルギー線照射の一又は二以上によって行うことができる。
 本発明の組成物を基板に塗布する方法は、特に制限されないが、スピンコート法、ロールコート法、スリットコート法、ディッピング法、スプレーコート法、グラビアコート法、リバースコート法、ロッドコート法、バーコート法、ダイコート法、キスコート法、リバースキスコート法、エアナイフコート法、カーテンコート法などがある。
 塗布される基材の例には、白板ガラス、青板ガラス、シリカコート青板ガラスなどの透明ガラス基板;ポリカーボネート、ポリエステル、アクリル樹脂、塩化ビニール樹脂、ポリアミド樹脂、ポリアミドイミド、ポリイミド、トリアセテート、ジアセテートなどの合成樹脂製シート、フィルム;ノルボルネン系樹脂を含むシクロオレフィン系樹脂(商品名;ゼオノア、ゼオネックス、日本ゼオン(株)、商品名;アートン、JSR(株)、メタクリルスチレン、ポリサルフォン、脂環式アクリル樹脂、ポリアリレートなどの光学用途に用いる透明樹脂基板;アルミニウム板、銅板、ニッケル板、ステンレス板などの金属基板;その他セラミック板、光電変換素子を有する半導体基板;ウレタンゴム、スチレンゴムなどが挙げられる。
 これらの基材は前処理をされていてもよく、前処理の例には、シランカップリング剤などによる薬品処理、サンドブラスト処理、コロナ放電処理、紫外線処理、プラズマ処理、イオンプレーティング、スパッタリング、気相反応法、真空蒸着などが含まれる。
 塗布された溶液の乾燥は、室温~約200℃の環境下で行うことができる。
 本発明においては光重合開始剤を用いるので、塗布乾燥後に、活性エネルギー線源により、光活性エネルギー線を照射して硬化させる。
 活性エネルギー線源としては特に制限はないが、用いる活性エネルギー線重合開始剤の性質に応じて、例えば低圧水銀灯、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、カーボンアーク、キセノンアーク、気体レーザー、固体レーザー、電子線照射装置、LEDランプなどが挙げられる。
 本発明の一実施形態としては、基材と、フッ素系重合体(A)、40℃における粘度が20,000mPa・s以下の6官能のウレタン(メタ)アクリレート(B)、光重合開始剤(C)および無機微粒子(D)を含む光硬化性組成物を硬化してなる硬化膜であって、該光硬化性組成物について、評価法1におけるΔヘーズが3%以下である硬化膜が好ましい。Δヘーズは、より好ましくは2.5%以下である。
 フッ素系重合体(A)は、式(1)で表される、分子内に一つの付加重合性官能基を有するフルオロシルセスキオキサンに由来する構成単位A-1、付加重合性単量体由来の構成単位であって側鎖に重合性不飽和結合を有する基を有する構成単位A-2および式(2)で表される付加重合性官能基を有するオルガノポリシロキサンに由来する構成単位A-3を含む重合体である。
[評価法1]
 厚さ100μmのポリエチレンテレフタレート(PET)フィルム基材上に、前記光硬化性組成物よりなる5μmの厚さの硬化膜を形成する。
 この硬化膜付きPETに対し、ASTM D1044に準拠して濁度(ヘーズ)を測定し、1kg(9.8N)の荷重をかけた状態でテーバー摩耗試験を行った後にASTM D1044に準拠してヘーズ(%)を測定し、その差Δヘーズを求める。
Δヘーズ(%)=(1kg(9.8N)の荷重をかけた状態でテーバー摩耗試験を行った後のヘーズ(%))-(テーバー摩耗試験を行う前のヘーズ(%))
 本発明の一実施態様としては、本発明の組成物を硬化してなる硬化膜を含む積層体も好ましい。また、上記積層体を含む光学部材も好ましい。
 すなわち、本発明の組成物により得られる皮膜(硬化膜)の用途としては、汚れ防止目的の自動車用のトップコート、ハードコート、レンズなどに用いられる光学用途の樹脂のコーティング、ディスプレイに用いられるプロテクトフィルム、保護フィルムのコーティング、タッチパネルの傷付き防止のためのコーティングなどが挙げられる。
 以下において、実施例を参照して本発明をさらに詳細に説明するが、これらの記載により本発明の範囲が限定されることはない。なお、本実施例における重量平均分子量のデータは、ポリ(メタクリル酸メチル)を標準物質としてGPC(ゲルパ-ミエーションクロマトグラフィー法)によって求めたものである。また、以下の実施例において、多官能ウレタンアクリレートは官能基数にかかわらず、(B)成分と記載する。
 本発明では次の測定方法を利用した。
