WO2018190388A1 - 電動モビリティ - Google Patents

電動モビリティ Download PDF

Info

Publication number
WO2018190388A1
WO2018190388A1 PCT/JP2018/015289 JP2018015289W WO2018190388A1 WO 2018190388 A1 WO2018190388 A1 WO 2018190388A1 JP 2018015289 W JP2018015289 W JP 2018015289W WO 2018190388 A1 WO2018190388 A1 WO 2018190388A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
wheel
frame
suspension
body frame
Prior art date
Application number
PCT/JP2018/015289
Other languages
English (en)
French (fr)
Inventor
泰大 平田
剛史 内野
智之 中川
Original Assignee
Whill株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Whill株式会社 filed Critical Whill株式会社
Priority to JP2019512561A priority Critical patent/JP6744485B2/ja
Priority to CN201890000688.5U priority patent/CN211223707U/zh
Priority to EP18783762.0A priority patent/EP3611085A4/en
Publication of WO2018190388A1 publication Critical patent/WO2018190388A1/ja
Priority to US16/598,840 priority patent/US11511564B2/en
Priority to US17/973,848 priority patent/US11827053B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/10Parts, details or accessories
    • A61G5/1078Parts, details or accessories with shock absorbers or other suspension arrangements between wheels and frame
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B19/00Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group
    • B60B19/003Multidirectional wheels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/04Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs motor-driven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/10Parts, details or accessories
    • A61G5/1081Parts, details or accessories with shock absorbers or other suspension arrangements between frame and seat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/10Parts, details or accessories
    • A61G5/1097Camber- or toe-adjusting means for the drive wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2360/00Materials; Physical forms thereof
    • B60B2360/50Rubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2900/00Purpose of invention
    • B60B2900/10Reduction of
    • B60B2900/131Vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/80Other vehicles not covered by groups B60Y2200/10 - B60Y2200/60
    • B60Y2200/84Wheelchairs

Definitions

  • the present invention relates to electric mobility.
  • an electric wheelchair using a wheel having an outer peripheral surface formed by a plurality of rollers arranged in a circumferential direction is known (for example, see Patent Document 1).
  • a rubber cushioning member is interposed between the rollers in order to reduce vibrations that occur when the rollers come in contact with each other according to the rotation of the wheels.
  • each roller has a semi-spindle shape, and the outer peripheral surface of the wheel formed by each roller is made close to a smooth circle. Mobility is known (for example, refer to Patent Document 2).
  • a pair of front wheels are attached to the vehicle front end side of the front wheel side floor frame, and on the vehicle rear end side of the rear wheel side floor frame.
  • a pair of rear wheels are attached, and the rear end side of the front wheel side floor frame and the front end side of the rear wheel side floor frame are connected so as to swing in the roll direction, and the front wheel side floor frame and the rear wheel side floor frame are connected to each other.
  • An electric mobility is known in which a spring is disposed between the front wheel side floor frame and the front wheel side floor frame is urged to the center position in the roll direction with respect to the rear wheel side floor frame (see, for example, Patent Document 3).
  • the front wheel side floor frame and the rear wheel side floor frame are connected to each other so as to swing in the roll direction, and the front wheel side floor frame is biased to the center position in the roll direction with respect to the rear wheel side floor frame by a spring.
  • the seat supported by the front wheel side floor frame or the rear wheel side floor frame also easily swings in the roll direction, which is not preferable for stabilizing the posture of the passenger.
  • the present invention has been made in view of such circumstances, and can stabilize the rider's posture, and the rider can vibrate the vibrations that occur when the rollers come in contact with each other according to the rotation of the wheels.
  • the purpose is to provide electric mobility that can be made difficult to feel.
  • An electric mobility includes a body frame, a seat attached to the body frame, a suspension attached to the front end side of the body frame, and a pair of vehicle width directions supported by the suspension.
  • a front wheel, at least one rear wheel supported by the vehicle body frame, and a driving device that drives at least one of the front wheel and the rear wheel, and the outer surface of the front wheel is formed by a plurality of rollers. It is an omnidirectional wheel, and is supported by the suspension so that the front wheel is toe-in.
  • the outer peripheral surface of the front wheel is formed by a plurality of rollers, vibration occurs when the rollers come in contact with each other in response to the rotation of the front wheels.
  • the vibrations of the front wheels are transmitted to the vehicle body frame in a state reduced by the suspension.
  • the front wheels are supported by the suspension so as to be in a toe-in state, even when each roller has an end surface substantially perpendicular to the rotation axis, the end surface is disposed obliquely with respect to the ground contact surface.
  • the impact force generated when each roller contacts the ground is alleviated, and the vibration generated by the front wheels is reduced.
  • the vibration transmitted from the front wheel to the seat is reduced by the arrangement of the front wheel and the suspension between the front wheel and the body frame, so that the space between the body frame and the seat or between the suspension and the rear wheel is reduced. It is not necessary to reduce the rigidity unnecessarily for vibration isolation, which is advantageous in stabilizing the posture of the passenger sitting on the seat.
  • the suspension includes a support member that supports the axle of the front wheel, and a biasing member that applies a biasing force toward the front of the vehicle to the support member, and the suspension has a front or lower side of the front wheel. It is preferable that the axle is configured to move rearward of the vehicle body frame against the urging force when a force is applied from the vehicle.
  • each roller on the front wheel comes in contact with each other, each roller collides with the ground contact surface, and each collision becomes one of the resistances of smooth rolling of the front wheel. That is, the rolling resistance of the front wheels increases momentarily due to the collision with the contact surface of the roller. Since the rolling resistance becomes a resistance when the electric mobility is advanced, the vibration due to the collision with the ground contact surface of the roller also includes many vibration components in the vehicle longitudinal direction. For this reason, if the suspension support member and the front wheel axle are configured to move rearward against the urging force when a force is applied to the front wheel, vibration caused by a collision with the ground contact surface of the roller. Can be effectively absorbed.
  • the component of the force behind the vehicle applied to the axle of the front wheel during traveling tends to increase when the pair of front wheels are toe-in than when the pair of front wheels are arranged parallel to each other. For this reason, the pair of front wheels are in a toe-in state, and the support member is configured to move backward with respect to the body frame against the urging force, so that vibration caused by a collision with the ground contact surface of the roller is prevented. It can reduce more effectively.
  • the suspension includes a support member supported by the body frame so as to be tiltable about a first axis extending in the vehicle width direction, and a biasing member that applies a biasing force toward the front of the vehicle to the support member.
  • the support member has an axle of the front wheel so that the front wheel rotates around a second axis that is disposed in front of and above the first axis and extends in the vehicle width direction. It is preferably supported.
  • the vibration caused by the roller collision includes a lot of vibration components in the vehicle longitudinal direction
  • the front wheel axle is arranged on the vehicle front side and above the first axis that is the tilting center of the support member.
  • the axle of the front wheel can move to the rear of the vehicle. For this reason, the vibration which arises by the collision with the ground-contact surface of a roller can be absorbed effectively.
  • the component of the force behind the vehicle applied to the axle of the front wheel during traveling tends to increase when the pair of front wheels are toe-in than when the pair of front wheels are arranged parallel to each other. For this reason, the pair of front wheels are in a toe-in state, and the axle of the front wheels can move rearward against the urging force, so that it is possible to more effectively reduce the vibration caused by the collision with the ground contact surface of the roller. it can.
  • the support member is supported by the body frame so as to be tiltable in the vehicle front-rear direction, and movement of the support member in the vehicle width direction with respect to the vehicle body frame is restricted or restricted.
  • the front wheel is an omnidirectional wheel whose outer peripheral surface is formed by a plurality of rollers, when vibration or impact force in the vehicle body width direction is applied to the front end side of electric mobility, the vibration or impact force is caused by rotation of each roller. Absorbed or buffered by In other words, the above configuration is advantageous in simply realizing a configuration that supports the front wheel axle, which is an omnidirectional wheel, so as to be movable in the vehicle longitudinal direction.
  • the said rear wheel has the outer peripheral member extended over the perimeter, and the cross-sectional shape of this outer peripheral member is substantially constant over the said perimeter.
  • the cross-sectional shape of the outer peripheral member of the rear wheel is substantially constant over the entire circumference, vibration generated by the rear wheel can be reduced.
  • the rear wheel is a pneumatic tire. Such a configuration is advantageous in reducing vibrations caused by the rear wheels.
  • the suspension further includes a restricting portion that restricts movement of the support member forward of the vehicle by the biasing force by contacting the support member at a predetermined position, and the suspension is in a stationary state on a flat ground.
  • the support member moves rearward of the vehicle against the urging force, and the support member and the restricting portion are in a non-contact state. It is preferable. With this configuration, when the passenger is on the seat, the front wheels are in a floating state, and vibration due to the collision of the rollers of the front wheels is hardly transmitted to the vehicle body frame.
  • the outer peripheral surface of each roller is formed of a rubber-like material, and the outer peripheral surface is provided with a plurality of grooves extending in the circumferential direction.
  • a plurality of grooves are provided on the outer peripheral surface of each roller in this way, vibration appears even when the convex portion formed between the grooves contacts the ground, and the vibration from the front wheels seems to deteriorate.
  • the presence of grooves extending in the circumferential direction on the outer peripheral surface of the roller makes it easier for the outer peripheral surface of the roller to deform in the axial direction of the roller, and in fact, the impact force when the roller contacts the ground is alleviated.
  • the vehicle body frame includes a base frame that supports the front wheel and the rear wheel, and a support frame that extends upward from the base frame and supports the seat at an upper end, and the support frame. At least a part of the lower end side of the rear wheel is disposed behind the rotational axis of the rear wheel, and a seat mounting portion for mounting the seat on the support portion frame is located on the front side of the vehicle relative to the lower end side of the support portion frame. It is preferable that they are arranged.
  • the vibration transmitted from the front wheel to the front end side of the base frame is transmitted to the rear end side of the base frame, and then transmitted to the seat mounting portion via the support portion frame, and from the seat mounting portion to the seat. Is transmitted to.
  • the vibration transmission path is long, the vibration is attenuated in the transmission path, and the vibration transmitted from the front wheels to the seat can be effectively reduced.
  • the body frame generally has a longitudinal direction in the longitudinal direction of the vehicle.
  • the impact force in the short direction for example, the vertical direction
  • the impact force of the same magnitude in the longitudinal direction is applied.
  • the impact force in the short direction can move the body frame more greatly.
  • the pair of front wheels are toe-in, more components of the force applied from the pair of front wheels can be directed toward the front end of the body frame toward the rear of the vehicle, so that the vibration of the body frame due to the input can be reduced. Get smaller. Furthermore, the component of the vibration that is input from the front wheels to the vehicle body frame toward the rear of the vehicle is difficult to be transmitted to the upper end side of the support portion frame that extends upward from the rear end of the vehicle body frame because the transmission direction changes. Thus, vibration transmitted from the front wheels to the seat can be effectively reduced.
  • the support part frame that supports the seat is provided in the vicinity of the rear wheel support part of the base frame, there is a concern that sufficient traction will not occur on the front wheel.
  • the seat mounting portion for mounting the seat in the support portion frame is disposed in front of the vehicle rather than the lower end side of the support portion frame, the downward force at the front end of the base frame is effectively applied when the passenger sits on the seat. This increases the traction generated on the front wheels.
  • the vehicle body frame includes a base frame that supports the front wheel and the rear wheel, and a support frame that extends upward from the base frame and supports the seat at an upper end, and the support frame. It is preferable that at least a part of the lower end side of the vehicle is disposed rearward of the rotation axis of the rear wheel, and the support frame extends forward and upward of the vehicle.
  • the vibration transmitted from the front wheel to the front end side of the base frame is transmitted to the rear end side of the base frame, and then transmitted to the seat through the support portion frame.
  • the vibration transmission path is long, the vibration is attenuated in the transmission path, and the vibration transmitted from the front wheels to the seat can be effectively reduced.
  • the component of the force behind the vehicle applied to the axle of the front wheel during traveling increases when the pair of front wheels are in a toe-in state, compared to when the pair of front wheels are arranged in parallel with each other.
  • the body frame generally has a longitudinal direction in the longitudinal direction of the vehicle.
  • the impact force in the short direction for example, the vertical direction
  • the impact force of the same magnitude in the longitudinal direction is applied.
  • the impact force in the short direction can move the body frame more greatly.
  • the pair of front wheels are in a toe-in state, more components of the force applied from the pair of front wheels can be directed to the front end of the body frame toward the rear of the vehicle. Becomes smaller. Furthermore, the component of the vibration that is input from the front wheels to the vehicle body frame toward the rear of the vehicle is difficult to be transmitted to the upper end side of the support portion frame that extends upward from the rear end of the vehicle body frame because the transmission direction changes. Thus, vibration transmitted from the front wheels to the seat can be effectively reduced.
  • the electric mobility of the second aspect of the present invention includes a vehicle body frame, a seat attached to the vehicle body frame, a suspension attached to the vehicle body frame, a pair of wheels in the vehicle width direction supported by the suspension, A non-omnidirectional wheel supported by the support frame and a driving device for driving at least one of the wheels, the wheel being an omnidirectional wheel having an outer peripheral surface formed by a plurality of rollers,
  • the suspension is supported to be toe-in or toe-out.
  • each roller rotates around its rotation axis when the electric mobility advances. This prevents uneven wear in which a part of each roller in the circumferential direction is greatly worn with respect to the remaining portion in the circumferential direction, which is advantageous in preventing an increase in vibration during traveling of electric mobility.
  • the angle formed by the rotation axis of each wheel with respect to a horizontal line perpendicular to the forward direction of the electric mobility is 2 ° to 6 °.
  • the angle formed by the rotation axis of each wheel with respect to the horizontal line perpendicular to the forward direction of the electric mobility is 2 ° to 6 °. For this reason, when the electric mobility advances at a speed of 5 km to 10 km per hour and each roller comes into contact with the ground, the rotational force received by each roller does not become too large.
  • the angle range is advantageous in preventing the uneven wear.
  • the present invention it is possible to stabilize the posture of the rider and make it difficult for the rider to feel the vibration that occurs when the rollers come in contact with each other according to the rotation of the wheel.
  • This electric mobility is for one person to sit and ride, and has a mobility main body 30 as shown in FIGS. 1 to 3, which includes a pair of front wheels 10 and non-omnidirectional wheels (all And a body 31 supported by the front wheel 10 and the rear wheel 20.
  • this electric mobility is a seat unit (seat) 40 that is detachably attached to the mobility main body 30, and at least one of the pair of front wheels 10 and the pair of rear wheels 20 that are attached to the mobility main body 30.
  • a motor (driving device) 50 In the following description, the vehicle front-rear direction may be referred to as the front-rear direction, and the vehicle width direction may be referred to as the width direction.
  • a motor 50 is connected to each of the pair of rear wheels 20, and the two rear wheels 20 can be driven by each motor 50.
  • You may comprise so that the driving force of the motor 50 may be transmitted to a pair of front wheels 10 via power transmission means, such as a belt and a gear.
  • Each front wheel 10 is supported by a body 31 via an axle 11 and a suspension 12.
  • Each front wheel 10 has a ground contact surface formed by a plurality of rollers 13 and 14 arranged in the circumferential direction. The roller 13 is smaller than the roller 14, and the roller 13 and the roller 14 are alternately arranged in the circumferential direction.
  • each front wheel 10 includes a hub 15 attached to the axle 11, and a plurality of roller support shafts arranged in the circumferential direction of the hub 15 and supported by the hub 15, and a plurality of rollers 13, 14. Are respectively rotatably supported on roller support shafts.
  • the hub 15 may be directly attached to the axle 11 via a bearing or the like, or may be attached to the axle 11 via a buffer member or other intermediate member.
  • Each roller support shaft extends in a direction perpendicular to the radial direction of the axle 11 in a plane perpendicular to the axle 11.
  • each roller 13 and 14 can rotate around an axis extending in a direction crossing the radial direction of axle 11, and each front wheel 10 moves in all directions with respect to the ground contact surface. It is an omnidirectional moving wheel.
  • each roller 13 has a pair of roller pieces 13a, and each roller piece 13a is formed so that the outer diameter gradually decreases from one to the other along the rotation axis.
  • each roller piece 13a has a substantially truncated cone shape, and is attached to the roller support shaft so that the end surfaces on the large diameter side face each other.
  • each roller piece 13a is formed of a material having rubber-like elasticity, and a plurality of grooves 13b extending in the circumferential direction are provided on the outer peripheral surface of each roller piece 13a (see FIG. 9). By providing a plurality of grooves 13b, a plurality of convex portions 13c are formed on the outer peripheral surface of each roller piece 13a.
  • Each roller 14 has a pair of roller pieces 14a, and each roller piece 14a is formed so that the outer diameter gradually decreases from one to the other along the rotation axis. More specifically, each roller piece 14a has a substantially truncated cone shape, and is attached to the roller support shaft so that the end surfaces on the large diameter side face each other.
  • each roller piece 14a is formed of a material having rubber-like elasticity, and a plurality of grooves 14b extending in the circumferential direction are provided on the outer peripheral surface of each roller piece 14a (see FIG. 9).
  • a plurality of grooves 14b By providing the plurality of grooves 14b, a plurality of convex portions 14c are formed on the outer peripheral surface of each roller piece 14a.
  • the grooves 13b and 14b and the protrusions 13c and 14c are not drawn for reasons of drawing.
  • a concave portion is formed at the small diameter end of each roller piece 14a, and each of the rollers 13, so that a part of the small diameter end of one roller piece 13a of the adjacent roller 13 enters the concave portion. 14 is supported by each roller spindle.
  • Each of the roller pieces 13a and 14a has a truncated cone shape, and a part of the small diameter end of the roller piece 13a enters the concave portion of the small diameter end of the roller piece 14a, so that the outer peripheral surface of the front wheel 10 is nearly circular. ing.
  • each rear wheel 20 is provided on an axle (may be common with the main shaft of the motor 50), a hub 22 attached to the axle, and an outer peripheral side of the hub 22, and the outer peripheral surface has rubber-like elasticity.
  • the outer peripheral member 23 is made of a material, it does not exclude the use of an omnidirectional moving wheel like the front wheel 10.
  • the mobility main body 30 includes a front wheel side vehicle body 110 and a rear wheel side vehicle body 120 that is detachably connected to the front wheel side vehicle body 110.
  • the front wheel side vehicle body 110 is formed so as to extend along the ground, and is provided so as to cover at least a part of the front wheel side frame 111 and the front wheel side frame 111 to which the axle 11 of the front wheel 10 is attached via the suspension 12.
  • a front wheel side cover 110a used for protecting the front wheel side frame 111, a part on which a rider's feet sitting on the seat unit 40 are placed, a luggage placing part, mudguard and the like.
  • the front wheel side frame 111 is made of a material suitable for obtaining strength, such as metal.
  • the first to third cross members 113a to 113c extend in the vehicle width direction and connect the pair of side members 112 to each other.
  • the first cross member 113a is provided at the rear end portion of the pair of side members 112, and the second cross member 113b is disposed on the vehicle front side relative to the first cross member 113a. ing.
  • the rear wheel side vehicle body 120 supports a motor 50 and a rear wheel 20 on both sides in the vehicle width direction, and a rear wheel side frame 121 that supports a seat unit 40 on the upper end side.
  • a rear wheel side cover 120a is provided so as to cover at least a part of the rear wheel side frame 121, and is used for protection of the rear wheel side frame 121, mudguard, and the like.
  • the rear wheel side frame 121 is made of a material suitable for obtaining strength such as metal, and as shown in FIGS. 3 and 5, for example, a lower member 122 having a pair of side members 122a extending in the front-rear direction.
  • a pair of motor fixing portions 123 in the vehicle width direction to which the motor 50 to which the rear wheel 20 is attached is fixed, and a pair of motor fixing portions 123 extending in the vehicle width direction and connecting the pair of motor fixing portions 123 to each other.
  • the rear wheel side frame 121 is provided with a fall prevention member 126 in order to prevent the electric mobility from falling to the rear of the vehicle.
  • a fall prevention member 126 is supported by the rear wheel side frame 121 and can tilt in the vertical direction.
  • a seat support portion 33 for supporting the seat unit 40 is formed on the body 31 by the support portion frame 125 and a portion of the rear wheel side cover 120a that covers the support portion frame 125.
  • the support portion frame 125 is inclined forward of the vehicle from the lower end side toward the upper end side. Therefore, the seat support portion 33 is also inclined forward of the vehicle from the lower end side toward the upper end side. Since the support part frame 125 has such a shape, the center of gravity of the rear wheel side vehicle body 120 is disposed in front of the vehicle with respect to the rotational axis 20a of the rear wheel 20 to such an extent that the center of gravity can be clearly seen.
  • the seat support portion 33 has a front surface 33a, a back surface 33b, and a pair of side surfaces 33c disposed between the front surface 33a and the back surface 33b.
  • a handle portion 125 c is integrally provided on the upper end side of the support portion frame 125, and the handle portion 125 c protrudes from the upper end side of the back surface 33 b of the seat support portion 33. It is preferable that the position of the handle portion 125c to be gripped by the hand is arranged in front of the rotation axis 20a of the rear wheel 20 of the rear wheel side vehicle body 120 connected to the front wheel side vehicle body 110.
  • a rechargeable battery BA is detachably attached to the seat support 33.
  • the front surface 33a and the rear surface 33b of the seat support portion 33 are inclined forward from the lower end side toward the upper end side, and an opening portion of an accommodation space 33d for accommodating the battery BA is provided on the rear surface 33b.
  • a control unit 60 described later is disposed in the seat support portion 33.
  • the seat mounting member 32 is a member having a longitudinal length, and is provided with a plurality of positioning holes 32a spaced in the vertical direction (see FIG. 2). Each positioning hole 32a penetrates the seat mounting member 32 in a direction orthogonal to the longitudinal direction thereof.
  • a cylindrical portion (seat mounting portion) 125a through which the seat mounting member 32 is vertically inserted is provided on the upper end side of the support portion frame 125, and a support portion side hole 125b penetrating in the front-rear direction is provided in the cylindrical portion 125a. It has been.
  • the inner shape of the cylindrical portion 125 a is slightly larger than the outer shape of the seat mounting member 32.
  • the seat mounting member 32 is inserted into the cylindrical portion 125a, and any positioning hole 32a and the support portion side hole 125b are aligned, and the positioning member 32b is inserted into the support portion side hole 125b and the positioning hole 32a.
  • the seat attachment member 32 is attached by attaching to the cylindrical part 125a. Further, by changing the positioning hole 32a through which the positioning member 32b is inserted, the height position of the seat mounting member 32 relative to the mobility main body 30, that is, the height position of the seat unit 40 can be adjusted.
  • the seat unit 40 is fixed below the seat surface portion 41 on which a rider sits, a backrest portion 42, a pair of control arms 43 in the vehicle width direction, and the seat surface portion 41.
  • a seat frame 44 that can be attached to and detached from the seat mounting member 32 of the support portion 33.
  • An operation portion 43a having an operation lever 43b is provided at the upper end of the right control arm 43.
  • the operation lever 43b is moved by a biasing member (not shown) disposed in the operation portion 43a. It is arranged at the neutral position, and the rider can displace the operation lever 43b in the right direction, the left direction, the front direction, and the rear direction with respect to the neutral position with the right hand.
  • a signal corresponding to the displacement direction and displacement amount of the operation lever 43b is transmitted from the operation unit 43a to the control unit 60 described later, and each motor 50 is driven according to the signal.
  • the operation lever 43b is displaced in the forward direction with respect to the neutral position
  • a signal for rotating each motor 50 toward the front of the vehicle is transmitted, and the electric mobility advances at a speed corresponding to the displacement amount of the operation lever 43b.
  • the operation lever 43b is displaced diagonally left forward with respect to the neutral position, a signal for rotating the left motor 50 toward the front of the vehicle at a slower speed than the right motor 50 is transmitted, and the electric mobility is operated by the operation lever.
  • the vehicle advances while turning left at a speed corresponding to the amount of displacement 43b.
  • the upper end of the left control arm 43 is provided with a setting unit 43c capable of performing various settings related to electric mobility such as maximum speed setting, operation mode setting, electric mobility lock setting, and the like. Operating buttons, a display device and the like are provided.
  • the driving mode an energy saving driving mode that suppresses power consumption, a sports driving mode that emphasizes driving performance without reducing power consumption, a normal driving mode between the energy saving driving mode and the sports driving mode, etc.
  • Examples of the setting of electric mobility lock include setting of a personal identification number for locking, setting of unlock timing, and the like.
  • the setting signal of the setting unit 43c is transmitted to the control unit 60 described later, and the setting of the electric mobility is registered or changed in the control unit 60.
  • the control unit 60 includes a motor driver 70 that drives each motor 50 and a control device 80.
  • the motor driver 70 is connected to the battery BA through a power line and is connected to each motor 50 through a power line, and drives each motor 50 by supplying power.
  • the control device 80 includes, for example, a control unit 81 having a CPU, a RAM, a storage device 82 having a nonvolatile memory, a ROM, and the like, and a transmission / reception unit 83.
  • the storage device 82 stores a program for controlling the electric mobility.
  • the control unit 81 operates based on the program, and drives each motor 50 based on signals from the operation unit 43a and the setting unit 43c. A drive signal is transmitted to the motor driver 70.
  • each side member 122a of the rear wheel side frame 121 is formed with a substantially U-shaped first recess 121a opening toward the front of the vehicle, and the first recess A substantially U-shaped second recess 121b that is disposed in front of the vehicle 121a and opens downward is formed.
  • the first recess 121a is engaged with the first cross member 113a of the front wheel side frame 111
  • the second recess 121b is engaged with the second cross member 113b of the front wheel side frame 111 (See FIG. 7).
  • a connection lock member 127 for maintaining and releasing the engagement (connection between the front wheel side frame 111 and the rear wheel side frame 121) is provided on the rear wheel side frame 121.
  • the front wheel side frame 111 and the rear wheel side frame 121 constitute a body frame VF of the body 31. Further, in the rear wheel side frame 121, a lower member 122 having a side member 122a, a motor fixing portion 123 that supports the rear wheel 20 via the motor 50, and a cross member that fixes the motor fixing portion 123 to the lower member 122. 124a to 124c and the front wheel side frame 111 function as the base frame BF.
  • each suspension 12 has a fixing member 12a fixed to the front end of the front wheel side frame 111, and a support member 12b supported at one end on the front end side of the fixing member 12a and tiltable around a first axis A1 extending in the vehicle width direction.
  • a biasing member 12c such as a coil spring that biases the other end of the support member 12b toward the front of the vehicle.
  • the urging member 12 c may be one in which a coil spring is covered with a cylindrical member having rubber-like elasticity.
  • a protruding portion 12d protruding from the upper end side of the fixing member 12a toward the front of the vehicle is inserted, and the urging member 12c in the axial direction is inserted.
  • the other end of the support member 12b is inserted with a protruding portion 12e that protrudes upward and toward the rear of the vehicle, whereby the biasing member 12c is held between the fixing member 12a and the support member 12b.
  • the axle 11 of the front wheel 10 passes through and is fixed between a portion of the support member 12b supported by the fixing member 12a and a portion provided with the protruding portion 12e.
  • the second axis A2 which is the central axis of the axle 11, is tilted forward with respect to a horizontal line HL perpendicular to the traveling direction (forward direction) of the vehicle.
  • the angle ⁇ formed between the second axis A2 and the horizontal line HL in a plan view is preferably 2 ° to 15 °, but may be other angles depending on conditions.
  • the central axis of the axle 11 is also the rotational axis of the front wheel 10.
  • the front wheel 10 rotates around the second axis A2.
  • the second axis A2 is disposed on the vehicle front side and above the first axis A1.
  • a restricting portion 12f is provided at the front end of the fixing member 12a. The restricting portion 12f abuts the support member 12b at a predetermined tilt position from the rear of the vehicle, and tilts the support member 12b toward the front of the vehicle. It is configured to restrict at the predetermined tilt position.
  • the first axis A1 of the support member 12b and the center axis (the first axis of the axle 11) Angle ⁇ between the straight line passing through the second axis A2) and the ground contact surface is 15 ° or more.
  • the angle ⁇ may be 5 ° or more, but more preferably 10 ° or more.
  • the support member 12b is not in contact with the restricting portion 12f, but the support member 12b and the restricting portion 12f may be in contact.
  • the support member 12b tilts toward the rear of the vehicle with the weight, and the angle ⁇ becomes approximately 35 ° as shown in FIG. 11, for example.
  • the support member 12b is away from the restricting portion 12f and is in a floating state.
  • the axle 11 moves rearward along the arc locus CL centered on the first axis A1.
  • the second axis A2 is disposed forward and upward of the vehicle with respect to the first axis A1, the second axis A2 is movable rearward of the vehicle.
  • the angle ⁇ increases, the second axis A2 becomes easier to move rearward of the vehicle.
  • each front wheel 10 since the outer peripheral surface of each front wheel 10 is formed by the plurality of rollers 13 and 14, vibration occurs when the rollers 13 and 14 come in contact with each other in response to the rotation of each front wheel 10. However, since each front wheel 10 is attached to the vehicle body frame VF via the suspension 12, the vibration of the front wheel 10 is transmitted to the vehicle body frame VF while being reduced by the suspension 12.
  • the end surfaces of the rollers 13 and 14 are substantially perpendicular to the rotation axis, but the end surfaces are inclined with respect to the ground plane. As a result, the impact force generated when the rollers 13 and 14 are grounded is alleviated.
  • the vibration transmitted from the front wheel 10 to the seat unit 40 is reduced by the arrangement of the front wheel 10 and the suspension 12 between the front wheel 10 and the vehicle body frame VF. It is not necessary to unnecessarily reduce the rigidity between the suspension 12 and the suspension 12 and the rear wheel 20 for vibration isolation, which is advantageous in stabilizing the posture of the passenger sitting on the seat unit 40.
  • the vibration caused by the collision with the ground contact surface of the rollers 13 and 14 includes many vibration components in the longitudinal direction of the vehicle. For this reason, when the other end side of the support member 12b of each suspension 12 and the axle 11 of the front wheel 10 are configured to move backward against the urging force when force is applied to the front wheel 10, The vibration generated by the collision with the ground contact surface of the rollers 13 and 14 can be effectively absorbed.
  • the pair of front wheels 10 are toe-in, the component of the force behind the vehicle applied to the axle 11 of the front wheels 10 during traveling is greater than when the pair of front wheels 10 are arranged parallel to each other. Tend. For this reason, the pair of front wheels 10 are in a toe-in state, and the support member 12b is configured to move rearward of the vehicle body frame VF against the urging force. The vibration caused by the collision can be reduced more effectively.
  • each suspension 12 includes a support member 12b supported by the vehicle body frame VF so as to be tiltable about the first axis A1, and a biasing member 12c that applies a biasing force toward the front of the vehicle to the support member 12b.
  • the axle 11 of the front wheel 10 is supported by the support member 12b so that the front wheel 10 rotates around the second axis A2 disposed on the vehicle front side and above the first axis A1. Yes.
  • the vibration due to the collision of the rollers 13 and 14 includes a large amount of vibration components in the vehicle front-rear direction. Since it is disposed, the axle 11 of the front wheel 10 can move rearward when the vibration is applied to the front wheel 10. For this reason, the vibration which arises by the collision with the ground-contact surface of the rollers 13 and 14 can be absorbed effectively.
  • the support member 12b is supported by the vehicle body frame VF so as to be tiltable in the vehicle front-rear direction, and the movement of the support member 12b in the vehicle width direction with respect to the vehicle body frame VF is restricted or restricted.
  • the front wheel 10 is an omnidirectional wheel having an outer peripheral surface formed by a plurality of rollers 13 and 14, when vibration or impact force in the vehicle body width direction is applied to the front end side of the electric mobility, the vibration or impact force is It is absorbed or buffered by the rotation of the rollers 13 and 14. That is, the above configuration is advantageous in simply realizing a configuration that supports the axle 11 of the front wheel 10 that is an omnidirectional wheel so as to be movable in the vehicle longitudinal direction.
  • the rear wheel 20 has the outer peripheral member 23 extending over the entire circumference, and the cross-sectional shape of the outer peripheral member 23 is substantially constant over the entire circumference.
  • the cross-sectional shape of the outer peripheral member 23 of the rear wheel 20 is substantially constant over the entire circumference, so that vibration generated by the rear wheel 20 can be reduced.
  • the rear wheel 20 is more preferably a pneumatic tire. Such a configuration is advantageous in reducing the vibration generated by the rear wheel 20.
  • the support member 12b moves rearward against the urging force of the urging member 12c, and is restricted from the support member 12b.
  • the part 12f is in a non-contact state, and the support member 12b is in a floating state. For this reason, the vibration caused by the collision of the rollers 13 and 14 of the front wheel 10 is difficult to be transmitted to the vehicle body frame VF.
  • the outer peripheral surfaces of the rollers 13 and 14 are formed of a rubber-like elastic material, and a plurality of grooves 13b and 14b extending in the circumferential direction are provided on the outer peripheral surface.
  • the circumferential surfaces of the rollers 13 and 14 have grooves 13b and 14b extending in the circumferential direction, the outer circumferential surfaces of the rollers 13 and 14 are easily deformed in the axial direction of the rollers 13 and 14, so The impact force when touching the ground is reduced.
  • the vehicle body frame VF includes a base frame BF that supports the front wheels 10 and the rear wheels 20, and a support portion frame 125 that extends upward from the base frame BF and supports the seat unit 40 at the upper end portion. At least a part of the lower end side of 125 is disposed behind the rotational axis of the rear wheel 20, and a cylindrical portion (seat mounting portion) 125 a for mounting the seat unit 40 in the support portion frame 125 is a support portion frame 125. It is arrange
  • the vibration transmitted from the front wheel 10 to the front end side of the base frame BF is transmitted to the vicinity of the motor fixing portion (rear wheel support portion) 123 in the base frame BF, and then via the support portion frame 125. Is transmitted to the cylindrical portion 125a, and transmitted from the cylindrical portion 125a to the seat unit 40.
  • the vibration transmission path is long, the vibration is attenuated in the transmission path, and the vibration transmitted from the front wheel 10 to the seat unit 40 can be effectively reduced.
  • the vehicle body frame VF generally has a longitudinal direction in the longitudinal direction of the vehicle.
  • the impact force in the short direction for example, the vertical direction
  • the impact of the same magnitude in the longitudinal direction when force is applied, the impact force in the short direction can move the body frame VF more greatly.
  • the pair of front wheels 10 are toe-in, more components of the force applied from the pair of front wheels 10 can be directed to the front end portion of the body frame VF toward the rear of the vehicle.
  • the vibration of VF becomes small.
  • the component of the vibration that is input from the front wheel 10 to the vehicle body frame VF toward the rear of the vehicle is difficult to be transmitted to the upper end side of the support portion frame 125 that extends upward from the rear end of the vehicle body frame VF because the transmission direction changes.
  • vibration transmitted from the front wheel 10 to the seat unit 40 can be effectively reduced.
  • the support part frame 125 that supports the seat unit 40 is provided in the vicinity of the rear wheel support part in the base frame BF, there is a concern that sufficient traction will not occur in the front wheel 10.
  • the cylindrical portion 125a for mounting the seat unit 40 on the support portion frame 125 is disposed in front of the vehicle with respect to the lower end of the support portion frame 125, when the passenger sits on the seat unit 40, it is lowered at the front end of the base frame BF. As a result, the traction generated on the front wheel 10 can be improved.
  • the lower end of the support part frame 125 is a connection part to the base frame BF in the support part frame 125, and is a connection part for supporting a load applied to the seat unit 40.
  • the support part frame 125 is connected to the side member 122a of the lower member 122 in the range A in FIG. 4, and the cylindrical part 125a is disposed in front of the vehicle in the range A.
  • At least a part of the lower end side of the support portion frame 125 is disposed rearward of the rotation axis 20a of the rear wheel 20, and the support portion frame 125 moves forward from the lower end side toward the upper end side of the vehicle. It extends in the diagonal direction.
  • the vibration transmitted from the front wheel 10 to the front end side of the base frame BF is transmitted to the vicinity of the portion of the base frame BF that supports the rear wheel via the motor 50, and then the support frame 125 is moved. Via the seat unit 40.
  • the vibration transmission path is long, the vibration is attenuated in the transmission path, and the vibration transmitted from the front wheel 10 to the seat unit 40 can be effectively reduced.
  • the support portion frame 125 is inclined forward from the lower end side toward the upper end side, when a passenger sits on the seat unit 40, the downward force is effectively increased at the front end of the base frame BF.
  • the traction generated in the front wheel 10 can be improved.
  • the vehicle rear side edge 125d of the support portion frame 125 when viewed from the lateral direction of the vehicle, more than half of the vehicle rear side edge 125d of the support portion frame 125 is inclined toward the vehicle front, and the vehicle rear side edge 125d is inclined. If the angle between the vertical direction and the vertical direction is 15 ° or more, the downward force applied to the front end of the base frame BF can be effectively increased as described above. Even if the vehicle rear side edge 125d has a stepped shape, it extends as a whole toward the front and upward of the vehicle, so that the support portion frame 125 improves the traction generated on the front wheel 10. Good. On the other hand, as shown in FIG. 4, it is more preferable that a part of more than half of the vehicle front side edge 125 e of the support portion frame 125 also extends forward and upward as viewed from the vehicle lateral direction.
  • the axle 11 of the front wheel 10 is attached to the vehicle body frame VF via the suspension 12.
  • a pair of small motors that respectively drive the front wheels 10 may be provided, and each pair of the small motor and the front wheels 10 may be attached to the vehicle body frame VF via the suspension 12.
  • the vehicle body frame VF that can be disassembled into the front wheel side frame 111 and the rear wheel side frame 121 is shown, but the vehicle body frame VF that cannot be disassembled may be used, and other parts are further disassembled. It may be VF.
  • the urging member 12c an air spring or a torsion spring can be used instead of the coil spring, and a member that can urge the other support member 12b toward the front of the vehicle can also be used. It is also possible to provide a damper member in parallel or in series with the urging member 12c.
  • the axle 11 is a straight columnar member. Therefore, the angle at which the axle 11 is attached to the support member 12b matches the angle ⁇ , and the toe-in setting is easy.
  • the portion of the axle 11 that is fixed to the support member 12b and the portion that rotatably supports the front wheel 10 may be bent.
  • the second axis A2 is the central axis of the portion that rotatably supports the front wheel 10
  • the angle ⁇ formed between the second axis A2 and the horizontal line HL is preferably 2 ° to 15 °.
  • the angle ⁇ is more preferably 3 ° or 4 ° or more in order to reduce vibration from the front wheel 10.
  • it is more preferably 11 ° or less.
  • the front wheel 10 is a wheel disposed on the front side of the rear wheel 20, and the rear wheel 20 is a wheel disposed on the rear side of the front wheel 10.
  • other wheels may be provided on the front side of the front wheel 10, between the front wheel 10 and the rear wheel 20, or on the rear side of the rear wheel 20, and even in this case, the above-described effects can be achieved.
  • a pair of front wheels 10 is supported via suspensions 12 at the positions of the pair of rear wheels 20 in FIG. 3, and the pair of rear wheels 20 are located at the positions of the pair of front wheels 10 in FIG. It may be supported.
  • the front wheel 10 is referred to as a wheel 10
  • the rear wheel 20 is referred to as a wheel 20.
  • the structure of the wheel 10, the structure of the suspension 12, and the structure of the wheel 20 are as described in the above embodiment.
  • Each wheel 20 is supported by the base frame BF via a motor 50, and each wheel 20 is driven by the motor 50.
  • the fixing member 12a of the suspension 12 is fixed to the frame 122b extending from the side member 122a.
  • one end side of the support member 12b is supported on the front end side of the fixed member 12a, and the support member 12b can tilt around a first axis A1 extending in the vehicle width direction.
  • the urging member 12c urges the other end side of the support member 12b toward the front of the vehicle.
  • the axle 11 of the wheel 10 passes through and is fixed between the portion of the support member 12b supported by the fixing member 12a and the portion provided with the protruding portion 12e.
  • 2nd axis line A2 which is the center axis line of the axle shaft 11 inclines ahead with respect to the horizontal line HL perpendicular to the advancing direction of a vehicle (refer FIG. 10).
  • the angle ⁇ formed between the second axis A2 and the horizontal line HL in a plan view is preferably 2 ° to 15 °, but may be other angles depending on conditions.
  • the roller pieces 13a and 14a of the plurality of rollers 13 and 14 rotate around the rotation axis when the electric mobility advances.
  • the roller pieces 13a and 14a rotate in the direction of the arrow R in FIG.
  • Such uneven wear of the roller pieces 13a and 14a leads to an increase in vibration when the wheel 10 rotates.
  • the uneven wear portion and uneven wear on the outer peripheral surface of the wheel 10 The part which is not done is arranged at random. In other words, a step is generated between the part that is partly worn and the part that is not partly worn, which leads to an increase in vibration. That is, it is preferable that the roller pieces 13a and 14a are evenly worn over the entire circumference.
  • the angle ⁇ formed between the second axis A2 and the horizontal line HL in a plan view is more preferably 2 ° to 6 °.
  • the electric mobility moves forward at a speed of 5 km to 10 km, and when the outer peripheral length of the wheel 10 is, for example, 1 m or less, the wheel 10 rotates 2-3 times per second. That is, the roller pieces 13a and 14a are grounded 2 to 3 times per second.
  • the angle ⁇ formed between the second axis A2 and the horizontal line HL is large, the rotational force that the roller pieces 13a and 14a receive from the ground contact surface when the electric mobility advances is increased. Due to the rotational force, the roller pieces 13a and 14a may rotate at a higher speed than necessary, which is not preferable from the viewpoint of reducing vibration and noise.
  • Each roller piece 13a, 14a has a certain amount of inertial mass. Further, friction in the bearing between each roller piece 13a, 14a and its support shaft becomes a resistance force for rotating each roller piece 13a, 14a. For this reason, when the rotational force received from the ground contact surface is large, the inertial force of each roller piece 13a, 14a and the resistance force act in the opposite direction to the rotational force, and the axial direction of each roller piece 13a, 14a is increased by the amount of the large rotational force.
  • the outer peripheral surface on one end side is easily worn. The one end side in the axial direction is an end side that first contacts the roller pieces 13a and 14a.
  • the resistance force varies depending on the processing accuracy of the support shaft, the accuracy of the bearing, and the like, and the variation leads to variation in the wear.
  • the portion indicated by 13d and 14d is the outer peripheral surface on the one end side in the axial direction described above.
  • the outer peripheral surface on one end side in the axial direction becomes the convex portion 13c.
  • the roller pieces 13a and 14a having the convex portion 13c are more easily worn than the roller pieces having no convex portion 13c.
  • uneven wear occurs in which the outer peripheral surface of one end in the axial direction of each roller piece 13a wears more than the other part, a step is generated between each pair of roller pieces 13a and 14a due to the uneven wear, which leads to an increase in vibration. .
  • the effect of preventing uneven wear is that when the wheel 10 is supported by the front wheel side frame 111, the frame 122b or the like without the suspension 12, the wheel 10 is subjected to another type of suspension, for example, a vertical impact load and This is achieved even when the front wheel side frame 111, the frame 122b, and the like are supported via a suspension that absorbs only vibration.
  • the effect of preventing uneven wear is achieved even when the wheel 10 is used as a rear wheel and the pair of wheels 10 are toe-out as described above, and the second axis A2 and the horizontal line HL in plan view. This is particularly effective when the angle ⁇ formed by the above is 2 ° to 6 °.
  • the support member 12b tilts toward the rear of the vehicle with the weight, and the support member 12b is moved from the restricting portion 12f. It will be in a floating state. Further, in this state, when force is applied to the axle 11 from the lower side or the front side, the axle 11 moves rearward along the arc locus CL (see FIG. 11) centered on the first axis A1.
  • the end surfaces of the rollers 13 and 14 are substantially perpendicular to the rotation axis, but the end surfaces are oblique to the ground plane. As a result, the impact force generated when the rollers 13 and 14 are grounded is alleviated.
  • the vibration transmitted from the wheel 10 to the seat unit 40 is reduced by the arrangement of the wheel 10 and the suspension 12 between the wheel 10 and the vehicle body frame VF. For this reason, it is not necessary to unnecessarily reduce the rigidity between the vehicle body frame VF and the seat unit 40 for vibration isolation, which is advantageous in stabilizing the posture of the passenger sitting on the seat unit 40.
  • the wheel 10 is configured to move rearward against the urging force of the urging member 12 c. ing. For this reason, the vibration which arises by the collision with the ground-contact surface of the rollers 13 and 14 can be absorbed effectively.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automatic Cycles, And Cycles In General (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

この電動モビリティは、車体フレーム(VF)と、車体フレーム(VF)に取付けられた座席ユニットと、車体フレーム(VF)の前端側に取付けられたサスペンションと、サスペンションに支持された車両幅方向一対の前輪(10)と、車体フレーム(VF)に支持された少なくとも1つの後輪(20)と、前輪(10)および後輪(20)の少なくとも一方を駆動する駆動装置(50)とを備え、各前輪(10)は、その外周面が複数のローラ(13,14)により形成された全方向車輪であり、一対の前輪(10)がトーインになるようにサスペンション(12)に支持されている。

Description

電動モビリティ
 本発明は電動モビリティに関する。
 このような電動モビリティとして、周方向に並ぶように配置された複数のローラにより外周面が形成された車輪を用いた電動車椅子が知られている(例えば、特許文献1参照。)。この車椅子の車輪は、車輪の回転に応じてローラが次々に接地する際に生ずる振動を低減するために、ローラとローラの間にゴム製の緩衝部材を介在させている。
 また、車輪の回転に応じてローラが次々に接地する際に生ずる振動を低減するために、各ローラを半紡錘形状とし、各ローラにより形成される車輪の外周面を滑らかな円形に近づけた電動モビリティが知られている(例えば、特許文献2参照。)。
 また、各ローラを半紡錘形状にした上で、各車輪の空転を抑制するために、前輪側フロアフレームの車両前端側に一対の前輪を取付けると共に、後輪側フロアフレームの車両後端側に一対の後輪を取付け、前輪側フロアフレームの後端側と後輪側フロアフレームの前端側とを互いにロール方向に揺動するように連結し、前輪側フロアフレームと後輪側フロアフレームとの間にバネを配置し、該バネにより前輪側フロアフレームを後輪側フロアフレームに対しロール方向の中央位置に付勢する電動モビリティが知られている(例えば、特許文献3参照。)。
特開平11-227404号公報 特開2002-137602号公報 特開2005-47312号公報
 しかし、前輪側フロアフレームと後輪側フロアフレームとを互いにロール方向に揺動するように連結し、バネにより前輪側フロアフレームを後輪側フロアフレームに対しロール方向の中央位置に付勢するように構成すると、前輪側フロアフレーム又は後輪側フロアフレームにより支持される座席もロール方向に揺動し易くなり、乗車者の姿勢を安定させる上で好ましくない。
 本発明は、このような事情に鑑みてなされたものであって、乗車者の姿勢を安定させることができ、しかも車輪の回転に応じてローラが次々に接地する際に生ずる振動を乗車者が感じ難くすることができる電動モビリティの提供を目的とする。
 上記課題を解決するために、本発明は以下の手段を採用する。
 本発明の第1の態様の電動モビリティは、車体フレームと、該車体フレームに取付けられた座席と、前記車体フレームの前端側に取付けられたサスペンションと、該サスペンションに支持された車両幅方向一対の前輪と、前記車体フレームに支持された少なくとも1つの後輪と、前記前輪および前記後輪の少なくとも一方を駆動する駆動装置とを備え、前記前輪は、その外周面が複数のローラにより形成された全方向車輪であり、前記前輪がトーインになるように前記サスペンションに支持されている。
 当該態様では、前輪の外周面が複数のローラによって形成されているので、前輪の回転に応じてローラが次々に接地する際に振動を生ずる。しかし、前輪はサスペンションを介して車体フレームに取付けられているので、前輪の振動がサスペンションにより低減された状態で車体フレームに伝達される。
 また、前輪がトーイン状態となるようにサスペンションに支持されていることにより、各ローラがその回転軸線に対し略垂直な端面を有している場合でも、該端面が接地面に対し斜めに配置されることになり、各ローラが接地する際に生ずる衝撃力が緩和され、前輪により生ずる振動が低減される。
 このように、前輪から座席に伝達される振動の低減が、前輪の配置および前輪と車体フレームとの間のサスペンションにより行われるので、車体フレームと座席との間やサスペンションと後輪との間の剛性を防振のために無用に低減する必要がなく、座席に座る乗車者の姿勢を安定させる上で有利である。
 上記態様において、前記サスペンションが、前記前輪の車軸を支持する支持部材と、該支持部材に車両前方に向かう付勢力を加える付勢部材とを有し、前記サスペンションが、前記前輪に車両前方又は下方から力が加わると、前記付勢力に抗して前記車軸が前記車体フレームに対し車両後方に移動するように構成されていることが好ましい。
 前輪の各ローラが次々に接地する際、各ローラが接地面に衝突することになり、各衝突は前輪のスムーズな転動の抵抗の一つとなる。つまり、ローラの接地面との衝突により前輪の転がり抵抗が瞬間的に増加する。転がり抵抗は電動モビリティを前進させる際の抵抗になるものであるから、ローラの接地面との衝突による振動も車両前後方向の振動の成分を多く含む。このため、サスペンションの支持部材および前輪の車軸が、前輪に力が加わった際に付勢力に抗して車両後方に移動するように構成されていると、ローラの接地面との衝突により生ずる振動を効果的に吸収することができる。
 ここで、一対の前輪が互いに平行に配置されている場合よりも、一対の前輪がトーインになっている方が、走行時に前輪の車軸に加わる車両後方への力の成分が増える傾向がある。このため、一対の前輪がトーイン状態であり、付勢力に抗して支持部材が車体フレームに対し車両後方に移動するように構成されていることにより、ローラの接地面との衝突により生ずる振動をより効果的に低減することができる。
 上記態様において、前記サスペンションが、前記車体フレームに車両幅方向に延びる第1の軸線周りに傾動可能に支持された支持部材と、該支持部材に車両前方に向かう付勢力を加える付勢部材とを有し、前記支持部材には、前記第1の軸線よりも車両前側且つ上方に配置されると共に前記車両幅方向に延びる第2の軸線周りに前記前輪が回転するように、該前輪の車軸が支持されていることが好ましい。
 ローラの衝突による振動は車両前後方向の振動の成分を多く含むが、前輪の車軸が支持部材の傾動中心である第1の軸線よりも車両前側且つ上方に配置されているので、前輪に当該振動が加わった際に前輪の車軸が車両後方に移動することができる。このため、ローラの接地面との衝突により生ずる振動を効果的に吸収することができる。
 ここで、一対の前輪が互いに平行に配置されている場合よりも、一対の前輪がトーインになっている方が、走行時に前輪の車軸に加わる車両後方への力の成分が増える傾向がある。このため、一対の前輪がトーイン状態であり、付勢力に抗して前輪の車軸が車両後方に移動することができるので、ローラの接地面との衝突による振動をより効果的に低減することができる。
 また、支持部材は車体フレームに車両前後方向に傾動可能に支持されており、支持部材の車体フレームに対する車両幅方向への移動は規制又は制限されている。しかし、前輪はその外周面が複数のローラにより形成された全方向車輪であるから、電動モビリティの前端側に車体幅方向の振動や衝撃力が加わる場合、その振動や衝撃力は各ローラの回転により吸収又は緩衝される。つまり、全方向車輪である前輪の車軸を車両前後方向に移動可能に支持する構成をシンプルに実現する上で上記構成は有利である。
 上記態様において、前記後輪がその全周に亘って延びる外周部材を有し、該外周部材の断面形状が前記全周に亘って略一定であることが好ましい。
 このように後輪の外周部材の断面形状が全周に亘って略一定であることにより、後輪により生ずる振動を低減することができる。
 また、前記後輪が空気入りタイヤであることがより好ましい。このような構成は後輪により生ずる振動を低減する上で有利である。
 上記態様において、前記サスペンションが、前記支持部材に当接することにより前記付勢力による前記支持部材の車両前方への移動を所定位置で規制する規制部をさらに有し、前記サスペンションが、平地における静止状態で前記座席に乗車者が乗っている時に、前記付勢力に抗して前記支持部材が前記車両後方に移動し、前記支持部材と前記規制部とが非接触状態となるように構成されていることが好ましい。
 このように構成すると、座席に乗車者が乗っている時に前輪がフローティング状態となり、前輪のローラの衝突による振動が車体フレームに伝達され難くなる。
 上記態様において、前記各ローラの外周面がゴム状弾性を有する材料により形成されると共に、該外周面にはその周方向に延びる複数の溝が設けられていることが好ましい。
 このように各ローラの外周面に複数の溝が設けられていると、溝の間に形成される凸部が接地する際にも振動が生じ、前輪からの振動が悪化するように思われる。しかし、ローラの外周面にその周方向に延びる溝があることにより、ローラの外周面がローラの軸方向に変形し易くなり、実際はローラが接地する際の衝撃力が緩和される。
 上記態様において、前記車体フレームが、前記前輪および前記後輪を支持するベースフレームと、該ベースフレームから上方に延びて上端部で前記座席を支持する支持部フレームとを有し、該支持部フレームの下端側の少なくとも一部が、前記後輪の回転軸線よりも車両後方に配置され、前記支持部フレームにおいて前記座席を取付けるための座席取付部が前記支持部フレームの下端側よりも車両前方に配置されていることが好ましい。
 このように構成すると、前輪からベースフレームの前端側に伝達された振動は、ベースフレームにおける後端側に伝達された後、支持部フレームを介して座席取付部に伝達され、座席取付部から座席に伝達される。このように、振動の伝達経路が長いので、伝達経路中で振動が減衰され、前輪から座席に伝達される振動を効果的に低減することができる。
 また、一対の前輪が互いに平行に配置されている場合よりも、一対の前輪がトーインになっている方が、走行時に前輪の車軸に加わる車両後方への力の成分が増える。ここで、車体フレームは概して車両前後方向に長手方向を有するが、車体フレームの前端部に短手方向(例えば上下方向)の衝撃力を加えた場合と、長手方向の同じ大きさの衝撃力を加えた場合とでは、短手方向の衝撃力の方が車体フレームをより大きく動かすことできる。
 つまり、一対の前輪がトーインになっていることにより、車体フレームの前端部に一対の前輪から加わる力のより多くの成分を車両後方に向かわせることができるので、当該入力による車体フレームの振動が小さくなる。さらに、前輪から車体フレームに入力される振動の車両後方に向かう成分は、その伝達方向が変化するため車体フレームの後端から上方に延びる支持部フレームの上端側には伝わり難い。このように、前輪から座席に伝達される振動を効果的に低減することができる。
 一方、座席を支持する支持部フレームがベースフレームの後輪支持部の近傍に設けられていると、前輪に十分なトラクションが生じないことが懸念される。しかし、支持部フレームにおいて座席を取付ける座席取付部が支持部フレームの下端側よりも車両前方に配置されているので、座席に乗車者が座るとベースフレームの前端における下方に向かう力が効果的に増加し、前輪に生ずるトラクションを向上することができる。
 上記態様において、前記車体フレームが、前記前輪および前記後輪を支持するベースフレームと、該ベースフレームから上方に延びて上端部で前記座席を支持する支持部フレームとを有し、該支持部フレームの下端側の少なくとも一部が、前記後輪の回転軸線よりも車両後方に配置され、前記支持部フレームが車両前方且つ上方に向かって延びていることが好ましい。
 このように構成すると、前輪からベースフレームの前端側に伝達された振動は、ベースフレームにおける後端側に伝達された後、支持部フレームを介して座席に伝達される。このように、振動の伝達経路が長いので、伝達経路中で振動が減衰され、前輪から座席に伝達される振動を効果的に低減することができる。
 また、一対の前輪が互いに平行に配置されている場合よりも、一対の前輪がトーイン状態になっている方が、走行時に前輪の車軸に加わる車両後方への力の成分が増える。ここで、車体フレームは概して車両前後方向に長手方向を有するが、車体フレームの前端部に短手方向(例えば上下方向)の衝撃力を加えた場合と、長手方向の同じ大きさの衝撃力を加えた場合とでは、短手方向の衝撃力の方が車体フレームをより大きく動かすことできる。
 つまり、一対の前輪がトーイン状態になっていることにより、車体フレームの前端部に一対の前輪から加わる力のより多くの成分を車両後方に向かわせることができるので、当該入力による車体フレームの振動が小さくなる。さらに、前輪から車体フレームに入力される振動の車両後方に向かう成分は、その伝達方向が変化するため車体フレームの後端から上方に延びる支持部フレームの上端側には伝わり難い。このように、前輪から座席に伝達される振動を効果的に低減することができる。
 一方、支持部フレームがその下端側から上端側に向かって車両前方に傾斜しているので、座席に乗車者が座るとベースフレームの前端における下方に向かう力が効果的に増加し、前輪に生ずるトラクションを向上することができる。
 本発明の第2の態様の電動モビリティは、車体フレームと、該車体フレームに取付けられた座席と、前記車体フレームに取付けられたサスペンションと、該サスペンションに支持された車両幅方向一対の車輪と、前記支持フレームに支持された非全方向車輪および前記車輪の少なくとも一方を駆動する駆動装置とを備え、前記車輪は、その外周面が複数のローラにより形成された全方向車輪であり、前記車輪がトーイン又はトーアウトになるように前記サスペンションに支持されている。
 当該態様では、一対の車輪がトーイン状態又はトーアウト状態となっていることによって、電動モビリティが前進する時に各ローラがその回転軸線周りに回転する。これにより、各ローラの周方向の一部が周方向の残りの部分に対して大きく摩耗する偏摩耗が防止され、これは電動モビリティの走行時の振動の増大を防止する上で有利である。
 前記各態様において、好ましくは、当該電動モビリティの前進方向に直角な水平線に対し、前記各車輪の回転軸線がなす角度が2°~6°である。
 前記角度が大きいと、電動モビリティが時速5km~10kmで前進する時に、各ローラが接地面から受ける各ローラの回転軸周りの回転力が大きくなる。これは各ローラの偏摩耗を招来する。前記態様では、当該電動モビリティの前進方向に直角な水平線に対し、前記各車輪の回転軸線がなす角度が2°~6°となっている。このため、電動モビリティが時速5km~10kmで前進することによって各ローラが接地する時に、各ローラが受ける前記回転力が大きくなり過ぎない。前記偏摩耗を防止する上で前記角度範囲は有利である。
 本発明によれば、乗車者の姿勢を安定させることができ、しかも車輪の回転に応じてローラが次々に接地する際に生ずる振動を乗車者が感じ難くすることができる。
本発明の一実施形態に係る電動モビリティの後方斜視図である。 本実施形態の電動モビリティの前方斜視図である。 本実施形態の電動モビリティのフレームが露出するように部品を取外した状態の底面図である。 本実施形態の電動モビリティの要部断面図である。 本実施形態の電動モビリティの一方のモータ及びモータ固定部を取外した状態の後輪側フレームの斜視図である。 本実施形態の電動モビリティの前輪側フレームと後輪側フレームとの連結構造を示す図である。 本実施形態の電動モビリティの前輪側フレームと後輪側フレームとの連結方法を示す図である。 本実施形態の電動モビリティの制御ユニットの概略構成を示すブロック図である。 本実施形態の電動モビリティのサスペンションの一部断面側面図である。 本実施形態の電動モビリティのサスペンションの平面図である。 本実施形態の電動モビリティのサスペンションの動作説明図である。 本実施形態の電動モビリティの変形例のフレームが露出するように部品を取外した状態の底面図である。 本実施形態の電動モビリティの変形例のサスペンションの平面図である。
 本発明の一実施形態に係る電動モビリティを図面を参照して以下に説明する。
 この電動モビリティは、1人が着座して乗るものであり、図1~図3に示すように、モビリティ本体30を有し、モビリティ本体30は、一対の前輪10と、非全方向車輪(全方向車輪ではない車輪)である一対の後輪20と、前輪10および後輪20により支持されたボディ31とを有する。また、この電動モビリティは、モビリティ本体30に着脱自在に取付けられた座席ユニット(座席)40と、モビリティ本体30に取付けられ、一対の前輪10および一対の後輪20の少なくとも一方を駆動するためのモータ(駆動装置)50とを有する。以下の説明では、車両前後方向を前後方向と称し、車両幅方向を幅方向と称する場合がある。
 本実施形態では、一対の後輪20にそれぞれモータ50が接続され、各モータ50によって2つの後輪20をそれぞれ駆動可能である。モータ50の駆動力がベルト、ギヤ等の動力伝達手段を介して一対の前輪10に伝達されるように構成してもよい。
 各前輪10は、車軸11、サスペンション12を介してボディ31に支持されている。また、各前輪10はその周方向に並ぶ複数のローラ13,14によって接地面が形成されている。ローラ13はローラ14よりも小さく、ローラ13とローラ14が周方向に交互に並んでいる。
 より具体的に、各前輪10は、車軸11に取付けられたハブ15と、ハブ15の周方向に並ぶと共にそれぞれハブ15に支持された複数のローラ支軸とを備え、複数のローラ13,14はそれぞれローラ支軸に回転可能に支持されている。なお、ハブ15は車軸11にベアリング等を介して直接取付けられていてもよく、車軸11に緩衝部材やその他の中間部材を介して取付けられていてもよい。各ローラ支軸は、車軸11に直交する平面内において、車軸11の径方向に直交する方向に延びている。
 このように構成されているので、各ローラ13,14は、車軸11の径方向に交差する方向に延びる軸線周りに回転することができ、各前輪10は接地面に対して全方向に移動する全方向移動車輪となっている。
 また、図3等に示すように、各ローラ13は一対のローラピース13aを有し、各ローラピース13aはその回転軸線に沿った一方から他方に向かって外径が徐々に小さくなるように形成されている。より具体的には、各ローラピース13aは略円錐台形状を有し、大径側の端面が互いに向き合うようにローラ支軸に取付けられている。
 各ローラピース13aの外周面はゴム状弾性を有する材料から形成され、各ローラピース13aの外周面にはそれぞれ周方向に延びる複数の溝13bが設けられている(図9参照)。複数の溝13bが設けられることにより各ローラピース13aの外周面には複数の凸部13cが形成されている。
 各ローラ14は一対のローラピース14aを有し、各ローラピース14aはその回転軸線に沿った一方から他方に向かって外径が徐々に小さくなるように形成されている。より具体的には、各ローラピース14aは略円錐台形状を有し、大径側の端面が互いに向き合うようにローラ支軸に取付けられている。
 各ローラピース14aの外周面はゴム状弾性を有する材料から形成され、各ローラピース14aの外周面にはそれぞれ周方向に延びる複数の溝14bが設けられている(図9参照)。複数の溝14bが設けられることにより各ローラピース14aの外周面には複数の凸部14cが形成されている。なお、図1~図3には作図上の理由により溝13b,14bおよび凸部13c,14cは描かれていない。
 図3等に示すように、各ローラピース14aの小径端には凹部が形成され、該凹部に隣のローラ13の一方のローラピース13aの小径端の一部が入り込むように、各ローラ13,14が各々のローラ支軸に支持されている。各ローラピース13a,14aが円錐台形状を有し、ローラピース14aの小径端の凹部にローラピース13aの小径端の一部が入り込んでいるので、前輪10の外周面が円形に近い状態となっている。
 本実施形態では、各後輪20は、車軸(モータ50の主軸と共通でもよい)と、車軸に取付けられたハブ22と、ハブ22の外周側に設けられ、外周面がゴム状弾性を有する材料により形成された外周部材23とを有するが、前輪10と同様に全方向移動車輪を用いることを除外する訳ではない。
 モビリティ本体30は、前輪側車体110と、前輪側車体110に取外し可能に連結される後輪側車体120とを有する。前輪側車体110は、地面に沿って延びるように形成され、サスペンション12を介して前輪10の車軸11が取付けられた前輪側フレーム111と、前輪側フレーム111の少なくとも一部を覆うように設けられ、前輪側フレーム111の保護、座席ユニット40に座る乗車者の足を載せる部分、荷物載置部、泥除け等に活用される前輪側カバー110aとを有する。
 前輪側フレーム111は金属等の強度を得るのに適した材料から成り、例えば図3に示すように、それぞれ前後方向に延びる幅方向一対のサイドメンバ112と、互いに前後方向に間隔をおいて配置されると共にそれぞれ車両幅方向に延び、一対のサイドメンバ112を互いに接続する第1~第3のクロスメンバ113a~113cとを有する。複数のクロスメンバ113a~113cのうち、第1のクロスメンバ113aは一対のサイドメンバ112における後端部に設けられ、第2のクロスメンバ113bは第1のクロスメンバ113aよりも車両前側に配置されている。
 後輪側車体120は、図1~3等に示すように、車両幅方向の両側にそれぞれモータ50および後輪20を支持し、上端側に座席ユニット40を支持する後輪側フレーム121と、後輪側フレーム121の少なくとも一部を覆うように設けられ、後輪側フレーム121の保護、泥除け等に活用される後輪側カバー120aとを有する。
 後輪側フレーム121は金属等の強度を得るのに適した材料から成り、例えば図3および図5に示すように、それぞれ前後方向に延びる幅方向一対のサイドメンバ122aを有する下側部材122と、それぞれ後輪20が取付けられたモータ50が固定される車両幅方向一対のモータ固定部123と、それぞれ車両幅方向に延び、一対のモータ固定部123を互いに連結すると共に、一対のモータ固定部123を下側部材122に固定する複数のクロスメンバ124a~124cと、下端側がサイドメンバ122a、クロスメンバ124a~124c等に固定され、上端側に座席ユニット40を装着するための座席取付部材32が取付けられる支持部フレーム125とを有する(図4参照)。
 また、図5等に示すように、後輪側フレーム121には、電動モビリティの車両後方への転倒を防止するために転倒防止部材126が設けられている。転倒防止部材126の一端は後輪側フレーム121に支持され上下方向に傾動可能である。
 なお、支持部フレーム125と、後輪側カバー120aのうち支持部フレーム125を覆う部分とにより、座席ユニット40を支持するための座席支持部33がボディ31に形成されている。支持部フレーム125は下端側から上端側に向かって車両前方に傾斜しており、このため座席支持部33も下端側から上端側に向かって車両前方に傾斜している。支持部フレーム125がこのような形状を有するので、後輪側車体120の重心は明確にわかる程度に後輪20の回転軸線20aに対して車両前方に配置されている。
 図1および図2に示すように、座席支持部33は前面33aと、背面33bと、前面33aと背面33bとの間に配置される一対の側面33cとを有する。図4に示すように、支持部フレーム125の上端側には持ち手部125cが一体に設けられ、持ち手部125cは座席支持部33の背面33bの上端側から突出している。持ち手部125cにおいて手で握る位置は、前輪側車体110と連結された状態の後輪側車体120の後輪20の回転軸線20aよりも前方に配置されていることが好ましい。
 また、図1および図4に示すように、座席支持部33には充電可能なバッテリBAが着脱自在に取付けられている。座席支持部33の前面33aおよび背面33bは下端側から上端側に向かって車両前方に傾斜しており、背面33bにはバッテリBAを収容するための収容スペース33dの開口部が設けられている。また、座席支持部33内には後述する制御ユニット60が配置されている。
 座席取付部材32は上下方向に長手を有する部材であり、上下方向に間隔をおいて複数の位置決め孔32aが設けられている(図2参照)。各位置決め孔32aは座席取付部材32をその長手方向と直交する方向に貫通している。支持部フレーム125の上端側には座席取付部材32が上下方向に挿通する筒状部(座席取付部)125aが設けられ、筒状部125aには前後方向に貫通する支持部側孔125bが設けられている。筒状部125aの内形は座席取付部材32の外形よりも若干大きい。
 筒状部125aに座席取付部材32を挿入すると共に、何れかの位置決め孔32aと支持部側孔125bとを位置合わせし、支持部側孔125bおよび位置決め孔32aに挿通するように位置決め部材32bを筒状部125aに取付けることにより、座席取付部材32が取付けられる。また、位置決め部材32bを挿通させる位置決め孔32aを変更することにより、モビリティ本体30に対する座席取付部材32の高さ位置、つまり座席ユニット40の高さ位置を調整することができる。
 図1および図2に示すように、座席ユニット40は、乗車者が座る座面部41と、背凭れ部42と、車両幅方向一対のコントロールアーム43と、座面部41の下に固定され、座席支持部33の座席取付部材32に着脱することができる座面フレーム44とを有する。
 右側のコントロールアーム43の上端には操作レバー43bを有する操作部43aが設けられ、力が加えられていない状態では操作レバー43bは操作部43a内に配置された付勢部材(図示せず)により中立位置に配置されており、乗車者が右手により中立位置に対して右方向、左方向、前方向、および後方向に操作レバー43bを変位させることができる。
 操作レバー43bの変位方向および変位量に応じた信号が操作部43aから後述する制御ユニット60に送信され、当該信号に応じて各モータ50が駆動される。例えば、操作レバー43bが中立位置に対し前方向に変位されると、各モータ50を車両前方に向かって回転させる信号が送信され、電動モビリティが操作レバー43bの変位量に応じた速度で前進する。また、操作レバー43bが中立位置に対し左斜め前方に変位されると、左側のモータ50を右側のモータ50よりも遅い速度で車両前方に向かって回転させる信号が送信され、電動モビリティが操作レバー43bの変位量に応じた速度で左に曲がりながら前進する。
 左側のコントロールアーム43の上端には、最高速度設定、運転モード設定、電動モビリティのロックの設定等、電動モビリティに関する各種設定を行うことが可能な設定部43cが設けられ、設定部43cには複数の操作ボタン、表示装置等が設けられている。例えば、運転モードの例としては、電力の消費を抑えた省エネ運転モード、電力の消費を抑えずに走行性能を重視したスポーツ運転モード、省エネ運転モードとスポーツ運転モードとの間の通常運転モード等が挙げられる。電動モビリティのロックの設定としては、ロックをかけるための暗証番号の設定、ロック解除のタイミングの設定等が挙げられる。設定部43cの設定信号は後述する制御ユニット60に送信され、制御ユニット60において電動モビリティの設定が登録又は変更される。
 制御ユニット60は、図8に示すように、各モータ50を駆動するモータドライバ70と、制御装置80とを有する。
 モータドライバ70は電力線によりバッテリBAに接続されると共に、電力線により各モータ50に接続され、各モータ50に電力を供給して駆動する。
 制御装置80は、例えばCPU、RAM等を有する制御部81と、不揮発性メモリ、ROM等を有する記憶装置82と、送受信部83とを有する。記憶装置82には電動モビリティを制御するためのプログラムが格納されており、制御部81はプログラムに基づき動作し、操作部43aおよび設定部43cからの信号に基づき、各モータ50を駆動するための駆動信号をモータドライバ70に送信する。
 図4~図7に示すように、後輪側フレーム121の各サイドメンバ122aには、車両前方に向かって開口する略U字形状の第1の凹部121aが形成され、また、第1の凹部121aよりも車両前方に配置され、下方に向かって開口する略U字形状の第2の凹部121bが形成されている。第1の凹部121aは前輪側フレーム111の第1のクロスメンバ113aが係合するものであり、第2の凹部121bは前輪側フレーム111の第2のクロスメンバ113bが係合するものである(図7参照)。該係合(前輪側フレーム111と後輪側フレーム121との連結)の維持と解除を行うための連結ロック部材127が後輪側フレーム121に設けられている。
 本実施形態では、前輪側フレーム111と後輪側フレーム121とによりボディ31の車体フレームVFが構成されている。また、後輪側フレーム121における、サイドメンバ122aを有する下側部材122、モータ50を介して後輪20を支持するモータ固定部123、およびモータ固定部123を下側部材122に固定するクロスメンバ124a~124cと、前輪側フレーム111とが、ベースフレームBFとして機能する。
 図3、図9および図10に示すように、前輪側フレーム111の前端には車両幅方向一対のサスペンション12が取付けられている。各サスペンション12は、前輪側フレーム111の前端に固定された固定部材12aと、固定部材12aの前端側に一端側が支持され、車両幅方向に延びる第1の軸線A1周りに傾動可能な支持部材12bと、支持部材12bの他端側を車両前方に向かって付勢するコイルスプリング等の付勢部材12cとを有する。付勢部材12cは、図9および図10に示すように、コイルスプリングをゴム状弾性を有する筒状部材により覆ったものであってもよい。
 図9に示すように、付勢部材12cの軸方向の一端には、固定部材12aの上端側から車両前方に向かって突出する突出部12dが挿入されると共に、付勢部材12cの軸方向の他端には、支持部材12bの他端側から上方且つ車両後方に向かって突出する突出部12eが挿入され、これにより付勢部材12cが固定部材12aと支持部材12bとの間に保持されている。
 図9に示すように、支持部材12bにおける固定部材12aに支持された部分と突出部12eが設けられた部分との間に前輪10の車軸11が貫通し固定されている。なお、図10に示すように、車軸11の中心軸線である第2の軸線A2が車両の進行方向(前進方向)に直角な水平線HLに対し前方に傾いている。平面視において第2の軸線A2と水平線HLとのなす角度αが2°~15°となっていることが好ましいが、条件によってはその他の角度であってもよい。車軸11の中心軸線は前輪10の回転軸線でもある。
 本実施形態では、車軸11は真っ直ぐな円柱状部材であるため、前輪10は第2の軸線A2周りに回転する。第2の軸線A2は第1の軸線A1よりも車両前側且つ上方に配置されている。
 図9に示すように、固定部材12aの前端には規制部12fが設けられ、規制部12fは所定の傾動位置の支持部材12bに車両後方から当接し、支持部材12bの車両前方への傾動を当該所定の傾動位置で規制するように構成されている。
 図9に示すように、本実施形態では、水平な平面である接地面において無負荷で電動モビリティが静止している際に、支持部材12bの第1の軸線A1と車軸11の中心軸線(第2の軸線A2)とを通る直線が接地面となす角度βが15°以上となる。角度βは5°以上であれば良いが、10°以上であることがより好ましい。この時、本実施形態では支持部材12bが規制部12fに当接していないが、支持部材12bと規制部12fとが当接していてもよい。
 上記の状態で乗車者が座席ユニット40に乗ると、その重みで支持部材12bが車両後方に向かって傾動し、例えば図11のように角度βが略35°となる。この状態では、支持部材12bは規制部12fから離れてフローティング状態である。また、この状態で車軸11に下方や前方から力が加わると、車軸11は第1の軸線A1を中心とする円弧軌跡CLに沿って車両後方に移動する。この時、第2の軸線A2が第1の軸線A1に対し車両前方且つ上方に配置されているので、第2の軸線A2が車両後方に移動可能である。なお、角度βが大きくなればなる程、第2の軸線A2が車両後方に移動し易くなる。
 本実施形態によれば、各前輪10の外周面が複数のローラ13,14によって形成されているので、各前輪10の回転に応じてローラ13,14が次々に接地する際に振動を生ずる。しかし、各前輪10はサスペンション12を介して車体フレームVFに取付けられているので、前輪10の振動がサスペンション12により低減された状態で車体フレームVFに伝達される。
 また、一対の前輪10がトーインになるようにサスペンション12に支持されていることにより、各ローラ13,14の端面はその回転軸線に対し略垂直であるが、該端面が接地面に対し斜めに配置されることになり、各ローラ13,14が接地する際に生ずる衝撃力が緩和される。
 このように、前輪10から座席ユニット40に伝達される振動の低減が、前輪10の配置および前輪10と車体フレームVFとの間のサスペンション12により行われるので、車体フレームVFと座席ユニット40との間やサスペンション12と後輪20との間の剛性を防振のために無用に低減する必要がなく、座席ユニット40に座る乗車者の姿勢を安定させる上で有利である。
 また、前輪10に車両前方又は下方から力が加わると、前輪10の車軸11が、サスペンション12によって、付勢部材12cの付勢力に抗して車体フレームVFに対し車両後方に移動するように構成されている。
 ここで、前輪10の各ローラ13,14が次々に接地する際、各ローラ13,14が接地面に衝突することになり、各衝突は前輪10のスムーズな転動の抵抗の一つとなる。つまり、ローラ13,14の接地面との衝突により前輪10の転がり抵抗が瞬間的に増加する。
 転がり抵抗は電動モビリティを前進させる際の抵抗になるものであるから、ローラ13,14の接地面との衝突による振動も車両前後方向の振動の成分を多く含む。このため、各サスペンション12の支持部材12bの他端側および前輪10の車軸11が、前輪10に力が加わった際に付勢力に抗して車両後方に移動するように構成されていると、ローラ13,14の接地面との衝突により生ずる振動を効果的に吸収することができる。
 ここで、一対の前輪10が互いに平行に配置されている場合よりも、一対の前輪10がトーインになっている方が、走行時に前輪10の車軸11に加わる車両後方への力の成分が増える傾向がある。このため、一対の前輪10がトーイン状態であり、付勢力に抗して支持部材12bが車体フレームVFに対し車両後方に移動するように構成されていることにより、ローラ13,14の接地面との衝突により生ずる振動をより効果的に低減することができる。
 別の観点で見ると、各サスペンション12は、車体フレームVFに第1の軸線A1周りに傾動可能に支持された支持部材12bと、支持部材12bに車両前方に向かう付勢力を加える付勢部材12cとを有し、支持部材12bには、第1の軸線A1よりも車両前側且つ上方に配置された第2の軸線A2周りに前輪10が回転するように、前輪10の車軸11が支持されている。
 このため、ローラ13,14の衝突による振動は車両前後方向の振動の成分を多く含むが、前輪10の車軸11が支持部材12bの傾動中心である第1の軸線A1よりも車両前側且つ上方に配置されているので、前輪10に当該振動が加わった際に前輪10の車軸11が車両後方に移動することができる。このため、ローラ13,14の接地面との衝突により生ずる振動を効果的に吸収することができる。
 なお、乗車者の体重が重く、これにより前輪10に加わる荷重が大きい程、ローラ13,14の接地面との衝突により生ずる振動が大きくなる傾向があるが、同時に、前輪10に加わる荷重が大きい程前記角度βが大きくなり、前輪10に加わる力による第2の軸線A2の移動の車両後方に向かう成分が増加する。このため、前輪10に加わる荷重が大きくなる程、車両後方に向かう振動入力を効果的に低減することができるようになる。
 また、支持部材12bは車体フレームVFに車両前後方向に傾動可能に支持されており、支持部材12bの車体フレームVFに対する車両幅方向への移動は規制又は制限されている。しかし、前輪10はその外周面が複数のローラ13,14により形成された全方向車輪であるから、電動モビリティの前端側に車体幅方向の振動や衝撃力が加わる場合、その振動や衝撃力は各ローラ13,14の回転により吸収又は緩衝される。つまり、全方向車輪である前輪10の車軸11を車両前後方向に移動可能に支持する構成をシンプルに実現する上で上記構成は有利である。
 また、本実施形態では、後輪20がその全周に亘って延びる外周部材23を有し、外周部材23の断面形状が前記全周に亘って略一定である。このように後輪20の外周部材23の断面形状が全周に亘って略一定であることにより、後輪20により生ずる振動を低減することができる。なお、後輪20は空気入りタイヤであることがより好ましい。このような構成は後輪20により生ずる振動を低減する上で有利である。
 また、本実施形態では、平地における静止状態で座席ユニット40に乗車者が乗っている時に、付勢部材12cの付勢力に抗して支持部材12bが車両後方に移動し、支持部材12bと規制部12fとが非接触状態となり、支持部材12bがフローティング状態となるように構成されている。このため、前輪10のローラ13,14の衝突による振動が車体フレームVFに伝達され難い。
 また、各ローラ13,14の外周面がゴム状弾性を有する材料により形成されると共に、当該外周面にはその周方向に延びる複数の溝13b,14bが設けられている。このようにローラ13,14の外周面にその周方向に延びる溝13b,14bがあることにより、ローラ13,14の外周面がローラ13,14の軸方向に変形し易くなり、ローラ13,14が接地する際の衝撃力が緩和される。
 また、車体フレームVFが、前輪10および後輪20を支持するベースフレームBFと、ベースフレームBFから上方に延びて上端部で座席ユニット40を支持する支持部フレーム125とを有し、支持部フレーム125の下端側の少なくとも一部が、後輪20の回転軸線よりも車両後方に配置され、支持部フレーム125において座席ユニット40を取付けるための筒状部(座席取付部)125aが支持部フレーム125の下端側よりも車両前方に配置されている。
 このように構成すると、前輪10からベースフレームBFの前端側に伝達された振動は、ベースフレームBFにおけるモータ固定部(後輪支持部)123の近傍に伝達された後、支持部フレーム125を介して筒状部125aに伝達され、筒状部125aから座席ユニット40に伝達される。このように、振動の伝達経路が長いので、伝達経路中で振動が減衰され、前輪10から座席ユニット40に伝達される振動を効果的に低減することができる。
 また、一対の前輪10が互いに平行に配置されている場合よりも、一対の前輪10がトーインになっている方が、走行時に前輪10の車軸11に加わる車両後方への力の成分が増える。ここで、車体フレームVFは概して車両前後方向に長手方向を有するが、車体フレームVFの前端部に短手方向(例えば上下方向)の衝撃力を加えた場合と、長手方向の同じ大きさの衝撃力を加えた場合とでは、短手方向の衝撃力の方が車体フレームVFをより大きく動かすことできる。
 つまり、一対の前輪10がトーインになっていることにより、車体フレームVFの前端部に一対の前輪10から加わる力のより多くの成分を車両後方に向かわせることができるので、当該入力による車体フレームVFの振動が小さくなる。さらに、前輪10から車体フレームVFに入力される振動の車両後方に向かう成分は、その伝達方向が変化するため車体フレームVFの後端から上方に延びる支持部フレーム125の上端側には伝わり難い。このように、前輪10から座席ユニット40に伝達される振動を効果的に低減することができる。
 一方、座席ユニット40を支持する支持部フレーム125がベースフレームBFにおける後輪支持部の近傍に設けられていると、前輪10に十分なトラクションが生じないことが懸念される。しかし、支持部フレーム125において座席ユニット40を取付ける筒状部125aが支持部フレーム125の下端よりも車両前方に配置されているので、座席ユニット40に乗車者が座るとベースフレームBFの前端において下方に向かう力が効果的に増加し、前輪10に生ずるトラクションを向上することができる。
 ここで、支持部フレーム125の下端とは、支持部フレーム125におけるベースフレームBFへの接続部であって、座席ユニット40に加わる荷重を支持するための接続部である。本実施形態の場合、図4の範囲Aで支持部フレーム125が下側部材122のサイドメンバ122aに接続されており、筒状部125aが範囲Aよりも車両前方に配置されている。
 別の観点で見ると、支持部フレーム125の下端側の少なくとも一部が後輪20の回転軸線20aよりも車両後方に配置され、支持部フレーム125がその下端側から上端側に向かって車両前方の斜め方向に延びている。
 このように構成すると、前輪10からベースフレームBFの前端側に伝達された振動は、ベースフレームBFにおいてモータ50を介して後輪を支持する部分の近傍に伝達された後、支持部フレーム125を介して座席ユニット40に伝達される。このように、振動の伝達経路が長いので、伝達経路中で振動が減衰され、前輪10から座席ユニット40に伝達される振動を効果的に低減することができる。
 また、支持部フレーム125がその下端側から上端側に向かって車両前方に傾斜しているので、座席ユニット40に乗車者が座るとベースフレームBFの前端において下方に向かう力が効果的に増加し、前輪10に生ずるトラクションを向上することができる。
 ここで、図4に示すように、車両横方向から見て支持部フレーム125の車両後側縁125dの半分以上の部分が車両前方に向かって傾斜しており、車両後側縁125dの傾斜部分が鉛直方向となす角度が15°以上であれば、上記のようにベースフレームBFの前端に加わる下方に向かう力を効果的に増加することができる。なお、車両後側縁125dが階段状になっている場合でも、全体的に車両前方且つ上方に向かって延びており、これにより支持部フレーム125が前輪10に生ずるトラクションを向上するものであればよい。一方、図4に示すように、車両横方向から見て支持部フレーム125の車両前側縁125eの半分以上の部分も車両前方且つ上方に向かって延びていることがより好ましい。
 なお、本実施形態では、前輪10の車軸11がサスペンション12を介して車体フレームVFに取付けられているものを示した。これに対し、前輪10をそれぞれ駆動する一対の小型モータを設け、小型モータおよび前輪10の各組がサスペンション12を介して車体フレームVFに取付けられていてもよい。
 また、本実施形態では前輪側フレーム111と後輪側フレーム121とに分解可能な車体フレームVFを示したが、分解できない車体フレームVFであってもよく、他の部分がさらに分解される車体フレームVFであってもよい。
 また、付勢部材12cとして、コイルスプリングの代わりに空気バネ、トーションスプリングを用いることも可能であり、その他の支持部材12bを車両前方に向かって付勢できる部材を用いることも可能である。なお、付勢部材12cと並列又は直列にダンパー部材を設けることも可能である。
 また、本実施形態では、車軸11が真っ直ぐな円柱状部材であり、このため、支持部材12bに車軸11を取付ける角度が角度αに一致し、トーインの設定が容易である。これに対し、車軸11において支持部材12bに固定される部分と前輪10を回転支持する部分との間が屈曲していてもよい。この場合、第2の軸線A2は前輪10を回転支持する部分の中心軸線となり、第2の軸線A2と水平線HLとのなす角度αが2°~15°となっていることが好ましい。
 また、角度αは、前輪10からの振動を低減する上で3°又は4°以上であることがより好ましい。一方、直進性、操作性、燃費等の向上を図るためには11°以下であることがより好ましい。
 なお、前輪10は後輪20よりも前側に配置された車輪であり、後輪20は前輪10よりも後側に配置された車輪である。このため、前輪10よりも前側、前輪10と後輪20との間、又は後輪20よりも後側に他の車輪が設けられてもよく、この場合でも前述の効果を奏し得る。
 なお、図12に示されるように、図3における一対の後輪20の位置にサスペンション12を介して一対の前輪10が支持され、図3における一対の前輪10の位置に一対の後輪20が支持されてもよい。以下、前輪10を車輪10と称し、後輪20を車輪20と称する。車輪10の構造、サスペンション12の構造、および車輪20の構造は前記実施形態の通りである。また、各車輪20はモータ50を介してベースフレームBFに支持され、各車輪20がモータ50によって駆動される。
 図12および図13に示されるように、サイドメンバ122aから延びるフレーム122bにサスペンション12の固定部材12aが固定される。前記実施形態のように、支持部材12bの一端側は固定部材12aの前端側に支持され、支持部材12bは車両幅方向に延びる第1の軸線A1周りに傾動可能である。付勢部材12cは支持部材12bの他端側を車両前方に向かって付勢している。
 また、前記実施形態のように、支持部材12bにおける固定部材12aに支持された部分と突出部12eが設けられた部分との間に車輪10の車軸11が貫通し固定されている。そして、前記実施形態のように、車軸11の中心軸線である第2の軸線A2が車両の進行方向に直角な水平線HLに対し前方に傾いている(図10参照)。平面視において第2の軸線A2と水平線HLとのなす角度αが2°~15°となっていることが好ましいが、条件によってはその他の角度であってもよい。
 このように一対の車輪10がトーイン状態となっていることによって、電動モビリティが前進する時に複数のローラ13,14の各ローラピース13a,14aがその回転軸線周りに回転する。例えば、電動モビリティが前進し、各ローラピース13a,14aが接地する時に、各ローラピース13a,14aが図10の矢印Rの方向に回転する。
 一対の車輪10がトーイン状態ではない時、電動モビリティの前進時に各ローラピース13a,14aにはその回転軸線周りの回転力は加わらない、又は、加わり難い。このため、電動モビリティが直進し続ける時に、各ローラピース13a,14aの周方向の1箇所が常に接地する状況が発生し易い。これは、各ローラピース13a,14aの周方向の1箇所が周方向の他の部分に対して大きく摩耗することに繋がる(偏摩耗)。
 このような各ローラピース13a,14aの偏摩耗は、車輪10が回転した時の振動の増大に繋がる。例えば、各ローラピース13a,14aの周方向の1箇所に偏摩耗が発生した後に、各ローラピース13a,14aがその回転軸線周りに回転すると、車輪10の外周面に偏摩耗した部分と偏摩耗していない部分とがランダムに配置される。つまり、偏摩耗した部分と偏摩耗していない部分との間に段差が生じ、これが振動の増大に繋がる。
 つまり、各ローラピース13a,14aがその全周に亘って均等に摩耗することが好ましい。平面視において第2の軸線A2と水平線HLとのなす角度αが2°~15°となっていると、電動モビリティが前進する時に各ローラピース13a,14aがその回転軸線周りに回転するので、このような偏摩耗の防止に繋がる。
 ここで、平面視において第2の軸線A2と水平線HLとのなす角度αが2°~6°となっていることがより好ましい。電動モビリティが時速5km~10kmで前進する場面がかなりあり、車輪10の外周長が例えば1m以下である場合、車輪10は1秒間に2~3回転することになる。つまり、各ローラピース13a,14aが1秒間に2~3回接地することになる。第2の軸線A2と水平線HLとのなす角度αが大きいと、電動モビリティの前進時に各ローラピース13a,14aが接地面から受ける回転力が大きくなる。当該回転力により、各ローラピース13a,14aが必要以上に高速で回転する場合もあり、振動および騒音の低減の観点で好ましくない。
 各ローラピース13a,14aはある程度の慣性質量を有する。また、各ローラピース13a,14aとその支軸との間のベアリング内の摩擦等は、各ローラピース13a,14aを回転させるための抵抗力となる。このため、接地面から受ける回転力が大きい時に、各ローラピース13a,14aの慣性力および前記抵抗力が回転力と反対方向に働き、回転力が大きい分だけ各ローラピース13a,14aの軸方向一端側の外周面が摩耗し易い状況となる。当該軸方向一端側は、各ローラピース13a,14aにおいて最初に接地する端側である。前記抵抗力は、支軸の加工精度、ベアリングの精度等に応じてばらつき、当該ばらつきは前記摩耗のばらつきに繋がる。
 例えば、図10に示される各ローラピース13a,14aにおいて、13d,14dで示される部分が前述の軸方向一端側の外周面である。各ローラピース13a,14aに溝13b,14bが形成されている場合、軸方向一端側の外周面が凸部13cとなる。なお、凸部13cを有するローラピース13a,14aは凸部13cが無いローラピースよりも摩耗し易い場合が多い。各ローラピース13aの軸方向一端側の外周面が他の部分よりも摩耗する偏摩耗が発生すると、偏摩耗によってローラピース13a,14aの各ペアの間に段差が生じ、これが振動の増大に繋がる。
 これに対し、平面視において第2の軸線A2と水平線HLとのなす角度αが2°~6°となっていると、電動モビリティが時速5km~10kmで前進することによって各ローラピース13a,14aが接地する時に、各ローラピース13a,14aが受ける回転力が大きくなり過ぎない。これは、上記偏摩耗を防止する上で有利である。
 これら偏摩耗を防止する効果は、車輪10が前輪として用いられる前述の実施形態でも達成される。また、これら偏摩耗を防止する効果は、車輪10がサスペンション12を介さずに前輪側フレーム111、フレーム122b等に支持される場合、車輪10が他のタイプのサスペンション、例えば上下方向の衝撃荷重および振動のみを吸収するサスペンションを介して前輪側フレーム111、フレーム122b等に支持される場合等でも、達成される。
 なお、これら偏摩耗を防止する効果は、前述のように車輪10が後輪として用いられ、一対の車輪10がトーアウトになっている場合でも達成され、平面視において第2の軸線A2と水平線HLとのなす角度αが2°~6°となっている時は特に効果的である。
 一方、前述のように車輪10が後輪として用いられる場合でも、乗車者が座席ユニット40に乗ると、その重みで支持部材12bが車両後方に向かって傾動し、支持部材12bが規制部12fから離れたフローティング状態となる。また、この状態で車軸11に下方や前方から力が加わると、車軸11は第1の軸線A1を中心とする円弧軌跡CL(図11参照)に沿って車両後方に移動する。
 そして、一対の車輪10がトーインになるようにサスペンション12に支持されていることにより、各ローラ13,14の端面はその回転軸線に対し略垂直であるが、該端面が接地面に対し斜めに配置されることになり、各ローラ13,14が接地する際に生ずる衝撃力が緩和される。
 このように、車輪10から座席ユニット40に伝達される振動の低減が、車輪10の配置および車輪10と車体フレームVFとの間のサスペンション12により行われる。このため、車体フレームVFと座席ユニット40との間の剛性を防振のために無用に低減する必要がなく、座席ユニット40に座る乗車者の姿勢を安定させる上で有利である。
 また、ローラ13,14の接地面との衝突による振動が車両前後方向の振動の成分を多く含むが、車輪10は付勢部材12cの付勢力に抗して車両後方に移動するように構成されている。このため、ローラ13,14の接地面との衝突により生ずる振動を効果的に吸収することができる。
10 前輪
20 後輪
30 モビリティ本体
31 ボディ
33 座席支持部
40 座席ユニット(座席)
41 座面部
42 背凭れ部
43 コントロールアーム
50 モータ(駆動装置)
60 制御ユニット
110 前輪側車体
111 前輪側フレーム
112 サイドメンバ
113a 第1のクロスメンバ
113b 第2のクロスメンバ
120 後輪側車体
121 後輪側フレーム
121a 第1の凹部
121b 第2の凹部
122 下側部材
122a サイドメンバ
123 モータ固定部(後輪支持部)
124a~124c クロスメンバ
125 支持部フレーム
125a 筒状部(座席取付部)
125c 持ち手部
125d 車両後側縁
125e 車両前側縁
126 転倒防止部材
127 連結ロック部材(第1の規制手段)
BA バッテリ
VF 車体フレーム
BF ベースフレーム
A1 第1の軸線
A2 第2の軸線
HL 水平線
CL 円弧軌跡

Claims (10)

  1.  車体フレームと、
     該車体フレームに取付けられた座席と、
     前記車体フレームの前端側に取付けられたサスペンションと、
     該サスペンションに支持された車両幅方向一対の前輪と、
     前記車体フレームに支持された少なくとも1つの後輪と、
     前記前輪および前記後輪の少なくとも一方を駆動する駆動装置とを備え、
     前記前輪は、その外周面が複数のローラにより形成された全方向車輪であり、
     前記前輪がトーインになるように前記サスペンションに支持されている1人が着座して乗るための電動モビリティ。
  2.  前記サスペンションが、前記前輪の車軸を支持する支持部材と、該支持部材に車両前方に向かう付勢力を加える付勢部材とを有し、
     前記サスペンションが、前記前輪に車両前方又は下方から力が加わると、前記付勢力に抗して前記車軸が前記車体フレームに対し車両後方に移動するように構成されている請求項1に記載の電動モビリティ。
  3.  前記サスペンションが、前記車体フレームに車両幅方向に延びる第1の軸線周りに傾動可能に支持された支持部材と、該支持部材に車両前方に向かう付勢力を加える付勢部材とを有し、
     前記支持部材には、前記第1の軸線よりも車両前側且つ上方に配置されると共に前記車両幅方向に延びる第2の軸線周りに前記前輪が回転するように、該前輪の車軸が支持されている請求項1に記載の電動モビリティ。
  4.  前記後輪がその全周に亘って延びる外周部材を有し、該外周部材の断面形状が前記全周に亘って略一定である請求項1~3の何れかに記載の電動モビリティ。
  5.  前記後輪が空気入りタイヤである請求項1~4の何れかに記載の電動モビリティ。
  6.  前記サスペンションが、前記支持部材に当接することにより前記付勢力による前記支持部材の車両前方への移動を所定位置で規制する規制部をさらに有し、
     前記サスペンションが、平地における静止状態で前記座席に乗車者が乗っている時に、前記付勢力に抗して前記支持部材が前記車両後方に移動し、前記支持部材と前記規制部とが非接触状態となるように構成されている請求項2又は3に記載の電動モビリティ。
  7.  前記各ローラの外周面がゴム状弾性を有する材料により形成されると共に、該外周面にはその周方向に延びる複数の溝が設けられている請求項1~6の何れかに記載の電動モビリティ。
  8.  前記車体フレームが、前記前輪および前記後輪を支持するベースフレームと、該ベースフレームから上方に延びて上端部で前記座席を支持する支持部フレームとを有し、
     該支持部フレームの下端側の少なくとも一部が、前記後輪の回転軸線よりも車両後方に配置され、
     該支持部フレームが車両前方且つ上方に向かって延びている請求項1~7の何れかに記載の電動モビリティ。
  9.  車体フレームと、
     該車体フレームに取付けられた座席と、
     前記車体フレームに取付けられたサスペンションと、
     該サスペンションに支持された車両幅方向一対の車輪と、
     前記支持フレームに支持された非全方向車輪および前記車輪の少なくとも一方を駆動する駆動装置とを備え、
     前記車輪は、その外周面が複数のローラにより形成された全方向車輪であり、
     前記車輪がトーイン又はトーアウトになるように前記サスペンションに支持されている、1人が着座して乗るための電動モビリティ。
  10.  当該電動モビリティの前進方向に直角な水平線に対し、前記各車輪の回転軸線がなす角度が2°~6°である、請求項9に記載の電動モビリティ。
PCT/JP2018/015289 2017-04-12 2018-04-11 電動モビリティ WO2018190388A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019512561A JP6744485B2 (ja) 2017-04-12 2018-04-11 電動モビリティ
CN201890000688.5U CN211223707U (zh) 2017-04-12 2018-04-11 电动移动车
EP18783762.0A EP3611085A4 (en) 2017-04-12 2018-04-11 ELECTRIC MOBILITY DEVICE
US16/598,840 US11511564B2 (en) 2017-04-12 2019-10-10 Electromobility vehicle
US17/973,848 US11827053B2 (en) 2017-04-12 2022-10-26 Electromobility vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017079203 2017-04-12
JP2017-079203 2017-04-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/598,840 Continuation US11511564B2 (en) 2017-04-12 2019-10-10 Electromobility vehicle

Publications (1)

Publication Number Publication Date
WO2018190388A1 true WO2018190388A1 (ja) 2018-10-18

Family

ID=63792479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015289 WO2018190388A1 (ja) 2017-04-12 2018-04-11 電動モビリティ

Country Status (5)

Country Link
US (2) US11511564B2 (ja)
EP (1) EP3611085A4 (ja)
JP (1) JP6744485B2 (ja)
CN (2) CN211223707U (ja)
WO (1) WO2018190388A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020151160A (ja) * 2019-03-20 2020-09-24 豊田市 六輪式電動車両
CN114514169A (zh) * 2019-12-27 2022-05-17 Whill株式会社 电动移动设备
US11938752B2 (en) 2019-11-08 2024-03-26 WHILL, Inc. Omnidirectional wheel

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211223707U (zh) * 2017-04-12 2020-08-11 Whill株式会社 电动移动车
JP2021030953A (ja) * 2019-08-27 2021-03-01 スズキ株式会社 電動車両
US11878551B2 (en) * 2020-08-12 2024-01-23 Anhui JBH Medical Apparatus Co., Ltd. Omnidirectional wheel and scooter having omnidirectional wheel
US12109892B2 (en) * 2020-09-25 2024-10-08 Rajeev Ramanath Personal mobility vehicle
WO2023081059A1 (en) * 2021-11-02 2023-05-11 Divergent Technologies, Inc. Motor nodes

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547038A (en) * 1991-08-01 1996-08-20 Madwed; Albert Wheeled chassis having independently pivotable drivewheels for omnidirectional motion
JPH11227404A (ja) 1998-02-17 1999-08-24 Kiyoshi Teratani 無旋回自在方向輪
JP2002137602A (ja) 2000-08-22 2002-05-14 Kanto Auto Works Ltd 回転体付き車輪
JP2005047312A (ja) 2003-07-30 2005-02-24 Kanto Auto Works Ltd 全方向移動車
JP2007195596A (ja) * 2006-01-24 2007-08-09 Kanto Auto Works Ltd 電動車椅子
CN200942841Y (zh) * 2006-06-07 2007-09-05 黄长江 双驱动万向行走电动车
JP2010005347A (ja) * 2008-06-30 2010-01-14 Kanto Auto Works Ltd 4輪型車椅子用サスペンション機構
JP2010076630A (ja) * 2008-09-26 2010-04-08 Toshiba Corp 移動台車
JP2016007860A (ja) * 2014-06-20 2016-01-18 Whill株式会社 全方向移動車輪およびそれを備えた全方向移動車両

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4483405A (en) * 1981-08-05 1984-11-20 Koyu Enterprise, Inc. Omnidirectional motorized wheelchair
US4823900A (en) * 1984-05-01 1989-04-25 Jeffrey Farnam Four-wheel drive wheel-chair with compound wheels
US4652005A (en) 1984-10-22 1987-03-24 Peterson, Wicks, Nemer & Kamrath, P.A. Lightweight wheelchair
US4650201A (en) 1984-10-22 1987-03-17 Peterson, Wicks, Nemer & Kamrath, P.A. Lightweight wheelchair
JPH04329952A (ja) * 1991-04-30 1992-11-18 Suzuki Motor Corp 電動車椅子
EP0616515A4 (en) * 1991-12-05 1994-11-17 Pagett Ind Pty Limited J STEERABLE VEHICLE WITH FOUR-WHEEL DRIVE.
US6109379A (en) * 1997-07-25 2000-08-29 Madwed; Albert Independently pivotable drivewheel for a wheeled chassis
JP2001029398A (ja) 1999-07-23 2001-02-06 Araco Corp 小型電動車両
JP3820239B2 (ja) * 2003-08-22 2006-09-13 英希 根本 全方向移動用車輪およびこれに使用されるフレキシブルタイヤ
JP4583834B2 (ja) 2004-08-09 2010-11-17 トヨタ自動車株式会社 全方向移動車
JP2008126936A (ja) * 2006-11-24 2008-06-05 Toshiba Corp 移動装置
EP2111203B1 (en) 2007-02-08 2011-01-05 Invacare Corporation Wheelchair suspension
JP4737262B2 (ja) * 2008-10-03 2011-07-27 関東自動車工業株式会社 全方向移動車輌
US8459383B1 (en) * 2010-07-09 2013-06-11 Daniel Burget Spherical drive system
DE102011053903A1 (de) * 2011-09-23 2013-03-28 Zdenek Spindler Mecanumrad sowie Mecanumradfahrzeug
FR2991575B1 (fr) * 2012-06-06 2014-06-13 Power 4 4 Fauteuil roulant motorise
ES2674094T3 (es) * 2013-12-16 2018-06-27 Pride Mobility Products Corporation Silla de ruedas de altura elevada
JP5763231B1 (ja) * 2014-02-18 2015-08-12 Whill株式会社 操作装置および電動モビリティ
JP2015205542A (ja) 2014-04-17 2015-11-19 トヨタ自動車東日本株式会社 移動体
US9616707B2 (en) * 2015-06-26 2017-04-11 Amazon Technologies, Inc. Omnidirectional pinion wheel
US10369839B2 (en) * 2017-02-13 2019-08-06 Facebook, Inc. Omnidirectional wheels and associated wheel guards
JP7089722B2 (ja) * 2017-03-16 2022-06-23 Whill株式会社 コネクタ構造
CN211223707U (zh) * 2017-04-12 2020-08-11 Whill株式会社 电动移动车
TWI731292B (zh) * 2019-01-17 2021-06-21 緯創資通股份有限公司 行動載具及其全向輪

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547038A (en) * 1991-08-01 1996-08-20 Madwed; Albert Wheeled chassis having independently pivotable drivewheels for omnidirectional motion
JPH11227404A (ja) 1998-02-17 1999-08-24 Kiyoshi Teratani 無旋回自在方向輪
JP2002137602A (ja) 2000-08-22 2002-05-14 Kanto Auto Works Ltd 回転体付き車輪
US6547339B2 (en) * 2000-08-22 2003-04-15 Kanto Auto Works, Ltd. Wheel having rotating bodies
JP2005047312A (ja) 2003-07-30 2005-02-24 Kanto Auto Works Ltd 全方向移動車
JP2007195596A (ja) * 2006-01-24 2007-08-09 Kanto Auto Works Ltd 電動車椅子
CN200942841Y (zh) * 2006-06-07 2007-09-05 黄长江 双驱动万向行走电动车
JP2010005347A (ja) * 2008-06-30 2010-01-14 Kanto Auto Works Ltd 4輪型車椅子用サスペンション機構
JP2010076630A (ja) * 2008-09-26 2010-04-08 Toshiba Corp 移動台車
JP2016007860A (ja) * 2014-06-20 2016-01-18 Whill株式会社 全方向移動車輪およびそれを備えた全方向移動車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3611085A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020151160A (ja) * 2019-03-20 2020-09-24 豊田市 六輪式電動車両
US11938752B2 (en) 2019-11-08 2024-03-26 WHILL, Inc. Omnidirectional wheel
CN114514169A (zh) * 2019-12-27 2022-05-17 Whill株式会社 电动移动设备
CN114514169B (zh) * 2019-12-27 2023-03-31 Whill株式会社 电动移动设备

Also Published As

Publication number Publication date
CN211223707U (zh) 2020-08-11
US11827053B2 (en) 2023-11-28
JP6744485B2 (ja) 2020-08-19
US11511564B2 (en) 2022-11-29
US20230041840A1 (en) 2023-02-09
EP3611085A4 (en) 2021-01-20
EP3611085A1 (en) 2020-02-19
US20200039288A1 (en) 2020-02-06
JPWO2018190388A1 (ja) 2020-02-27
CN212797182U (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
WO2018190388A1 (ja) 電動モビリティ
JP5292286B2 (ja) 全方向に移動可能な乗り物
JP5443387B2 (ja) 車輪及びそれを用いた摩擦式駆動装置及び全方向移動体
JP5396398B2 (ja) 摩擦式駆動装置及びそれを用いた全方向移動体
JP7089722B2 (ja) コネクタ構造
JP2014526419A (ja) メカナムホイールおよびメカナムホイール車両
US11851130B2 (en) Vehicle
CN110709314B (zh) 摇臂转向架机构及行走装置
JP2014015122A (ja) 倒立振子型車両
JP6980947B2 (ja) 電動モビリティ
WO2021132198A1 (ja) 電動モビリティ
JP6842378B2 (ja) 三輪車両
JP6930047B1 (ja) 電動モビリティ
KR20130055107A (ko) 차량용 현가장치
US20240016678A1 (en) Vehicle
JPH10181645A (ja) クローラ、クローラ車及び自動車
JP7057735B2 (ja) クローラ式走行装置及び作業車両
KR20120043826A (ko) 이동 기구 및 그의 충격 완충 장치
JP4577704B2 (ja) 自動二輪車の後車輪懸架装置
JP3705931B2 (ja) キャスター
JPH0487814A (ja) リーフスプリング式サスペンションのバウンドストッパ
KR20150090670A (ko) 네바퀴 자전거
KR20160143018A (ko) 차량용 토션 스테빌라이저
JP2004182003A (ja) 懸架装置
JP2000302068A (ja) クローラ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18783762

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512561

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018783762

Country of ref document: EP

Effective date: 20191112