WO2018199169A1 - 成膜装置及び成膜方法 - Google Patents

成膜装置及び成膜方法 Download PDF

Info

Publication number
WO2018199169A1
WO2018199169A1 PCT/JP2018/016817 JP2018016817W WO2018199169A1 WO 2018199169 A1 WO2018199169 A1 WO 2018199169A1 JP 2018016817 W JP2018016817 W JP 2018016817W WO 2018199169 A1 WO2018199169 A1 WO 2018199169A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller
base material
film forming
heating
film
Prior art date
Application number
PCT/JP2018/016817
Other languages
English (en)
French (fr)
Inventor
礼寛 横山
応樹 武井
昌敏 佐藤
清田 淳也
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2019514579A priority Critical patent/JPWO2018199169A1/ja
Priority to KR1020197000116A priority patent/KR20190020724A/ko
Priority to CN201880002608.4A priority patent/CN109729718A/zh
Publication of WO2018199169A1 publication Critical patent/WO2018199169A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks

Definitions

  • the present invention relates to a film forming apparatus and a film forming method for evaporating an evaporation material to form a film of the evaporation material on a substrate.
  • Patent Documents 1, 2, and 3 there has been known a film forming apparatus in which a film of an evaporation material is formed on a substrate while the substrate unwound from the unwinding roller is wound around a can roll, and the substrate is wound up by a winding roller.
  • the film forming apparatus when a metal film is formed on a substrate made of a long film or the like, high-temperature deposition is performed by depositing particles of a high-temperature metal material on the substrate. An excessive temperature difference may occur between the object and the base material, and the base material may be wrinkled.
  • Patent Documents 1 and 2 the substrate immediately before contacting the can roll is heated, or in Patent Document 3, the temperature of the substrate on the can roll is within a predetermined temperature range.
  • Patent Document 3 A technique for suppressing the generation of wrinkles due to a temperature difference between the deposit and the base material by adjusting the temperature of the can roll as described is described.
  • an object of the present invention is to form a film forming apparatus and a film forming apparatus capable of suppressing the generation of wrinkles on the base material in the process until the base material on which the metal film is formed is recovered. It is to provide a method.
  • a film forming apparatus includes an unwinding roller, a winding roller, a heating roller, a film forming unit, and a control unit.
  • the unwinding roller unwinds a base material that is a long film.
  • the winding roller winds the base material unwound from the unwinding roller.
  • the heating roller includes a temperature control unit and is provided between the unwinding roller and the winding roller in the conveying direction of the base material to heat the base material.
  • the film forming unit is provided to face the heating roller, includes an evaporation source having a heating mechanism for heating the metal material, and forms a metal film on the substrate.
  • control unit In the process in which the base material is unwound from the heating roller and taken up by the take-up roller, the control unit is configured so that a temperature difference between the metal film and the base material is 0 ° C. or higher and lower than 180 ° C.
  • the temperature control unit and the heating mechanism are configured to be controllable.
  • the shrinkage behavior of the metal film and the base material can be made uniform in the slow cooling process until the base material on which the metal film is formed is wound on the take-up roller. Therefore, shrinkage mismatch between the metal film and the substrate is suppressed, and plastic deformation such as wrinkles is suppressed from occurring on the substrate on which the metal film is formed.
  • the control unit is configured so that a temperature change per unit time of the base material is 3.6 ° C./min to 3600 ° C./min. You may comprise so that the said preheating part may be controlled.
  • the base material is preheated and comes into contact with the heating roller while thermally expanding by a predetermined amount. Therefore, in the process of forming the metal film on the base material on the heating roller, the generation of wrinkles due to an excessive temperature difference between the base material and the metal film is suppressed.
  • the control unit may be configured to control the temperature control unit so that the temperature of the heating roller is 0 ° C. or higher and 70 ° C. or lower.
  • the control unit may be configured to control the temperature control unit and the heating mechanism such that a temperature difference between the evaporation source and the heating roller is 300 ° C. or more and 700 ° C. or less.
  • a film forming method includes an unwinding roller for unwinding a base material that is a long film, and the above-described base material unwound from the unwinding roller.
  • a winding roller and a temperature control unit are provided between the unwinding roller and the winding roller in the conveyance direction of the base material, and are opposed to the heating roller for heating the base material and the heating roller.
  • a film forming unit that includes an evaporation source that evaporates a metal material and forms a metal film on the substrate.
  • the temperature difference between the metal film and the substrate is maintained at 0 ° C. or more and less than 180 ° C. in the process in which the substrate is unwound from the heating roller and wound on the winding roller.
  • the present invention it is possible to provide a film forming apparatus and a film forming method capable of suppressing the generation of wrinkles on a base material on which the base material on which the metal film is formed is collected. can do.
  • FIG. 1 is a schematic sectional side view showing a configuration of a film forming apparatus 100 according to an embodiment of the present invention.
  • the X-axis, Y-axis, and Z-axis directions shown in FIG. 1 indicate triaxial directions orthogonal to each other, the X-axis and Y-axis indicate horizontal directions, and the Z-axis direction indicates a vertical direction.
  • the film forming apparatus 100 includes a vacuum chamber 101, a film forming unit 110, a transfer unit 120, a transfer mechanism 130, a control unit 140, and a preheating unit 150.
  • the vacuum chamber 101 has a sealed structure and is connected to an exhaust line L having a vacuum pump P. Thereby, the vacuum chamber 101 is configured such that the inside thereof can be evacuated or maintained in a predetermined reduced pressure atmosphere. Moreover, the vacuum chamber 101 has the partition plate 102 which divides the film-forming part 110 and the conveyance part 120, respectively, as shown in FIG.
  • the film forming unit 110 is a film forming chamber partitioned by the partition plate 102 and the outer wall of the vacuum chamber 101, and has an evaporation source 111 therein.
  • the film forming unit 110 is connected to the exhaust line L.
  • the film forming unit 110 communicates with the transport unit 120, when the film forming unit 110 is exhausted, the transport unit 120 is also exhausted. Thereby, a pressure difference is generated between the film forming unit 110 and the transport unit 120. Due to this pressure difference, an evaporating flow of lithium metal, which will be described later, is prevented from entering the transport unit 120.
