WO2018186006A1 - 圧粉磁心、磁心用粉末およびそれらの製造方法 - Google Patents
圧粉磁心、磁心用粉末およびそれらの製造方法 Download PDFInfo
- Publication number
- WO2018186006A1 WO2018186006A1 PCT/JP2018/002663 JP2018002663W WO2018186006A1 WO 2018186006 A1 WO2018186006 A1 WO 2018186006A1 JP 2018002663 W JP2018002663 W JP 2018002663W WO 2018186006 A1 WO2018186006 A1 WO 2018186006A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- ferrite
- soft magnetic
- magnetic core
- magnetic particles
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/33—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/142—Thermal or thermo-mechanical treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/16—Metallic particles coated with a non-metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/08—Cores, Yokes, or armatures made from powder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0206—Manufacturing of magnetic cores by mechanical means
- H01F41/0246—Manufacturing of magnetic circuits by moulding or by pressing powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
- B22F2009/0824—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
- C22C2202/02—Magnetic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/34—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
- H01F1/342—Oxides
- H01F1/344—Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
Definitions
- the present invention relates to a dust core made of soft magnetic particles insulated with spinel ferrite.
- electromagnetism there are many products that use electromagnetism, such as transformers, electric motors, motors, generators, speakers, induction heaters, and various actuators. Many of these use an alternating magnetic field, and a magnetic core (soft magnet) is usually provided in the alternating magnetic field in order to efficiently obtain a large alternating magnetic field locally.
- the magnetic core is required to have not only high magnetic characteristics in an alternating magnetic field but also low high-frequency loss (hereinafter simply referred to as “iron loss” regardless of the material of the magnetic core) when used in an alternating magnetic field.
- the iron loss includes eddy current loss, hysteresis loss, and residual loss. In particular, it is important to reduce eddy current loss that increases in proportion to the square of the frequency of the alternating magnetic field.
- a dust core made of insulatingly coated soft magnetic particles (each particle of the magnetic core powder) is used.
- the dust core is used in various electromagnetic devices because of its low eddy current loss and high shape flexibility.
- the insulating layer between adjacent soft magnetic particles (grain boundaries) is made of non-magnetic silicon particles, resin, compound, etc.
- the magnetic properties (saturated magnetic flux density) of the dust core are increased by the non-magnetic insulating layer.
- magnetic permeability can be reduced.
- a powder magnetic core using a spinel type ferrite also simply referred to as “ferrite”
- ferrite which is a magnetic material
- JP 2003-151813 A JP 2005-340368 A JP 2005-142241 A JP 2006-97097 A JP 2016-127042 A JP 2016-86124 A
- the ferrites proposed in Patent Documents 1 to 5 are each composed of a metal element (M) such as Mn and Zn, and Fe and O.
- the insulating layer proposed in Patent Document 6 is composed of a mixed layer of silicon particles and special ferrite particles made of Ni—Zn—Cu containing no Fe.
- the present invention has been made in view of such circumstances, and an object thereof is to provide a dust core or the like in which a new insulating layer different from the conventional one is provided at the grain boundary of soft magnetic particles.
- the powder magnetic core of the present invention is a powder magnetic core comprising soft magnetic particles made of pure iron or an iron alloy and a grain boundary layer between adjacent soft magnetic particles, and the grain boundary layer comprises: From a main phase consisting of a metal element (M) that becomes a divalent cation and a spinel type ferrite of Fe and O (MxFe 3 -x O 4 , 0 ⁇ x ⁇ 1), and one or more of Cu, Sn, or Co And a barrier phase.
- M metal element
- the dust core of the present invention can stably exhibit high specific resistance even when exposed to a high temperature environment or used for a long time. For example, even if heat treatment (annealing) is performed for the purpose of removing strain introduced into the soft magnetic particles during pressure molding, the grain boundary layer according to the present invention does not deteriorate so much in insulation, and the green compact of the present invention The magnetic core can stably maintain a high specific resistance. As a result, the dust core of the present invention can achieve both a reduction in eddy current loss due to the high insulation of the grain boundary layer and a reduction in hysteresis loss due to the low coercive force of the soft magnetic particles.
- the grain boundary layer according to the present invention includes one or more of Cu, Sn, or Co (simply referred to as “first metal element” in addition to the main phase made of ferrite, which is a highly insulating magnetic material. Or “M1”).
- first metal element in addition to the main phase made of ferrite, which is a highly insulating magnetic material. Or “M1”).
- Cu or the like constituting the barrier phase has a small solid solubility limit with respect to Fe (the solid solution region is narrow), and can prevent Fe diffusion from soft magnetic particles to ferrite.
- the main phase responsible for insulation is protected by the barrier phase, and the high specific resistance is stably maintained. It is guessed that it became.
- the present invention can be grasped as a powder for a magnetic core as a raw material in addition to a powder magnetic core. That is, the present invention comprises magnetic core particles having soft magnetic particles made of pure iron or an iron alloy and a coating film covering the soft magnetic particles, and the coating film includes a metal element (M) that becomes a divalent cation.
- M metal element
- a magnetic core powder having a main phase composed of spinel ferrite composed of Fe and O (MxFe 3 -x O 4 , 0 ⁇ x ⁇ 1) and a barrier phase composed of one or more of Cu, Sn, or Co may be used. .
- the above-described barrier phase is formed in advance in the coating of soft magnetic particles.
- the above-described powder magnetic core can be obtained.
- this invention consists of the particle
- the said film is 1 or more types of Cu, Sn, or Co there first metal element (M1) and the first spinel ferrite of Fe and O (M1yFe 3-y O 4 , 0 ⁇ y ⁇ 1) and one or more of the divalent cation other than the M1 a second spinel ferrite comprising from the second metal element (M2) and Fe and O (M2zFe 3-z O 4 , 0 ⁇ z ⁇ 1), can be grasped as a powder for a magnetic core having a.
- the first metal element (such as Cu) in the first spinel type ferrite (also simply referred to as “first ferrite”) is the soft magnetic particle that is the base. Is preferentially reduced (Cu 2+ + 2e ⁇ ⁇ Cu) by Fe diffused from the metal and precipitates to form the above-described barrier phase.
- the above-described dust core can be obtained even when the magnetic core powder of the present invention is used.
- the magnetic core powder described above is obtained, for example, by the following production method of the present invention. That is, a ferrite generation step of generating spinel ferrite on the surface of soft magnetic particles made of pure iron or an iron alloy is provided, and the ferrite generation step includes a first metal element (M1) that is one or more of Cu, Sn, or Co.
- M1 first metal element
- a first spinel-type ferrite (M1yFe 3-y O 4 , 0 ⁇ y ⁇ 1) is formed on the surface of the soft magnetic particle
- the powder after the ferrite generation step may be heat-treated in advance before being formed into a dust core (powder heating step).
- a dust core powder heating step
- the densification of the coating and the generation of the barrier phase may be performed individually or in parallel. For example, by setting the heating temperature to a low temperature range (for example, 480 ° C. or lower, further 430 ° C. or lower), it is possible to densify the coating and prevent the generation of the barrier phase (M1 precipitation). In this case, the generation of the barrier phase is performed, for example, when the dust core is heat-treated (annealed).
- a low temperature range for example, 480 ° C. or lower, further 430 ° C. or lower
- both densification of the coating and generation of the barrier phase can be caused in parallel.
- the dense coating is unlikely to be deformed or cracked when the magnetic core powder is pressure-molded, and prevents direct contact between the soft magnetic particles, thereby contributing to a higher specific resistance of the powder magnetic core. Further, the densification of the film may be performed on the film already having the barrier phase.