1)ウレタン(メタ)アクリレートの粘度
 東機産業(株)製E型粘度計「TV-22」を用いて40℃での粘度を測定した。
2)膜厚
 (株)ニコン製デジマイクロ「MF-501+カウンタTC-101」にて塗布面と未塗布面の膜厚を測定し、その膜厚差から算出した。
3)濁度(ヘーズ)
 日本電色工業(株)製ヘーズメーター「NDH5000」を用いて、ASTM D1003に基づきヘーズを測定した。
4)全光線透過率
 日本電色工業(株)製ヘーズメーター「NDH5000」を用いて、ASTM D1003に基づき全光線透過率を測定した。
5)耐摩耗性(テーバー摩耗試験)
 (株)安田精機製作所製テーバー摩耗試験機「No.101」を用いて、ASTM D1044に基づき、CS-10の摩耗輪を使用し、1kg(9.8N)の荷重をかけて硬化膜上で100回転させた後のヘーズを測定し、試験前に測定したヘーズ値との差を算出した。評価基準において、3%以下のヘーズ差であった場合に、耐摩耗性を良好とした。
[製造例1]
 γ-メタクリロキシプロピルヘプタ(トリフルオロプロピル)-T-シルセスキオキサンの合成
 式(11)で表されるγ-メタクリロキシプロピルヘプタ(トリフルオロプロピル)-T-シルセスキオキサンを、国際公開第2008/072766号の段落0087記載の方法と同様の方法にて、合成した。
[製造例2] フッ素系重合体(A1)の合成
 <重合>
 還流冷却器、温度計および滴下ロートを取り付けた内容積500mLの四つ口フラスコに、製造例1で合成した化合物(11)を50.00g、メチルメタクリレート(MMA)を37.50g、2-ヒドロキシエチルメタクリレート(HEMA)を25.00g、片末端メタクリロキシ基変性ジメチルシリコーン(FM-0721、分子量約6,300)を12.50g、2-ブタノン(MEK)を123.89g導入し、窒素シールした。80~85℃に保ったオイルバスにセットして還流させ、15分間脱酸素を行った。次いで1.00gの2,2′-アゾビスイソブチロニトリル(AIBN)と0.11gのメルカプト酢酸を10.02gのMEKに溶解させた溶液を導入し、還流温度に保ったまま重合を開始した。3時間重合した後、1.00gのAIBNを9.01gのMEKに溶解させた溶液を導入し、さらに5時間重合を継続した。
 続いて、p-メトキシフェノール(MEHQ)を0.70g、ジ-n-ブチル錫ジラウレート(DBTDL)を0.21gを導入し、窒素シールした。オイルバスにセットし、昇温し、液温が35℃になったところで、アクリロイルオキシエチルイソシアネート(AOI、昭和電工(株)製)35.24gを導入し、反応を開始した。45℃で5時間反応した後、室温まで冷却してメタノール(MeOH)12.00gを導入して反応を終了した。4-メチル-2-ペンタノン(MIBK)を加え、30重量%になるまで希釈した。 得られた重合体(A1)のGPC分析により求めた重量平均分子量は39,700、分子量分布は1.85であった。また重合体(A1)のH-NMR測定より求めた各モノマーユニット(モノマー成分由来)の組成モル分率は化合物(11):MMA:HEMA:FM-0721=a:b:c:d=653:5971:3340:35、メタクリロイル基当量は757g/eqであった。
Figure JPOXMLDOC01-appb-C000018
[実験例1]
(塗剤調製)
 (A)成分として製造例1で得られた重合体(A1)、(B)成分として40℃におけるE型粘度計で測定された粘度が7,700mPa・sである6官能ウレタンアクリレート EXCELATE RUA-076MG(亜細亜工業(株)製)、(C)成分としてイルガキュア127(BASFジャパン(株)製)を、表1に記載の配合量で固形分濃度が35重量%になるようにプロピレングリコールモノメチルエーテルに溶解させ、コーティング液を得た。
(硬化膜作成)
 得られたコーティング液を、R.D.スペシャリティーズ社製コーティングロッド(#10)を用いて、東洋紡(株)製ポリエチレンテレフタレートフィルム(厚さ:100μm、コスモシャイン(商品名) A4300)の210cm×297cmの片面上に塗布した。
 得られた塗膜付きフィルムを、80℃の高温チャンバーで3分間乾燥させ、岩崎電気(株)製高圧水銀ランプ(H08-L41、定格 160W/cm)が付属したコンベア式UV照射装置を用いて、照度200mW/cm、露光量500mJ/cmで紫外線を照射し、膜厚5μmの透明なハードコート層を有する積層体を得た。露光量は、岩崎電気(株)製照度計(UVPF-A1/PD-365)で測定した。