  • the evaporation source 111 is an evaporation source for evaporating lithium metal, and has a heating mechanism (not shown) for heating the lithium metal.
  • the heating temperature (T 1 ) of the heating mechanism is about 530 ° C. to 700 ° C.
  • the shortest distance D between the evaporation source 111 and the heating roller 132 (the shortest distance between the hot water surface of the crucible holding lithium metal and the heating roller 132) is, for example, about several hundred mm.
  • the evaporation source 111 according to the present embodiment includes, for example, a resistance heating evaporation source, an induction heating evaporation source, an electron beam heating evaporation source, or the like.
  • the transfer unit 120 is a transfer chamber partitioned by the partition plate 102 and the outer wall of the vacuum chamber 101, and is arranged above the Y axis direction in the vacuum chamber 101.
  • the exhaust line L is connected only to the film forming unit 110. However, by connecting another exhaust line to the transfer unit 120, the transfer unit 120 and the film forming unit 110 are independently exhausted. Also good.
  • the conveyance mechanism 130 includes an unwinding roller 131, a heating roller 132, a winding roller 133, and guide rollers 134a and 134b.
  • the tension (tension) when the transport mechanism 130 supports the substrate F is, for example, about 200N.
  • the unwinding roller 131, the heating roller 132, and the winding roller 133 are each provided with a rotation drive unit (not shown) and configured to be rotatable around the Z axis in the direction of the arrow in FIG. 1 at a predetermined rotation speed.
  • a rotation drive unit not shown
  • the substrate F is transported from the unwinding roller 131 toward the winding roller 133 at a predetermined transport speed in the vacuum chamber 101.
  • the conveyance speed of the base material F is preferably 0.1 m / min or more and 0.8 m / min or less, and more preferably 0.1 m / min.
  • the unwinding roller 131 is provided on the upstream side in the transport direction of the base material F from the film forming unit 110 and has a function of feeding the base material F to the heating roller 132.
  • a guide roller 134a which is a free roller not provided with a unique rotation driving unit, is disposed.
  • the heating roller 132 is disposed between the unwinding roller 131 and the winding roller 133 in the conveyance direction of the base material F.
  • the heating roller 132 is disposed at a position where at least a part of the lower portion in the Y-axis direction faces the film forming unit 110 through the opening 102 a provided in the partition plate 102.
  • the heating roller 132 faces the opening 102a with a predetermined interval, and faces the evaporation source 111 in the Y-axis direction.
  • the heating roller 132 is made of a metal material such as stainless steel, iron, or aluminum and is formed in a cylindrical shape, and a temperature control unit (not shown) such as a temperature control medium circulation system is provided therein.
  • a temperature control unit such as a temperature control medium circulation system
  • a high boiling point organic medium such as silicon oil can be used.
  • the size of the heating roller 132 is not particularly limited, but typically, the width dimension in the Z-axis direction is set larger than the width dimension of the base material F in the Z-axis direction.
  • the winding roller 133 is provided on the downstream side of the film forming unit 110 in the conveyance direction of the base material F, and collects the base material F that is unwound from the unwinding roller 131 and on which the metal material is formed by the film forming unit 110.
  • a guide roller 134b which is a free roller that does not include a unique rotation drive unit, is disposed.
  • the controller 140 is arranged outside the vacuum chamber 101 as shown in FIG.
  • the control unit 140 includes, for example, a computer including a CPU (Central Processing Unit) and a memory, and controls the entire operation of the film forming apparatus 100 by controlling each unit of the film forming apparatus 100.
  • a computer including a CPU (Central Processing Unit) and a memory
  • control unit 140 includes, for example, control of the exhaust line L including the vacuum pump P, control of the conveyance speed and film formation speed of the substrate F, heating temperature control of the temperature control unit, and a heating mechanism included in the evaporation source 111. Heating temperature control, heating temperature control of the preheating unit 150, rotation drive control of the transport mechanism 130, and the like are performed.
  • the preheating unit 150 is a lamp heater for heating the base material F, and is arranged with the heat radiation surface facing the base material F.
  • the preheating unit 150 is provided in the vacuum chamber 101 on the upstream side of the film forming unit 110 in the transport direction of the substrate F.
  • the base material F continuously conveyed from the unwinding roller 131 to the heating roller 132 is heated by heat radiation from the preheating unit 150.
  • the base material F is heated by the preheating unit 150 in a region in front of being in contact with the heating roller 132.
  • the temperature at which the preheating unit 150 heats the base material F is, for example, about 550 ° C.
  • the base material F is, for example, a long film made of copper cut to a predetermined width. Further, as the base material F, a resin film having heat resistance that does not cause thermal deformation on the heating roller 132 may be used.
  • the thickness of the substrate F is not particularly limited and is, for example, several ⁇ m to several tens of ⁇ m. Moreover, there is no restriction
  • the film forming apparatus 100 has the above configuration. Note even not shown, the film forming apparatus 100, the metal film has been formed substrate F is unwound from the heating roller 132, in the course to be taken up by the take-up roller 133, and the temperature of the metal film (T 2) A detection unit for monitoring the temperature (T 3 ) of the substrate F is provided.
  • control unit 140 can control the temperature difference (T 2 ⁇ T 3 ) between the metal film and the substrate F within a desired range in real time based on the output of the detection unit.
  • the detection unit is configured to be able to measure the temperatures of the metal film and the base material F in a non-contact manner.
  • a radiation thermometer etc. are employ
  • the configuration of the film forming apparatus 100 is not limited to the configuration shown in FIG. 1.
  • the film forming unit 110, the transport unit 120, the unwinding roller 131, the heating roller 132, the winding roller 133, and the guide roller 134 a , 134b can be appropriately changed.
  • FIG. 2 is a flowchart showing a film forming method using the film forming apparatus 100.
  • a film forming method of the film forming apparatus 100 will be described with reference to FIG.
  • Step S01 exhaust processing
  • the vacuum pump P is activated, the inside of the vacuum chamber 101 is evacuated, and each of the film forming unit 110 and the transfer unit 120 is maintained at a predetermined degree of vacuum.
  • the transport mechanism 130 that supports the base material F is driven, and the base material F is transported from the unwinding roller 131 toward the winding roller 133.
  • the evaporation source 111 evaporates lithium metal and forms an evaporating flow of lithium material that is emitted toward the base material F on the heating roller 132.
  • Step S02 Heat treatment
  • the unwinding roller 131, the heating roller 132, and the winding roller 133 are continuously rotated at a predetermined rotation speed around the Z axis.
  • the base material F is conveyed to the heating roller 132 while being guided by the guide roller 134a.
  • the control unit 140 has a temperature increase rate (temperature change per unit time) of the base material F of 3.6 ° C./min or more until the base material F passes through the preheating unit 150 and contacts the heating roller 132.
  • the heating temperature of the preheating unit 150 is controlled to be 3600 ° C./min or less.
  • the base material F is preheated and comes into contact with the heating roller 132 while thermally expanding by a predetermined amount. Therefore, generation of wrinkles due to a difference in thermal expansion between the front surface side and the back surface side of the base material F is suppressed in a film forming step (step S03) described later.
  • the base material F cannot be sufficiently preheated, and there is a risk that wrinkles will occur when the base material F contacts the heating roller 132. is there. Further, if the temperature exceeds 3600 ° C./min, the temperature of the base material F changes abruptly as the base material F passes through the preheating unit 150, and thus the preheating process itself may cause wrinkles in the base material F. There is.
  • Step S03 Film forming step
  • the unwinding roller 131, the heating roller 132, and the winding roller 133 are continuously rotated around the Z axis at a predetermined rotation speed, so that the substrate F heated by the preheating unit 150 is wound around the outer peripheral surface of the heating roller 132. Turned. Then, the substrate F passes through the film forming unit 110 while being heated by the heating roller 132.
  • step S03 in the above-described heat treatment step (step S02), the control unit 140 is heated by controlling the temperature increase rate of the base material F to be 3.6 ° C./min or more and 3600 ° C./min or less.
  • the temperature control unit is controlled so that the temperature (T 4 ) of the roller 132 is 0 ° C. or higher and 70 ° C. or lower, more preferably 30 ° C. or higher and 50 ° C. or lower.
  • FIG. 3 shows the results of experiments on the occurrence of wrinkles on the base material F by changing the temperature of the heating roller 132 when the temperature increase rate of the base material F is 3.6 ° C./min or more and 3600 ° C./min or less. It is a star chart showing. Note that “ ⁇ ” shown in FIG. 3 indicates that the base material F was not wrinkled. “ ⁇ ” indicates that the base material F is a non-defective product level although it is slightly wrinkled. “X” indicates that the product is defective due to wrinkles generated on the base material F.
  • the temperature of the heating roller 132 is 0 ° C. or higher and 70 ° C. or lower, generation of wrinkles on the substrate F is suppressed, and if it is 30 ° C. or higher and 50 or lower, wrinkles are generated on the substrate F. Is prevented.
  • the temperature of the heating roller 132 is less than 0 ° C., the temperature difference between the lithium metal particles and the base material F becomes large, and wrinkles may occur due to the difference in linear expansion coefficient. Moreover, when it exceeds 70 degreeC, there exists a possibility that lithium metal and the base material F may alloy by the temperature rise at the time of film-forming.
  • lithium metal particles are deposited on the substrate F, and a lithium metal film is formed on the substrate F.
  • the thickness of the lithium metal film is not particularly limited, and is, for example, several ⁇ m to several tens of ⁇ m.
  • step S03 the temperature difference (T 2 -T 3 ) between the lithium metal film and the base material F falls within the range of 0 ° C. or more and less than 180 ° C. in the recovery process (step S04) described later by the control unit 140.
  • the heating temperature of at least one of the temperature control unit or the heating mechanism is controlled.
  • the control unit 140 controls the temperature adjustment unit and the heating mechanism so that the temperature difference (T 1 -T 4 ) between the evaporation source 111 and the heating roller 132 is 300 ° C. or more and 700 ° C. or less. .
  • Step S04 Recovery
  • the base material F on which the lithium metal film is formed is conveyed to the take-up roller 133 and collected while being guided by the guide roller 134b.
  • the temperature difference (T 2 -T 3 ) between the lithium metal film and the base material F is controlled to be maintained at 0 ° C. or more and less than 180 ° C. by the above-described step S03. Has been.
  • the shrinkage behavior of the lithium metal film and the base material F is uniform in the slow cooling process until the base material F on which the lithium metal film is formed is unwound from the heating roller 132 and taken up by the take-up roller 133. Is achieved. Therefore, shrinkage mismatch between the lithium metal film and the base material F is suppressed, and plastic deformation such as wrinkles is suppressed from occurring on the base material F on which the lithium metal film is formed.
  • the base material F is typically made of copper, but is not limited thereto, and may be made of aluminum, nickel, stainless steel, ITO (Indium (Tin Oxide), or the like.
  • the metal material held in the evaporation source 111 is typically lithium metal, but is not limited to this.
  • indium (In), zinc (Zn), tin (Sn), gallium (Ga), bismuth ( Bi), sodium (Na), potassium (K) and the like may be used.
  • the base material F is preheated before the metal film is formed on the base material F, thereby suppressing the generation of wrinkles on the base material F.
  • the present invention is not limited to this.
  • the film forming apparatus 100 may suppress wrinkling of the base material F by adjusting the transport speed of the base material F and the opening diameter of a shutter or the like that houses the evaporation source 111.
  • the vacuum deposition method is adopted as an example of the film forming method, but is not limited thereto.
  • the present invention is generally applicable to a film forming technique in which particles of a metal material are generated at a high temperature and the particles are deposited on the substrate F.
  • a molecular beam evaporation method, an ion plating method, an ion beam evaporation method, or the like may be employed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本発明の一形態に係る成膜装置は、巻出しローラ、巻取りローラ、加熱ローラ、成膜部及び制御部を有する。巻出しローラは長尺のフィルムである基材を巻き出す。巻取りローラは巻出しローラから巻き出された基材を巻き取る。加熱ローラは温調ユニットを含み、基材の搬送方向において巻出しローラと巻取りローラとの間に設けられ、基材を加熱する。成膜部は加熱ローラに対向して設けられ、金属材料を加熱する加熱機構を有する蒸発源を含み、基材上に金属膜を成膜する。制御部は基材が加熱ローラから巻き出され、巻取りローラに巻き取られる過程で、金属膜と基材との温度差が0℃以上180℃未満となるように、温調ユニット又は加熱機構のいずれか一方を制御する。

