WO2018207475A1 - 自己融着高誘電シリコーンゴム組成物及び自己融着高誘電テープ - Google Patents
自己融着高誘電シリコーンゴム組成物及び自己融着高誘電テープ Download PDFInfo
- Publication number
- WO2018207475A1 WO2018207475A1 PCT/JP2018/011670 JP2018011670W WO2018207475A1 WO 2018207475 A1 WO2018207475 A1 WO 2018207475A1 JP 2018011670 W JP2018011670 W JP 2018011670W WO 2018207475 A1 WO2018207475 A1 WO 2018207475A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- self
- high dielectric
- silicone rubber
- parts
- mass
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F299/00—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
- C08F299/02—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
- C08F299/08—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J183/00—Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
- C09J183/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/14—Polysiloxanes containing silicon bound to oxygen-containing groups
- C08G77/18—Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/20—Polysiloxanes containing silicon bound to unsaturated aliphatic groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/38—Polysiloxanes modified by chemical after-treatment
- C08G77/382—Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
- C08G77/398—Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing boron or metal atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/38—Boron-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/14—Peroxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
- C08L83/06—Polysiloxanes containing silicon bound to oxygen-containing groups
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B17/00—Insulators or insulating bodies characterised by their form
- H01B17/56—Insulating bodies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/46—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/48—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
- C08G77/56—Boron-containing linkages
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2227—Oxides; Hydroxides of metals of aluminium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2237—Oxides; Hydroxides of metals of titanium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2296—Oxides; Hydroxides of metals of zinc
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/001—Conductive additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/005—Additives being defined by their particle size in general
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/006—Additives being defined by their surface area
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/20—Applications use in electrical or conductive gadgets
- C08L2203/202—Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
Definitions
- the present invention is capable of being cured well by atmospheric pressure hot air vulcanization (HAV), maintains a high dielectric constant, and provides a high dielectric insulating rubber cured product having high airtightness and rubber strength.
- HAV hot air vulcanization
- the present invention relates to a dielectric silicone rubber composition and a self-bonding high dielectric tape.
- Rubber compositions with improved dielectric constant include polyolefin, ethylene-propylene rubber, ethylene-propylene-diene copolymer, acrylic rubber and nitrile rubber as base polymers, including metal oxides and barium titanate.
- a composition containing a high dielectric substance such as dielectric ceramics or carbon black is mentioned (Patent Document 2: JP-A-2017-002218). Further, the end of the cable is often exposed to the outdoors, and a high dielectric material in which a high dielectric material is blended with a silicone rubber having excellent weather resistance has been developed (Patent Document 3: JP 2013-177558 A).
- Patent Document 4 JP-A-2015-076168. Issue gazette).
- a self-bonding high-dielectric silicone rubber composition that maintains high relative permittivity by using an alkyl peroxide as a curing agent, and that includes a conductive double oxide and a boric acid compound, and has airtightness and rubber strength.
- Patent Document 5 Japanese Patent Application Laid-Open No. 2017-039833.
- vulcanization inhibition by oxygen occurs, resulting in insufficient curing and the intended rubber. Characteristics are not obtained. Or there existed a problem that the process of fully removing oxygen was needed beforehand.
- a ⁇ -electron transfer type conductive material such as carbon black or carbon fiber is often used as a conductivity imparting material.
- a silicone rubber composition using carbon black as a conductivity imparting material is continuously molded and vulcanized for a long length such as a tape by extrusion molding or the like, the vulcanization system has a great restriction. That is, in the case of organic peroxide vulcanization, acyl peroxides such as benzoyl peroxide and 2,4-dichlorobenzoyl peroxide, which are usually used for normal pressure hot air vulcanization (HAV) of silicone rubber compositions, are carbonized.
- HAV normal pressure hot air vulcanization
- a conventional method using addition vulcanization has been generally employed.
- a platinum-based addition reaction catalyst is added to an organopolysiloxane having an alkenyl group and an organohydrogenpolysiloxane having a silicon-bonded hydrogen atom that undergoes an addition reaction with the alkenyl group, followed by curing.
- this addition reaction method has the disadvantage that the hydrosilylation reaction is easily inhibited by the catalyst poison, and the production range is limited because the reaction proceeds even at room temperature and the storage period is short. Had big problems.
- the present inventors have obtained specific (A) organopolysiloxane, (B) fumed silica whose surface has been hydrophobized with chlorosilane, hexamethyldisilazane, or the like, (C) conductive composite oxide, (D) boric acid or boric acid compound, (E) diorganopolysiloxane having both ends of molecular chain blocked with alkoxy groups, and (F) acyl-based organic peroxide.
- A organopolysiloxane
- B fumed silica whose surface has been hydrophobized with chlorosilane, hexamethyldisilazane, or the like
- C conductive composite oxide
- D boric acid or boric acid compound
- E diorganopolysiloxane having both ends of molecular chain blocked with alkoxy groups
- F acyl-based organic peroxide.
- a silicone rubber composition containing a curing agent By using a silicone rubber composition containing a curing agent, there is no inhibition of curing of the catalyst poison due to addition vulcanization, a sufficient shelf life is obtained, it has good self-fusing properties, and it can be used for extrusion molding and molding. In rendering molding, it can be cured well by atmospheric pressure hot air vulcanization (HAV), and a high dielectric insulating rubber cured product having high airtightness and rubber strength can be obtained while maintaining a high relative dielectric constant. It is possible to efficiently relieve the concentration of electric field, found to be suitable as a tape member used in the electric field relaxation layer such as a power cable connecting portion and the terminal connecting portion, the present invention has been accomplished.
- HAV atmospheric pressure hot air vulcanization
- the present invention provides a self-bonding high-dielectric silicone rubber composition and a self-bonding high-dielectric tape capable of atmospheric pressure hot air vulcanization (HAV) by the following extrusion molding or rolling by a calendar roll.
- HAV atmospheric pressure hot air vulcanization
- the conductive composite oxide of component (C) is a solid solution of zinc oxide and aluminum oxide and / or a solid solution of zinc oxide and titanium oxide, and the composite oxide has a specific resistance value of 0.1 to 10.0 ⁇ ⁇ m.
- (D) The self-bonding high dielectric silicone rubber composition according to any one of [1] to [3], wherein the component is polyorganoborosiloxane.
- HAV hot air vulcanization
- the millable silicone rubber composition is usually a high-viscosity non-liquid silicone rubber composition having no self-fluidity at room temperature (25 ° C.), and is a roll mill (for example, a two-roll mill or a three-roll mill). It means a silicone rubber composition that can be uniformly kneaded under a shearing stress by a kneader such as the above.
- the organopolysiloxane raw rubber is a non-liquid organopolysiloxane component having a high degree of polymerization (high viscosity) of 100 to 100,000 and usually not self-flowing at room temperature (25 ° C.). means.
- the silicone rubber composition of the present invention contains (A), (B), (C), (D), (E), and (F) components.
- the organopolysiloxane of component (A) is the main component (base polymer) of the present composition, and is represented by the following average composition formula (1), preferably at least two alkenyl groups bonded to silicon atoms in one molecule. Contains 2 to 10,000. R 1 n SiO (4-n) / 2 (1) (Wherein R 1 is the same or different unsubstituted or substituted monovalent hydrocarbon group, and n is a positive number from 1.95 to 2.04.) In the formula (1), R 1 is a monovalent hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms.
- Examples of the monovalent hydrocarbon group represented by R 1 include alkyl groups such as methyl group, ethyl group, propyl group and butyl group, cycloalkyl groups such as cyclohexyl group, vinyl group, allyl group, butenyl group and hexenyl group. Alkenyl group such as phenyl group, aryl group such as phenyl group and tolyl group, and aralkyl group such as ⁇ -phenylpropyl group. Some or all of the hydrogen atoms bonded to the carbon atoms of these groups may be substituted with a halogen atom, and examples thereof include a 3,3,3-trifluoropropyl group.
- a methyl group, a vinyl group, a phenyl group, and a trifluoropropyl group are preferable, and a methyl group and a vinyl group are more preferable.
- the monovalent hydrocarbon groups represented by R 1 in the molecule those in which 50 mol% or more are methyl groups are preferred, more preferably 80 mol% or more are methyl groups, It is preferable that all R 1 except the alkenyl group is a methyl group.
- n is a positive number of 1.95 to 2.04, preferably a positive number of 1.98 to 2.02. If the n value is not in the range of 1.95 to 2.04, the resulting cured product may not exhibit sufficient rubber elasticity.
- the organopolysiloxane of component (A) must have at least two alkenyl groups in one molecule, and in the formula (1), 0.001 to 10 mol% of R 1 , especially 0.8. It is preferable that 01 to 5 mol% is an alkenyl group.
- the alkenyl group is preferably a vinyl group or an allyl group, and particularly preferably a vinyl group.
- the average degree of polymerization of the component (A) organopolysiloxane is usually 100 to 100,000, preferably 1,000 to 100,000, more preferably 3,000 to 50,000, particularly preferably 4,000 to 20. , 000.
- the silicone rubber composition does not satisfy the properties as a millable rubber, and roll kneading properties and the like are remarkably deteriorated.
- this average degree of polymerization can be calculated
- the organopolysiloxane of component (A) is not particularly limited as long as it satisfies the conditions for the number of alkenyl groups in one molecule and the average degree of polymerization, but the main chain is a diorganosiloxane unit (R 1 2 SiO 2/2 , R 1 is a straight-chain diorganopolysiloxane having the same structure as described above, the same shall apply hereinafter, and having both ends of the molecular chain blocked with triorganosiloxy groups (R 1 3 SiO 1/2 ).
- both ends of the molecular chain are blocked with a trimethylsiloxy group, a dimethylvinylsiloxy group, a dimethylhydroxysiloxy group, a methyldivinylsiloxy group, a trivinylsiloxy group, etc., and in particular, at least one vinyl group is attached. What is blocked with a siloxy group is preferred.
- organopolysiloxanes may be used alone or in combination of two or more having different degrees of polymerization and molecular structures.
- the component (B), hydrophobic fumed silica acts as a filler that imparts excellent mechanical properties to the silicone rubber composition, and hydrophobizes silanol (SiOH) groups present on the surface.
- the specific surface area by the BET method of the component (B) hydrophobic fumed silica needs to be 50 m 2 / g or more, preferably 100 to 400 m 2 / g. When the specific surface area is less than 50 m 2 / g, the reinforcing effect by the component (B) may be insufficient.
- the hydrophobic fumed silica of component (B) is one that has been surface-treated with an organosilicon compound such as organopolysiloxane, organopolysilazane, chlorosilane, or alkoxysilane. These silicas may be used alone or in combination of two or more. From the viewpoint of the hydrophobicity of the fumed silica surface, reinforcing fumed silica that has been surface-treated with an organosilicon compound in advance is preferred, and foaming due to moisture volatilization during atmospheric pressure hot-air vulcanization can be suppressed.
- a component may be used individually by 1 type, or may use 2 or more types together.
- hydrophobic fumed silica as the component (B), commercially available products can be used. Examples thereof include fumed silica whose surface has been subjected to hydrophobic treatment such as 30S (manufactured by Tokuyama Corporation).