 得られた硬化膜について、光学特性(全光線透過率、ヘーズ)、機械特性(耐摩耗性)を上記の方法により評価した。コーティング液の組成を表1に、評価結果を表2に示す。
[実験例2]
 (B)成分の配合量を変更し、(D)成分としてプロピレングリコールモノメチルエーテル分散シリカゾル PGM-AC-2140Y(日産化学工業(株)製)を配合した以外は実験例1と同様にして、コーティング液を調製し、塗膜を作成して硬化し、得られた硬化膜を評価した。コーティング液の組成を表1に、評価結果を表2に示す。
[実験例3]
 ウレタン(メタ)アクリレート以外の多官能モノマー NKエステルA-DPH(新中村化学工業(株)製)を配合し、(B)成分の配合量を変更した以外は実験例1と同様にして、コーティング液を調製し、塗膜を作成して硬化し、得られた硬化膜を評価した。コーティング液の組成を表1に、評価結果を表2に示す。
[実験例4]
 単官能モノマーである脂環式アクリレートモノマー SR217(米国サートマー社製)を配合し、(B)成分の配合量を変更した以外は実験例1と同様にして、コーティング液を調製し、塗膜を作成して硬化し、得られた硬化膜を評価した。コーティング液の組成を表1に、評価結果を表2に示す。
[実験例5]
 (A)成分を配合しなかった以外は実験例1と同様にして、コーティング液を調製し、塗膜を作成して硬化し、得られた硬化膜を評価した。コーティング液の組成を表1に、評価結果を表2に示す。
[実験例6]
 (B)成分の配合量を変更し、NKエステルA-DPHを配合した以外は実験例1と同様にして、コーティング液を調製し、塗膜を作成して硬化し、得られた硬化膜を評価した。コーティング液の組成を表1に、評価結果を表2に示す。
[実験例7]
 (B)成分を、40℃におけるE型粘度計で測定された粘度が35,300mPa・sである6官能ウレタンアクリレート 紫光(登録商標)UV-7600B(日本合成化学工業(株)製)に変更した以外は実験例1と同様にして、コーティング液を調製し、塗膜を作成して硬化し、得られた硬化膜を評価した。コーティング液の組成を表1に、評価結果を表2に示す。
[実験例8]
 (B)成分を、40℃におけるE型粘度計で測定された粘度が、11,300mPa・sである10官能ウレタンアクリレート EXCELATE RUA-077(亜細亜工業(株)製)に変更した以外は実験例1と同様にして、コーティング液を調製し、塗膜を作成して硬化し、得られた硬化膜を評価した。コーティング液の組成を表1に、評価結果を表2に示す。
[実験例9]
 (B)成分を、40℃におけるE型粘度計で測定された粘度が、11,000mPa・sである10官能ウレタンアクリレート 紫光(登録商標)UV-1700B(日本合成化学工業(株)製)に変更した以外は実験例1と同様にして、コーティング液を調製し、塗膜を作成して硬化し、得られた硬化膜を評価した。コーティング液の組成を表1に、評価結果を表2に示す。
[実験例10]
 (B)成分を、40℃におけるE型粘度計で測定された粘度が、63,700mPa・sである4~5官能ウレタンアクリレート 紫光(登録商標)UV-7650B(日本合成化学工業(株)製)に変更した以外は実験例1と同様にして、コーティング液を調製し、塗膜を作成して硬化し、得られた硬化膜を評価した。コーティング液の組成を表1に、評価結果を表2に示す。
 実験例1~4から、フッ素系重合体(A)、40℃における粘度が20,000mPa・s以下の6官能のウレタン(メタ)アクリレート(B)を組み合わせた組成物から得られる硬化膜は、特に、透明性と耐摩耗性に優れていることが示された。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 本発明の光硬化性組成物から得られる硬化膜は、透明性が高く、耐摩耗性に優れ、コーティングとして非常に有用である。傷付き防止目的の自動車用のトップコート、ハードコート、レンズなどに用いられる光学用途の樹脂のコーティング、ディスプレイに用いられるプロテクトフィルム、保護フィルムのコーティング、タッチパネルの傷付き防止のためのコーティングなどに利用することが可能である。特に、本発明の光硬化性組成物から得られる硬化膜を用いることで、屋外でも使用するスマートフォンやタブレットなどの携帯電子機器や、眼鏡やサングラスなどを傷から守り、より一層快適に使用することが出来る。