Description

成膜装置及び成膜方法
 本発明は、蒸発材料を蒸発させて基材上に当該蒸発材料の膜を形成する成膜装置及び成膜方法に関する。
 従来、巻出しローラから巻き出された基材をキャンロールに巻き付けながら、基材上に蒸発材料の膜を形成し、当該基材を巻取りローラにより巻き取る方式の成膜装置が知られている(例えば、特許文献1,2及び3)。
 ここで、上記のような成膜装置では、長尺のフィルム等からなる基材に金属膜を形成する場合に、高温の金属材料の粒子が基材上に堆積されることで、高温の堆積物と基材との間で過剰な温度差が生じ、基材にシワが発生する場合がある。
 そこで、このような問題を解決するため、特許文献1及び2ではキャンロールに接する直前の基材を加熱したり、あるいは特許文献3ではキャンロール上の基材の温度が所定の温度範囲内となるようにキャンロールの温度を調整したりすることで、堆積物と基材との温度差によるシワの発生を抑制する技術が記載されている。
特開2008-081820号公報 特開2010-182599号公報 特開2010-121188号公報
 しかしながら、特許文献1~3に記載の成膜装置では、基材上に金属膜を形成する際のシワの発生は抑制することはできても、成膜後の基材と金属膜の温度は考慮されていない。これにより、金属膜が形成された基材が巻取りローラに巻き取られるまでの徐冷過程において、基材と金属膜との収縮ミスマッチにより、当該基材にシワが発生するおそれがある。
 以上のような事情に鑑み、本発明の目的は、金属膜が形成された基材が回収されるまでの過程において、当該基材にシワが発生することを抑制可能な成膜装置及び成膜方法を提供することにある。
 上記目的を達成するため、本発明の一形態に係る成膜装置は、巻出しローラと、巻取りローラと、加熱ローラと、成膜部と、制御部と、を有する。
 上記巻出しローラは、長尺のフィルムである基材を巻き出す。
 上記巻取りローラは、上記巻出しローラから巻き出された上記基材を巻き取る。
 上記加熱ローラは、温調ユニットを含み、上記基材の搬送方向において上記巻出しローラと上記巻取りローラとの間に設けられ、上記基材を加熱する。
 上記成膜部は、上記加熱ローラに対向して設けられ、金属材料を加熱する加熱機構を有する蒸発源を含み、上記基材上に金属膜を成膜する。
 上記制御部は、上記基材が上記加熱ローラから巻き出され、上記巻取りローラに巻き取られる過程において、上記金属膜と上記基材との温度差が0℃以上180℃未満となるように、上記温調ユニットと上記加熱機構の少なくとも一方を制御可能に構成される。
 この構成によれば、金属膜が形成された基材が巻取りローラに巻き取られるまでの徐冷過程において、金属膜と基材との収縮挙動の均一化が図られる。従って、金属膜と基材との収縮ミスマッチが抑制され、金属膜が形成された基材にシワ等の塑性変形が生じることが抑制される。
 上記成膜部より上記基材の搬送方向上流側に設けられた予熱部をさらに具備し、
 上記制御部は、上記基材が巻出しローラから上記加熱ローラへ搬送される過程において、上記基材の単位時間あたりの温度変化が3.6℃/min以上3600℃/min以下となるように上記予熱部を制御するように構成されてもよい。
 この構成によれば、基材が予熱されて所定量熱膨張しつつ加熱ローラと接触することとなる。従って、加熱ローラ上の基材に金属膜が形成される過程において、基材と金属膜との過剰な温度差に起因するシワの発生が抑制される。
 上記制御部は、上記加熱ローラの温度が0℃以上70℃以下となるように、上記温調ユニットを制御するように構成されてもよい。
 上記制御部は、上記蒸発源と上記加熱ローラとの温度差が300℃以上700℃以下となるように上記温調ユニット及び上記加熱機構を制御するように構成されてもよい。
 上記目的を達成するため、本発明の一形態に係る成膜方法は、長尺のフィルムである基材を巻き出す巻出しローラと、上記巻出しローラから巻き出された上記基材を巻き取る巻取りローラと、温調ユニットを含み、上記基材の搬送方向において上記巻出しローラと上記巻取りローラとの間に設けられ、上記基材を加熱する加熱ローラと、上記加熱ローラに対向して設けられ、金属材料を蒸発させる蒸発源を含み、上記基材上に金属膜を成膜する成膜部と、を有する成膜装置の成膜方法である。
 上記成膜方法は、上記基材が上記加熱ローラから巻き出され、上記巻取りローラに巻き取られる過程において、上記金属膜と上記基材との温度差が0℃以上180℃未満に維持される。
 以上のように、本発明によれば、金属膜が形成された基材が回収されるまでの過程において、当該基材にシワが発生することを抑制可能な成膜装置及び成膜方法を提供することができる。
本発明の実施形態に係る成膜装置の構成を示す概略側断面図である。 上記成膜装置の成膜方法を示すフローチャートである。 上記成膜装置の加熱ローラの温度と、基材の昇温速度と、基材のシワの発生との関係を示す一実験結果である。
 以下、図面を参照しながら、本発明の実施形態について説明する。
 [成膜装置の構成]
 図1は、本発明の一実施形態に係る成膜装置100の構成を示す概略側断面図である。図1に示すX軸、Y軸及びZ軸方向は相互に直交する3軸方向を示し、X軸及びY軸は水平方向、Z軸方向は鉛直方向を示す。
 成膜装置100は、図1に示すように、真空チャンバ101と、成膜部110と、搬送部120と、搬送機構130と、制御部140と、予熱部150と、を有する。
 真空チャンバ101は密閉構造を有し、真空ポンプPを有する排気ラインLに接続される。これにより、真空チャンバ101は、その内部が所定の減圧雰囲気に排気又は維持可能に構成される。また、真空チャンバ101は、図1に示すように、成膜部110と搬送部120をそれぞれ区画する仕切り板102を有する。
 成膜部110は、仕切り板102と真空チャンバ101の外壁により区画された成膜室であり、その内部に蒸発源111を有する。また、成膜部110は、排気ラインLに接続されている。これにより、真空チャンバ101が排気される際には、先ず、成膜部110内が排気される。
 一方、成膜部110は搬送部120と連通しているため、成膜部110内が排気されると、搬送部120内も排気される。これにより、成膜部110と搬送部120との間に圧力差が生じる。この圧力差により、後述するリチウム金属の蒸発流が搬送部120内に侵入することが抑制される。
 蒸発源111は、リチウム金属を蒸発させる蒸発源であり、リチウム金属を加熱する加熱機構(図示略)を有する。加熱機構の加熱温度(T)は、530℃~700℃程度である。
 また、蒸発源111と加熱ローラ132との間の最短距離D(リチウム金属を保持する坩堝の湯面と加熱ローラ132との間の最短距離)は、例えば数百mm程度である。本実施形態に係る蒸発源111は、例えば、抵抗加熱式蒸発源、誘導加熱式蒸発源又は電子ビーム加熱式蒸発源等で構成される。
 搬送部120は、仕切り板102と、真空チャンバ101の外壁に区画された搬送室であり、真空チャンバ101内のY軸方向上方に配置される。本実施形態では、排気ラインLを成膜部110にのみ接続したが、搬送部120にも別の排気ラインを接続することにより、搬送部120と成膜部110とを独立して排気してもよい。
 搬送機構130は、巻出しローラ131と、加熱ローラ132と、巻取りローラ133と、ガイドローラ134a,134bと、を有する。搬送機構130が基材Fを支持する際の張力(テンション)は、例えば、200N程度である。
 巻出しローラ131、加熱ローラ132及び巻取りローラ133は、それぞれ図示しない回転駆動部を備え、Z軸周りに所定の回転速度で図1における矢印方向にそれぞれ回転可能に構成されている。これにより、真空チャンバ101内において、巻出しローラ131から巻取りローラ133へ向かって基材Fが所定の搬送速度で搬送される。
 本実施形態では、基材Fの搬送速度は、好ましくは0.1m/min以上0.8m/min以下であり、より好ましくは0.1m/minである。
 巻出しローラ131は、成膜部110より基材Fの搬送方向上流側に設けられ、基材Fを加熱ローラ132へ送り出す機能を有する。巻出しローラ131と加熱ローラ132との間の適宜の位置には、独自の回転駆動部を備えていないフリーローラであるガイドローラ134aが配置される。
 加熱ローラ132は、基材Fの搬送方向において巻出しローラ131と巻取りローラ133との間に配置される。加熱ローラ132は、Y軸方向における下部の少なくとも一部が、仕切り板102に設けられた開口部102aを通って成膜部110に臨む位置に配置される。これにより、加熱ローラ132は、所定の間隔を空けて開口部102aに対向し、蒸発源111とY軸方向に対向する。
 加熱ローラ132は、ステンレス鋼、鉄、アルミニウム等の金属材料で筒状に構成され、その内部に例えば温調媒体循環系等の温調ユニット(図示略)が設けられる。温調ユニットに循環させる温媒としては、例えばシリコン油等の高沸点の有機媒体を用いることができる。加熱ローラ132の大きさは特に限定されないが、典型的には、Z軸方向の幅寸法が基材FのZ軸方向の幅寸法よりも大きく設定される。
 巻取りローラ133は、成膜部110より基材Fの搬送方向下流側に設けられ、巻出しローラ131から巻き出され成膜部110で金属材料が成膜された基材Fを回収する機能を有する。加熱ローラ132と巻取りローラ133との間の適宜の位置には、独自の回転駆動部を備えていないフリーローラであるガイドローラ134bが配置される。
 制御部140は、図1に示すように、真空チャンバ101の外部に配置される。制御部140は、例えば、CPU(Central Processing Unit)及びメモリを含むコンピュータ等により構成され、成膜装置100の各部を制御することにより成膜装置100の全体の動作を制御する。
 具体的には、制御部140は例えば、真空ポンプPを含む排気ラインLの制御、基材Fの搬送速度や成膜速度の制御、温調ユニットの加熱温度制御、蒸発源111が有する加熱機構の加熱温度制御、予熱部150の加熱温度制御及び搬送機構130の回転駆動制御等を行う。
 予熱部150は基材Fを加熱するためのランプヒータであり、熱放射面を基材Fに向けて配置される。予熱部150は、真空チャンバ101内において、成膜部110よりも基材Fの搬送方向上流側に設けられる。
 これにより、巻出しローラ131から加熱ローラ132へ連続的に搬送される基材Fが、予熱部150からの熱輻射により加熱される。ここで、当該基材Fは、加熱ローラ132に接触する手前の領域において予熱部150により加熱されるものとなる。予熱部150が基材Fを加熱する温度は、基材Fにリチウム金属膜が形成される場合、例えば550℃程度である。
 基材Fは、例えば、所定幅に裁断された銅からなる長尺のフィルムである。また、基材Fには、加熱ローラ132上で熱変形しない程度の耐熱性を有する樹脂フィルムが用いられてもよい。
 基材Fの厚さは、特に限定されず、例えば数μm~数十μmである。また、基材Fの幅や長さについても特に制限はなく、用途に応じて適宜決定可能である。
 成膜装置100は、以上のような構成を有する。なお図示せずとも、成膜装置100は、金属膜が形成された基材Fが加熱ローラ132から巻き出され、巻取りローラ133に巻き取られる過程において、金属膜の温度(T)と基材Fの温度(T)をそれぞれモニタリングする検出部を備える。
 これにより、制御部140は例えば、検出部の出力に基づきリアルタイムに金属膜と基材Fとの温度差(T-T)を所望の範囲内に制御することができる。上記検出部は、非接触に金属膜と基材F各々の温度を計測可能に構成される。本実施形態では、上記検出部として例えば放射温度計等が採用される。
 また、成膜装置100の構成は図1に示す構成に限定されるものではなく、例えば、成膜部110,搬送部120,巻出しローラ131、加熱ローラ132,巻取りローラ133,ガイドローラ134a,134bの数や大きさ、配置等は適宜変更可能である。
 [成膜方法]
 図2は、成膜装置100を用いた成膜方法を示すフローチャートである。以下、成膜装置100の成膜方法について、図2に沿って説明する。
 (ステップS01:排気処理)
 真空ポンプPを起動させ、真空チャンバ101内を排気し、成膜部110と搬送部120各々を所定の真空度に維持する。
 次に、基材Fを支持する搬送機構130を駆動させ、基材Fを巻出しローラ131から巻取りローラ133に向けて搬送させる。成膜部110では、蒸発源111がリチウム金属を蒸発させ、加熱ローラ132上の基材Fに向けて出射するリチウム原料の蒸発流を形成する。
 (ステップS02:加熱処理)
 巻出しローラ131、加熱ローラ132及び巻取りローラ133がZ軸周りの所定の回転速度で連続的に回転する。基材Fは、ガイドローラ134aによって走行をガイドされながら加熱ローラ132へ搬送される。
 この際、基材Fは、予熱部150を通過することにより、加熱される。ここで、制御部140は、基材Fが予熱部150を通過し、加熱ローラ132に当接するまでの基材Fの昇温速度(単位時間当たりの温度変化)が3.6℃/min以上3600℃/min以下となるように予熱部150の加熱温度を制御する。
 これにより、基材Fが予熱されて所定量熱膨張しつつ加熱ローラ132と接触することとなる。従って、後述する成膜工程(ステップS03)において、基材Fの表面側と裏面側との熱膨張差に起因するシワの発生が抑制される。
 基材Fの昇温温度が3.6℃/min未満であると、基材Fを十分に予熱することができず、基材Fが加熱ローラ132に接触した際にシワが発生するおそれがある。また、3600℃/minを超えると、基材Fが予熱部150を通過することで基材Fの温度が急峻に変化するため、予熱工程そのものが基材Fにシワが発生する原因となるおそれがある。
 (ステップS03:成膜工程)
 巻出しローラ131、加熱ローラ132及び巻取りローラ133がZ軸周りに所定の回転速度で連続的に回転することによって、予熱部150により加熱された基材Fが加熱ローラ132の外周面に巻回される。そして、基材Fは加熱ローラ132により加熱されながら成膜部110を通過する。
 ステップS03では、前述の加熱処理工程(ステップS02)において、基材Fの昇温速度が3.6℃/min以上3600℃/min以下となるように制御されることにより、制御部140は加熱ローラ132の温度(T)を0℃以上70℃以下、より好ましくは30℃以上50℃以下となるように温調ユニットを制御する。
 図3は、基材Fの昇温速度が3.6℃/min以上3600℃/min以下の場合に、加熱ローラ132の温度を変化させて、基材Fのシワの発生具合を実験した結果を示す星取表である。なお、図3に示す「○」は、基材Fにシワが無かったことを示す。「△」は、基材Fに若干シワがあるものの良品レベルであることを示す。「×」は、基材Fに発生したシワにより不良品であることを示す。
 図3に示すように、加熱ローラ132の温度が0℃以上70℃以下であれば基材Fにシワが発生することが抑制され、30℃以上50以下であれば基材Fにシワが発生することが防止される。
 一方、加熱ローラ132の温度が0℃未満であると、リチウム金属粒子と基材Fとの温度差が大きくなり、線膨張係数の差からシワが発生するおそれがある。また、70℃を超えると、成膜時の温度上昇によりリチウム金属と基材Fが合金化してしまうおそれがある。
 基材Fは成膜部110を通過する過程で、リチウム金属の粒子が基材Fに堆積し、基材F上にリチウム金属膜が形成される。リチウム金属膜の厚みは特に限定されず、例えば、数μm~数十μmである。
 ここで、ステップS03では、制御部140が後述する回収工程(ステップS04)において、リチウム金属膜と基材Fとの温度差(T-T)が0℃以上180℃未満の範囲におさまるように、温調ユニット若しくは加熱機構の少なくとも一方の加熱温度を制御する。この場合、制御部140は、蒸発源111と加熱ローラ132との温度差(T-T)が300℃以上700℃以下となるように、温調ユニット及び加熱機構を制御するものとなる。
 (ステップS04:回収)
 続いて、リチウム金属膜が形成された基材Fは、ガイドローラ134bによって走行をガイドされながら巻取りローラ133へ搬送され、回収される。ここで、本実施形態に係る成膜方法では、前述のステップS03によりリチウム金属膜と基材Fとの温度差(T-T)が0℃以上180℃未満に維持されるように制御されている。
 これにより、リチウム金属膜が形成された基材Fが加熱ローラ132から巻き出され、巻取りローラ133に巻き取られるまでの徐冷過程において、リチウム金属膜と基材Fとの収縮挙動の均一化が図られる。従って、リチウム金属膜と基材Fとの収縮ミスマッチが抑制され、リチウム金属膜が形成された基材Fにシワ等の塑性変形が生じることが抑制される。
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。
 例えば、基材Fは典型的には銅からなるが、これに限られず、例えばアルミニウム、ニッケル、ステンレス、ITO(Indium Tin Oxide)等からなるものであってもよい。
 また、蒸発源111に保持される金属材料は典型的にはリチウム金属であるが、これに限られず、例えばインジウム(In)、亜鉛(Zn)、錫(Sn)、ガリウム(Ga)、ビスマス(Bi)、ナトリウム(Na)及びカリウム(K)等であってもよい。
 さらに、上記実施形態では、基材Fに金属膜を形成する前に基材Fを予熱することで、基材Fにシワが発生することを抑制しているが、これに限られない。例えば、成膜装置100では、基材Fの搬送速度や蒸発源111を収容するシャッタ等の開口径を調整することで、基材Fにシワが発生することを抑制してもよい。
 加えて、上記実施形態では、成膜方法の一例として真空蒸着法が採用されるが、これに限られない。本発明は、高温で金属材料の粒子を生成して、基材F上に当該粒子を堆積させる成膜技術一般に適用可能である。具体的には、例えば分子線蒸着法、イオンプレーディング法又はイオンビーム蒸着法等が採用されてもよい。
 100・・・成膜装置
 110・・・成膜部
 131・・・巻出しローラ
 132・・・加熱ローラ
 133・・・巻取りローラ
 140・・・制御部
 150・・・予熱部
 F・・・・・基材

Claims (5)

  1.  長尺のフィルムである基材を巻き出す巻出しローラと、
     前記巻出しローラから巻き出された前記基材を巻き取る巻取りローラと、
     温調ユニットを含み、前記基材の搬送方向において前記巻出しローラと前記巻取りローラとの間に設けられ、前記基材を加熱する加熱ローラと、
     前記加熱ローラに対向して設けられ、金属材料を加熱する加熱機構を有する蒸発源を含み、前記基材上に金属膜を成膜する成膜部と、
     前記基材が前記加熱ローラから巻き出され、前記巻取りローラに巻き取られる過程において、前記金属膜と前記基材との温度差が0℃以上180℃未満となるように、前記温調ユニットと前記加熱機構の少なくとも一方を制御可能に構成された制御部と
     を具備する成膜装置。
  2.  請求項1に記載の成膜装置であって、
     前記成膜部より前記基材の搬送方向上流側に設けられた予熱部をさらに具備し、
     前記制御部は、前記基材が巻出しローラから前記加熱ローラへ搬送される過程において、前記基材の単位時間あたりの温度変化が3.6℃/min以上3600℃/min以下となるように前記予熱部を制御するように構成される
     成膜装置。
  3.  請求項2に記載の成膜装置であって、
     前記制御部は、前記加熱ローラの温度が0℃以上70℃以下となるように、前記温調ユニットを制御するように構成される
     成膜装置。
  4.  請求項1~3のいずれか1つに記載の成膜装置であって、
     前記制御部は、前記蒸発源と前記加熱ローラとの温度差が300℃以上700℃以下となるように前記温調ユニット及び前記加熱機構を制御するように構成される
     成膜装置。
  5.  長尺のフィルムである基材を巻き出す巻出しローラと、前記巻出しローラから巻き出された前記基材を巻き取る巻取りローラと、温調ユニットを含み、前記基材の搬送方向において前記巻出しローラと前記巻取りローラとの間に設けられ、前記基材を加熱する加熱ローラと、前記加熱ローラに対向して設けられ、金属材料を蒸発させる蒸発源を含み、前記基材上に金属膜を成膜する成膜部と、を有する成膜装置の成膜方法であって、
     前記基材が前記加熱ローラから巻き出され、前記巻取りローラに巻き取られる過程において、前記金属膜と前記基材との温度差を0℃以上180℃未満に維持する
     成膜方法。
PCT/JP2018/016817 2017-04-26 2018-04-25 成膜装置及び成膜方法 WO2018199169A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019514579A JPWO2018199169A1 (ja) 2017-04-26 2018-04-25 成膜装置及び成膜方法
KR1020197000116A KR20190020724A (ko) 2017-04-26 2018-04-25 막 형성장치 및 막 형성방법
CN201880002608.4A CN109729718A (zh) 2017-04-26 2018-04-25 成膜装置及成膜方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-087333 2017-04-26
JP2017087333 2017-04-26

Publications (1)

Publication Number Publication Date
WO2018199169A1 true WO2018199169A1 (ja) 2018-11-01

Family

ID=63918367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016817 WO2018199169A1 (ja) 2017-04-26 2018-04-25 成膜装置及び成膜方法

Country Status (4)

Country Link
JP (1) JPWO2018199169A1 (ja)
KR (1) KR20190020724A (ja)
CN (1) CN109729718A (ja)
WO (1) WO2018199169A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109778135A (zh) * 2019-03-28 2019-05-21 中国科学院青岛生物能源与过程研究所 一种预嵌入金属锂制备电池负极材料的装置及方法
CN113874306A (zh) * 2019-07-11 2021-12-31 日本电气硝子株式会社 玻璃卷的制造方法及制造装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158467A (ja) * 1989-11-14 1991-07-08 Matsushita Electric Ind Co Ltd 連続製膜装置
JPH11350117A (ja) * 1998-06-03 1999-12-21 Toppan Printing Co Ltd 真空成膜装置
JP2014173101A (ja) * 2013-03-06 2014-09-22 Dainippon Printing Co Ltd 積層体の製造方法
JP2015021172A (ja) * 2013-07-19 2015-02-02 日東電工株式会社 スパッタ装置
JP2017506290A (ja) * 2014-01-22 2017-03-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated フレキシブル基板のスプレッディングためのローラ、フレキシブル基板を処理するための装置、及びそれらを操作する方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231221A (ja) * 2001-02-01 2002-08-16 Mitsubishi Heavy Ind Ltd リチウム二次電池用電極又はセパレータ及びこれらの製造方法並びにこれらを用いたリチウム二次電池
JP4329357B2 (ja) * 2003-02-24 2009-09-09 住友電気工業株式会社 リチウム二次電池負極部材、及びその製造方法
JP4516304B2 (ja) * 2003-11-20 2010-08-04 株式会社アルバック 巻取式真空蒸着方法及び巻取式真空蒸着装置
JP2008081820A (ja) 2006-09-28 2008-04-10 Sumitomo Electric Ind Ltd 成膜装置
US20100307414A1 (en) * 2008-04-14 2010-12-09 Ulvac, Inc. Take-Up Type Vacuum Deposition Apparatus
JP2010121188A (ja) 2008-11-21 2010-06-03 Sumitomo Metal Mining Co Ltd 金属積層樹脂フィルム基板及びその製造方法
JP2010182599A (ja) 2009-02-09 2010-08-19 Toyota Motor Corp リチウムイオン電池用集電体の成膜方法及び成膜装置
JP2010242200A (ja) * 2009-04-09 2010-10-28 Toyota Motor Corp 薄膜部材の製造装置およびその製造方法
JP2011089160A (ja) * 2009-10-21 2011-05-06 Honjo Metal Co Ltd リチウム膜の製造方法およびリチウム膜製造装置
JP6016723B2 (ja) * 2012-08-07 2016-10-26 株式会社神戸製鋼所 ガラスフィルム搬送装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158467A (ja) * 1989-11-14 1991-07-08 Matsushita Electric Ind Co Ltd 連続製膜装置
JPH11350117A (ja) * 1998-06-03 1999-12-21 Toppan Printing Co Ltd 真空成膜装置
JP2014173101A (ja) * 2013-03-06 2014-09-22 Dainippon Printing Co Ltd 積層体の製造方法
JP2015021172A (ja) * 2013-07-19 2015-02-02 日東電工株式会社 スパッタ装置
JP2017506290A (ja) * 2014-01-22 2017-03-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated フレキシブル基板のスプレッディングためのローラ、フレキシブル基板を処理するための装置、及びそれらを操作する方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109778135A (zh) * 2019-03-28 2019-05-21 中国科学院青岛生物能源与过程研究所 一种预嵌入金属锂制备电池负极材料的装置及方法
CN113874306A (zh) * 2019-07-11 2021-12-31 日本电气硝子株式会社 玻璃卷的制造方法及制造装置

Also Published As

Publication number Publication date
JPWO2018199169A1 (ja) 2019-06-27
CN109729718A (zh) 2019-05-07
KR20190020724A (ko) 2019-03-04

Similar Documents

Publication Publication Date Title
TWI579213B (zh) Glass film conveying device
WO2018199169A1 (ja) 成膜装置及び成膜方法
JP5958092B2 (ja) 成膜装置及び成膜方法
TWI495749B (zh) 捲對捲濺鍍方法
JP4657385B2 (ja) 薄膜形成装置および薄膜形成方法
JP5071339B2 (ja) 長尺樹脂フィルムの処理方法と長尺樹脂フィルムの処理装置
JP5278218B2 (ja) 長尺樹脂フィルム処理装置およびロール冷却装置と、ロール冷却方法および長尺樹脂フィルムとロールの冷却方法
JP6183284B2 (ja) ガス放出機構を備えたキャンロールを用いた長尺フィルムの処理方法
JP2010121188A (ja) 金属積層樹脂フィルム基板及びその製造方法
JP7093684B2 (ja) 成膜装置及び成膜方法
JP6662192B2 (ja) ガラスリボン成膜装置及びガラスリボン成膜方法
JP4074672B2 (ja) スパッタリング方法
JP6172063B2 (ja) 長尺樹脂フィルムの表面処理装置
JP2017101270A (ja) 薄膜形成装置および薄膜形成方法
JP6132055B2 (ja) グラフェン膜の製造方法
TWI836404B (zh) 材料沉積設備、在基板上沉積材料的方法及材料沉積系統
JP2004315861A (ja) 薄膜形成装置及び薄膜形成方法
US20200131627A1 (en) Heat treatment apparatus for a vacuum chamber, deposition apparatus for depositing material on a flexible substrate, method of heat treatment of a flexible substrate in a vacuum chamber, and method for processing a flexible substrate
US20220341031A1 (en) Material deposition apparatus, method of depositing material on a substrate, and material deposition system
JPH06330317A (ja) 薄膜製造装置
WO2020004335A1 (ja) 成膜装置及び成膜方法
JP2005281784A (ja) 基板の冷却構造
JPH04110752U (ja) 真空蒸着装置
TW202307235A (zh) 蒸發源冷卻機構
JP2004339546A (ja) 真空処理装置と処理方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019514579

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197000116

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791701

Country of ref document: EP

Kind code of ref document: A1