- the blending amount of the hydrophobic fumed silica as the component (B) is 10 to 100 parts by weight, preferably 15 to 80 parts by weight, more preferably 15 to 100 parts by weight of the organopolysiloxane of the component (A). ⁇ 60 parts by mass. If this blending amount deviates from the above range, not only the processability of the resulting silicone rubber composition is lowered, but also the tensile strength and tear strength of the cured silicone rubber composition obtained by curing the silicone rubber composition, etc. May have insufficient mechanical properties.
- a method for producing a conductive composite oxide there is a method in which one or two or more different kinds of metal ions are dispersed in crystal particles of a certain metal oxide and fired in a reducing atmosphere.
- a conductive composite oxide as a solid solution of zinc oxide and aluminum oxide, it can be obtained by treating zinc oxide and aluminum salt in an aqueous ammonium salt solution and calcining in a hydrogen atmosphere after dehydration. (See Japanese Patent Publication No. 62-41171).
- electroconductive complex oxide for example, as electroconductive zinc white which doped aluminum atom to zinc oxide, electroconductive zinc white (made by Honjo Chemical Co., Ltd.), electroconductive zinc oxide 23 -K (manufactured by Hakusui Tech Co., Ltd.) can be used.
- conductive complex oxides have conductivity as n-type semiconductors, and the conductivity is characterized by being hardly affected by humidity or environmental factors.
- the mechanism by which the conductivity is generated is thought to be because a surplus or a deficient electron pair of a metal atom having a different valence that is partially substituted by doping causes semiconducting conductivity.
- boric acid or boric acid compound as component (D) is used as a component that imparts self-fusing properties to the cured product of the composition, and can be used alone or in combination of two or more.
- Specific examples of boric acid compounds include boric acids such as boric anhydride, pyroboric acid, and orthoboric acid, boric acid such as trimethyl borate, triethyl borate, and trimethoxyboroxine, and derivatives of boric anhydride, dimethyldimethoxy Examples thereof include polyorganoborosiloxanes obtained by heating and condensing organoalkoxysilanes such as silane and dimethyldiethoxysilane and boric anhydride.
- the compounding amount of the component (E) is preferably 1 to 10 parts by mass, more preferably 2 to 8 parts by mass with respect to 100 parts by mass of the component (A). If the blending amount is too small, the adhesive force due to self-bonding decreases, and if it is too large, bleeding may occur from the rubber surface and the moldability may deteriorate.
- a curing agent made of an acyl organic peroxide is used.
- vulcanization is inhibited by oxygen, so that vulcanization may not sufficiently proceed by calender roll processing (rolling molding) or extrusion molding.
- addition is performed by adding a platinum-based addition reaction catalyst to an organopolysiloxane having an alkenyl group by addition vulcanization and an organohydrogenpolysiloxane having a silicon-bonded hydrogen atom that undergoes an addition reaction with the alkenyl group.
- the hydrosilylation reaction is easily inhibited by the catalyst poison, and the reaction proceeds at room temperature, so that the storage range is short, and the production range is limited. Furthermore, even if it is cured by a combination of a platinum-based catalyst and an organohydrogenpolysiloxane, sufficient self-fusing properties may not be obtained. Curing agents composed of acyl organic peroxides improve these curing agents.
- Component (F) is used in an appropriate amount effective for curing, but is 0.01 to 10 parts by weight, preferably 0.05 to 8 parts by weight per 100 parts by weight of component (A). Part. If the blending amount is less than 0.01 parts by mass, the vulcanization reaction does not proceed sufficiently, resulting in deterioration of physical properties such as a decrease in hardness and insufficient rubber strength. In addition, a large amount of decomposition product of the curing agent may be generated and a sufficient dielectric constant may not be obtained.
- a filler such as pulverized quartz, diatomaceous earth, calcium carbonate, or the like, in addition to the above components, as necessary, coloring Thermosetting silicone rubber composition such as an agent, a tear strength improver, a heat resistance improver, a flame retardant improver such as a platinum compound, an acid acceptor, a thermal conductivity improver such as alumina or silicon nitride, and a release agent
- a filler such as pulverized quartz, diatomaceous earth, calcium carbonate, or the like
- coloring Thermosetting silicone rubber composition such as an agent, a tear strength improver, a heat resistance improver, a flame retardant improver such as a platinum compound, an acid acceptor, a thermal conductivity improver such as alumina or silicon nitride, and a release agent
- Known fillers and additives may be added.
- Other components may be used alone or in combination of two or more.
- the millable silicone rubber composition of the present invention can be obtained by mixing the components constituting the composition with a known kneader such as a kneader, a Banbury mixer, or a two-roller.
- a composition containing the above components (A) to (F) is obtained as a silicone rubber composition
- a mixture is obtained by mixing organopolysiloxane (A) with hydrophobic fumed silica (B).
- the conductive composite oxide of component (C), boric acid or boric acid compound of component (D) and diorganopolysiloxane having both molecular chain ends of component (E) blocked with alkoxy groups are added to the mixture.
- -Curing conditions may be known conditions in the molding method used, preferably 100 to 500 ° C. for 10 seconds to 10 minutes, more preferably 110 to 450 ° C. for 0.2 to 60 minutes, and even more preferably 1 to 45. Can be minutes. Also, in an oven at 200 ° C. or higher, preferably 200 to 250 ° C. for the purpose of reducing low molecular siloxane components remaining in the obtained silicone rubber and removing organic peroxide decomposition products in the silicone rubber. For example, post-curing (secondary curing) may be performed for 1 hour or longer, preferably about 1 to 70 hours, more preferably 1 to 10 hours.
- the obtained cured silicone rubber has a relative dielectric constant of preferably 10 or more, more preferably 10 to 50, and still more preferably 11 to 30 in the measurement method described later. If the relative dielectric constant is less than 10, the electric field relaxation effect of dispersing the electric field concentrated on the terminal portion of the high-voltage power cable may be insufficient.
- the volume resistivity is preferably 1.0 ⁇ 10 12 to 1.0 ⁇ 10 17 ⁇ ⁇ cm, more preferably 1.0 ⁇ 10 12 to 5.0 ⁇ 10 16 ⁇ ⁇ cm, and still more preferably 1. 0 ⁇ 10 13 to 1.0 ⁇ 10 16 ⁇ ⁇ cm.
- kinematic viscosities described in Examples and Comparative Examples are measured values of kinematic viscosities at 25 ° C. using a Canon-Fenske viscometer described in JIS Z 8803: 2011.
- Example 1 75 parts by mass of an organopolysiloxane raw rubber having 99.975 mol% of dimethylsiloxane units and 0.025 mol% of dimethylvinylsiloxy units and having an average degree of polymerization of about 6,000, 99.85 mol% of dimethylsiloxane units, methyl 25 parts by mass of an organopolysiloxane raw rubber having 0.125% vinylsiloxane units and 0.025% dimethylvinylsiloxy units and an average degree of polymerization of about 6,000, and a surface having a BET adsorption specific surface area of 130 m 2 / g is hydrophobic 26 parts by mass of treated fumed silica (Aerosil R-972, manufactured by Nippon Aerosil Co., Ltd.), having a silanol group at both ends as a dispersant, an average polymerization degree of 4, and a viscosity at 25 ° C.
- treated fumed silica Aerosil R
- Conductive zinc oxide 23-K in which zinc oxide is doped with aluminum atoms as a conductive complex oxide having a specific resistance value of 2.5 ⁇ ⁇ m with respect to 128 parts by mass of the above compound (1) (manufactured by Hakusuitec Co., Ltd.) 190 parts by mass, polymethylborosiloxane obtained by mixing dimethyldimethoxysilane and boric anhydride in a molar ratio of 1: 2 and heating at 150 ° C.
- Example 2 15 parts by mass of fumed silica (Aerosil R-972, manufactured by Nippon Aerosil Co., Ltd.) having a BET adsorption specific surface area of 130 m 2 / g hydrophobized and having silanol groups at both ends as a dispersant.
- fumed silica Aerosil R-972, manufactured by Nippon Aerosil Co., Ltd.
- a composition (B) was obtained in the same manner as in Example 1 except that the blending amount of zinc 23-K (manufactured by Hakusuitec Co., Ltd.) was 170 parts by mass and p-methylbenzoyl peroxide was 1.9 parts by mass.
- Comparative Example 1 26 parts by mass of non-hydrophobized fumed silica (Aerosil 200, manufactured by Nippon Aerosil Co., Ltd.) having a BET adsorption specific surface area of 200 m 2 / g, having a silanol group at both ends as a dispersant, and an average degree of polymerization of 4 and 25 A composition (C) was obtained in the same manner as in Example 1 except that the viscosity at 15 ° C. was changed to 5 parts by mass of dimethylpolysiloxane having a viscosity of 15 mPa ⁇ s.
- a composition (C) was obtained in the same manner as in Example 1 except that the viscosity at 15 ° C. was changed to 5 parts by mass of dimethylpolysiloxane having a viscosity of 15 mPa ⁇ s.
- the relative permittivity of the sample for measuring the relative permittivity was measured using an automatic sharing bridge (device name DAC-1M-D1) manufactured by Soken Denki Co., Ltd.
- the electrodes used were a main electrode 50 mm ⁇ , a guard electrode 54 ⁇ 80 mm ⁇ , and a counter electrode 80 mm ⁇ , and the measurement frequency was 50 Hz.
- the measured value at an applied voltage of 500V was read.