- the above-described dust core is obtained, for example, by a method for manufacturing a dust core including a molding step in which any one of the above-described powders for a magnetic core is pressure-molded.
- x to y in this specification includes the lower limit value x and the upper limit value y.
- a range such as “a to b” can be newly established with any numerical value included in various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.
- FIG. 3 is an element mapping image obtained by TEM observation of a cross section of a grain boundary layer of a dust core according to Sample 2.
- FIG. It is a graph which shows distribution of each element obtained by carrying out the line analysis of the grain boundary layer.
- FIG. 3 is a schematic diagram showing a state in which a coating of magnetic core particles serves as a grain boundary layer of a dust core including a barrier phase and prevents Fe diffusion from soft magnetic particles to the main phase.
- One or two or more components arbitrarily selected from the present specification can be added to the above-described components of the present invention.
- the contents described in the present specification can be appropriately applied not only to the dust core and the magnetic core powder of the present invention, but also to the production methods thereof.
- the content related to the method can also be a component related to the object. Which embodiment is the best depends on the target, required performance, and the like.
- the soft magnetic particles according to the present invention are made of pure iron or an iron alloy. Pure iron powder is preferable in terms of obtaining a high saturation magnetic flux density and improving the magnetic properties of the dust core.
- Si-containing iron alloy (Fe—Si alloy) powder is used as the iron alloy powder, the electrical resistivity is increased by Si, so that the specific resistance of the dust core can be improved and eddy current loss can be reduced.
- the soft magnetic powder may be Fe-49Co-2V (permendur) powder, Sendust (Fe-9Si-6Al) powder, or the like.
- the soft magnetic powder may be a mixture of two or more kinds of powders, for example, a mixed powder of pure iron powder and Fe—Si alloy powder.
- the particle size of the soft magnetic particles can be adjusted according to the specifications of the powder magnetic core, but the particle size of the soft magnetic powder is preferably 50 to 250 ⁇ m, more preferably 106 to 212 ⁇ m. If the particle size is excessively large, the density of the dust core is likely to be reduced and the eddy current loss is increased, and if the particle size is excessively small, the magnetic flux density of the dust core is decreased and the hysteresis loss is likely to be increased.
- particle size in the present specification indicates the size of the soft magnetic particles and is specified by sieving. Specifically, the median value [(d1 + d2) / 2] of the upper limit (d1) and lower limit (d2) of the mesh size used for sieving is defined as the particle size (D). Displayed in ⁇ m units, rounding off after the decimal point.
- the method of producing the soft magnetic powder includes an atomizing method, a mechanical grinding method, and a reduction method.
- the atomized powder may be any of water atomized powder, gas atomized powder, and gas water atomized powder. Atomized powder having substantially spherical particles is less likely to break the coating during molding of the dust core and contributes to a higher specific resistance of the dust core.
- M is, for example, Mn, Zn, Mg, Fe, Ni, Co, Cu, Sn, or Sr.
- the first metal element (M1) and the second metal element (M2) are included in M and are a part of M.
- the main phase is not limited to the barrier phase and the first ferrite that is a precursor thereof, and the main phase may also include M1 (M1: one or more of Cu, Sn, or Co).
- M1 in M1Fe 2 O 4 is reduced by Fe diffused from the soft magnetic particles as the base, and tends to precipitate as M1 (metal).
- M2 is preferably one or more of Mn, Zn, Mg or Ni, one or more of Mn, Zn or Mg, more preferably one or more of Mn or Zn.
- Ferrites containing these metal elements tend to have higher specific resistance and magnetic moment (saturation magnetization) than other ferrites containing M, and the electric characteristics (specific resistance, etc.) and magnetic characteristics of the dust core. (Magnetic flux density, etc.) can be achieved at a high level.
- the ferrite constituting the main phase is not limited to having a single composition, and may be composed of a mixture of ferrites having a plurality of compositions superimposed or mixed.
- the main phase may be constituted by the first ferrite including the barrier phase on the outermost surface side of the soft magnetic particles and the second ferrite on the first ferrite and having a different component composition from the first ferrite.
- the main phase may be composed of three or more types of ferrites having different component compositions.
- the main phase or the grain boundary layer may be a gradient phase (gradient layer) whose component composition changes from the outermost surface of the soft magnetic particles to the outermost surface of the coating.
- Each ferrite may contain a modifying element and inevitable impurities in addition to M, Fe, and O.
- the barrier phase is preferably unevenly distributed closer to the soft magnetic particles with respect to the center of the grain boundary layer. The more the barrier phase is present in the vicinity of the outermost surface of the soft magnetic particles, the more easily the main phase responsible for the insulation of the grain boundary layer is protected against the diffused Fe from the soft magnetic particles.
- the first ferrite (layer) serving as the barrier phase precursor is more than the second ferrite (layer). It is preferable that it is on the surface vicinity side of the soft magnetic particles.
- the barrier phase may be layered around the surface of the soft magnetic particles or may be dispersed in the form of particles near the surface of the soft magnetic particles.
- the barrier phase may be a granular metal (metal particles) on which M1 is deposited or a layered metal (metal layer). Regardless of the form of the barrier phase, the presence of the barrier phase in the grain boundary layer prevents Fe diffusion to the main phase and stably maintains the high specific resistance of the dust core (see FIG. 3).
- the barrier phase may be M1 metal (single), its alloy or its compound. Usually, such a barrier phase is often a nonmagnetic material or a low insulating material. For this reason, the barrier phase in the grain boundary layer or coating is preferably as small as possible as long as Fe diffusion to the main phase can be prevented.
- the thickness at which the barrier phase is distributed is preferably 5 to 300 nm, more preferably 50 to 150 nm.
- the thickness of the grain boundary layer or the coating is about 0.1 to 10 ⁇ m, further about 1 to 5 ⁇ m.
- the thickness (film thickness, layer thickness) in this specification is the peak width (rising to falling) of the target element by measuring the distribution of elements present in the grain boundary layer or coating.
- Ferrite generation process Ferrite plating process
- a powder to be processed soft magnetic powder
- a reaction liquid product liquid
- a spraying method in which a reaction liquid is sprayed onto a powder
- a one-liquid method using a reaction liquid containing urea reference document: Japanese Patent Laid-Open No. 2016-127042
- Either method can generate the ferrite according to the present invention.
- the ferrite generation step may be repeated according to the ferrite film thickness. Moreover, it is preferable to perform a washing process for removing unnecessary substances after the ferrite production process.
- the washing step is performed using an alkaline aqueous solution, water, ethanol or the like. Unnecessary items to be washed are ferrite particles that have not contributed to film formation, chlorine, sodium, and the like contained in the treatment liquid (reaction liquid, pH adjustment liquid).
- the second generation step for generating the second ferrite as the main phase is performed after the first generation step for generating the first ferrite as the precursor of the barrier phase.
- the barrier phase is formed on the outermost surface side of the soft magnetic particles, and the main phase is easily prevented from being altered by the diffused Fe.
- the powder for magnetic core is preferably subjected to a powder heating step of heating at 100 to 700 ° C, more preferably 150 to 650 ° C in a non-oxidizing atmosphere after the ferrite production step.
- a powder heating step of heating at 100 to 700 ° C, more preferably 150 to 650 ° C in a non-oxidizing atmosphere after the ferrite production step.
- the heating temperature is preferably 150 to 480 ° C., more preferably 350 to 430 ° C., for example.
- the heating temperature is preferably 520 to 700 ° C., more preferably 570 to 650 ° C., for example.
- the powder magnetic core is preferably subjected to an annealing step in which the molded body obtained in the molding step is heated at 400 to 900 ° C., further 500 to 700 ° C. in a non-oxidizing atmosphere.
- a barrier phase may be generated from the coating of the magnetic core particles.
- the non-oxidizing atmosphere referred to in this specification is an inert gas atmosphere, a nitrogen gas atmosphere, a vacuum atmosphere, or the like.
- the dust core preferably has a specific resistance of 50 ⁇ m or more, 100 ⁇ m or more, further 200 ⁇ m or more, and a coercive force of 200 A / m or less, 185 A / m or less, or 175 A / m or less.
- the dust core can be used for electromagnetic devices such as a motor, an actuator, a transformer, an induction heater (IH), a speaker, and a reactor, for example.
- electromagnetic devices such as a motor, an actuator, a transformer, an induction heater (IH), a speaker, and a reactor, for example.
- IH induction heater
- speaker a speaker
- reactor for example.
- iron core constituting an armature (rotor or stator) of an electric motor or generator.
- a plurality of dust cores with different grain boundary layers were manufactured, the characteristics of each dust core were measured, and the structure of the grain boundary layers was observed.
- the present invention will be described more specifically based on such examples.
- the first treated powder was again heated to 130 ° C. in the atmosphere, and the second ferrite production liquid (reaction liquid) was sprayed onto the first treated powder while stirring (second production step).
- the second product liquid is prepared by dissolving manganese chloride (MnCl 2 ), zinc chloride (ZnCl 2 ) and iron chloride (FeCl 2 ) in a molar ratio of 0.5: 0.5: 2 in ion-exchanged water. did.
- the second product liquid was adjusted to pH 8.
- the first treated powder after the spray treatment was also washed with pure water (washing step) and heated to 100 ° C. and dried (drying step).
- Samples 1 and 2 differ from Sample C1 in that a sufficiently high specific resistance is maintained even after the annealing process. In particular, it was also found that the specific resistance of Sample 2 was remarkably increased not only for Sample C1 but also for Sample 1. Moreover, the samples 1 and 2 also have a smaller coercive force than the sample C1.
- eddy current loss and hysteresis loss can be obtained by using a magnetic core powder composed of soft magnetic particles whose surface is coated with first ferrite (CuFe 2 O 4 ), and further, a magnetic core powder obtained by preheating the powder. It was found that a powder magnetic core capable of reducing both of the above was obtained.
- the grain boundary layer of Sample 1 has a composite structure in which a barrier phase composed of Cu precipitates is dispersed in a main phase composed of spinel ferrite. It was confirmed that It was also found that the barrier phase is unevenly distributed on the outermost surface side of the soft magnetic particles, and the existence region is about 50 to 150 nm.
- the dust core obtained by molding and annealing the magnetic core powder composed of soft magnetic particles coated with the first ferrite and the second ferrite has a grain boundary layer in which the main phase and the barrier phase coexist. It was revealed that high resistivity and low coercive force can be achieved at a high level.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Dispersion Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
- Soft Magnetic Materials (AREA)
Abstract
高比抵抗と低保磁力を両立できる低損失な圧粉磁心を提供する。 本発明の圧粉磁心は、純鉄または鉄合金からなる軟磁性粒子と、軟磁性粒子の隣接間にある粒界層とからなる。その粒界層は、2価の陽イオンとなる金属元素(M)とFeとOのスピネル型フェライト(MxFe3-xO4,0<x≦1)からなる主相と、Cu、SnまたはCoの1種以上からなるバリア相とを有する。本発明の圧粉磁心は、CuFe2O4等の第一フェライトとMnFe2O4等の第二フェライトが共存した被膜で被覆された軟磁性粒子からなる磁心用粉末を用いることにより得られる。バリア相は、軟磁性粒子からのFe拡散を阻止して、絶縁性を担う第二フェライトからなる主相の変質を抑止する。
Description
本発明は、スピネル型フェライトで絶縁された軟磁性粒子からなる圧粉磁心等に関する。
変圧器(トランス)、電動機(モータ)、発電機、スピーカ、誘導加熱器、各種アクチュエータ等、電磁気を利用した製品が多い。これらは、交番磁界を利用したものが多く、局所的に大きな交番磁界を効率的に得るために、通常、磁心(軟磁石)をその交番磁界中に設けている。
磁心には、交番磁界中における高磁気特性のみならず、交番磁界中で使用したときの高周波損失(以下、磁心の材質に拘らず単に「鉄損」という。)が少ないことが求められる。鉄損には、渦電流損失、ヒステリシス損失および残留損失があり、中でも交番磁界の周波数の2乗に比例して高くなる渦電流損失の低減が重要である。
このような磁心として、絶縁被覆された軟磁性粒子(磁心用粉末の各粒子)からなる圧粉磁心が用いられている。圧粉磁心は、渦電流損失が小さく、形状自由度が高いため、種々の電磁機器に利用されている。但し、隣接する軟磁性粒子間(粒界)にある絶縁層が非磁性なシリコン粒子、樹脂、化合物等からなると、その非磁性な絶縁層の分だけ、圧粉磁心の磁気特性(飽和磁束密度や透磁率等)が低下し得る。そこで、磁性材であるスピネル型フェライト(単に「フェライト」ともいう。)を絶縁層とした圧粉磁心が提案されており、下記の特許文献に関連する記載がある。
特許文献1~5で提案されているフェライトは、いずれも、Mn、Zn等の金属元素(M)とFeとOからなる。特許文献6で提案されている絶縁層は、シリコン粒子と、Feを含まないNi-Zn-Cuからなる特殊なフェライト粒子との混合層からなる。
本発明はこのような事情に鑑みて為されたものであり、従来とは異なる新たな絶縁層を軟磁性粒子の粒界に設けた圧粉磁心等を提供することを目的とする。
本発明者はこの課題を解決すべく鋭意研究した結果、フェライトからなる絶縁層中にCu等を析出させることにより、熱処理(焼鈍)後でも、高い体積比抵抗(単に「比抵抗」という。)を発現する圧粉磁心を得ることに成功した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。
《圧粉磁心》
(1)本発明の圧粉磁心は、純鉄または鉄合金からなる軟磁性粒子と該軟磁性粒子の隣接間にある粒界層とからなる圧粉磁心であって、前記粒界層は、2価の陽イオンとなる金属元素(M)とFeとOのスピネル型フェライト(MxFe3-xO4 ,0<x≦1)からなる主相と、Cu、SnまたはCoの1種以上からなるバリア相と、を有する。
(1)本発明の圧粉磁心は、純鉄または鉄合金からなる軟磁性粒子と該軟磁性粒子の隣接間にある粒界層とからなる圧粉磁心であって、前記粒界層は、2価の陽イオンとなる金属元素(M)とFeとOのスピネル型フェライト(MxFe3-xO4 ,0<x≦1)からなる主相と、Cu、SnまたはCoの1種以上からなるバリア相と、を有する。
(2)本発明の圧粉磁心は、高温環境に曝されたり、長期使用されても、高比抵抗を安定的に発揮し得る。例えば、加圧成形時に軟磁性粒子へ導入された歪みを除去する目的で熱処理(焼鈍)が施されても、本発明に係る粒界層は絶縁性があまり低下せず、本発明の圧粉磁心は高比抵抗を安定的に維持し得る。この結果、本発明の圧粉磁心は、粒界層の高絶縁性による渦電流損失の低減と軟磁性粒子の低保磁力化によるヒステリシス損失の低減とを高次元で両立し得る。
本発明の圧粉磁心が高比抵抗を安定的に維持し得る理由は、現状、次のように考えられる。本発明に係る粒界層は、従来の絶縁層とは異なり、高絶縁性の磁性材であるフェライトからなる主相に加えて、Cu、SnまたはCoの1種以上(単に「第一金属元素」または「M1」ともいう。)からなるバリア相を有する。バリア相を構成するCu等は、Feに対する固溶限が小さく(固溶域が狭く)、軟磁性粒子からフェライトへのFe拡散を阻止し得る。この結果、軟磁性粒子から拡散してくるFeにより主相中のFeが還元(Fe3++e-→Fe2+)されて、高絶縁性のフェライトが低絶縁性のFeO等へ変化する現象が抑止される。
こうして本発明の圧粉磁心では、主相とバリア相が共存した粒界層を有することにより、絶縁性を担う主相がバリア相により保護され、高比抵抗が安定的に維持されるようになったと推察される。
《磁心用粉末》
(1)本発明は、圧粉磁心の他、その原料となる磁心用粉末としても把握できる。すなわち本発明は、純鉄または鉄合金からなる軟磁性粒子と該軟磁性粒子を被覆する被膜とを有する磁心用粒子からなり、前記被膜は、2価の陽イオンとなる金属元素(M)とFeとOからなるスピネル型フェライト(MxFe3-xO4 ,0<x≦1)からなる主相と、Cu、SnまたはCoの1種以上からなるバリア相と、を有する磁心用粉末でもよい。
(1)本発明は、圧粉磁心の他、その原料となる磁心用粉末としても把握できる。すなわち本発明は、純鉄または鉄合金からなる軟磁性粒子と該軟磁性粒子を被覆する被膜とを有する磁心用粒子からなり、前記被膜は、2価の陽イオンとなる金属元素(M)とFeとOからなるスピネル型フェライト(MxFe3-xO4 ,0<x≦1)からなる主相と、Cu、SnまたはCoの1種以上からなるバリア相と、を有する磁心用粉末でもよい。
本発明の磁心用粉末では、上述したバリア相が軟磁性粒子の被膜中に予め形成されている。この磁心用粉末を用いることにより、上述した圧粉磁心を得ることができる。
(2)また本発明は、純鉄または鉄合金からなる軟磁性粒子と該軟磁性粒子を被覆する被膜とを有する磁心用粒子からなり、前記被膜は、Cu、SnまたはCoの1種以上である第一金属元素(M1)とFeとOからなる第一スピネル型フェライト(M1yFe3-yO4 ,0<y≦1)と、該M1以外で2価の陽イオンとなる1種以上の第二金属元素(M2)とFeとOからなる第二スピネル型フェライト(M2zFe3-zO4 ,0<z≦1)と、を有する磁心用粉末としても把握できる。
本発明の磁心用粉末またはそれを用いた圧粉磁心では、第一スピネル型フェライト(単に「第一フェライト」ともいう。)中の第一金属元素(Cu等)が、下地である軟磁性粒子から拡散してくるFeにより優先的に還元(Cu2++2e-→Cu)されて析出し、上述したバリア相を生成するようになる。こうして本発明の磁心用粉末を用いても、上述した圧粉磁心を得ることができる。
《磁心用粉末の製造方法》
上述した磁心用粉末は、例えば、次のような本発明の製造方法により得られる。すなわち、純鉄または鉄合金からなる軟磁性粒子の表面にスピネル型フェライトを生成させるフェライト生成工程を備え、前記フェライト生成工程は、Cu、SnまたはCoの1種以上である第一金属元素(M1)とFeとOからなる第一スピネル型フェライト(M1yFe3-yO4 ,0<y≦1)を前記軟磁性粒子の表面に生成する第一生成工程と、該M1以外で2価の陽イオンとなる1種以上の第二金属元素(M2)とFeとOからなる第二スピネル型フェライト(M2zFe3-zO4 ,0<z≦1)を生成する第二生成工程と、を有する磁心用粉末の製造方法である。
上述した磁心用粉末は、例えば、次のような本発明の製造方法により得られる。すなわち、純鉄または鉄合金からなる軟磁性粒子の表面にスピネル型フェライトを生成させるフェライト生成工程を備え、前記フェライト生成工程は、Cu、SnまたはCoの1種以上である第一金属元素(M1)とFeとOからなる第一スピネル型フェライト(M1yFe3-yO4 ,0<y≦1)を前記軟磁性粒子の表面に生成する第一生成工程と、該M1以外で2価の陽イオンとなる1種以上の第二金属元素(M2)とFeとOからなる第二スピネル型フェライト(M2zFe3-zO4 ,0<z≦1)を生成する第二生成工程と、を有する磁心用粉末の製造方法である。
さらに、圧粉磁心へ成形する前に、フェライト生成工程後の粉末を予め熱処理してもよい(粉末加熱工程)。これにより軟磁性粒子を被覆する被膜の緻密化や上述したバリア相の生成(例えば、M1析出)をさせることが可能となる。
被膜の緻密化とバリア相の生成は、個別になされてもよいし、並行してなされてもよい。例えば、加熱温度を低温域(例えば480℃以下さらには430℃以下)にすることにより、被膜を緻密化して、バリア相を生成(M1析出)させないことも可能となる。この場合、バリア相の生成は、例えば、圧粉磁心の熱処理(焼鈍)するときになされる。