Claims (14)

  1.  フッ素系重合体(A)、ウレタン(メタ)アクリレート(B)および光重合開始剤(C)を含有する光硬化性組成物であって、
     フッ素系重合体(A)が、式(1)で表される、分子内に一つの付加重合性官能基を有するフルオロシルセスキオキサンに由来する構成単位A-1、および、付加重合性単量体由来の構成単位であって側鎖に重合性不飽和結合を有する基を有する構成単位A-2を含む重合体である光硬化性組成物。
    Figure JPOXMLDOC01-appb-C000001

    (式中、R ~R はそれぞれ独立して、任意のメチレンが酸素で置き換えられていてもよい、炭素数1~20のフルオロアルキル;少なくとも1つの水素がフッ素もしくはトリフルオロメチルで置き換えられた、炭素数6~20のフルオロアリール;またはアリール中の少なくとも1つの水素がフッ素もしくはトリフルオロメチルで置き換えられた、炭素数7~20のフルオロアリールアルキルを示し、Aは付加重合性官能基を示す。)
  2.  式(1)におけるR ~R がそれぞれ独立して、3,3,3-トリフルオロプロピル、3,3,4,4,4-ペンタフルオロブチル、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル、トリデカフルオロ-1,1,2,2-テトラヒドロオクチル、ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル、ヘンイコサフルオロ-1,1,2,2-テトラヒドロドデシル、ペンタコサフルオロ-1,1,2,2-テトラヒドロテトラデシル、(3-ヘプタフルオロイソプロポキシ)プロピル、ペンタフルオロフェニルプロピル、ペンタフルオロフェニル、およびα,α,α-トリフルオロメチルフェニルからなる群より選ばれる、請求項1に記載の光硬化性組成物。
  3.  式(1)におけるR ~R がそれぞれ独立して、3,3,3-トリフルオロプロピル、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル、およびトリデカフルオロ-1,1,2,2-テトラヒドロオクチルからなる群より選ばれる、請求項1に記載の光硬化性組成物。
  4.  前記構成単位A-2の重合性不飽和結合を有する基がウレタン結合を介して主鎖と結合された(メタ)アクリルである、請求項1~3のいずれか1項に記載の光硬化性組成物。
  5.  フッ素系重合体(A)が、下記式(2)で表される付加重合性官能基を有するオルガノポリシロキサンに由来する構成単位A-3をさらに含む重合体である、請求項1~4のいずれか1項に記載の光硬化性組成物。
    Figure JPOXMLDOC01-appb-C000002

    (式中、nは1~1,000の整数であり;RおよびRは、それぞれ独立してメチル、フェニルまたは3,3,3-トリフルオロプロピルであり;RおよびRは、それぞれ独立してメチルまたはフェニルであり;Rはメチル、エチル、プロピル、ブチル、イソブチル、フェニル、3,3,3-トリフルオロプロピル、3,3,4,4,4-ペンタフルオロブチル、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル、トリデカフルオロ-1,1,2,2-テトラヒドロオクチル、ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル、ヘンイコサフルオロ-1,1,2,2-テトラヒドロドデシル、ペンタコサフルオロ-1,1,2,2-テトラヒドロテトラデシル、(3-ヘプタフルオロイソプロポキシ)プロピル、ペンタフルオロフェニルプロピル、ペンタフルオロフェニル、およびα,α,α-トリフルオロメチルフェニルからなる群より選ばれ;Aは付加重合性官能基である。)
  6.  式(2)におけるR、R、RおよびRは、それぞれ同時にメチルであり、Aが(メタ)アクリルである、請求項5に記載の光硬化性組成物。
  7.  さらに、無機の微粒子(D)を含有する、請求項1~6のいずれか1項に記載の光硬化性組成物。
  8.  前記無機の微粒子(D)が、表面改質されたコロイダルシリカである、請求項7に記載の光硬化性組成物。
  9.  ウレタン(メタ)アクリレート(B)が、40℃における粘度が20,000mPa・s以下の6官能のウレタン(メタ)アクリレートである、請求項1~8のいずれか1項に記載の光硬化性組成物。
  10.  全固形分100重量%に対して、ウレタン(メタ)アクリレート(B)を50重量%~98重量%含む、請求項9に記載の光硬化性組成物。
  11.  請求項1~10のいずれか1項に記載の光硬化性組成物を硬化してなる硬化膜。
  12.  フッ素系重合体(A)、40℃における粘度が20,000mPa・s以下の6官能のウレタン(メタ)アクリレート(B)、光重合開始剤(C)および無機微粒子(D)を含む光硬化性組成物を硬化してなる硬化膜であって、
     該光硬化性組成物について、評価法1におけるΔヘーズが3以下である硬化膜。
     フッ素系重合体(A)が、式(1)で表される、分子内に一つの付加重合性官能基を有するフルオロシルセスキオキサンに由来する構成単位A-1、付加重合性単量体由来の構成単位であって側鎖に重合性不飽和結合を有する基を有する構成単位A-2および式(2)で表される付加重合性官能基を有するオルガノポリシロキサンに由来する構成単位A-3を含む重合体であり、
     式(1)において、R ~R がそれぞれ独立して、3,3,3-トリフルオロプロピル、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル、およびトリデカフルオロ-1,1,2,2-テトラヒドロオクチルからなる群より選ばれ;Aが付加重合性官能基であり、
     A-2の重合性不飽和結合を有する基がウレタン結合を介して主鎖と結合された(メタ)アクリルであり、
     式(2)において、nは1~1,000の整数であり、R、R、RおよびRは、それぞれ同時にメチルであり、Rはブチルであり、Aが(メタ)アクリルである。
    Figure JPOXMLDOC01-appb-C000003

    Figure JPOXMLDOC01-appb-C000004

    [評価法1]
     厚さ100μmのポリエチレンテレフタレート(PET)フィルム基材上に、前記光硬化性組成物よりなる5μmの厚さの硬化膜を形成する。
     この硬化膜付きPETに対し、ASTM D1044に準拠して濁度(ヘーズ)(%)を測定し、1kg(9.8N)の荷重をかけた状態でテーバー摩耗試験を行った後にASTM D1044に準拠してヘーズ(%)を測定し、その差Δヘーズ(%)を求める。
    Δヘーズ(%)=(1kg(9.8N)の荷重をかけた状態でテーバー摩耗試験を行った後のヘーズ(%))-(テーバー摩耗試験を行う前のヘーズ(%))
  13.  請求項11または12に記載の硬化膜を含む積層体。
  14.  請求項11もしくは12に記載の硬化膜、または請求項13に記載の積層体を含む光学部材。
PCT/JP2018/019036 2017-05-17 2018-05-17 フッ素系重合体含有光硬化性組成物 WO2018212263A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880032036.4A CN110621711A (zh) 2017-05-17 2018-05-17 含有氟系聚合物的光硬化性组合物
JP2019518850A JPWO2018212263A1 (ja) 2017-05-17 2018-05-17 フッ素系重合体含有光硬化性組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017098475 2017-05-17
JP2017-098475 2017-05-17

Publications (1)

Publication Number Publication Date
WO2018212263A1 true WO2018212263A1 (ja) 2018-11-22

Family

ID=64273857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019036 WO2018212263A1 (ja) 2017-05-17 2018-05-17 フッ素系重合体含有光硬化性組成物

Country Status (4)