- volume resistivity was measured according to JIS K 6249: 2003 by preparing a test rubber sheet having a thickness of 1 mm under the same curing conditions as those of the rubber physical properties.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Chemical & Material Sciences (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Insulating Bodies (AREA)
Abstract
自己融着高誘電シリコーンゴム組成物及び自己融着高誘電テープを提供する。 (A)下記平均組成式(1)で示され、ケイ素原子に結合したアルケニル基を1分子中に少なくとも2個含有するオルガノポリシロキサン:100質量部、 R1 nSiO(4-n)/2 (1) (式中、R1は同一又は異種の非置換又は置換の1価炭化水素基であり、nは1.95~2.04の正数である。) (B)BET吸着法による比表面積が50m2/g以上の疎水性ヒュームドシリカ:10~100質量部、 (C)導電性複合酸化物:100~300質量部、 (D)ホウ酸又はホウ酸化合物:0.1~50質量部、 (E)分子鎖両末端がアルコキシ基で封鎖されたジオルガノポリシロキサン:1~10質量部、及び (F)アシル系有機過酸化物からなる硬化剤:0.01~10質量部 を含有する押出成形又はカレンダーロールによる圧延成形で常圧熱気加硫可能な自己融着高誘電シリコーンゴム組成物。
Description
本発明は、常圧熱気加硫(HAV)により良好に硬化することができ、高い比誘電率を維持し、高い気密性とゴム強度を備える高誘電絶縁性ゴム硬化物を与える自己融着高誘電シリコーンゴム組成物及び自己融着高誘電テープに関するものである。
CVケーブル(架橋ポリエチレン絶縁ビニルシースケーブル:Cross-linked polyethylene insulated PVC sheathed Cable)をCVケーブル同士や、変圧器、架空線等を接続する場合、CVケーブル端部の外部半導電層を所定の長さに処理する必要がある。しかし、外部半導電層を除去しただけでは外部半導電層の端部に電界が集中し電気特性を損なうので、この電界の集中を緩和又は抑制するため、ケーブルしゃへい層の切り剥ぎ部にケーブル絶縁体の誘電率よりも高い比誘電率をもった誘電体からなる電界緩和層を設けることが行われている。これは、等電位線、電気ストレスが誘電率の異なる物質を通るときに屈折するという原理を利用したものである(特許文献1:特開2015-153514号公報)。比誘電率を向上させたゴム組成物としては、ポリオレフィン、エチレン-プロピレンゴム、エチレン-プロピレン-ジエン共重合体、アクリルゴム及びニトリルゴムをベースポリマーとし、金属酸化物、チタン酸バリウムをはじめとした誘電性セラミックス、カーボンブラック等の高誘電性物質を配合した組成物が挙げられる(特許文献2:特開2017-002218号公報)。また、ケーブル末端は屋外に暴露されることも多く、耐候性に優れたシリコーンゴムに高誘電物質を配合した高誘電材料が開発されている(特許文献3:特開2013-177558号公報)。一方でモールド成形されたゴム成形物は、押し広げられながら電力ケーブル端末に挿入されるため、施工の際には絶縁破壊の原因になりうる空気層混入や、作業員の個人差による特性バラツキ、挿入に時間がかかるなどの人為的な作業性の問題があった。
そこで高誘電ゴムをテープ状にして、電力ケーブル終端構造に気密性能及び耐汚損性能を付与し、作業性の効率を高めた高誘電テープが開発されている(特許文献4:特開2015-076168号公報)。
また、アルキル系過酸化物を硬化剤とし、導電性複酸化物、ホウ酸系化合物を添加した高い比誘電率を維持し、気密性とゴム強度を備える、自己融着高誘電シリコーンゴム組成物が提案されているが(特許文献5:特開2017-039833号公報)、常圧熱気加硫で加硫させると、酸素による加硫阻害が生じる為に硬化が不十分となり、目的とするゴム特性が得られない。あるいは事前に酸素を十分に除去する工程が必要になるという問題があった。
また、アルキル系過酸化物を硬化剤とし、導電性複酸化物、ホウ酸系化合物を添加した高い比誘電率を維持し、気密性とゴム強度を備える、自己融着高誘電シリコーンゴム組成物が提案されているが(特許文献5:特開2017-039833号公報)、常圧熱気加硫で加硫させると、酸素による加硫阻害が生じる為に硬化が不十分となり、目的とするゴム特性が得られない。あるいは事前に酸素を十分に除去する工程が必要になるという問題があった。
これら用途に用いられるゴム材料の比誘電率を向上させるために、導電性付与材として、カーボンブラック、カーボンファイバー等のπ電子移動型導電性物質がよく用いられる。しかしながら、導電性付与材としてカーボンブラックを使用したシリコーンゴム組成物を押出し成形などでテープなどの長尺ものを連続的に成形加硫する場合、その加硫系には非常な制約があった。即ち、有機過酸化物加硫をする場合、通常シリコーンゴム組成物の常圧熱気加硫(HAV)に使用されるベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイドなどのアシル系パーオキサイドをカーボンブラックが含まれる系に使用すると、カーボンブラックの影響で加硫が十分に行われず、満足な成形物を得ることができない。また、ジターシャルブチルパーオキサイド、ジクミルパーオキサイドなどのアルキル系パーオキサイドでは、モールドによる加圧成形は可能であるが、常圧熱気加硫では空気中の酸素の影響を受けて表面加流が十分でなく、やはり満足な製品にならないという問題点があった。
そのため、カーボンブラックを含むシリコーンゴム組成物を常圧熱気加硫しようとする場合には、従来付加加硫による方法が一般的に採用されてきた。この方法は、アルケニル基を有するオルガノポリシロキサンと、このアルケニル基と付加反応するケイ素結合水素原子を有するオルガノハイドロジェンポリシロキサンに白金系の付加反応用触媒を添加して硬化させるものである。しかし、この付加反応方式は、ヒドロシリル化反応が触媒毒によって阻害を受けやすく、また室温でも反応が進むため保存期間が短いなど、その製造範囲が限られてしまうという欠点があり、成形の際の大きな問題点を有していた。
本発明は、上記事情に鑑みなされたもので、常圧熱気加硫(HAV)により良好に硬化することができ、高い比誘電率を維持し、高い気密性とゴム強度を備える高誘電絶縁性ゴム硬化物を与える自己融着高誘電シリコーンゴム組成物及び自己融着高誘電テープを提供することを目的とする。
本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、特定の(A)オルガノポリシロキサン、(B)表面がクロロシランやヘキサメチルジシラザン等で疎水化処理されたヒュームドシリカ、(C)導電性複合酸化物、(D)ホウ酸又はホウ酸化合物、(E)分子鎖両末端がアルコキシ基で封鎖されたジオルガノポリシロキサン、及び(F)アシル系有機過酸化物からなる硬化剤を含有してなるシリコーンゴム組成物を用いることにより、付加加硫による触媒毒の硬化阻害もなく、十分な保存期間も得られ、良好な自己融着性を有し、押出成形やカレンダリング成形に際し、常圧熱気加硫(HAV)により良好に硬化することができ、高い比誘電率を維持し、高い気密性とゴム強度を備える高誘電絶縁性ゴム硬化物が得られるため、効率的に電界の集中を緩和することができ、電力ケーブル接続部や末端接続部等の電界緩和層に用いるテープ部材として好適であることを見出し、本発明をなすに至った。
従って、本発明は下記押出成形又はカレンダーロールによる圧延成形で常圧熱気加硫(HAV)可能な自己融着高誘電シリコーンゴム組成物及び自己融着高誘電テープを提供する。
〔1〕
(A)下記平均組成式(1)で示され、ケイ素原子に結合したアルケニル基を1分子中に少なくとも2個含有するオルガノポリシロキサン:100質量部、
R1 nSiO(4-n)/2 (1)
(式中、R1は同一又は異種の非置換又は置換の1価炭化水素基であり、nは1.95~2.04の正数である。)
(B)BET吸着法による比表面積が50m2/g以上の疎水性ヒュームドシリカ:10~100質量部、
(C)導電性複合酸化物:100~300質量部、
(D)ホウ酸又はホウ酸化合物:0.1~50質量部、
(E)分子鎖両末端がアルコキシ基で封鎖されたジオルガノポリシロキサン:1~10質量部、及び
(F)アシル系有機過酸化物からなる硬化剤:0.01~10質量部
を含有する押出成形又はカレンダーロールによる圧延成形で常圧熱気加硫可能な自己融着高誘電シリコーンゴム組成物。
〔2〕
(C)成分の導電性複合酸化物が酸化亜鉛と酸化アルミニウムの固溶体及び/又は酸化亜鉛と酸化チタンの固溶体であって、該複合酸化物の比抵抗値が0.1~10.0Ω・mである〔1〕記載の自己融着高誘電シリコーンゴム組成物。
〔3〕
(C)成分の導電性複合酸化物の平均粒子径が0.8μm以下である〔1〕又は〔2〕記載の自己融着高誘電シリコーンゴム組成物。
〔4〕
(D)成分がポリオルガノボロシロキサンである〔1〕~〔3〕のいずれかに記載の自己融着高誘電シリコーンゴム組成物。
〔5〕
シリコーンゴム組成物の硬化物の切断時伸びが500~1,200%である〔1〕~〔4〕のいずれかに記載の自己融着高誘電シリコーンゴム組成物。
〔6〕
シリコーンゴム組成物の硬化物の比誘電率が10以上、体積抵抗率が1.0×1012~1.0×1017Ω・cmである〔1〕~〔5〕のいずれかに記載の自己融着高誘電シリコーンゴム組成物。
〔7〕
電力ケーブルの終端部に巻きつけ、電力ケーブルの終端部に集中する電界を緩和する自己融着高誘電テープ用の〔1〕~〔6〕のいずれかに記載の自己融着高誘電シリコーンゴム組成物。
〔8〕
〔1〕~〔7〕のいずれかに記載の自己融着高誘電シリコーンゴム組成物の硬化物からなる自己融着高誘電テープ。
〔1〕
(A)下記平均組成式(1)で示され、ケイ素原子に結合したアルケニル基を1分子中に少なくとも2個含有するオルガノポリシロキサン:100質量部、
R1 nSiO(4-n)/2 (1)
(式中、R1は同一又は異種の非置換又は置換の1価炭化水素基であり、nは1.95~2.04の正数である。)
(B)BET吸着法による比表面積が50m2/g以上の疎水性ヒュームドシリカ:10~100質量部、
(C)導電性複合酸化物:100~300質量部、
(D)ホウ酸又はホウ酸化合物:0.1~50質量部、
(E)分子鎖両末端がアルコキシ基で封鎖されたジオルガノポリシロキサン:1~10質量部、及び
(F)アシル系有機過酸化物からなる硬化剤:0.01~10質量部
を含有する押出成形又はカレンダーロールによる圧延成形で常圧熱気加硫可能な自己融着高誘電シリコーンゴム組成物。
〔2〕
(C)成分の導電性複合酸化物が酸化亜鉛と酸化アルミニウムの固溶体及び/又は酸化亜鉛と酸化チタンの固溶体であって、該複合酸化物の比抵抗値が0.1~10.0Ω・mである〔1〕記載の自己融着高誘電シリコーンゴム組成物。
〔3〕
(C)成分の導電性複合酸化物の平均粒子径が0.8μm以下である〔1〕又は〔2〕記載の自己融着高誘電シリコーンゴム組成物。
〔4〕
(D)成分がポリオルガノボロシロキサンである〔1〕~〔3〕のいずれかに記載の自己融着高誘電シリコーンゴム組成物。
〔5〕
シリコーンゴム組成物の硬化物の切断時伸びが500~1,200%である〔1〕~〔4〕のいずれかに記載の自己融着高誘電シリコーンゴム組成物。
〔6〕
シリコーンゴム組成物の硬化物の比誘電率が10以上、体積抵抗率が1.0×1012~1.0×1017Ω・cmである〔1〕~〔5〕のいずれかに記載の自己融着高誘電シリコーンゴム組成物。
〔7〕
