WO2018198400A1 - 空気調和機の室内機 - Google Patents

空気調和機の室内機 Download PDF

Info

Publication number
WO2018198400A1
WO2018198400A1 PCT/JP2017/036039 JP2017036039W WO2018198400A1 WO 2018198400 A1 WO2018198400 A1 WO 2018198400A1 JP 2017036039 W JP2017036039 W JP 2017036039W WO 2018198400 A1 WO2018198400 A1 WO 2018198400A1
Authority
WO
WIPO (PCT)
Prior art keywords
drain pan
drain
indoor unit
heat exchanger
air conditioner
Prior art date
Application number
PCT/JP2017/036039
Other languages
English (en)
French (fr)
Inventor
光佑 熊本
幸範 田中
真和 粟野
吉田 和正
能登谷 義明
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to EP17895510.0A priority Critical patent/EP3438559B1/en
Priority to CN201780011595.2A priority patent/CN109154445B/zh
Publication of WO2018198400A1 publication Critical patent/WO2018198400A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • F24F2013/227Condensate pipe for drainage of condensate from the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/22Cleaning ducts or apparatus

Definitions

  • the indoor unit of the air conditioner sucks indoor air into the interior and passes the sucked indoor air through a heat exchanger to obtain conditioned air subjected to any optional treatment of heating, cooling, and dehumidification.
  • the room is air conditioned by blowing out the conditioned air into the room.
  • a filter is disposed to close the space between the air suction port for sucking room air and the heat exchanger so that dust contained in the room air does not intrude inside, and the filter Capture most of the However, dust finer than the mesh of the filter penetrates the mesh of the filter and enters the interior of the indoor unit.
  • Dust attached to the heat exchanger contains a component serving as a nutrient of various bacteria (including molds). Then, for example, when the air conditioner performs a cooling operation or a dehumidifying operation in summer, moisture in the air condenses on the fins of the heat exchanger, so that the surroundings of the heat exchanger become highly humid. Therefore, if dust continues to be attached to the heat exchanger, bacteria (including molds) may proliferate to generate an offensive odor. Therefore, the air conditioner is desired to remove dust attached to the heat exchanger to keep the heat exchanger clean throughout the year.
  • various bacteria including molds
  • Patent Document 1 water is attached to the surface of the fin of the heat exchanger by performing the cooling operation or the dehumidifying operation after the heating operation, and the dust containing oil adhering to the surface of the fin with the attached water.
  • An air conditioner has been proposed to flush out the water.
  • the surface of the fin needs to be subjected to antifouling treatment in order to flush away dust with water attached to the surface of the fin.
  • freeze cleaning can cause a large amount of frost (including ice) to adhere to the surface of the fin more than the amount of water adhering to the surface of the fin per unit time in a normal cooling operation or dehumidifying operation. Therefore, in the case of this freeze cleaning, dust attached to the heat exchanger can be flushed away even if the surface of the fin is not subjected to antifouling treatment.
  • a large amount of water (drain water) is generated that is larger than the amount of water generated per unit time in normal cooling operation or dehumidifying operation.
  • An air conditioner is desired to prevent the large amount of water (drain water) from leaking to the outside of the indoor unit.
  • the present invention has been made to solve the above-described problems, and has as its main object to provide an indoor unit of an air conditioner that does not leak water to the outside at the time of freeze cleaning.
  • a heat exchanger for performing heat exchange between air and a refrigerant, a drain pan for receiving drain water dropped from the heat exchanger, frost or the like on the surface of the heat exchanger
  • a control unit for controlling a freezing operation for adhering ice, and a volume of the drain pan is equal to or more than a total adhesion amount of frost or ice adhering to the heat exchanger during the freezing operation. It will be the indoor unit of the conditioner. Other means will be described later.
  • water can be prevented from leaking to the outside at the time of freeze cleaning.
  • FIG. 1 is a configuration diagram of an air conditioner according to Embodiment 1.
  • Fig. 2 is a cross-sectional view of the indoor unit of the air conditioner according to the first embodiment.
  • 5 is a perspective view of a drain pan portion of a housing used for the indoor unit according to Embodiment 1.
  • FIG. It is the elements on larger scale of the front drain pan in a drain pan part. It is a graph which shows the relation between the surface area of a heat exchanger, and the amount of drain water which arises by freeze washing.
  • It is the schematic which shows the arrangement structure of the drain pipe in a drain pan part.
  • It is the schematic which shows another arrangement structure of the drain pipe in a drain pan part.
  • It is the schematic which shows the inlet structure of the drain pipe in a drain pan part.
  • FIG. 1 It is the schematic which shows another inlet structure of the drain pipe in a drain pan part. It is the schematic (1) of the drain pan part of the housing
  • FIG. It is the elements on larger scale of the front drain pan in a drain pan part. 5 is a perspective view of a heat insulating material used in Embodiment 2.
  • this embodiment will be described in detail with reference to the drawings.
  • the drawings are only schematically shown to the extent that the present invention can be sufficiently understood. Therefore, the present invention is not limited to the illustrated example.
  • symbol is attached
  • Embodiment 1 ⁇ Configuration of air conditioner> The configuration of the air conditioner 1 according to the first embodiment will be described below with reference to FIGS. 1 and 2.
  • FIG. 1 is a block diagram of the air conditioner 1 according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the indoor unit 2 of the air conditioner 1.
  • the air conditioner 1 includes an indoor unit 2 disposed indoors, an outdoor unit 3 disposed outdoor, and a remote controller 12 disposed near the user's hand indoors. doing.
  • the indoor unit 2 sucks indoor air inside, passes the sucked indoor air through the heat exchanger 16 (see FIG. 2), and obtains conditioned air subjected to any optional treatment of heating, cooling, and dehumidification.
  • the room is air-conditioned by blowing out the obtained conditioned air into the room.
  • the indoor unit 2 is connected to the outdoor unit 3 via the connection pipe 5 and circulates the refrigerant with the outdoor unit 3.
  • the outdoor unit 3 exchanges heat with the refrigerant to be circulated.
  • the indoor unit 2 includes a housing 7 and a decorative frame 8 and includes a structure such as a blower fan 14 (see FIG. 2) and a heat exchanger 16 (see FIG. 2).
  • the blower fan 14 is a cross-flow fan that sends air from the air suction port 6 side to the air blowout port 13 side.
  • the heat exchanger 16 is a unit that performs heat exchange with the refrigerant.
  • the front surface of the decorative frame 8 is shaped to include an upper portion extending in the vertical direction and a lower portion extending in the diagonally backward direction on the lower side.
  • a front panel 9 is attached to the upper part of the front of the decorative frame 8.
  • the front panel 9 is a member that covers the front of the indoor unit 2. Further, on the lower side portion of the front surface of the decorative frame 8, the receiving unit 10, the display unit 11, and the vertical wind direction plate 18 are attached.
  • the receiving unit 10 is a device that receives an operation signal transmitted from the remote controller 12.
  • the receiving unit 10 is electrically connected to the control unit CL incorporated in the indoor unit 2.
  • the control unit CL controls the operation of the air conditioner 1 based on the operation signal received from the remote controller 12 via the receiving unit 10.
  • the display unit 11 is a device that displays the driving condition.
  • the vertical wind direction plate 18 is a member that defines the vertical direction of the conditioned air discharged from the air outlet 13.
  • the vertical wind direction plate 18 is pivotally supported by the decorative frame 8 (or the housing 7) near the lower end so that the upper part opens and closes in the vertical direction, and is configured to be rotated by a drive unit (not shown) ing.
  • the indoor unit 2 forms an air outlet 13 by opening the vertical wind direction plate 18.
  • the indoor unit 2 includes a filter 15, a drain pan 17, and a left and right wind direction plate in addition to the air blowing fan 14, the heat exchanger 16, and the vertical air direction plate 18. And 19).
  • the filter 15 is a member that prevents dust from entering the inside of the housing 7.
  • the drain pan 17 is a member that receives water (drain water) that condenses and drops on the surface of the fins 20 of the heat exchanger 16.
  • the left and right wind direction plate 19 is a member that defines the direction of the conditioned air discharged from the air outlet 13 in the left-right direction.
  • the filter 15 is disposed to close the space between the air inlet 6 and the heat exchanger 16.
  • the filter 15 prevents dust larger than the mesh of the filter 15 from invading the inside of the housing 7, and dust which is finer than the mesh of the filter 15 which has passed through the mesh of the filter 15 will be described later. It is configured to be washed out by freeze washing.
  • the air conditioner 1 is preferably configured to have a filter cleaning mechanism (not shown), and it is preferable that the filter cleaning mechanism can clean the filter 15 automatically (more preferably, periodically).
  • the blower fan 14 is disposed near the approximate center of the interior of the indoor unit 2 so that air can be sucked from the air suction port 6 and blown out from the air blowout port 13.
  • the heat exchanger 16 is disposed on the upstream side (closer to the air suction port 6) of the blower fan 14, and is formed in a substantially reverse V shape so as to cover the upstream side of the blower fan 14.
  • the heat exchanger 16 is composed of a preheat exchanger 16F and a post heat exchanger 16R.
  • the front heat exchanger 16F and the rear heat exchanger 16R each include a plurality of fins (heat exchange plates) 20 and a plurality of pipes 40 penetrating the fins 20.
  • the fins 20 are long thin plate members for heat exchange between the refrigerant and the air.
  • the fins 20 are made of, for example, an aluminum alloy.
  • the pipe 40 is a member for causing the refrigerant to flow.
  • the indoor unit 2 collects most of the dust in the indoor air sucked into the inside by the filter 15. However, part of the dust penetrates the mesh of the filter 15 and enters the interior of the indoor unit 2 without being collected by the filter 15 and adheres to the heat exchanger 16. If dust continues to be attached to the heat exchanger 16, bacteria (including molds) may be proliferated to generate an offensive odor. Therefore, it is preferable that the air conditioner 1 be configured to remove dust attached to the heat exchanger 16. So, in this embodiment, the air conditioner 1 performs the following washing processes with respect to the heat exchanger 16 by operation control.
  • the air conditioner 1 operates to lower the temperature of the heat exchanger 16, rapidly cools the heat exchanger 16, and deposits frost or ice on the surface of the fins 20 of the heat exchanger 16. (Hereafter, it is called “freeze operation”).
  • the operation of performing the freezing operation is referred to as the “freezing operation”.
  • frost including ice
  • frost is formed by condensation of moisture in the air on the surface of the fins 20 of the heat exchanger 16 and freezing of the condensed moisture, thereby passing through a state of water droplets. It may be attached to the surface.
  • the air conditioner 1 does not operate the blower fan 14. Thereby, the air conditioner 1 suppresses the falling (water dripping) of water (condensed water) condensed on the surface of the fin 20 of the heat exchanger 16, and stagnation of water (condensed water) on the surface of the fin 20. The time can be extended. As a result, the air conditioner 1 can secure a stable amount of frozen water.
  • the air conditioner 1 After the freezing operation, the air conditioner 1 operates to raise the temperature of the heat exchanger 16 and rapidly heats the heat exchanger 16 to thaw (thaw) frost (ice) (hereinafter referred to as "thaw” Operation)).
  • thaw frost
  • ice frost
  • the air conditioner 1 returns frost (ice) to water by performing a thawing operation.
  • the air conditioner 1 uses the force of the thawed (thawed) water to fall off to flush away the fine dust attached to the heat exchanger 16. Thereby, the air conditioner 1 can improve the maintainability of the heat exchanger 16, and can wash
  • this washing process washing process performed by freezing operation and thawing operation
  • the air conditioner 1 receives the water (drain water) which flowed out at the time of thawing operation by the drain pan 17.
  • the drain pan 17 is formed with a flow path through which water (drain water) flows.
  • the inner wall surface of the flow path is mirror-finished to facilitate the flow of water (drain water).
  • the drainage pipe is connected to the flow path.
  • the air conditioner 1 drains the water (drain water) flowing out through the drain pipe to the outside of the housing 7.
  • FIG. 3 is a perspective view of the drain pan portion of the housing 7.
  • FIG. 4 is a partially enlarged view of the front drain pan 17F in the drain pan portion.
  • FIG. 5 is a graph showing the relationship between the surface area of the heat exchanger 16 and the amount of drain water generated in the freeze cleaning.
  • FIG. 6 is a schematic view showing the arrangement of the drain pipe 22 in the drain pan portion.
  • the drain pan 17 is disposed below the rear heat exchanger 16R (see FIG. 2), and the front drain pan is disposed below the front heat exchanger 16F (see FIG. 2). And 17F.
  • communication passages 21a and 21b are provided on both sides of the rear drain pan 17R.
  • Drain pipes 22a and 22b are provided on both sides of the front drain pan 17F.
  • the communication passages 21a and 21b will be collectively referred to as “the communication passage 21".
  • drain pipe 22 when naming drain pipes 22a and 22b generically, it is called “drain pipe 22.”
  • the rear drain pan 17R receives water dripping from the rear heat exchanger 16R (see FIG. 2).
  • the bottom surface of the rear drain pan 16R is inclined downward from the side far from the communication passage 21 to the side close thereto.
  • the bottom surface of the rear drain pan 16R is high near the approximate center in the left-right direction, and the left end portion and the right end portion have a shape lower than that.
  • the water dropped from the post heat exchanger 16R flows out from the rear drain pan 16R into the communication passage 21.
  • the bottom surface of the communication passage 21 is inclined downward from the rear drain pan 16R side toward the front drain pan 16F side. As a result, the water dropped from the rear heat exchanger 16R (see FIG. 2) flows out from the communication passage 21 to the front drain pan 17F.
  • the front drain pan 17F is in communication with the drain pipe 22.
  • the drainage pipe 22 is formed as a circular pipe integral with the housing 7 and has a structure in which the inlet 23 is opened to the inside of the front drain pan 17F.