逆に、加熱温度を高温域(例えば520℃以上さらには570℃以上)にすることにより、被膜の緻密化とバリア相の生成との両方を並行して生じさせることもできる。
緻密な被膜は、磁心用粉末を加圧成形する際に変形や割れ等が生じ難く、軟磁性粒子同士の直接接触を阻止して、圧粉磁心の高比抵抗化に寄与すると考えられる。また被膜の緻密化は、既にバリア相を有する被膜に対してなされてもよい。
《圧粉磁心の製造方法》
上述した圧粉磁心は、例えば、上述したいずれかの磁心用粉末を加圧成形する成形工程を備える圧粉磁心の製造方法により得られる。
上述した圧粉磁心は、例えば、上述したいずれかの磁心用粉末を加圧成形する成形工程を備える圧粉磁心の製造方法により得られる。
《その他》
(1)本明細書では、金属元素が単種のみならず、複数種である場合も、便宜的に「M」、「M1」または「M2」と略記する。それらが複数種の金属元素からなる場合、組成割合(原子比率)を示す「x」、「y」、「z」は、各金属元素の合計を示す。例えば、MがMnとZnであるとき、「Mx」はMnx1Znx2、x=x1+x2、0<x1・x2を意味する。
(1)本明細書では、金属元素が単種のみならず、複数種である場合も、便宜的に「M」、「M1」または「M2」と略記する。それらが複数種の金属元素からなる場合、組成割合(原子比率)を示す「x」、「y」、「z」は、各金属元素の合計を示す。例えば、MがMnとZnであるとき、「Mx」はMnx1Znx2、x=x1+x2、0<x1・x2を意味する。
(2)特に断らない限り本明細書でいう「x~y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a~b」のような範囲を新設し得る。
上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、本発明の圧粉磁心や磁心用粉末のみならず、それらの製造方法にも適宜該当し得る。方法に関する内容も、物に関する構成要素となり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。
《軟磁性粒子(軟磁性粉末)》
本発明に係る軟磁性粒子は純鉄または鉄合金からなる。純鉄粉は、高い飽和磁束密度が得られ、圧粉磁心の磁気特性の向上を図る上で好ましい。鉄合金粉として、例えば、Si含有鉄合金(Fe-Si合金)粉を用いると、Siによりその電気抵抗率が高められるため、圧粉磁心の比抵抗の向上ひいては渦電流損失の低減も図れる。
本発明に係る軟磁性粒子は純鉄または鉄合金からなる。純鉄粉は、高い飽和磁束密度が得られ、圧粉磁心の磁気特性の向上を図る上で好ましい。鉄合金粉として、例えば、Si含有鉄合金(Fe-Si合金)粉を用いると、Siによりその電気抵抗率が高められるため、圧粉磁心の比抵抗の向上ひいては渦電流損失の低減も図れる。
この他、軟磁性粉末は、Fe-49Co-2V(パーメンジュール)粉、センダスト(Fe-9Si-6Al)粉等でも良い。軟磁性粉末は、二種以上の粉末を混合したものでもよく、例えば、純鉄粉とFe-Si合金粉の混合粉末等でもよい。
軟磁性粒子の粒度は、圧粉磁心の仕様に応じて調整され得るが、軟磁性粉末の粒度は50~250μmさらには106~212μmであると好適である。粒度が過大では圧粉磁心の低密度化や渦電流損失の増大を招き易く、粒度が過小では圧粉磁心の磁束密度の低下やヒステリシス損失の増大を招き易い。
なお、本明細書でいう「粒度」は、軟磁性粒子のサイズを指標し、篩い分けにより特定される。具体的には、篩い分けに用いたメッシュサイズの上限値(d1)と下限値(d2)の中央値[(d1+d2)/2]を、粒度(D)とする。なお、μm単位で表示して、小数点以下は四捨五入して表示する。
軟磁性粉末の製造方法は問わず、例えば、アトマイズ法、機械的粉砕法、還元法等がある。アトマイズ粉は、水アトマイズ粉、ガスアトマイズ粉、ガス水アトマイズ粉のいずれでもよい。粒子が略球状であるアトマイズ粉は、圧粉磁心の成形時に被膜が破壊等され難く、圧粉磁心の高比抵抗化に寄与する。
《スピネル型フェライト》
(1)本発明に係るフェライトは、2価の陽イオンとなる金属元素(M)とFeとOにより、MxFe3-xO4(0<x≦1好ましくx=1)で表される酸化鉄(セラミックス)の一種であり、高絶縁性の磁性材である。
(1)本発明に係るフェライトは、2価の陽イオンとなる金属元素(M)とFeとOにより、MxFe3-xO4(0<x≦1好ましくx=1)で表される酸化鉄(セラミックス)の一種であり、高絶縁性の磁性材である。
スピネル型フェライトが形成される限り、Mに含まれる金属元素の種類や数は問わない。Mは、例えば、Mn、Zn、Mg、Fe、Ni、Co、Cu、SnまたはSrである。第一金属元素(M1)と第二金属元素(M2)は、Mに包含され、Mの一部である。
バリア相やその前駆体である第一フェライトに限らず、主相もM1(M1:Cu、SnまたはCoの1種以上)を含んでもよい。もっとも、前述したように、M1Fe2O4中のM1は下地である軟磁性粒子から拡散してくるFeによって還元されて、M1(金属)として析出し易い。このため、主相となるフェライトは、M1以外で2価の陽イオンとなる1種以上のM2とFeとOからなる第二フェライト(M2zFe3-zO4 ,0<z≦1好ましくz=1)であると好ましい。
M2は、Mn、Zn、MgまたはNiの1種以上、Mn、ZnまたはMgの1種以上、さらにいえば、MnまたはZnの1種以上であると好ましい。これらの金属元素(特にMn)を含むフェライトは、他のMを含むフェライトよりも、比抵抗や磁気モーメント(飽和磁化)が大きくなり易く、圧粉磁心の電気特性(比抵抗等)と磁気特性(磁束密度等)を高次元で両立させ得る。
主相を構成するフェライトは、単一組成からなる場合に限らず、複数組成のフェライトが重畳または混在して構成されてもよい。例えば、軟磁性粒子の最表面側にあるバリア相を含む第一フェライトと、第一フェライト上にあり第一フェライトと成分組成の異なる第二フェライトとによって、主相が構成されてもよい。また、成分組成の異なる3種以上のフェライトで主相が構成されてもよい。さらに、主相または粒界層は、軟磁性粒子の最表面から被膜の最表面にかけて成分組成が変化する傾斜相(傾斜層)でもよい。なお、各フェライト中には、M、Fe、O以外に、改質元素や不可避不純物が含まれてもよい。
(2)バリア相は、粒界層の中央に対して軟磁性粒子寄りに偏在していると好ましい。バリア相が軟磁性粒子の最表面近傍に存在するほど、粒界層の絶縁性を担う主相が、軟磁性粒子からの拡散Feに対して保護され易くなる。
同様な観点から、軟磁性粒子の表面に第一フェライトと第二フェライトを有する磁心用粒子を用いる場合、バリア相の前駆体となる第一フェライト(層)は、第二フェライト(層)よりも軟磁性粒子の表面近傍側にあると好ましい。
バリア相は、軟磁性粒子の表面近傍を層状に被覆していても、軟磁性粒子の表面近傍で粒状に分散していてもよい。例えば、バリア相は、M1が析出した粒状金属(金属粒)でも、層状金属(金属層)でもよい。バリア相の形態に拘わらず、バリア相が粒界層に存在することにより、主相へのFe拡散が阻止され、圧粉磁心の高比抵抗が安定的に維持される(図3参照)。
バリア相は、M1金属(単体)の他、その合金またはその化合物でもよい。通常、そのようなバリア相は、非磁性材または低絶縁材であることが多い。このため、粒界層または被膜中におけるバリア相は、主相へのFe拡散を阻止できる限り、少ないほど好ましい。例えば、バリア相が分布する厚さ(軟磁性粒子の法線方向の厚さ)は、5~300nmさらには50~150nmであると好ましい。ちなみに、軟磁性粒子の粒度が数十~数百μmであるとき、粒界層または被膜の厚さは0.1~10μmさらには1~5μm程度である。なお、本明細書でいう厚さ(膜厚、層厚)は、粒界層または被膜中に存在する元素の分布を測定し、対象とする元素のピーク幅(立上がり~立下がり)とする。
《製造方法》
(1)フェライト生成工程(フェライトめっき工程)
軟磁性粒子の表面にフェライトを生成する方法は種々あり、被処理粉末(軟磁性粉末)を反応液(生成液)に浸漬する水溶液法(参照文献:特開2013-191839号公報)、被処理粉末に反応液を噴霧する噴霧法(参照文献:特開2014-183199号公報)、尿素を含む反応液を用いる一液法(参照文献:特開2016-127042号公報)等がある。いずれの方法によっても、本発明に係るフェライトを生成することが可能である。
(1)フェライト生成工程(フェライトめっき工程)
軟磁性粒子の表面にフェライトを生成する方法は種々あり、被処理粉末(軟磁性粉末)を反応液(生成液)に浸漬する水溶液法(参照文献:特開2013-191839号公報)、被処理粉末に反応液を噴霧する噴霧法(参照文献:特開2014-183199号公報)、尿素を含む反応液を用いる一液法(参照文献:特開2016-127042号公報)等がある。いずれの方法によっても、本発明に係るフェライトを生成することが可能である。