電力ケーブルの終端部に巻きつけ、電力ケーブルの終端部に集中する電界を緩和する自己融着高誘電テープ用の〔1〕~〔6〕のいずれかに記載の自己融着高誘電シリコーンゴム組成物。
〔8〕
〔1〕~〔7〕のいずれかに記載の自己融着高誘電シリコーンゴム組成物の硬化物からなる自己融着高誘電テープ。
本発明によれば、常圧熱気加硫(HAV)により良好に硬化することができ、高い比誘電率を維持し、高い気密性とゴム強度を備える高誘電絶縁性ゴム硬化物を与える自己融着高誘電シリコーンゴム組成物、及び効率的に電界の集中を緩和することができ、電力ケーブル接続部や末端接続部等の電界緩和層に有用な自己融着高誘電テープを提供することができる。
以下、本発明について詳細に説明する。なお、本発明において、補強性フィラー、導電性複合酸化物の比表面積は、BET吸着法により測定された値である。また、ミラブル型シリコーンゴム組成物とは、通常、室温(25℃)において自己流動性のない高粘度で非液状のシリコーンゴム組成物であって、ロールミル(例えば、二本ロールミルや三本ロールミル)などの混練機で剪断応力下に均一に混練することが可能なシリコーンゴム組成物を意味する。また、オルガノポリシロキサン生ゴムとは、100~100,000の高重合度(高粘度)であって、通常、室温(25℃)において自己流動性のない非液状のオルガノポリシロキサン成分であることを意味する。
本発明のシリコーンゴム組成物は、(A)、(B)、(C)、(D)、(E)、及び(F)成分を含有する。
本発明のシリコーンゴム組成物は、(A)、(B)、(C)、(D)、(E)、及び(F)成分を含有する。
[(A)オルガノポリシロキサン]
(A)成分のオルガノポリシロキサンは、本組成物の主剤(ベースポリマー)であり、下記平均組成式(1)で示され、ケイ素原子に結合したアルケニル基を1分子中に少なくとも2個、好ましくは2~10,000個含有するものである。
R1 nSiO(4-n)/2 (1)
(式中、R1は同一又は異種の非置換又は置換の1価炭化水素基であり、nは1.95~2.04の正数である。)
式(1)中、R1は、炭素原子数1~20、好ましくは1~12、より好ましくは1~8の1価炭化水素基である。R1で表される1価炭化水素基としては、例えばメチル基、エチル基、プロピル基、ブチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基、ブテニル基、ヘキセニル基等のアルケニル基、フェニル基、トリル基等のアリール基、β-フェニルプロピル基等のアラキル基等が挙げられる。これらの基の炭素原子に結合した水素原子の一部又は全部がハロゲン原子で置換されていてもよく、例えば3,3,3-トリフルオロプロピル基等が挙げられる。これらの中では、メチル基、ビニル基、フェニル基及びトリフルオロプロピル基が好ましく、より好ましくはメチル基及びビニル基である。これらの中でも特に分子中のR1で表される1価炭化水素基のうち、50モル%以上がメチル基であるものが好ましく、より好ましくは80モル%以上がメチル基のものであり、更にアルケニル基以外の全てのR1がメチル基であるものが好ましい。
(A)成分のオルガノポリシロキサンは、本組成物の主剤(ベースポリマー)であり、下記平均組成式(1)で示され、ケイ素原子に結合したアルケニル基を1分子中に少なくとも2個、好ましくは2~10,000個含有するものである。
R1 nSiO(4-n)/2 (1)
(式中、R1は同一又は異種の非置換又は置換の1価炭化水素基であり、nは1.95~2.04の正数である。)
式(1)中、R1は、炭素原子数1~20、好ましくは1~12、より好ましくは1~8の1価炭化水素基である。R1で表される1価炭化水素基としては、例えばメチル基、エチル基、プロピル基、ブチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基、ブテニル基、ヘキセニル基等のアルケニル基、フェニル基、トリル基等のアリール基、β-フェニルプロピル基等のアラキル基等が挙げられる。これらの基の炭素原子に結合した水素原子の一部又は全部がハロゲン原子で置換されていてもよく、例えば3,3,3-トリフルオロプロピル基等が挙げられる。これらの中では、メチル基、ビニル基、フェニル基及びトリフルオロプロピル基が好ましく、より好ましくはメチル基及びビニル基である。これらの中でも特に分子中のR1で表される1価炭化水素基のうち、50モル%以上がメチル基であるものが好ましく、より好ましくは80モル%以上がメチル基のものであり、更にアルケニル基以外の全てのR1がメチル基であるものが好ましい。
式(1)中、nは1.95~2.04の正数であり、好ましくは1.98~2.02の正数である。このn値が1.95~2.04の範囲でないと、得られる硬化物が十分なゴム弾性を示さないことがある。
また、(A)成分のオルガノポリシロキサンは、1分子中に少なくとも2個のアルケニル基を有することが必要であり、式(1)中、R1の0.001~10モル%、特に0.01~5モル%がアルケニル基であることが好ましい。該アルケニル基としては、好ましくはビニル基及びアリル基であり、特に好ましくはビニル基である。
(A)成分のオルガノポリシロキサンの平均重合度は、通常100~100,000、好ましくは1,000~100,000、より好ましくは3,000~50,000、特に好ましくは4,000~20,000である。平均重合度が100未満の場合、シリコーンゴム組成物がミラブルゴムとしての性状を満たさなくなり、ロール混練性等が著しく悪化してしまうため好ましくない。なお、この平均重合度は、下記条件で測定したGPC(ゲルパーミネーションクロマトグラフィ)分析におけるポリスチレン換算の重量平均重合度として求めることができる。
また、(A)成分のオルガノポリシロキサンは、1分子中に少なくとも2個のアルケニル基を有することが必要であり、式(1)中、R1の0.001~10モル%、特に0.01~5モル%がアルケニル基であることが好ましい。該アルケニル基としては、好ましくはビニル基及びアリル基であり、特に好ましくはビニル基である。
(A)成分のオルガノポリシロキサンの平均重合度は、通常100~100,000、好ましくは1,000~100,000、より好ましくは3,000~50,000、特に好ましくは4,000~20,000である。平均重合度が100未満の場合、シリコーンゴム組成物がミラブルゴムとしての性状を満たさなくなり、ロール混練性等が著しく悪化してしまうため好ましくない。なお、この平均重合度は、下記条件で測定したGPC(ゲルパーミネーションクロマトグラフィ)分析におけるポリスチレン換算の重量平均重合度として求めることができる。
[測定条件]
・展開溶媒:トルエン
・流量:1mL/min
・検出器:示差屈折率検出器(RI)
・カラム:KF-805L×2本(Shodex社製)
・カラム温度:25℃
・試料注入量:30μL(濃度0.2質量%のトルエン溶液)
・展開溶媒:トルエン
・流量:1mL/min
・検出器:示差屈折率検出器(RI)
・カラム:KF-805L×2本(Shodex社製)
・カラム温度:25℃
・試料注入量:30μL(濃度0.2質量%のトルエン溶液)
(A)成分のオルガノポリシロキサンは、一分子中のアルケニル基の個数と平均重合度の条件を満たしていれば特に制限されないが、主鎖がジオルガノシロキサン単位(R1
2SiO2/2,R1は上記と同じであり、以下同様)の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基(R1
3SiO1/2)で封鎖された、直鎖状のジオルガノポリシロキサンであることが好ましく、分子鎖両末端が、トリメチルシロキシ基、ジメチルビニルシロキシ基、ジメチルヒドロキシシロキシ基、メチルジビニルシロキシ基、トリビニルシロキシ基等で封鎖されたものが好ましく、特に、少なくとも1つのビニル基を有しているシロキシ基で封鎖されたものが好適である。これらのオルガノポリシロキサンは、1種単独で用いても、重合度や分子構造の異なる2種類以上を組み合わせて用いてもよい。
[(B)疎水性ヒュームドシリカ]
(B)成分の疎水性ヒュームドシリカは、シリコーンゴム組成物に対して、優れた機械的特性を付与する充填剤として作用するもので、表面に存在するシラノール(SiOH)基を疎水化処理したものである。(B)成分の疎水性ヒュームドシリカのBET法による比表面積は50m2/g以上であることが必要であり、好ましくは100~400m2/gである。この比表面積が50m2/g未満であると、(B)成分による補強効果が不十分となることがある。
(B)成分の疎水性ヒュームドシリカは、シリコーンゴム組成物に対して、優れた機械的特性を付与する充填剤として作用するもので、表面に存在するシラノール(SiOH)基を疎水化処理したものである。(B)成分の疎水性ヒュームドシリカのBET法による比表面積は50m2/g以上であることが必要であり、好ましくは100~400m2/gである。この比表面積が50m2/g未満であると、(B)成分による補強効果が不十分となることがある。
(B)成分の疎水性ヒュームドシリカは、オルガノポリシロキサン、オルガノポリシラザン、クロロシラン、アルコキシシラン等の有機ケイ素化合物で表面処理されたものを用いる。これらのシリカは、1種単独で用いても、2種以上を組み合わせて用いてもよい。ヒュームドシリカ表面の疎水性の観点から、有機ケイ素化合物で予め表面処理された補強性ヒュームドシリカが好ましく、常圧熱気加硫時の水分揮発による発泡を抑える事ができる。(B)成分は、1種単独で使用しても2種類以上を併用してもよい。
(B)成分の疎水性ヒュームドシリカとしては、市販品を用いることができ、例えば、アエロジルR-972、アエロジルR-974などのアエロジルシリーズ(日本アエロジル(株)製)、レオロシールDM-20S、30S(トクヤマ社製)等の表面疎水処理化されたヒュームドシリカが挙げられる。
(B)成分の疎水性ヒュームドシリカの配合量は、(A)成分のオルガノポリシロキサン100質量部に対して、10~100質量部であり、好ましくは15~80質量部、より好ましくは15~60質量部である。この配合量が、上記範囲を逸脱すると、得られるシリコーンゴム組成物の加工性が低下するだけでなく、該シリコーンゴム組成物を硬化して得られるシリコーンゴム硬化物の引張強さや引裂強さ等の機械的特性が不十分なものとなることがある。
[(C)導電性複合酸化物]
導電性複合酸化物としては、例えば、酸化亜鉛(ZnO)と酸化アルミニウム(Al2O3)との固溶体、酸化亜鉛(ZnO)と酸化チタン(TiO2)との固溶体等が挙げられる。これらの中でも好ましいのは、酸化亜鉛と酸化アルミニウムの固溶体であり、特に酸化亜鉛にアルミニウム原子をドープした導電性複合酸化物が好ましい。その理由としては、樹脂等の高分子分散に対して分散性が良好で加工性に優れ、モース硬度等に代表される粉体自体の硬さが比較的低いことに加え、市販品のグレードが多いので粒子系、分散性、形状の点で選択の幅が広く、コストが安定であるという利点が挙げられる。
導電性複合酸化物としては、例えば、酸化亜鉛(ZnO)と酸化アルミニウム(Al2O3)との固溶体、酸化亜鉛(ZnO)と酸化チタン(TiO2)との固溶体等が挙げられる。これらの中でも好ましいのは、酸化亜鉛と酸化アルミニウムの固溶体であり、特に酸化亜鉛にアルミニウム原子をドープした導電性複合酸化物が好ましい。その理由としては、樹脂等の高分子分散に対して分散性が良好で加工性に優れ、モース硬度等に代表される粉体自体の硬さが比較的低いことに加え、市販品のグレードが多いので粒子系、分散性、形状の点で選択の幅が広く、コストが安定であるという利点が挙げられる。
導電性複合酸化物の製造方法の一例として、ある金属酸化物の結晶粒子中に1種類又は2種類以上の異種の金属イオンを分散させておき、還元雰囲気中で焼成する方法が挙げられる。例えば、酸化亜鉛と酸化アルミニウムとの固溶体としての導電性複合酸化物の場合には、酸化亜鉛とアルミニウム塩をアンモニウム塩水溶液中で処理し、脱水処理後水素雰囲気中で焼成して得ることができる(特公昭62-41171号公報参照)。なお、上記導電性複合酸化物としては市販品を用いることができ、例えば、酸化亜鉛にアルミニウム原子をドープした導電性亜鉛華として、導電性亜鉛華(本庄ケミカル社製)、導電性酸化亜鉛23-K(ハクスイテック株式会社製)等を用いることができる。
このような導電性複合酸化物の多くは、n型半導体として導電性を有しており、その導電性には湿度や環境因子による影響がほとんどないという特徴がある。導電性が生じるメカニズムは、ドープされて一部置換された原子価数が異なる金属原子の余剰又は不足した電子対が半導体的な導電性を引き起こすためと考えられている。
(C)成分の導電性複合酸化物として、酸化亜鉛と酸化アルミニウムの固溶体及び/又は酸化亜鉛と酸化チタンの固溶体を用いる場合、該複合酸化物の比抵抗値が0.1~10.0Ω・mであることが好ましい。
比抵抗値は、例えば、(C)成分の酸化亜鉛と酸化アルミニウムの固溶体及び/又は酸化亜鉛と酸化チタンの固溶体を、比抵抗値0.1~1.0Ω・m未満のもの(C-1)と比抵抗値5.0~10.0Ω・mのもの(C-2)とのブレンドで使用することにより、後述するような組成物の硬化物の比誘電率を10以上、体積抵抗率を1.0×1012~1.0×1017Ω・cmの範囲に調製することができる。
比抵抗値は、例えば、(C)成分の酸化亜鉛と酸化アルミニウムの固溶体及び/又は酸化亜鉛と酸化チタンの固溶体を、比抵抗値0.1~1.0Ω・m未満のもの(C-1)と比抵抗値5.0~10.0Ω・mのもの(C-2)とのブレンドで使用することにより、後述するような組成物の硬化物の比誘電率を10以上、体積抵抗率を1.0×1012~1.0×1017Ω・cmの範囲に調製することができる。
前記導電性複合酸化物の(C-1)と(C-2)との質量比は(C-1)/(C-2)=5/95~95/5が好ましく、10/90~90/10がより好ましい。比抵抗値0.1~1.0Ω・m未満のもの(C-1)だけで10以上の比誘電率を得ようとすると、後述するように配合量を多くせざるを得ず、結果として硬化ゴムのゴム強度やゴム弾性が低下するおそれがある。また、比抵抗値5.0~10.0Ω・mのもの(C-2)だけでは比誘電率は高くなるが、半導電を示して絶縁性が悪くなるおそれがある。
このような(C)成分の導電性複合酸化物は、平均粒子径が0.8μm以下であることが好ましく、特に0.5μm以下であることが好ましい。下限は特に限定されないが、通常0.001μm程度である。導電性複合酸化物の粒子径が大きすぎると、ゴム弾性が低下するおそれがある。なお、平均粒子径は、レーザー光回折法等による粒度分布測定装置を用いて、累積体積平均値D50として求めることができる。
(C)成分の導電性複合酸化物の配合量は、(A)成分100質量部に対して、100~300質量部であり、好ましくは150~280質量部、より好ましくは170~250質量部である。配合量が、100質量部未満のとき、目的とする高誘電率特性が得られないことがあり、また300質量部を超えると、組成物を硬化して得られる硬化ゴムのゴム強度やゴム弾性が低下するおそれがある。
[(D)ホウ酸又はホウ酸化合物]
(D)成分のホウ酸又はホウ酸化合物は、組成物の硬化物に自己融着性を付与する成分として用いるものであり、1種単独又は2種以上を適宜組み合わせて用いることができる。ホウ酸化合物としては、具体的には、無水ホウ酸、ピロホウ酸、オルトホウ酸等のホウ酸類、ホウ酸トリメチル、ホウ酸トリエチル、トリメトキシボロキシン等のホウ酸及び無水ホウ酸の誘導体、ジメチルジメトキシシラン、ジメチルジエトキシシランのようなオルガノアルコキシシランと無水ホウ酸とを加熱して縮合させて得られるポリオルガノボロシロキサン等を挙げることができる。
(D)成分のホウ酸又はホウ酸化合物は、組成物の硬化物に自己融着性を付与する成分として用いるものであり、1種単独又は2種以上を適宜組み合わせて用いることができる。ホウ酸化合物としては、具体的には、無水ホウ酸、ピロホウ酸、オルトホウ酸等のホウ酸類、ホウ酸トリメチル、ホウ酸トリエチル、トリメトキシボロキシン等のホウ酸及び無水ホウ酸の誘導体、ジメチルジメトキシシラン、ジメチルジエトキシシランのようなオルガノアルコキシシランと無水ホウ酸とを加熱して縮合させて得られるポリオルガノボロシロキサン等を挙げることができる。
(D)成分の配合量は、(A)成分のオルガノポリシロキサン100質量部に対して、0.1~50質量部であり、好ましくは0.5~40質量部、より好ましくは1~35質量部である。配合量が、0.1質量部未満のとき、硬化物に十分な自己融着性を付与することができず、また50質量部を超えると、硬化物の耐熱性及び機械的強度を低下させる原因になる。
[(E)分子鎖両末端がアルコキシ基で封鎖されたジオルガノポリシロキサン]
本発明のシリコーンゴム組成物には、自己融着性の点から、分子鎖両末端がアルコキシ基で封鎖されたジオルガノポリシロキサンを配合することが好ましい。
本発明のシリコーンゴム組成物には、自己融着性の点から、分子鎖両末端がアルコキシ基で封鎖されたジオルガノポリシロキサンを配合することが好ましい。
分子鎖両末端がアルコキシ基で封鎖されたジオルガノポリシロキサンとしては、下記式(2)で示される両末端アルコキシ基封鎖ジオルガノポリシロキサンが挙げられる。
R3O(SiR2 2O)mR3 (2)
(式中、R2は同一又は異種の非置換又は置換の1価アルキル基又はアルコキシ基、R3は同一又は異種の非置換又は置換の1価アルキル基であり、mは1~100の整数である。)
R3O(SiR2 2O)mR3 (2)
(式中、R2は同一又は異種の非置換又は置換の1価アルキル基又はアルコキシ基、R3は同一又は異種の非置換又は置換の1価アルキル基であり、mは1~100の整数である。)
式(2)中、R2は同一又は異種の非置換又は置換の1価アルキル基又はアルコキシ基であり、通常、炭素数1~8、特に炭素数1~4のものが好ましい。具体的には、メチル基、エチル基、プロピル基、ブチル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられ、好ましくはメチル基、エチル基、メトキシ基、エトキシ基である。R3は同一又は異種の非置換又は置換の1価アルキル基であり、通常、炭素数1~8、特に炭素数1~4のものが好ましい。具体的には、メチル基、エチル基、プロピル基、ブチル基等が挙げられ、好ましくはメチル基、エチル基である。mは1~100の整数であり、好ましくは1~50の整数である。特に、(E)成分としてのオルガノポリシロキサンは、1分子中に4個以上のアルコキシ基を有するものが好ましい。
(E)成分の配合量は、(A)成分100質量部に対して、1~10質量部が好ましく、より好ましくは2~8質量部である。配合量が少なすぎると自己融着による接着力が低下し、多すぎるとゴム表面からブリードし成形性が悪化することがある。
[(F)アシル系有機過酸化物からなる硬化剤]
本発明では、アシル系有機過酸化物からなる硬化剤を用いる。
アルキル系パーオキサイドで硬化させると、酸素による加硫阻害を受けるためにカレンダーロールによる加工(圧延成形)、押出成形で加硫が十分に進行しないおそれがある。また、従来の付加加硫によるアルケニル基を有するオルガノポリシロキサンと、このアルケニル基と付加反応するケイ素結合水素原子を有するオルガノハイドロジェンポリシロキサンに白金系の付加反応用触媒を添加して硬化させる付加反応では、ヒドロシリル化反応が触媒毒によって阻害を受けやすく、室温でも反応が進むため保存期間が短いなど、その製造範囲が限られてしまうという欠点がある。さらに、白金系触媒とオルガノハイドロジェンポリシロキサンとの組み合わせにより硬化させても、十分な自己融着性が得られない場合がある。
アシル系有機過酸化物からなる硬化剤は、これらの硬化剤を改善するものである。
本発明では、アシル系有機過酸化物からなる硬化剤を用いる。
アルキル系パーオキサイドで硬化させると、酸素による加硫阻害を受けるためにカレンダーロールによる加工(圧延成形)、押出成形で加硫が十分に進行しないおそれがある。また、従来の付加加硫によるアルケニル基を有するオルガノポリシロキサンと、このアルケニル基と付加反応するケイ素結合水素原子を有するオルガノハイドロジェンポリシロキサンに白金系の付加反応用触媒を添加して硬化させる付加反応では、ヒドロシリル化反応が触媒毒によって阻害を受けやすく、室温でも反応が進むため保存期間が短いなど、その製造範囲が限られてしまうという欠点がある。さらに、白金系触媒とオルガノハイドロジェンポリシロキサンとの組み合わせにより硬化させても、十分な自己融着性が得られない場合がある。
アシル系有機過酸化物からなる硬化剤は、これらの硬化剤を改善するものである。
アシル系有機過酸化物としては、例えば、ベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、p-メチルベンゾイルパーオキサイド、o-メチルベンゾイルパーオキサイド等が挙げられる。
(F)成分の配合量は、硬化に有効な適切な量で用いられるが、(A)成分100質量部に対して、0.01~10質量部であり、好ましくは0.05~8質量部である。配合量が、0.01質量部より少ないと、加硫反応が十分に進行せず、硬度低下やゴム強度不足等の物性悪化を生じることがあり、10質量部より多いと、経済的に不利であるばかりでなく、硬化剤の分解物が多く発生して十分な比誘電率が得られないことがある。
[その他の成分]
本発明で用いられるシリコーンゴム組成物には、本発明の目的を損なわない範囲において、上記成分に加え、必要に応じて、その他の成分として、粉砕石英、珪藻土、炭酸カルシウム等の充填剤、着色剤、引裂き強度向上剤、耐熱向上剤、白金化合物等の難燃性向上剤、受酸剤、アルミナや窒化ケイ素等の熱伝導性向上剤、離型剤等の、熱硬化型シリコーンゴム組成物における公知の充填剤及び添加剤を添加してもよい。その他の成分は1種単独で用いても2種以上を併用してもよい。
本発明で用いられるシリコーンゴム組成物には、本発明の目的を損なわない範囲において、上記成分に加え、必要に応じて、その他の成分として、粉砕石英、珪藻土、炭酸カルシウム等の充填剤、着色剤、引裂き強度向上剤、耐熱向上剤、白金化合物等の難燃性向上剤、受酸剤、アルミナや窒化ケイ素等の熱伝導性向上剤、離型剤等の、熱硬化型シリコーンゴム組成物における公知の充填剤及び添加剤を添加してもよい。その他の成分は1種単独で用いても2種以上を併用してもよい。
-組成物の調製方法-
本発明のミラブル型シリコーンゴム組成物は、組成物を構成する成分をニーダー、バンバリーミキサー、二本ロール等の公知の混練機で混合することにより得ることができる。シリコーンゴム組成物として、上記(A)~(F)成分を含有する組成物を得る場合、(A)成分のオルガノポリシロキサンと(B)成分の疎水性ヒュームドシリカを混合して混合物を得た後、該混合物に(C)成分の導電性複合酸化物と(D)成分のホウ酸又はホウ酸化合物と(E)成分の分子鎖両末端がアルコキシ基で封鎖されたジオルガノポリシロキサンを混合して、該混合に(F)成分の硬化剤を添加するのが好ましい。上記(A)~(F)成分を含有する組成物が、更にその他の成分を含む場合には、(A)成分のオルガノポリシロキサンと(B)成分の疎水性ヒュームドシリカと(C)成分の導電性複合酸化物と(D)成分のホウ酸又はホウ酸化合物と(E)成分の分子鎖末端がアルコキシ基で封鎖されたジオルガノポリシロキサンとその他の成分とを混合して混合物を得た後、該混合物に(F)成分の硬化剤を添加することが好ましい。
本発明のミラブル型シリコーンゴム組成物は、組成物を構成する成分をニーダー、バンバリーミキサー、二本ロール等の公知の混練機で混合することにより得ることができる。シリコーンゴム組成物として、上記(A)~(F)成分を含有する組成物を得る場合、(A)成分のオルガノポリシロキサンと(B)成分の疎水性ヒュームドシリカを混合して混合物を得た後、該混合物に(C)成分の導電性複合酸化物と(D)成分のホウ酸又はホウ酸化合物と(E)成分の分子鎖両末端がアルコキシ基で封鎖されたジオルガノポリシロキサンを混合して、該混合に(F)成分の硬化剤を添加するのが好ましい。上記(A)~(F)成分を含有する組成物が、更にその他の成分を含む場合には、(A)成分のオルガノポリシロキサンと(B)成分の疎水性ヒュームドシリカと(C)成分の導電性複合酸化物と(D)成分のホウ酸又はホウ酸化合物と(E)成分の分子鎖末端がアルコキシ基で封鎖されたジオルガノポリシロキサンとその他の成分とを混合して混合物を得た後、該混合物に(F)成分の硬化剤を添加することが好ましい。
-シリコーンゴム成形方法-
成形方法としては、目的とする成形品の形状及び大きさに合わせて公知の成形方法を選択すればよい。例えば、押出し成形やカレンダーロールによる圧延成形等によって、テープ状又はシート状に成形し、所望により裁断し、ロール状に巻き取って、常圧熱気加硫(HAV)方式にて硬化して、自己融着高誘電テープが製造される。
得られた自己融着高誘電テープは、電力ケーブルの接続部に使用される。具体的には、この自己融着高誘電テープを、電力ケーブルの中間接続部や端末接続部等の終端部に巻きつけることにより、電界緩和層を形成することができるので、電気ストレス(電気力線)が接続部に集中せず、均一に分散することができる。
成形方法としては、目的とする成形品の形状及び大きさに合わせて公知の成形方法を選択すればよい。例えば、押出し成形やカレンダーロールによる圧延成形等によって、テープ状又はシート状に成形し、所望により裁断し、ロール状に巻き取って、常圧熱気加硫(HAV)方式にて硬化して、自己融着高誘電テープが製造される。
得られた自己融着高誘電テープは、電力ケーブルの接続部に使用される。具体的には、この自己融着高誘電テープを、電力ケーブルの中間接続部や端末接続部等の終端部に巻きつけることにより、電界緩和層を形成することができるので、電気ストレス(電気力線)が接続部に集中せず、均一に分散することができる。
-硬化条件-
硬化条件は、用いる成形方法における公知の条件でよく、好ましくは100~500℃にて10秒~10分、より好ましくは110~450℃にて0.2~60分、さらに好ましくは1~45分とすることができる。また、得られるシリコーンゴム中に残存している低分子シロキサン成分の低減、シリコーンゴム中の有機過酸化物の分解物の除去等の目的で、200℃以上、好ましくは200~250℃のオーブン内等で、1時間以上、好ましくは1~70時間程度、より好ましくは1~10時間のポストキュア(2次キュア)を行ってもよい。
硬化条件は、用いる成形方法における公知の条件でよく、好ましくは100~500℃にて10秒~10分、より好ましくは110~450℃にて0.2~60分、さらに好ましくは1~45分とすることができる。また、得られるシリコーンゴム中に残存している低分子シロキサン成分の低減、シリコーンゴム中の有機過酸化物の分解物の除去等の目的で、200℃以上、好ましくは200~250℃のオーブン内等で、1時間以上、好ましくは1~70時間程度、より好ましくは1~10時間のポストキュア(2次キュア)を行ってもよい。
得られたシリコーンゴム硬化物は、後述する測定方法において、比誘電率が10以上が好ましく、より好ましくは10~50、さらに好ましくは11~30である。比誘電率が10未満では、高圧電力ケーブル終端部に集中した電界を分散させる電界緩和効果が不十分となるおそれがある。また、体積抵抗率は1.0×1012~1.0×1017Ω・cmが好ましく、より好ましくは1.0×1012~5.0×1016Ω・cm、さらに好ましくは1.0×1013~1.0×1016Ω・cmである。体積抵抗率が1.0×1012Ω・cm未満では絶縁性が不十分なため、電界集中による絶縁破壊に至るおそれがある。また、体積抵抗率が1.0×1017Ω・cm超過では、目的としている高誘電性特性が得られない。
得られたシリコーンゴム硬化物(加工物)の切断時伸びは、500~1,200%が好ましく、より好ましくは600~1,100%、さらに好ましくは700~1,000%である。上記範囲とすることで、伸長後に亀裂や破断が発生せず、気密性の高い高誘電テープを得ることができる。
以下、実施例及び比較例を示し、本発明を具体的に記述するが、本発明はこれによって限定されるものではない。なお、実施例、比較例に記載の動粘度は、JIS Z 8803:2011記載のキャノン-フェンスケ粘度計による25℃での動粘度の測定値である。
[実施例1]
ジメチルシロキサン単位99.975モル%、ジメチルビニルシロキシ単位0.025モル%からなり、平均重合度が約6,000であるオルガノポリシロキサン生ゴム75質量部、ジメチルシロキサン単位が99.85モル%、メチルビニルシロキサン単位0.125%,ジメチルビニルシロキシ単位0.025%からなり、平均重合度が約6,000であるオルガノポリシロキサン生ゴム25質量部、BET吸着比表面積が130m2/gの表面が疎水処理化されたヒュームドシリカ(アエロジルR-972、日本アエロジル(株)製)26質量部、分散剤として両末端シラノール基を有し、平均重合度4、25℃における粘度が15mPa・sであるジメチルポリシロキサン2質量部を添加し、170℃で2時間、ニーダーにより混合下で加熱した後、ベースコンパウンド(1)を作製した。
上記コンパウンド(1)128質量部に対して、比抵抗値が2.5Ω・mの導電性複合酸化物として酸化亜鉛にアルミニウム原子をドープした導電性酸化亜鉛23-K(ハクスイテック(株)製)190質量部、ジメチルジメトキシシランと無水ホウ酸とをモル比1:2になるように混合して150℃で1時間加熱して得られたポリメチルボロシロキサン(動粘度:200mm2/s)8質量部、両末端エトキシ基封鎖のジメチルポリシロキサン[分子中にエトキシ基4個(動粘度:6mm2/s、以下同様)]2質量部を加圧ニーダーで混練しコンパウンド(A)を得た。得られたコンパウンド(A)328質量部に対して、p-メチルベンゾイルパーオキサイド2.2質量部を混合し、組成物(A)を作製した。
ジメチルシロキサン単位99.975モル%、ジメチルビニルシロキシ単位0.025モル%からなり、平均重合度が約6,000であるオルガノポリシロキサン生ゴム75質量部、ジメチルシロキサン単位が99.85モル%、メチルビニルシロキサン単位0.125%,ジメチルビニルシロキシ単位0.025%からなり、平均重合度が約6,000であるオルガノポリシロキサン生ゴム25質量部、BET吸着比表面積が130m2/gの表面が疎水処理化されたヒュームドシリカ(アエロジルR-972、日本アエロジル(株)製)26質量部、分散剤として両末端シラノール基を有し、平均重合度4、25℃における粘度が15mPa・sであるジメチルポリシロキサン2質量部を添加し、170℃で2時間、ニーダーにより混合下で加熱した後、ベースコンパウンド(1)を作製した。
上記コンパウンド(1)128質量部に対して、比抵抗値が2.5Ω・mの導電性複合酸化物として酸化亜鉛にアルミニウム原子をドープした導電性酸化亜鉛23-K(ハクスイテック(株)製)190質量部、ジメチルジメトキシシランと無水ホウ酸とをモル比1:2になるように混合して150℃で1時間加熱して得られたポリメチルボロシロキサン(動粘度:200mm2/s)8質量部、両末端エトキシ基封鎖のジメチルポリシロキサン[分子中にエトキシ基4個(動粘度:6mm2/s、以下同様)]2質量部を加圧ニーダーで混練しコンパウンド(A)を得た。得られたコンパウンド(A)328質量部に対して、p-メチルベンゾイルパーオキサイド2.2質量部を混合し、組成物(A)を作製した。
[実施例2]
BET吸着比表面積が130m2/gの表面が疎水処理化されたヒュームドシリカ(アエロジルR-972、日本アエロジル(株)製)を15質量部、分散剤として両末端シラノール基を有し、平均重合度4、25℃における粘度が15mPa・sであるジメチルポリシロキサン1.1質量部、比抵抗値が2.5Ω・mの導電性複合酸化物として酸化亜鉛にアルミニウム原子をドープした導電性酸化亜鉛23-K(ハクスイテック株式会社製)の配合量を170質量部、p-メチルベンゾイルパーオキサイド1.9質量部とした以外は、実施例1と同様にして組成物(B)を得た。
BET吸着比表面積が130m2/gの表面が疎水処理化されたヒュームドシリカ(アエロジルR-972、日本アエロジル(株)製)を15質量部、分散剤として両末端シラノール基を有し、平均重合度4、25℃における粘度が15mPa・sであるジメチルポリシロキサン1.1質量部、比抵抗値が2.5Ω・mの導電性複合酸化物として酸化亜鉛にアルミニウム原子をドープした導電性酸化亜鉛23-K(ハクスイテック株式会社製)の配合量を170質量部、p-メチルベンゾイルパーオキサイド1.9質量部とした以外は、実施例1と同様にして組成物(B)を得た。
[比較例1]
BET吸着比表面積が200m2/gの疎水化されていないヒュームドシリカ(アエロジル200、日本アエロジル(株)製)26質量部、分散剤として両末端シラノール基を有し、平均重合度4、25℃における粘度が15mPa・sであるジメチルポリシロキサン5質量部に変更した以外は、実施例1と同様にして組成物(C)を得た。
BET吸着比表面積が200m2/gの疎水化されていないヒュームドシリカ(アエロジル200、日本アエロジル(株)製)26質量部、分散剤として両末端シラノール基を有し、平均重合度4、25℃における粘度が15mPa・sであるジメチルポリシロキサン5質量部に変更した以外は、実施例1と同様にして組成物(C)を得た。
[比較例2]
BET吸着比表面積が200m2/gの沈降シリカ(NIPSIL-LP、日本シリカ(株)製)26質量部、分散剤として両末端シラノール基を有し、平均重合度4、25℃における粘度が15mPa・sであるジメチルポリシロキサン5質量部に変更した以外は、実施例1と同様にして組成物(D)を得た。
BET吸着比表面積が200m2/gの沈降シリカ(NIPSIL-LP、日本シリカ(株)製)26質量部、分散剤として両末端シラノール基を有し、平均重合度4、25℃における粘度が15mPa・sであるジメチルポリシロキサン5質量部に変更した以外は、実施例1と同様にして組成物(D)を得た。
[比較例3]
比抵抗値が2.5Ω・mの導電性複合酸化物として酸化亜鉛にアルミニウム原子をドープした導電性酸化亜鉛23-K(ハクスイテック株式会社製)の配合量を80質量部、p-メチルベンゾイルパーオキサイド1.4質量部とした以外は、実施例1と同様にして組成物(E)を得た。
比抵抗値が2.5Ω・mの導電性複合酸化物として酸化亜鉛にアルミニウム原子をドープした導電性酸化亜鉛23-K(ハクスイテック株式会社製)の配合量を80質量部、p-メチルベンゾイルパーオキサイド1.4質量部とした以外は、実施例1と同様にして組成物(E)を得た。
[比較例4]
ジメチルジメトキシシランと無水ホウ酸とをモル比1:2になるように混合して150℃で1時間加熱して得られたポリメチルボロシロキサン(動粘度:200mm2/s)と両末端エトキシ基封鎖のジメチルポリシロキサン[分子中にエトキシ基4個(動粘度:6mm2/s)]を添加しないで、分散剤として両末端シラノール基を有し、平均重合度4、25℃における粘度が15mPa・sであるジメチルポリシロキサン5質量部、p-メチルベンゾイルパーオキサイド2.1質量部とした以外は、実施例1と同様にして組成物(F)を得た。
ジメチルジメトキシシランと無水ホウ酸とをモル比1:2になるように混合して150℃で1時間加熱して得られたポリメチルボロシロキサン(動粘度:200mm2/s)と両末端エトキシ基封鎖のジメチルポリシロキサン[分子中にエトキシ基4個(動粘度:6mm2/s)]を添加しないで、分散剤として両末端シラノール基を有し、平均重合度4、25℃における粘度が15mPa・sであるジメチルポリシロキサン5質量部、p-メチルベンゾイルパーオキサイド2.1質量部とした以外は、実施例1と同様にして組成物(F)を得た。
[比較例5]
硬化剤としてp-メチルベンゾイルパーオキサイドの代わりに、側鎖にSiH基を有するメチルハイドロジェンポリシロキサン(重合度38、SiH基が0.0074モル%の両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体)0.82質量部、反応制御剤としてエチニルシクロヘキサノール0.16質量部、白金触媒(Pt濃度1質量%)0.3質量部を混合した以外は、実施例1と同様にして組成物(G)を得た。
硬化剤としてp-メチルベンゾイルパーオキサイドの代わりに、側鎖にSiH基を有するメチルハイドロジェンポリシロキサン(重合度38、SiH基が0.0074モル%の両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体)0.82質量部、反応制御剤としてエチニルシクロヘキサノール0.16質量部、白金触媒(Pt濃度1質量%)0.3質量部を混合した以外は、実施例1と同様にして組成物(G)を得た。
[比較例6]
硬化剤としてp-メチルベンゾイルパーオキサイドの代わりに、2,5-ジメチル-ビス(2,5-t-ブチルパーオキシ)ヘキサン(商品名:パーヘキサ25B、日油株式会社)1.6質量部を用いた以外は、実施例1と同様にして組成物(H)を得た。
硬化剤としてp-メチルベンゾイルパーオキサイドの代わりに、2,5-ジメチル-ビス(2,5-t-ブチルパーオキシ)ヘキサン(商品名:パーヘキサ25B、日油株式会社)1.6質量部を用いた以外は、実施例1と同様にして組成物(H)を得た。
[各種物性値測定方法]
上記実施例1、2及び比較例1~6で調製したシリコーンゴム組成物(A)~(H)について、JIS K 6249:2003に準拠して作製した試験用硬化物シートを用いて、各種ゴム物性[硬さ(デュロメーターA)、引張強さ、切断時伸び]を測定した。
(硬化条件)
成形圧力:7.8MPa(80kgf/cm2)で120℃×10分間プレスキュアし、その後、200℃×4時間ポストキュア(二次加硫)し、100mm角、厚さ5mm、2mm、1mmの試験用硬化物シートを作製した。
上記実施例1、2及び比較例1~6で調製したシリコーンゴム組成物(A)~(H)について、JIS K 6249:2003に準拠して作製した試験用硬化物シートを用いて、各種ゴム物性[硬さ(デュロメーターA)、引張強さ、切断時伸び]を測定した。
(硬化条件)
成形圧力:7.8MPa(80kgf/cm2)で120℃×10分間プレスキュアし、その後、200℃×4時間ポストキュア(二次加硫)し、100mm角、厚さ5mm、2mm、1mmの試験用硬化物シートを作製した。
[比誘電率の測定]
上記実施例1、2及び比較例1~6で調製したシリコーンゴム組成物(A)~(H)について、成形温度120℃、成形圧力7.8MPa(80kgf/cm2)、成形時間10分間の条件で100mm角、厚さ5mmの正方形の硬化物を作製した。その後2次加硫(ポストキュア)を200℃で4時間行い、比誘電率測定用サンプルを作製した。
上記実施例1、2及び比較例1~6で調製したシリコーンゴム組成物(A)~(H)について、成形温度120℃、成形圧力7.8MPa(80kgf/cm2)、成形時間10分間の条件で100mm角、厚さ5mmの正方形の硬化物を作製した。その後2次加硫(ポストキュア)を200℃で4時間行い、比誘電率測定用サンプルを作製した。
比誘電率測定用サンプルについて、総研電気(株)製自動シェーリングブリッジ(機器名DAC-1M-D1)を使用して比誘電率を測定した。電極は、主電極50mmφ、ガード電極54×80mmφ、対電極80mmφを使用し、測定用周波数は50Hzで行った。印加電圧が500Vでの測定値を読み取った。
[体積抵抗率の測定]
体積抵抗率は、前記ゴム物性と同様の硬化条件で、厚さ1mmの試験用ゴムシートを作製し、JIS K 6249:2003に準拠して測定した。
体積抵抗率は、前記ゴム物性と同様の硬化条件で、厚さ1mmの試験用ゴムシートを作製し、JIS K 6249:2003に準拠して測定した。
[粘着の感触(手剥がし)]
上記実施例1、2及び比較例1~6で調製したシリコーンゴム組成物(A)~(H)について、成形温度120℃とし、成形圧力7.8MPa(80kgf/cm2)、成形時間10分間で、厚さ2mmのシート状硬化物を作製した。その後2次加硫(ポストキュア)を200℃で4時間行い、硬化シートを作製した。この硬化シートを幅25mmにして2枚重ね合わせ、0.5kgf/cm2で8時間圧着して、硬化シート(粘着の感触(手剥がし))サンプルを得た。
上記実施例1、2及び比較例1~6で調製したシリコーンゴム組成物(A)~(H)について、成形温度120℃とし、成形圧力7.8MPa(80kgf/cm2)、成形時間10分間で、厚さ2mmのシート状硬化物を作製した。その後2次加硫(ポストキュア)を200℃で4時間行い、硬化シートを作製した。この硬化シートを幅25mmにして2枚重ね合わせ、0.5kgf/cm2で8時間圧着して、硬化シート(粘着の感触(手剥がし))サンプルを得た。
粘着の感触(手剥がし)評価については、上記硬化シート(粘着の感触(手剥がし))サンプルを、手で剥がし、剥がれなかったものを「○」、一部剥がれたが圧着部が残ったものを「△」、完全に剥がれてしまったものを「×」とした。なお、剥がれにくいものが、気密性が高いものである。結果を表1に示す。
[常圧熱気加硫(HAV)試験]
硬化シートサンプルの作製については、上記実施例1、2及び比較例1~6で調製したシリコーンゴム組成物(A)~(H)を二本ロールミルにて1mm厚のシートを作製し、この1mm厚シートを常圧下、300℃の熱風乾燥機で1分間常圧熱気加硫させてシリコーンゴム成形物を作製すると共に、このシリコーンゴム断面の発泡及び硬さを確認した。結果を表1に示す。
硬化シートサンプルの作製については、上記実施例1、2及び比較例1~6で調製したシリコーンゴム組成物(A)~(H)を二本ロールミルにて1mm厚のシートを作製し、この1mm厚シートを常圧下、300℃の熱風乾燥機で1分間常圧熱気加硫させてシリコーンゴム成形物を作製すると共に、このシリコーンゴム断面の発泡及び硬さを確認した。結果を表1に示す。
Claims (8)
- (A)下記平均組成式(1)で示され、ケイ素原子に結合したアルケニル基を1分子中に少なくとも2個含有するオルガノポリシロキサン:100質量部、
R1 nSiO(4-n)/2 (1)
(式中、R1は同一又は異種の非置換又は置換の1価炭化水素基であり、nは1.95~2.04の正数である。)
(B)BET吸着法による比表面積が50m2/g以上の疎水性ヒュームドシリカ:10~100質量部、
(C)導電性複合酸化物:100~300質量部、
(D)ホウ酸又はホウ酸化合物:0.1~50質量部、
(E)分子鎖両末端がアルコキシ基で封鎖されたジオルガノポリシロキサン:1~10質量部、及び
(F)アシル系有機過酸化物からなる硬化剤:0.01~10質量部
を含有する押出成形又はカレンダーロールによる圧延成形で常圧熱気加硫可能な自己融着高誘電シリコーンゴム組成物。 - (C)成分の導電性複合酸化物が酸化亜鉛と酸化アルミニウムの固溶体及び/又は酸化亜鉛と酸化チタンの固溶体であって、該複合酸化物の比抵抗値が0.1~10.0Ω・mである請求項1記載の自己融着高誘電シリコーンゴム組成物。
- (C)成分の導電性複合酸化物の平均粒子径が0.8μm以下である請求項1又は2記載の自己融着高誘電シリコーンゴム組成物。
- (D)成分がポリオルガノボロシロキサンである請求項1~3のいずれか1項記載の自己融着高誘電シリコーンゴム組成物。
- シリコーンゴム組成物の硬化物の切断時伸びが500~1,200%である請求項1~4のいずれか1項記載の自己融着高誘電シリコーンゴム組成物。
- シリコーンゴム組成物の硬化物の比誘電率が10以上、体積抵抗率が1.0×1012~1.0×1017Ω・cmである請求項1~5のいずれか1項記載の自己融着高誘電シリコーンゴム組成物。
- 電力ケーブルの終端部に巻きつけ、電力ケーブルの終端部に集中する電界を緩和する自己融着高誘電テープ用の請求項1~6のいずれか1項記載の自己融着高誘電シリコーンゴム組成物。
- 請求項1~7のいずれか1項記載の自己融着高誘電シリコーンゴム組成物の硬化物からなる自己融着高誘電テープ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019517480A JP6874833B2 (ja) | 2017-05-11 | 2018-03-23 | 自己融着高誘電シリコーンゴム組成物及び自己融着高誘電テープ |
CN201880030559.5A CN110612316A (zh) | 2017-05-11 | 2018-03-23 | 自熔合高介电性硅橡胶组合物和自熔合高介电性带 |
US16/609,414 US11326082B2 (en) | 2017-05-11 | 2018-03-23 | Self-welding high dielectric silicone rubber composition and self-welding high dielectric tape |
EP18798391.1A EP3623399B1 (en) | 2017-05-11 | 2018-03-23 | Self-welding high dielectric silicone rubber composition and self-welding high dielectric tape |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-094413 | 2017-05-11 | ||
JP2017094413 | 2017-05-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018207475A1 true WO2018207475A1 (ja) | 2018-11-15 |
Family
ID=64104424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/011670 WO2018207475A1 (ja) | 2017-05-11 | 2018-03-23 | 自己融着高誘電シリコーンゴム組成物及び自己融着高誘電テープ |
Country Status (5)
Country | Link |
---|---|
US (1) | US11326082B2 (ja) |
EP (1) | EP3623399B1 (ja) |
JP (1) | JP6874833B2 (ja) |
CN (1) | CN110612316A (ja) |
WO (1) | WO2018207475A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109679576A (zh) * | 2018-12-17 | 2019-04-26 | 武汉南瑞电力工程技术装备有限公司 | 一种应用于电气设备的硅橡胶绝缘自粘带及其制备方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111394054A (zh) * | 2020-03-24 | 2020-07-10 | 新安天玉有机硅有限公司 | 一种自粘胶带用硅橡胶及其制备方法 |
CN112143258B (zh) * | 2020-08-14 | 2022-04-19 | 杭州师范大学 | 一种含硅氯键硼硅氧烷改性白炭黑的制备方法及其应用 |
CN113913151B (zh) * | 2021-09-27 | 2023-11-10 | 湖北晟特新材料有限公司 | 聚硼硅氧烷改性有机硅压敏胶的制备方法及其在云母带中的应用 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6241171B2 (ja) | 1982-03-17 | 1987-09-01 | Hakusui Chem Ind | |
JPH02229859A (ja) * | 1989-03-03 | 1990-09-12 | Shin Etsu Chem Co Ltd | シリコーン防振ゴムの製造方法 |
JPH07207161A (ja) * | 1994-01-11 | 1995-08-08 | Toshiba Silicone Co Ltd | 自己融着性シリコーンゴム組成物 |
JPH09143370A (ja) * | 1995-11-24 | 1997-06-03 | Toray Dow Corning Silicone Co Ltd | シリコーンゴム組成物 |
JPH09231835A (ja) * | 1996-02-05 | 1997-09-05 | Shin Etsu Chem Co Ltd | 自己融着性導電性シリコーンゴム組成物 |
JP2001179833A (ja) * | 1999-12-24 | 2001-07-03 | Toshin Denki Kk | 電線用巻付け材料とその製造方法並び電線構造 |
JP2013177558A (ja) | 2012-01-30 | 2013-09-09 | Momentive Performance Materials Inc | 高誘電絶縁性樹脂組成物 |
JP2015076168A (ja) | 2013-10-07 | 2015-04-20 | 古河電気工業株式会社 | 高誘電組成物、高誘電テープ、高圧電力ケーブルの終端構造体及び電界緩和処理キット |
JP2015153514A (ja) | 2014-02-12 | 2015-08-24 | 昭和電線ケーブルシステム株式会社 | ケーブル接続部用高誘電性組成物、およびこれを用いたケーブル接続部 |
JP2017002218A (ja) | 2015-06-12 | 2017-01-05 | 信越化学工業株式会社 | 高誘電絶縁性シリコーンゴム組成物 |
JP2017039833A (ja) | 2015-08-19 | 2017-02-23 | 信越化学工業株式会社 | 自己融着高誘電シリコーンゴム組成物及び自己融着高誘電テープ |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5277164A (en) | 1975-12-24 | 1977-06-29 | Toshiba Silicone | Method of vulcanization of silicone rubber |
US4252709A (en) * | 1979-03-19 | 1981-02-24 | Dow Corning Corporation | Handling additive for silicone elastomers comprising boric acid and ethylene glycol or glycerol |
JP4152672B2 (ja) * | 2002-05-17 | 2008-09-17 | 信越化学工業株式会社 | 電力ケーブル接続部用シリコーンゴム組成物 |
JP2005220263A (ja) * | 2004-02-06 | 2005-08-18 | Shin Etsu Chem Co Ltd | シリコーンゴム組成物の成形方法 |
JP4704987B2 (ja) * | 2006-09-11 | 2011-06-22 | 信越化学工業株式会社 | 押出成型用シリコ−ンゴム組成物 |
WO2013037105A1 (en) * | 2011-09-13 | 2013-03-21 | Dow Corning (China) Holding Co., Ltd. | Filled silicone composition, preparation and uses thereof |
US10121567B2 (en) * | 2013-02-04 | 2018-11-06 | 3M Innovative Properties Company | Insulating composition, insulating article, preparation method and electrical cable accessory thereof |
JP5768824B2 (ja) * | 2013-03-06 | 2015-08-26 | 信越化学工業株式会社 | 発泡性シリコーンゴム組成物及びシリコーンゴムスポンジ |
CN106398225A (zh) * | 2015-08-03 | 2017-02-15 | 苏州沃尔兴电子科技有限公司 | 一种阻燃硅橡胶热缩套管及其制备方法 |
-
2018
- 2018-03-23 JP JP2019517480A patent/JP6874833B2/ja active Active
- 2018-03-23 WO PCT/JP2018/011670 patent/WO2018207475A1/ja unknown
- 2018-03-23 CN CN201880030559.5A patent/CN110612316A/zh active Pending
- 2018-03-23 EP EP18798391.1A patent/EP3623399B1/en active Active
- 2018-03-23 US US16/609,414 patent/US11326082B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6241171B2 (ja) | 1982-03-17 | 1987-09-01 | Hakusui Chem Ind | |
JPH02229859A (ja) * | 1989-03-03 | 1990-09-12 | Shin Etsu Chem Co Ltd | シリコーン防振ゴムの製造方法 |
JPH07207161A (ja) * | 1994-01-11 | 1995-08-08 | Toshiba Silicone Co Ltd | 自己融着性シリコーンゴム組成物 |
JPH09143370A (ja) * | 1995-11-24 | 1997-06-03 | Toray Dow Corning Silicone Co Ltd | シリコーンゴム組成物 |
JPH09231835A (ja) * | 1996-02-05 | 1997-09-05 | Shin Etsu Chem Co Ltd | 自己融着性導電性シリコーンゴム組成物 |
JP2001179833A (ja) * | 1999-12-24 | 2001-07-03 | Toshin Denki Kk | 電線用巻付け材料とその製造方法並び電線構造 |
JP2013177558A (ja) | 2012-01-30 | 2013-09-09 | Momentive Performance Materials Inc | 高誘電絶縁性樹脂組成物 |
JP2015076168A (ja) | 2013-10-07 | 2015-04-20 | 古河電気工業株式会社 | 高誘電組成物、高誘電テープ、高圧電力ケーブルの終端構造体及び電界緩和処理キット |
JP2015153514A (ja) | 2014-02-12 | 2015-08-24 | 昭和電線ケーブルシステム株式会社 | ケーブル接続部用高誘電性組成物、およびこれを用いたケーブル接続部 |
JP2017002218A (ja) | 2015-06-12 | 2017-01-05 | 信越化学工業株式会社 | 高誘電絶縁性シリコーンゴム組成物 |
JP2017039833A (ja) | 2015-08-19 | 2017-02-23 | 信越化学工業株式会社 | 自己融着高誘電シリコーンゴム組成物及び自己融着高誘電テープ |
Non-Patent Citations (1)
Title |
---|
See also references of EP3623399A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109679576A (zh) * | 2018-12-17 | 2019-04-26 | 武汉南瑞电力工程技术装备有限公司 | 一种应用于电气设备的硅橡胶绝缘自粘带及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US11326082B2 (en) | 2022-05-10 |
EP3623399A1 (en) | 2020-03-18 |
CN110612316A (zh) | 2019-12-24 |
JP6874833B2 (ja) | 2021-05-19 |
JPWO2018207475A1 (ja) | 2020-02-27 |
EP3623399B1 (en) | 2023-06-21 |
US20200056046A1 (en) | 2020-02-20 |
EP3623399A4 (en) | 2020-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11326082B2 (en) | Self-welding high dielectric silicone rubber composition and self-welding high dielectric tape | |
CN107207861B (zh) | 有机硅橡胶组合物在用于制备高压直流绝缘体应用中的用途 | |
JP4905626B2 (ja) | 絶縁性シリコーンゴム組成物及びその硬化物 | |
US10584227B2 (en) | Silicone rubber composition and power cable | |
JP7070751B2 (ja) | 高誘電絶縁性シリコーンゴム組成物及び電界緩和層 | |
JP2013241532A (ja) | 帯電防止性シリコーンゴム組成物及び帯電防止性シリコーンゴム硬化物の黄変を抑制する方法 | |
TW201917971A (zh) | 用於高壓直流輸電(hvdc)纜線的電纜配件 | |
JP6468123B2 (ja) | 自己融着高誘電シリコーンゴム組成物及び自己融着高誘電テープ | |
JP7476901B2 (ja) | ミラブル型シリコーンゴム組成物、シリコーンゴム硬化物及び電力ケーブル接続用電気絶縁部材 | |
EP3699238B1 (en) | Millable silicone rubber composition and electric-field relaxation layer | |
JP4873167B2 (ja) | 工業用大型延伸ロール形成用縮合反応硬化型シリコーンゴム組成物 | |
EP3473661B1 (en) | Silicone composition, a cured silicone rubber product and a power cable | |
JP6888593B2 (ja) | ミラブル型シリコーンゴム組成物及び電界緩和層 | |
JP2017002218A (ja) | 高誘電絶縁性シリコーンゴム組成物 | |
JP4152672B2 (ja) | 電力ケーブル接続部用シリコーンゴム組成物 | |
JP5359983B2 (ja) | 高電圧電気絶縁体用シリコーンゴム組成物及びポリマー碍子 | |
JPH1076606A (ja) | シリコーンゴム積層体及びその製造方法 | |
JP2022175019A (ja) | 付加硬化型導電性ミラブルシリコーンゴム組成物及び導電性シリコーンゴム成形品、並びに付加硬化型導電性ミラブルシリコーンゴム組成物の保管時の経時劣化抑制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18798391 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019517480 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018798391 Country of ref document: EP Effective date: 20191211 |