Country Link
JP (1) JPWO2018212263A1 (ja)
CN (1) CN110621711A (ja)
TW (1) TW201900709A (ja)
WO (1) WO2018212263A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230117952A1 (en) * 2021-10-18 2023-04-20 Microcosm Technology Co., Ltd. Flexible Display Cover Substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072766A1 (ja) * 2006-12-15 2008-06-19 Chisso Corporation フッ素系重合体および樹脂組成物
JP2009197071A (ja) * 2008-02-19 2009-09-03 Chisso Corp フッ素系重合体および樹脂組成物
JP2012030532A (ja) * 2010-07-30 2012-02-16 Dainippon Printing Co Ltd 耐候ハードコートフィルム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8445613B2 (en) * 2007-03-23 2013-05-21 Jnc Corporation Polymer and surface-treating agent containing the polymer
JP5810504B2 (ja) * 2010-10-18 2015-11-11 Jnc株式会社 積層体およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072766A1 (ja) * 2006-12-15 2008-06-19 Chisso Corporation フッ素系重合体および樹脂組成物
JP2009197071A (ja) * 2008-02-19 2009-09-03 Chisso Corp フッ素系重合体および樹脂組成物
JP2012030532A (ja) * 2010-07-30 2012-02-16 Dainippon Printing Co Ltd 耐候ハードコートフィルム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ASIA INDUSTRY CO., LTD: "Synhetic resin", Retrieved from the Internet <URL:http://www.asia-kogyo.co.jp/item/sr/html> [retrieved on 20180720] *
KYOEISHA CHEMICAL CO.,LTD: "Urethane acrylate", Retrieved from the Internet <URL:https://www.kyoeisha.co.jp/product/kinou/urethaneacrylate.php> *

Also Published As

Publication number Publication date
CN110621711A (zh) 2019-12-27
JPWO2018212263A1 (ja) 2020-03-26
TW201900709A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
JP5375100B2 (ja) フッ素系重合体および樹脂組成物
JP5315717B2 (ja) フッ素系重合体および樹脂組成物
JP5050473B2 (ja) フッ素系重合体および樹脂組成物
KR101494347B1 (ko) 플루오르계 중합체 및 수지 조성물
JP5477299B2 (ja) マレイミド基で表面修飾した無機酸化物微粒子を含む硬化型組成物
JP2013173871A (ja) 組成物、帯電防止性コート剤及び帯電防止性積層体
JP5083444B2 (ja) フッ素系重合体および樹脂組成物
JP2003201444A (ja) 活性エネルギー線硬化性の帯電防止性コーティング組成物
JP2012062385A (ja) フィルム保護層用活性エネルギー線硬化型樹脂組成物及びこれを用いたフィルム
JP5315716B2 (ja) フッ素系重合体および樹脂組成物
JP2009084398A (ja) 樹脂組成物、及び樹脂組成物の製造方法
JP5315829B2 (ja) 硬化型ハードコート剤組成物
JP2004307579A (ja) 活性エネルギー線硬化性コーティング剤組成物及び該組成物から得られる硬化皮膜を有する成形品
JP6645316B2 (ja) 硬化性組成物、硬化物及び積層体
JP2014084360A (ja) 活性エネルギー線硬化型アンダーコート用組成物及び積層体
JP7024729B2 (ja) 活性エネルギー線硬化型樹脂組成物及び積層フィルム
JP4941211B2 (ja) フッ素含有樹脂組成物及び硬化皮膜
WO2018212263A1 (ja) フッ素系重合体含有光硬化性組成物
JP2006182937A (ja) 硬化性樹脂組成物及び反射防止材
JP6874312B2 (ja) ハードコート用樹脂組成物の製造方法、及びハードコート用樹脂組成物
JP2005008878A (ja) 活性エネルギー線硬化性被覆用組成物及びプラスチック成形品
WO2022209922A1 (ja) 硬化性組成物、ハードコートフィルム、ハードコートフィルムを備えた物品、画像表示装置、及びフレキシブルディスプレイ
WO2023120495A1 (ja) 光硬化性シリコーン樹脂組成物、その硬化物
JP2015071666A (ja) 硬化性樹脂組成物、硬化物、積層体、ハードコートフィルム及びフィルム積層体
WO2020162322A1 (ja) 耐光性ハードコート用硬化性組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019518850

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18802161

Country of ref document: EP

Kind code of ref document: A1