フェライト生成工程は、フェライトの膜厚等に応じて繰り返してなされてもよい。また、フェライト生成工程後、不要物を除去する洗浄工程を行うと好ましい。洗浄工程は、アルカリ性水溶液、水、エタノール等を用いてなされる。洗浄される不要物は、被膜形成に寄与しなかったフェライト粒子、処理液(反応液、pH調整液)に含まれていた塩素やナトリウム等である。さらに、洗浄工程後に粉末を乾燥させると好ましい。乾燥工程は、自然乾燥よりも加熱乾燥することにより、磁心用粉末を効率的に製造できる。
主相となる第二フェライトを生成する第二生成工程は、バリア相の前駆体となる第一フェライトを生成する第一生成工程後に行われると好ましい。これによりバリア相が軟磁性粒子の最表面側に形成されて、拡散Feによる主相の変質が阻止され易くなる。
(2)粉末加熱工程
磁心用粉末は、フェライト生成工程後に、非酸化雰囲気中で100~700℃さらには150~650℃で加熱する粉末加熱工程が施されると好ましい。これにより軟磁性粒子の被膜を緻密化したり、被膜中でバリア相の生成を促進できる。熱処理された磁心用粉末からなる圧粉磁心は、熱履歴に対する比抵抗変化率が小さくなり、高比抵抗が安定的に維持され易い。
磁心用粉末は、フェライト生成工程後に、非酸化雰囲気中で100~700℃さらには150~650℃で加熱する粉末加熱工程が施されると好ましい。これにより軟磁性粒子の被膜を緻密化したり、被膜中でバリア相の生成を促進できる。熱処理された磁心用粉末からなる圧粉磁心は、熱履歴に対する比抵抗変化率が小さくなり、高比抵抗が安定的に維持され易い。
被膜を緻密化させる場合、加熱温度は、例えば、150~480℃さらには350℃~430℃とすると好ましい。被膜中にバリア相を生成させる場合、加熱温度は、例えば、520~700℃さらには570~650℃とすると好ましい。
(3)焼鈍工程
圧粉磁心は、成形工程で得られた成形体を非酸化雰囲気中で400~900℃さらには500~700℃で加熱する焼鈍工程が施されていると好ましい。これにより、成形工程で軟磁性粒子へ導入される歪みが除去され、その歪みに起因したヒステリシス損失が低減される。焼鈍工程で、磁心用粒子の被膜中からバリア相が生成されるようにしてもよい。なお、本明細書でいう非酸化雰囲気は、不活性ガス雰囲気、窒素ガス雰囲気、真空雰囲気等である。
圧粉磁心は、成形工程で得られた成形体を非酸化雰囲気中で400~900℃さらには500~700℃で加熱する焼鈍工程が施されていると好ましい。これにより、成形工程で軟磁性粒子へ導入される歪みが除去され、その歪みに起因したヒステリシス損失が低減される。焼鈍工程で、磁心用粒子の被膜中からバリア相が生成されるようにしてもよい。なお、本明細書でいう非酸化雰囲気は、不活性ガス雰囲気、窒素ガス雰囲気、真空雰囲気等である。
《圧粉磁心》
圧粉磁心は、比抵抗が50μΩm以上、100μΩm以上さらには200μΩm以上であり、保磁力が200A/m以下、185A/m以下さらには175A/m以下であると好ましい。
圧粉磁心は、比抵抗が50μΩm以上、100μΩm以上さらには200μΩm以上であり、保磁力が200A/m以下、185A/m以下さらには175A/m以下であると好ましい。
圧粉磁心は、例えば、モータ、アクチュエータ、トランス、誘導加熱器(IH)、スピーカ、リアクトル等の電磁機器に利用され得る。特に電動機または発電機の電機子(回転子または固定子)を構成する鉄心に用いられると好ましい。
粒界層の異なる複数の圧粉磁心を製造し、各圧粉磁心の特性を測定すると共に粒界層の組織を観察した。このような実施例に基づいて、本発明をより具体的に説明する。
《磁心用粉末の製造》
(1)軟磁性粉末(原料粉末)
純鉄からなるガスアトマイズ粉を軟磁性粉末として用いた。その粒度は、212~106μm→159μmとした。粒度の特定は前述した通りである。
(1)軟磁性粉末(原料粉末)
純鉄からなるガスアトマイズ粉を軟磁性粉末として用いた。その粒度は、212~106μm→159μmとした。粒度の特定は前述した通りである。
(2)フェライト生成工程
マントルヒーターにより大気中で130℃に加熱された軟磁性粉末を撹拌しつつ、その軟磁性粉末へ第一生成液(反応液)を噴霧した(第一生成工程)。第一生成液は、モル比で1:2に秤量した塩化銅(CuCl2)と塩化鉄(FeCl2)をイオン交換水に溶解させて調製した。噴霧処理後の軟磁性粉末を純水で洗浄し(洗浄工程)、100℃に加熱して乾燥させた(乾燥工程)。こうして表面がCuFe2O4(第一フェライト)で被覆された軟磁性粒子からなる第一処理粉末を得た。
マントルヒーターにより大気中で130℃に加熱された軟磁性粉末を撹拌しつつ、その軟磁性粉末へ第一生成液(反応液)を噴霧した(第一生成工程)。第一生成液は、モル比で1:2に秤量した塩化銅(CuCl2)と塩化鉄(FeCl2)をイオン交換水に溶解させて調製した。噴霧処理後の軟磁性粉末を純水で洗浄し(洗浄工程)、100℃に加熱して乾燥させた(乾燥工程)。こうして表面がCuFe2O4(第一フェライト)で被覆された軟磁性粒子からなる第一処理粉末を得た。
第一処理粉末を再び大気中で130℃に加熱し、撹拌しながら第一処理粉末へ第二フェライト生成液(反応液)を噴霧した(第二生成工程)。第二生成液は、モル比で0.5:0.5:2に秤量した塩化マンガン(MnCl2)、塩化亜鉛(ZnCl2)および塩化鉄(FeCl2)をイオン交換水に溶解させて調製した。この第二生成液をpH8とした。噴霧処理後の第一処理粉末も純水で洗浄し(洗浄工程)、100℃に加熱して乾燥させた(乾燥工程)。こうして表面がMn0.5Zn0.5Fe2O4(第二フェライト)で被覆された軟磁性粒子からなる第二処理粉末(磁心用粉末)を得た(試料1)。なお、フェライト生成工程は、特開2014-183199号公報の記載も参照して行った。
(3)粉末加熱工程
第二処理粉末を加熱炉に入れて、窒素雰囲気(非酸化雰囲気)中で400℃×1時間加熱した磁心用粉末も製造した(試料2)。
第二処理粉末を加熱炉に入れて、窒素雰囲気(非酸化雰囲気)中で400℃×1時間加熱した磁心用粉末も製造した(試料2)。
(4)比較試料
比較試料として、上述した第一生成工程を施さずに、第二生成工程のみを行った磁心用粉末も製造した(試料C1)。
比較試料として、上述した第一生成工程を施さずに、第二生成工程のみを行った磁心用粉末も製造した(試料C1)。
《圧粉磁心の製造》
(1)成形工程
各試料に係る磁心用粉末を金型潤滑温間高圧成形法(参照文献:特許3309970号公報、特許4024705号公報)により、1200MPaで成形した。こうしてリング形状(40×30×4mm)の成形体を得た。
(1)成形工程
各試料に係る磁心用粉末を金型潤滑温間高圧成形法(参照文献:特許3309970号公報、特許4024705号公報)により、1200MPaで成形した。こうしてリング形状(40×30×4mm)の成形体を得た。
(2)焼鈍工程
各試料に係る成形体を加熱炉に入れて、窒素雰囲気(非酸化雰囲気)中で600℃×1時間加熱した。こうして各試料に係る圧粉磁心を得た。
各試料に係る成形体を加熱炉に入れて、窒素雰囲気(非酸化雰囲気)中で600℃×1時間加熱した。こうして各試料に係る圧粉磁心を得た。
《測定》
(1)比抵抗
各圧粉磁心の比抵抗をデジタルマルチメータ(株式会社エーディーシー製R6581)を用いて4端子法(JIS K7194)により測定した。この測定結果を図1に示した。
(1)比抵抗
各圧粉磁心の比抵抗をデジタルマルチメータ(株式会社エーディーシー製R6581)を用いて4端子法(JIS K7194)により測定した。この測定結果を図1に示した。
(2)保磁力
各圧粉磁心の保磁力を直流自記磁束計(東英工業株式会社製 TRF-5A)により測定した。この測定結果を図1に併せて示した。
各圧粉磁心の保磁力を直流自記磁束計(東英工業株式会社製 TRF-5A)により測定した。この測定結果を図1に併せて示した。
《観察》
試料1に係る圧粉磁心の断面を透過型電子顕微鏡(TEM)およびエネルギー分散型X線分光法(EDX)により観察した。こうして得られた元素マッピング像と線分析結果を図2Aと図2B(両者を併せて単に「図2」という。)にそれぞれ示した。
試料1に係る圧粉磁心の断面を透過型電子顕微鏡(TEM)およびエネルギー分散型X線分光法(EDX)により観察した。こうして得られた元素マッピング像と線分析結果を図2Aと図2B(両者を併せて単に「図2」という。)にそれぞれ示した。
《評価》
(1)比抵抗と保磁力
図1から明らかなように、試料1、2は試料C1と異なり、焼鈍工程後でも十分に高い比抵抗が維持されていることがわかる。特に試料2は、試料C1のみならず試料1に対しても、比抵抗が桁違いに大きくなることもわかった。しかも、試料1、2は、試料C1よりも保磁力も小さくなった。
(1)比抵抗と保磁力
図1から明らかなように、試料1、2は試料C1と異なり、焼鈍工程後でも十分に高い比抵抗が維持されていることがわかる。特に試料2は、試料C1のみならず試料1に対しても、比抵抗が桁違いに大きくなることもわかった。しかも、試料1、2は、試料C1よりも保磁力も小さくなった。
従って、第一フェライト(CuFe2O4)で表面が被覆された軟磁性粒子からなる磁心用粉末、さらには、その粉末を予め加熱処理した磁心用粉末を用いることにより、渦電流損失とヒステリシス損失を共に低減できる圧粉磁心が得られることがわかった。
(2)粒界層の組織
図2から明らかなように、試料1の粒界層は、スピネル型フェライトからなる主相中に、Cuの析出物からなるバリア相が分散した複合組織となっていることが確認された。また、そのバリア相は、軟磁性粒子の最表面側に偏在しており、その存在領域は50~150nm程度であることもわかった。
図2から明らかなように、試料1の粒界層は、スピネル型フェライトからなる主相中に、Cuの析出物からなるバリア相が分散した複合組織となっていることが確認された。また、そのバリア相は、軟磁性粒子の最表面側に偏在しており、その存在領域は50~150nm程度であることもわかった。
以上から、第一フェライトと第二フェライトで被覆された軟磁性粒子からなる磁心用粉末を成形および焼鈍して得られた圧粉磁心は、主相とバリア相が共存した粒界層を有し、高比抵抗と低保磁力を高次元で両立し得ることが明らかとなった。
Claims (14)
- 純鉄または鉄合金からなる軟磁性粒子と該軟磁性粒子の隣接間にある粒界層とからなる圧粉磁心であって、
前記粒界層は、
2価の陽イオンとなる金属元素(M)とFeとOのスピネル型フェライト(MxFe3-xO4 ,0<x≦1)からなる主相と、
Cu、SnまたはCoの1種以上からなるバリア相と、
を有する圧粉磁心。 - 前記バリア相は、前記粒界層の中央に対して前記軟磁性粒子寄りに偏在している請求項1に記載の圧粉磁心。
- 前記バリア相は、粒状または層状である請求項1または2に記載の圧粉磁心。
- 前記Mは、Mnおよび/またはZnを含む請求項1~3のいずれかに記載の圧粉磁心。
- 前記主相は、成分組成の異なる複数種のスピネル型フェライトからなる請求項1~4のいずれかに記載の圧粉磁心。
- 比抵抗が50μΩm以上かつ保磁力が200A/m以下である請求項1~5のいずれかに記載の圧粉磁心。
- 純鉄または鉄合金からなる軟磁性粒子と該軟磁性粒子を被覆する被膜とを有する磁心用粒子からなり、
前記被膜は、
2価の陽イオンとなる金属元素(M)とFeとOからなるスピネル型フェライト(MxFe3-xO4 ,0<x≦1)からなる主相と、
Cu、SnまたはCoの1種以上からなるバリア相と、
を有する磁心用粉末。 - 純鉄または鉄合金からなる軟磁性粒子と該軟磁性粒子を被覆する被膜とを有する磁心用粒子からなり、
前記被膜は、
Cu、SnまたはCoの1種以上である第一金属元素(M1)とFeとOからなる第一スピネル型フェライト(M1yFe3-yO4 ,0<y≦1)と、
該M1以外で2価の陽イオンとなる1種以上の第二金属元素(M2)とFeとOからなる第二スピネル型フェライト(M2zFe3-zO4 ,0<z≦1)と、
を有する磁心用粉末。 - 第一スピネル型フェライトは、前記第二スピネル型フェライトよりも軟磁性粒子寄りにある請求項8に記載の磁心用粉末。
- 純鉄または鉄合金からなる軟磁性粒子の表面にスピネル型フェライトを生成させるフェライト生成工程を備え、
前記フェライト生成工程は、
Cu、SnまたはCoの1種以上である第一金属元素(M1)とFeとOからなる第一スピネル型フェライト(M1yFe3-yO4 ,0<y≦1)を前記軟磁性粒子の表面に生成する第一生成工程と、
該M1以外で2価の陽イオンとなる1種以上の第二金属元素(M2)とFeとOからなる第二スピネル型フェライト(M2zFe3-zO4 ,0<z≦1)を生成する第二生成工程と、
を有する磁心用粉末の製造方法。 - 前記第二生成工程は、前記第一生成工程後に行われる請求項10に記載の磁心用粉末の製造方法。
- 前記フェライト生成工程後に、非酸化雰囲気中で100~700℃で加熱する粉末加熱工程を備える請求項10または11に記載の磁心用粉末の製造方法。
- 請求項7~9のいずれかに記載の磁心用粉末を加圧成形する成形工程を備える圧粉磁心の製造方法。
- 前記成形工程で得られた成形体を非酸化雰囲気中で400~900℃で加熱する焼鈍工程を備える請求項13に記載の圧粉磁心の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18780459.6A EP3511960B1 (en) | 2017-04-03 | 2018-01-29 | Compressed powder magnetic core and magnetic core powder, and production method therefor |
US16/497,238 US11328848B2 (en) | 2017-04-03 | 2018-01-29 | Dust core, powder for magnetic cores, and methods of manufacturing them |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-073957 | 2017-04-03 | ||
JP2017073957A JP6556780B2 (ja) | 2017-04-03 | 2017-04-03 | 圧粉磁心、磁心用粉末およびそれらの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018186006A1 true WO2018186006A1 (ja) | 2018-10-11 |
Family
ID=63712449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/002663 WO2018186006A1 (ja) | 2017-04-03 | 2018-01-29 | 圧粉磁心、磁心用粉末およびそれらの製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11328848B2 (ja) |
EP (1) | EP3511960B1 (ja) |
JP (1) | JP6556780B2 (ja) |
WO (1) | WO2018186006A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115070049A (zh) * | 2022-06-10 | 2022-09-20 | 季华实验室 | 一种用于金属雾化的中间包自动升降机构 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022026524A (ja) * | 2020-07-31 | 2022-02-10 | 太陽誘電株式会社 | 金属磁性粉末及びその製造方法、並びにコイル部品及び回路基板 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005085967A (ja) * | 2003-09-08 | 2005-03-31 | Fuji Electric Holdings Co Ltd | 複合磁性粒子および複合磁性材料 |
JP2005142514A (ja) * | 2003-11-10 | 2005-06-02 | Fuji Electric Holdings Co Ltd | 磁気部材および磁気部材の製造方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60030422T8 (de) | 1999-12-14 | 2007-05-10 | Kabushiki Kaisha Toyota Chuo Kenkyusho, Nagakute | Herstellungsverfahren für pulvergrünkörper |
US20040238796A1 (en) | 2001-08-09 | 2004-12-02 | Masanori Abe | Composite magnetic material prepared by compression forming of ferrite-coated metal particles and method for preparation thereof |
