WO2018189814A1 - 室内機および空気調和機 - Google Patents

室内機および空気調和機 Download PDF

Info

Publication number
WO2018189814A1
WO2018189814A1 PCT/JP2017/014858 JP2017014858W WO2018189814A1 WO 2018189814 A1 WO2018189814 A1 WO 2018189814A1 JP 2017014858 W JP2017014858 W JP 2017014858W WO 2018189814 A1 WO2018189814 A1 WO 2018189814A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
direction changing
wind direction
indoor unit
changing plate
Prior art date
Application number
PCT/JP2017/014858
Other languages
English (en)
French (fr)
Inventor
忠聖 関
小林 孝
孟 池田
平川 誠司
大石 雅之
昭憲 坂部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/014858 priority Critical patent/WO2018189814A1/ja
Priority to US16/488,611 priority patent/US20210131699A1/en
Priority to JP2019512087A priority patent/JP6727415B2/ja
Priority to CN201780088944.0A priority patent/CN110462305A/zh
Publication of WO2018189814A1 publication Critical patent/WO2018189814A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • F24F13/15Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre with parallel simultaneously tiltable lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate

Definitions

  • the present invention relates to an indoor unit and an air conditioner.
  • Patent Document 1 proposes a left / right airflow direction change plate having a plurality of slits formed elongated in the wind flow direction in an intermediate region excluding the wind flow upstream end region and the downstream end region.
  • ⁇ A left / right air direction change plate may be placed near the downstream of a finned tube heat exchanger.
  • the temperature distribution and the absolute humidity distribution of the air reach the left and right wind direction changing plates without being made uniform, and condensation occurs on the left and right wind direction changing plates.
  • This invention was made in order to solve the above problems, and it aims at providing the indoor unit and air conditioner provided with the wind direction change board which is hard to dew condensation.
  • an indoor unit is A blower disposed in the air passage; A heat exchanger provided with a plurality of fins and a heat transfer tube penetrating the plurality of fins, and installed downstream of the blower; A wind direction changing plate that is installed downstream of the heat exchanger and has an opening in a wind flow downstream region of the heat transfer tube to change the wind direction.
  • the wind direction changing plate has an opening in the downstream region of the wind flow of the heat transfer tube. For this reason, it is hard to produce dew condensation by a wind direction change board.
  • Sectional drawing seen from the side surface of the indoor unit according to Embodiment 1 of the present invention The perspective view of the left-right wind direction change board concerning Embodiment 1
  • the figure which shows arrangement of the heat exchanger and the right and left wind direction change board seen from the front front diagonally Side view of left and right wind direction changing plate according to Embodiment 1 The figure explaining the change of the opening ratio of the slit per unit area
  • Contour diagram of the numerical analysis showing the temperature distribution of the air flowing around the left and right wind direction change plates during cooling isoline diagram
  • Embodiment 1 An indoor unit 100 according to Embodiment 1 of the present invention will be described with reference to the drawings. Each drawing is schematically drawn, and the shape and size of each member is not limited to the illustrated form. In the drawings, the same or corresponding parts are denoted by the same reference numerals. In addition, since the present invention relates to the suppression of condensation, it will be described assuming a cooling operation unless otherwise specified.
  • the indoor unit 100 according to Embodiment 1 is connected to an outdoor unit 102 via a refrigerant pipe 101, and constitutes an air conditioner 110 as a whole.
  • a suction port 2 for sucking air is provided on the upper surface of the casing 1 of the indoor unit 100, and a blower port 3 for blowing air is provided on the lower surface and the lower front portion.
  • 1 is a cross-sectional view of the indoor unit 100 as viewed from the side.
  • the left direction in the drawing is also referred to as “front” on the indoor side where air is sent out, and the right direction in the drawing is the wall side on which the indoor unit 100 is attached. It is also called “rear”.
  • the upper direction in the figure is also referred to as “up (direction)”, and the lower direction is also referred to as “down (direction)”.
  • a push-type propeller fan 4 that sucks indoor air from the air inlet 2 and sends it to the heat exchanger side, and the air flow direction downstream of the propeller fan 4 and the air outlet 3, a heat exchanger 50 located upstream in the wind flow direction, and a drain pan 6 that is located below the heat exchanger 50 and receives and discharges water generated by condensation in the heat exchanger 50.
  • wind flow means an air flow caused by the propeller fan 4.
  • the propeller fan 4 is an example of a blower.
  • the heat exchanger 50 heats or cools the air blown by the propeller fan 4.
  • the heat exchanger 50 includes a front inclined portion 50a inclined forward, a rear inclined portion 50b that is positioned to face and rearward of the front inclined portion 50a, and a rear inclined portion 50b.
  • the front inclined portion 50c that is inclined to the front and inclined to the front, and the rear inclined portion 50d that is positioned to be opposed to the rear of the front inclined portion 50c and inclined to the rear is provided. It has a letter-like arrangement.
  • the front inclined portion 50 a, the rear inclined portion 50 b, the front inclined portion 50 c, and the rear inclined portion 50 d include a flat fin 51 in which a plurality of each is arranged, and a plurality of heat transfer tubes 52 that penetrate the fin 51. It is the fin tube type heat exchanger unit comprised by these.
  • the fin tube type heat exchanger causes a heat medium to flow inside the heat transfer tube 52, and during cooling, the cold temperature of the heat medium is transferred to the plate-like fins 51 having a large surface area and used as a heat exchange plate. Cooling is performed efficiently.
  • the fins 51 are provided in parallel to the air flow direction so as not to disturb the air flow, and the heat transfer tubes 52 are provided in a direction orthogonal to the air flow direction.
  • the blower outlet 3 of the housing 1 is provided with a front side up / down air direction changing plate 7 located in the front and a rear side up / down air direction changing plate 8 located in the back, each of which changes the air direction in the up / down direction. Can be changed.
  • a lower side left / right air direction changing plate 9 is provided below the front side up / down air direction changing plate 7, a lower side left / right air direction changing plate 9 is provided.
  • the lower left / right air direction changing plate 9 can change the air direction of the air heat-exchanged by the rear inclined portion 50b, the front inclined portion 50c, and the rear inclined portion 50d in the left / right direction.
  • a plurality of upper left and right wind direction changing plates 20 are provided downstream of the front inclined portion 50a.
  • the upper left / right air direction changing plate 20 can change the air direction of the air heat-exchanged by the front inclined portion 50a in the left / right direction.
  • the upper left / right wind direction changing plate 20 has a cylindrical mounting portion 15 supported by a support portion 16.
  • the support portion 16 is attached to the fixed portion 10 fixed to the drain pan 6.
  • the drain pan 6 is attached to the housing 1 of the indoor unit 100.
  • the upper left / right air direction changing plate 20 is supported by the support portion 16 so as to be rotatable clockwise or counterclockwise with the cylindrical axis of the mounting portion 15 as a central axis.
  • Each of the plurality of upper left / right wind direction changing plates 20 is connected to one connector 12 by a fixing tool 14, and all the upper left / right wind direction changing plates 20 change direction simultaneously in conjunction with the connecting device 12. Yes. Specifically, when the connector 12 is moved in the right direction in FIG. 2A, all the upper left and right wind direction changing plates 20 rotate counterclockwise (counterclockwise) with the cylindrical axis of the mounting portion 15 as the central axis. To do. Thereby, the flow of the air heat-exchanged by the front inclination part 50a is changed rightward. Conversely, when the connector 12 is moved to the left in FIG.
  • all the upper left / right wind direction changing plates 20 rotate clockwise (clockwise) around the axis of the cylinder of the mounting portion 15 as the central axis. As a result, the air flow is changed to the left. In this way, the flow direction of the left and right air can be adjusted.
  • the upper left / right air direction changing plate 20 is oriented in the same direction as the direction of the fins 51 and is arranged at a downstream position of the air that has passed between the plurality of fins 51.
  • the interval between the plurality of fins 51 is short, for example, about 1 mm. Therefore, the air that has passed between the plurality of fins 51 receives the cooling effect of the fins 51 as a whole, and there is little temperature deviation. That is, the temperature difference between the air flow 46 passing near the upper left / right wind direction changing plate 20 and the air flow 44 passing other than the vicinity of the upper left / right wind direction changing plate 20 is small. Accordingly, the horizontal position of the upper left / right air direction changing plate 20 in FIG. 2B is an arbitrary position as long as it is a position downstream of the air that has passed through the entire region formed by the plurality of fins 51. Good.
  • the indoor unit 100 is started and stopped by an operation remote controller or the like, and temperature, air volume, and wind direction are set.
  • the control system is the same as that of the conventional technology.
  • the outdoor unit 102 for heat exchange is the same as the conventional technology.
  • each of the upper left and right wind direction changing plates 20 gradually decreases in width from the upstream side of the wind flow to the downstream side in the region where the air temperature is relatively lower than the surroundings, downstream of the heat flow tube 52.
  • Two openings 21a and 21b are referred to as slits 21a and 21b according to their shapes.
  • the upper right is the wind flow upstream and the lower left is the wind flow downstream.
  • the “wind flow downstream of the heat transfer tube 52” is a downstream region through which the air flowing around the heat transfer tube 52 passes. Since there are a plurality of heat transfer tubes 52, there are also a plurality of wind flow downstreams.
  • “Slit” means an elongated opening. The opening means a hole penetrating from one surface of the upper left / right wind direction changing plate 20 to the other surface, a notch or the like. To gradually reduce the width of the opening means to gradually reduce the ratio of the opening area of the openings 21a and 21b per unit area of the upper left / right wind direction changing plate 20.
  • FIG. 3B For example, as shown in FIG. 3B, consider four virtual rectangles 28a, 28b, 28c, and 28d indicated by dotted lines superimposed on the opening of the slit 21b. These are rectangles of the same area which are arranged adjacent to each other in order from the wind flow upstream side to the downstream side of the slit 21b.
  • the virtual rectangle 28a is arranged so that the ratio of the openings of the slits 21b included in the virtual rectangle 28a is the largest.
  • the virtual rectangle 28b is arranged adjacent to the virtual rectangle 28a so that the ratio of the openings of the slits 21b included in the virtual rectangle 28b is maximized.
  • a virtual rectangle 28c and a virtual rectangle 28d are arranged in order.
  • the area ratio of the opening of the slit 21b occupying the area of the virtual rectangle 28a is the largest, the opening ratio of the slit 21b occupying the virtual rectangle 28b next is the largest, and then the opening ratio of the slit 21b occupying the virtual rectangle 28c is large.
  • the smallest opening ratio is the opening of the slit 21b occupying the virtual rectangle 28d on the most downstream side. The same applies to the slit 21a.
  • a hatched intermediate temperature region 41 is a region in which air having an intermediate temperature flows between a low temperature region 43 in which air cooled by the heat transfer tube 52 flows and a high temperature region 42 in which air close to room temperature flows. It is.
  • a broken line indicates a boundary isotherm between the low temperature region 43 and the intermediate temperature region 41.
  • a dotted line indicates a boundary isotherm between the high temperature region 42 and the intermediate temperature region 41. Therefore, the broken line is an isotherm at a lower temperature than the dotted line.
  • the air flow is curved in this way because the drain pan 6 is disposed below the heat transfer tube 52 and the air flow is blocked here.
  • the air temperature in the intermediate temperature region 41 downstream of the wind flow of the plurality of heat transfer tubes 52 is higher than the air temperature in the high temperature region 42 in which the air passing through the middle of the heat transfer tubes 52 flows. It is relatively low.
  • the air in the intermediate temperature region 41 touches the surface of the left / right air direction changing plate 40
  • the surface of the left / right air direction changing plate 40 is cooled.
  • heat conduction occurs and the low temperature part reaches the region of the left / right wind direction changing plate 40 through which the air in the high temperature region 42 passes, and the surface temperature of that region decreases.
  • the surface temperature of the region through which the air in the high temperature region 42 passes becomes equal to or lower than the dew point temperature of the air in the high temperature region 42, dew condensation occurs.
  • the shaded area is a condensation region 47 where the condensation speed is zero or more, that is, condensation occurs. As shown in FIG. 5, no condensation occurs on the surface of the right and left wind direction changing plate 40 in the vicinity of the stream line 45 passing through the rear part of the wind flow of the heat transfer tube 52, and condensation occurs in the surrounding area. ing.
  • slits 21 a and 21 b are provided in a region where relatively low-temperature air flows in the upper left and right wind direction changing plate 20 located downstream of the heat flow of the heat transfer tube 52.
  • the area which a relatively low temperature air touches the upper left-right wind direction change board 20 can be made small.
  • the area where heat is transmitted is reduced, and an effect of suppressing heat conduction can be expected.
  • the air cooled by the heat exchanger 50 is gradually mixed with the surrounding relatively warm air from the upstream to the downstream of the wind flow, the air temperature distribution is leveled, and the dew condensation region is downstream. The narrower it gets.
  • the slit width from the upstream side to the downstream side of the wind flow like the slits 21a and 21b, it is possible to suppress the decrease in the wind direction changing ability while obtaining the dew condensation prevention effect.
  • the upper left / right wind direction changing plate 20 is located on the rear part of the heat transfer tube 52 in a region that comes into contact with air that is relatively cooler than the surroundings, from upstream to downstream of the wind flow. Slits 21a and 21b with gradually reduced slit widths are provided. Accordingly, it is possible to provide the indoor unit 100 in which condensation does not occur even when the upper left / right air direction changing plate 20 is located in the vicinity of the downstream side of the fin-tube heat exchanger 50.
  • the shapes of the slits 21a and 21b are determined so as to match the distribution of the air temperature.
  • a plurality of The shapes of the slits 21a and 21b may be different in the upper left / right air direction changing plate 20.
  • the two slits 21a and 21b are provided.
  • the number of slits can be arbitrarily determined in accordance with the distribution state of the air temperature.
  • the lower left / right wind direction changing plate 9 in the first embodiment is disposed on the downstream side of the heat transfer tube 52 of the rear inclined portion 50b, the front inclined portion 50c, and the rear inclined portion 50d, but the distance from the heat transfer tube 52 is And relatively low temperature air and warm air are mixed, so that local condensation is unlikely to occur. Therefore, the lower left and right wind direction changing plate 9 is not provided with a slit, but if the air temperature distribution is likely to occur due to the arrangement relationship between the heat transfer tubes 52 and the lower left and right wind direction changing plate 9, the lower left and right wind direction is changed.
  • the change plate 9 can also be provided with a slit.
  • FIG. 6 is a view of the upper left / right wind direction changing plate 20a according to the second embodiment as viewed from the side.
  • the upper left / right wind direction changing plate 20 a is gradually cut away from the upstream side of the wind flow to the downstream side in the region where the air at a relatively low temperature compared to the surroundings is downstream of the heat transfer tube 52. It has two notches 22a and 22b with reduced width.
  • the “notch” is an opening that opens to the end surface of the upper left / right air direction changing plate 20a.
  • the slits 21a, 21b are through holes that are not opened up to the end face, but the notches 22a, 22b are located on the upstream side of the wind flow of the upper left / right wind direction changing plate 20a. Open to the end face.
  • the width of the notch means to gradually reduce the ratio of the opening areas of the notches 22a and 22b per virtual unit area toward the downstream side.
  • the number of notches is also arbitrary in this case, and is not limited to two, and may be one or three or more.
  • the upstream end of the upper left / right wind direction changing plate 20a is a portion where condensation is likely to occur because the air temperature distribution is not leveled most, but by cutting the upstream end, there is an effect of further reducing the risk of condensation. .
  • the third embodiment is an example in which a plurality of through-holes 23 having different diameters are provided in each of the wind flow downstream regions of the heat transfer tubes 52 instead of the slits 21a and 21b in the first embodiment.
  • the through hole 23 is also an example of an opening.
  • FIG. 7 is a view of the upper left / right wind direction changing plate 20b according to the third embodiment as viewed from the side.
  • the upper left / right wind direction changing plate 20b gradually increases in diameter from the upstream side of the wind flow to the downstream side of the air flow downstream of the heat transfer tube 52, in a region where relatively low temperature air flows.
  • a plurality of reduced circular through holes 23 are provided.
  • To gradually reduce the diameter of the circular through-hole 23 means to gradually reduce the opening ratio of the through-hole 23 per virtual unit area toward the downstream side.
  • the circular through holes 23 are arranged in two rows, but in this case as well, the number of rows in which the through holes are arranged is arbitrary, not limited to two rows, but arranged in one row or three or more rows. May be.
  • FIG. 8 is a side view of the upper left / right air direction changing plate 20c according to the fourth embodiment.
  • the upper left / right wind direction changing plate 20c is gradually distributed from the upstream side of the wind flow toward the downstream side in the region where the air at a relatively lower temperature than the surroundings flows downstream of the heat transfer tube 52.
  • a plurality of circular through-holes 24 having a reduced diameter are provided.
  • the diameters of the plurality of through holes 24 arranged are the same, but the number (distribution ratio) decreases as it goes downstream. That is, the opening ratio of the through holes 24 per virtual unit area gradually decreases toward the downstream side.
  • the circular through holes 24 are arranged in two rows, but in this case as well, the number of rows in which the through holes are arranged is arbitrary, not limited to two rows, but arranged in one row or three or more rows. May be.
  • the fifth embodiment is an example in which a large number of through holes 25 are arranged on the entire surface in place of the slits 21a and 21b in the first embodiment.
  • FIG. 9 is a view of the upper left / right wind direction changing plate 20d according to the fifth embodiment as viewed from the side.
  • the upper left / right air direction changing plate 20d has a square through hole 25 without any bias in the entire region, and has a mesh shape.
  • the shape of the through hole 25 is not limited to a quadrangle, and can be an arbitrary shape. Also, the number can be arbitrarily selected.
  • the density of the through holes 25 can be uniformly arranged as shown in FIG. 9, it is more preferable to gradually reduce the opening density of the through holes 25 from the upstream side toward the downstream side. This is because, even if the air flow becomes irregular, the upstream air is cooled more than the downstream air, so that increasing the upstream opening density is effective in preventing condensation.
  • the dew condensation preventing effect of the upper left / right air direction changing plate 20d can be obtained. That is, even when the flow of the cooled air changes irregularly, the possibility of condensation on the upper left / right air direction changing plate 20d can be reduced.
  • the opening density of the through holes 25 uniform over the entire upper left / right air direction changing plate 20d, the upper left / right air direction regardless of the air temperature distribution and absolute humidity distribution after passing through the heat exchanger 50. The effect of preventing the condensation of the change plate 20d can be obtained.
  • Modification 1 In the embodiment, the example in which the opening is formed in the left and right wind direction changing plate is shown, but the direction in which the wind direction is changed is not limited.
  • the wind direction changing plate of the present invention may change the direction of the wind in the left-right direction or may change the direction of the wind in the front-rear direction.
  • the present invention can be applied to any wind direction changing plate disposed downstream of the finned tube heat exchanger.
  • the shape of the end face of the opening is not particularly limited, but a shape that does not disturb the flow of air passing through the opening as much as possible is preferable.
  • the opening may have an end face perpendicular to the surface of the upper left / right wind direction changing plate 20 as shown in FIG. 10A, but may have a curved or inclined end face as shown in FIGS. 10B to 10D. This is preferable from the viewpoint of not disturbing the air flow.
  • FIG. 10B is an example of an end surface shape that is smoothly curved
  • FIG. 10C is an example of an inclined end surface shape
  • FIG. 10D is an example of an end surface shape in which slopes are formed from both sides. Note that the shape of the end face may be changed between the upstream side and the downstream side.
  • the blower is a propeller fan.
  • the type of blower is not limited to this.
  • a cross flow fan may be used.
  • a propeller fan, an axial flow propeller fan, or a mixed flow propeller fan may be used.
  • a centrifugal fan can be used.
  • the present invention can be suitably used for an indoor unit of an air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Flow Control Members (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
  • Duct Arrangements (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

室内機(100)は、吸込口(2)及び吹出口(3)を有する筐体(1)と、吸込口(2)と吹出口(3)とを結ぶ空気通路に配置されたプロペラファン(4)と、プロペラファン(4)の下流に設置された熱交換器(50)と、熱交換器(50)の下流に設置され、左右方向へ風向を変更する左右風向変更板(20)と、を備える。熱交換器(50)は、複数枚並べられたフィン(51)と、フィン(51)を貫通する複数の伝熱管(52)とを備えるフィンチューブ式の熱交換器である。左右風向変更板(20)は、伝熱管(52)の風流れ下流領域にスリット(21a、21b)を有する。

Description

室内機および空気調和機
 本発明は、室内機および空気調和機に関する。
 空気調和機は、室内機から流れ出る風の向きを変更するための風向変更板を備える。例えば、特許文献1に、風流れ上流端部領域と下流端部領域とを除く中間領域に、風流れ方向に細長く形成した複数のスリットを有する左右風向変更板が提案されている。
特開2008-80839号公報
 左右風向変更板がフィンチューブ式の熱交換器の下流近傍に配置される場合がある。この場合、空気の温度分布及び絶対湿度分布が均一化されないまま左右風向変更板に到達し、左右風向変更板に結露が生じてしまうという問題がある。
 本発明は上記のような問題を解決するためになされたものであり、結露しにくい風向変更板を備える室内機および空気調和機を提供することを目的とする。
 上記の目的を達成するため、本発明に係る室内機は、
 空気通路に配置された送風機と、
 複数のフィンと前記複数のフィンを貫通する伝熱管とを備え、前記送風機の下流に設置された熱交換器と、
 前記熱交換器の下流に設置され、前記伝熱管の風流れ下流領域に開口部を有し、風向を変更する風向変更板と、を備える。
 本発明によれば、風向変更板は、伝熱管の風流れ下流領域に開口部を有する。このため、風向変更板で結露が生じにくい。
本発明の実施の形態1に係る室内機の側面から見た断面図 実施の形態1に係る左右風向変更板の斜視図 正面手前斜め上から見た熱交換器と左右風向変更板の配置を示す図 実施の形態1に係る左右風向変更板の側面図 単位面積当たりのスリットの開口割合の変化を説明する図 冷房時の左右風向変更板の周囲を流れる空気の温度分布を示す数値解析のコンター図(等値線図) 図4に示す空気温度分布条件の場合に、左右風向変更板表面の結露速度分布を示す数値解析のコンター図 本発明の実施の形態2に係る左右風向変更板の側面図 本発明の実施の形態3に係る左右風向変更板の側面図 本発明の実施の形態4に係る左右風向変更板の側面図 本発明の実施の形態5に係る左右風向変更板の側面図 左右風向変更板表面の開口部の断面形状の一例を示す図 左右風向変更板表面の開口部の断面形状の一例を示す図 左右風向変更板表面の開口部の断面形状の一例を示す図 左右風向変更板表面の開口部の断面形状の一例を示す図 実施の形態1に係る空気調和機の図
(実施の形態1)
 本発明の実施の形態1に係る室内機100を、図面を参照して説明する。なお、各図は模式的に描いたものであって、各部材の形状や大きさは図示する形態に限定されるものではない。また、各図において同じ部分または相当する部分には同じ符号を付す。また、本発明は結露の抑制に関するものであるため、特記しない場合は冷房運転時を想定して説明する。
 実施の形態1に係る室内機100は、図11に示すように、冷媒管101を介して室外機102に接続され、全体として空気調和機110を構成している。
 図1に示すように、室内機100の筐体1の上面に空気を吸い込む吸込口2が、下面及び前面下部に空気を吹き出す吹出口3がそれぞれ設けられている。なお、図1は室内機100を側面から見た断面図であり、図の左方向が空気を送り出す室内側で「前(方)」ともいい、図の右方向が室内機100を取り付ける壁側で「後(方)」ともいう。また図の上方向を「上(方)」、下方向を「下(方)」ともいう。
 吸込口2と吹出口3とを結ぶ空気通路には、室内の空気を吸込口2から吸い込み、熱交換器側へ送り出す押し込み式のプロペラファン4と、プロペラファン4の風流れ方向下流かつ吹出口3の風流れ方向上流に位置する熱交換器50と、熱交換器50の下方に位置し、熱交換器50での結露により生じる水を受容及び排出するドレンパン6と、が設けられている。なお本書で「風流れ」とは、プロペラファン4によって引き起こされた空気の流れを意味する。プロペラファン4は送風機の一例である。
 熱交換器50は、プロペラファン4によって送風される空気を加熱、又は冷却する。具体的には、熱交換器50は、前方に傾斜させた前方傾斜部50aと、前方傾斜部50aの後方に対向して位置し、後方に傾斜させた後方傾斜部50bと、後方傾斜部50bの後方に対向して位置し、前方に傾斜させた前方傾斜部50cと、前方傾斜部50cの後方に対向して位置し、後方に傾斜させた後方傾斜部50dとにより構成されており、W字状の配置となっている。
 前方傾斜部50aと、後方傾斜部50bと、前方傾斜部50cと、後方傾斜部50dとは、それぞれが複数枚並べられた平板状のフィン51と、フィン51を貫通する複数の伝熱管52とで構成された、フィンチューブ式の熱交換器ユニットである。フィンチューブ式の熱交換器は、伝熱管52の内部に熱媒体を流し、冷房時は熱媒体の冷温を表面積の大きい平板状のフィン51に伝熱させて熱交換板として用いて、空気の冷却を効率的に行うものである。フィン51は、空気の流れを妨害しないように空気が流れる方向に平行に設けられ、伝熱管52は空気が流通する方向に直交する方向に設けられている。
 筐体1の吹出口3には、前方に位置する前方側上下風向変更板7と、後方に位置する後方側上下風向変更板8とが設けられており、それぞれが空気の風向を上下方向に変更することができる。
 前方側上下風向変更板7の下方には、下側左右風向変更板9が設けられている。下側左右風向変更板9は、後方傾斜部50b、前方傾斜部50c及び後方傾斜部50dで熱交換された空気の風向を左右方向に変更することができる。また前方傾斜部50aの下流には、複数の上側左右風向変更板20が設けられている。上側左右風向変更板20は、前方傾斜部50aで熱交換された空気の風向を左右方向に変更することができる。
 図2Aに示すように、上側左右風向変更板20は、その円柱状の取付部15が、支持部16によって支持されている。支持部16は、ドレンパン6に固定された固定部10に取り付けられている。ドレンパン6は、室内機100の筐体1に取り付けられている。上側左右風向変更板20は支持部16に対し、取付部15の円柱軸を中心軸として右回り、又は左回りに回転可能に支持されている。
 複数の上側左右風向変更板20は、それぞれが固定具14により1つの連結具12に接続され、すべての上側左右風向変更板20は、連結具12と連動して同時に向きを変えるようになっている。具体的には、連結具12を、図2Aの右方向に動かすと、すべての上側左右風向変更板20はその取付部15の円柱軸を中心軸として向かって左回り(反時計回り)に回転する。これにより、前方傾斜部50aで熱交換された空気の流れは右向きに変更される。逆に、連結具12を図2Aの左方向に動かすと、すべての上側左右風向変更板20はその取付部15の円柱の軸を中心軸として向かって右回り(時計回り)に回転する。これにより、空気の流れは左向きに変更される。こうして空気の左右の流れ方向を調節することができる。
 図2Bに示すように、上側左右風向変更板20は、フィン51の向きと同じ向きに配向され、複数のフィン51の間を通過した空気の下流の位置に配置されている。複数のフィン51の間隔は短く、例えば、1mm程度である。そのため、複数のフィン51の間を通過した空気は、全体にフィン51の冷却効果を受け、温度の偏りは少ない。すなわち、上側左右風向変更板20の近傍を通過する空気流46と、上側左右風向変更板20の近傍以外を通過する空気流44との温度差は小さい。したがって、上側左右風向変更板20の図2Bにおける横方向の配置位置は、複数のフィン51で形成される全体の領域内を通過した空気の下流の位置であれば、任意の位置に配置してよい。
 室内機100は、操作リモコン等により運転開始、運転停止を始め、温度、風量、風向の設定などが行われるが、その制御システムは従来技術と同じである。また、熱交換用の室外機102についても従来技術と同じである。
 図3Aに示すように、それぞれの上側左右風向変更板20は、伝熱管52の風流れ下流の、周囲に比べて相対的に空気温度が低い領域に、風流れ上流から下流にかけて次第に幅が減少する2つの開口21a、21bを有する。以下、開口21a、21bを、その形状にあわせてスリット21a、21bと呼ぶ。なお、図3Aでは右上が風流れ上流であり、左下が風流れ下流である。
 「伝熱管52の風流れ下流」とは、伝熱管52の周囲を流れた空気が通過する下流側の領域である。伝熱管52が複数存在するため、風流れ下流も複数存在する。「スリット」とは、細長い形状の開口を意味する。開口部とは、上側左右風向変更板20の一方の面から他方の面まで貫通した孔、切り欠き等を意味する。開口の幅を次第に減少させるということは、上側左右風向変更板20のある単位面積当たりの開口21a、21bの開口面積の割合を次第に減少させるということである。
 例えば、図3Bに示すように、スリット21bの開口に重ねた点線で示す4つの仮想矩形28a、28b、28c、28dを考える。これらは、スリット21bの風流れ上流側から下流側に順に隣接して配置した同じ面積の矩形である。配置の仕方は、まず、仮想矩形28aに含まれるスリット21bの開口の割合が最も大きくなるように仮想矩形28aを配置する。次に仮想矩形28bを、仮想矩形28aに隣接させて、仮想矩形28bに含まれるスリット21bの開口の割合が最も大きくなるように配置する。同様にして仮想矩形28c、仮想矩形28dを順に配置する。こうすると、仮想矩形28aの面積に占めるスリット21bの開口の面積割合が最も大きく、次に仮想矩形28bに占めるスリット21bの開口割合が大きく、次に仮想矩形28cに占めるスリット21bの開口割合が大きく、最も開口割合が小さいのが最も下流側にある仮想矩形28dに占めるスリット21bの開口となる。この関係はスリット21aについても同様である。
 このようなスリット21a、21bの作用を説明するために、図4、図5を用いて、スリット21a、21bが無い従来技術の左右風向変更板40を例に、結露が生じるメカニズムを説明する。
 図4において、斜線を付した中間温度領域41は、伝熱管52によって冷却された空気が流れる低温度領域43と、室温に近い空気が流れる高温度領域42との中間の温度の空気が流れる領域である。破線は、低温度領域43と中間温度領域41の境界等温線を示す。点線は、高温度領域42と中間温度領域41の境界等温線を示す。したがって破線は、点線に比べて低温度の等温線である。このように空気の流れが湾曲するのは、伝熱管52の下方にドレンパン6が配置されており、ここで空気の流れがせき止められるためである。
 図4に示すように、複数の伝熱管52の風流れ下流にある中間温度領域41の空気温度は、伝熱管52同士の中間を通過した空気が流れる高温度領域42の空気温度と比べて、相対的に低くなっている。この中間温度領域41の空気が左右風向変更板40の表面に触れることで、左右風向変更板40の表面が冷却される。左右風向変更板40内では、熱伝導が生じて低温部が高温度領域42の空気が通過する左右風向変更板40の領域まで到達し、その領域の表面温度が低下する。高温度領域42の空気が通過する領域の表面温度が高温度領域42の空気の露点温度以下になると、結露が発生する。
 図5において、斜線部は結露速度がゼロ以上、すなわち結露が生じる結露領域47である。図5に示すように、伝熱管52の風流れ後部を発生点とする流線45が通過する付近の左右風向変更板40の表面では結露が生じておらず、その周囲の領域で結露が生じている。
 図4及び図5からわかるように、伝熱管52によって冷却された、周囲に比べて相対的に低温の空気が左右風向変更板40に触れ、左右風向変更板40が部分的に冷却されること、及び左右風向変更板40内の熱伝導により冷却された領域が広がり、表面に接触する空気の露点以下となる部分が生じてしまうこと、が左右風向変更板40での結露の要因である。以上の結露メカニズムから、左右風向変更板40での結露を抑制するためには、左右風向変更板40が部分的に冷却されないようにする、即ち左右風向変更板40が、伝熱管52によって冷却された空気にできるだけ接触しないようにすればよいことがわかる。
 そのため、本発明においては図3Aに示すように、伝熱管52の風流れ下流に位置する、上側左右風向変更板20の相対的に低温の空気が流れる領域にスリット21a、21bを設けた。これにより、相対的に低温の空気が上側左右風向変更板20に触れる面積を小さくすることができる。さらに、熱が伝達される領域が少なくなり、熱伝導を抑制する効果も期待できる。
 また、図5に示すように、熱交換器50で冷却された空気は、風流れ上流から下流にかけて次第に周囲の相対的に暖かい空気と混合され、空気温度分布が平準化されて結露領域が下流にいくほど狭くなる。そこで、スリット21a、21bのように風流れ上流から下流にかけて次第にスリット幅を減少させることで、結露防止効果を得ながら、風向変更能力の減少を小さく抑えることができる。
 このような構成によれば、上側左右風向変更板20に結露が生じるリスクを低減することができ、また結露が生じた場合にも結露量を低減することができる。
 以上説明したように、実施の形態1によれば、上側左右風向変更板20は、伝熱管52の後部の、周囲に比べて相対的に低温の空気に触れる領域に、風流れ上流から下流にかけて次第にスリット幅を減少させたスリット21a、21bを有する。これにより、上側左右風向変更板20がフィンチューブ式の熱交換器50の下流近傍に位置する場合でも結露しにくい室内機100を提供することができる。
 なお、上述のように、スリット21a、21bの形状は、空気温度の分布に適合するように決定されるが、上側左右風向変更板20の位置によって空気温度の分布形状が異なる場合は、複数の上側左右風向変更板20で、スリット21a、21bの形状が異なってもよい。また、実施の形態1では2つのスリット21a、21bを有しているが、空気温度の分布状態に合わせて、スリットの数は任意に決定可能である。
 また、実施の形態1における下側左右風向変更板9は、後方傾斜部50b、前方傾斜部50c及び後方傾斜部50dの伝熱管52の下流側に配置されているが、伝熱管52からの距離が長く、相対的に低温の空気と暖かい空気とが混合されるため、局所的な結露が生じにくい。そのため、下側左右風向変更板9にはスリットを設けていないが、伝熱管52と下側左右風向変更板9の配置関係により空気温度の分布が生じて結露しやすい場合は、下側左右風向変更板9にもスリットを設けることができる。
(実施の形態2)
 実施の形態2は、実施の形態1におけるスリット21a、21bに代えて、スリットの上流端が開放された形状を有する切り欠き22a、22bを設置した例である。切り欠き22a、22bも、スリット21a、21bと同様に、開口の一例である。図6は実施の形態2に係る上側左右風向変更板20aを側面から見た図である。
 図6に示すように、上側左右風向変更板20aは、伝熱管52の風流れ下流の、周囲に比べて相対的に低温の空気が接触する領域に、風流れ上流から下流にかけて次第に切り欠きの幅を減少させた2つの切り欠き22a、22bを有している。「切り欠き」とは、上側左右風向変更板20aの端面まで開放した開口部のことである。実施の形態1の上側左右風向変更板20では、スリット21a、21bは端面までは開放されていない貫通孔であったが、切り欠き22a、22bは上側左右風向変更板20aの風流れ上流側の端面まで開放されている。切り欠きの幅を次第に減少させるということは、仮想単位面積当たりの切り欠き22a、22bの開口面積の割合を下流側に向かって次第に減少させるということである。なお、実施の形態1で説明したように、この場合も切り欠きの数は任意であり、2つに限らず、1つ又は3つ以上であってもよい。
 このような構成によれば、冷房運転時の上側左右風向変更板20aの冷却を低減し、かつ上側左右風向変更板20a内の熱伝導を抑制することが可能となる。これにより、従来技術に比べて結露リスクを低減することができ、また結露した場合でも結露量を低減することができる。
 さらに、実施の形態1と同様に、風流れ上流側から下流側に向かって切り欠き22a、22bの幅を次第に減少させることで、結露リスクを低減しつつ、風向変更能力の低下を抑制する効果がある。
 また、上側左右風向変更板20aの上流端は、空気温度分布が最も平準化されていないため結露が生じ易い箇所であるが、上流端を切り欠くことで、結露リスクをより低減する効果がある。
(実施の形態3)
 実施の形態3は、実施の形態1におけるスリット21a、21bに代えて、伝熱管52の風流れ下流領域のそれぞれに直径の異なる複数の貫通孔23を設置した例である。貫通孔23も開口の一例である。図7は実施の形態3に係る上側左右風向変更板20bを側面から見た図である。
 図7に示すように、上側左右風向変更板20bは、伝熱管52の風流れ下流の、周囲に比べて相対的に低温の空気が流れる領域に、風流れ上流から下流に向かって次第に直径を減少させた複数の円形の貫通孔23を有している。円形の貫通孔23の直径を次第に減少させるということは、仮想単位面積当たりの貫通孔23の開口割合を下流側に向かって次第に減少させるということである。なお、円形の貫通孔23は2列に配置されているが、この場合も貫通孔の配置される列の数は任意であり、2列に限らず、1列又は3列以上の列に配置してもよい。
 このような構成によれば、冷房運転時の上側左右風向変更板20bの冷却を低減し、かつ上側左右風向変更板20b内の熱伝導を抑制することが可能となる。これにより、従来技術に比べて結露リスクを低減することができ、また結露した場合でも結露量を低減することができる。
 さらに、実施の形態1と同様に、風流れ上流から下流にかけて貫通孔23の開口割合を次第に減少させることで、結露リスクを低減しつつ、風向変更能力の低下を抑制する効果がある。
(実施の形態4)
 実施の形態4は、実施の形態1におけるスリット21a、21bに代えて、伝熱管52の風流れ下流領域のそれぞれに同じ直径の円形の貫通孔24を複数並べて配置した例である。図8は実施の形態4に係る上側左右風向変更板20cを側面から見た図である。
 図8に示すように、上側左右風向変更板20cは、伝熱管52の風流れ下流の、周囲に比べて相対的に低温の空気が流れる領域に、風流れ上流から下流に向かって次第に分布数を減少させた複数の円形の貫通孔24を有している。複数配置された貫通孔24の直径は同じであるが、その数(分布割合)が下流にいくにつれて少なくなっている。つまり、仮想単位面積当たりの貫通孔24の開口割合が下流側に向かって次第に減少している。なお、円形の貫通孔24は2列に配置されているが、この場合も貫通孔の配置される列の数は任意であり、2列に限らず、1列又は3列以上の列に配置してもよい。
 このような構成によれば、冷房運転時の上側左右風向変更板20cの冷却を低減し、かつ上側左右風向変更板20c内の熱伝導を抑制することが可能となる。これにより、従来技術に比べて結露リスクを低減することができ、また結露した場合でも結露量を低減することができる。
 さらに、風流れ上流から下流にかけて貫通孔24の数の分布割合を次第に減少させることで、実施の形態1と同様、結露リスクを低減しつつ、風向変更能力の低下を抑制する効果がある。
(実施の形態5)
 実施の形態5は、実施の形態1におけるスリット21a、21bに代えて、貫通孔25を全面に多数配置した例である。図9は実施の形態5に係る上側左右風向変更板20dを側面から見た図である。
 図9に示すように、上側左右風向変更板20dは、全域に偏りなく四角形の貫通孔25を有しており、メッシュ状となっている。なお、貫通孔25の形状は四角形に限定されず、任意の形状とすることができる。またその個数も任意に選択することができる。なお、貫通孔25の密度は図9に示すように全体に均一に配置することもできるが、貫通孔25の開口密度を上流側から下流側に向かって次第に減少させることがより好ましい。空気の流れが不規則になっても、上流側の空気が下流側の空気よりも冷却されているため、上流側の開口密度をより大きくすることが結露防止に効果的であるからである。
 このような構成によれば、熱交換器50を通過後の空気温度分布及び絶対湿度分布が乱れた場合でも、上側左右風向変更板20dの結露防止効果を得ることができる。即ち、冷却された空気の流れが不規則に変化した場合であっても、上側左右風向変更板20d上において結露する可能性を低減することができる。なお、貫通孔25の開口密度を上側左右風向変更板20dの全体にわたって均一にすることにより、熱交換器50を通過後の空気温度分布及び絶対湿度分布がいかなるものであっても、上側左右風向変更板20dの結露防止効果を得ることができる。
(変形例1)
 実施の形態においては、左右風向変更板に開口を形成する例を示したが、風向を変更する方向は限定されない。本発明の風向変更板は、左右方向に風の向きを変更するものでも、前後方向に風の向きを変更するものでもよい。フィンチューブ式の熱交換器の下流に配置される風向変更板ならば、この発明を適用できる。
(変形例2)
 開口部の端面形状は特に限定されないが、できるだけ開口部を通過する空気の流れを乱さない形状が好ましい。開口部は、図10Aに示すような、上側左右風向変更板20の表面に直角の端面を有してもよいが、図10B~図10Dに示すように湾曲又は傾斜した端面を有することが、空気の流通を乱さないという観点から好ましい。図10Bは、滑らかに湾曲させた端面形状、図10Cは傾斜させた端面形状、図10Dは両面側から斜面を形成した端面形状の例である。なお、上流側と下流側とで端面の形状を変えてもよい。
(変形例3)
 実施の形態1~5では、送風機はプロペラファンであるとした。送風機の種類はこれに限定されない。例えば、クロスフローファンを用いてもよい。また、プロペラファンでも、軸流プロペラファンでもよいし、斜流プロペラファンでもよい。さらに、遠心ファンを用いることも可能である。
 本発明は、広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能である。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
 本発明は、空気調和機の室内機に好適に採用され得る。
 1 筐体、2 吸込口、3 吹出口、4 プロペラファン、6 ドレンパン、7 前方側上下風向変更板、8 後方側上下風向変更板、9 下側左右風向変更板、10 固定部、12 連結具、14 固定具、15 取付部、16 支持部、20,20a,20b,20c,20d 上側左右風向変更板、21a,21b スリット、22a,22b 切り欠き、23,24,25 貫通孔、28a,28b,28c,28d 仮想矩形、31 集塵フィルター、32 フィルター固定具、40 左右風向変更板、41 中間温度領域、42 高温度領域、43 低温度領域、44 空気流、45 流線、46 空気流、47 結露領域、50 熱交換器、50a 前方傾斜部、50b 後方傾斜部、50c 前方傾斜部、50d 後方傾斜部、51 フィン、52 伝熱管、100 室内機 101 冷媒管、102 室外機、110 空気調和機

Claims (9)

  1.  空気通路に配置された送風機と、
     複数のフィンと前記複数のフィンを貫通する伝熱管とを備え、前記送風機の下流に設置された熱交換器と、
     前記熱交換器の下流に設置され、前記伝熱管の風流れ下流領域に開口部を有し、風向を変更する風向変更板と、を備える、
     室内機。
  2.  前記開口部は、風流れ上流から下流に向かって開口割合が次第に減少する、請求項1に記載の室内機。
  3.  前記開口部は、前記風向変更板の風流れ上流から下流に延在するスリットを備える、請求項1又は2に記載の室内機。
  4.  前記スリットは、風流れ上流側が開放させた欠き形状を有する、請求項3に記載の室内機。
  5.  前記開口部は、複数の貫通孔を備える、請求項1又は2に記載の室内機。
  6.  前記複数の貫通孔は、前記風向変更板の全域に配置されている、請求項5に記載の室内機。
  7.  前記複数の貫通孔は、前記風向変更板の全域に均一に配置されている、請求項6に記載の室内機。
  8.  前記送風機は、プロペラファンを備える、請求項1から7のいずれか1項に記載の室内機。
  9.  請求項1から8のいずれか1項に記載の室内機を備える空気調和機。
PCT/JP2017/014858 2017-04-11 2017-04-11 室内機および空気調和機 WO2018189814A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2017/014858 WO2018189814A1 (ja) 2017-04-11 2017-04-11 室内機および空気調和機
US16/488,611 US20210131699A1 (en) 2017-04-11 2017-04-11 Indoor unit and air conditioner
JP2019512087A JP6727415B2 (ja) 2017-04-11 2017-04-11 室内機および空気調和機
CN201780088944.0A CN110462305A (zh) 2017-04-11 2017-04-11 室内机以及空调装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/014858 WO2018189814A1 (ja) 2017-04-11 2017-04-11 室内機および空気調和機

Publications (1)

Publication Number Publication Date
WO2018189814A1 true WO2018189814A1 (ja) 2018-10-18

Family

ID=63793252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014858 WO2018189814A1 (ja) 2017-04-11 2017-04-11 室内機および空気調和機

Country Status (4)

Country Link
US (1) US20210131699A1 (ja)
JP (1) JP6727415B2 (ja)
CN (1) CN110462305A (ja)
WO (1) WO2018189814A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11313568B2 (en) * 2018-01-20 2022-04-26 Daikin Industries, Ltd. System and method for heating and cooling

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213429A (ja) * 1985-03-19 1986-09-22 Matsushita Electric Ind Co Ltd 空気調和機の吸込装置
JPH0651741U (ja) * 1992-12-16 1994-07-15 株式会社竹中工務店 空調吹出口用結露防止金具
JP2000074412A (ja) * 1998-09-03 2000-03-14 Daikin Ind Ltd 空気調和機の風向調節用垂直羽根
JP2008080839A (ja) * 2006-09-26 2008-04-10 Calsonic Kansei Corp 空気調和装置の吹き出し口グリル
JP2010249447A (ja) * 2009-04-17 2010-11-04 Daikin Ind Ltd 空気調和装置
JP2012021704A (ja) * 2010-07-14 2012-02-02 Sharp Corp 空気調和機
JP2013096684A (ja) * 2011-11-07 2013-05-20 Hitachi Appliances Inc 空気調和機の偏向板取付構造
JP2014025629A (ja) * 2012-07-26 2014-02-06 Daikin Ind Ltd 空調室内機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0861767A (ja) * 1994-08-19 1996-03-08 Fujitsu General Ltd 空気調和機
JP2000320885A (ja) * 1999-05-10 2000-11-24 Mitsubishi Electric Corp 空気調和機
CN2718442Y (zh) * 2004-05-27 2005-08-17 海尔集团公司 插接式的空调器横向送风摆动叶片组
CN100513893C (zh) * 2004-11-29 2009-07-15 乐金电子(天津)电器有限公司 壁挂式空调器
CN102374583B (zh) * 2010-08-17 2016-03-02 乐金电子(天津)电器有限公司 空调器室内机
JP5518013B2 (ja) * 2011-08-18 2014-06-11 三菱電機株式会社 空気調和機の室内機、及びこの室内機を備えた空気調和機
CN202813591U (zh) * 2012-10-16 2013-03-20 海尔集团公司 空调器及其摆叶
CN203478553U (zh) * 2013-06-19 2014-03-12 海尔集团公司 空调器导风摆叶装配结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213429A (ja) * 1985-03-19 1986-09-22 Matsushita Electric Ind Co Ltd 空気調和機の吸込装置
JPH0651741U (ja) * 1992-12-16 1994-07-15 株式会社竹中工務店 空調吹出口用結露防止金具
JP2000074412A (ja) * 1998-09-03 2000-03-14 Daikin Ind Ltd 空気調和機の風向調節用垂直羽根
JP2008080839A (ja) * 2006-09-26 2008-04-10 Calsonic Kansei Corp 空気調和装置の吹き出し口グリル
JP2010249447A (ja) * 2009-04-17 2010-11-04 Daikin Ind Ltd 空気調和装置
JP2012021704A (ja) * 2010-07-14 2012-02-02 Sharp Corp 空気調和機
JP2013096684A (ja) * 2011-11-07 2013-05-20 Hitachi Appliances Inc 空気調和機の偏向板取付構造
JP2014025629A (ja) * 2012-07-26 2014-02-06 Daikin Ind Ltd 空調室内機

Also Published As

Publication number Publication date
JP6727415B2 (ja) 2020-07-22
JPWO2018189814A1 (ja) 2019-11-07
US20210131699A1 (en) 2021-05-06
CN110462305A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
US9513020B2 (en) Air-conditioning apparatus
JPH08270973A (ja) 空気調和機
EP1310743B1 (en) Decorative panel and diffuser unit of air conditioner, and air conditioner
WO2010119893A1 (ja) 空気調和装置
JP6348689B2 (ja) 送風装置及び空調システム
WO2018189814A1 (ja) 室内機および空気調和機
CN110887112A (zh) 空气式放射空调机
WO2017068725A1 (ja) 空気調和機の室内機
JP2017172935A (ja) 空気調和機
JP2019178825A (ja) 天井埋込型空気調和機
JP6422588B2 (ja) 床置形空気調和機の室内機
JP6379352B2 (ja) フィンチューブ熱交換器
JP4196442B2 (ja) 熱交換器
JP3214599B2 (ja) 空気調和機
JP2004003735A (ja) 吹出口装置
JP2605186B2 (ja) 空気調和機
JPH06159783A (ja) 吹出用チャンバ
JP3670825B2 (ja) 空調用吹出しグリル
JP3178579B2 (ja) 空気調和機
CN218295973U (zh) 空调室内机
KR20220001742U (ko) 외기조화기의 동파 방지용 수직형 코일
JP2008008542A (ja) 熱交換器および熱交換器を備えた空気調和装置の室内機
JP2006003001A (ja) 空気温度調整機
EP3064851B1 (en) A system for supplying air to a room
JPH0674605A (ja) 熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905378

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512087

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905378

Country of ref document: EP

Kind code of ref document: A1