WO2018193759A1 - 抵抗変化素子の製造方法及び抵抗変化素子 - Google Patents

抵抗変化素子の製造方法及び抵抗変化素子 Download PDF

Info

Publication number
WO2018193759A1
WO2018193759A1 PCT/JP2018/009978 JP2018009978W WO2018193759A1 WO 2018193759 A1 WO2018193759 A1 WO 2018193759A1 JP 2018009978 W JP2018009978 W JP 2018009978W WO 2018193759 A1 WO2018193759 A1 WO 2018193759A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
metal oxide
layer
titanium nitride
oxide layer
Prior art date
Application number
PCT/JP2018/009978
Other languages
English (en)
French (fr)
Inventor
有典 宮口
神保 武人
峻 真仁田
俊平 太田
炯祐 安
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to KR1020197033330A priority Critical patent/KR102228548B1/ko
Priority to JP2019513269A priority patent/JP6825085B2/ja
Priority to CN201880025658.4A priority patent/CN110537255A/zh
Publication of WO2018193759A1 publication Critical patent/WO2018193759A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a resistance change element manufacturing method and a resistance change element.
  • Semiconductor memory includes volatile memory such as DRAM (Dynamic Random Access Memory) and nonvolatile memory such as flash memory.
  • volatile memory such as DRAM (Dynamic Random Access Memory)
  • nonvolatile memory such as flash memory.
  • NAND-type flash memory is the mainstream as a nonvolatile memory, but it is regarded as the limit of miniaturization in the design rule after 20 nm, and ReRAM (Resistance RAM) is attracting attention as a device capable of further miniaturization.
  • a conventional ReRAM has a structure in which a metal oxide layer having a desired resistance value is sandwiched between upper and lower platinum (Pt) electrode layers, and a voltage is applied to the upper electrode layer to change the resistance of the metal oxide layer. Thus, memory switching is performed (see, for example, Patent Document 1).
  • an object of the present invention is to provide a resistance change element manufacturing method and a resistance change element that are low in cost and excellent in electrical characteristics.
  • a method of manufacturing a variable resistance element includes forming a first titanium nitride electrode layer on a substrate.
  • a first metal oxide layer having a first resistivity is formed on the first titanium nitride electrode layer.
  • a second metal oxide layer having a second resistivity different from the first resistivity is formed on the first metal oxide layer.
  • a second titanium nitride electrode layer is formed on the second metal oxide layer by sputtering while applying a bias voltage to the substrate.
  • the step of forming the second titanium nitride electrode layer may include applying a bias power of 0.03 W / cm 2 or more 0.62 W / cm 2 or less on the substrate But you can. According to the manufacturing method of the variable resistance element, while applying a 0.03 W / cm 2 or more 0.62 W / cm 2 or less of the bias voltage to the substrate, a high density on the second metal oxide layer Since the second titanium nitride electrode layer is formed, a variable resistance element having excellent electrical characteristics can be formed at low cost.
  • the method for manufacturing a resistance change element may include a step of forming the second metal oxide layer with a thickness of 3 nm to 11 nm. According to such a method of manufacturing a resistance change element, the second metal oxide layer is formed with a thickness of 3 nm or more and 11 nm or less, so that a resistance change element having excellent electrical characteristics can be formed at low cost.
  • the step of forming the second titanium nitride electrode layer uses a mixed gas of a rare gas and a nitrogen gas as a sputtering gas, and the nitrogen gas with respect to the total flow rate of the mixed gas.
  • the flow rate may include 10% or more and 100% or less.
  • the flow rate of the nitrogen gas with respect to the total flow rate of the mixed gas is adjusted to 10% to 100%, and the second metal Since the high-density second titanium nitride electrode layer is formed on the oxide layer, a variable resistance element having excellent electrical characteristics can be formed at low cost.
  • the step of forming the second titanium nitride electrode layer may include adjusting the temperature of the substrate to 20 ° C. or more and 320 ° C. or less. According to such a method of manufacturing a variable resistance element, the temperature of the substrate is adjusted to 20 ° C. or more and 320 ° C. or less while a bias voltage is applied to the substrate. Since the high-density second titanium nitride electrode layer is formed, a variable resistance element having excellent electrical characteristics can be formed at low cost.
  • the pressure of the mixed gas may be adjusted to 0.1 Pa or more and 1 Pa or less.
  • the pressure of the mixed gas while applying a bias voltage to the substrate, the pressure of the mixed gas is adjusted to 0.1 Pa or more and 1 Pa or less, and the high pressure is applied on the second metal oxide layer. Since the second titanium nitride electrode layer having a high density is formed, a variable resistance element having excellent electrical characteristics can be formed at low cost.
  • a variable resistance element includes a first titanium nitride electrode layer, a second titanium nitride electrode layer, and an oxide semiconductor layer.
  • the oxide semiconductor layer is provided between the first titanium nitride electrode layer and the second titanium nitride electrode layer.
  • the oxide semiconductor layer includes a first metal oxide layer having a first resistivity and a second metal oxide layer having a second resistivity different from the first resistivity.
  • the second metal oxide layer is provided between the first metal oxide layer and the second titanium nitride electrode layer.
  • the second titanium nitride electrode layer has a density of 4.8 g / cm 3 or more and 5.5 g / cm 3 or less. According to such a resistance change element manufacturing method, since the high-density second titanium nitride electrode layer is formed on the second metal oxide layer, a resistance change element having excellent electrical characteristics can be obtained at low cost. It is formed.
  • variable resistance element manufacturing method and a variable resistance element that are excellent in electrical characteristics at low cost are provided.
  • FIG. 6 is a graph of current-voltage characteristics when TiN is used for an upper electrode layer and a lower electrode layer in a resistance change element according to a comparative example. It is a graph of the current-voltage characteristic of the variable resistance element according to the present embodiment. It is a graph which shows the relationship between RF bias electric power and the density of a titanium nitride electrode layer. It is a graph which shows the relationship between the ratio of the nitrogen gas flow volume with respect to mixed gas flow volume, and the density of a titanium nitride electrode layer. It is a graph which shows the relationship between a substrate temperature and the density of a titanium nitride electrode layer. It is a table
  • surface figure which shows the correlation of the electrical property with the film thickness of a 2nd metal oxide layer, and RF bias power at the time of forming TiN as an upper electrode layer.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of the variable resistance element according to this embodiment.
  • the resistance change element 1 shown in FIG. 1 includes a substrate 2, a lower electrode layer 3 (first titanium nitride electrode layer), an oxide semiconductor layer 4, and an upper electrode layer 5 (second titanium nitride electrode layer). To do.
  • the substrate 2 is typically a semiconductor substrate such as a silicon wafer, but is not limited thereto, and an insulating ceramic substrate such as a glass substrate may be used.
  • the oxide semiconductor layer 4 is provided between the lower electrode layer 3 and the upper electrode layer 5.
  • the oxide semiconductor layer 4 includes a first metal oxide layer 41 and a second metal oxide layer 42.
  • the first metal oxide layer 41 and the second metal oxide layer 42 are each made of the same material, but may be made of different materials.
  • the resistivity (first resistivity) of the first metal oxide layer 41 is different from the resistivity (second resistivity) of the second metal oxide layer 42.
  • One of the first metal oxide layer 41 and the second metal oxide layer 42 is composed of an oxide material close to the stoichiometric composition (hereinafter also referred to as “stoichiometric composition material”), and the other is An oxide material containing a large number of oxygen vacancies (hereinafter also referred to as “oxygen vacancy material”) is used.
  • the first metal oxide layer 41 is made of an oxygen deficient material
  • the second metal oxide layer 42 is made of a stoichiometric composition material.
  • the first metal oxide layer 41 is formed on the lower electrode layer 3 and contains tantalum (Ta) and oxygen (O).
  • the first metal oxide layer 41 is formed of tantalum oxide (TaO x ) in the present embodiment.
  • the tantalum oxide used for the first metal oxide layer 41 has a lower degree of oxidation than the tantalum oxide forming the second metal oxide layer 42, and its resistivity is greater than, for example, 1 ⁇ ⁇ cm, 1 ⁇ 10 6. ⁇ ⁇ cm or less.
  • the material constituting the first metal oxide layer 41 is not limited to the above.
  • a ternary or ternary or higher oxide material is used.
  • the second metal oxide layer 42 is formed on the first metal oxide layer 41 and includes tantalum (Ta) and oxygen (O).
  • the second metal oxide layer 42 is formed of tantalum oxide (Ta 2 O 5 ).
  • the tantalum oxide used for the second metal oxide layer 42 has a stoichiometric composition or a composition close thereto, and has a resistivity greater than, for example, 1 ⁇ 10 6 (1E + 06) ⁇ ⁇ cm.
  • the material constituting the second metal oxide layer 42 is not limited to this, and a binary or ternary oxide material as described above can be applied.
  • the first metal oxide layer 41 and the second metal oxide layer 42 can be formed by, for example, a reactive sputtering method with oxygen.
  • metal oxide layers 41 and 42 made of tantalum oxide are sequentially formed on the substrate 2 (lower electrode layer 3) by sputtering a metal (Ta) target in a vacuum chamber into which oxygen is introduced.
  • the degree of oxidation of each metal oxide layer 41, 42 is controlled by the flow rate (partial pressure) of oxygen introduced into the vacuum chamber.
  • the resistivity of the second metal oxide layer 42 is higher than the resistivity of the first metal oxide layer 41.
  • oxygen ions (O 2 ⁇ ) in the second metal oxide layer 42 having a high resistance (high oxygen density) are reduced in resistance.
  • the resistance of the second metal oxide layer 42 decreases. This state is a low resistance state.
  • the oxide semiconductor layer 4 reversibly switches between the low resistance state and the high resistance state by controlling the voltage between the lower electrode layer 3 and the upper electrode layer 5. Further, since the low resistance state and the high resistance state are maintained even when no voltage is applied, the resistance change element 1 is nonvolatile, such as writing data in the high resistance state and reading data in the low resistance state. It can be used as a memory element.
  • a noble metal such as Pt may be used as a material because it has high corrosion resistance and good conductivity.
  • noble metals such as Pt are expensive, and fine processing such as etching is difficult and is not suitable for mass production. For this reason, in order to reduce the cost of the variable resistance element and improve the productivity, an electrode layer having a low cost and good electrical characteristics is required.
  • TiN is cheaper than noble metals such as Pt. Further, TiN can be finely processed such as etching and is suitable for mass production. However, since the oxide semiconductor layer 4 contains oxygen, when a metal other than a noble metal is used as the electrode layer, oxygen in the oxide semiconductor layer 4 may diffuse into the electrode layer.
  • FIG. 2 is a graph of current-voltage characteristics when TiN is used for the upper electrode layer and the lower electrode layer in the resistance change element according to the comparative example.
  • FIG. 2 shows a current-voltage curve when writing and erasing the variable resistance element.
  • the horizontal axis of FIG. 2 shows the voltage applied to the upper electrode layer 5, and the vertical axis shows the value of current flowing between the upper electrode layer 5 and the lower electrode layer 3.
  • a low current value means that the oxide semiconductor layer is in a high resistance state
  • a high current value means that the oxide semiconductor layer is in a low resistance state.
  • TiNO film a highly insulating film
  • the TiN upper electrode layer is formed without applying a bias voltage to the substrate 2 during sputtering.
  • the forming voltage may increase because the size and position of the filament cannot be appropriately controlled by forming. Furthermore, the filament formed by the high forming voltage tends to be thick, and after the forming operation, the resistance of the oxide semiconductor layer is lowered, and the on / off ratio of the resistance change element may not be improved.
  • the forming voltage when the forming is performed on the oxide semiconductor layer in the initial state (high resistance state) is about 2.5V.
  • the present inventors have found the upper electrode layer 5 in which oxygen in the oxide semiconductor layer is difficult to diffuse into the TiN upper electrode layer by controlling the density of the TiN upper electrode layer.
  • a method for forming the TiN upper electrode layer having a high density for example, a method of forming by a RF sputtering method or a pulsed DC sputtering method while applying a bias voltage to the substrate 2 can be mentioned.
  • a titanium (Ti) target is used as a target in each sputtering method, and a TiN upper electrode layer is formed on the second metal oxide layer 42 by a reactive sputtering method.
  • the reactive gas include nitrogen (N 2 ), nitrogen (N 2 ), argon (Ar), and a mixed gas. Details of the method of forming the TiN upper electrode layer will be described together with a method of manufacturing the resistance change element 1 described later.
  • the density of the TiN upper electrode layer formed by the above method is relatively high at 4.8 g / cm 3 or more and 5.5 g / cm 3 or less.
  • the density of the TiN upper electrode layer is smaller than 4.8 g / cm 3 , oxygen easily diffuses from the second metal oxide layer 42 to the grain boundaries of the TiN upper electrode layer, and the TiN upper electrode layer and the oxide This is not preferable because a highly insulating film (TiNO film) is formed at the interface with the semiconductor layer.
  • FIG. 3 is a graph of current-voltage characteristics of the variable resistance element according to this embodiment.
  • variable resistance element 1 in the variable resistance element 1 according to this embodiment, the forming voltage is suppressed as compared with the comparative example, and is about 1.5V. Furthermore, in the variable resistance element according to the present embodiment, the on / off ratio is also better than that of the comparative example.
  • the resistance change element 1 since the upper electrode layer 5 is made of TiN, the cost is lower than that in the case where the upper electrode layer is made of a noble metal material such as Pt. Can be reduced. Furthermore, the density of the TiN upper electrode layer that is the upper electrode layer 5 is high, and the upper electrode layer 5 becomes difficult to transmit and absorb oxygen in the oxide semiconductor layer 4, thereby suppressing the extraction of oxygen in the oxide semiconductor layer 4. Is done. Thereby, it is possible to prevent the resistance of the oxide semiconductor layer 4 from being lowered. As a result, the switching characteristics of the variable resistance element are improved.
  • a lower electrode layer 3 (first titanium nitride electrode layer) is formed on a wafer-like substrate 2.
  • the lower electrode layer 3 is formed under the same conditions as an upper electrode layer 5 (second titanium nitride electrode layer) described later.
  • the density of the lower electrode layer 3 is, for example, the same as the density of the upper electrode layer 5. This makes it difficult for TiNO to be formed at the interface between the lower electrode layer 3 and the oxide semiconductor layer 4, and good electrical characteristics are obtained.
  • the thickness of the upper electrode layer 5 is not particularly limited, and is 50 nm, for example.
  • the grain boundary is controlled and flat. Thereby, the upper layer of the lower electrode layer 3 becomes flatter.
  • the lower electrode layer 3 is formed while controlling the temperature of the substrate 2 at room temperature or near room temperature.
  • the oxide semiconductor layer 4 is formed on the lower electrode layer 3.
  • a tantalum oxide layer having an oxygen amount smaller than the stoichiometric composition is formed by, for example, a vacuum deposition method, a sputtering method, a CVD method, an ALD method, or the like.
  • the thickness of the oxide semiconductor layer 4 is not specifically limited, For example, it is 20 nm.
  • the first metal oxide layer 41 is formed by reactive sputtering with oxygen.
  • a second metal oxide layer 42 is formed on the first metal oxide layer 41.
  • a tantalum oxide layer having a stoichiometric composition or an oxygen composition ratio close thereto is formed as the second metal oxide layer 42.
  • the thickness of the 2nd metal oxide layer 42 is not specifically limited, For example, they are 3 nm or more and 11 nm or less.
  • the film forming method is not particularly limited, and for example, it is manufactured by a vacuum deposition method, a sputtering method, a CVD method, an ALD method, or the like.
  • the second metal oxide layer 42 is formed by reactive sputtering with oxygen.
  • the upper electrode layer 5 is formed on the oxide semiconductor layer 4.
  • a TiN upper electrode layer is formed as the upper electrode layer 5 by RF sputtering or pulse DC sputtering.
  • the thickness of the TiN upper electrode layer is not particularly limited and is, for example, 50 nm.
  • the conditions for RF sputtering are not particularly limited, and for example, the conditions are as follows. Gas flow rate: 50 [sccm] Titanium target input power: 2 [W / cm 2 ] RF frequency: 13.56 [MHz]
  • the conditions for pulsed DC sputtering are not particularly limited, and for example, the conditions are as follows. Gas flow rate: 50 [sccm] Titanium target input power: 2 [W / cm 2 ] Pulse DC frequency: 20 [kHz]
  • the substrate 2 a silicon wafer having a diameter of 300 mm, the RF bias power 0.03 W / cm 2 or more 0.62 W / cm 2 or less, the ratio of the nitrogen gas flow rate to the flow rate of the mixed gas of 10% or more
  • the density of the TiN upper electrode layer is 4.8 g / cm 3 or more and 5.5 g / cm 3 Adjusted to: Thereby, the variable resistance element 1 having a good switching characteristic is manufactured.
  • FIG. 4 is a graph showing the relationship between the RF bias power and the density of the titanium nitride electrode layer.
  • the ratio of the nitrogen gas flow rate to the mixed gas flow rate is 26%
  • the substrate temperature is 20 ° C.
  • the film forming pressure is 0.27 Pa.
  • RF bias power is preferably controlled by the 0.03 W / cm 2 or more 0.62 W / cm 2 or less in the range, it is preferable that the second metal oxide layer is set to 11nm or less in the range of 3nm .
  • FIG. 5 is a graph showing the relationship between the ratio of the nitrogen gas flow rate to the mixed gas flow rate and the density of the titanium nitride electrode layer.
  • the substrate temperature is 20 ° C.
  • the film forming pressure is 0.27 Pa.
  • the density of the titanium nitride electrode layer is 4.8 g / cm 3 or more 5.5 g / cm 3 below It has been adjusted. Thereby, it is preferable to control the ratio of the nitrogen gas flow rate with respect to the mixed gas flow rate between 10% and 100%.
  • the ratio of the nitrogen gas flow rate to the mixed gas flow rate is 26%, and the density of the titanium nitride electrode layer is maximized.
  • FIG. 6 is a graph showing the relationship between the substrate temperature and the density of the titanium nitride electrode layer.
  • the ratio of the nitrogen gas flow rate to the mixed gas flow rate is 26%
  • the film forming pressure is 0.27 Pa.
  • the substrate temperature by controlling the substrate temperature to 20 ° C. or higher 320 ° C. or less, the density of the titanium nitride electrode layer is adjusted to 4.8 g / cm 3 or more 5.5 g / cm 3 or less.
  • the substrate temperature is preferably controlled to 20 ° C. or higher and 320 ° C. or lower.
  • the substrate temperature exceeds 275 ° C., the surface of the titanium nitride electrode layer tends to become rough, and the substrate temperature is preferably 20 ° C. or higher and 275 ° C. or lower.
  • FIG. 7 is a table showing a correlation between the electrical characteristics of the film thickness of the second metal oxide layer and the RF bias power when TiN is formed as the upper electrode layer.
  • indicates that the switching is good and the forming voltage is almost unnecessary
  • indicates that the switching and forming voltage are both good
  • indicates that the switching is good
  • indicates the switching failure. It shows what was.
  • the thickness of the second metal oxide layer 42 was 3nm or more 11nm or less, if 0.03 W / cm 2 or more 0.62 W / cm 2 or less is the substrate bias value, switching and forming voltage both Good characteristics could be obtained. Further, when the thickness of the second metal oxide layer 42 is 5 nm or more and 11 nm or less, if the substrate bias value is 0.43 W / cm 2 or more and 0.62 W / cm 2 or less, forming is almost unnecessary. We were able to.
  • the resistance change element 1 formed on the wafer-like substrate 2 is formed in a predetermined element size.
  • lithography and dry etching techniques may be used, lithography and wet etching techniques may be used, and each layer may be formed through a resist mask or the like.
  • the etching technique is used, the variable resistance element 1 may be formed in an interlayer insulating film between the lower wiring layer and the upper wiring layer.
  • the upper electrode layer 5 since the upper electrode layer 5 is formed with a high density, the upper electrode layer 5 can also be applied to a mask in the resistance change element manufacturing process.
  • the manufacturing method described above since a highly insulating film is not formed at the interface between the upper electrode layer 5 and the second metal oxide layer 42, the voltage required for forming can be reduced, or forming is unnecessary. Become. As a result, it is possible to prevent an increase in the operating current of the element.
  • the upper electrode layer 5 since the upper electrode layer 5 hardly transmits and absorbs oxygen, the extraction of oxygen in the oxide semiconductor layer 4 is suppressed, and the resistance of the oxide semiconductor layer 4 can be prevented from being lowered. Therefore, it is possible to manufacture a variable resistance element having a low switching cost and good switching characteristics as compared with the case where noble metal is used for the electrode layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Semiconductor Memories (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

【課題】低コストで電気特性に優れた抵抗変化素子の製造。 【解決手段】抵抗変化素子の製造方法は、基板上に第1窒化チタン電極層を形成することを含む。上記第1窒化チタン電極層の上には、第1抵抗率を有する第1金属酸化物層が形成される。上記第1金属酸化物層の上に、上記第1抵抗率とは異なる第2抵抗率を有する第2金属酸化物層が形成される。上記基板にバイアス電圧を印加しながら、上記第2金属酸化物層の上に第2窒化チタン電極層がスパッタリング法によって形成される。

Description

抵抗変化素子の製造方法及び抵抗変化素子
 本発明は、抵抗変化素子の製造方法及び抵抗変化素子に関する。
 半導体メモリには、DRAM(Dynamic Random Access Memory)等の揮発性メモリとフラッシュメモリ等の不揮発性メモリがある。不揮発性メモリとして、NAND型フラッシュメモリが主流であるが、20nm以降のデザインルールでは微細化の限界とされており、さらに微細化が可能なデバイスとして、ReRAM(Resistance RAM)が注目されている。
 従来のReRAMは、所望の抵抗値を有する金属酸化物層を上部及び下部白金(Pt)電極層で挟んだ構造であり、上部電極層に電圧を印加し、金属酸化物層の抵抗を変化させることでメモリスイッチングを行う(例えば、特許文献1参照)。
特開2013-207130号公報
 しかしながら、電極層の材料として用いられるPtは高価な金属であるため、抵抗変化素子のコストを下げ生産性を向上させるためには、低コストで電気特性に優れた電極材料の開発が必要とされている。
 以上のような事情に鑑み、本発明の目的は、低コストで電気特性に優れた抵抗変化素子の製造方法及び抵抗変化素子を提供することにある。
 上記目的を達成するため、本発明の一形態に係る抵抗変化素子の製造方法は、基板上に第1窒化チタン電極層を形成することを含む。上記第1窒化チタン電極層の上には、第1抵抗率を有する第1金属酸化物層が形成される。上記第1金属酸化物層の上に、上記第1抵抗率とは異なる第2抵抗率を有する第2金属酸化物層が形成される。上記基板にバイアス電圧を印加しながら、上記第2金属酸化物層の上に第2窒化チタン電極層がスパッタリング法によって形成される。
 このような抵抗変化素子の製造方法によれば、上記基板にバイアス電圧を印加しながら、上記第2金属酸化物層の上に高密度の第2窒化チタン電極層が形成されるので、低コストで電気特性に優れた抵抗変化素子が形成される。
 上記の抵抗変化素子の製造方法においては、上記第2窒化チタン電極層を形成する工程は、上記基板に0.03W/cm以上0.62W/cm以下のバイアス電力を印加することを含んでもよい。
 このような抵抗変化素子の製造方法によれば、上記基板に0.03W/cm以上0.62W/cm以下のバイアス電圧を印加しながら、上記第2金属酸化物層の上に高密度の第2窒化チタン電極層が形成されるので、低コストで電気特性に優れた抵抗変化素子が形成される。
 上記の抵抗変化素子の製造方法においては、上記第2金属酸化物層を3nm以上11nm以下の膜厚で形成する工程を含んでもよい。
 このような抵抗変化素子の製造方法によれば、上記第2金属酸化物層が3nm以上11nm以下の膜厚で形成されるので、低コストで電気特性に優れた抵抗変化素子が形成される。
 上記の抵抗変化素子の製造方法においては、上記第2窒化チタン電極層を形成する工程は、スパッタリングガスとして希ガスと窒素ガスとの混合ガスを用い、上記混合ガスの全流量に対する上記窒素ガスの流量は、10%以上100%以下であることを含んでもよい。
 このような抵抗変化素子の製造方法によれば、上記基板にバイアス電圧を印加しながら、上記混合ガスの全流量に対する上記窒素ガスの流量が10%以上100%以下に調整され、上記第2金属酸化物層の上に高密度の第2窒化チタン電極層が形成されるので、低コストで電気特性に優れた抵抗変化素子が形成される。
 上記の抵抗変化素子の製造方法においては、上記第2窒化チタン電極層を形成する工程は、上記基板の温度を20℃以上320℃以下に調整することを含んでもよい。
 このような抵抗変化素子の製造方法によれば、上記基板にバイアス電圧を印加しながら、上記基板の温度が20℃以上320℃以下に調整されるので、上記第2金属酸化物層の上に高密度の第2窒化チタン電極層が形成されるので、低コストで電気特性に優れた抵抗変化素子が形成される。
 上記の抵抗変化素子の製造方法においては、上記混合ガスの圧力を0.1Pa以上1Pa以下に調整してもよい。
 このような抵抗変化素子の製造方法によれば、上記基板にバイアス電圧を印加しながら、上記混合ガスの圧力が0.1Pa以上1Pa以下に調整され、上記第2金属酸化物層の上に高密度の第2窒化チタン電極層が形成されるので、低コストで電気特性に優れた抵抗変化素子が形成される。
 上記目的を達成するため、本発明の一形態に係る抵抗変化素子は、第1窒化チタン電極層と、第2窒化チタン電極層と、酸化物半導体層とを具備する。上記酸化物半導体層は、上記第1窒化チタン電極層と上記第2窒化チタン電極層との間に設けられる。上記酸化物半導体層は、第1抵抗率を有する第1金属酸化物層と、上記第1抵抗率とは異なる第2抵抗率を有する第2金属酸化物層とを有する。上記第2金属酸化物層は、上記第1金属酸化物層と上記第2窒化チタン電極層との間に設けられる。上記第2窒化チタン電極層は、4.8g/cm以上5.5g/cm以下の密度を有する。
 このような抵抗変化素子の製造方法によれば、上記第2金属酸化物層の上に高密度の第2窒化チタン電極層が形成されるので、低コストで電気特性に優れた抵抗変化素子が形成される。
 以上述べたように、本発明によれば、低コストで電気特性に優れた抵抗変化素子の製造方法及び抵抗変化素子が提供される。
本実施形態に係る抵抗変化素子の構成を示す概略断面図である。 比較例に係る抵抗変化素子において、上部電極層及び下部電極層にTiNを用いた場合の電流-電圧特性のグラフ図である。 本実施形態に係る抵抗変化素子の電流-電圧特性のグラフ図である。 RFバイアス電力と窒化チタン電極層の密度との関係を示すグラフ図である。 混合ガス流量に対する窒素ガス流量の割合と窒化チタン電極層の密度との関係を示すグラフ図である。 基板温度と窒化チタン電極層の密度との関係を示すグラフ図である。 第2金属酸化物層の膜厚と、上部電極層としてTiNを形成する際のRFバイアス電力との電気特性の相関を示す表図である。
 以下、図面を参照しながら、本発明の実施形態を説明する。各図面には、XYZ軸座標が導入される場合がある。
 図1は、本実施形態に係る抵抗変化素子の構成を示す概略断面図である。
 図1に示す抵抗変化素子1は、基板2と、下部電極層3(第1窒化チタン電極層)と、酸化物半導体層4と、上部電極層5(第2窒化チタン電極層)とを具備する。
 基板2としては、典型的にはシリコンウェーハ等の半導体基板が用いられるが、これに
限られず、ガラス基板等の絶縁性セラミックス基板が用いられてもよい。
 酸化物半導体層4は、下部電極層3と上部電極層5との間に設けられる。酸化物半導体層4は、第1金属酸化物層41と、第2金属酸化物層42とを有する。第1金属酸化物層41及び第2金属酸化物層42は、それぞれ同種の材料で構成されているが、異種の材料で構成されてもよい。第1金属酸化物層41の抵抗率(第1抵抗率)は、第2金属酸化物層42の抵抗率(第2抵抗率)と異なる。
 第1金属酸化物層41及び第2金属酸化物層42のうち、一方は、化学量論組成に近い酸化物材料(以下「化学量論組成材料」ともいう。)で構成され、他方は、酸素欠損を多数含む酸化物材料(以下「酸素欠損材料」ともいう。)で構成される。本実施形態では、第1金属酸化物層41が酸素欠損材料で構成され、第2金属酸化物層42が化学量論組成材料で構成される。
 第1金属酸化物層41は、下部電極層3上に形成され、タンタル(Ta)及び酸素(O)を含む。例えば、第1金属酸化物層41は、本実施形態では酸化タンタル(TaO)で形成される。第1金属酸化物層41に用いられる酸化タンタルは、第2金属酸化物層42を形成する酸化タンタルよりも酸化度が低く、その抵抗率は、例えば1Ω・cmよりも大きく、1×10Ω・cm以下である。
 第1金属酸化物層41を構成する材料は上記に限られず、例えば、酸化ジルコニウム(ZrO)、酸化ハフニウム(HfO)、酸化イットリウム(YO)、酸化チタン(TiO)、酸化アルミニウム(AlO)、酸化ケイ素(SiO)、酸化鉄(FeO)、酸化ニッケル(NiO)、酸化コバルト(CoO)、酸化マンガン(MnO)、酸化錫(SnO)、酸化亜鉛(ZnO)、酸化バナジウム(VO)、酸化タングステン(WO)、酸化銅(CuO)、Pr(Ca,Mn)O、LaAlO、SrTiO、La(Sr,Mn)O等の二元系あるいは三元系以上の酸化物材料が用いられる。
 第2金属酸化物層42は、第1金属酸化物層41の上に形成され、タンタル(Ta)及び酸素(O)を含む。例えば、本実施形態では、第2金属酸化物層42は、酸化タンタル(Ta)で形成される。第2金属酸化物層42に用いられる酸化タンタルは、化学量論組成あるいはそれに近い組成を有し、例えば、1×10(1E+06)Ω・cmより大きい抵抗率を有する。第2金属酸化物層42を構成する材料はこれに限られず、上述したような二元系あるいは三元系以上の酸化物材料が適用可能である。
 第1金属酸化物層41及び第2金属酸化物層42は、例えば、酸素との反応性スパッタリング法によって形成することができる。本実施形態では、酸素が導入された真空チャンバにおいて金属(Ta)ターゲットをスパッタすることで、酸化タンタルからなる金属酸化物層41,42を基板2(下部電極層3)上に順次形成する。各金属酸化物層41,42の酸化度は、真空チャンバに導入される酸素の流量(分圧)によって制御される。
 第2金属酸化物層42は、第1金属酸化物層41よりも酸化度が高いため、第2金属酸化物層42の抵抗率は、第1金属酸化物層41の抵抗率よりも高い。ここで、上部電極層5に負電圧、下部電極層3に正電圧を印加すると、高抵抗(高酸素密度)である第2金属酸化物層42中の酸素イオン(O2-)が低抵抗である第1金属酸化物層41中に拡散し、第2金属酸化物層42の抵抗が低下する。この状態が低抵抗状態である。
 一方、低抵抗状態から、下部電極層3と上部電極層5とに印加した電圧を反転させて、下部電極層3に負電圧、上部電極層5に正電圧を印加すると、第1金属酸化物層41から第2金属酸化物層42へ酸素イオンが拡散し、再び第2金属酸化物層42の酸化度が高まり、抵抗が高くなる。この状態が高抵抗状態である。
 上述のように、酸化物半導体層4は、下部電極層3と上部電極層5との間の電圧を制御することにより、低抵抗状態と高抵抗状態とを可逆的にスイッチングする。さらに、低抵抗状態及び高抵抗状態は、電圧が印加されていなくても保持されるため、高抵抗状態でデータの書き込み、低抵抗状態でデータの読出しというように、抵抗変化素子1は不揮発性メモリ素子として利用可能となる。
 抵抗変化素子の上部電極層及び下部電極層には、耐腐食性が高く良導電性を有することからPt等の貴金属が材料に用いられることがある。しかしながら、Pt等の貴金属は高価であり、またエッチング等の微細加工も難しく大量生産には向いていない。このため、抵抗変化素子のコストを下げ生産性を向上させるためには、低コストで電気特性が良好な電極層が必要となる。
 一方、TiNは、Pt等の貴金属に比べて安価である。さらに、TiNは、エッチング等の微細加工も可能であり、大量生産に向いている。しかしながら、酸化物半導体層4は、酸素を含むため、電極層として貴金属以外の金属を用いた場合、電極層に酸化物半導体層4の酸素が拡散する場合がある。
 図2は、比較例に係る抵抗変化素子において、上部電極層及び下部電極層にTiNを用いた場合の電流-電圧特性のグラフ図である。図2には、抵抗変化素子に書き込みと消去とを行ったときの電流-電圧曲線が示されている。
 ここで、図2の横軸は、上部電極層5に印加される電圧が示され、縦軸は、上部電極層5と下部電極層3との間に流れる電流値が示されている。電流値が低いことは、酸化物半導体層が高抵抗状態にあることを意味し、電流値が高いことは、酸化物半導体層が低抵抗状態にあることを意味する。
 TiNを上部電極層としてスパッタリング法により成膜したところ、窒素プラズマによりTiN上部電極層と酸化物半導体層との界面に、絶縁性の高い膜(TiNO膜)が形成されることが分かっている。このような絶縁性の高い膜が形成される要因の一つとして、TiN上部電極層の密度が充分に高くない場合に、TiN上部電極層の粒界に酸素拡散がおきやすくなっていると考えられる。ここで、比較例では、スパッタリング中に基板2にバイアス電圧を印加せずに、TiN上部電極層を形成している。
 このような絶縁性の高い膜が形成された場合、抵抗変化素子として使用するには、高いスイッチング動作電圧を酸化物半導体層に印加し、絶縁破壊に類似する現象を生じさせる素子初期化処理(フォーミング)が必要となる。フォーミングによりフィラメントと呼ばれる電流パスが酸化物半導体層に生成することで、酸化物半導体層のスイッチ動作を発現させるものと考えられている。
 しかし、絶縁性の高い膜が酸化物半導体層中に形成された場合、フォーミングによってフィラメントの大きさ、位置を適切に制御することができなくなるため、フォーミング電圧が高くなる場合がある。さらに、高いフォーミング電圧によって形成されたフィラメントは太くなる傾向があり、フォーミング動作後、酸化物半導体層の抵抗が低くなり、抵抗変化素子のオン・オフ比が良好にならない場合がある。例えば、図2の例では、初期状態(高抵抗状態)の酸化物半導体層にフォーミングを行ったときのフォーミング電圧が約2.5Vになっている。
 一方、TiN上部電極層の密度が高くなれば、TiN上部電極層の粒界が減少または粒界が狭くなり、酸化物半導体層からTiN上部電極層への酸素拡散がおきにくくなると考えられる。そこで本発明者らは、TiN上部電極層の密度を制御することにより、酸化物半導体層中の酸素がTiN上部電極層中に拡散し難い上部電極層5を見出した。
 密度の高いTiN上部電極層を形成する方法としては、例えば、基板2にバイアス電圧を印加しながら、RFスパッタリング法又はパルスDCスパッタリング法により形成する方法があげられる。各スパッタリング法におけるターゲットには、チタン(Ti)ターゲットが用いられ、反応性スパッタリング法により、第2金属酸化物層42上にTiN上部電極層が形成される。反応ガスとしては、窒素(N)、または窒素(N)とアルゴン(Ar)等と混合ガスがあげられる。TiN上部電極層を形成する方法の詳細については、後述する抵抗変化素子1の製造方法とともに説明する。
 以上の方法で形成されたTiN上部電極層の密度は、4.8g/cm以上5.5g/cm以下と、比較的高くなる。例えば、TiN上部電極層の密度が4.8g/cmよりも小さくなると、TiN上部電極層の粒界に第2金属酸化物層42から酸素が拡散しやすくなり、TiN上部電極層と酸化物半導体層との界面に、絶縁性の高い膜(TiNO膜)が形成されるので好ましくない。
 図3は、本実施形態に係る抵抗変化素子の電流-電圧特性のグラフ図である。
 図3に示すように、本実施形態に係る抵抗変化素子1では、フォーミング電圧が比較例に比べて抑えられ、約1.5Vになっている。さらに、本実施形態に係る抵抗変化素子では、オン・オフ比も比較例に比べて良好になっている。
 このように、本実施形態に係る抵抗変化素子1によれば、上部電極層5がTiNにより構成されているため、上部電極層がPt等の貴金属材料で構成されている場合と比べて、コストの低減を図ることができる。さらに、上部電極層5であるTiN上部電極層の密度は高く、上部電極層5は酸化物半導体層4中の酸素を透過及び吸収し難くなり、酸化物半導体層4中の酸素の引き抜きが抑制される。これにより、酸化物半導体層4の低抵抗化を防ぐことが可能となる。この結果、抵抗変化素子のスイッチング特性が向上する。
 抵抗変化素子1の製造方法について説明する。
 まず、ウェーハ状の基板2上に下部電極層3(第1窒化チタン電極層)が形成される。下部電極層3は、後述する上部電極層5(第2窒化チタン電極層)と同じ条件で形成される。下部電極層3の密度は、例えば、上部電極層5の密度と同じである。これにより、下部電極層3と酸化物半導体層4との界面にもTiNOが形成されにくくなり、良好な電気特性が得られる。上部電極層5の厚みは、特に限定されず、例えば50nmである。
 下部電極層3においては、粒界が制御されるとともに、平坦であることが好ましい。これにより、下部電極層3の上層がより平坦になる。下部電極層3をより平坦に形成するには、例えば、基板2の温度を室温または室温近傍の温度に制御しながら、下部電極層3を形成する。
 次に、下部電極層3の上に酸化物半導体層4が形成される。
 まず、第1金属酸化物層41として、化学量論組成より酸素量が少ないタンタル酸化物層が例えば真空蒸着法、スパッタ法、CVD法、ALD法などにより形成される。酸化物半導体層4の厚みは、特に限定されず、例えば20nmである。本実施形態では、酸素との反応性スパッタリングによって、第1金属酸化物層41が形成される。
 続いて、第1金属酸化物層41の上に第2金属酸化物層42が形成される。本実施形態では、第2金属酸化物層42として、化学量論組成あるいはそれに近い酸素組成比のタンタル酸化物層が成膜される。第2金属酸化物層42の厚みは、特に限定されず、例えば3nm以上11nm以下である。成膜方法は、特に限定されず、例えば、真空蒸着法、スパッタ法、CVD法、ALD法などにより作製する。本実施形態では、酸素との反応性スパッタリングによって、第2金属酸化物層42が形成される。
 次に、酸化物半導体層4の上に上部電極層5が形成される。本実施形態では、上部電極層5としてTiN上部電極層がRFスパッタリングまたはパルスDCスパッタリングにより成膜される。TiN上部電極層の厚みは特に限定されず、例えば50nmである。
 RFスパッタリングの条件は、特に限定されず、例えば、以下の条件で実施される。
  ガス流量:50[sccm]
  チタンターゲット投入電力:2[W/cm
  RF周波数:13.56[MHz]
 パルスDCスパッタリングの条件は、特に限定されず、例えば、以下の条件で実施される。
  ガス流量:50[sccm]
  チタンターゲット投入電力:2[W/cm
  パルスDC周波数:20[kHz]
 上記各スパッタ法において、基板2として、直径300mmのシリコンウェーハを用い、RFバイアス電力を0.03W/cm以上0.62W/cm以下、混合ガス流量に対する窒素ガス流量の割合を10%以上100%以下、基板温度を20℃以上320℃以下、成膜圧力を0.1Pa以上1Pa以下に制御することで、TiN上部電極層の密度が4.8g/cm以上5.5g/cm以下に調整される。これにより、良好なスイッチング特性を有する抵抗変化素子1が製造される。
 例えば、図4は、RFバイアス電力と窒化チタン電極層の密度との関係を示すグラフ図である。ここで、混合ガス流量に対する窒素ガス流量の割合は、26%であり、基板温度は、20℃であり、成膜圧力は、0.27Paである。
 図4の例では、RFバイアス電力として、20W(0.03W/cm)印加すると、窒化チタン電極層の密度が4.8g/cm以上になる。そして、RFバイアス電力をさらに上昇させると、窒化チタン電極層の密度が徐々に上昇し、密度が5.4g/cm程度になる。これにより、RFバイアス電力は、0.03W/cm以上0.62W/cm以下の範囲で制御することが好ましく、第2金属酸化物層は3nm以上11nm以下の範囲に設定することが好ましい。
 また、図5は、混合ガス流量に対する窒素ガス流量の割合と窒化チタン電極層の密度との関係を示すグラフ図である。ここで、基板温度は、20℃であり、成膜圧力は、0.27Paである。
 図5の例では、混合ガス流量に対する窒素ガス流量の割合を10%以上100%以下で制御することにより、窒化チタン電極層の密度が4.8g/cm以上5.5g/cm以下に調整されている。これにより、混合ガス流量に対する窒素ガス流量の割合は、10%以上100%以下で制御することが好ましい。特に、混合ガス流量に対する窒素ガス流量の割合が26%で、窒化チタン電極層の密度が極大になっている。
 また、図6は、基板温度と窒化チタン電極層の密度との関係を示すグラフ図である。ここで、混合ガス流量に対する窒素ガス流量の割合は、26%であり、成膜圧力は、0.27Paである。
 図6の例では、基板温度を20℃以上320℃以下に制御することにより、窒化チタン電極層の密度が4.8g/cm以上5.5g/cm以下に調整される。これにより、基板温度は、20℃以上320℃以下に制御することが好ましい。但し、基板温度が275℃を超えると、窒化チタン電極層の表面が粗くなる傾向あり、基板温度は、20℃以上275℃以下であることが好ましい。
 図7は、第2金属酸化物層の膜厚と、上部電極層としてTiNを形成する際のRFバイアス電力との電気特性の相関を示す表図である。
 ここで、◎は、スイッチングが良好且つフォーミング電圧がほぼ不要であったもの、○は、スイッチング及びフォーミング電圧とも良好であったもの、△は、スイッチングが良好であったもの、×は、スイッチング不良であったものを示す。
 つまり、第2金属酸化物層42の膜厚が3nm以上11nm以下であった場合に、基板バイアス値が0.03W/cm以上0.62W/cm以下であれば、スイッチング及びフォーミング電圧とも良好な特性を得ることができた。さらに、第2金属酸化物層42の膜厚が5nm以上11nm以下であった場合に、基板バイアス値が0.43W/cm以上0.62W/cm以下であれば、ほぼフォーミングを不要とすることができた。
 これは、TiN上部電極層の密度が高くなれば、TiN上部電極層の粒界が減少または粒界が狭くなり、酸化物半導体層からTiN上部電極層への酸素拡散がおきにくくなったこととともに、所定の基板バイアスによるイオンボンバーメントにより第2金属酸化物層42に生成された欠陥によってフィラメントが形成され、フォーミングが不要になったことが推察される。
 ウェーハ状の基板2に形成された抵抗変化素子1は、所定の素子サイズに形成される。各層のパターニングには、リソグラフィ及びドライエッチング技術が用いられてもよいし、リソグラフィ及びウェットエッチング技術が用いられてもよいし、レジストマスク等を介して各層の成膜が行われてもよい。エッチング技術を用いる場合、下部配線層と上部配線層との間の層間絶縁膜に、当該抵抗変化素子1が作り込まれてもよい。また、上部電極層5は、高密度に形成されているため、抵抗変化素子の製造プロセスでは、上部電極層5をマスクにも適用できる。
 上記製造方法によれば、上部電極層5と第2金属酸化物層42との界面に絶縁性の高い膜が形成されないため、フォーミングに必要な電圧を下げることができるか、もしくはフォーミングが不要となる。これにより、素子の動作電流上昇を防ぐことが可能となる。また、上部電極層5が、酸素を透過及び吸収し難いため、酸化物半導体層4中の酸素の引き抜きが抑制され、酸化物半導体層4の低抵抗化を防ぐことが可能となる。従って、電極層に貴金属を用いた場合と比べてコストが低く、良好なスイッチング特性を有する抵抗変化素子を製造することが可能となる。
 なお、上部電極層5の材料として、DLC(ダイヤモンド状炭素)を用いる方法がある。本実施形態では、上部電極層5としてTiNを用いることにより、DLCに比べて、発塵が抑制され、さらに低抵抗の上部電極層が形成される。
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。
 1…抵抗変化素子
 2…基板
 3…下部電極層
 4…酸化物半導体層
 41…第1金属酸化物層
 42…第2金属酸化物層
 5…上部電極

Claims (7)

  1.  基板上に第1窒化チタン電極層を形成し、
     前記第1窒化チタン電極層の上に、第1抵抗率を有する第1金属酸化物層を形成し、
     前記第1金属酸化物層の上に、前記第1抵抗率とは異なる第2抵抗率を有する第2金属酸化物層を形成し、
     前記基板にバイアス電圧を印加しながら、前記第2金属酸化物層の上に第2窒化チタン電極層をスパッタリング法によって形成する
     抵抗変化素子の製造方法。
  2.  請求項1に記載の抵抗変化素子の製造方法であって、
     前記第2窒化チタン電極層を形成する工程は、前記基板に0.03W/cm以上0.62W/cm以下のバイアス電力を印加することを含む
     抵抗変化素子の製造方法。
  3.  請求項1または2に記載の抵抗変化素子の製造方法であって、
     前記第2窒化チタン電極層を形成する工程は、前記第2金属酸化物層を3nm以上11nm以下の膜厚で形成する工程を含む
     抵抗変化素子の製造方法。
  4.  請求項1~3のいずれか1つに記載の抵抗変化素子の製造方法であって、
     前記第2窒化チタン電極層を形成する工程は、スパッタリングガスとして希ガスと窒素ガスとの混合ガスを用い、前記混合ガスの全流量に対する前記窒素ガスの流量は、10%以上100%以下であることを含む
     抵抗変化素子の製造方法。
  5.  請求項1~4のいずれか1つに記載の抵抗変化素子の製造方法であって、
     前記第2窒化チタン電極層を形成する工程は、前記基板の温度を20℃以上320℃以下に調整することを含む
     抵抗変化素子の製造方法。
  6.  請求項4または5に記載の抵抗変化素子の製造方法であって、
     前記混合ガスの圧力を0.1Pa以上1Pa以下に調整することを含む
     抵抗変化素子の製造方法。
  7.  第1窒化チタン電極層と、
     第2窒化チタン電極層と、
     前記第1窒化チタン電極層と前記第2窒化チタン電極層との間に設けられ、第1抵抗率を有する第1金属酸化物層と、前記第1金属酸化物層と前記第2窒化チタン電極層との間に設けられ、前記第1抵抗率とは異なる第2抵抗率を有する第2金属酸化物層とを有する酸化物半導体層と
     を具備し、
     前記第2窒化チタン電極層は、4.8g/cm以上5.5g/cm以下の密度を有する抵抗変化素子。
PCT/JP2018/009978 2017-04-18 2018-03-14 抵抗変化素子の製造方法及び抵抗変化素子 WO2018193759A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197033330A KR102228548B1 (ko) 2017-04-18 2018-03-14 저항 변화 소자의 제조 방법 및 저항 변화 소자
JP2019513269A JP6825085B2 (ja) 2017-04-18 2018-03-14 抵抗変化素子の製造方法及び抵抗変化素子
CN201880025658.4A CN110537255A (zh) 2017-04-18 2018-03-14 电阻变化元件的制造方法及电阻变化元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017082101 2017-04-18
JP2017-082101 2017-04-18

Publications (1)

Publication Number Publication Date
WO2018193759A1 true WO2018193759A1 (ja) 2018-10-25

Family

ID=63856699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009978 WO2018193759A1 (ja) 2017-04-18 2018-03-14 抵抗変化素子の製造方法及び抵抗変化素子

Country Status (5)

Country Link
JP (1) JP6825085B2 (ja)
KR (1) KR102228548B1 (ja)
CN (1) CN110537255A (ja)
TW (1) TWI775833B (ja)
WO (1) WO2018193759A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052354A1 (ja) * 2009-10-27 2011-05-05 キヤノンアネルバ株式会社 不揮発性記憶素子およびその製造方法
WO2012073471A1 (ja) * 2010-12-01 2012-06-07 キヤノンアネルバ株式会社 不揮発性記憶素子およびその製造方法
JP2013058691A (ja) * 2011-09-09 2013-03-28 Renesas Electronics Corp 不揮発性半導体記憶装置及びその製造方法
JP2013207130A (ja) * 2012-03-29 2013-10-07 Ulvac Japan Ltd 抵抗変化素子及びその製造方法
JP2015065240A (ja) * 2013-09-24 2015-04-09 日本電気株式会社 電流制御素子およびその製造方法
WO2015125449A1 (ja) * 2014-02-24 2015-08-27 株式会社アルバック 抵抗変化素子及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177469A (ja) * 2007-01-22 2008-07-31 Fujitsu Ltd 抵抗変化型素子および抵抗変化型素子製造方法
JP2012059995A (ja) * 2010-09-10 2012-03-22 Toshiba Corp 半導体装置及びその製造方法
JP5282176B1 (ja) * 2011-10-12 2013-09-04 パナソニック株式会社 不揮発性半導体記憶装置およびその製造方法
CN103907187B (zh) * 2012-09-05 2016-04-13 株式会社爱发科 电阻转变元件及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052354A1 (ja) * 2009-10-27 2011-05-05 キヤノンアネルバ株式会社 不揮発性記憶素子およびその製造方法
WO2012073471A1 (ja) * 2010-12-01 2012-06-07 キヤノンアネルバ株式会社 不揮発性記憶素子およびその製造方法
JP2013058691A (ja) * 2011-09-09 2013-03-28 Renesas Electronics Corp 不揮発性半導体記憶装置及びその製造方法
JP2013207130A (ja) * 2012-03-29 2013-10-07 Ulvac Japan Ltd 抵抗変化素子及びその製造方法
JP2015065240A (ja) * 2013-09-24 2015-04-09 日本電気株式会社 電流制御素子およびその製造方法
WO2015125449A1 (ja) * 2014-02-24 2015-08-27 株式会社アルバック 抵抗変化素子及びその製造方法

Also Published As

Publication number Publication date
TWI775833B (zh) 2022-09-01
JP6825085B2 (ja) 2021-02-03
JPWO2018193759A1 (ja) 2019-11-07
TW201842554A (zh) 2018-12-01
KR20190137875A (ko) 2019-12-11
CN110537255A (zh) 2019-12-03
KR102228548B1 (ko) 2021-03-16

Similar Documents

Publication Publication Date Title
US8927331B2 (en) Method of manufacturing nonvolatile memory device
CN102449763B (zh) 非易失性存储元件以及其制造方法
US9281477B2 (en) Resistance change element and method for producing the same
US9543516B2 (en) Method for forming a doped metal oxide for use in resistive switching memory elements
US8999808B2 (en) Nonvolatile memory element and method for manufacturing the same
US8981333B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JP6230203B2 (ja) 抵抗変化素子及びその製造方法
JP2017034223A (ja) 抵抗変化型メモリ
JP6825085B2 (ja) 抵抗変化素子の製造方法及び抵抗変化素子
US9142773B2 (en) Variable resistance nonvolatile memory element and method of manufacturing the same
CN112909159A (zh) 电阻式随机存取存储器
KR101382835B1 (ko) 저항 변화 메모리 소자 및 이의 제조방법
TWI600150B (zh) 記憶體結構及其製造方法
JP2013207131A (ja) 抵抗変化素子及びその製造方法
JP2011238696A (ja) 抵抗変化素子及びその製造方法、並びに半導体装置及びその製造方法
TWI483394B (zh) 電阻式隨機存取記憶體及其製作方法
JPWO2014024406A1 (ja) 成膜方法および成膜装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513269

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197033330

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18787431

Country of ref document: EP

Kind code of ref document: A1