JP2003151813A (ja) | 2001-11-16 | 2003-05-23 | Nec Tokin Corp | 酸化物磁性材料及びその製造方法 |
JP4024705B2 (ja) | 2003-03-24 | 2007-12-19 | 株式会社豊田中央研究所 | 圧粉磁心およびその製造方法 |
JP2004296967A (ja) * | 2003-03-28 | 2004-10-21 | Mitsubishi Materials Corp | 高密度および高抵抗を有する複合軟磁性焼結材の製造方法 |
JP2005068526A (ja) * | 2003-08-27 | 2005-03-17 | Fuji Electric Holdings Co Ltd | 複合磁性粒子粉末成形体の製造方法 |
JP4328885B2 (ja) | 2003-11-04 | 2009-09-09 | 国立大学法人東京工業大学 | フェライトめっきされたセンダスト微粒子およびその成形体の製造方法 |
JP2005340368A (ja) | 2004-05-25 | 2005-12-08 | Aica Kogyo Co Ltd | フェライト被覆金属磁性微粒子及びその製造方法 |
JP2006097097A (ja) | 2004-09-30 | 2006-04-13 | Aica Kogyo Co Ltd | フェライト被覆金属磁性微粒子の製造方法 |
JP4872833B2 (ja) * | 2007-07-03 | 2012-02-08 | 富士電機株式会社 | 圧粉磁心およびその製造方法 |
JP5986010B2 (ja) | 2012-02-17 | 2016-09-06 | 株式会社豊田中央研究所 | 圧粉磁心およびそれに用いる磁心用粉末 |
JP5920261B2 (ja) | 2013-03-19 | 2016-05-18 | 株式会社豊田中央研究所 | 磁心用粉末およびその製造方法 |
JP6492534B2 (ja) * | 2014-10-28 | 2019-04-03 | アイシン精機株式会社 | 軟磁性体の製造方法 |
JP6107804B2 (ja) | 2014-12-26 | 2017-04-05 | 株式会社豊田中央研究所 | 被覆処理液、圧粉磁心、磁心用粉末とその製造方法 |
JP6519418B2 (ja) * | 2015-09-09 | 2019-05-29 | Tdk株式会社 | 軟磁性金属圧粉コア |
-
2017
- 2017-04-03 JP JP2017073957A patent/JP6556780B2/ja active Active
-
2018
- 2018-01-29 WO PCT/JP2018/002663 patent/WO2018186006A1/ja unknown
- 2018-01-29 US US16/497,238 patent/US11328848B2/en active Active
- 2018-01-29 EP EP18780459.6A patent/EP3511960B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005085967A (ja) * | 2003-09-08 | 2005-03-31 | Fuji Electric Holdings Co Ltd | 複合磁性粒子および複合磁性材料 |
JP2005142514A (ja) * | 2003-11-10 | 2005-06-02 | Fuji Electric Holdings Co Ltd | 磁気部材および磁気部材の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3511960A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115070049A (zh) * | 2022-06-10 | 2022-09-20 | 季华实验室 | 一种用于金属雾化的中间包自动升降机构 |
Also Published As
Publication number | Publication date |
---|---|
EP3511960A1 (en) | 2019-07-17 |
EP3511960B1 (en) | 2021-02-24 |
JP6556780B2 (ja) | 2019-08-07 |
JP2018181888A (ja) | 2018-11-15 |
EP3511960A4 (en) | 2020-04-29 |
US11328848B2 (en) | 2022-05-10 |
US20200381152A1 (en) | 2020-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5728987B2 (ja) | 圧粉磁心 | |
US7556838B2 (en) | Soft magnetic material, powder magnetic core, method for manufacturing soft magnetic material, and method for manufacturing powder magnetic core | |
JP6071211B2 (ja) | 低磁歪高磁束密度複合軟磁性材とその製造方法 | |
JP6504288B1 (ja) | 軟磁性金属粉末、圧粉磁心および磁性部品 | |
WO2009096138A1 (ja) | 軟磁性材料およびその製造方法 | |
CN106663513B (zh) | 磁芯、磁芯的制造方法以及线圈部件 | |
JP5986010B2 (ja) | 圧粉磁心およびそれに用いる磁心用粉末 | |
WO2010073590A1 (ja) | 複合軟磁性材料とその製造方法 | |
JP2008195986A (ja) | 軟磁性金属粉末、圧粉体、および軟磁性金属粉末の製造方法 | |
JP6476989B2 (ja) | 圧粉磁心の製造方法 | |
CN111316385B (zh) | 压粉磁芯、用于磁芯的粉末及其制造方法 | |
WO2013108643A1 (ja) | 圧粉軟磁性体 | |
Lee et al. | Magnetic properties of pure iron soft magnetic composites coated by manganese phosphates | |
JP2009060050A (ja) | 高比抵抗低損失複合軟磁性材とその製造方法 | |
WO2018186006A1 (ja) | 圧粉磁心、磁心用粉末およびそれらの製造方法 | |
JP2011181624A (ja) | 高強度高比抵抗複合軟磁性材及び電磁気回路部品と高強度高比抵抗複合軟磁性材の製造方法 | |
JP2009164317A (ja) | 軟磁性複合圧密コアの製造方法。 | |
JP2022168543A (ja) | 磁性金属/フェライトコンポジット及びその製造方法 | |
JP7016713B2 (ja) | 圧粉磁心および磁心用粉末 | |
WO2007052772A1 (ja) | 堆積酸化膜被覆Fe-Si系鉄基軟磁性粉末およびその製造方法 | |
JP2008297622A (ja) | 軟磁性材料、圧粉磁心、軟磁性材料の製造方法および圧粉磁心の製造方法 | |
CN111261358A (zh) | 绝缘被膜软磁性合金粉末 | |
JP4761836B2 (ja) | Mg含有酸化膜被覆鉄粉末 | |
WO2005024858A1 (ja) | 軟磁性材料およびその製造方法 | |
US20150017056A1 (en) | Soft magnetic metal powder, method for preparing the same, and electronic components including the same as core material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18780459 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018780459 Country of ref document: EP Effective date: 20190411 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |