WO2018186038A1 - 成膜装置及び成膜方法 - Google Patents

成膜装置及び成膜方法 Download PDF

Info

Publication number
WO2018186038A1
WO2018186038A1 PCT/JP2018/006024 JP2018006024W WO2018186038A1 WO 2018186038 A1 WO2018186038 A1 WO 2018186038A1 JP 2018006024 W JP2018006024 W JP 2018006024W WO 2018186038 A1 WO2018186038 A1 WO 2018186038A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
film forming
substrate
forming apparatus
voltage
Prior art date
Application number
PCT/JP2018/006024
Other languages
English (en)
French (fr)
Inventor
具和 須田
高橋 明久
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2018533275A priority Critical patent/JPWO2018186038A1/ja
Priority to KR1020197031327A priority patent/KR20190132667A/ko
Priority to CN201880022101.5A priority patent/CN110494590A/zh
Publication of WO2018186038A1 publication Critical patent/WO2018186038A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3464Operating strategies
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present invention relates to a film forming apparatus and a film forming method.
  • Transparent conductive layers such as ITO (Indium Tin Oxide) layers are used in electronic devices such as displays, solar cells, and touch panels (see, for example, Patent Document 1).
  • a method for forming a transparent conductive layer there are a chemical production method represented by a CVD (Chemical Vapor Deposition) method and a physical production method represented by a sputtering method.
  • the CVD method may be difficult to apply to a substrate having low heat resistance, for example, and it may take time to process the exhaust gas.
  • the sputtering method can be applied to a substrate having low heat resistance, and its composition can be optimally adjusted by introducing oxygen into the vacuum vessel. Further, the sputtering method can be applied to a large substrate. For this reason, when a transparent conductive layer is provided on the electronic device, a sputtering method is often employed. And in a transparent conductive layer, the change of a composition may be calculated
  • the composition of the target material is fixed. For this reason, the composition of the layer formed on the substrate cannot be easily changed. In order to change the composition of this layer, it is necessary to separately prepare target materials corresponding to the respective layer compositions.
  • an object of the present invention is to provide a film forming apparatus and a film forming method capable of easily changing the composition of a layer when a layer is formed on a substrate by a sputtering method. It is in.
  • a film forming apparatus includes a vacuum vessel, a substrate transport mechanism, a film forming source, and a control unit.
  • the vacuum container can maintain a reduced pressure state.
  • the substrate transport mechanism can transport the substrate within the vacuum container.
  • the film-forming source has a first target and a second target that face the substrate and are arranged along the transport direction of the substrate.
  • the material of the first target is different from the material of the second target.
  • Plasma is generated by applying an AC voltage having a long waveband between the first target and the second target, and the material of the first target and the material of the second target are formed on the substrate. It is possible to form a mixed layer.
  • the control unit can change the duty ratio of the AC voltage.
  • it is such a film-forming apparatus, it is an alternating voltage applied between the first target and the second target, and the frequency is changed by changing the duty ratio of the alternating voltage in the long wave band.
  • the mixing ratio of the first target material and the second target material in the layer can be easily changed.
  • the resistivity of the first target may be different from the resistivity of the second target.
  • the mixing ratio of the first target and the second target having different resistivity can be easily changed in the layer.
  • the sputtering rate of the first target may be different from the sputtering rate of the second target.
  • the first target and the second target are changed by changing the duty ratio even if the sputtering rates of the first target and the second target are different in the layer.
  • a layer including evenly can be formed.
  • the frequency may be 10 kHz or more and 100 kHz or less.
  • the AC voltage in the frequency band of 10 kHz to 100 kHz is applied between the first target and the second target, whereby the material of the first target in the layer is formed.
  • the mixing ratio of the second target material can be appropriately changed.
  • each of the first target and the second target may be formed in a cylindrical shape, and each central axis of the first target and the second target is transport of the substrate.
  • Each of the first target and the second target may be configured to be rotatable about the central axis.
  • the film forming source further includes a first magnetic circuit disposed inside the first target and a second magnetic circuit disposed inside the second target. Also good.
  • the direction in which the first magnetic circuit faces the first target and the direction in which the second magnetic circuit faces the second target may be variable.
  • a film forming method is configured to cause a first target and a second target made of a material different from the first target to face the substrate, and in the transport direction of the substrate. And arranging the first target and the second target along. While transporting the substrate in the transport direction in a reduced-pressure atmosphere, an alternating voltage is applied between the first target and the second target and the frequency is a long wave band and the duty ratio can be changed. Plasma is generated between the first target and the second target. A layer in which the material of the first target and the material of the second target are mixed is formed on the substrate.
  • the AC voltage applied between the first target and the second target, and the frequency is changed by changing the duty ratio of the AC voltage in the long wave band.
  • the mixing ratio of the first target material and the second target material in the layer can be freely changed. Thereby, the composition of the layer formed on the substrate can be easily changed.
  • the resistivity of the first target may be different from the resistivity of the second target.
  • the mixing ratio of the first target and the second target having different resistivity can be easily changed in the layer.
  • the sputtering rate of the first target may be different from the sputtering rate of the second target.
  • the first target and the second target are changed by changing the duty ratio even if the sputtering rates of the first target and the second target are different in the layer.
  • a layer including evenly can be formed.
  • the frequency may be 10 kHz or more and 100 kHz or less.
  • the AC voltage in the frequency band of 10 kHz or more and 100 kHz or less is applied between the first target and the second target, whereby the material of the first target in the layer is formed. And the mixing ratio of the second target material can be appropriately changed.
  • each of the first target and the second target is formed in a cylindrical shape, and each central axis of the first target and the second target intersects with the transport direction of the substrate.
  • the plasma may be generated between the first target and the second target while rotating each of the first target and the second target about the central axis.
  • a first magnetic circuit is arranged inside the first target
  • a second magnetic circuit is arranged inside the second target
  • the first magnetic circuit faces the first target.
  • the plasma may be generated between the first target and the second target by changing a direction in which the second magnetic circuit faces the second target.
  • the AC voltage may be applied to the target having a low sputtering rate for a longer time.
  • a layer in which the materials of the first target and the second target are uniformly mixed can be formed on the substrate.
  • a film forming apparatus and a film forming method capable of easily changing the composition of a layer formed on a substrate by a sputtering method are provided.
  • FIG. 1 is a schematic cross-sectional view of a film forming apparatus according to a first embodiment. It is a top view which shows arrangement
  • FIG. (A) is a schematic cross-sectional view showing the operation of the film forming apparatus according to the first embodiment, and FIGS. (B) and (c) are rectangular wave alternating currents applied to the first target and the second target. It is the schematic which shows the time change of a voltage. It is a graph which shows the relationship between the duty ratio of a rectangular wave alternating voltage, and the sheet resistance of a layer.
  • FIG. 1 is a schematic cross-sectional view of a film forming apparatus according to the first embodiment.
  • FIG. 2 is a top view showing the arrangement of the target and the substrate of the film forming apparatus according to the first embodiment.
  • 1 and 2 includes a vacuum vessel 10, a substrate transport mechanism 20, a film forming source 30, an AC power source 50, a control unit 60, and a gas supply source 70.
  • the vacuum vessel 10 is a vessel capable of maintaining a reduced pressure state.
  • the gas in the vacuum vessel 10 is exhausted to the outside through an exhaust port 10d by an exhaust mechanism such as a turbo molecular pump.
  • the film forming apparatus 101 may be a batch type film forming apparatus or a continuous type film forming apparatus.
  • the vacuum container 10 functions as one processing chamber in the film forming apparatus 101.
  • the vacuum container 10 is provided with a substrate carry-in portion 10a and a substrate carry-out portion 10b. Then, when the substrate 21A is carried into the vacuum vessel 10 from the substrate carry-in portion 10a, the substrate 21A is subjected to processing such as sputtering film formation in the vacuum vessel 10, and thereafter, the substrate 21A is evacuated through the substrate carry-out portion 10b. It is carried out of the container 10.
  • the substrate 21A includes, for example, a glass substrate having a rectangular planar shape. In the example of FIG. 1, the surface of the substrate 21A facing the film formation source 30 is a film formation surface 21d.
  • the substrate transport mechanism 20 can transport the substrate 21 ⁇ / b> A in the vacuum container 10.
  • the substrate transport mechanism 20 includes a roller rotation mechanism 20r and a frame portion 20f.
  • the roller rotation mechanism 20r is supported by the frame portion 20f.
  • the roller rotation mechanism 20r rotates, so that the substrate holder 22 supporting the substrate 21A and the substrate 21A is transferred from the substrate carry-in portion 10a to the substrate. It is slid and transferred toward the carry-out part 10b.
  • the film formation source 30 includes a first film formation source 31 and a second film formation source 32.
  • the first film formation source 31 includes a first target 31T, a first backing tube 31B, and a first magnetic circuit 31M.
  • the second film formation source 32 includes a second target 32T, a second backing tube 32B, and a second magnetic circuit 32M.
  • the film forming apparatus 101 is a film forming apparatus having a so-called dual target.
  • the first target 31T is supported by the first backing tube 31B.
  • the first magnetic circuit 31M is disposed in the first target 31T and is disposed in the first backing tube 31B.
  • the second target 32T is supported by the second backing tube 32B.
  • the second magnetic circuit 32M is disposed in the second target 32T and is disposed in the second backing tube 32B.
  • a flow path (not shown) through which a cooling medium flows may be provided inside each of the first backing tube 31B and the second backing tube 32B.
  • the first target 31T and the second target 32T face the substrate 21A.
  • the first target 31T and the second target 32T are arranged along the transport direction (Y-axis direction) of the substrate 21A.
  • the central axis 31c of the first target 31T is parallel to the longitudinal direction of the first target 31T.
  • the central axis 32c of the second target 32T is parallel to the longitudinal direction of the second target 32T.
  • Each of the first target 31T, the first backing tube 31B, the second target 32T, and the second backing tube 32B has a cylindrical shape.
  • each of the first target 31T, the first backing tube 31B, the second target 32T, and the second backing tube 32B is not limited to a cylindrical type, and may be a disk type.
  • the central axis 31c of the first target 31T intersects the transport direction of the substrate 21A.
  • the center axis 32c of the second target 32T intersects the transport direction of the substrate 21A.
  • each of the central axes 31c and 32c is orthogonal to the Y-axis direction and extends in the X-axis direction.
  • the first target 31T is configured to be rotatable about the central axis 31c.
  • the second target 32T is configured to be rotatable about the central axis 32c. That is, the first target 31T and the second target 32T are so-called rotary targets.
  • the material of the first target 31T is different from the material of the second target 32T.
  • the resistivity of the first target 31T is different from the resistivity of the second target 32T.
  • the sputtering rate of the first target 31T is different from the sputtering rate of the second target 32T.
  • An adhesion preventing plate 11 is provided between the substrate transport mechanism 20 and the film forming source 30.
  • the material of the first target 31T includes at least one of niobium oxide, tantalum oxide, titanium oxide, and molybdenum oxide.
  • the material of the second target 32T includes at least one of ITO (indium tin oxide (tin oxide content: 1 wt% to 15 wt%)), indium oxide, tin oxide, zinc oxide, and gallium oxide.
  • ITO indium tin oxide (tin oxide content: 1 wt% to 15 wt%)
  • ITO indium tin oxide (tin oxide content: 1 wt% to 15 wt%)
  • indium oxide, tin oxide, zinc oxide, and gallium oxide is an example and is not limited to this value.
  • the direction D2 facing the second target 32T is variable.
  • the first magnetic circuit 31M is configured to be rotatable about the central axis 31c
  • the second magnetic circuit 32M is configured to be rotatable about the central axis 32c.
  • the position of magnetic lines of force (magnetic field formed along the surface of the first target 31T) leaking from the magnetic circuit 31M to the surface of the first target 31T is configured to be variable.
  • the position of magnetic lines of force (magnetic field formed along the surface of the second target 32T) leaking from the magnetic circuit 32M to the surface of the second target 32T is configured to be variable.
  • the frequency of the AC voltage is a long wave (LF) band.
  • the long wave band according to the present embodiment includes a super long wave band.
  • the frequency of the AC voltage is more preferably 10 kHz or more and 100 kHz or less.
  • the sputtered particles emitted from the first target 31T and the second target 32T reach the film formation surface 21d of the substrate 21A. Thereby, a layer in which the sputtered particles S1 sputtered from the first target 31T and the sputtered particles S2 sputtered from the second target 32T are mixed is formed on the film formation surface 21d.
  • the AC power supply 50 supplies an AC voltage between the first target 31T and the second target 32T.
  • the AC voltage supplied from the AC power supply 50 is, for example, a rectangular wave AC voltage.
  • This rectangular wave AC voltage is not limited to an ideal rectangular wave AC voltage, for example.
  • the rising edge or falling edge of the pulse may not be perpendicular to the time axis.
  • the control unit 60 can modulate the duty ratio of the rectangular AC voltage. For example, the control unit 60 sets the length of the pulse voltage (minus voltage) applied to the first target 31T to be shorter than the length of the pulse voltage (minus voltage) applied to the second target 32T, The length of the pulse voltage (minus voltage) applied to 31T can be set longer than the length of the pulse voltage (minus voltage) applied to the second target 32T.
  • the gas supply source 70 includes a flow rate regulator 71 and a gas nozzle 72.
  • a discharge gas is supplied into the vacuum vessel 10 by the gas supply source 70.
  • the discharge gas is, for example, a rare gas such as argon or helium, oxygen, or the like. The operation of the film forming apparatus 101 will be described below.
  • FIG. 3 is a schematic flow of the film forming method according to the first embodiment.
  • the first target 31T and the second target 32T are opposed to the substrate 21A, and the first target 31T and the second target 32T are disposed along the transport direction of the substrate 21A. (S10).
  • FIG. 4A is a schematic cross-sectional view showing the operation of the film forming apparatus according to the first embodiment, and FIGS. 4B and 4C are rectangles applied to the first target and the second target. It is the schematic which shows the time change of a wave alternating voltage.
  • the horizontal axis is time
  • the vertical axis is voltage. 4A, the vacuum container 10, the substrate transport mechanism 20, the AC power supply 50, the control unit 60, the gas supply source 70, and the like illustrated in FIG. 1 are omitted.
  • the discharge gas When a discharge gas is introduced into the vacuum vessel 10 and an AC voltage is applied between the first target 31T and the second target 32T, the discharge gas is ionized between the first target 31T and the second target 32T. . During discharge, the first target 31T and the second target 32T rotate in the direction of the arrow.
  • a rectangular wave AC voltage is applied between the first target 31T and the second target 32T. Therefore, when the + Vs voltage is applied to the first target 31T, the ⁇ Vs voltage is applied to the second target 32T, and when the ⁇ Vs voltage is applied to the first target 31T, the + Vs voltage is applied to the second target 32T.
  • a voltage is applied (FIG. 4B).
  • “t” in FIGS. 4B and 4C is a voltage cycle of the rectangular wave AC voltage.
  • T1 is a time during which ⁇ Vs is applied to the first target 31T.
  • T2 is a time during which ⁇ Vs is applied to the second target 32T.
  • a voltage of + Vs ⁇ 2 is applied between the first target 31T and the second target 32T.
  • the film formation source 30 when the -Vs voltage is applied to the first target 31T, the first target 31T is sputtered by cations in the discharge gas, and the sputtered particles S1 are emitted from the first target 31T.
  • the ⁇ Vs voltage when the ⁇ Vs voltage is applied to the second target 32T, the second target 32T is sputtered by the cations in the discharge gas, and the sputtered particles S2 are emitted from the second target 32T.
  • the direction D1 of the magnetic circuit 31M is tilted in the Y-axis direction, deviating from the Z-axis direction.
  • the plasma is easily captured between the Z-axis direction and the Y-axis direction, and the plasma density is increased between the Z-axis direction and the Y-axis direction. Therefore, from the first target 31T, the sputtered particles S1 are mainly emitted from between the Z-axis direction and the Y-axis direction, and the sputtered particles S1 fly toward the substrate 21A.
  • the direction D2 of the magnetic circuit 32M is tilted in the direction opposite to the Y-axis direction ( ⁇ Y-axis direction) with respect to the Z-axis direction.
  • the plasma is easily captured between the Z-axis direction and the ⁇ Y-axis direction, and the plasma density increases between the Z-axis direction and the ⁇ Y-axis direction. Therefore, from the second target 32T, the sputtered particles S2 are emitted mainly from between the Z-axis direction and the ⁇ Y-axis direction, and the sputtered particles S2 fly toward the substrate 21A.
  • the sputtered particles S1 emitted from the first target 31T and the sputtered particles S2 emitted from the second target 32T are mixed under the film formation surface 21d, and the film formation surface 21d has the first target 31T of the first target 31T.
  • a layer in which the material and the material of the second target 32T are mixed is formed.
  • the time during which the ⁇ Vs voltage is applied to the first target 31T is longer than the time during which the ⁇ Vs voltage is applied to the second target 32T. .
  • the amount of sputtered particles emitted from the first target 31T is larger than the amount of sputtered particles emitted from the second target 32T.
  • a layer in which the material of the first target 31T is richer than the material of the second target 32T is formed on the film formation surface 21d.
  • the sputtering rate of the first target 31T and the sputtering rate of the second target 32T are substantially the same.
  • the time during which the ⁇ Vs voltage is applied to the second target 32T is longer than the time during which the ⁇ Vs voltage is applied to the first target 31T.
  • the amount of sputtered particles emitted from the second target 32T is larger than the amount of sputtered particles emitted from the first target 31T.
  • a layer in which the material of the second target 32T is richer than the material of the first target 31T is formed on the film formation surface 21d.
  • a rectangular wave AC voltage is applied between the first target 31T and the second target 32T, and the duty ratio (t1 / t or t2 / t) of the rectangular wave AC voltage is applied.
  • the duty ratio (t1 / t or t2 / t) of the rectangular wave AC voltage is applied.
  • the composition of the layer formed on the substrate 21A can be easily changed using two targets made of different materials.
  • a discharge is caused between the film forming source 30 and the grounding part (vacuum container 10, deposition preventing plate 11, substrate transport mechanism 20 and the like) of the film forming apparatus 101 to form a film.
  • a film is formed by causing a discharge between the first target 31T and the second target 32T.
  • Some sputtering apparatuses apply a direct current (DC) voltage or a radio frequency (RF) voltage to a target to discharge plasma between the target and a ground portion to form a layer on the substrate. Some of these sputtering apparatuses have a plurality of targets.
  • DC direct current
  • RF radio frequency
  • the layer is formed not only on the substrate but also on the ground portion. Therefore, when the target material is a high-resistance material such as an insulator, if the high-resistance layer continues to be deposited on the ground portion, the ground portion is covered with a thick high-resistance layer, and stable between the target and the ground portion. Plasma discharge may not be maintained. For this reason, in a sputtering apparatus that discharges plasma between the target and the ground portion, maintenance work is required to periodically release the vacuum and remove the high resistance material from the ground portion.
  • a high-resistance material such as an insulator
  • the film forming apparatus 101 In contrast, in the film forming apparatus 101 according to the present embodiment, plasma discharge is generated between the first target 31T and the second target 32T. For this reason, even if the high resistance material continues to be deposited on the anode portion, the plasma discharge in the film forming apparatus 101 lasts for a long time. That is, the film forming apparatus 101 is excellent in mass productivity.
  • the frequency band of the rectangular wave AC voltage is a long wave band, and more preferably set to 10 kHz or more and 100 kHz or less. Thereby, the composition of the layer formed on the substrate 21A can be appropriately changed.
  • the sputtering time of each of the first target 31T and the second target 32T becomes longer, and the material layer of the first target 31T and the second target 32T are formed on the substrate 21A. It is easy to form a layer in which these material layers are alternately stacked.
  • the frequency of the rectangular wave AC voltage is greater than 100 kHz, the period t becomes too short, and the resolution of the duty ratio decreases. Thereby, during film formation, a sufficient voltage is not applied to either the first target 31T or the second target 32T, and one of the materials of the first target 31T and the second target 32T is in the layer. It becomes difficult to be mixed.
  • each of the first target 31T and the second target 32T is a rotary target, and film formation is performed while the substrate 21A is transferred in the direction in which the two rotary targets are arranged (Y-axis direction). .
  • the mixing ratio of the material of the first target 32T and the material of the second target 32T in the in-plane direction of the substrate 21A becomes uniform.
  • the film forming apparatus 101 when the sputtering rates of the first target 31T and the second target 32T are different from each other, by applying a ⁇ Vs voltage to a target having a low sputtering rate for a longer time, A layer in which each of the material and the material of the second target 32T is uniformly mixed can be formed on the substrate 21A.
  • FIG. 5 is a graph showing the relationship between the duty ratio of the rectangular AC voltage and the sheet resistance of the layer.
  • First target 31T Niobium oxide target
  • Second target 32T ITO target (tin oxide 5 wt%)
  • Electric power 1kW / m (equivalent to one target)
  • Deposition pressure 0.4 Pa
  • Frequency 20kHz
  • Deposition layer thickness 10 nm
  • Deposition temperature room temperature
  • the horizontal axis in FIG. 5 is the duty ratio (%). As for the duty ratio, t2 / t is expressed as a percentage.
  • the vertical axis in FIG. 5 is the sheet resistance ( ⁇ / sq.) Of the layer.
  • the resistivity of niobium oxide is higher than the resistivity of the ITO target (tin oxide 5 wt%).
  • the sheet resistance of the film formation layer decreases. That is, the result of FIG. 5 is that the ratio of the material of the first target 31T and the material of the second target 32T in the film formation layer is changed by adjusting t2 / t (%), and the sheet of the film formation layer is changed. It shows that the resistance can be adjusted easily.
  • FIG. 6 is a schematic cross-sectional view showing another operation of the film forming apparatus according to the first embodiment.
  • the first magnetic circuit 31M is configured to be rotatable about the central axis 31c.
  • the second magnetic circuit 32M is configured to be rotatable about the central axis 32c.
  • the magnet 32mg of the second magnetic circuit 32M is opposed to the first target 31T.
  • the discharge gas is ionized between the first target 31T and the second target 32T.
  • the magnet 32mg of the second magnetic circuit 32M faces the first target 31T. For this reason, in the vicinity of the surface of the second target 32T, the plasma is easily captured at a position where the first target 31T faces the second target 32T. Thereby, the sputtered particles S2 are emitted from the second target 32T toward the first target 31T.
  • the material of the second target 32T attached to the first target 31T is sputtered together with the material of the first target 31T.
  • the sputtered particles S1 and S2 containing the material of the first target 31T and the material of the second target 32T fly toward the substrate 21A.
  • a layer in which the material of the first target 31T and the material of the second target 32T are mixed is formed on the substrate 21A.
  • an oxide MO y of a certain metal M is difficult to be a sintered body. Such an oxide MO y is unlikely to be a target material. Thus, for an oxide MO y, by a sputtering method, can be mixed in the layer becomes difficult.
  • a target of oxide A is used as the first target 31T, and a target of metal M is used as the second target 32T. Further, oxygen is added to the discharge gas.
  • the metal M sputtered particles are released from the second target 32T, and the metal M sputtered particles adhere to the surface of the first target 31T.
  • the metal M attached to the first target 31T is sputtered together with the oxide A of the first target 31T.
  • the sputtered particles including the oxide A and the metal M are released from the first target 31T, and these sputtered particles fly toward the substrate 21A.
  • oxygen is added to the discharge gas as an assist gas.
  • the sputtered particles of the metal M become oxide particles (MO y ), and eventually a layer in which the oxide A and the oxide MO y are mixed is formed on the substrate 21A.
  • the sputtered particles of the metal M are not directly emitted toward the substrate 21 ⁇ / b> A, but the metal M is once attached to the first target 31 ⁇ / b> T, and then further emitted toward the substrate 21 ⁇ / b> A. To do. For this reason, the path
  • the composition in the thickness direction of the layer formed on the film formation surface 21d becomes more difficult to vary.
  • the substrate and the substrate transport mechanism for transporting the substrate are not limited to the above-described configuration, and may be configured as follows, for example.
  • FIG. 7 is a schematic cross-sectional view of a film forming apparatus according to the second embodiment.
  • the vacuum container 10, the substrate transport mechanism 20, the AC power supply 50, the control unit 60, the gas supply source 70, and the like illustrated in FIG. 1 are omitted.
  • the film forming apparatus 102 is a winding film forming apparatus.
  • a long flexible substrate 21B cut to a predetermined width is used as a substrate.
  • the flexible substrate 21B is, for example, a polyimide film.
  • the film forming apparatus 102 includes a substrate transport mechanism 23.
  • the substrate transport mechanism 23 includes a main roller 23A, a guide roller 23B, and a guide roller 23C.
  • the transport mechanism 23 is a film traveling mechanism.
  • the main roller 23 ⁇ / b> A faces the film forming source 30.
  • a flexible substrate 21B is disposed between the main roller 23A and the film forming source 30.
  • the back surface of the flexible substrate 21B (the surface opposite to the film forming surface 21d) is in contact with the roller surface of the main roller 23A.
  • the film formation surface 21 d of the flexible substrate 21 ⁇ / b> B faces the film formation source 30. Then, the flexible substrate 21B continuously travels in the direction of the arrow G by the rotation of the main roller 23A, the guide roller 23B, and the guide roller 23C.
  • the sputtered particles S1 are emitted from the first target 31T, and the sputtered particles S2 are emitted from the second target 32T. Is released.
  • a layer in which the material of the first target 31T and the material of the second target 32T are mixed is formed on the film formation surface 21d of the flexible substrate 21B. It is formed.
  • the same action as the film forming apparatus 101 is performed.
  • FIG. 8 is a schematic cross-sectional view of a film forming apparatus according to the third embodiment.
  • the vacuum container 10, the substrate transport mechanism 20, the AC power supply 50, the control unit 60, the gas supply source 70, and the like illustrated in FIG. 1 are omitted.
  • a substrate 21C that is smaller than the substrate 21A is used as the substrate.
  • the planar shape of the substrate 21C is rectangular or circular.
  • the substrate 21C is, for example, a glass substrate or a semiconductor substrate.
  • the upper and lower positions of the film forming source 30 and the substrate transport mechanism 24 may be reversed.
  • the Z-axis direction may be a direction perpendicular to the ground
  • the X-axis direction may be a direction perpendicular to the ground.
  • the film forming apparatus 103 includes a substrate rotation type transport mechanism.
  • the substrate transport mechanism 24 is a rotary stage that rotates about a central axis 24c.
  • the substrate transport mechanism 24 faces the film forming source 30.
  • the substrate transport mechanism 24 supports the plurality of substrates 21C on the outer periphery.
  • a plurality of substrates 21C may be arranged in the X-axis direction.
  • the plurality of substrates 21 ⁇ / b> C rotate in the rotation direction R by the rotation of the substrate transport mechanism 24.
  • the first target 31T and the second target 32T are arranged.
  • the center axis 24c of the substrate transport mechanism 24, the center axis 31c of the first target 31T, and the center axis 32c of the second target 32T are parallel to each other.
  • the film forming apparatus 103 when a rectangular wave AC voltage is applied between the first target 31T and the second target 32T, the sputtered particles S1 are emitted from the first target 31T, and the sputtered particles S2 are emitted from the second target 32T. Is released. Thereby, a layer in which the material of the first target 31T and the material of the second target 32T are mixed is formed on the film forming surface 21d of the substrate 21C while the substrate 21C is rotated by the substrate transport mechanism 24.
  • FIG. 9 is a schematic top view of the film forming apparatus according to the fourth embodiment. 9, the vacuum container 10, the substrate transport mechanism 20, the AC power supply 50, the control unit 60, the gas supply source 70, and the like illustrated in FIG. 1 are omitted. In the film forming apparatus 104, the upper and lower positions of the film forming source 30 and the substrate transport mechanism 25 may be reversed.
  • the film forming apparatus 104 includes a substrate rotation type transport mechanism.
  • the substrate transport mechanism 25 is a rotary stage that rotates about a central axis 25c.
  • the substrate transport mechanism 25 faces the film forming source 30.
  • the substrate transport mechanism 25 supports a plurality of substrates 21C on the upper surface side.
  • a plurality of substrates 21C may be arranged in the X-axis direction. In the example of FIG. 9, a plurality of substrates 21C are arranged radially.
  • the plurality of substrates 21 ⁇ / b> C rotate in the rotation direction R by the rotation of the substrate transport mechanism 25.
  • the first target 31T and the second target 32T are arranged.
  • the central axis 25c of the substrate transport mechanism 25 is orthogonal to the central axis 31c of the first target 31T and the central axis 32c of the second target 32T.
  • the film forming apparatus 104 when a rectangular wave AC voltage is applied between the first target 31T and the second target 32T, the sputtered particles S1 are emitted from the first target 31T, and the sputtered particles S2 are emitted from the second target 32T. Is released. Thereby, a layer in which the material of the first target 31T and the material of the second target 32T are mixed is formed on the film forming surface 21d of the substrate 21C while the substrate 21C is rotated by the substrate transport mechanism 25.
  • the same action as the film forming apparatus 101 is performed.
  • Second magnetic circuit 32 mg ... Magnet 50 ... AC power supply 60 ... Control unit 70 ... Gas supply source 71 ... Flow rate regulator 72 ... Gas nozzle 101 , 102, 103, 104 ... film forming apparatus S1, S2 ... sputtered particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

スパッタリング法によって基板上の層組成を簡便に変更する。 成膜装置は、真空容器と、基板搬送機構と、成膜源と、制御部とを具備する。 上記真空容器は、減圧状態を維持することが可能である。上記基板搬送機構は、上記真空容器内で基板を搬送することが可能である。上記成膜源は、上記基板に対向し上記基板の搬送方向に沿って配置された第1ターゲットと第2ターゲットとを有する。上記第1ターゲットの材料は、上記第2ターゲットの材料と異なる。上記第1ターゲットと上記第2ターゲットとの間に周波数が長波帯域の交流電圧が印加されることによりプラズマが発生し、上記基板に上記第1ターゲットの上記材料と上記第2ターゲットの上記材料とが混合した層を形成することが可能である。上記制御部は、上記交流電圧のデューティー比を変えることが可能である。

Description

成膜装置及び成膜方法
 本発明は、成膜装置及び成膜方法に関する。
 ITO(Indium Tin Oxide)層等の透明導電層は、ディスプレイ、太陽電池、タッチパネル等の電子デバイスに利用されている(例えば、特許文献1参照)。透明導電層の成膜方法としては、CVD(Chemical Vapor Deposition)法に代表される化学的作製方法と、スパッタリング法に代表される物理的作製方法とがある。
 CVD法は、例えば、耐熱性の低い基板への適用が困難な場合があり、排気ガスの処理に手間がかかる場合がある。一方、スパッタリング法は、耐熱性の低い基板への適用が可能であり、真空容器に酸素を導入することで、その組成が最適に調整され得る。さらに、スパッタリング法は、大型基板への適用も可能になる。このため、上記電子デバイスに透明導電層を設ける場合には、スパッタリング法が採用される場合が多い。そして、透明導電層においては、電子デバイスの用途に応じて、組成の変更が求められる場合がある。
特許第5855948号公報
 しかしながら、スパッタリング法を採用した場合、ターゲット材の組成が固定されている。このため、基板上に形成される層の組成は簡便に変更できない。この層の組成を変更するには、それぞれの層組成に対応させたターゲット材を個別に用意する必要がある。
 以上のような事情に鑑み、本発明の目的は、スパッタリング法によって基板上に層を形成する場合、この層の組成を簡便に変更することが可能な成膜装置及び成膜方法を提供することにある。
 上記目的を達成するため、本発明の一形態に係る成膜装置は、真空容器と、基板搬送機構と、成膜源と、制御部とを具備する。上記真空容器は、減圧状態を維持することが可能である。上記基板搬送機構は、上記真空容器内で基板を搬送することが可能である。上記成膜源は、上記基板に対向し上記基板の搬送方向に沿って配置された第1ターゲットと第2ターゲットとを有する。上記第1ターゲットの材料は、上記第2ターゲットの材料と異なる。上記第1ターゲットと上記第2ターゲットとの間に周波数が長波帯域の交流電圧が印加されることによりプラズマが発生し、上記基板に上記第1ターゲットの上記材料と上記第2ターゲットの上記材料とが混合した層を形成することが可能である。上記制御部は、上記交流電圧のデューティー比を変えることが可能である。
 このような成膜装置であれば、上記第1ターゲットと上記第2ターゲットとの間に印加される交流電圧であって、周波数が長波帯域の上記交流電圧の上記デューティー比を変えることによって、上記層における上記第1ターゲットの材料と上記第2ターゲットの材料との混合比を簡便に変えることできる。
 上記の成膜装置においては、上記第1ターゲットの抵抗率は、上記第2ターゲットの抵抗率と異なってもよい。
 このような成膜装置であれば、上記層において、抵抗率が異なる上記第1ターゲットと上記第2ターゲットとの混合比を簡便に変えることできる。
 上記の成膜装置においては、上記第1ターゲットのスパッタリング率は、上記第2ターゲットのスパッタリング率とは異なってもよい。
 このような成膜装置であれば、上記層において、上記第1ターゲット及び上記第2ターゲットのそれぞれのスパッタリング率が異なっても上記デューティー比を変えることにより、上記第1ターゲット及び上記第2ターゲットを満遍なく含む層を形成することができる。
 上記の成膜装置においては、上記周波数は、10kHz以上100kHz以下であってもよい。
 このような成膜装置であれば、10kHz以上100kHz以下の周波数帯域の上記交流電圧が上記第1ターゲットと上記第2ターゲットとの間に印加されることよって、上記層における上記第1ターゲットの材料と上記第2ターゲットの材料との混合比を適格に変えることできる。
 上記の成膜装置においては、上記第1ターゲット及び上記第2ターゲットのそれぞれは、円筒型に構成されてもよく、上記第1ターゲット及び上記第2ターゲットのそれぞれの中心軸は、上記基板の搬送方向に対して交差してもよく、上記第1ターゲット及び上記第2ターゲットのそれぞれは、それぞれの上記中心軸を軸に回転可能に構成されてもよい。
 このような成膜装置であれば、上記基板が大型であっても、上記基板の面内方向における、上記第1ターゲットの材料と上記第2ターゲットの材料との混合比がより均一になる。
 上記の成膜装置においては、上記成膜源は、上記第1ターゲットの内部に配置される第1磁気回路と、上記第2ターゲットの内部に配置される第2磁気回路とをさらに有してもよい。上記第1磁気回路が上記第1ターゲットに対向する向き及び上記第2磁気回路が上記第2ターゲットに対向する向きは、可変となるように構成されてもよい。
 このような成膜装置であれば、上記磁気回路によって、それぞれの上記ターゲット近傍に補足されるプラズマの位置が可変になり、それぞれの上記ターゲットから放出されるスパッタ粒子の向きを変えることができる。
 上記目的を達成するため、本発明の一形態に係る成膜方法は、第1ターゲットと、上記第1ターゲットとは材料が異なる第2ターゲットとを基板に対向させるとともに、上記基板の搬送方向に沿って上記第1ターゲットと上記第2ターゲットとを配置することを含む。減圧雰囲気で上記搬送方向に上記基板を搬送しつつ、上記第1ターゲットと上記第2ターゲットとの間に、周波数が長波帯域であって、デューティー比を変えることが可能な交流電圧が印加され、上記第1ターゲットと上記第2ターゲットとの間にプラズマが発生する。上記基板に上記第1ターゲットの材料と上記第2ターゲットの材料とが混合した層が形成される。
 このような成膜方法であれば、上記第1ターゲットと上記第2ターゲットとの間に印加される交流電圧であって、周波数が長波帯域の上記交流電圧の上記デューティー比を変えることによって、上記層における上記第1ターゲットの材料と上記第2ターゲットの材料との混合比を自在に変えることできる。これにより、上記基板上に形成される上記層の組成を簡便に変更することが可能になる。
 上記の成膜方法においては、上記第1ターゲットの抵抗率は、上記第2ターゲットの抵抗率と異なってもよい。
 このような成膜方法であれば、上記層において、抵抗率が異なる上記第1ターゲットと上記第2ターゲットとの混合比を簡便に変えることできる。
 上記の成膜方法においては、上記第1ターゲットのスパッタリング率は、上記第2ターゲットのスパッタリング率とは異なってもよい。
 このような成膜方法であれば、上記層において、上記第1ターゲット及び上記第2ターゲットのそれぞれのスパッタリング率が異なっても上記デューティー比を変えることにより、上記第1ターゲット及び上記第2ターゲットを満遍なく含む層を形成することができる。
 上記の成膜方法においては、上記周波数は、10kHz以上100kHz以下であってもよい。
 このような成膜方法であれば、10kHz以上100kHz以下の周波数帯域の上記交流電圧が上記第1ターゲットと上記第2ターゲットとの間に印加されることよって、上記層における上記第1ターゲットの材料と上記第2ターゲットの材料との混合比を適格に変えることできる。
 上記の成膜方法においては、上記第1ターゲット及び上記第2ターゲットのそれぞれを円筒型に構成し、上記第1ターゲット及び上記第2ターゲットのそれぞれの中心軸を上記基板の搬送方向に対して交差させ、上記第1ターゲット及び上記第2ターゲットのそれぞれをそれぞれの上記中心軸を軸に回転させながら上記第1ターゲットと上記第2ターゲットとの間に上記プラズマを発生させてもよい。
 このような成膜方法であれば、上記基板が大型であっても、上記基板の面内方向における、上記第1ターゲットの材料と上記第2ターゲットの材料との混合比がより均一になる。
 上記の成膜方法においては、上記第1ターゲットの内部に第1磁気回路を配置し、上記第2ターゲットの内部に第2磁気回路を配置し、上記第1磁気回路が上記第1ターゲットに対向する向きと、上記第2磁気回路が上記第2ターゲットに対向する向きとを変えて、上記第1ターゲットと上記第2ターゲットとの間に上記プラズマを発生させてもよい。
 このような成膜方法であれば、上記磁気回路によって、それぞれの上記ターゲット近傍に補足されるプラズマの位置が可変になり、それぞれの上記ターゲットから放出されるスパッタ粒子の向きを変えることができる。
 上記の成膜方法においては、上記第1ターゲット及び上記第2ターゲットのそれぞれの上記スパッタリング率が異なる場合、上記スパッタリング率が低いターゲットに上記交流電圧をより長く印加してもよい。
 このような成膜方法であれば、第1ターゲットの材料及び第2ターゲットの材料のそれぞれが万遍なく混合した層を基板上に形成することができる。
 以上述べたように、本発明によれば、スパッタリング法によって基板上に形成される層の組成を簡便に変更することが可能な成膜装置及び成膜方法が提供される。
第1実施形態に係る成膜装置の概略的断面図である。 第1実施形態に係る成膜装置のターゲットと基板との配置を示す上面図である。 第1実施形態に係る成膜方法の概略的フローである。 図(a)は、第1実施形態に係る成膜装置の動作を示す概略的断面図であり、図(b)、(c)は、第1ターゲットと第2ターゲットとに印加する矩形波交流電圧の時間的変化を示す概略図である。 矩形波交流電圧のデューティー比と、層のシート抵抗との関係を示すグラフ図である。 第1実施形態に係る成膜装置の別の動作を示す概略的断面図である。 第2実施形態に係る成膜装置の概略的断面図である。 第3実施形態に係る成膜装置の概略的断面図である。 第4実施形態に係る成膜装置の概略的上面図である。
 以下、図面を参照しながら、本発明の実施形態を説明する。各図面には、XYZ軸座標が導入される場合がある。
 [第1実施形態]
 図1は、第1実施形態に係る成膜装置の概略的断面図である。
 図2は、第1実施形態に係る成膜装置のターゲットと基板との配置を示す上面図である。
 図1、2に示す成膜装置101は、真空容器10と、基板搬送機構20と、成膜源30と、交流電源50と、制御部60と、ガス供給源70とを具備する。
 真空容器10は、減圧状態を維持することが可能な容器である。例えば、真空容器10内のガスは、排気口10dを通じてターボ分子ポンプ等の排気機構によって外部に排気される。成膜装置101は、バッチ式の成膜装置でもよく、連続式の成膜装置でもよい。
 成膜装置101が連続式(例えば、インライン式)の成膜装置である場合、真空容器10は、成膜装置101における1つの処理室として機能する。例えば、真空容器10には、基板搬入部10aと基板搬出部10bとが設けられている。そして、基板21Aが基板搬入部10aから真空容器10内に搬入されると、真空容器10内で基板21Aにスパッタリング成膜等の処理がなされ、この後、基板21Aは、基板搬出部10bを通して真空容器10外に搬出される。基板21Aは、例えば、平面形状が矩形のガラス基板を含む。図1の例では、基板21Aが成膜源30に対向する面が成膜面21dになっている。
 基板搬送機構20は、基板21Aを真空容器10内において搬送することができる。例えば、基板搬送機構20は、ローラ回転機構20rと、フレーム部20fとを有する。ローラ回転機構20rは、フレーム部20fによって支持されている。そして、ローラ回転機構20r上に、基板21A及び基板ホルダ22が載置されると、ローラ回転機構20rが自転することにより、基板21A及び基板21Aを支持する基板ホルダ22が基板搬入部10aから基板搬出部10bに向けてスライド移送される。
 成膜源30は、第1成膜源31と第2成膜源32とを有する。第1成膜源31は、第1ターゲット31Tと、第1バッキングチューブ31Bと、第1磁気回路31Mとを有する。第2成膜源32は、第2ターゲット32Tと、第2バッキングチューブ32Bと、第2磁気回路32Mとを有する。成膜装置101は、いわゆるデュアルターゲットを具備した成膜装置である。
 第1ターゲット31Tは、第1バッキングチューブ31Bに支持される。第1磁気回路31Mは、第1ターゲット31T内に配置されているとともに、第1バッキングチューブ31B内に配置される。第2ターゲット32Tは、第2バッキングチューブ32Bに支持される。第2磁気回路32Mは、第2ターゲット32T内に配置されているとともに、第2バッキングチューブ32B内に配置される。第1バッキングチューブ31B及び第2バッキングチューブ32Bのそれぞれの内部には、冷却媒体が流れる流路(不図示)が設けられてもよい。
 第1ターゲット31Tと第2ターゲット32Tとは、基板21Aに対向する。第1ターゲット31Tと第2ターゲット32Tとは基板21Aの搬送方向(Y軸方向)に沿って配置されている。第1ターゲット31Tの中心軸31cは、第1ターゲット31Tの長手方向に平行である。第2ターゲット32Tの中心軸32cは、第2ターゲット32Tの長手方向に平行である。
 第1ターゲット31T、第1バッキングチューブ31B、第2ターゲット32T及び第2バッキングチューブ32Bのそれぞれは、円筒型である。但し、第1ターゲット31T、第1バッキングチューブ31B、第2ターゲット32T及び第2バッキングチューブ32Bのそれぞれは、円筒型に限らず、円板型であってもよい。
 第1ターゲット31Tの中心軸31cは、基板21Aの搬送方向に対して交差している。第2ターゲット32Tの中心軸32cは、基板21Aの搬送方向に対して交差している。例えば、中心軸31c、32cのそれぞれは、Y軸方向に対して直交し、X軸方向に延在する。第1ターゲット31Tは、中心軸31cを軸に回転可能に構成されている。第2ターゲット32Tは、中心軸32cを軸に回転可能に構成されている。すなわち、第1ターゲット31T及び第2ターゲット32Tは、いわゆるロータリーターゲットである。
 成膜装置101において、第1ターゲット31Tの材料は、第2ターゲット32Tの材料と異なっている。例えば、第1ターゲット31Tの抵抗率は、第2ターゲット32Tの抵抗率と異なっている。または、第1ターゲット31Tのスパッタリング率は、第2ターゲット32Tのスパッタリング率とは異なっている。基板搬送機構20と成膜源30との間には、防着板11が設けられている。
 例えば、第1ターゲット31Tの材料は、酸化ニオブ、酸化タンタル、酸化チタン、酸化モリブデンの少なくとも1つを含む。第2ターゲット32Tの材料は、ITO(酸化インジウムスズ(酸化スズ含有量1wt%~15wt%))、酸化インジウム、酸化スズ、酸化亜鉛、酸化ガリウムの少なくとも1つを含む。但し、ITOにおける酸化スズ含有量は、一例であり、この値に限らない。
 成膜装置101において、第1磁気回路31Mの磁石31mgが第1ターゲット31Tの内部から第1ターゲット31Tの内壁に対向する向きD1と、第2磁気回路32Mの磁石32mgが第2ターゲット32Tの内部から第2ターゲット32Tに対向する向きD2とが可変となるように構成されている。例えば、第1磁気回路31Mは、中心軸31cを軸に回転可能に構成され、第2磁気回路32Mは、中心軸32cを軸に回転可能に構成されている。
 これにより、磁気回路31Mから第1ターゲット31Tの表面に漏洩する磁力線(第1ターゲット31Tの表面に沿って形成される磁場)の位置が可変となるように構成される。また、磁気回路32Mから第2ターゲット32Tの表面に漏洩する磁力線(第2ターゲット32Tの表面に沿って形成される磁場)の位置が可変となるように構成される。
 成膜装置101において、真空容器10内に放電ガスが導入され、第1ターゲット31Tと第2ターゲット32Tとの間に交流電圧が印加されると、第1ターゲット31Tと第2ターゲット32Tとの間で放電ガスが電離し、第1ターゲット31Tと第2ターゲット32Tとの間にプラズマが発生する。ここで、交流電圧の周波数は、長波(LF)帯域である。本実施形態に係る長波帯域には、超長波帯域も含まれる。交流電圧の周波数は、より好ましくは、10kHz以上100kHz以下である。
 第1ターゲット31T及び第2ターゲット32Tから放出されるスパッタリング粒子は、基板21Aの成膜面21dに到達する。これにより、成膜面21dには、第1ターゲット31Tからスパッタリングされたスパッタリング粒子S1と、第2ターゲット32Tからスパッタリングされたスパッタリング粒子S2とが混合した層が形成される。
 交流電源50は、第1ターゲット31Tと第2ターゲット32Tとの間に交流電圧を供給する。交流電源50が供給する交流電圧は、例えば、矩形波交流電圧である。この矩形波交流電圧は、例えば、理想的な矩形波交流電圧に限らない。例えば、矩形波交流電圧において、パルスの立ち上がりまたは立ち下りは、時間軸に対して垂直でなくてもよい。
 制御部60は、矩形波交流電圧のデューティー比を変調することができる。例えば、制御部60は、第1ターゲット31Tに印加されるパルス電圧(マイナス電圧)の長さを第2ターゲット32Tに印加されるパルス電圧(マイナス電圧)の長さより短く設定したり、第1ターゲット31Tに印加されるパルス電圧(マイナス電圧)の長さを第2ターゲット32Tに印加されるパルス電圧(マイナス電圧)の長さより長く設定したりすることができる。
 ガス供給源70は、流量調整器71とガスノズル72とを有する。ガス供給源70によって真空容器10内に放電ガスが供給される。放電ガスは、例えば、アルゴン、ヘリウム等の希ガス、酸素等である。以下に、成膜装置101の動作について説明する。
 図3は、第1実施形態に係る成膜方法の概略的フローである。
 本実施形態に係る成膜方法においては、第1ターゲット31T及び第2ターゲット32Tを基板21Aに対向させるとともに、基板21Aの搬送方向に沿って第1ターゲット31Tと第2ターゲット32Tとが配置される(S10)。
 次に、減圧雰囲気で搬送方向に基板21Aを搬送しつつ、第1ターゲット31Tと第2ターゲット32Tとの間に、周波数が長波帯域であって、デューティー比を変えることが可能な交流電圧を印加することによって第1ターゲット31Tと第2ターゲット32Tとの間にプラズマを発生させる(S20)。
 次に、基板21Aに第1ターゲット31Tの材料と第2ターゲット32Tの材料とが混合した層が形成される(S30)。
 図4(a)は、第1実施形態に係る成膜装置の動作を示す概略的断面図であり、図4(b)、(c)は、第1ターゲットと第2ターゲットとに印加する矩形波交流電圧の時間的変化を示す概略図である。ここで、横軸は、時間であり、縦軸は、電圧である。図4(a)では、図1に例示した真空容器10、基板搬送機構20、交流電源50、制御部60、ガス供給源70等が略されている。
 真空容器10内に放電ガスが導入され、第1ターゲット31Tと第2ターゲット32Tとの間に交流電圧が印加されると、第1ターゲット31Tと第2ターゲット32Tとの間で放電ガスが電離する。放電の際、第1ターゲット31T及び第2ターゲット32Tは、矢印の方向に回転している。
 成膜装置101では、第1ターゲット31Tと第2ターゲット32Tとの間には、矩形波交流電圧が印加されている。このため、第1ターゲット31Tに+Vs電圧が印加されているときには、第2ターゲット32Tに-Vs電圧が印加され、第1ターゲット31Tに-Vs電圧が印加されているときには、第2ターゲット32Tに+Vs電圧が印加される(図4(b))。ここで、図4(b)、(c)における「t」は、矩形波交流電圧の電圧周期である。「t1」は、第1ターゲット31Tに-Vsが印加される時間である。「t2」は、第2ターゲット32Tに-Vsが印加される時間である。放電の際、第1ターゲット31Tと第2ターゲット32Tとの間には、+Vs×2の電圧が印加される。
 成膜源30において、第1ターゲット31Tに-Vs電圧が印加されているときは、放電ガス中の陽イオンによって第1ターゲット31Tがスパッタリングされて、第1ターゲット31Tからスパッタリング粒子S1が放出する。一方、成膜源30において、第2ターゲット32Tに-Vs電圧が印加されているときは、放電ガス中の陽イオンによって第2ターゲット32Tがスパッタリングされて、第2ターゲット32Tからスパッタリング粒子S2が放出する。
 ここで、成膜装置101においては、磁気回路31Mの向きD1がZ軸方向から反れてY軸方向に傾いている。これにより、第1ターゲット31Tの表面近傍では、Z軸方向とY軸方向との間でプラズマが補足されやすくなり、Z軸方向とY軸方向との間でプラズマ密度が高くなる。従って、第1ターゲット31Tからは、主に、Z軸方向とY軸方向との間からスパッタリング粒子S1が放出されて、スパッタリング粒子S1が基板21Aに向かって飛遊する。
 一方、成膜装置101においては、磁気回路32Mの向きD2がZ軸方向から反れてY軸方向とは逆の方向(-Y軸方向)に傾いている。これにより、第2ターゲット32Tの表面近傍では、Z軸方向と-Y軸方向との間でプラズマが補足されやすくなり、Z軸方向と-Y軸方向との間でプラズマ密度が高くなる。従って、第2ターゲット32Tからは、主に、Z軸方向と-Y軸方向との間からスパッタリング粒子S2が放出されて、スパッタリング粒子S2が基板21Aに向かって飛遊する。
 これにより、第1ターゲット31Tから放出されたスパッタリング粒子S1と、第2ターゲット32Tから放出されたスパッタリング粒子S2とが成膜面21d下で混合し、成膜面21dには、第1ターゲット31Tの材料と第2ターゲット32Tの材料とが混合した層が形成される。成膜開始後、一例として、スパッタリング粒子S1、S2のそれぞれの材料層が基板21A上に混合して形成されたり、それぞれの材料層が島状に形成されたりする。
 ここで、図4(b)に示す条件(t1>t2)では、第2ターゲット32Tに-Vs電圧が印加される時間よりも、第1ターゲット31Tに-Vs電圧が印加される時間のほうが長い。これにより、第2ターゲット32Tから放出されるスパッタリング粒子量よりも、第1ターゲット31Tから放出されるスパッタリング粒子量ほうが多くなる。この結果、成膜面21dには、第2ターゲット32Tの材料よりも第1ターゲット31Tの材料がリッチな層が形成される。この場合、第1ターゲット31Tのスパッタリング率と第2ターゲット32Tのスパッタリング率とは、実質的に同じであるとしている。
 一方、図4(c)に示す条件(t1<t2)では、第1ターゲット31Tに-Vs電圧が印加される時間よりも、第2ターゲット32Tに-Vs電圧が印加される時間のほうが長い。これにより、第1ターゲット31Tから放出されるスパッタリング粒子量よりも、第2ターゲット32Tから放出されるスパッタリング粒子量ほうが多くなる。この結果、成膜面21dには、第1ターゲット31Tの材料よりも第2ターゲット32Tの材料がリッチな層が形成される。
 このように、成膜装置101によれば、第1ターゲット31Tと第2ターゲット32Tとの間に矩形波交流電圧を印加し、この矩形波交流電圧のデューティー比(t1/tまたはt2/t)を変えることによって、第1ターゲット31Tの材料と第2ターゲット32Tの材料との混合比を変えて、基板21A上に形成される層の組成を簡便に変えることができる。
 すなわち、本実施形態では、スパッタリング法で基板21A上に異なる組成の層を形成する場合、それぞれの組成に対応させたターゲットを個別に準備することを要しない。すなわち、本実施形態によれば、材料が異なる2つのターゲットを用いて、基板21A上に形成される層の組成を簡便に変更することができる。
 また、本実施形態に係る成膜装置101では、成膜源30と成膜装置101のアース部(真空容器10、防着板11、基板搬送機構20等)との間で放電を起こして成膜をするのではなく、第1ターゲット31Tと第2ターゲット32Tとの間で放電を起こして成膜を行う。
 スパッタリング装置の中には、ターゲットにDC(Direct Current)電圧またはRF(Radio Frequency)電圧を印加し、ターゲットとアース部との間でプラズマを放電させて、基板に層を形成するものがある。このようなスパッタリング装置の中には、ターゲットを複数配置するものもある。
 ここで、スパッタリング装置では、層は、基板だけでなく、アース部にも形成される。従って、ターゲット材が絶縁物等の高抵抗材料である場合、アース部に高抵抗層が堆積し続けると、アース部が厚い高抵抗層で覆われ、ターゲットとアース部との間での安定したプラズマ放電が維持できなくなる可能性がある。このため、ターゲットとアース部との間でプラズマを放電させるスパッタリング装置では、定期的に真空を開放して、アース部から高抵抗材料の取り除くメンテナンス作業が必要になる。
 これに対して、本実施形態に係る成膜装置101では、第1ターゲット31Tと第2ターゲット32Tとの間でプラズマ放電を発生させている。このため、アノード部に高抵抗材料が堆積し続けても、成膜装置101内でのプラズマ放電が長期にわたり持続する。すなわち、成膜装置101は、量産性に優れる。
 また、成膜装置101おいては、矩形波交流電圧の周波数帯域が長波帯域であり、より好ましくは、10kHz以上100kHz以下に設定される。これにより、基板21A上に形成される層の組成が適切に変更され得る。
 例えば、矩形波交流電圧の周波数が10kHzより小さくなると、第1ターゲット31T及び第2ターゲット32Tのそれぞれのスパッタリング時間とが長くなり、基板21A上に、第1ターゲット31Tの材料層と第2ターゲット32Tの材料層とが交互に積層された層が形成されやすくなる。
 一方、矩形波交流電圧の周波数が100kHzより大きくなると、周期tが短くなり過ぎ、デューティー比の分解能が落ちる。これにより、成膜中においては、第1ターゲット31T及び第2ターゲット32Tのどちらか一方に充分な電圧が印加されなくなり、第1ターゲット31T及び第2ターゲット32Tのどちらか一方の材料が層中に混入されにくくなる。
 また、成膜装置101おいては、第1ターゲット31T及び第2ターゲット32Tのそれぞれがロータリーターゲットであり、基板21Aを2つのロータリーターゲットが並ぶ方向(Y軸方向)に移送させながら成膜を行う。これにより、基板21Aが大型基板であっても、基板21Aの面内方向における、第1ターゲット32Tの材料と第2ターゲット32Tの材料との混合比が均一になる。
 また、成膜装置101おいては、第1ターゲット31T及び第2ターゲット32Tのそれぞれのスパッタリング率が異なる場合、スパッタリング率が低いターゲットに-Vs電圧をより長く印加することにより、第1ターゲット31Tの材料及び第2ターゲット32Tの材料のそれぞれが万遍なく混合した層を基板21A上に形成することができる。
 図5は、矩形波交流電圧のデューティー比と、層のシート抵抗との関係を示すグラフ図である。
 成膜条件は、以下の通りである。
 第1ターゲット31T:酸化ニオブターゲット
 第2ターゲット32T:ITOターゲット(酸化スズ5wt%)
 電力:1kW/m(ターゲット1個相当)
 成膜圧力:0.4Pa
 周波数:20kHz
 成膜層の厚さ:10nm
 成膜温度:室温
 図5の横軸は、デューティー比(%)である。デューティー比は、t2/tが百分率で表されている。図5の縦軸は、層のシート抵抗(Ω/sq.)である。ここで、酸化ニオブの抵抗率は、ITOターゲット(酸化スズ5wt%)の抵抗率よりも高い。
 図5に示すように、t2/t(%)が大きくなるにつれ、成膜層のシート抵抗が低くなっている。すなわち、図5の結果は、t2/t(%)を調整することにより、成膜層における、第1ターゲット31Tの材料と第2ターゲット32Tの材料との比率を変化させ、成膜層のシート抵抗を簡便に調整できること示している。
 図6は、第1実施形態に係る成膜装置の別の動作を示す概略的断面図である。
 成膜装置101においては、第1磁気回路31Mが中心軸31cを軸に回転可能に構成されている。また、第2磁気回路32Mは、中心軸32cを軸に回転可能に構成されている。これにより、成膜装置101においては、磁気回路31Mによって、第1ターゲット31Tの近傍に補足されるプラズマの位置が自在に変えられ、第1ターゲット31Tから放出されるスパッタリング粒子の進行方向を自在に変えることができる。また、磁気回路32Mによって、第2ターゲット32Tの近傍に補足されるプラズマの位置も自在に変えられ、第2ターゲット32Tから放出されるスパッタリング粒子の進行方向を自在に変えることができる。
 例えば、図6の例では、第2磁気回路32Mの磁石32mgが第1ターゲット31Tに対向している。このような状態で、第1ターゲット31Tと第2ターゲット32Tとの間に矩形波交流電圧が印加されると、第1ターゲット31Tと第2ターゲット32Tとの間で放電ガスが電離する。
 ここで、第2磁気回路32Mの磁石32mgは、第1ターゲット31Tに対向している。このため、第2ターゲット32Tの表面近傍では、第1ターゲット31Tが第2ターゲット32Tに対向する位置においてプラズマが補足されやすくなる。これにより、第2ターゲット32Tからは、第1ターゲット31Tに向かってスパッタリング粒子S2が放出される。
 一方、第1ターゲット31Tにおいては、第1ターゲット31Tの材料とともに、第1ターゲット31Tに付着した第2ターゲット32Tの材料がスパッタリングされる。これにより、第1ターゲット31Tからは、第1ターゲット31Tの材料及び第2ターゲット32Tの材料を含むスパッタリング粒子S1、S2が基板21Aに向かって飛遊する。この結果、図6の構成においても、基板21Aには、第1ターゲット31Tの材料と第2ターゲット32Tの材料とが混合した層が形成される。
 図6に示す構成は、例えば、以下に説明する例に適用される。
 例えば、ある金属Mの酸化物MOは、焼結体になりにくいとする。このような酸化物MOは、ターゲット材になりにくい。従って、酸化物MOについては、スパッタリング法を用いて、層中に混入させることが難しくなる。
 このような場合、図6に示す構成において、第1ターゲット31Tとして酸化物Aのターゲットを用い、第2ターゲット32Tとして金属Mのターゲットを用いる。さらに、放電ガスには、酸素を添加する。
 放電を開始すると、第2ターゲット32Tからは、金属Mのスパッタリング粒子が放出され、この金属Mのスパッタリング粒子は、第1ターゲット31Tの表面に付着する。一方、第1ターゲット31Tにおいては、第1ターゲット31Tの酸化物Aとともに、第1ターゲット31Tに付着した金属Mがスパッタリングされる。
 これにより、第1ターゲット31Tからは、酸化物A及び金属Mを含むスパッタリング粒子が放出され、これらのスパッタリング粒子が基板21Aに向けて飛遊する。ここで、放電ガスには、アシストガスとして酸素が添加されている。このため、金属Mのスパッタリング粒子は、酸化物粒子(MO)になり、結局、基板21Aには、酸化物Aと酸化物MOとが混合した層が形成される。
 特に、図6の例では、金属Mのスパッタリング粒子を直接、基板21Aに向けて放出するのではなく、一旦、第1ターゲット31Tに金属Mを付着させ、そこからさらに、基板21Aに向けて放出する。このため、金属Mのスパッタリング粒子が基板21Aに届くまでのパスがより長くなり、金属Mのスパッタリング粒子が酸素と接触する機会が増加する。これにより、第2ターゲット32Tから放出された金属Mのスパッタリング粒子は、酸化物MOになりやすく、確実に酸化物MOを層に混在させることができる。または、第1ターゲット31Tの材料を付着させた第2ターゲット32Tからスパッタリング粒子を放出させることにより、成膜面21dに形成される層の厚さ方向における組成がよりばらつきにくくなる。
 また、本実施形態において、基板及び基板を搬送する基板搬送機構は、上記の構成に限らず、例えば、下記のような構成でもよい。
 [第2実施形態]
 図7は、第2実施形態に係る成膜装置の概略的断面図である。図7には、図1に例示した真空容器10、基板搬送機構20、交流電源50、制御部60、ガス供給源70等が略されている。
 成膜装置102は、巻取式成膜装置である。成膜装置102では、基板として、所定幅に裁断された長尺状の可撓性基板21Bが用いられる。可撓性基板21Bは、例えば、ポリイミドフィルム等である。成膜装置102は、基板搬送機構23を具備する。基板搬送機構23は、主ローラ23A、ガイドローラ23B及びガイドローラ23Cを具備する。搬送機構23は、フィルム走行機構である。主ローラ23Aは、成膜源30に対向する。主ローラ23Aと成膜源30との間に可撓性基板21Bが配置される。
 成膜装置102においては、可撓性基板21Bの裏面(成膜面21dとは反対側の面)が主ローラ23Aのローラ面に接している。可撓性基板21Bの成膜面21dは、成膜源30に対向する。そして、主ローラ23A、ガイドローラ23B及びガイドローラ23Cの自転によって、可撓性基板21Bが矢印Gの方向に連続的に走行する。
 成膜装置102においても、第1ターゲット31Tと第2ターゲット32Tとの間に矩形波交流電圧が印加されると、第1ターゲット31Tからスパッタリング粒子S1が放出し、第2ターゲット32Tからスパッタリング粒子S2が放出する。これにより、可撓性基板21Bが基板搬送機構23によって走行されつつ、可撓性基板21Bの成膜面21dには、第1ターゲット31Tの材料と第2ターゲット32Tの材料とが混合した層が形成される。
 このような基板搬送機構23を具備した成膜装置102のスパッタリング成膜においても、成膜装置101と同じ作用をする。
 [第3実施形態]
 図8は、第3実施形態に係る成膜装置の概略的断面図である。図8には、図1に例示した真空容器10、基板搬送機構20、交流電源50、制御部60、ガス供給源70等が略されている。
 成膜装置103では、基板として、基板21Aに比べて小型の基板21Cが用いられる。基板21Cの平面形状は、矩形状または円形状である。基板21Cは、例えば、ガラス基板、半導体基板等である。成膜装置103においては、成膜源30と基板搬送機構24との上下の位置が逆であってもよい。さらに、Z軸方向が地面に対して垂直な方向でもよく、X軸方向が地面に対して垂直な方向でもよい。
 成膜装置103は、基板回転式の搬送機構を具備する。基板搬送機構24は、中心軸24cを軸に回転する回転ステージである。基板搬送機構24は、成膜源30に対向する。基板搬送機構24は、外周において複数の基板21Cを支持する。基板21Cは、X軸方向に複数配置されてもよい。基板搬送機構24の自転により、複数の基板21Cが回転方向Rの方向に回転する。基板搬送機構24の回転方向には、第1ターゲット31Tと第2ターゲット32Tとが並ぶ。基板搬送機構24の中心軸24c、第1ターゲット31Tの中心軸31c及び第2ターゲット32Tの中心軸32cのそれぞれは、平行になっている。
 成膜装置103においても、第1ターゲット31Tと第2ターゲット32Tとの間に矩形波交流電圧が印加されると、第1ターゲット31Tからスパッタリング粒子S1が放出し、第2ターゲット32Tからスパッタリング粒子S2が放出する。これにより、基板21Cが基板搬送機構24によって回転しつつ、基板21Cの成膜面21dには、第1ターゲット31Tの材料と第2ターゲット32Tの材料とが混合した層が形成される。
 このような基板搬送機構24を具備した成膜装置103のスパッタリング成膜においても、成膜装置101と同じ作用をする。
 [第4実施形態]
 図9は、第4実施形態に係る成膜装置の概略的上面図である。図9には、図1に例示した真空容器10、基板搬送機構20、交流電源50、制御部60、ガス供給源70等が略されている。成膜装置104においては、成膜源30と基板搬送機構25との上下の位置が逆であってもよい。
 成膜装置104は、基板回転式の搬送機構を具備する。基板搬送機構25は、中心軸25cを軸に回転する回転ステージである。基板搬送機構25は、成膜源30に対向する。基板搬送機構25は、上面側に複数の基板21Cを支持する。基板21Cは、X軸方向に複数配置されてもよい。図9の例では、複数の基板21Cが放射状に配置されている。
 基板搬送機構25の自転により、複数の基板21Cが回転方向Rの方向に回転する。基板搬送機構25の回転方向には、第1ターゲット31Tと第2ターゲット32Tとが並ぶ。基板搬送機構25の中心軸25cは、第1ターゲット31Tの中心軸31c及び第2ターゲット32Tの中心軸32cのそれぞれに対して直交している。
 成膜装置104においても、第1ターゲット31Tと第2ターゲット32Tとの間に矩形波交流電圧が印加されると、第1ターゲット31Tからスパッタリング粒子S1が放出し、第2ターゲット32Tからスパッタリング粒子S2が放出する。これにより、基板21Cが基板搬送機構25によって回転しつつ、基板21Cの成膜面21dには、第1ターゲット31Tの材料と第2ターゲット32Tの材料とが混合した層が形成される。
 このような基板搬送機構25を具備した成膜装置104のスパッタリング成膜においても、成膜装置101と同じ作用をする。
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。
 10…真空容器
 10a…基板搬入部
 10b…基板搬出部
 10d…排気口
 11…防着板
 20、23、24、25…基板搬送機構
 20f…フレーム部
 20r…ローラ回転機構
 21A、21B、21C…基板
 21d…成膜面
 22…基板ホルダ
 24c、25c、31c、32c…中心軸
 30…成膜源
 31…第1成膜源
 31T…第1ターゲット
 31B…第1バッキングチューブ
 31M…第1磁気回路
 31mg…磁石
 32…第2成膜源
 32T…第2ターゲット
 32B…第2バッキングチューブ
 32M…第2磁気回路
 32mg…磁石
 50…交流電源
 60…制御部
 70…ガス供給源
 71…流量調整器
 72…ガスノズル
 101、102、103、104…成膜装置
 S1、S2…スパッタリング粒子

Claims (13)

  1.  減圧状態を維持することが可能な真空容器と、
     前記真空容器内で基板を搬送することが可能な基板搬送機構と、
     前記基板に対向し前記基板の搬送方向に沿って配置された第1ターゲットと第2ターゲットとを有し、前記第1ターゲットの材料が前記第2ターゲットの材料と異なり、前記第1ターゲットと前記第2ターゲットとの間に周波数が長波帯域の交流電圧が印加されることによりプラズマを発生させ、前記基板に前記第1ターゲットの前記材料と前記第2ターゲットの前記材料とが混合した層を形成することが可能な成膜源と、
     前記交流電圧のデューティー比を変えることが可能な制御部と
     を具備する成膜装置。
  2.  請求項1に記載の成膜装置であって、
     前記第1ターゲットの抵抗率は、前記第2ターゲットの抵抗率と異なる
     成膜装置。
  3.  請求項1に記載の成膜装置であって、
     前記第1ターゲットのスパッタリング率は、前記第2ターゲットのスパッタリング率とは異なる
     成膜装置。
  4.  請求項1~3のいずれか1つに記載の成膜装置であって、
     前記周波数は、10kHz以上100kHz以下である
     成膜装置。
  5.  請求項1~4のいずれか1つに記載の成膜装置であって、
     前記第1ターゲット及び前記第2ターゲットのそれぞれは、円筒型に構成され、
     前記第1ターゲット及び前記第2ターゲットのそれぞれの中心軸は、前記基板の搬送方向に対して交差し、
     前記第1ターゲット及び前記第2ターゲットのそれぞれは、それぞれの前記中心軸を軸に回転可能に構成されている
     成膜装置。
  6.  請求項1~5のいずれか1つに記載の成膜装置であって、
     前記成膜源は、前記第1ターゲットの内部に配置される第1磁気回路と、前記第2ターゲットの内部に配置される第2磁気回路とをさらに有し、
     前記第1磁気回路が前記第1ターゲットに対向する向き及び前記第2磁気回路が前記第2ターゲットに対向する向きが可変となるように構成されている
     成膜装置。
  7.  第1ターゲットと、前記第1ターゲットとは材料が異なる第2ターゲットとを基板に対向させるとともに、前記基板の搬送方向に沿って前記第1ターゲットと前記第2ターゲットとを配置し、
     減圧雰囲気で前記搬送方向に前記基板を搬送しつつ、前記第1ターゲットと前記第2ターゲットとの間に、周波数が長波帯域であって、デューティー比を変えることが可能な交流電圧を印加することによって前記第1ターゲットと前記第2ターゲットとの間にプラズマを発生させ、
     前記基板に前記第1ターゲットの材料と前記第2ターゲットの材料とが混合した層を形成する
     成膜方法。
  8.  請求項7に記載の成膜方法であって、
     前記第1ターゲットの抵抗率は、前記第2ターゲットの抵抗率と異なる
     成膜方法。
  9.  請求項7に記載の成膜方法であって、
     前記第1ターゲットのスパッタリング率は、前記第2ターゲットのスパッタリング率とは異なる
     成膜方法。
  10.  請求項7~9のいずれか1つに記載の成膜方法であって、
     前記周波数は、10kHz以上100kHz以下である
     成膜方法。
  11.  請求項7~10のいずれか1つに記載の成膜方法であって、
     前記第1ターゲット及び前記第2ターゲットのそれぞれを円筒型に構成し、
     前記第1ターゲット及び前記第2ターゲットのそれぞれの中心軸を前記基板の搬送方向に対して交差させ、
     前記第1ターゲット及び前記第2ターゲットのそれぞれをそれぞれの前記中心軸を軸に回転させながら前記第1ターゲットと前記第2ターゲットとの間に前記プラズマを発生させる
     成膜方法。
  12.  請求項7~11のいずれか1つに記載の成膜方法であって、
     前記第1ターゲットの内部に第1磁気回路を配置し、前記第2ターゲットの内部に第2磁気回路を配置し、
     前記第1磁気回路が前記第1ターゲットに対向する向きと、前記第2磁気回路が前記第2ターゲットに対向する向きとを変えて、前記第1ターゲットと前記第2ターゲットとの間に前記プラズマを発生させる
     成膜方法。
  13.  請求項9~12のいずれか1つに記載の成膜方法であって、
     前記第1ターゲット及び前記第2ターゲットのそれぞれの前記スパッタリング率が異なる場合、前記スパッタリング率が低いターゲットに前記交流電圧をより長く印加する
     成膜方法。
PCT/JP2018/006024 2017-04-03 2018-02-20 成膜装置及び成膜方法 WO2018186038A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018533275A JPWO2018186038A1 (ja) 2017-04-03 2018-02-20 成膜装置及び成膜方法
KR1020197031327A KR20190132667A (ko) 2017-04-03 2018-02-20 막형성 장치 및 막형성 방법
CN201880022101.5A CN110494590A (zh) 2017-04-03 2018-02-20 成膜装置及成膜方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-073577 2017-04-03
JP2017073577 2017-04-03

Publications (1)

Publication Number Publication Date
WO2018186038A1 true WO2018186038A1 (ja) 2018-10-11

Family

ID=63712507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006024 WO2018186038A1 (ja) 2017-04-03 2018-02-20 成膜装置及び成膜方法

Country Status (5)

Country Link
JP (1) JPWO2018186038A1 (ja)
KR (1) KR20190132667A (ja)
CN (1) CN110494590A (ja)
TW (1) TW201842547A (ja)
WO (1) WO2018186038A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2588936A (en) * 2019-11-15 2021-05-19 Dyson Technology Ltd Sputter deposition
GB2588938A (en) * 2019-11-15 2021-05-19 Dyson Technology Ltd Sputter deposition
JP2022092404A (ja) * 2020-12-10 2022-06-22 キヤノントッキ株式会社 成膜装置、成膜方法及び電子デバイスの製造方法
JP2022092406A (ja) * 2020-12-10 2022-06-22 キヤノントッキ株式会社 成膜装置、成膜方法及び電子デバイスの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157867A (ja) * 1986-08-06 1988-06-30 Ube Ind Ltd プラズマ制御マグネトロンスパッタリング法及び装置
JP2003096561A (ja) * 2001-09-25 2003-04-03 Sharp Corp スパッタ装置
JP2004266112A (ja) * 2003-03-03 2004-09-24 Ulvac Japan Ltd パルス状直流スパッタ成膜方法及び該方法のための成膜装置
JP2014500398A (ja) * 2010-11-17 2014-01-09 ソレラス・アドバンスト・コーティングス・ベスローテン・フェンノートシャップ・メット・ベペルクテ・アーンスプラーケレイクヘイト ソフトスパッタリングマグネトロンシステム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855948A (ja) 1981-09-29 1983-04-02 Ricoh Co Ltd コロナ放電用電源装置
ES2202439T3 (es) * 1995-04-25 2004-04-01 Von Ardenne Anlagentechnik Gmbh Sistema de pulverizacion que utiliza un magnetron cilindrico rotativo alimentado electricamente utilizando corriente alterna.
CN1358881A (zh) * 2001-11-20 2002-07-17 中国科学院长春光学精密机械与物理研究所 真空多元溅射镀膜方法
US20060278521A1 (en) * 2005-06-14 2006-12-14 Stowell Michael W System and method for controlling ion density and energy using modulated power signals
JP2017525853A (ja) * 2014-09-01 2017-09-07 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 材料を基板上に堆積するためのアセンブリ及び方法
CN105448818B (zh) * 2015-12-31 2018-10-16 上海集成电路研发中心有限公司 一种应用于半导体铜互连工艺的磁控溅射方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157867A (ja) * 1986-08-06 1988-06-30 Ube Ind Ltd プラズマ制御マグネトロンスパッタリング法及び装置
JP2003096561A (ja) * 2001-09-25 2003-04-03 Sharp Corp スパッタ装置
JP2004266112A (ja) * 2003-03-03 2004-09-24 Ulvac Japan Ltd パルス状直流スパッタ成膜方法及び該方法のための成膜装置
JP2014500398A (ja) * 2010-11-17 2014-01-09 ソレラス・アドバンスト・コーティングス・ベスローテン・フェンノートシャップ・メット・ベペルクテ・アーンスプラーケレイクヘイト ソフトスパッタリングマグネトロンシステム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2588936A (en) * 2019-11-15 2021-05-19 Dyson Technology Ltd Sputter deposition
GB2588938A (en) * 2019-11-15 2021-05-19 Dyson Technology Ltd Sputter deposition
JP2022092404A (ja) * 2020-12-10 2022-06-22 キヤノントッキ株式会社 成膜装置、成膜方法及び電子デバイスの製造方法
JP2022092406A (ja) * 2020-12-10 2022-06-22 キヤノントッキ株式会社 成膜装置、成膜方法及び電子デバイスの製造方法
JP7216064B2 (ja) 2020-12-10 2023-01-31 キヤノントッキ株式会社 成膜装置、成膜方法及び電子デバイスの製造方法
JP7239549B2 (ja) 2020-12-10 2023-03-14 キヤノントッキ株式会社 成膜装置、成膜方法及び電子デバイスの製造方法

Also Published As

Publication number Publication date
KR20190132667A (ko) 2019-11-28
JPWO2018186038A1 (ja) 2019-04-18
CN110494590A (zh) 2019-11-22
TW201842547A (zh) 2018-12-01

Similar Documents

Publication Publication Date Title
WO2018186038A1 (ja) 成膜装置及び成膜方法
JP4336739B2 (ja) 成膜装置
TWI427170B (zh) Film forming method and thin film forming apparatus
TW201402851A (zh) 利用一預穩定電漿之製程的濺鍍方法
TWI526564B (zh) Film forming apparatus and film forming method
JP5527894B2 (ja) スパッタ装置
JP2014189861A (ja) 膜形成方法
WO2009157228A1 (ja) スパッタリング装置、スパッタリング方法及び発光素子の製造方法
JP5447240B2 (ja) マグネトロンスパッタリング装置および透明導電膜の製造方法
KR20110081042A (ko) 성막 방법 및 반도체 장치
WO2021230017A1 (ja) マグネトロンスパッタリング装置及びこのマグネトロンスパッタリング装置を用いた成膜方法
JP4858492B2 (ja) スパッタリング装置
JP6608537B2 (ja) 成膜装置及び成膜方法
KR20110122456A (ko) 액정표시장치의 제조장치 및 제조방법
US20140110248A1 (en) Chamber pasting method in a pvd chamber for reactive re-sputtering dielectric material
TW201615872A (zh) 用於沉積材料於基板上的沉積裝置、組件及方法
JP2019218604A (ja) 成膜装置及びスパッタリングターゲット機構
JP2009046714A (ja) 成膜装置および成膜方法
JP2022544641A (ja) 基板上に材料を堆積する方法
KR102142002B1 (ko) 기판 상의 재료 증착을 위한 방법, 재료 증착 프로세스를 제어하기 위한 제어기, 및 기판 상의 층 증착을 위한 장치
JP2014189815A (ja) 成膜装置、及び成膜方法
JP2014084487A (ja) 薄膜積層シートの形成方法、及び、薄膜積層シートの形成装置
TW201604937A (zh) 用於材料在基板上之沉積的設備和方法
WO2019176343A1 (ja) 成膜方法
JP2023509272A (ja) 基板上に薄膜トランジスタの層を堆積する方法及びスパッタ堆積装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018533275

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18781208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197031327

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18781208

Country of ref document: EP

Kind code of ref document: A1