  • the front drain pan 17F receives water dripping from the front heat exchanger 16F (see FIG. 2). Further, the water dropped from the rear heat exchanger 16R (see FIG. 2) flows from the rear drain pan 16R side into the front drain pan 17F. The water dropped from the preheat exchanger 16F (see FIG. 2) and the water dropped from the post heat exchanger 16R (see FIG. 2) are drained to the outside of the indoor unit 2 through the drain pipe 22.
  • drain water when the water dropped from the preheat exchanger 16F (see FIG. 2) and the water dropped from the post heat exchanger 16R (see FIG. 2) are collectively referred to as “drain water”.
  • ⁇ Volume of drain pan> In the indoor unit 2, during freezing operation, a large amount of frost (ice) larger than the amount of water attached to the post heat exchanger 16R and the preheat exchanger 16F per unit time in normal cooling operation or dehumidifying operation, It adheres to the exchanger 16R and the preheat exchanger 16F. Then, in the thawing operation, the frost (ice) attached to the post heat exchanger 16R and the preheat exchanger 16F is simultaneously thawing. As a result, at the time of freeze cleaning, a large amount of drain water is generated that is larger than the amount of water generated per unit time in normal cooling operation or dehumidifying operation, and drips simultaneously to the rear drain pan 17R and the front drain pan 17F.
  • the rear drain pan 17R and the front drain pan 17F do not have a volume capable of storing a large amount of drain water generated at the time of thawing operation, drain water passes through the drain pipes 22a and 22b. Before draining to the outside, the front drain pan 17F or the rear drain pan 17R overflows. As a result, the drain water leaks to the outside of the indoor unit 2. Therefore, it is desirable for the air conditioner 1 to prevent a large amount of drain water generated during the thawing operation from leaking to the outside of the indoor unit 2. Therefore, it is desirable for the drain pan 17 to be provided with a volume that does not allow the large amount of drain water generated during the thawing operation to overflow.
  • the volume of all the drain pans 17 including the rear drain pan 17R and the front drain pan 17F is equal to or greater than the total adhering amount of frost or ice adhering to the heat exchanger 16 during freezing operation. So is configured. However, when considering that drain water is drained to the outside of the indoor unit 2 through the drain pipe 22, the indoor unit 2 is not limited to the total adhering amount of frost or ice adhering to the heat exchanger 16 during the freezing operation.
  • FIG. 5 shows the relationship between the surface area of all the heat exchangers 16 including the post heat exchanger 16R and the preheat exchanger 16F and the amount of drain water (total adhesion amount of frost or ice) generated at the time of freeze cleaning.
  • FIG. 5 shows experimental results measured when the air conditioner 1 was freeze-cleaned under conditions of an indoor temperature of 27 ° C. and an indoor humidity of 35%.
  • the surface area of all the heat exchangers 16 including the post heat exchanger 16R and the preheat exchanger 16F is 15 m 2 , a drain of 34.2 ml Water is generated.
  • the drain water volume (total adhesion of frost or ice) generated during the thawing operation is w and the surface area of the heat exchanger 16 is x
  • the drain water volume w is the surface area x of the heat exchanger 16
  • frost ice The amount of drain water produced after thawing
  • the indoor unit 2 drains drain water from the front drain pan 17F to the outside of the outdoor unit 2 through the drain pipe 22 in parallel with the thawing process of frost (ice).
  • the indoor unit 2 when considering the waste water treatment of the drain water, the indoor unit 2, the drainage of drain water is drained by the wastewater treatment from a value y 0 described above (e.g., x) a value y 1 obtained by subtracting an amount corresponding to the drain pan 17 It can be set as a volume.
  • the indoor unit 2 when considering the waste water treatment of the drain water, the indoor unit 2, the volume y 1 all combined and rear drain pan 17R and the front drain pan 17F of the drain pan 17 (w-x) above, i.e., (y 1 If it is equal to or greater than (2.28-1) x), it is possible to prevent the drain water generated in the freeze cleaning from leaking to the outside. Therefore, the volume y 1 of the drain pan 17 in the case of considering the drainage treatment of the drain water is preferably (2.28-1) x or more.
  • the value 2.28x corresponds to "total adhesion amount of frost or ice (m 3 )". Also, the value x is “the amount of drainage of drainage pipe 22 per unit time (m 3 / s) ⁇ the time required for thawing all frost or ice or the time required for all frost or ice to fall into drain pan 17 It corresponds to "short time (s)”.
  • the volume y 1 of the drain pan 17 when considering drainage treatment of drain water is (total adhesion amount of frost or ice (m 3 ) ⁇ drainage amount of drain 22 per unit time) (M 3 / s) ⁇ time required for thawing of all frost or ice or short time (s) of all the time for frost or ice to fall to drain pan 17 or more, it occurs in freeze washing It is possible to prevent the drain water from leaking to the outside.
  • Whether to apply the above-mentioned value y 0 or to apply the above-mentioned value y 1 as the volume of the drain pan 17 can be selected according to the operation.
  • the above-mentioned value y 0 is applied as the volume of the drain pan 17, the volume of the drain pan 17 is increased. Therefore, instead of enlarging the indoor unit 2, a large margin for drain water overflowing from the drain pan 17 Can be set.
  • a value y 1 described above as the volume of the drain pan 17 it is possible to reduce the volume of the drain pan 17, it is possible to reduce the size of the indoor unit 2.
  • the indoor unit 2 is not only provided with a volume for the drain pan 17 to prevent overflow of a large amount of drain water generated at the time of thawing operation, but all the drain water can be indoors without overflowing the drain water from the front drain pan 17F. It is good to make it the structure which can be easily drained to the exterior of the machine 2 by the drainage pipe 22.
  • all drain water means water obtained by combining the drain water dropped from the post heat exchanger 16R and the drain water dropped from the preheat exchanger 16F.
  • the indoor unit 2 is configured such that the inner diameter R (see FIG. 6) of the drainage pipe 22 and the depth h (see FIG. 6) of the front drain pan 17F satisfy the relationship of equation (9) described later. It shall be. This point will be described in detail below.
  • the flow rate "Q" of drain water flowing through the drain pipe 22 per unit time is the amount of drain water (total adhesion amount of frost or ice) generated during thawing operation per hour (3600 seconds) "w" (m 3 ), that is, the flow rate at which “w ⁇ 10 6 ” (mm 3 ) flows.
  • the drain water amount (total adhesion amount of frost or ice) “w” corresponds to the volume y 0 required of the drain pan 17. Therefore, the flow rate "Q" of the drain water flowing through the drain pipe 22 per unit time has a relationship of the following equation (4).
  • the drainage pipe 22 makes all the drain water to the outside of the indoor unit 2 without overflowing the drain water from the front drain pan 17F by making the inner diameter “R” larger than that of the relation of the equation (8) described above.
  • the drainage pipe 22 can be easily drained. Therefore, by setting the inner diameter R of the drainage pipe 22 (see FIG. 6) and the depth h of the front drain pan 17F (see FIG. 6) so as to satisfy the relationship of the following equation (9) All drain water can be easily drained to the outside of the indoor unit 2 through the drain pipe 22 without overflowing drain water from the drain pan 17F.
  • y 0 is the volume of all drain pans 17 including the rear drain pan 17R and the front drain pan 17F, and the surface area x of all the heat exchangers 16 including the rear heat exchanger 16R and the front heat exchanger 16F.
  • the inner diameter R of the drainage pipe 22 is preferably, for example, 11 mm or more.
  • the indoor unit 2 is configured such that the inner diameter R of the drainage pipe 22 and the depth h of the front drain pan 17F satisfy the relationship of the above-described equation (9). Such an indoor unit 2 can drain drain water to the outside of the indoor unit 2 before the drain water overflows from the front drain pan 17F. In addition, the indoor unit 2 can satisfactorily drain a large amount of drain water generated by the freeze cleaning without unnecessarily enlarging the housing 7.
  • the drain pipe 22 may be disposed such that the central axis C22 is inclined downward from the inlet 23 toward the outlet 24. Thereby, the indoor unit 2 can drain the drain water accumulated in the front drain pan 17F smoothly to the outside.
  • the dust adhering to the front heat exchanger 16F and the back heat exchanger 16R with the drain water also flows down at the time of freeze cleaning. Therefore, in the vicinity of the inlet 23 of the drain pipe 22, the drain water and the dust mix together and form a sludge and easily accumulate. As a result, there is a possibility that the drained drain water and dust may flow into the drain pipe 22.
  • the indoor unit 2 inclines the drainage pipe 22 so that the drain water and the dust that flowed into the drainage pipe 22 can be easily dropped by its own weight. Therefore, even if the drain water and dust in the form of a sludge may flow into the inside of the drain pipe 22, the indoor unit 2 can appropriately send them out.
  • Such an indoor unit 2 can maintain the inside of the drain pipe 22 in a state suitable for draining drain water.
  • the indoor unit 2 can also suppress itself that drain water and dust accumulate near the inlet 23 of the drain pipe 22. As a result, the indoor unit 2 can improve the drainage efficiency of the drain water collected in the front drain pan 17F.
  • FIG. 7 is a schematic view showing another arrangement structure of the drainage pipe 22.
  • the front drain pan 17F has a structure in which the bottom surface BS2 in the vicinity of the inlet 23 of the drainage pipe 22 inclines downward from the side far from the inlet 23 of the drainage pipe 22 toward the near side. That is, the front drain pan 17F has a shape in which a recess is formed on the bottom surface near the outlet of the flow path.
  • the inclination angle ⁇ 22 of the central axis C22 of the drainage pipe 22 is equal to or larger than the inclination angle ⁇ 17 of the bottom surface BS1 of the front drain pan 17F in the vicinity of the inlet 23 of the drainage pipe 22.
  • Such an indoor unit 2 makes it easy for drain water including dust collected in the front drain pan 17F to flow in the direction of the drain pipe 22 by its own weight. Therefore, the indoor unit 2 can drain drain water collected in the front drain pan 17F more smoothly than the configuration shown in FIG. As a result, the indoor unit 2 can improve the drainage efficiency of the drain water collected in the front drain pan 17F.
  • FIG. 8 is a schematic view showing the inlet structure of the drainage pipe 22.
  • FIG. 9 is a schematic view showing another inlet structure of the drain 22.
  • the inlet 23 of the drainage pipe 22 has a shape in which the lower half of the circumference extends forward of the inlet 23 of the drainage pipe 22.
  • the indoor unit 2 is configured such that the opening area S23 of the inlet 23 of the drainage pipe 22 is larger than the cross-sectional area S22M near the center of the drainage pipe 22.
  • the drain pipe 22 can efficiently take in drain water accumulated in the front drain pan 17F and drain it to the outside.
  • the indoor unit 2 can efficiently take in the drain water containing dust into the inside of the drain pipe 22. Therefore, even if the indoor unit 2 mixes the drain water and dust in the vicinity of the inlet 23 of the drainage pipe 22 and becomes sludge-like in some cases, they are taken into the drainage pipe 22. It can be sent out well. Thereby, the indoor unit 2 can also suppress itself that drain water and dust accumulate near the inlet 23 of the drain pipe 22. As a result, the indoor unit 2 can improve the drainage efficiency of the drain water collected in the front drain pan 17F.
  • the drain pan portion of the housing 7 may be deformed as, for example, the housings 7A, 7B, and 7C illustrated in FIGS. 10A to 10C.
  • 10A to 10C are schematic views showing modifications of the drain pan portion of the housing 7 respectively.
  • the housing 7A has a shape in which the rear drain pan 17R is extended in the left-right direction as compared with the housing 7 shown in FIG. 3, and the communication portions 21a and 21b are rear drain pans. The difference is that they are arranged at a position on the near side of the 17R. Therefore, in the housing 7A, the communication paths 21a and 21b are disposed at positions near the left and right sides of the rear drain pan 17R. The communication paths 21a and 21b are formed such that the bottoms thereof incline downward from the rear drain pan 17R side toward the front drain pan 17F side.
  • casing 7B is different by the point by which the communicating path 21 is arrange
  • the rear drain pan 17R is formed so that the bottom surface thereof is inclined downward from the side far from the communication path 21 to the side close thereto.
  • the housing 7A has a shape in which the rear drain pan 17R is extended in the left-right direction as compared with the housing 7B shown in FIG. 10B, and the communication passage 21 is a rear drain pan 17R. The difference is that they are disposed at the front side position.
  • the communication passage 21 is not positioned on both sides of the front drain pan 17F and the rear drain pan 17R, but the positions near the left and right sides of the rear drain pan 17R, It can arrange
  • the communication passage 21 can connect the front drain pan 17F and the rear drain pan 17R.
  • the bottom surface of the rear drain pan 17R is configured such that the side closer to the communication paths 21a and 21b is slightly lower.
  • Such housings 7A, 7B and 7C shown in FIGS. 10A to 10C improve the degree of freedom of the arrangement structure of the communication passage 21 and also drain the drain water dropped from the rear heat exchanger 16R to the rear drain pan 17R. Can be improved.
  • the indoor unit 2 can suppress that drain water and dust accumulate near the inlet 23 of the drain pipe 22 by combining the structure shown to FIG. 6 thru
  • the volume of the drain pan 17 is equal to or more than the total adhesion amount w of frost or ice adhering to the heat exchanger 16 during the freezing operation.
  • the volume of the drain pan 17 is (total adhesion of frost or ice-unit time, in consideration of drainage of drain water to the outside of the indoor unit 2 through the drain pipe 22. Even if it is configured to be more than the drainage time of drainage pipe 22 per time ⁇ time required for thawing of all frost or ice or time required for all frost or ice to fall to drain pan 17) Good.
  • the volume of all the drain pans 17 which combined the back drain pan 17R and the front drain pan 17F is the surface area x of all the heat exchangers 16 which combined the post heat exchanger 16R and the front heat exchanger 16F.
  • it may be configured to be (2.28-1) x or more.
  • the drain pan 17 is provided with a volume that does not cause a large amount of drain water generated during thawing operation to overflow. Therefore, the indoor unit 2 can prevent the drain water from leaking to the outside at the time of freeze cleaning.
  • the communication passage 21 is disposed at the positions on both left and right sides of the rear drain pan 17R or in the vicinity of both sides, and the bottom surface is inclined downward from the rear drain pan 17R side toward the front drain pan 17F side. (See FIG. 3 or FIG. 10A).
  • the communication passage 21 is disposed at a position on the left or right side of the rear drain pan 17R or a position near one side, and the bottom surface is inclined downward from the rear drain pan 17R side toward the front drain pan 17F side. It can be configured (see FIG. 10B or FIG. 10C).
  • the bottom surface of the rear drain pan 17R may be configured to be inclined downward from the side far from the communication passage 21 to the side close thereto.
  • Such an indoor unit 2 can improve the degree of freedom of the arrangement structure of the communication passage 21 and improve the drainage property of the drain water dropped from the after heat exchanger 16R to the after drain pan 17R.
  • Such an indoor unit 2 can drain drain water to the outside of the indoor unit 2 before the drain water overflows from the front drain pan 17F.
  • the indoor unit 2 can satisfactorily drain a large amount of drain water generated by the freeze cleaning without unnecessarily enlarging the housing 7.
  • the bottom surface of the front drain pan 17F is inclined downward toward at least the vicinity of the inlet 23 of the drain 22 from the side far from the inlet 23 of the drain 22 (see FIG. 7).
  • Such an indoor unit 2 temporarily mixes drain water and dust in the vicinity of the inlet 23 of the drain pipe 22 and becomes sludge-like, and the drain water and dust in the form of sludge form inside the drainage pipe 22. Even if they flow in, they can be sent out well.
  • Such an indoor unit 2 can maintain the inside of the drain pipe 22 in a state suitable for draining drain water.
  • the indoor unit 2 can also suppress itself that drain water and dust accumulate near the inlet 23 of the drain pipe 22. As a result, the indoor unit 2 can improve the drainage efficiency of the drain water collected in the front drain pan 17F.
  • the drain pipe 22 is disposed such that the central axis C22 inclines downward from the inlet 23 toward the outlet 24. And inclination angle alpha 22 of central axis C of drainage pipe 22 is more than inclination angle alpha 17 of bottom BS2 of front drain pan 17F near the entrance 23 of drainage pipe 22 (refer to Drawing 7).
  • Such an indoor unit 2 makes it easy for drain water including dust collected in the front drain pan 17F to flow in the direction of the drain pipe 22 by its own weight. Therefore, the indoor unit 2 can drain drain water collected in the front drain pan 17F smoothly. As a result, the indoor unit 2 can improve the drainage efficiency of the drain water collected in the front drain pan 17F.
  • the indoor unit 2 can be configured such that the opening area S23 of the inlet 23 of the drainage pipe 22 (or the opening area S123 of the inlet 123) is larger than the cross-sectional area S23M near the center of the drainage pipe 22 (See FIGS. 8 and 9).
  • Such an indoor unit 2 can efficiently take in drain water including dust accumulated in the front drain pan 17F through the drain pipe 22 and drain it to the outside. Thereby, the indoor unit 2 can efficiently take in the drain water containing dust into the inside of the drain pipe 22. Therefore, even if the indoor unit 2 mixes with drain water and dust in the vicinity of the inlet 23 of the drainage pipe 22 to form a sludge and it becomes difficult to be drained, these are taken into the drainage pipe 22. Can be sent out well. Thereby, the indoor unit 2 can also suppress itself that drain water and dust accumulate near the inlet 23 of the drain pipe 22. As a result, the indoor unit 2 can improve the drainage efficiency of the drain water collected in the front drain pan 17F.
  • the indoor unit 2 of the air conditioner 1 As described above, according to the indoor unit 2 of the air conditioner 1 according to the first embodiment, it is possible to prevent water from leaking to the outside at the time of freeze cleaning.
  • an indoor unit 2A in which the following points are considered is provided.
  • the indoor unit 2A facilitates the flow of dust together with the drain water, and reduces the amount of residual dust remaining inside the drain pan 17.
  • accumulation of dust in the vicinity of the inlet 23 of the drainage pipe 22 is avoided by not providing the concavo-convex portion 130 (see FIG. 12) described later immediately before the inlet 23 (see FIG. 12) of the drainage pipe 22. Suppress.
  • the indoor unit 2A arranges a heat insulating material (foamed resin material) 111 (see FIGS. 11 and 12) and the like described later on each part of the drain pan 17.
  • the arrangement position and shape of the heat insulating material (foamed resin material) 111, etc. described later are taken into consideration so as not to decrease the drainage efficiency at the time of drainage and decrease the drainage efficiency.
  • the casing 7 constituting the drain pan 17 is difficult to process. Therefore, when providing the uneven portion 130 (see FIG. 11 and FIG. 12) described later in the drain pan 17, the indoor unit 2A uses the different members different from the casing 7 of the drain pan 17 to describe later. 130 is provided. That is, the indoor unit 2A arranges the heat insulating material (foamed resin material) 111 (see FIGS. 11 and 12) or the like described later on which the concavo-convex portion 130 described later is formed on the upper surface inside the lenti pan 17. The uneven part 130 mentioned later is provided in the inside of.
  • the indoor unit 2A has a configuration in which the heat exchanger 16 and the drain pan 17 are in close contact with each other, and no gap is formed between the heat exchanger 16 and the drain pan 17 (see FIG. 16).
  • FIG. 11 is a perspective view of a drain pan portion of a housing 107 used for the indoor unit 2A.
  • FIG. 12 is a partially enlarged view of the front drain pan 17F in the drain pan portion.
  • FIG. 12 is an enlarged view of the configuration in the vicinity of the part A of FIG.
  • FIG. 13 is a perspective view of the heat insulating material (foamed resin material) 111 used in the second embodiment.
  • FIG.14 and FIG.15 is the elements on larger scale of the drainage part 120 of the front drain pan 17F, respectively.
  • FIG. 14 shows the configuration of the drainage part 120 cut along the line BB in FIG.
  • FIG. 15 shows a configuration in the vicinity of the inlet 23 of the drainage pipe 22 in the drainage portion 120 cut along the line CC of FIG.
  • FIG. 16 is a schematic view showing an arrangement relationship between the heat exchanger 16F and the front drain pan 17F.
  • the indoor unit 2A according to the second embodiment is different from the indoor unit 2 according to the first embodiment (see FIG. 2) in the following points.
  • the heat insulating material 111 in which the convex part 112 was formed is attached to the front side of the saucer part 110 of the front drain pan 17F (refer FIG.11 and FIG.12).
  • the saucer portion 110 is a flow passage portion extending in the left-right direction of the front drain pan 17F.
  • the convex part 122 is formed in the drainage part 120 of the front drain pan 17F (refer FIG.11 and FIG.12).
  • the drainage portion 120 is a flow passage portion extending in the front-rear direction (front and back direction) of the front drain pan 17F.
  • the heat insulating material 161 in which the convex part 162 was formed is attached to the saucer part 160 of the back drain pan 17R (refer FIG. 11).
  • the saucer portion 160 is a flow passage portion extending in the left-right direction of the rear drain pan 17R.
  • the convex part 172 is provided in the communication path 21 (refer FIG. 11).
  • the heat insulator 211 is attached to the back side of the drainage portion 120 of the front drain pan 17F in the vicinity of the inlet 23 of the drainage pipe 22 (see FIG. 15).
  • the drain pan 17 is a member attached to the housing 107A of the indoor unit 2A.
  • the indoor unit 2A can prevent moisture in the air from condensing and adhering to the drain pan 17 as condensed water.
  • These heat insulating materials 111, 161, and 211 are made of, for example, a foamed resin material having low hygroscopicity, such as expanded polystyrene and expanded urethane.
  • the heat insulating materials 111 and 161 in which the flow paths for drain water are formed are made of a material having low hygroscopicity, the surfaces thereof have water repellency.
  • Such heat insulating materials 111 and 161 do not contain water, so that the occurrence of mold can be suppressed.
  • the heat insulating materials 111 and 161 can make it easy to evaporate drain water which flowed in into the flow-path part. Therefore, the heat insulating materials 111 and 161 can contribute to the miniaturization of the drain pan 17.
  • the heat insulating material 111 can be attached to the drainage portion 120 extending in the front-rear direction (front and back direction) of the inside of the front drain pan 17F.
  • a convex portion 112 is formed on the upper surface of the heat insulating material 111.
  • the convex portion 112 is formed to extend along the drain water flow direction (the extending direction of the flow path).
  • the convex part 112 functions as the uneven part 130 which reduces the surface tension (binding force) of drain water.
  • the indoor unit 2A does not wait for the water droplets of the drain water to combine with each other to grow into water droplets of a large size by reducing the surface tension (cohesion) of the drain water at the convex portions 112 of the heat insulator 111.
  • the drain water can be made to flow easily in the state of water droplets of a small size.
  • the indoor unit 2A facilitates the flow of dust together with the drain water, and reduces the amount of residual dust remaining inside the drain pan 17.
  • the heat insulating material 211 (see FIG. 15) can be attached to a space formed under the drainage portion 120 of the front drain pan 17F in the vicinity of the inlet 23 of the drainage pipe 22.
  • Convex part 122 is formed in drainage part 120 of front drain pan 17F mentioned above (refer to Drawing 11 and Drawing 12).
  • the convex portion 122 is formed to extend along the drain water flow direction (the extending direction of the flow path).
  • the upper surface of the convex portion 122 is formed in a substantially flat planar shape (see FIG. 14).
  • the convex part 122 functions as the uneven part 130 which reduces the surface tension (cohesion force) of drain water similarly to the convex part 112.
  • the convex portion 122 is directly formed on the housing 107 constituting the front drain pan 17F.
  • the projection 122 is formed in advance in a separate member (not shown) different from the housing 107, and the separate member is attached to the drainage portion 120, whereby the projection 122 is formed in the drainage portion 120. It may be arranged in
  • the bottom surface of the drainage portion 122 of the front drain pan 17F is inclined downward toward the inlet 23 side of the drainage pipe 22 (see FIG. 12). That is, the drainage portion 122 of the front drain pan 17F has a shape in which a recess is formed on the bottom surface near the outlet of the flow path. As a result, the indoor unit 2A facilitates the flow of drain water in the direction of the inlet 23 of the drain pipe 22.
  • a convex portion 172 is provided in the communication passage 21 described above (see FIG. 11).
  • the convex portion 172 is formed to extend along the drain water flow direction (the extending direction of the flow path).
  • the convex portion 172 is directly formed on the housing 107 constituting the front drain pan 17F.
  • the heat exchanger 16 in the illustrated example, the front heat exchanger 16F
  • the drain pan 17 in the illustrated example, the front drain pan 17F
  • the indoor unit 2A is configured to bring the heat exchanger 16 (the front heat exchanger 16F in the illustrated example) into close contact with the drain pan 17 (the front drain pan 17F in the illustrated example). And a gap is not formed between them.
  • a gap is formed between the heat exchanger 16 and the drain pan 17 to reduce the heat exchange efficiency or cause water dripping (leakage of water to the outside of the indoor unit 2A). Can be suppressed.
  • FIG. 17 is a schematic view of a heat insulating material (foamed resin material) 111A according to a modification.
  • FIG. 17 (a) shows the shape of the heat insulating material 111A in a top view
  • FIG. 17 (b) shows the cross sectional shape of the heat insulating material 111A.
  • FIG. 18 is a schematic view of a heat insulating material (foamed resin material) 111B according to a modification, showing a top view shape of the heat insulating material 111B.
  • a plurality of substantially rectangular convex portions 212 are arranged at equal intervals in the longitudinal direction and the lateral direction, and a concave portion 213 is formed between the convex portion 212 and the convex portion 212. Is formed.
  • the recess 213 has a substantially triangular shape which is widened upward.
  • the recesses 213 are formed at equal intervals with a depth h213 and a width t213.
  • Such a heat insulating material 111A reduces the surface tension (cohesion) of the drain water at the convex portion 212, so that the water droplets of the drain water are not combined and do not wait to grow into water droplets of a large size, Drain water can be made to flow easily in the state of water droplets of small size. Therefore, by using the heat insulating material 111A, the indoor unit 2A can facilitate the flow of dust together with the drain water, and can reduce the amount of residual dust remaining inside the drain pan 17. Further, the heat insulating material 111A has a surface area larger than that of the heat insulating material 111 (see FIG. 13) because the convex portion 212 is formed in the flow path portion. Thus, the heat insulating material 111A can more easily evaporate drain water flowing into the flow passage portion than the heat insulating material 111 (see FIG. 13).
  • FIG. 19 is a schematic view of the drainage portion 120 of the front drain pan 17F according to the modification.
  • a plurality of (two in the illustrated example) convex portions 122 ⁇ / b> A are formed on the bottom surface of the drainage portion 120.
  • the convex portion 122 ⁇ / b> A has a substantially triangular shape with a reduced width on the upper side.
  • the convex portion 122A is formed to extend along the drain water flow direction (the extending direction of the flow path).
  • the convex portion 122A is formed with a depth h122A and a width t122A.
  • Such a drainage portion 120 can reduce the surface tension (bonding force) of the drain water at the convex portion 122A to make the drain water easy to flow.
  • the indoor unit 2A according to the second embodiment as in the indoor unit 2 according to the first embodiment, it is possible to prevent water from leaking to the outside at the time of freeze cleaning. Moreover, since the indoor unit 2A can easily make the drain water flow, the drainage efficiency of the drain water can be improved. Further, the indoor unit 2A can prevent moisture in the air from condensing and adhering to the drain pan 17.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本発明は、凍結洗浄時に外部に水を漏らさない空気調和機の室内機を提供することを主な目的とする。空気調和機の室内機(2)は、空気と冷媒との間で熱交換を行う熱交換器(16)と、熱交換器(16)から滴下するドレン水を受けるドレンパン(17)と、熱交換器の表面に霜若しくは氷を付着させる凍結運転を制御する制御部と、を有している。ドレンパン(17)の容積は、凍結運転時に熱交換器(16)に付着する霜若しくは氷の総付着量以上である。この室内機(2)は、好ましくは、ドレン水が排水管を通って室内機(2)の外部に排水されることを考慮して、ドレンパン(17)の容積が(霜若しくは氷の総付着量-単位時間当たりの排水管の排水量×全ての霜若しくは氷の解凍に要する時間又は全ての霜若しくは氷が前記ドレンパンに落下するまでに要する時間のうち短い時間)以上になるように、構成されていてもよい。

Description

空気調和機の室内機
 本発明は、空気調和機の室内機に関する。
 空気調和機の室内機は、室内空気を内部に吸い込み、吸い込んだ室内空気を熱交換器に通して、加熱、冷却、及び除湿のいずれか任意の処理が施された調和空気を得て、得られた調和空気を室内に吹き出すことにより、室内を空気調和する。
 空気調和機の室内機は、室内空気に含まれている塵埃が内部に侵入しないように、室内空気を吸い込む空気吸込口と熱交換器との間を塞ぐようにフィルタを配置し、フィルタで塵埃の大半を捕集する。しかしながら、フィルタの網目よりも微細な塵埃は、フィルタの網目を潜って室内機の内部に侵入する。
 室内機の内部では、吸い込まれた室内空気が熱交換器と衝突する際の摩擦によって、熱交換器の周りに静電気が発生する。また、室内機の内部に侵入した微細な塵埃は、油分を含む場合が多い。そのため、室内機の内部に侵入した塵埃は、静電気や油分によって熱交換器に付着する。
 熱交換器に付着した塵埃には、雑菌(カビ類を含む)の栄養分となる成分が含まれている。そして、例えば、夏季時に空気調和機が冷房運転や除湿運転を行うと、空気中の水分が熱交換器のフィンに結露するため、熱交換器の周囲が高湿な状態になる。そのため、熱交換器に塵埃が付着し続けると、雑菌(カビ類を含む)が増殖して、悪臭が発生することがある。したがって、空気調和機は、熱交換器に付着した塵埃を除去して、一年を通して熱交換器を清潔に保つことが望まれている。
 そこで、例えば、特許文献1では、暖房運転後に冷房運転又は除湿運転を行うことにより、熱交換器のフィンの表面に水を付着させ、付着させた水でフィンの表面に付着した油分を含む塵埃を流し落とす空気調和機が提案されている。しかしながら、特許文献1に記載された空気調和機は、フィンの表面に付着させた水で塵埃を流し落とすためにフィンの表面に防汚処理を施す必要があった。
 そこで、例えば、熱交換器の温度を下げる運転を行い、フィンの表面に霜若しくは氷を付着させ、その後に、熱交換器の温度を上げる運転を行い、霜若しくは氷を解凍して、解凍された水が落下する勢いを利用して熱交換器に付着した塵埃を流し落とすことが検討されている。以下、このようにして熱交換器を洗浄する処理を「凍結洗浄」と称する。この凍結洗浄は、通常の冷房運転又は除湿運転で単位時間当たりにフィンの表面に付着する水量よりも多い大量の霜(氷を含む)をフィンの表面に付着させることができる。そのため、この凍結洗浄であれば、フィンの表面に防汚処理を施さなくても、熱交換器に付着した塵埃を流し落とすことができる。
特開2008-138913号公報
 しかしながら、凍結洗浄では、通常の冷房運転又は除湿運転で単位時間当たりに発生する水量よりも多い大量の水(ドレン水)が発生する。空気調和機は、その大量の水(ドレン水)を室内機の外部に漏らさないようにすることが望まれている。
 本発明は、前記した課題を解決するためになされたものであり、凍結洗浄時に外部に水を漏らさない空気調和機の室内機を提供することを主な目的とする。
 前記目的を達成するため、本発明は、空気と冷媒との間で熱交換を行う熱交換器と、前記熱交換器から滴下するドレン水を受けるドレンパンと、前記熱交換器の表面に霜若しくは氷を付着させる凍結運転を制御する制御部と、を有し、前記ドレンパンの容積は、前記凍結運転時に前記熱交換器に付着する霜若しくは氷の総付着量以上であることを特徴とする空気調和機の室内機とする。
 その他の手段は、後記する。
 本発明によれば、凍結洗浄時に外部に水を漏らさないようにすることができる。
実施形態1に係る空気調和機の構成図である。 実施形態1に係る空気調和機の室内機の断面図である。 実施形態1に係る室内機に用いる筐体のドレンパン部分の斜視図である。 ドレンパン部分における前ドレンパンの部分拡大図である。 熱交換器の表面積と凍結洗浄で生じるドレン水量との関係を示すグラフ図である。 ドレンパン部分における排水管の配置構造を示す概略図である。 ドレンパン部分における排水管の別の配置構造を示す概略図である。 ドレンパン部分における排水管の入口構造を示す概略図である。 ドレンパン部分における排水管の別の入口構造を示す概略図である。 変形例に係る筐体のドレンパン部分の概略図(1)である。 変形例に係る筐体のドレンパン部分の概略図(2)である。 変形例に係る筐体のドレンパン部分の概略図(3)である。 実施形態2に係る室内機に用いる筐体のドレンパン部分の斜視図である。 ドレンパン部分における前ドレンパンの部分拡大図である。 実施形態2で用いる断熱材の斜視図である。 前ドレンパンの排水部の部分拡大図(1)である。 前ドレンパンの排水部の部分拡大図(2)である。 熱交換器と前ドレンパンとの配置関係を示す概略図である。 変形例に係る断熱材の概略図(1)である。 変形例に係る断熱材の概略図(2)である。 変形例に係る前ドレンパンの排水部の概略図である。
 以下、図面を参照して、本発明の実施の形態(以下、「本実施形態」と称する)につき詳細に説明する。なお、各図は、本発明を十分に理解できる程度に、概略的に示してあるに過ぎない。よって、本発明は、図示例のみに限定されるものではない。また、各図において、共通する構成要素や同様な構成要素については、同一の符号を付し、それらの重複する説明を省略する。
 [実施形態1]
 <空気調和機の構成>
 以下、図1及び図2を参照して、本実施形態1に係る空気調和機1の構成につき説明する。図1は、本実施形態1に係る空気調和機1の構成図である。図2は、空気調和機1の室内機2の断面図である。
 図1に示すように、空気調和機1は、室内に配置された室内機2と、室外に配置された室外機3と、室内の使用者の手元付近に配置されたリモートコントローラ12とを有している。
 室内機2は、室内空気を内部に吸い込み、吸い込んだ室内空気を熱交換器16(図2参照)に通して、加熱、冷却、及び除湿のいずれか任意の処理が施された調和空気を得て、得られた調和空気を室内に吹き出すことにより、室内を空気調和する。室内機2は、接続配管5を介して室外機3と接続されており、室外機3との間で冷媒を循環させている。室外機3は、循環される冷媒との間で熱交換を行う。
 室内機2は、筐体7と化粧枠8とで、送風ファン14(図2参照)や熱交換器16(図2参照)等の構造体を内包している。送風ファン14は、空気吸込口6側から空気吹出口13側に空気を送る貫流ファンである。熱交換器16は、冷媒との間で熱交換を行うユニットである。
 図1に示す例では、化粧枠8の前面は、上下方向に延びる上側部分と、下側が斜め後ろ方向に延びる下側部分とを備えた形状になっている。化粧枠8の前面の上側部分には、前面パネル9が取り付けられている。前面パネル9は、室内機2の前面を覆う部材である。また、化粧枠8の前面の下側部分には、受信部10と、表示部11と、上下風向板18とが取り付けられている。
 受信部10は、リモートコントローラ12から送信される操作信号を受信する装置である。受信部10は、室内機2に内蔵された制御部CLと電気的に接続されている。制御部CLは、受信部10を介してリモートコントローラ12から受信された操作信号に基づいて空気調和機1の運転動作を制御する。
 表示部11は、運転状況を表示する装置である。
 上下風向板18は、空気吹出口13から吐き出される調和空気の上下方向の向きを規定する部材である。上下風向板18は、上側部分が上下方向に開閉するように、下端付近で化粧枠8(又は筐体7)に軸支されているとともに、図示せぬ駆動部によって回動させられる構成になっている。室内機2は、上下風向板18を開くことにより、空気吹出口13を形成する。
 図2に示すように、室内機2は、内部に、前記した送風ファン14と前記した熱交換器16と前記した上下風向板18とに加えて、フィルタ15と、ドレンパン17と、左右風向板19とを有している。
 フィルタ15は、筐体7の内部への塵埃の侵入を防止する部材である。
 ドレンパン17は、熱交換器16のフィン20の表面に結露して落下する水(ドレン水)を受ける部材である。
 左右風向板19は、空気吹出口13から吐き出される調和空気の左右方向の向きを規定する部材である。
 フィルタ15は、空気吸込口6と熱交換器16との間を塞ぐように配置されている。空気調和機1は、フィルタ15の網目よりも大きな塵埃の筐体7の内部への侵入をフィルタ15で防止するとともに、フィルタ15の網目を通過した、フィルタ15の網目よりも微細な塵埃を後記する凍結洗浄で洗い流す構成になっている。空気調和機1は、好ましくは、フィルタ掃除機構(図示せず)を有する構成とし、フィルタ掃除機構でフィルタ15を自動的に(さらに好ましくは定期的に)掃除することができるとよい。
 送風ファン14は、空気を空気吸込口6から吸い込んで空気吹出口13から吹き出すことができるように、室内機2の内部の略中央付近に配置されている。熱交換器16は、送風ファン14の上流側(空気吸込口6に近い側)に配置され、送風ファン14の上流側を覆うように略逆V字状に形成されている。
 熱交換器16は、前熱交換器16Fと後熱交換器16Rとで構成されている。前熱交換器16Fと後熱交換器16Rとは、それぞれ、複数のフィン(熱交換板)20と、各フィン20を貫通する複数のパイプ40とを備えている。フィン20は、冷媒と空気との間で熱交換を行うための長尺な薄い板状の部材である。フィン20は、例えば、アルミニウム合金によって構成されている。パイプ40は、冷媒を流動させるための部材である。
 係る構成において、室内機2は、内部に吸い込んだ室内空気中の塵埃の大半をフィルタ15で捕集する。しかしながら、一部の塵埃は、フィルタ15で捕集されきれずに、フィルタ15の網目を潜って室内機2の内部に侵入して、熱交換器16に付着する。熱交換器16に塵埃が付着し続けると、雑菌(カビ類を含む)が増殖して、悪臭が発生する可能性がある。したがって、空気調和機1は、熱交換器16に付着した塵埃を除去する構成にすることが好ましい。そこで、本実施形態では、空気調和機1は、運転制御で、熱交換器16に対して以下のような洗浄処理を行う。
 すなわち、まず、空気調和機1は、熱交換器16の温度を下げる運転を行い、熱交換器16を急激に冷却して、熱交換器16のフィン20の表面に霜若しくは氷を付着させる動作(以下、「凍結動作」と称する)を行う。本実施形態では、凍結動作を行う運転を「凍結運転」と称する。
 なお、凍結運転では、霜(氷を含む)は、空気中の水分が昇華することにより、水滴の状態を経ずに、熱交換器16のフィン20の表面に直接付着するものと考えられる。ただし、霜(氷)は、空気中の水分が熱交換器16のフィン20の表面に結露し、その結露した水分が凍結することにより、水滴の状態を経て、熱交換器16のフィン20の表面に付着する場合もありえる。
 なお、凍結運転では、通常の冷房運転とは異なり、空気調和機1は、送風ファン14を動作させない。これにより、空気調和機1は、熱交換器16のフィン20の表面に結露した水(結露水)の落下(水垂れ)を抑制して、フィン20の表面での水(結露水)の滞留時間を長くすることができる。その結果、空気調和機1は、安定した水の凍結量を確保することができる。
 凍結運転の後に、空気調和機1は、熱交換器16の温度を上げる運転を行い、熱交換器16を急激に加熱して、霜(氷)を解凍(融解)する動作(以下、「解凍動作」と称する)を行う。本実施形態では、解凍動作を行う運転を「解凍運転」と称する。空気調和機1は、解凍運転を行うことにより、霜(氷)を水に戻す。その際に、空気調和機1は、解凍(融解)された水が落下する勢いを利用して熱交換器16に付着した微細な塵埃を流し落とす。これにより、空気調和機1は、熱交換器16のメンテナンス性を向上させて、熱交換器16を効率よく洗浄することができる。以下、この洗浄処理(凍結運転と解凍運転とによって行われる洗浄処理)を「凍結洗浄」と称する。
 なお、空気調和機1は、解凍運転時に流れ出た水(ドレン水)をドレンパン17で受ける。ドレンパン17には、水(ドレン水)を流す流路が形成されている。流路の内壁面には、水(ドレン水)を流し易くするための鏡面加工が施されている。そして、流路には、排水管が接続されている。空気調和機1は、排水管を介して流れ出た水(ドレン水)を筐体7の外部に排水する。
 <ドレンパンの構成>
 以下、図3乃至図6を参照して、ドレンパン17の構成につき説明する。本実施形態では、ドレンパン17が筐体7と一体に形成されているものとして説明する。図3は、筐体7のドレンパン部分の斜視図である。図4は、ドレンパン部分における前ドレンパン17Fの部分拡大図である。図5は、熱交換器16の表面積と凍結洗浄で生じるドレン水量との関係を示すグラフ図である。図6は、ドレンパン部分における排水管22の配置構造を示す概略図である。
 図3に示すように、ドレンパン17は、後熱交換器16R(図2参照)の下方に配置された後ドレンパン17Rと、前熱交換器16F(図2参照)の下方に配置された前ドレンパン17Fとを有している。本実施形態では、後ドレンパン17Rの両脇には、連通路21a,21bが設けられている。また、前ドレンパン17Fの両脇には、排水管22a,22bが設けられている。以下、連通路21a,21bを総称する場合に、「連通路21」と称する。また、排水管22a,22bを総称する場合に、「排水管22」と称する。
 後ドレンパン17Rは、後熱交換器16R(図2参照)から滴下する水を受ける。後ドレンパン16Rの底面は、連通路21に遠い側から近い側に向かって下向きに傾斜している。本実施形態では、後ドレンパン16Rの底面は、左右方向の略中央付近が高くなっており、左端部と右端部とがそこよりも低い形状になっている。これにより、後熱交換器16R(図2参照)から滴下した水が、後ドレンパン16Rから連通路21に流出する。
 連通路21の底面は、後ドレンパン16R側から前ドレンパン16F側に向かって下向きに傾斜している。これにより、後熱交換器16R(図2参照)から滴下した水が連通路21から前ドレンパン17Fに流出する。
 図4に示すように、前ドレンパン17Fは、排水管22と連通している。本実施形態では、排水管22は、筐体7と一体の円形管として形成されており、その入口23が前ドレンパン17Fの内部に開口した構造になっている。
 前ドレンパン17Fは、前熱交換器16F(図2参照)から滴下する水を受ける。また、後熱交換器16R(図2参照)から滴下した水が後ドレンパン16R側から前ドレンパン17Fに流入する。前熱交換器16F(図2参照)から滴下した水及び後熱交換器16R(図2参照)から滴下した水は、排水管22を通って室内機2の外部に排水される。以下、前熱交換器16F(図2参照)から滴下した水と後熱交換器16R(図2参照)から滴下した水とを総称する場合に、「ドレン水」と称する。
 <ドレンパンの容積>
 室内機2では、凍結運転時に、通常の冷房運転又は除湿運転で単位時間当たりに後熱交換器16Rと前熱交換器16Fとに付着する水量よりも多い大量の霜(氷)が、後熱交換器16Rと前熱交換器16Fとに付着する。そして、解凍運転時に、後熱交換器16Rと前熱交換器16Fとに付着した霜(氷)が一斉に解凍する。その結果、凍結洗浄時に、通常の冷房運転又は除湿運転で単位時間当たりに発生する水量よりも多い大量のドレン水が発生して、一斉に後ドレンパン17Rと前ドレンパン17Fとに滴下する。
 そのため、仮に、解凍運転時に発生する大量のドレン水を溜めることが可能な容積が後ドレンパン17Rと前ドレンパン17Fとにない場合に、ドレン水は、排水管22a,22bを通って室内機2の外部に排水されるまでの間に、前ドレンパン17F又は後ドレンパン17Rから溢れてしまう。その結果、ドレン水は、室内機2の外部に漏れ出てしまう。そのため、空気調和機1は、解凍運転時に発生する大量のドレン水を室内機2の外部に漏らさないようにすることが望ましい。したがって、ドレンパン17には、解凍運転時に発生する大量のドレン水を溢れさせない容積が設けられていることが望ましい。
 そこで、本実施形態では、室内機2は、後ドレンパン17Rと前ドレンパン17Fとを合わせた全てのドレンパン17の容積が凍結運転時に熱交換器16に付着する霜若しくは氷の総付着量以上になるように、構成されている。ただし、ドレン水が排水管22を通って室内機2の外部に排水されることを考慮する場合では、室内機2は、凍結運転時に熱交換器16に付着する霜若しくは氷の総付着量に対し、ドレンパン17の容積が(霜若しくは氷の総付着量-単位時間当たりの排水管22の排水量×全ての霜若しくは氷の解凍に要する時間又は全ての霜若しくは氷がドレンパン17に落下するまでに要する時間のうち短い時間)以上になるように、構成されているとよい。この点について、以下に詳述する。
 ここで、図5に、後熱交換器16Rと前熱交換器16Fとを合わせた全ての熱交換器16の表面積と凍結洗浄時に生じるドレン水量(霜若しくは氷の総付着量)との関係を示す。図5は、室内温度27℃、室内湿度35%の条件で、空気調和機1に凍結洗浄を行わせたときに測定された実験結果を示している。図5に示すように、実験によれば、例えば、後熱交換器16Rと前熱交換器16Fとを合わせた全ての熱交換器16の表面積が15mである場合に、34.2mlのドレン水が発生している。つまり、解凍運転時に発生するドレン水量(霜若しくは氷の総付着量)をwとし、熱交換器16の表面積をxとする場合に、ドレン水量wは、熱交換器16の表面積xに対し、(w=2.28x)の関係になっている。
 なお、室内湿度が図5の実験時よりも低い環境下で凍結洗浄が行われた場合に、熱交換器16の表面積xが同じで、かつ、凍結時間が同じであっても、霜(氷)が解凍した後に生じるドレン水量は、減少する。また、室内湿度が図5の実験時よりも高い環境下で凍結洗浄が行われた場合に、霜(氷)が解凍した後に生じるドレン水は、凍結時間を調節することにより調節することができる。そのため、室内機2は、後ドレンパン17Rと前ドレンパン17Fとを合わせた全てのドレンパン17の容積yがw以上、すなわち、(y=2.28x)以上であれば、凍結洗浄で生じるドレン水を外部に漏らすことを防止することができる。したがって、ドレンパン17の容積yは、2.28x以上であるとよい。
 ただし、前記した値yは、排水管22による前ドレンパン17Fから室外機2の外部へのドレン水の排水処理を考慮しない場合のドレンパン17の容積である。これに対して、室内機2は、霜(氷)の解凍処理と並行して、排水管22による前ドレンパン17Fから室外機2の外部へのドレン水の排水処理を行う。
 そのため、ドレン水の排水処理を考慮する場合に、室内機2は、前記した値yから排水処理によって排水されるドレン水の排水量(例えば、x)分だけ減算した値yをドレンパン17の容積として設定することができる。つまり、ドレン水の排水処理を考慮する場合に、室内機2は、後ドレンパン17Rと前ドレンパン17Fとを合わせた全てのドレンパン17の容積yが(w-x)以上、すなわち、(y=(2.28-1)x)以上であれば、凍結洗浄で生じるドレン水を外部に漏らすことを防止することができる。したがって、ドレン水の排水処理を考慮する場合のドレンパン17の容積yは、(2.28-1)x以上であるとよい。
 前記した値(2.28-1)xのうち、値2.28xは、「霜若しくは氷の総付着量(m)」に相当する。また、値xは、「単位時間当たりの排水管22の排水量(m/s)×全ての霜若しくは氷の解凍に要する時間又は全ての霜若しくは氷がドレンパン17に落下するまでに要する時間のうち短い時間(s)」に相当する。したがって、換言すると、室内機2は、ドレン水の排水処理を考慮する場合のドレンパン17の容積yは、(霜若しくは氷の総付着量(m)-単位時間当たりの排水管22の排水量(m/s)×全ての霜若しくは氷の解凍に要する時間又は全ての霜若しくは氷がドレンパン17に落下するまでに要する時間のうち短い時間(s))以上であれば、凍結洗浄で生じるドレン水を外部に漏らすことを防止することができる。
 なお、ドレンパン17の容積として、前記した値yを適用するのか、又は、前記した値yを適用するのかは、運用に応じて選択することができる。ドレンパン17の容積として前記した値yを適用する場合は、ドレンパン17の容積が大きくなるため、室内機2を大型化させてしまう代わりに、ドレンパン17からドレン水が溢れることに対して大きなマージンを設定することができる。一方、ドレンパン17の容積として前記した値yを適用する場合は、ドレンパン17の容積を小さくすることができるため、室内機2を小型化することができる。
 なお、室内機2は、解凍運転時に発生する大量のドレン水を溢れさせない容積がドレンパン17に設けられているだけでなく、前ドレンパン17Fからドレン水を溢れさせることなく、全てのドレン水を室内機2の外部に排水管22で容易に排水することができる構造にするとよい。ここで、「全てのドレン水」とは、後熱交換器16Rから滴下したドレン水と前熱交換器16Fから滴下したドレン水とを合わせた水を意味している。
 そこで、本実施形態では、排水管22の内径R(図6参照)と前ドレンパン17Fの深さh(図6参照)が後記する式(9)の関係を満たすように、室内機2を構成するものとする。この点について、以下に詳述する。
 ここで、単位時間当たりに排水管22を流れるドレン水の流量は、円形管である排水管22の内部の断面積とドレン水の流出速度との積となる。したがって、単位時間当たりに排水管22を流れるドレン水の流量を「Q」(m/s)とし、排水管22の内径を「R」(m)とし、その半径を「r」(m)とし(つまり、「R=2r」とし)、排水管22を流れるドレン水の流出速度を「v」(m/s)とすると、単位時間当たりに排水管22を流れるドレン水の流量「Q」(m/s)は、以下の式(1)の関係となる。
Figure JPOXMLDOC01-appb-M000002
 また、前ドレンパン17Fの深さを「h」(m)とし、重力加速度を「g」(m/s)とすると、「トリチェリの定理」より、排水管22を流れるドレン水の流出速度「v」(m/s)は、以下の式(2)の関係となる。なお、「トリチェリの定理」とは、液体を入れた容器の側面に比較的小さな穴を空けたときの液体の流出速度に関する定理である。また、前ドレンパン17Fの深さ「h」は、ドレン水を溢れさせない上限面から前ドレンパン17Fの底面BS1までの値である。
Figure JPOXMLDOC01-appb-M000003
 前記した式(2)を前記した式(1)に代入することにより、以下の式(3)が得られる。
Figure JPOXMLDOC01-appb-M000004
 ここで、単位時間当たりに排水管22を流れるドレン水の流量「Q」は、1時間(3600秒)当たりに解凍運転時に発生するドレン水量(霜若しくは氷の総付着量)「w」(m)、つまり、「w×10」(mm)を流す流量である。そして、ドレン水量(霜若しくは氷の総付着量)「w」は、ドレンパン17に要求される容積yに相当する。そのため、単位時間当たりに排水管22を流れるドレン水の流量「Q」は、以下の式(4)の関係となる。
Figure JPOXMLDOC01-appb-M000005
 前記した式(4)を前記した式(3)に代入することにより、以下の式(5)が得られる。
Figure JPOXMLDOC01-appb-M000006
 前記した式(5)より、以下の式(6)が得られる。
Figure JPOXMLDOC01-appb-M000007
 前記した式(6)より、さらに以下の式(7)が得られる。
Figure JPOXMLDOC01-appb-M000008
 排水管22の内径「R」は「R=2r」であるので、前記した式(7)より、さらに以下の式(8)が得られる。
Figure JPOXMLDOC01-appb-M000009
 排水管22は、内径「R」を前記した式(8)の関係のものよりも大きくすることにより、前ドレンパン17Fからドレン水を溢れさせることなく、全てのドレン水を室内機2の外部に排水管22で容易に排水することができる。そのため、排水管22の内径R(図6参照)と前ドレンパン17Fの深さh(図6参照)を以下の式(9)の関係を満たすように設定することにより、排水管22は、前ドレンパン17Fからドレン水を溢れさせることなく、全てのドレン水を室内機2の外部に排水管22で容易に排水することができる。
Figure JPOXMLDOC01-appb-M000010
 なお、yは、後ドレンパン17Rと前ドレンパン17Fとを合わせた全てのドレンパン17の容積であり、後熱交換器16Rと前熱交換器16Fとを合わせた全ての熱交換器16の表面積xに対して(y=2.28x)の関係になっている。なお、排水管22の内径Rは、好ましくは、例えば11mm以上であるとよい。
 室内機2は、排水管22の内径Rと前ドレンパン17Fの深さhが前記した式(9)の関係を満たすように構成されている。このような室内機2は、前ドレンパン17Fからドレン水が溢れる前に、ドレン水を室内機2の外部に排水することができる。しかも、室内機2は、筐体7を無為に大型化することなく、凍結洗浄で生じる多量のドレン水を良好に排水することができる。
 なお、図6に示すように、排水管22は、入口23から出口24に向かって中心軸C22が下向きに傾斜するように配置されているとよい。これにより、室内機2は、前ドレンパン17Fに溜まったドレン水を外部に円滑に排水することができる。
 なお、凍結洗浄時に、ドレン水と共に前熱交換器16F及び後熱交換器16Rに付着していた塵埃も流れ落ちてくる。そのため、排水管22の入口23付近では、ドレン水と塵埃とが混ざり合ってヘドロ状となって溜まり易くなる。その結果、ヘドロ状になったドレン水と塵埃とが排水管22の内部に流入する可能性がある。
 しかしながら、室内機2は、排水管22を傾斜配置することにより、排水管22の内部に流入したドレン水と塵埃とを自重で落下させ易くしている。そのため、室内機2は、仮に、ヘドロ状になったドレン水と塵埃とが排水管22の内部に流入することがあったとしても、これらを外部に良好に送り出すことができる。このような室内機2は、排水管22の内部をドレン水の排水に適した状態に保つことができる。また、室内機2は、ドレン水と塵埃とが排水管22の入口23付近で溜まること自体も抑制することができる。その結果、室内機2は、前ドレンパン17Fに溜まったドレン水の排水効率を向上させることができる。
 また、前ドレンパン17Fの底面BS1は、例えば、図7に示すように変形してもよい。図7は、排水管22の別の配置構造を示す概略図である。図7に示すように、前ドレンパン17Fは、排水管22の入口23付近における底面BS2が排水管22の入口23に遠い側から近い側に向かって下向きに傾斜する構造になっている。つまり、前ドレンパン17Fは、流路の出口付近の底面に凹部が形成された形状になっている。そして、排水管22の中心軸C22の傾斜角度α22は、排水管22の入口23付近における前ドレンパン17Fの底面BS1の傾斜角度α17以上になっている。このような室内機2は、前ドレンパン17Fに溜まった塵埃を含むドレン水を自重で排水管22の方向に流れ易くしている。そのため、室内機2は、図6に示す構成よりも、さらに円滑に前ドレンパン17Fに溜まったドレン水を排水することができる。その結果、室内機2は、前ドレンパン17Fに溜まったドレン水の排水効率を向上させることができる。
 排水管22の入口23は、例えば、図8又は図9に示すように変形してもよい。図8は、排水管22の入口構造を示す概略図である。図9は、排水管22の別の入口構造を示す概略図である。
 図8に示す例では、排水管22の入口23は、下部半周を排水管22の入口23の前方に延出した形状になっている。これによって、室内機2は、排水管22の入口23の開口面積S23が排水管22の中央付近の断面積S22Mよりも大きくなるように構成している。
 また、図9に示す例では、排水管22の入口123は、上向きの楕円形状に形成されている。これによって、室内機2は、排水管22の入口123の開口面積S123が排水管22の中央付近の断面積S22Mよりも大きくなるように構成している。
 図8又は図9に示す構成では、排水管22は、前ドレンパン17Fに溜まったドレン水を効率よく取り込んで外部に排水することができる。これにより、室内機2は、塵埃を含むドレン水を排水管22の内部に効率よく取り込むことができる。そのため、室内機2は、仮に、排水管22の入口23付近でドレン水と塵埃とが混ざり合ってヘドロ状となり排水され難くなることがあったとしても、これらを排水管22の内部に取り込んで外部に良好に送り出すことができる。これにより、室内機2は、ドレン水と塵埃とが排水管22の入口23付近で溜まること自体も抑制することができる。その結果、室内機2は、前ドレンパン17Fに溜まったドレン水の排水効率を向上させることができる。
 <筐体のドレンパン部分の変形例>
 筐体7のドレンパン部分は、例えば、図10A乃至図10Cに示す筐体7A,7B,7Cのように変形してもよい。図10A乃至図10Cは、それぞれ、筐体7のドレンパン部分の変形例を示す概略図である。
 図10Aに示す例では、筐体7Aは、図3に示す筐体7と比較すると、後ドレンパン17Rが左右方向に延長された形状になっている点、及び、連通部21a,21bが後ドレンパン17Rの手前側の位置に配置されている点で相違している。したがって、筐体7Aでは、連通路21a,21bは、後ドレンパン17Rの左右両側の近傍の位置に配置されている。そして、連通路21a,21bは、その底面が後ドレンパン17R側から前ドレンパン17F側に向かって下向きに傾斜するように形成されている。
 図10Bに示す例では、筐体7Bは、図3に示す筐体7と比較すると、連通路21が後ドレンパン17Rの左右片側の位置にのみ配置されている点で相違している。また、後ドレンパン17Rは、その底面が連通路21に遠い側から近い側に向かって下向きに傾斜するように形成されている。
 図10Cに示す例では、筐体7Aは、図10Bに示す筐体7Bと比較すると、後ドレンパン17Rが左右方向に延長された形状になっている点、及び、連通路21が後ドレンパン17Rの手前側の位置に配置されている点で相違している。
 図10A乃至図10Cに示す筐体7A,7B,7Cのように、連通路21は、前ドレンパン17F及び後ドレンパン17Rの両脇に配置しなくとも、後ドレンパン17Rの左右両側の近傍の位置、後ドレンパン17Rの左右片側の位置又は片側の近傍の位置に配置することができる。これにより、連通路21は、前ドレンパン17Fと後ドレンパン17Rとを連通することができる。そして、後ドレンパン17Rの底面は、連通路21a,21bに遠い側よりも近い側が少し低くなるように構成する。このような図10A乃至図10Cに示す筐体7A,7B,7Cは、連通路21の配置構造の自由度を向上させるとともに、後熱交換器16Rから後ドレンパン17Rに滴下するドレン水の排水性を向上させることができる。
 なお、室内機2は、図6乃至図10Cに示す構造を適宜組み合わせることによって、ドレン水と塵埃とが排水管22の入口23付近で溜まることを抑制することができる。その結果、室内機2は、前ドレンパン17Fに溜まったドレン水の排水効率を向上させることができる。
 <室内機の主な特徴>
 (1)本実施形態に係る室内機2では、ドレンパン17の容積は、凍結運転時に熱交換器16に付着する霜若しくは氷の総付着量w以上になっている。なお、室内機2は、好ましくは、ドレン水が排水管22を通って室内機2の外部に排水されることを考慮して、ドレンパン17の容積が(霜若しくは氷の総付着量-単位時間当たりの排水管22の排水量×全ての霜若しくは氷の解凍に要する時間又は全ての霜若しくは氷がドレンパン17に落下するまでに要する時間のうち短い時間)以上になるように、構成されていてもよい。そして、この場合に、後ドレンパン17Rと前ドレンパン17Fとを合わせた全てのドレンパン17の容積は、後熱交換器16Rと前熱交換器16Fとを合わせた全ての熱交換器16の表面積xに対し、(2.28-1)x以上になるように構成されているとよい。
 このような室内機2では、解凍運転時に発生する大量のドレン水を溢れさせない容積がドレンパン17に設けられている。そのため、室内機2は、凍結洗浄時に外部にドレン水を漏らさないようにすることができる。
 (2)連通路21は、後ドレンパン17Rの左右両側の位置又は両側の近傍の位置に配置されており、かつ、その底面が後ドレンパン17R側から前ドレンパン17F側に向かって下向きに傾斜するように構成することができる(図3又は図10A参照)。
 又は、連通路21は、後ドレンパン17Rの左右片側の位置又は片側の近傍の位置に配置されており、かつ、その底面が後ドレンパン17R側から前ドレンパン17F側に向かって下向きに傾斜するように構成することができる(図10B又は図10C参照)。この構成の場合に、後ドレンパン17Rの底面は、連通路21に遠い側から近い側に向かって下向きに傾斜するように構成するとよい。
 このような室内機2は、連通路21の配置構造の自由度を向上させるとともに、後熱交換器16Rから後ドレンパン17Rに滴下するドレン水の排水性を向上させることができる。
 (3)重力加速度をgとする場合に、後ドレンパン17Rと前ドレンパン17Fとを合わせた全てのドレンパン17の容積yに対して、排水管22の内径Rと前ドレンパン17Fの深さhが以下の式(10)の関係を満たしているとよい。
Figure JPOXMLDOC01-appb-M000011
 このような室内機2は、前ドレンパン17Fからドレン水が溢れる前に、ドレン水を室内機2の外部に排水することができる。しかも、室内機2は、筐体7を無為に大型化することなく、凍結洗浄で生じる多量のドレン水を良好に排水することができる。
 (4)前ドレンパン17Fの底面は、少なくとも排水管22の入口23付近で、排水管22の入口23に遠い側から近い側に向かって下向きに傾斜している(図7参照)。
 このような室内機2は、仮に、排水管22の入口23付近でドレン水と塵埃とが混ざり合ってヘドロ状になり、そのヘドロ状になったドレン水と塵埃とが排水管22の内部に流入することがあったとしても、これらを外部に良好に送り出すことができる。このような室内機2は、排水管22の内部をドレン水の排水に適した状態に保つことができる。また、室内機2は、ドレン水と塵埃とが排水管22の入口23付近で溜まること自体も抑制することができる。その結果、室内機2は、前ドレンパン17Fに溜まったドレン水の排水効率を向上させることができる。
 (5)排水管22は、入口23から出口24に向かって中心軸C22が下向きに傾斜するように配置されている。そして、排水管22の中心軸Cの傾斜角度α22は、排水管22の入口23付近における前ドレンパン17Fの底面BS2の傾斜角度α17以上になっている(図7参照)。
 このような室内機2は、前ドレンパン17Fに溜まった塵埃を含むドレン水を自重で排水管22の方向に流れ易くしている。そのため、室内機2は、円滑に前ドレンパン17Fに溜まったドレン水を排水することができる。その結果、室内機2は、前ドレンパン17Fに溜まったドレン水の排水効率を向上させることができる。
 (6)室内機2は、排水管22の入口23の開口面積S23(又は、入口123の開口面積S123)が排水管22の中央付近の断面積S23Mよりも大きくなるように構成することができる(図8及び図9参照)。
 このような室内機2は、前ドレンパン17Fに溜まった塵埃を含むドレン水を排水管22で効率よく取り込んで外部に排水することができる。これにより、室内機2は、塵埃を含むドレン水を排水管22の内部に効率よく取り込むことができる。そのため、室内機2は、仮に、排水管22の入口23付近でドレン水と塵埃とが混ざり合ってヘドロ状になり排水され難くなることがあったとしても、これらを排水管22の内部に取り込んで外部に良好に送り出すことができる。これにより、室内機2は、ドレン水と塵埃とが排水管22の入口23付近で溜まること自体も抑制することができる。その結果、室内機2は、前ドレンパン17Fに溜まったドレン水の排水効率を向上させることができる。
 以上の通り、本実施形態1に係る空気調和機1の室内機2によれば、凍結洗浄時に外部に水を漏らさないようにすることができる。
 [実施形態2]
 本実施形態2では、以下の点が考慮された室内機2Aを提供するものである。
 (1)仮にドレンパン17の内部にドレン水や塵埃が残留してしまった場合に、次回の凍結洗浄時に水溢れが発生したり、雑菌(カビを含む)が発生したりすることが懸念される。そこで、室内機2Aは、ドレンパン17の内部に後記する凹凸部130(図11及び図12参照)を設けることでドレン水の表面張力(結合力)を低下させて、ドレン水を流れ易くする。これにより、室内機2Aは、ドレン水と共に塵埃を流れ易くして、ドレンパン17の内部に残る塵埃の残留量を低減する。ただし、後記する凹凸部130(図12参照)は、排水管22の入口23(図12参照)の直前位置には設けないようにすることで、排水管22の入口23付近での塵埃の蓄積を抑制する。
 (2)凍結洗浄時に冷たいドレン水がドレンパン17の内部に流入することで、空気中の水分が結露して結露水としてドレンパン17の各部(例えば、前ドレンパン17Fの下面側)に付着する可能性がある。そして、例えば、結露水が前ドレンパン17Fの下面側に付着した場合に、結露水が空気吹出口13(図2参照)内に垂れ落ちて室内に飛散する可能性がある。これにより、結露水が室内機2Aの外部に漏れ出てしまう。そこで、室内機2Aは、結露の発生を抑制するために、ドレンパン17の各部に後記する断熱材(発泡樹脂材)111(図11及び図12参照)等を配置する。ただし、室内機2Aは、排水時のドレン水の流出速度を低下させて排水効率を低下させることがないように、後記する断熱材(発泡樹脂材)111等の配置位置及び形状が考慮された構成とする。
 (3)ドレンパン17を構成する筐体7は、加工することが困難である。そのため、室内機2Aは、ドレンパン17の内部に後記する凹凸部130(図11及び図12参照)を設けることに際して、ドレンパン17を構成する筐体7とは異なる別部材を用いて後記する凹凸部130を設ける。つまり、室内機2Aは、後記する凹凸部130が形成された後記する断熱材(発泡樹脂材)111(図11及び図12参照)等をレンパン17の内部の上面に配置することで、ドレンパン17の内部に後記する凹凸部130を設ける。
 (4)仮に、熱交換器16とドレンパン17との間に隙間が形成された場合に、熱交換器16を通過しない空気の風路が形成されてしまうため、室内機2Aの熱交換効率が低下する。また、その隙間が水垂れ(室内機2Aの外部への水の漏れ)を発生させてしまう可能性がある。そこで、室内機2Aは、熱交換器16とドレンパン17とを密着させる構成にして、熱交換器16とドレンパン17との間に隙間が形成されない構成とする(図16参照)。
 以下、図11乃至図16を参照して、本実施形態2に係る室内機2Aの構成につき説明する。図11は、室内機2Aに用いる筐体107のドレンパン部分の斜視図である。図12は、ドレンパン部分における前ドレンパン17Fの部分拡大図である。図12は、図11のA部付近の構成を拡大して示している。図13は、本実施形態2で用いる断熱材(発泡樹脂材)111の斜視図である。図14及び図15は、それぞれ、前ドレンパン17Fの排水部120の部分拡大図である。図14は、図12のB-B線に沿って切断した排水部120の構成を示している。図15は、図12のC-C線に沿って切断した排水部120における排水管22の入口23付近の構成を示している。図16は、熱交換器16Fと前ドレンパン17Fとの配置関係を示す概略図である。
 本実施形態2に係る室内機2Aは、実施形態1に係る室内機2(図2参照)と比較すると、以下の点で相違している。
 (1)前ドレンパン17Fの受皿部110の表側に凸部112が形成された断熱材111が取り付けられている(図11及び図12参照)。受皿部110は、前ドレンパン17Fの左右方向に延在する流路部分である。
 (2)前ドレンパン17Fの排水部120に凸部122が形成されている(図11及び図12参照)。排水部120は、前ドレンパン17Fの前後方向(正面及び背面方向)に延在する流路部分である。
 (3)後ドレンパン17Rの受皿部160に凸部162が形成された断熱材161が取り付けられている(図11参照)。受皿部160は、後ドレンパン17Rの左右方向に延在する流路部分である。
 (4)連通路21に凸部172が設けられている(図11参照)。
 (5)排水管22の入口23付近における前ドレンパン17Fの排水部120の裏側に断熱材211が取り付けられている(図15参照)。
 前記した断熱材111(図11及び図12参照)、断熱材161(図11参照)、及び、断熱材211(図15参照)は、凍結洗浄時に冷たいドレン水がドレンパン17の内部に流入することで、ドレンパン17の各部に空気中の水分が結露することを抑制するために室内機2Aの筺体107Aに取り付けられた部材である。室内機2Aは、ドレンパン17の各部に断熱材111,161,211を配置することにより、空気中の水分が結露して結露水としてドレンパン17に付着することを抑制することができる。
 これらの断熱材111,161,211は、例えば、発泡スチロールや発泡ウレタン等の吸湿性の低い発泡樹脂材によって構成されている。特に、ドレン水を流す流路が形成されている断熱材111,161は、吸湿性の低い材料で構成されているため、その表面に撥水性を有している。このような断熱材111,161は、含水しないため、カビの発生を抑制することができる。また、断熱材111,161は、流路部分に流れ込んだドレン水を蒸発し易くすることができる。そのため、断熱材111,161は、ドレンパン17の小型化に寄与することができる。なお、断熱材111,161の流路部分には、好ましくは、ドレン水を流し易くするための鏡面加工が施されているとよい。
 図13に、断熱材111の一例を示す。断熱材111は、前ドレンパン17Fの内部の前後方向(正面及び背面方向)に延在する排水部120に取り付けることが可能な構成になっている。図13に示すように、断熱材111の上面には、凸部112が形成されている。凸部112は、ドレン水の流れる方向(流路の延びる方向)に沿って延在するように形成されている。凸部112は、ドレン水の表面張力(結合力)を低下させる凹凸部130として機能する。室内機2Aは、断熱材111の凸部112でドレン水の表面張力(結合力)を低下させることにより、ドレン水の水滴同士が結合して大きなサイズの水滴に成長することを待たなくても、小さなサイズの水滴の状態でドレン水を流れ易くすることができる。これにより、室内機2Aは、ドレン水と共に塵埃を流れ易くして、ドレンパン17の内部に残る塵埃の残留量を低減する。
 断熱材161(図11参照)は、断熱材111と同様の形状を呈している。断熱材161は、後ドレンパン17Rの内部に取り付けることが可能な構成になっている。断熱材161の上面には、凸部112と同様の凸部162が形成されている。凸部162は、ドレン水の流れる方向(流路の延びる方向)に沿って延在するように形成されている。
 断熱材211(図15参照)は、排水管22の入口23付近における前ドレンパン17Fの排水部120の下側に形成された空間に取り付けることが可能な構成になっている。
 前記した前ドレンパン17Fの排水部120には、凸部122が形成されている(図11及び図12参照)。凸部122は、ドレン水の流れる方向(流路の延びる方向)に沿って延在するように形成されている。本実施形態では、凸部122の上面は略平坦な面状に形成されている(図14参照)。凸部122は、凸部112と同様に、ドレン水の表面張力(結合力)を低下させる凹凸部130として機能する。
 凸部122は、排水管22の入口23の直前位置を除外するように形成されている(図12参照)。これにより、室内機2Aは、排水管22の入口23付近での塵埃の蓄積を抑制している。
 本実施形態では、凸部122は、前ドレンパン17Fを構成する筐体107に直接形成された構成になっている。しかしながら、室内機2Aは、筐体107とは異なる別部材(図示せず)に凸部122を予め形成しておき、その別部材を排水部120に取り付けることで、凸部122を排水部120に配置するようにしてもよい。
 なお、前ドレンパン17Fの排水部122の底面は、排水管22の入口23側に向かって下向きに傾斜する形状になっている(図12参照)。つまり、前ドレンパン17Fの排水部122は、流路の出口付近の底面に凹部が形成された形状になっている。これにより、室内機2Aは、ドレン水を排水管22の入口23の方向に流し易くしている。
 前記した連通路21には、凸部172が設けられている(図11参照)。凸部172は、ドレン水の流れる方向(流路の延びる方向)に沿って延在するように形成されている。本実施形態では、凸部172は、前ドレンパン17Fを構成する筐体107に直接形成された構成になっている。
 図16に示すように、本実施形態では、熱交換器16(図示例では、前熱交換器16F)とドレンパン17(図示例では、前ドレンパン17F)とは、互いが当接するように配置されることによって、送風ファン14(図2参照)が配置されている空間とその外側の空間との間を塞いでいる。これにより、室内機2Aは、熱交換器16(図示例では、前熱交換器16F)とドレンパン17(図示例では、前ドレンパン17F)とを密着させる構成にして、熱交換器16とドレンパン17との間に隙間が形成されない構成になっている。このような室内機2Aは、熱交換器16とドレンパン17との間に隙間が形成されて、熱交換効率が低下したり、水垂れ(室内機2Aの外部への水の漏れ)が発生したりすることを抑制することができる。
 なお、室内機2Aは、熱交換器16とドレンパン17とを密着させることにより、熱交換器16のフィン20に付着した結露水を熱交換器16のフィン20からドレンパン17に移動させ易くすることができる。これにより、室内機2Aは、熱交換器16に付着した塵埃を流し落とす効率を向上させることができる。
 <変形例>
 前ドレンパン17Fの受皿部110に用いる断熱材(発泡樹脂材)111は、例えば、図17及び図18に示すように変形してもよい。図17は、変形例に係る断熱材(発泡樹脂材)111Aの概略図である。図17(a)は、断熱材111Aの上面視形状を示しており、図17(b)は、断熱材111Aの横断面形状を示している。図18は、変形例に係る断熱材(発泡樹脂材)111Bの概略図であり、断熱材111Bの上面視形状を示している。
 図17(a)に示す例では、断熱材111Aは、複数の略矩形状の凸部212が縦方向及び横方向に等間隔に配置され、凸部212と凸部212との間に凹部213が形成された構成になっている。図17(b)に示すように、凹部213は、上側に拡幅した略三角形の形状を呈している。凹部213は、深さh213、幅t213で、等間隔に形成されている。
 このような断熱材111Aは、凸部212でドレン水の表面張力(結合力)を低下させることにより、ドレン水の水滴同士が結合して大きなサイズの水滴に成長することを待たなくても、小さなサイズの水滴の状態でドレン水を流れ易くすることができる。そのため、室内機2Aは、断熱材111Aを用いることにより、ドレン水と共に塵埃を流れ易くして、ドレンパン17の内部に残る塵埃の残留量を低減することができる。また、断熱材111Aは、流路部分に凸部212が形成されているため、断熱材111(図13参照)よりも表面積が増大する。これにより、断熱材111Aは、断熱材111(図13参照)よりも流路部分に流れ込んだドレン水を蒸発し易くすることができる。
 図18に示す例では、断熱材111Bは、断熱材111A(図18参照)と比較すると、凸部212が千鳥配列で配置された構成になっている点で相違している。断熱材111Bは、断熱材111Aと同様に、凸部212でドレン水の表面張力(結合力)を低下させて、ドレン水を流れ易くすることができる。また、断熱材111Bは、断熱材111Aと同様に、流路部分に凸部212が形成されているため、断熱材111(図13参照)よりも表面積が増大する。これにより、断熱材111Bは、断熱材111Aと同様に、断熱材111(図13参照)よりも流路部分に流れ込んだドレン水を蒸発し易くすることができる。
 また、前ドレンパン17Fの排水部120の形状は、例えば、図19に示すように変形してもよい。図19は、変形例に係る前ドレンパン17Fの排水部120の概略図である。
 図19に示す例では、排水部120の底面には、複数(図示例では、2つ)の凸部122Aが形成されている。凸部122Aは、上側に縮幅した略三角形の形状を呈している。凸部122Aは、ドレン水の流れる方向(流路の延びる方向)に沿って延在するように形成されている。凸部122Aは、深さh122A、幅t122Aで、形成されている。このような排水部120は、凸部122Aでドレン水の表面張力(結合力)を低下させて、ドレン水を流れ易くすることができる。
 以上の通り、本実施形態2に係る室内機2Aによれば、実施形態1に係る室内機2と同様に、凍結洗浄時に外部に水を漏らさないようにすることができる。
 しかも、室内機2Aは、ドレン水を流れ易くすることができるため、ドレン水の排水効率を向上させることができる。また、室内機2Aは、空気中の水分が結露してドレンパン17に付着することを抑制することができる。
 1  空気調和機
 2,2A  室内機
 3  室外機
 5  接続配管
 6  空気吸込口
 7,7A,7B,7C,107  筐体
 8  化粧枠
 9  前面パネル
 10  受信部
 11  表示部
 12  リモートコントローラ
 13  空気吹出口
 14  送風ファン
 15  フィルタ
 16  熱交換器
 16F  前熱交換器
 16R  後熱交換器
 17  ドレンパン
 17F  前ドレンパン
 17R  後ドレンパン
 18  上下風向板
 19  左右風向板
 20  フィン
 21(21a,21b)  連通路
 22(22a,22b)  排水管
 23,123  排水管の入口
 24  排水管の出口
 40  パイプ
 110,160  受皿部
 111,111A,111B,161,211  断熱材(発泡樹脂材)
 112,122,122A,162,172,212  凸部
 120  排水部
 130  凹凸部
 213  凹部
 BS1  前ドレンパンの底面
 BS2  前ドレンパンの排水管入口付近の底面
 CL  制御部
 C22  排水管の中心軸
 h122A  凸部高さ
 h213  凹部深さ
 S22M  排水管の中央付近の断面積
 S23,S123  排水管の入口の開口面積
 t122A  凸部間隔
 t213  凹部幅
 α22  排水管の傾斜角度

Claims (17)

  1.  空気と冷媒との間で熱交換を行う熱交換器と、
     前記熱交換器から滴下するドレン水を受けるドレンパンと、
     前記熱交換器の表面に霜若しくは氷を付着させる凍結運転を制御する制御部と、を有し、
     前記ドレンパンの容積は、前記凍結運転時に前記熱交換器に付着する霜若しくは氷の総付着量以上である
    ことを特徴とする空気調和機の室内機。
  2.  空気と冷媒との間で熱交換を行う熱交換器と、
     前記熱交換器から滴下するドレン水を受けるドレンパンと、
     前記熱交換器の表面に霜若しくは氷を付着させる凍結運転を制御する制御部と、
     前記ドレンパンに溜まったドレン水を前記ドレンパンから装置の外部に排水する排水管と、を有し、
     前記ドレンパンの容積は、前記凍結運転時に前記熱交換器に付着する霜若しくは氷の総付着量に対し、(霜若しくは氷の総付着量-単位時間当たりの排水管の排水量×全ての霜若しくは氷の解凍に要する時間又は全ての霜若しくは氷が前記ドレンパンに落下するまでに要する時間のうち短い時間)以上である
    ことを特徴とする空気調和機の室内機。
  3.  装置の後方に配置され、空気と冷媒との間で熱交換を行う後熱交換器と、
     装置の前方に配置され、空気と冷媒との間で熱交換を行う前熱交換器と、
     前記後熱交換器から滴下するドレン水を受ける後ドレンパンと、
     前記前熱交換器から滴下するドレン水と前記後ドレンパンから流れてくるドレン水とを受ける前ドレンパンと、
     前記後ドレンパンと前記前ドレンパンとを繋ぐ連通路と、
     前記前ドレンパンに溜まったドレン水を前記前ドレンパンから装置の外部に排水する排水管と、を有し、
     前記後ドレンパンと前記前ドレンパンとを合わせた全てのドレンパンの容積は、前記後熱交換器と前記前熱交換器とを合わせた全ての熱交換器の表面積xに対し、(2.28-1)x以上である
    ことを特徴とする空気調和機の室内機。
  4.  請求項3に記載の空気調和機の室内機において、
     前記連通路は、前記後ドレンパンの左右両側の位置又は両側の近傍の位置に配置されており、かつ、その底面が前記後ドレンパン側から前記前ドレンパン側に向かって下向きに傾斜している
    ことを特徴とする空気調和機の室内機。
  5.  請求項3に記載の空気調和機の室内機において、
     前記連通路は、前記後ドレンパンの左右片側の位置又は片側の近傍の位置に配置されており、かつ、その底面が前記後ドレンパン側から前記前ドレンパン側に向かって下向きに傾斜しており、
     前記後ドレンパンの底面は、前記連通路に遠い側から近い側に向かって下向きに傾斜している
    ことを特徴とする空気調和機の室内機。
  6.  請求項3に記載の空気調和機の室内機において、
     重力加速度をgとする場合に、前記後ドレンパンと前記前ドレンパンとを合わせた全てのドレンパンの容積yに対して、前記排水管の内径Rと前記前ドレンパンの深さhが以下の式(1)の関係を満たしている
    ことを特徴とする空気調和機の室内機。
    Figure JPOXMLDOC01-appb-M000001
  7.  請求項3に記載の空気調和機の室内機において、
     前記前ドレンパンの底面は、少なくとも前記排水管の入口付近で、前記排水管の入口に遠い側から近い側に向かって下向きに傾斜している
    ことを特徴とする空気調和機の室内機。
  8.  請求項7に記載の空気調和機の室内機において、
     前記排水管は、入口から出口に向かって中心軸が下向きに傾斜するように配置されており、
     前記排水管の中心軸の傾斜角度は、前記排水管の入口付近における前記前ドレンパンの底面の傾斜角度以上である
    ことを特徴とする空気調和機の室内機。
  9.  請求項3に記載の空気調和機の室内機において、
     前記排水管の入口の開口面積は、前記排水管の中央付近の断面積よりも大きい
    ことを特徴とする空気調和機の室内機。
  10.  装置の後方に配置され、空気と冷媒との間で熱交換を行う後熱交換器と、
     装置の前方に配置され、空気と冷媒との間で熱交換を行う前熱交換器と、
     前記後熱交換器から滴下するドレン水を受ける後ドレンパンと、
     前記前熱交換器から滴下するドレン水と前記後ドレンパンから流れてくるドレン水とを受ける前ドレンパンと、
     前記後ドレンパンと前記前ドレンパンとを繋ぐ連通路と、
     前記前ドレンパンに溜まったドレン水を前記前ドレンパンから装置の外部に排水する排水管と、を有し、
     前記後ドレンパンと前記前ドレンパンと前記連通路とは、前記ドレン水の流路を形成しており、
     前記流路は、任意の箇所の底面に凹凸部が形成されている
    ことを特徴とする空気調和機の室内機。
  11.  請求項10に記載の空気調和機の室内機において、
     前記凹凸部は、前記流路の延びる方向に沿って形成されている
    ことを特徴とする空気調和機の室内機。
  12.  請求項10に記載の空気調和機の室内機において、
     前記前ドレンパンの底面の一部分は、前記排水管に遠い側から近い側に向かって下向きに傾斜している
    ことを特徴とする空気調和機の室内機。
  13.  請求項10に記載の空気調和機の室内機において、
     前記排水管は、入口から出口に向かって中心軸が下向きに傾斜するように配置されており、
     前記排水管の中心軸の傾斜角度は、前記排水管の入口付近における前記前ドレンパンの底面の傾斜角度以上である
    ことを特徴とする空気調和機の室内機。
  14.  請求項10に記載の空気調和機の室内機において、
     前記流路の出口付近の底面には、凹部が形成されている
    ことを特徴とする空気調和機の室内機。
  15.  請求項10に記載の空気調和機の室内機において、
     前記前ドレンパンの前後方向に延在する流路部分の裏側には、第1断熱部材が配置されている
    ことを特徴とする空気調和機の室内機。
  16.  請求項10に記載の空気調和機の室内機において、
     前記前ドレンパンの左右方向に延在する流路部分の表側には、第2断熱部材が配置されている
    ことを特徴とする空気調和機の室内機。
  17.  請求項10に記載の空気調和機の室内機において、
     さらに、前記後熱交換器と前記前熱交換器との間に配置された送風ファンを有しており、
     前記前熱交換器と前記前ドレンパンとは、互いが当接するように配置されることによって、前記送風ファンが配置されている空間とその外側の空間との間を塞いでいる
    ことを特徴とする空気調和機の室内機。
PCT/JP2017/036039 2017-04-28 2017-10-03 空気調和機の室内機 WO2018198400A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17895510.0A EP3438559B1 (en) 2017-04-28 2017-10-03 Air conditioner indoor unit
CN201780011595.2A CN109154445B (zh) 2017-04-28 2017-10-03 空调机的室内机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-089969 2017-04-28
JP2017089969A JP6340111B1 (ja) 2017-04-28 2017-04-28 空気調和機の室内機

Publications (1)

Publication Number Publication Date
WO2018198400A1 true WO2018198400A1 (ja) 2018-11-01

Family

ID=62487529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036039 WO2018198400A1 (ja) 2017-04-28 2017-10-03 空気調和機の室内機

Country Status (6)

Country Link
EP (1) EP3438559B1 (ja)
JP (1) JP6340111B1 (ja)
CN (1) CN109154445B (ja)
MY (1) MY173637A (ja)
TW (1) TWI644063B (ja)
WO (1) WO2018198400A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109520113A (zh) * 2018-12-14 2019-03-26 广东美的制冷设备有限公司 接水盘和具有其的空调器
CN110470070A (zh) * 2019-08-05 2019-11-19 南京天加环境科技有限公司 一种空调自清洁控制方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110873416B (zh) * 2018-08-31 2021-07-23 重庆海尔空调器有限公司 一种空调及其自清洁的控制方法
JP6685358B2 (ja) * 2018-09-25 2020-04-22 日立ジョンソンコントロールズ空調株式会社 空気調和機の室内機
JP6614389B1 (ja) * 2019-07-12 2019-12-04 ダイキン工業株式会社 冷凍装置の室内機
CN110500661B (zh) * 2019-07-17 2021-07-02 山东华宇工学院 一种带有除尘提醒功能的变色空调室内机
CN110986273A (zh) * 2019-11-18 2020-04-10 珠海格力电器股份有限公司 一种换热器自清洁装置及空调
CN112254307B (zh) * 2020-10-22 2021-10-15 珠海格力电器股份有限公司 一种空调清洁控制方法、装置、设备和存储介质
FR3119011B1 (fr) * 2021-01-18 2023-04-28 Eurevia Dispositif de renouvellement et de traitement d’air
JP2022112061A (ja) * 2021-01-21 2022-08-02 パナソニックIpマネジメント株式会社 空気調和機
CN113106713A (zh) * 2021-04-01 2021-07-13 江苏友奥电器有限公司 一种干衣机
DE102022110678A1 (de) 2022-05-02 2023-11-02 Stiebel Eltron Gmbh & Co. Kg Lüftungsgerät

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132122U (ja) * 1981-02-10 1982-08-17
JPS57184491U (ja) * 1981-05-16 1982-11-22
JPS6387429U (ja) * 1986-11-25 1988-06-07
JPS63110830U (ja) * 1987-01-09 1988-07-16
JPH05164344A (ja) * 1991-12-12 1993-06-29 Toshiba Corp 空気調和機
JPH06257778A (ja) * 1993-03-01 1994-09-16 Daikin Ind Ltd 空気調和機のドレン構造
JPH10176841A (ja) * 1996-12-16 1998-06-30 Hitachi Air Conditioning & Refrig Co Ltd エレベータ用空調機
JPH11257680A (ja) * 1997-12-15 1999-09-21 Samsung Electronics Co Ltd 空気調和機の凝縮水排水装置
JP2001317760A (ja) * 2000-05-09 2001-11-16 Funai Electric Co Ltd 空気調和機
JP2002098347A (ja) * 2000-09-22 2002-04-05 Chofu Seisakusho Co Ltd 空気調和機の室内機における排水構造
JP2005098559A (ja) * 2003-08-26 2005-04-14 Toshiba Corp 冷蔵庫
JP2006300431A (ja) * 2005-04-21 2006-11-02 Mitsubishi Electric Corp 空気調和機の室内機用ドレンパン、空気調和機の室内機およびその製造方法
JP2008138913A (ja) 2006-11-30 2008-06-19 Toshiba Kyaria Kk 空気調和機
JP2008202829A (ja) * 2007-02-19 2008-09-04 Sharp Corp ドレンパン及びこれを備えた空気調和機
JP2010014288A (ja) * 2008-07-01 2010-01-21 Toshiba Carrier Corp 空気調和機
JP2011012820A (ja) * 2009-06-30 2011-01-20 Sanyo Electric Co Ltd 空気調和装置
JP2013181733A (ja) * 2012-03-05 2013-09-12 Mitsubishi Electric Corp 空気調和機の室内機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259953A (ja) * 1997-03-19 1998-09-29 Fujitsu General Ltd 空気調和機
WO2006098436A1 (ja) * 2005-03-18 2006-09-21 Toshiba Carrier Corporation 空気調和装置の室内機
CN104110727B (zh) * 2013-07-30 2017-10-31 广东美的制冷设备有限公司 壁挂式空调器
CN104848738B (zh) * 2015-04-22 2019-03-19 珠海格力电器股份有限公司 空调室内换热器的清洁方法及装置
CN104848420B (zh) * 2015-04-30 2018-07-13 武汉海尔电器股份有限公司 一种壁挂式空调器
EP3350516A4 (en) * 2015-09-16 2019-05-15 Whirlpool Corporation CONDENSATE DISCHARGE ON THE FAN SPIRAL OF AN INTERNAL UNIT FOR THE DISTRIBUTION OF MOISTURE TO THE REVOLUTION OF EXPRESSION INTO DRY AIR
CN105444265A (zh) * 2015-12-07 2016-03-30 珠海格力电器股份有限公司 空调室内机

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132122U (ja) * 1981-02-10 1982-08-17
JPS57184491U (ja) * 1981-05-16 1982-11-22
JPS6387429U (ja) * 1986-11-25 1988-06-07
JPS63110830U (ja) * 1987-01-09 1988-07-16
JPH05164344A (ja) * 1991-12-12 1993-06-29 Toshiba Corp 空気調和機
JPH06257778A (ja) * 1993-03-01 1994-09-16 Daikin Ind Ltd 空気調和機のドレン構造
JPH10176841A (ja) * 1996-12-16 1998-06-30 Hitachi Air Conditioning & Refrig Co Ltd エレベータ用空調機
JPH11257680A (ja) * 1997-12-15 1999-09-21 Samsung Electronics Co Ltd 空気調和機の凝縮水排水装置
JP2001317760A (ja) * 2000-05-09 2001-11-16 Funai Electric Co Ltd 空気調和機
JP2002098347A (ja) * 2000-09-22 2002-04-05 Chofu Seisakusho Co Ltd 空気調和機の室内機における排水構造
JP2005098559A (ja) * 2003-08-26 2005-04-14 Toshiba Corp 冷蔵庫
JP2006300431A (ja) * 2005-04-21 2006-11-02 Mitsubishi Electric Corp 空気調和機の室内機用ドレンパン、空気調和機の室内機およびその製造方法
JP2008138913A (ja) 2006-11-30 2008-06-19 Toshiba Kyaria Kk 空気調和機
JP2008202829A (ja) * 2007-02-19 2008-09-04 Sharp Corp ドレンパン及びこれを備えた空気調和機
JP2010014288A (ja) * 2008-07-01 2010-01-21 Toshiba Carrier Corp 空気調和機
JP2011012820A (ja) * 2009-06-30 2011-01-20 Sanyo Electric Co Ltd 空気調和装置
JP2013181733A (ja) * 2012-03-05 2013-09-12 Mitsubishi Electric Corp 空気調和機の室内機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3438559A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109520113A (zh) * 2018-12-14 2019-03-26 广东美的制冷设备有限公司 接水盘和具有其的空调器
CN109520113B (zh) * 2018-12-14 2024-07-19 广东美的制冷设备有限公司 接水盘和具有其的空调器
CN110470070A (zh) * 2019-08-05 2019-11-19 南京天加环境科技有限公司 一种空调自清洁控制方法

Also Published As

Publication number Publication date
CN109154445B (zh) 2020-02-04
TW201839330A (zh) 2018-11-01
EP3438559A1 (en) 2019-02-06
EP3438559A4 (en) 2020-01-08
EP3438559B1 (en) 2023-11-29
MY173637A (en) 2020-02-12
JP2018189271A (ja) 2018-11-29
TWI644063B (zh) 2018-12-11
JP6340111B1 (ja) 2018-06-06
CN109154445A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
WO2018198400A1 (ja) 空気調和機の室内機
EP3205950B1 (en) Air conditioner with condensate collection device
CN109564012B (zh) 空调机
JPH11257680A (ja) 空気調和機の凝縮水排水装置
JP2006207857A (ja) 空調装置
JP6417073B1 (ja) 空気調和機
JP2007192513A (ja) 空気調和機および熱交換器のクリーニング方法
JP3978674B2 (ja) 外気取入れチャンバ
JP4775022B2 (ja) 熱交換換気装置
JPH0972568A (ja) 空気調和機の室内機
JPH1194285A (ja) 空気調和機
JP2008180469A (ja) 加湿装置及び加湿空調システム
JPS601023A (ja) 車両用冷房装置
KR0127613Y1 (ko) 에어콘 실내기의 배수장치
JP2000346532A (ja) 冷却装置
CN100348925C (zh) 空调机的冷凝水排出结构
JP6833017B2 (ja) 空気調和機の室内ユニット
KR100239464B1 (ko) 공기조화기의 공기 흡입구조
JPS6136106Y2 (ja)
JPH0996423A (ja) 空気調和機
JPH0434340Y2 (ja)
JPH10325696A (ja) 直交流式熱交換塔
JPH06307674A (ja) 空気調和機
JPH0455636A (ja) 空気調和機
JPH03247977A (ja) 冷凍機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017895510

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017895510

Country of ref document: EP

Effective date: 20181102

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE