WO2018181258A1 - チタン酸金属塩繊維の製造方法 - Google Patents

チタン酸金属塩繊維の製造方法 Download PDF

Info

Publication number
WO2018181258A1
WO2018181258A1 PCT/JP2018/012317 JP2018012317W WO2018181258A1 WO 2018181258 A1 WO2018181258 A1 WO 2018181258A1 JP 2018012317 W JP2018012317 W JP 2018012317W WO 2018181258 A1 WO2018181258 A1 WO 2018181258A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
solution
spinning solution
metal titanate
spinning
Prior art date
Application number
PCT/JP2018/012317
Other languages
English (en)
French (fr)
Inventor
陽 梅林
Original Assignee
Jnc株式会社
Jncファイバーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社, Jncファイバーズ株式会社 filed Critical Jnc株式会社
Priority to US16/498,389 priority Critical patent/US20200039837A1/en
Priority to KR1020197030702A priority patent/KR102548885B1/ko
Priority to EP18776003.8A priority patent/EP3604640A4/en
Priority to CN201880023186.9A priority patent/CN110475918A/zh
Publication of WO2018181258A1 publication Critical patent/WO2018181258A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/62259Fibres based on titanium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry

Definitions

  • the present invention relates to a method for producing a metal titanate salt fiber.
  • Perovskite-type metal oxides such as barium titanate have high piezoelectricity and ferroelectricity, and are therefore applied to sensors and actuators. Since the perovskite type metal oxide is hard and brittle, a composite in which a perovskite type metal oxide filler is filled in a resin is used in order to impart flexibility and moldability. In particular, a fibrous perovskite metal oxide filler having a large aspect ratio is expected to improve piezoelectricity and the like due to orientation of spontaneous polarization of the perovskite metal oxide in the resin.
  • An electrostatic spinning method is known as one method for obtaining a fibrous perovskite metal oxide having a large aspect ratio.
  • a spinning solution is prepared by slowly mixing a solution of barium acetate and acetic acid while stirring tetraisopropoxide titanate and further mixing a solution of polyvinylpyrrolidone and ethanol.
  • a method for producing barium titanate fibers by firing precursor fibers obtained by electrostatic spinning of a spinning solution is described.
  • this production method in order to obtain a uniform spinning solution, in order to prevent moisture in the air from being mixed in, there are problems in equipment such as operation in a glove box, and complicated operation when mixing titanium alkoxide. Therefore, there is a need for a simpler method.
  • the spinning solution prepared in this manner is gelled and clouded over time, and it is difficult to spin stably for a long time.
  • Patent Document 1 proposes a metal oxide fiber made of a ceramic containing titanium element and having an average fiber diameter of 50 to 1500 nm.
  • a method for producing a barium titanate fiber a solution obtained by mixing ion-exchanged water, barium acetate and polyethylene glycol is added to a solution obtained by mixing titanium tetranormal butoxide and acetic acid while stirring. A method for preparing a spinning solution by doing so is described. However, this method has a problem that gelation occurs in the middle of obtaining the spinning solution, and it is difficult to achieve uniform solution preparation and long-term spinning stability.
  • An object of the present invention is to provide a method for producing a metal titanate fiber that can solve the above-described problems, can easily prepare a uniform spinning solution, and can be stably spun for a long time.
  • the inventors of the present invention have intensively studied to solve the above problems. As a result, it was found that by performing the spinning solution preparation process in a certain procedure, a uniform spinning solution can be easily prepared, and a metal titanate fiber can be produced stably over a long period of time, and the present invention has been completed. It was.
  • the present invention has the following configuration.
  • a method for producing a metal titanate fiber comprising: The step of preparing the spinning solution (A) (A1) mixing a metal salt and a first solvent to obtain a first solution; (A2) mixing the fiber-forming material, the second solvent, and the titanium alkoxide to obtain a second solution; (A3) A step of mixing the first solution and the second solution to obtain a spinning solution.
  • [3] The method for producing a metal titanate fiber according to [2], wherein the alcohol is propylene glycol monomethyl ether.
  • [4] The method for producing a metal titanate fiber according to any one of [1] to [3], wherein a ratio of water in the first solvent is 15% by weight or less.
  • [5] The method for producing metal titanate fiber according to any one of [1] to [4], wherein a firing temperature in the step of firing the precursor fiber (C) is 600 ° C. or higher.
  • a uniform spinning solution can be easily prepared, and a metal titanate fiber can be stably produced over a long period of time.
  • FIG. 1 is a scanning electron micrograph of a barium titanate fiber according to an embodiment of the present invention.
  • FIG. 2 is a scanning electron micrograph of a barium titanate fiber according to an embodiment of the present invention.
  • FIG. 3 is an X-ray diffraction image of a barium titanate fiber according to an example of the present invention.
  • FIG. 4 is a scanning electron micrograph of barium titanate fiber according to an embodiment of the present invention.
  • FIG. 5 is a scanning electron micrograph of strontium titanate fiber according to an embodiment of the present invention.
  • FIG. 6 is an X-ray diffraction image of a strontium titanate fiber according to an example of the present invention.
  • FIG. 7 is a scanning electron micrograph of calcium titanate fibers according to an example of the present invention.
  • FIG. 8 is an X-ray diffraction image of a calcium titanate fiber according to an example of the present invention.
  • the (A) spinning solution preparation step in the method for producing a metal titanate fiber according to the present invention includes the following steps (a1) to (a3).
  • Step of obtaining first solution (A) In the spinning solution preparation step, first, (a1) a step of mixing the metal salt and the first solvent to obtain the first solution is performed.
  • the first solution obtained by mixing the metal salt and the first solvent is a solution containing titanic acid and a metal element capable of forming a salt.
  • the metal salt used in the production method of the present invention is not limited as long as it is a compound that forms a metal salt with titanic acid to obtain a fibrous structure.
  • the metal salt include alkaline earth metal salts such as barium salt, strontium salt and calcium salt, alkali metal salts such as potassium salt, sodium salt, lithium salt and lead salt, cadmium salt and bismuth salt. It is preferable to produce a metal titanate (metatitanic acid) fiber using a barium salt, a strontium salt, or a calcium salt.
  • the barium salt is not particularly limited, and examples thereof include barium carbonate, barium acetate, barium hydroxide, barium oxalate, barium nitrate, barium chloride, and mixtures thereof. From the viewpoint of solubility in a solvent, barium carbonate, barium acetate, and barium nitrate are preferable.
  • the strontium salt is not particularly limited, and examples thereof include strontium carbonate, strontium acetate, strontium nitrate, and strontium chloride.
  • Examples of calcium salts include calcium chloride, calcium carbonate, calcium acetate, and calcium sulfate.
  • Examples of the potassium salt include potassium chloride, potassium chlorate, potassium chromate, potassium nitrate, potassium iodide, potassium sulfate and the like.
  • Examples of the sodium salt include sodium sulfite, sodium chloride, sodium perchlorate, sodium nitrate, sodium hydrogen carbonate, sodium carbonate, sodium sulfate and the like.
  • Examples of the lithium salt include lithium acetate, lithium carbonate, and lithium chloride.
  • the first solvent is not particularly limited as long as it is a solvent that can dissolve the metal salt, but an organic acid is mainly used from the viewpoint of the solubility of the metal salt and the uniformity of the finally obtained spinning solution. It is preferable to use as a component, and it is more preferable to use acetic acid as a main component.
  • the “main component” means a component that occupies the largest proportion of the components constituting the solvent, and the main component is 50% by weight or more based on the entire solvent. Preferably, it means 85% by weight or more.
  • the ratio of the organic acid in the first solvent is preferably 50% by weight or more.
  • the organic acid include carboxylic acid and sulfonic acid, and carboxylic acid is preferable.
  • the carboxylic acid include aliphatic carboxylic acids such as formic acid, acetic acid, and propionic acid. Among them, acetic acid is preferable.
  • the first solvent may contain other than organic acids, for example, water, methanol, ethanol, propanol, acetone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methyl.
  • organic acids for example, water, methanol, ethanol, propanol, acetone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methyl.
  • -2-Pyrrolidone, toluene, xylene, pyridine, tetrahydrofuran, dichloromethane, chloroform, 1,1,1,3,3,3-hexafluoroisopropanol and the like may be contained.
  • the first solvent preferably has a low water content.
  • the proportion of water in the first solvent is preferably 15% by weight or less, more preferably 5% by weight or less. preferable.
  • the metal salt is water-soluble, if water is contained in the first solution, the solubility and stability of the first solution may be improved, but the water content in the first solution is 15% by weight. If it is below, the stability of the spinning solution is lowered, and there is no fear that spinning will be difficult.
  • the mixing conditions in the step (a1) are not particularly limited as long as no precipitates or the like are produced, and can be performed, for example, at 10 to 90 ° C. for 1 to 24 hours.
  • the mixing method is not particularly limited as long as the metal salt can be dissolved, but can be performed using known equipment such as a magnetic stirrer, a shaker, a planetary stirrer, and an ultrasonic device.
  • the concentration of the metal salt in the first solution is not limited as long as the metal salt is stably dissolved in the solution, and can be, for example, 0.1 to 10 mol / L, or 0.2 to 5 mol / L. More preferably.
  • the concentration of the metal salt is 0.1 mol / L or more, the metal titanate salt is easy to form a fiber, and if it is 10 mol / L or less, the stability of the spinning solution is improved and thin fibers are formed. Since it becomes easy to obtain, it is preferable.
  • ⁇ (A2) Step of obtaining second solution> In the solution preparation step in the method for producing a metal titanate metal salt fiber of the present invention, separately from (a1), a step of mixing a fiber-forming material, a second solvent, and a titanium alkoxide to obtain a second solution. carry out.
  • the titanium alkoxide and the second solvent complex can be obtained by premixing the titanium alkoxide with a fiber-forming material and a second solvent that does not contain water. It is believed that stabilization is facilitated, so that hydrolysis and dehydration condensation of titanium alkoxide is suppressed, and a stable spinning solution can be obtained.
  • the fiber forming material used in the present invention is not particularly limited as long as spinnability can be imparted to the spinning solution.
  • polyvinyl alcohol, polyethylene glycol, polyethylene oxide, polyvinyl pyrrolidone, polyethylene, polypropylene, polyethylene terephthalate examples include polylactic acid, polyamide, polyurethane, polystyrene, polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, polyglycolic acid, polycaprolactone, cellulose, cellulose derivatives, chitin, chitosan, collagen, and copolymers and mixtures thereof. Can do.
  • These fiber-forming materials are preferably polyvinyl alcohol, polyethylene glycol, polyethylene oxide, polyvinyl pyrrolidone, and polyacrylic acid from the viewpoints of solubility in the second solvent and decomposability in the firing step. More preferably it is.
  • the weight average molecular weight of the fiber-forming material is not particularly limited, but is preferably in the range of 10,000 to 10,000,000, more preferably in the range of 50,000 to 5,000,000, More preferably, it is 100,000 to 1,000,000. If the weight average molecular weight is 10,000 or more, it is preferable because the fiber-forming property of the titanate metal salt fiber is excellent, and if it is 10,000,000 or less, it is preferable because the solubility is excellent and the preparation process becomes simple.
  • the second solvent used in the present invention is not particularly limited as long as it is a solvent capable of dissolving the fiber-forming material and can obtain the stability of the spinning solution. From the viewpoint of complex formation with titanium alkoxide. Therefore, it is preferable that the main component is an alcohol solvent.
  • the second solvent for example, a solvent containing ethanol, ethylene glycol, ethylene glycol monomethyl ether, or propylene glycol monomethyl ether as a main component is preferable, and propylene glycol monomethyl ether is more preferable as a main component.
  • the “main component” means a component occupying the largest proportion of the components constituting the second solvent, as described above, and preferably the component is 50% by weight or more. Preferably, it means 85% by weight or more.
  • the second solvent may contain a solvent other than an alcohol solvent, such as acetone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, toluene, Xylene, pyridine, tetrahydrofuran, dichloromethane, chloroform, formic acid, acetic acid, trifluoroacetic acid and the like may be contained.
  • a solvent other than an alcohol solvent such as acetone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, toluene, Xylene, pyridine, tetrahydrofuran, dichloromethane, chloroform, formic acid, acetic acid, trifluoroacetic acid and the like may be contained.
  • the titanium alkoxide used in the production of the present invention is not particularly limited, and examples thereof include titanium tetramethoxide, titanium tetraethoxide, titanium tetranormal propoxide, titanium tetraisopropoxide, titanium tetranormal butoxide, and the like. From the viewpoint of stability and availability, titanium tetraisopropoxide and titanium tetranormal butoxide are preferable.
  • the mixing conditions and method in the step (a2) are not particularly limited as long as the effects of the present invention can be obtained, but can be performed, for example, at 10 to 90 ° C. for 1 to 24 hours.
  • the mixing method can be performed using known equipment such as a magnetic stirrer, a shaker, a planetary stirrer, and an ultrasonic device.
  • the order of mixing in the second solution is not particularly limited, but a method of mixing the titanium alkoxide after dissolving the fiber-forming material in the second solvent is preferable from the viewpoint of suppressing hydrolysis and dehydration condensation of the titanium alkoxide. .
  • the concentration of the fiber-forming material and the titanium alkoxide in the second solution is not limited as long as the titanium alkoxide is stably present in the solution together with the fiber-forming material.
  • the concentration of the fiber-forming material with respect to the second solvent is The amount can be 1 to 20% by weight, and more preferably 3 to 15% by weight. If the concentration of the fiber forming material is 1% by weight or more, the stability of the second solution is increased, and the metal titanate salt is easy to form a fiber, and if it is 20% by weight or less, the spinning solution This is preferable because the viscosity of the fiber does not become excessively high and stable spinning can be performed and thin fibers are easily obtained.
  • the concentration of the titanium alkoxide with respect to the second solvent can be 0.1 to 10 mol / L, and more preferably 0.2 to 5 mol / L. If the concentration of the titanium alkoxide is 0.1 mol / L or more, the metal titanate salt is easy to form a fiber, and if it is 10 mol / L or less, the stability of the spinning solution is improved and thin fibers are formed. Since it becomes easy to obtain, it is preferable.
  • Step of obtaining spinning solution> In the solution preparation step in the method for producing a metal titanate salt fiber of the present invention, the step of mixing the first solution and the second solution to obtain a spinning solution is performed.
  • the method of mixing the first solution and the second solution in the present invention is not limited. In particular, there is no need to perform complicated operations such as mixing with small amounts while stirring. Examples of the mixing method include methods such as stirring and ultrasonic treatment.
  • the order of mixing is not particularly limited, whether the first solution is added to the second solution or the second solution is added to the first solution. These solutions may be added simultaneously.
  • the ratio of mixing the first solution and the second solution is not particularly limited as long as the molar ratio of the metal salt and the titanium alkoxide to the target metal titanate fiber can be adjusted, but the first solution and the second solution are not limited. If the weight ratio of the solution is preferably in the range of 1: 3 to 3: 1, more preferably 1: 2 to 2: 1, the concentration of the metal salt or titanium alkoxide does not become too high, and stable mixing operation is performed. And a metal titanate salt fiber having a wide composition can be obtained.
  • “adjusting the molar ratio of metal salt and titanium alkoxide to the target metal titanate fiber” means that when barium titanate (BaTiO 3 ) fiber is to be obtained, barium salt and titanium alkoxide are used. This means that the molar ratio of the lithium salt and the titanium alkoxide should be 4: 5 in order to obtain a lithium titanate (Li 4 Ti 5 O 12 ) fiber. To do.
  • the spinning solution in the method for producing a metal titanate salt fiber of the present invention may contain a surfactant for the purpose of improving the fiber forming property.
  • Surfactants can be used within a range that does not impair the uniformity and spinning stability of the spinning solution.
  • ionic surfactants such as sodium dodecyl sulfate and nonionic interfaces such as polyoxyethylene sorbitan monolaurate.
  • Activators can be mentioned. It is preferable that the surfactant has a property of completely disappearing in the firing step, such as not containing metal ions, in that a highly pure metal titanate salt fiber can be obtained.
  • the concentration of the surfactant is appropriately set depending on the solvent to be used, the type of the fiber forming material, and the like, and is not particularly limited. It is preferable that the concentration of the surfactant is 1% by weight or less because an effect corresponding to use can be improved.
  • the viscosity of the spinning solution in the method for producing a metal titanate metal salt fiber of the present invention is preferably adjusted to a range of 5 to 10,000 cP, and more preferably in a range of 10 to 8,000 cP.
  • the viscosity is 5 cP or more, spinnability for forming fibers is obtained, and when it is 10,000 cP or less, the spinning solution can be easily discharged.
  • a viscosity in the range of 10 to 8,000 cP is more preferable because good spinnability can be obtained over a wide range of spinning conditions.
  • the viscosity of the dispersion can be adjusted by appropriately changing the concentration of the metal salt or titanium alkoxide or the molecular weight, concentration or thickener of the fiber-forming material.
  • components other than those described above may also be included as components of the spinning solution.
  • you may contain a viscosity modifier, a pH adjuster, a stabilizer, a preservative, etc.
  • a precursor fiber is obtained by electrostatic spinning of the prepared spinning solution.
  • the electrostatic spinning method is a method in which a spinning solution is discharged and an electric field is applied to fiberize the discharged spinning solution to obtain fibers on a collector.
  • Examples of the electrospinning method include a method in which a spinning solution is extruded from a nozzle and an electric field is applied to perform spinning, a method in which the spinning solution is bubbled and an electric field is applied to perform spinning, and the spinning solution is guided to the surface of a cylindrical electrode.
  • a method of spinning by applying an electric field may be mentioned. According to this method, uniform fibers having a diameter of 10 nm to 10 ⁇ m can be obtained.
  • Examples of the method of discharging the spinning solution include a method of discharging a spinning solution filled in a syringe from a nozzle using a pump.
  • the spinning solution can be spun at room temperature, or heated and cooled for spinning.
  • the inner diameter of the nozzle is not particularly limited, but is preferably in the range of 0.1 to 1.5 mm.
  • the discharge amount is not particularly limited, but is preferably 0.1 to 10 mL / hr. If the discharge amount is 0.1 mL / hr or more, sufficient productivity of the metal titanate fiber can be obtained, and if it is 10 mL / hr or less, uniform and thin fibers can be easily obtained.
  • the polarity of the applied voltage may be positive or negative.
  • the magnitude of the voltage is not particularly limited as long as fibers are formed.
  • a range of 5 to 100 kV can be exemplified.
  • the method of applying an electric field is not particularly limited as long as an electric field can be formed at the nozzle and the collector.
  • a high voltage may be applied to the nozzle and the collector may be grounded, or a high voltage may be applied to the collector.
  • the nozzle may be grounded, or a positive high voltage may be applied to the nozzle and a negative high voltage may be applied to the collector.
  • the distance between the nozzle and the collector is not particularly limited as long as fibers are formed, but a range of 5 to 50 cm can be exemplified.
  • the collector is not particularly limited as long as it can collect the spun fibers, and the material and shape thereof are not particularly limited.
  • a conductive material such as metal is preferably used.
  • the shape of the collector is not particularly limited, and examples thereof include a flat plate shape, a shaft shape, and a conveyor shape. When the collector is flat, the fiber aggregate can be collected in a sheet form, and when the collector is a shaft, the fiber aggregate can be collected in a tube form. If it is a conveyor form, the fiber assembly collected by the sheet form can be manufactured continuously.
  • the fiber assembly may be collected in a collector installed between the nozzle and the collector.
  • the collector preferably has a volume resistivity of 10 10 ⁇ ⁇ cm or less, and more preferably 10 8 ⁇ ⁇ cm or less.
  • a material having a volume resistivity exceeding 10 10 ⁇ ⁇ cm can be suitably used by using it together with a device for eliminating charges, such as an ionizer.
  • a fiber assembly can be collected according to the shape of the collector.
  • ⁇ Baking method> By firing the precursor fiber, the fiber-forming material contained in the precursor fiber is thermally decomposed to obtain a metal titanate salt fiber.
  • a general electric furnace can be used for baking.
  • the firing atmosphere is not particularly limited, but can be performed in an air atmosphere or an inert gas atmosphere. Firing in an air atmosphere is preferable because it leaves less residue such as fiber-forming material and high purity metal titanate fiber.
  • the firing method may be one-stage firing or multi-stage firing.
  • the firing temperature is not particularly limited, but is preferably in the range of 600 to 1500 ° C, and more preferably in the range of 800 to 1300 ° C.
  • the firing temperature is 600 ° C. or higher, firing is sufficient, and crystallization of the metal titanate proceeds, and components other than the metal titanate hardly remain, and high-purity metal titanate fiber is obtained.
  • a metal titanate salt fiber is not coarsened, energy consumption can be restrained low and manufacturing cost becomes low, and it is preferable.
  • the firing temperature is in the range of 800 to 1300 ° C., the purity and crystallinity are sufficiently high, the number of coarse fibers is small, and the production cost can be sufficiently reduced.
  • the firing time is not particularly limited, but may be fired for 1 to 24 hours, for example.
  • the temperature raising rate is not particularly limited, but can be appropriately changed within the range of 5 to 200 ° C./min and fired.
  • the aggregated metal titanate fiber aggregates of various shapes can be obtained by forming the precursor fiber obtained by electrostatic spinning into an arbitrary shape and firing it.
  • a sheet-like metal titanate salt fiber aggregate can be obtained by forming and firing into a two-dimensional sheet, and tube-shaped titanium can be obtained by winding the precursor fiber around a shaft and collecting it.
  • An acid metal salt fiber aggregate can be obtained. It is also possible to obtain a cotton-like metal titanate salt fiber aggregate by collecting the precursor fibers in a liquid, freeze-drying, forming into a cotton-like shape, and firing.
  • the obtained metal titanate fiber may be further refined by pulverization or the like.
  • the pulverization treatment is preferable because the resin or the like can be easily filled as a filler.
  • the pulverization method is not particularly limited, and examples thereof include a ball mill, a bead mill, a jet mill, a high-pressure homogenizer, a planetary mill, a rotary crusher, a hammer crusher, a cutter mill, a stone mortar, and a mortar.
  • the pulverization method and conditions may be changed as appropriate for the required characteristics.
  • miniaturized by the crushing process is also included in a fiber.
  • a metal titanate salt fiber can be manufactured easily and stably.
  • the fiber diameter of the metal titanate fiber obtained by firing may be appropriately selected according to the required characteristics and applications, and is preferably in the range of 50 to 10,000 nm, for example, in the range of 100 to 1000 nm. More preferably. When the fiber diameter is 50 nm or more, the strength per fiber is increased, and handling and post-processing are facilitated. This is preferable, and when the fiber diameter is 10000 nm or less, the specific surface area is large and the dispersibility in a resin or the like is improved. Therefore, it is preferable.
  • a fiber diameter in the range of 100 to 1000 nm is preferable because it has sufficient strength and workability and can sufficiently improve piezoelectricity and ferroelectricity.
  • the method for controlling the fiber diameter is not particularly limited, and examples thereof include the type of solvent, the concentration of metal salt and titanium alkoxide, the molecular weight and concentration of the fiber-forming material, the viscosity of the spinning solution, and the electrospinning conditions. It is possible to control the fiber diameter by appropriately changing.
  • the fiber length of the metal titanate fiber is not particularly limited, but is preferably in the range of 0.5 to 1000 ⁇ m, preferably in the range of 1 to 100 ⁇ m, and in the range of 2 to 50 ⁇ m. Further preferred. If the fiber length is 0.5 ⁇ m or more, it is easy to orient the spontaneous polarization of the metal titanate, and excellent piezoelectric properties and ferroelectric properties can be obtained. It is preferable because it can be dispersed uniformly.
  • the aspect ratio of the metal titanate fiber is not particularly limited, but is preferably in the range of 2 to 1000, more preferably in the range of 5 to 500, and still more preferably in the range of 10 to 100.
  • the aspect ratio is 2 or more, it is preferable because the spontaneous polarization of the metal titanate salt can be easily oriented, and excellent piezoelectric properties and ferroelectric properties can be obtained. Can be uniformly dispersed.
  • the method for controlling the fiber length and the aspect ratio can be appropriately controlled depending on the grinding method and grinding conditions of the metal titanate fiber.
  • the crystal structure of the metal titanate fiber is not particularly limited, and may be orthorhombic, tetragonal or cubic. From the viewpoint of improving piezoelectric characteristics and ferroelectric characteristics, tetragonal crystals are preferable.
  • the crystallite size is not particularly limited, but is preferably 10 nm or more. If the crystallite size is 10 nm or more, excellent piezoelectric characteristics and ferroelectric characteristics can be obtained.
  • the method for controlling the crystallite size is not particularly limited, and examples thereof include changing the firing temperature, firing time, and heating rate in the firing step.
  • the crystal structure and crystallite size of the metal titanate fiber can be measured by an X-ray diffraction method.
  • the diameter of the titanate metal salt particles constituting the titanate metal salt fiber is not particularly limited, but is preferably in the range of 10 to 10,000 nm, and more preferably in the range of 30 to 5000 nm. If the diameter of the metal titanate salt particle is 10 nm or more, the piezoelectric characteristics and ferroelectric characteristics can be greatly improved, and if it is 10000 nm or less, it can be uniformly dispersed in a resin or the like.
  • the method for controlling the diameter of the metal titanate particles is not particularly limited, but can be controlled by appropriately changing the firing temperature, the heating rate, the firing time, and the like in the firing step.
  • ⁇ Method for measuring fiber diameter of metal titanate fiber Using a scanning electron microscope (SU-8000) manufactured by Hitachi, Ltd., the obtained metal titanate fiber is observed at 5000 to 30000 times, and image analysis is performed. The diameter of 50 fibers was measured using software, and the average value of the fiber diameters of 50 fibers was defined as the average fiber diameter.
  • -Method for measuring X-ray diffraction image of metal titanate fiber Using CuBR ⁇ X-ray diffractometer (D8 DISCOVER), the obtained metal titanate fiber was irradiated with CuK ⁇ rays and reflected from the sample. A diffraction image was obtained by detecting the line.
  • Example 1 ⁇ Preparation of spinning solution> 0.99 parts by weight of barium carbonate and 3 parts by weight of acetic acid were mixed to obtain a uniform first solution. Next, 0.36 parts by weight of polyvinylpyrrolidone, 2.64 parts by weight of ethanol, and 1.42 parts by weight of titanium tetraisopropoxide were mixed to obtain a uniform second solution. The second solution was mixed with the obtained first solution to prepare a spinning solution. The spinning solution was slightly turbid immediately after mixing, but a uniform solution could be obtained by stirring.
  • the spinning solution prepared by the above method is supplied by a syringe pump to a nozzle having an inner diameter of 0.22 mm at 3.0 mL / hr, and a voltage of 18 kV is applied to the nozzle, and a precursor fiber (fiber assembly) is applied to a grounded collector. ) was collected. The distance between the nozzle and the collector was 20 cm. For about 3 hours, no white turbidity was observed in the spinning solution, and it was possible to spin stably without nozzle clogging.
  • the electrospun precursor fiber is heated to 800 ° C.
  • Example 2 ⁇ Preparation of spinning solution> A spinning solution was prepared in the same manner as in Example 1 except that 3.5 parts by weight of acetic acid, 0.24 parts by weight of polyvinylpyrrolidone, and 2.76 parts by weight of ethanol were used. The spinning solution was slightly turbid immediately after mixing, but a uniform solution could be obtained by stirring.
  • Barium titanate fibers having an average fiber diameter of 200 nm were produced under the same conditions as in Example 1 except that the spinning solution produced by the above method was supplied at 0.3 mL / hr.
  • a scanning electron micrograph of the obtained barium titanate fiber is shown in FIG.
  • the X-ray-diffraction image of the obtained barium titanate fiber is shown in FIG.
  • Example 3 Barium titanate fibers having an average fiber diameter of 200 nm were produced under the same conditions as in Example 2 except that the firing temperature was 600 ° C. An X-ray diffraction image of the obtained barium titanate fiber is shown in FIG.
  • Example 4 Barium titanate fibers having an average fiber diameter of 200 nm were produced under the same conditions as in Example 2 except that the firing temperature was 1150 ° C. An X-ray diffraction image of the obtained barium titanate fiber is shown in FIG.
  • Example 5 ⁇ Preparation of spinning solution> 0.99 parts by weight of barium carbonate and 3 parts by weight of acetic acid were mixed to obtain a uniform first solution. Next, 0.18 parts by weight of polyvinylpyrrolidone, 2.82 parts by weight of propylene glycol monomethyl ether, and 1.42 parts by weight of titanium tetraisopropoxide were mixed to obtain a uniform second solution. The second solution was mixed with the obtained first solution to prepare a spinning solution. The spinning solution did not cause gelation or turbidity at all, and a very uniform solution could be obtained.
  • the spinning solution produced by the above method is supplied to a nozzle having an inner diameter of 0.22 mm by a syringe pump at 1.0 mL / hr, and a voltage of 23 kV is applied to the nozzle, and a precursor fiber (fiber assembly) is applied to a grounded collector. ) was collected. The distance between the nozzle and the collector was 17.5 cm.
  • the spinning solution was in a uniform state with no cloudiness or thickening even after 120 hours. Using this solution, it was possible to stably spin for 12 hours or more without causing nozzle clogging or the like.
  • the electrospun precursor fiber is heated to 800 ° C.
  • the spinning solution prepared by the above method is supplied by a syringe pump to a nozzle having an inner diameter of 0.22 mm at 1.0 mL / hr, and a voltage of 15 kV is applied to the nozzle, and a precursor fiber (fiber assembly) is applied to a grounded collector. ) was collected. The distance between the nozzle and the collector was 15 cm. However, nozzle clogging occurred immediately after the start of electrostatic spinning, and stable spinning could not be performed.
  • Example 6 ⁇ Preparation of spinning solution> 0.12 part by weight of strontium carbonate, 3 parts by weight of acetic acid, and 0.1 part by weight of ion-exchanged water were mixed to obtain a uniform first solution. Next, 0.18 parts by weight of polyvinylpyrrolidone, 2.82 parts by weight of propylene glycol monomethyl ether, and 0.23 parts by weight of titanium tetraisopropoxide were mixed to obtain a uniform second solution. The second solution was mixed with the obtained first solution to prepare a spinning solution. The spinning solution did not cause gelation or turbidity at all, and a very uniform solution could be obtained.
  • the spinning solution prepared by the above method is supplied by a syringe pump to a nozzle having an inner diameter of 0.22 mm at a rate of 0.3 mL / hr, a voltage of 15 kV is applied to the nozzle, and a precursor fiber (fiber assembly) is applied to a grounded collector. ) was collected. The distance between the nozzle and the collector was 15 cm.
  • the spinning solution did not show white turbidity even after 120 hours or more, and could be stably spun for 12 hours or more without causing nozzle clogging.
  • the electrospun precursor fiber is heated to 800 ° C.
  • Example 7 ⁇ Preparation of spinning solution> A uniform first solution was obtained by mixing 0.12 parts by weight of calcium chloride dihydrate and 3 parts by weight of ethanol. Next, 0.18 parts by weight of polyvinylpyrrolidone, 2.82 parts by weight of propylene glycol monomethyl ether, and 0.23 parts by weight of titanium tetraisopropoxide were mixed to obtain a uniform second solution. The second solution was mixed with the obtained first solution to prepare a spinning solution. The spinning solution did not cause gelation or turbidity at all, and a very uniform solution could be obtained.
  • the spinning solution prepared by the above method is supplied by a syringe pump to a nozzle having an inner diameter of 0.22 mm at a rate of 0.3 mL / hr, a voltage of 15 kV is applied to the nozzle, and a precursor fiber (fiber assembly) is applied to a grounded collector. ) was collected. The distance between the nozzle and the collector was 15 cm.
  • the spinning solution did not show white turbidity even after 120 hours or more, and could be stably spun for 12 hours or more without causing nozzle clogging.
  • the electrospun precursor fiber is heated to 800 ° C.
  • Example 8 Stability of spinning solution
  • a spinning solution was prepared in the same manner as in Example 5 except that 0.1 part by weight (ratio of water in the first solution: 3.2% by weight) of ion-exchanged water was added to the first solution of Example 5. Obtained.
  • the spinning solution was in a uniform state with no cloudiness or thickening observed even after 24 hours. After 120 hours, thickening was observed in a slightly cloudy state.
  • Example 9 (Stability of spinning solution) A spinning solution was prepared in the same manner as in Example 5 except that 0.2 parts by weight (ratio of water in the first solution: 6.3% by weight) of ion-exchanged water was added to the first solution of Example 5. Obtained. The spinning solution was in a uniform state with no cloudiness or thickening observed even after 24 hours. After 120 hours, the fluidity was lost in a cloudy state.
  • Example 10 A spinning solution was prepared in the same manner as in Example 5 except that 0.5 parts by weight (ratio of water in the first solution: 14.3% by weight) of ion-exchanged water was added to the first solution of Example 5. Obtained. In the spinning solution immediately after mixing, a part of the gel was formed, but the gel was broken by further stirring, and a fluid solution could be prepared. After 3 hours, no cloudiness or thickening was observed, and the film was in a uniform state. After 24 hours, thickening was observed in a slightly cloudy state, and after 120 hours, the fluidity was lost in a cloudy state.
  • Example 11 A spinning solution was obtained in the same manner as in Example 5 except that 1 part by weight (ratio of water in the solution 1: 25.0% by weight) of ion exchange water was added to the solution 1 of Example 5. In the spinning solution immediately after mixing, a part of the gel was formed, but the gel was broken by further stirring, and a fluid solution could be prepared. After 3 hours, thickening was observed in a slightly cloudy state, and after 24 hours, the fluidity was lost in a cloudy state.
  • a uniform spinning solution can be easily prepared, a metal titanate fiber can be stably produced over a long period of time, and it can be suitably used as a filler for piezoelectric materials, ferroelectric materials, dielectric filters, etc. Can do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Fibers (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本発明は、簡便に均一な紡糸溶液を調製でき、長時間安定に紡糸可能なチタン酸金属塩繊維の製造方法を提供することを課題とする。 (A)紡糸溶液を調製する工程と、(B)前記紡糸溶液を静電紡糸して前駆体繊維を作製する工程と、(C)前記前駆体繊維を焼成する工程と、を含む、チタン酸金属塩繊維の製造方法であって、前記(A)紡糸溶液を調製する工程が、(a1)金属塩と第一の溶媒とを混合し第一の溶液を得る工程と、(a2)繊維形成材料と第二の溶媒とチタンアルコキシドとを混合し第二の溶液を得る工程と、(a3)前記第一の溶液と前記第二の溶液とを混合し紡糸溶液を得る工程と、を含むことを特徴とする、チタン酸金属塩繊維の製造方法である。

Description

チタン酸金属塩繊維の製造方法
 本発明は、チタン酸金属塩繊維の製造方法に関する。
 チタン酸バリウム等のペロブスカイト型金属酸化物は、高い圧電性や強誘電性を有することから、センサーやアクチュエータ等に応用されている。ペロブスカイト型金属酸化物は硬くて脆いため、柔軟性や成形性を付与するために、樹脂にペロブスカイト型金属酸化物フィラーを充填した複合体が用いられている。特に、アスペクト比の大きい繊維状のペロブスカイト型金属酸化物フィラーは、樹脂中でペロブスカイト型金属酸化物の自発分極が配向することにより、圧電性等を向上させることができると期待されている。
 アスペクト比の大きい繊維状のペロブスカイト型金属酸化物を得る方法の一つとして、静電紡糸法が知られている。非特許文献1には、酢酸バリウムと酢酸とを混合した溶液に、チタン酸テトライソプロポキシドを攪拌しながらゆっくりと混合し、さらにポリビニルピロリドンとエタノールからなる溶液を混合することで紡糸溶液を調製し、紡糸溶液を静電紡糸して得られた前駆体繊維を焼成することで、チタン酸バリウム繊維を製造する方法が記載されている。しかし、この製造方法では、均一な紡糸溶液を得るために、空気中の水分が混入しないように、グローブボックス内で操作する等の設備上の問題や、チタンアルコキシドを混合する際の操作の煩雑さといった問題があり、より簡便な方法が求められている。また、このように調製した紡糸溶液は、時間経過とともにゲル化、白濁が進行し、長時間安定に紡糸することが困難である。
 また、特許文献1には、チタン元素を含むセラミックスからなり、平均繊維径が50~1500nmである金属酸化物繊維が提案されている。この特許文献1では、チタン酸バリウム繊維を製造する方法として、チタンテトラノルマルブトキシドと酢酸とを混合した溶液に、イオン交換水と酢酸バリウムとポリエチレングリコールとを混合させた溶液を、攪拌しながら添加することにより紡糸溶液を調整する方法が記載されている。しかしながら、この方法では、紡糸溶液を得る途中にゲル化が生じ、均一な溶液の調製、及び長時間の紡糸安定性を実現することが困難であるという問題があった。
特開2007-321277号公報
Materials Letters 59(2005) 3645-3647
 本発明の目的は、上記のような問題点を解決し、簡便に均一な紡糸溶液を調製でき、長時間安定に紡糸可能なチタン酸金属塩繊維の製造方法を提供することである。
 本発明者らは、上記した課題を解決すべく鋭意研究を重ねた。その結果、紡糸溶液の調製工程を一定の手順で行うことにより、簡便に均一な紡糸溶液を調製でき、長時間にわたって安定にチタン酸金属塩繊維を製造できることを見出し、本発明を完成するに至った。
 本発明は以下の構成を有する。
[1](A)紡糸溶液を調製する工程と、
(B)前記紡糸溶液を静電紡糸して前駆体繊維を作製する工程と、
(C)前記前駆体繊維を焼成する工程と、を含む、
チタン酸金属塩繊維の製造方法であって、
前記(A)紡糸溶液を調製する工程が、
(a1)金属塩と第一の溶媒とを混合し第一の溶液を得る工程と、
(a2)繊維形成材料と第二の溶媒とチタンアルコキシドとを混合し第二の溶液を得る工
程と、
(a3)前記第一の溶液と前記第二の溶液とを混合し紡糸溶液を得る工程と、を含むことを特徴とする、チタン酸金属塩繊維の製造方法。
[2]前記第二の溶媒がアルコールを主成分とする溶媒である、前記[1]に記載のチタン酸金属塩繊維の製造方法。
[3]前記アルコールがプロピレングリコールモノメチルエーテルである、前記[2]に記載のチタン酸金属塩繊維の製造方法。
[4]前記第一の溶媒中の水の割合が15重量%以下である、前記[1]~[3]のいずれか1項に記載のチタン酸金属塩繊維の製造方法。
[5]前記(C)前駆体繊維を焼成する工程における焼成温度が600℃以上である、前記[1]~[4]のいずれか1項に記載のチタン酸金属塩繊維の製造方法。
[6]さらに(D)チタン酸金属塩繊維を粉砕する工程を含む、前記[1]~[5]のいずれか1項に記載のチタン酸金属塩繊維の製造方法。
 本発明により、簡便に均一な紡糸溶液を調製でき、長時間にわたって安定にチタン酸金属塩繊維の製造が可能となる。
図1は、本発明の実施例によるチタン酸バリウム繊維の走査型電子顕微鏡写真である。 図2は、本発明の実施例によるチタン酸バリウム繊維の走査型電子顕微鏡写真である。 図3は、本発明の実施例によるチタン酸バリウム繊維のX線回折像である。 図4は、本発明の実施例によるチタン酸バリウム繊維の走査型電子顕微鏡写真である。 図5は、本発明の実施例によるチタン酸ストロンチウム繊維の走査型電子顕微鏡写真である。 図6は、本発明の実施例によるチタン酸ストロンチウム繊維のX線回折像である。 図7は、本発明の実施例によるチタン酸カルシウム繊維の走査型電子顕微鏡写真である。 図8は、本発明の実施例によるチタン酸カルシウム繊維のX線回折像である。
 以下、本発明を発明の実施の形態に則して詳細に説明する。
<A.紡糸溶液の調製工程>
 本発明のチタン酸金属塩繊維の製造方法における(A)紡糸溶液の調製工程は、次の(a1)~(a3)の工程を含むことを特徴とする。
<(a1)第一の溶液を得る工程>
 (A)紡糸溶液の調製工程では、まず、(a1)金属塩と第一の溶媒とを混合し、第一の溶液を得る工程を実施する。金属塩と第一の溶媒とを混合して得られる第一の溶液は、チタン酸と塩を形成しうる金属元素を含む溶液である。
<金属塩>
 本発明の製造方法に用いる金属塩は、チタン酸と金属塩を形成し、繊維状の構造物を得られる化合物であれば制限されない。例えば、金属塩として、バリウム塩、ストロンチウム塩、カルシウム塩等のアルカリ土類金属塩、カリウム塩、ナトリウム塩、リチウム塩、鉛塩等のアルカリ金属塩、カドミウム塩、ビスマス塩等が挙げられ、中でも、バリウム塩、ストロンチウム塩、カルシウム塩を用いて、チタン酸金属塩(メタチタン酸)繊維を製造することが好ましい。
 バリウム塩としては、特に限定されないが、炭酸バリウム、酢酸バリウム、水酸化バリウム、シュウ酸バリウム、硝酸バリウム、塩化バリウム、及びこれらの混合物などを例示できる。溶媒への溶解性の観点から、炭酸バリウム、酢酸バリウム、硝酸バリウムであることが好ましい。
 ストロンチウム塩としては、特に制限されないが、炭酸ストロンチウム、酢酸ストロンチウム、硝酸ストロンチウム、塩化ストロンチウム等が挙げられる。カルシウム塩としては、塩化カルシウム、炭酸カルシウム、酢酸カルシウム、硫酸カルシウム等が挙げられる。カリウム塩としては、塩化カリウム、塩素酸カリウム、クロム酸カリウム、硝酸カリウム、ヨウ化カリウム、硫酸カリウム等が挙げられる。ナトリウム塩としては、亜硫酸ナトリウム、塩化ナトリウム、過塩素酸ナトリウム、硝酸ナトリウム、炭酸水素ナトリウム、炭酸ナトリウム、硫酸ナトリウム等が挙げられる。リチウム塩としては、酢酸リチウム、炭酸リチウム、塩化リチウム等が挙げられる。
<第一の溶媒>
 第一の溶媒としては、金属塩を溶解することができる溶媒であれば、特に限定されないが、金属塩の溶解性と、最終的に得られる紡糸溶液の均一性の観点から、有機酸を主成分とすることが好ましく、酢酸を主成分とすることがさらに好ましい。なお、本出願において、「主成分」とは、溶媒を構成する成分のうち最大の割合を占める成分のことを意味しており、主成分が溶媒全体に対して50重量%以上であること、好ましくは85重量%以上を占めていることを意味している。
 すなわち第一の溶媒における有機酸の割合は、50重量%以上であることが好ましい。有機酸としては、カルボン酸、スルホン酸が挙げられ、カルボン酸であることが好ましい。カルボン酸としては、ギ酸、酢酸、プロピオン酸等の脂肪族カルボン酸が挙げられ、中でも酢酸が好ましい。
 また、第一の溶媒には有機酸以外を含んでいてもよく、例えば、水、メタノール、エタノール、プロパノール、アセトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、トルエン、キシレン、ピリジン、テトラヒドロフラン、ジクロロメタン、クロロホルム、1,1,1,3,3,3-ヘキサフルオロイソプロパノールなどを含んでいてもよい。なお、金属塩の溶解性等に応じて、有機酸を含まないことも好ましく、第一の溶媒に有機酸を含まない場合、第一の溶媒としてアルコールを主成分として含むことも好ましい。アルコールとしてはメタノール、エタノール、プロパノール等が挙げられる。
 また第一の溶媒は水の含有量が低いことが好ましく、水を含む場合、第一の溶媒中の水の割合は15重量%以下であることが好ましく、5重量%以下であることがより好ましい。金属塩が水溶性である場合、第一の溶液中に水を含有すると第一の溶液の溶解性及び安定性が向上することもあるが、第一の溶液中の水の含量が15重量%以下であれば、紡糸溶液の安定性が低下し、紡糸を行うことが困難になる恐れがない。
 (a1)工程における混合条件は、析出物等を生じない限り特に制限されず、例えば、10~90℃において、1~24時間行うことができる。混合の方法は、金属塩を溶解できる限り特に制限されるものではないが、マグネティックスターラー、振とう器、遊星式攪拌機、超音波装置等の公知の設備を用いて行うことができる。第一の溶液における金属塩の濃度は、金属塩が溶液中に安定に溶解される限りにおいて制限されないが、例えば、0.1~10mol/Lとすることができ、0.2~5mol/Lとすることがより好ましい。金属塩の濃度が0.1mol/L以上であれば、チタン酸金属塩が繊維状を形成しやすくなるため好ましく、10mol/L以下であれば、紡糸溶液の安定性が向上するとともに細い繊維が得られ易くなるため好ましい。
<(a2)第二の溶液を得る工程>
 本発明のチタン酸金属塩繊維の製造方法における溶液調製工程では、(a1)とは別個に、繊維形成材料と第二の溶媒とチタンアルコキシドとを混合して、第二の溶液を得る工程を実施する。特定の理論に拘束されるものではないが、本発明では、チタンアルコキシドと繊維形成材料及び水を含まない第二の溶媒とを予め混合することによって、チタンアルコキシドと第二の溶媒との錯体が安定化されやすくなり、そのためチタンアルコキシドの加水分解及び脱水縮合が抑制され、安定な紡糸溶液が得られるものと考えられている。
<繊維形成材料>
 本発明に用いる繊維形成材料としては、紡糸溶液に曳糸性を付与できるものであれば、特に限定されず、例えば、ポリビニルアルコール、ポリエチレングリコール、ポリエチレンオキシド、ポリビニルピロリドン、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリ乳酸、ポリアミド、ポリウレタン、ポリスチレン、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリメタクリル酸メチル、ポリグリコール酸、ポリカプロラクトン、セルロース、セルロース誘導体、キチン、キトサン、コラーゲン、およびこれらの共重合体や混合物などを例示ができる。これら繊維形成材料は、第二の溶媒への溶解性、及び焼成工程での分解性の観点から、ポリビニルアルコール、ポリエチレングリコール、ポリエチレンオキシド、ポリビニルピロリドン、ポリアクリル酸であることが好ましく、ポリビニルピロリドンであることがさらに好ましい。
 繊維形成材料の重量平均分子量としては、特に限定されないが、10,000~10,000,000の範囲でありことが好ましく、50,000~5,000,000の範囲であることがより好ましく、100,000~1,000,000であることがさらに好ましい。重量平均分子量が10,000以上であれば、チタン酸金属塩繊維の繊維形成性に優れるため好ましく、10,000,000以下であれば、溶解性に優れ、調製工程が簡便になるため好ましい。
<第二の溶媒>
 本発明に用いる第二の溶媒としては、繊維形成材料を溶解することができる溶媒であり、紡糸溶液の安定性が得られる溶媒であれば特に限定されないが、チタンアルコキシドとの錯体形成性の観点から、アルコール系溶媒を主成分とすることが好ましい。第二の溶媒としては、例えば、エタノール、エチレングリコール、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルを主成分とする溶媒であることが好ましく、プロピレングリコールモノメチルエーテルを主成分とすることがより好ましい。なお「主成分」とは、前記と同様、第二の溶媒を構成する成分のうち最大の割合を占める成分のことを意味しており、好ましくは当該成分が50重量%以上であること、より好ましくは85重量%以上を占めていることを意味している。
 また、第二の溶媒にはアルコール系溶媒以外を含んでいてもよく、例えば、アセトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、トルエン、キシレン、ピリジン、テトラヒドロフラン、ジクロロメタン、クロロホルム、ギ酸、酢酸、トリフルオロ酢酸などを含んでいてもよい。
<チタンアルコキシド>
 本発明の製造に用いるチタンアルコキシドとしては、特に限定されないが、チタンテトラメトキシド、チタンテトラエトキシド、チタンテトラノルマルプロポキシド、チタンテトライソプロポキシド、チタンテトラノルマルブトキシドなどを例示できるが、紡糸溶液の安定性及び入手し易さから、チタンテトライソプロポキシド、チタンテトラノルマルブトキシドが好ましい。
 (a2)工程における混合条件や方法は、本発明の効果を得られる限り特に制限されないが、例えば、10~90℃において、1~24時間行うことができる。混合の方法は、例えば、マグネティックスターラー、振とう器、遊星式攪拌機、超音波装置等の公知の設備を用いて行うことができる。第二の溶液における混合順序は特に限定されないが、第二の溶媒中に繊維形成材料を溶解させた後、チタンアルコキシドを混合する方法が、チタンアルコキシドの加水分解及び脱水縮合を抑制する観点から好ましい。第二の溶液における、繊維形成材料及びチタンアルコキシドの濃度は、チタンアルコキシドが繊維形成材料とともに溶液中で安定に存在する限りにおいて制限されないが、例えば、繊維形成材料の第二の溶媒に対する濃度は、1~20重量%とすることができ、3~15重量%とすることがより好ましい。繊維形成材料の濃度が1重量%以上であれば、第二の溶液の安定性を高くし、チタン酸金属塩が繊維状を形成しやすくなるため好ましく、20重量%以下であれば、紡糸溶液の粘度が高くなりすぎず安定的な紡糸が行えるとともに細い繊維が得られ易くなるため好ましい。チタンアルコキシドの第二の溶媒に対する濃度は、0.1~10mol/Lとすることができ、0.2~5mol/Lとすることがより好ましい。チタンアルコキシドの濃度が0.1mol/L以上であれば、チタン酸金属塩が繊維状を形成しやすくなるため好ましく、10mol/L以下であれば、紡糸溶液の安定性が向上するとともに細い繊維が得られ易くなるため好ましい。
<(a3)紡糸溶液を得る工程>
 本発明のチタン酸金属塩繊維の製造方法における溶液調製工程では、前記の第一の溶液と第二の溶液とを混合し、紡糸溶液を得る工程を実施する。
 本発明における第一の溶液と第二の溶液を混合する方法は限定されない。特に、攪拌しながら少量ずつ混合するといった煩雑な操作を行う必要はない。混合方法として、撹拌や超音波処理などの方法を挙げることができる。混合順序は、特に限定されず、第一の溶液を第二の溶液に添加しても、第二の溶液を第一の溶液に添加しても、別の容器に第一の溶液と第二の溶液を同時に添加してもよい。
 第一の溶液と第二の溶液とを混合する割合は、目的とするチタン酸金属塩繊維に対して金属塩とチタンアルコキシドのモル比を調整できれば特に限定されないが、第一の溶液と第二の溶液の重量比を、好ましくは1:3~3:1、より好ましくは1:2~2:1の範囲とすれば、金属塩やチタンアルコキシドの濃度が高くなりすぎず安定的な混合操作が可能になるとともに幅広い組成のチタン酸金属塩繊維を得ることができる。ここで、「目的とするチタン酸金属塩繊維に対して金属塩とチタンアルコキシドのモル比を調整する」とは、チタン酸バリウム(BaTiO)繊維を得たい場合には、バリウム塩とチタンアルコキシドのモル比を1:1にすればよく、チタン酸リチウム(LiTi12)繊維を得たい場合には、リチウム塩とチタンアルコキシドのモル比を4:5にすればよいことを意味する。
<紡糸溶液>
 本発明のチタン酸金属塩繊維の製造方法における紡糸溶液は、繊維形成性を向上させる目的で、界面活性剤を含有していてもよい。界面活性剤は、紡糸溶液の均一性や紡糸安定性を阻害しない範囲で用いることができ、例えば、ドデシル硫酸ナトリウムなどのイオン性界面活性剤、ポリオキシエチレンソルビタンモノラウレートなどの非イオン性界面活性剤などを挙げることができる。界面活性剤には、金属イオンを含まないなど焼成工程で完全に消失する性状であることが、高純度のチタン酸金属塩繊維を得ることができる点で好ましい。界面活性剤の濃度は、使用する溶媒や繊維形成材料の種類などによって適宜設定され、特に限定されないが、紡糸溶液重量に対して、1重量%以下の範囲であることが好ましい。界面活性剤の濃度が1重量%以下であると、使用に見合う効果の向上が得られるため好ましい。
 本発明のチタン酸金属塩繊維の製造方法における紡糸溶液の粘度は、5~10,000cPの範囲に調整することが好ましく、10~8,000cPの範囲であることがより好ましい。粘度が5cP以上であると、繊維を形成するための曳糸性が得られ、10,000cP以下であると、紡糸溶液を吐出させるのが容易となる。粘度が10~8,000cPの範囲であれば、広い紡糸条件範囲で良好な曳糸性が得られるのでより好ましい。分散液の粘度は、金属塩やチタンアルコキシドの濃度または繊維形成材料の分子量、濃度あるいは増粘剤を適宜変更することで、調整することができる。
 本発明の効果を著しく損なわない範囲であれば、上記以外の成分も紡糸溶液の成分として含んでもよい。例えば、粘度調整剤、pH調整剤、安定剤、防腐剤等を含有していてもよい。
<(B)前駆体繊維を作製する工程>
 本発明のチタン酸金属塩繊維の製造方法では、調製した紡糸溶液を静電紡糸することで前駆体繊維を得る。
<静電紡糸>
 静電紡糸法とは、紡糸溶液を吐出させるとともに、電界を作用させて、吐出された紡糸溶液を繊維化し、コレクター上に繊維を得る方法である。静電紡糸法としては、例えば、紡糸溶液をノズルから押し出すとともに電界を作用させて紡糸する方法、紡糸溶液を泡立たせるとともに電界を作用させて紡糸する方法、円筒状電極の表面に紡糸溶液を導くとともに電界を作用させて紡糸する方法などを挙げることができる。この方法によれば、直径10nm~10μmの均一な繊維を得ることができる。
 紡糸溶液を吐出させる方法としては、例えば、ポンプを用いてシリンジに充填した紡糸溶液をノズルから吐出させる方法などが挙げられる。紡糸溶液の温度は、常温で紡糸することもできるし、加熱・冷却して紡糸してもよい。ノズルの内径としては、特に限定されないが、0.1~1.5mmの範囲であるのが好ましい。また吐出量としては、特に限定されないが、0.1~10mL/hrであるのが好ましい。吐出量が0.1mL/hr以上であればチタン酸金属塩繊維の充分な生産性を得ることができるため好ましく、10mL/hr以下であれば均一かつ細い繊維を得られ易くなるため好ましい。印加させる電圧の極性は、正であっても負であってもよい。また、電圧の大きさは、繊維が形成されれば特に限定されず、例えば正の電圧の場合、5~100kVの範囲を例示できる。電界を作用させる方法としては、ノズルとコレクターに電界を形成させることができれば特に限定されるものではなく、例えば、ノズルに高電圧を印加させコレクターを接地してもよく、コレクターに高電圧を印加させノズルを接地してもよく、ノズルに正の高電圧を印加させコレクターに負の高電圧を印加させてもよい。また、ノズルとコレクターとの距離は、繊維が形成されれば特に限定されないが、5~50cmの範囲を例示できる。コレクターは、紡糸された繊維を捕集できるものであればよく、その素材や形状などは特に限定させるものではない。コレクターの素材としては、金属等の導電性材料が好適に用いられる。コレクターの形状としては、特に限定されないが、例えば、平板状、シャフト状、コンベア状などを挙げることができる。コレクターが平板状であると、シート状に繊維集合体を捕集することができ、シャフト状であると、チューブ状に繊維集合体を捕集することができる。コンベア状であれば、シート状に捕集された繊維集合体を連続的に製造することができる。
 ノズルとコレクター間に設置された捕集体に繊維集合体を捕集してもよい。捕集体としては、体積固有抵抗値が1010Ω・cm以下であるものが好ましく、108Ω・cm以下であるものがより好ましい。また、体積固有抵抗値が1010Ω・cmを超える素材のものも、イオナイザー等の電荷を消失させる装置と併用することで、好適に用いることができる。また、任意の形状の捕集体を用いれば、その捕集体の形状に合わせて繊維集合体を捕集することができる。さらに、捕集体として液体を用いることも可能である。
<(C)前駆体繊維を焼成する工程>
 本発明のチタン酸金属塩繊維の製造方法では、静電紡糸により得られた前駆体繊維は焼成される。
<焼成方法>
 前駆体繊維を焼成することによって、前駆体繊維中に含まれる繊維形成材料などは加熱分解され、チタン酸金属塩繊維を得ることができる。焼成には、一般的な電気炉を用いることができる。焼成雰囲気は、特に限定されないが、空気雰囲気中や不活性ガス雰囲気中で行うことができる。空気雰囲気中で焼成すると、繊維形成材料などの残存物を少なくし、高純度のチタン酸金属塩繊維が得られるため好ましい。焼成方法としては、一段階焼成であっても、多段階焼成であってもよい。
 焼成温度は、特に限定されないが、600~1500℃の範囲がより好ましく、800~1300℃の範囲であるのがさらに好ましい。焼成温度は600℃以上であると焼成が十分となり、チタン酸金属塩の結晶化が進行するとともに、チタン酸金属塩以外の成分が残存しにくくなり高純度のチタン酸金属塩繊維が得られる。また、1500℃以下であれば、チタン酸金属塩繊維が粗大化せず、また消費エネルギーを低く抑えることができ、製造コストが低くなるため好ましい。焼成温度が800~1300℃の範囲であると、純度、結晶性が十分高く、粗大繊維が少なく、かつ製造コストを十分低くすることができる。焼成時間としては、特に限定されないが、例えば1~24時間焼成してもよい。昇温速度としては、特に限定されないが、5~200℃/minの範囲で適宜変更して焼成することができる。
 静電紡糸して得られた前駆体繊維を、任意の形状に成形して焼成を行うことで、様々な形状のチタン酸金属塩繊維集合体を得ることができる。例えば、2次元のシート状に成形し焼成することで、シート状のチタン酸金属塩繊維集合体を得ることができ、前駆体繊維をシャフトに巻きつけて捕集することで、チューブ状のチタン酸金属塩繊維集合体を得ることができる。また、液体中に前駆体繊維を捕集して凍結乾燥し、綿状に成形して焼成することで、綿状のチタン酸金属塩繊維集合体を得ることも可能である。
<(D)粉砕工程>
 本発明のチタン酸金属塩繊維の製造方法では、得られたチタン酸金属塩繊維をさらに粉砕処理等により微細化してもよい。粉砕処理することで、樹脂等にフィラーとして充填し易くなるため好ましい。粉砕処理の方法は、特に限定されないが、ボールミル、ビーズミル、ジェットミル、高圧ホモジナイザー、遊星ミル、ロータリークラッシャー、ハンマークラッシャー、カッターミル、石臼、乳鉢などを例示でき、乾式であっても湿式であってもよく、求められる特性に対して、粉砕方法や条件などは適宜変更すればよい。本発明では、破砕処理により微細化されたチタン酸金属塩繊維の断片も繊維に含める。
<チタン酸金属塩繊維>
 本方法を用いれば、チタン酸金属塩繊維を容易かつ安定に製造することができる。焼成して得られたチタン酸金属塩繊維の繊維径は、要求される特性や用途に合わせて適宜選択すればよく、例えば、50~10000nmの範囲であることが好ましく、100~1000nmの範囲であることがより好ましい。繊維径が50nm以上であると、繊維1本あたりの強度が大きくなり、取り扱いや後加工が容易になるため好ましく、10000nm以下であると、比表面積が大きく、樹脂等への分散性が向上するため好ましい。繊維径が、100~1000nmの範囲であれば、十分な強度や加工性を有し、圧電性や強誘電性を十分向上させることができるため好ましい。繊維径の制御方法としては、特に制限されず、溶媒の種類、金属塩やチタンアルコキシドの濃度、繊維形成材料の分子量や濃度、紡糸溶液の粘度、静電紡糸条件などを挙げることができ、これらを適宜変更することで繊維径を制御することが可能である。
 また、チタン酸金属塩繊維の繊維長は、特に限定されないが、0.5~1000μmの範囲であることが好ましく、1~100μmの範囲であることが好ましく、2~50μmの範囲であることがさらに好ましい。繊維長が0.5μm以上であれば、チタン酸金属塩の自発分極を配向させることが容易であり、優れた圧電特性や強誘電特性を得ることができるため好ましく、1000μm以下であれば、樹脂等への均一に分散させることができるため好ましい。チタン酸金属塩繊維のアスペクト比は、特に限定されないが、2~1000の範囲であることが好ましく、5~500の範囲であることがより好ましく、10~100の範囲であることがさらに好ましい。アスペクト比が2以上であれば、チタン酸金属塩の自発分極を配向させることが容易であり、優れた圧電特性や強誘電特性を得ることができるため好ましく、1000以下であれば、樹脂等への均一に分散させることができるため好ましい。繊維長やアスペクト比を制御する方法としては、チタン酸金属塩繊維の粉砕方法や粉砕条件などにより適宜制御可能である。
 チタン酸金属塩繊維の結晶構造は、特に限定されず、斜方晶であっても正方晶であっても立方晶であってもよい。圧電特性や強誘電特性を向上させる観点から、正方晶であることが好ましい。また、結晶子サイズは、特に限定されないが、10nm以上であることが好ましい。結晶子サイズが10nm以上であれば、優れた圧電特性や強誘電特性が得ることができる。結晶子サイズの制御方法としては、特に制限されないが、焼成工程における焼成温度、焼成時間、昇温速度を変更することなどが挙げられる。このチタン酸金属塩繊維の結晶構造や結晶子サイズは、X線回析法により測定することができる。
 チタン酸金属塩繊維を構成するチタン酸金属塩粒子の直径は、特に限定されないが、10~10000nmの範囲であることが好ましく、30~5000nmの範囲であることがより好ましい。チタン酸金属塩粒子の直径が10nm以上であれば、圧電特性や強誘電特性が大きく向上させることができるため好ましく、10000nm以下であれば、樹脂等に均一に分散させることができるため好ましい。チタン酸金属塩粒子の直径の制御方法としては、特に限定されないが、焼成工程における焼成温度や昇温速度、焼成時間などを適宜変更することで制御可能である。
 以下、実施例によって本発明をより詳細に説明するが、以下の実施例は例示を目的としたものに過ぎない。本発明の範囲は、本実施例に限定されない。
 実施例で用いた物性値の測定方法または定義を以下に示す。
・チタン酸金属塩繊維の繊維径の測定方法
 日立株式会社製の走査型電子顕微鏡(SU-8000)を使用して、得られたチタン酸金属塩繊維を5000~30000倍で観察し、画像解析ソフトを用いて繊維50本の直径を測定し、繊維50本の繊維径の平均値を平均繊維径とした。
・チタン酸金属塩繊維のX線回折像の測定方法
 BRUKER製のX線回折装置(D8 DISCOVER)を使用して、得られたチタン酸金属塩繊維にCuKα線を照射し、試料から反射したCuKα線を検出することで、回折像を得た。
[実施例1]
<紡糸溶液の調製>
 炭酸バリウム0.99重量部と酢酸3重量部とを混合し、均一な第一の溶液を得た。次いで、ポリビニルピロリドン0.36重量部とエタノール2.64重量部とチタンテトライソプロポキシド1.42重量部とを混合し、均一な第二の溶液を得た。得られた第一の溶液に第二の溶液を混合し、紡糸溶液を調製した。紡糸溶液は、混合直後に少し濁りが生じたが、攪拌することで均一な溶液を得ることができた。
<繊維の作製>
 上記方法により作製した紡糸溶液を、シリンジポンプにより内径0.22mmのノズルに3.0mL/hrで供給すると共に、ノズルに18kVの電圧を印加し、接地されたコレクターに前駆体繊維(繊維集合体)を捕集した。ノズルとコレクターの距離は20cmとした。3時間程度は紡糸溶液に白濁は見られず、ノズル詰まりなどが生じることなく安定に紡糸することが可能であった。静電紡糸された前駆体繊維を空気中、10℃/minの昇温速度で800℃まで昇温し、1時間保持した後、室温まで冷却することで、平均繊維径800nmのチタン酸バリウム繊維を作製した。得られたチタン酸バリウム繊維の走査型電子顕微鏡写真を図1に示す。
[実施例2]
<紡糸溶液の調製>
 酢酸を3.5重量部、ポリビニルピロリドン0.24重量部、エタノール2.76重量部とした以外、実施例1と同様に紡糸溶液を調製した。紡糸溶液は、混合直後に少し濁りが生じたが、攪拌することで均一な溶液を得ることができた。
<繊維の作製>
 上記方法により作製した紡糸溶液を、0.3mL/hrで供給する以外は実施例1と同様の条件にて、平均繊維径200nmのチタン酸バリウム繊維を作製した。得られたチタン酸バリウム繊維の走査型電子顕微鏡写真を図2に示す。また、得られたチタン酸バリウム繊維のX線回折像を図3に示す。
[実施例3]
 焼成温度を600℃とした以外は、実施例2と同様の条件で、平均繊維径200nmのチタン酸バリウム繊維を作製した。得られたチタン酸バリウム繊維のX線回折像を図3に示す。
[実施例4]
 焼成温度を1150℃とした以外は、実施例2と同様の条件で、平均繊維径200nmのチタン酸バリウム繊維を作製した。得られたチタン酸バリウム繊維のX線回折像を図3に示す。
[実施例5]
<紡糸溶液の調製>
 炭酸バリウム0.99重量部と酢酸3重量部とを混合し、均一な第一の溶液を得た。次いで、ポリビニルピロリドン0.18重量部とプロピレングリコールモノメチルエーテル2.82重量部とチタンテトライソプロポキシド1.42重量部とを混合し、均一な第二の溶液を得た。得られた第一の溶液に第二の溶液を混合し、紡糸溶液を調製した。紡糸溶液は、ゲルや濁りが全く生じず、非常に均一な溶液を得ることができた。
<繊維の作製>
 上記方法により作製した紡糸溶液を、シリンジポンプにより内径0.22mmのノズルに1.0mL/hrで供給すると共に、ノズルに23kVの電圧を印加し、接地されたコレクターに前駆体繊維(繊維集合体)を捕集した。ノズルとコレクターの距離は17.5cmとした。紡糸溶液は120時間経っても白濁や増粘は見られず、均一な状態であった。この溶液を用いて、ノズル詰まりなどが生じることなく12時間以上にわたって安定に紡糸することが可能であった。静電紡糸された前駆体繊維を空気中、10℃/minの昇温速度で800℃まで昇温し、1時間保持した後、室温まで冷却することで、平均繊維径300nmのチタン酸バリウム繊維を作製した。得られたチタン酸バリウム繊維の走査型電子顕微鏡写真を図4に示す。
[比較例1]
 酢酸バリウム1.28重量部と蒸留水3重量部とを混合し、均一な溶液を得た。この溶液を攪拌しながら、チタンテトライソプロポキシドをゆっくりと滴下していったが、数滴滴下した直後に溶液は白濁し、流動性を失ってしまった。このため、静電紡糸することができなかった。
[比較例2]
炭酸バリウム0.99重量部と酢酸3重量部とを混合し、均一な溶液を得た。この溶液を攪拌しながら、チタンテトライソプロポキシド1.42重両部をゆっくりと滴下した。混合直後、溶液の流動性はあったものの、一部ゲル化しており、数時間後に白濁し、流動性を失ってしまったために、静電紡糸することができなかった。
[比較例3]
<紡糸溶液の調製>
 チタンテトライソプロポキシド0.83重量部と酢酸1.3重量部を混合し、均一な溶液を得た。この溶液を攪拌しながら、蒸留水1.8重量部と酢酸バリウム0.75重量部とポリエチレングリコール0.044重量部とを混合させた溶液を、ゆっくりと滴下した。混合直後、溶液には一部ゲル化した部分が生じたが、さらに攪拌を続けることでゲルが分断し、流動性のある溶液を調整することができた。
<繊維の作製>
 上記方法により作製した紡糸溶液を、シリンジポンプにより内径0.22mmのノズルに1.0mL/hrで供給すると共に、ノズルに15kVの電圧を印加し、接地されたコレクターに前駆体繊維(繊維集合体)を捕集した。ノズルとコレクターの距離は15cmとした。しかし、静電紡糸開始直後に、ノズル詰まりが生じ、安定して紡糸することができなかった。
 実施例1~5及び比較例1、2の製造条件、紡糸結果について下表にまとめる。
Figure JPOXMLDOC01-appb-T000001
[実施例6]
<紡糸溶液の調製>
 炭酸ストロンチウム0.12重量部と酢酸3重量部とイオン交換水0.1重量部とを混合し、均一な第一の溶液を得た。次いで、ポリビニルピロリドン0.18重量部とプロピレングリコールモノメチルエーテル2.82重量部とチタンテトライソプロポキシド0.23重量部とを混合し、均一な第二の溶液を得た。得られた第一の溶液に第二の溶液を混合し、紡糸溶液を調製した。紡糸溶液は、ゲルや濁りが全く生じず、非常に均一な溶液を得ることができた。
<繊維の作製>
 上記方法により作製した紡糸溶液を、シリンジポンプにより内径0.22mmのノズルに0.3mL/hrで供給すると共に、ノズルに15kVの電圧を印加し、接地されたコレクターに前駆体繊維(繊維集合体)を捕集した。ノズルとコレクターの距離は15cmとした。紡糸溶液は120時間以上経っても白濁は見られず、ノズル詰まりなどが生じることなく12時間以上にわたって安定に紡糸することが可能であった。静電紡糸された前駆体繊維を空気中、10℃/minの昇温速度で800℃まで昇温し、1時間保持した後、室温まで冷却することで、平均繊維径70nmのチタン酸ストロンチウム繊維を作製した。得られたチタン酸ストロンチウム繊維の走査型電子顕微鏡写真を図5に示す。また、得られたチタン酸ストロンチウム繊維のX線回折像を図6に示す。
[実施例7]
<紡糸溶液の調製>
 塩化カルシウム二水和物0.12重量部とエタノール3重量部とを混合し、均一な第一の溶液を得た。次いで、ポリビニルピロリドン0.18重量部とプロピレングリコールモノメチルエーテル2.82重量部とチタンテトライソプロポキシド0.23重量部とを混合し、均一な第二の溶液を得た。得られた第一の溶液に第二の溶液を混合し、紡糸溶液を調製した。紡糸溶液は、ゲルや濁りが全く生じず、非常に均一な溶液を得ることができた。
<繊維の作製>
 上記方法により作製した紡糸溶液を、シリンジポンプにより内径0.22mmのノズルに0.3mL/hrで供給すると共に、ノズルに15kVの電圧を印加し、接地されたコレクターに前駆体繊維(繊維集合体)を捕集した。ノズルとコレクターの距離は15cmとした。紡糸溶液は120時間以上経っても白濁は見られず、ノズル詰まりなどが生じることなく12時間以上にわたって安定に紡糸することが可能であった。静電紡糸された前駆体繊維を空気中、10℃/minの昇温速度で800℃まで昇温し、1時間保持した後、室温まで冷却することで、平均繊維径70nmのチタン酸カルシウム繊維を作製した。得られたチタン酸カルシウム繊維の走査型電子顕微鏡写真を図7に示す。また、得られたチタン酸カルシウム繊維のX線回折像を図8に示す。
[実施例8](紡糸液の安定性)
 実施例5の第一の溶液に、0.1重量部(第一の溶液における水の割合:3.2重量%)のイオン交換水を加えた以外は実施例5と同様にして紡糸液を得た。紡糸液は、24時間後にも白濁や増粘は見られず均一な状態であった。120時間後には、少し濁った状態で増粘が見られた。
[実施例9](紡糸液の安定性)
 実施例5の第一の溶液に、0.2重量部(第一の溶液における水の割合:6.3重量%)のイオン交換水を加えた以外は実施例5と同様にして紡糸液を得た。紡糸液は、24時間後にも白濁や増粘は見られず均一な状態であった。120時間後には、白濁した状態で流動性が失われていた。
(紡糸液の安定性)
[実施例10]
 実施例5の第一の溶液に、0.5重量部(第一の溶液における水の割合:14.3重量%)のイオン交換水を加えた以外は実施例5と同様にして紡糸液を得た。混合直後の紡糸液には一部ゲル化した部分が生じたが、さらに攪拌を続けることでゲルが分断し、流動性のある溶液を調整することができた。3時間後には白濁や増粘は見られず均一な状態であった。24時間後には少し濁った状態で増粘が見られ、120時間後には白濁した状態で流動性が失われていた。
(紡糸液の安定性)
[実施例11]
 実施例5の溶液1に、1重量部(溶液1における水の割合:25.0重量%)のイオン交換水を加えた以外は実施例5と同様にして紡糸液を得た。混合直後の紡糸液には一部ゲル化した部分が生じたが、さらに攪拌を続けることでゲルが分断し、流動性のある溶液を調整することができた。3時間後には少し濁った状態で増粘が見られ、24時間後には白濁した状態で流動性が失われていた。
 紡糸液の安定性の評価結果をまとめて下表に示す。
Figure JPOXMLDOC01-appb-T000002
 本発明により、簡便に均一な紡糸溶液を調製でき、長時間にわたって安定にチタン酸金属塩繊維を製造することができ、圧電材料や強誘電材料、誘電フィルターなどのフィラーとして、好適に使用することができる。

Claims (6)

  1. (A)紡糸溶液を調製する工程と、
    (B)前記紡糸溶液を静電紡糸して前駆体繊維を作製する工程と、
    (C)前記前駆体繊維を焼成する工程と、
    を含む、チタン酸金属塩繊維の製造方法であって、
    前記(A)紡糸溶液を調製する工程が、
    (a1)金属塩と第一の溶媒とを混合し第一の溶液を得る工程と、
    (a2)繊維形成材料と第二の溶媒とチタンアルコキシドとを混合し第二の溶液を得る工程と、
    (a3)前記第一の溶液と前記第二の溶液とを混合し紡糸溶液を得る工程と、
    を含むことを特徴とする、チタン酸金属塩繊維の製造方法。
  2. 前記第二の溶媒がアルコールを主成分とする溶媒である、請求項1に記載のチタン酸金属塩繊維の製造方法。
  3. 前記アルコールがプロピレングリコールモノメチルエーテルである、請求項2に記載のチタン酸金属塩繊維の製造方法。
  4. 前記第一の溶媒中の水の割合が15重量%以下である、請求項1~3のいずれか1項に記載のチタン酸金属塩繊維の製造方法。
  5. 前記(C)前駆体繊維を焼成する工程における焼成温度が600℃以上である、請求項1~4のいずれか1項に記載のチタン酸金属塩繊維の製造方法。
  6. さらに(D)チタン酸金属塩繊維を粉砕する工程を含む、請求項1~5のいずれか1項に記載のチタン酸金属塩繊維の製造方法。
PCT/JP2018/012317 2017-03-30 2018-03-27 チタン酸金属塩繊維の製造方法 WO2018181258A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/498,389 US20200039837A1 (en) 2017-03-30 2018-03-27 Method for producing metal titanate fibers
KR1020197030702A KR102548885B1 (ko) 2017-03-30 2018-03-27 티타늄산 금속염 섬유의 제조 방법
EP18776003.8A EP3604640A4 (en) 2017-03-30 2018-03-27 METAL TITANATE FIBER PRODUCTION METHOD
CN201880023186.9A CN110475918A (zh) 2017-03-30 2018-03-27 钛酸金属盐纤维的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-066723 2017-03-30
JP2017066723A JP6864263B2 (ja) 2017-03-30 2017-03-30 チタン酸金属塩繊維の製造方法

Publications (1)

Publication Number Publication Date
WO2018181258A1 true WO2018181258A1 (ja) 2018-10-04

Family

ID=63675948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012317 WO2018181258A1 (ja) 2017-03-30 2018-03-27 チタン酸金属塩繊維の製造方法

Country Status (6)

Country Link
US (1) US20200039837A1 (ja)
EP (1) EP3604640A4 (ja)
JP (1) JP6864263B2 (ja)
KR (1) KR102548885B1 (ja)
CN (1) CN110475918A (ja)
WO (1) WO2018181258A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213332A1 (ja) * 2019-04-16 2020-10-22 Jnc株式会社 チタン酸金属塩

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11732383B2 (en) * 2019-10-28 2023-08-22 Kao Corporation Method for manufacturing fiber deposition body, method for manufacturing film, and method for attaching film
WO2021085394A1 (ja) * 2019-10-28 2021-05-06 花王株式会社 繊維堆積体の製造方法、膜の製造方法及び膜の付着方法
KR102345591B1 (ko) * 2020-11-17 2022-01-03 주식회사 위드엠텍 이산화티탄 나노섬유 제조용 금속이온결합 전기방사용액 조성물 및 이를 이용한 이산화티탄 나노섬유 제조방법
CN112899889B (zh) * 2021-01-22 2022-06-21 清华大学深圳国际研究生院 钛酸盐纤维膜的制备方法
CN113026146A (zh) * 2021-02-09 2021-06-25 清华大学深圳国际研究生院 一种超细钛酸锶钡纳米纤维基柔性薄膜及其制备方法
CN113241402B (zh) * 2021-04-30 2022-06-10 武汉理工大学 一种碳酸锶胶原复合薄膜及其制备方法与应用
CN113737393B (zh) * 2021-09-15 2022-06-07 陕西环保产业研究院有限公司 一种静电纺丝纳米纤维膜及其制备方法
CN114293320A (zh) * 2022-01-10 2022-04-08 上海交通大学 一种高功率发热器件用高散热辐射冷却薄膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10316444A (ja) * 1997-05-12 1998-12-02 Minolta Co Ltd 金属酸化物ファイバーの製造方法および該方法により製造された金属酸化物ファイバー
JP2007050563A (ja) * 2005-08-16 2007-03-01 Ube Nitto Kasei Co Ltd 屋外用防汚性印刷物および印刷体
JP2007321277A (ja) 2006-05-31 2007-12-13 Teijin Ltd 金属酸化物繊維およびその製造方法
JP2011520045A (ja) * 2008-05-06 2011-07-14 エルマルコ、エス.アール.オー 静電紡糸による無機ナノ繊維の製造のための方法
WO2014141783A1 (ja) * 2013-03-12 2014-09-18 日本バイリーン株式会社 無機ナノ繊維及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287018A (ja) * 1985-10-12 1987-04-21 青野 俊男 鋸刃用チツプ
US20100311564A1 (en) * 2009-03-23 2010-12-09 Mark Phillps Dielectric Oxide Films and Method for Making Same
CN102515744B (zh) * 2011-12-12 2013-07-24 苏州大学 一种CaCu3Ti4O12微纳级纤维及其制备方法
JP6432322B2 (ja) * 2014-12-08 2018-12-05 Jnc株式会社 液晶内包複合繊維及び複合繊維集合体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10316444A (ja) * 1997-05-12 1998-12-02 Minolta Co Ltd 金属酸化物ファイバーの製造方法および該方法により製造された金属酸化物ファイバー
JP2007050563A (ja) * 2005-08-16 2007-03-01 Ube Nitto Kasei Co Ltd 屋外用防汚性印刷物および印刷体
JP2007321277A (ja) 2006-05-31 2007-12-13 Teijin Ltd 金属酸化物繊維およびその製造方法
JP2011520045A (ja) * 2008-05-06 2011-07-14 エルマルコ、エス.アール.オー 静電紡糸による無機ナノ繊維の製造のための方法
WO2014141783A1 (ja) * 2013-03-12 2014-09-18 日本バイリーン株式会社 無機ナノ繊維及びその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MATERIALS LETTERS, vol. 59, 2005, pages 3645 - 3647
See also references of EP3604640A4
YUH ET AL.: "Synthesis of barium titanate (BaTi03) nanofibers via electrospinning", MATERIALS LETTERS, vol. 59, 2005, pages 3645 - 3647, XP025257517, DOI: doi:10.1016/j.matlet.2005.07.008 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213332A1 (ja) * 2019-04-16 2020-10-22 Jnc株式会社 チタン酸金属塩

Also Published As

Publication number Publication date
CN110475918A (zh) 2019-11-19
EP3604640A1 (en) 2020-02-05
JP6864263B2 (ja) 2021-04-28
JP2018168504A (ja) 2018-11-01
US20200039837A1 (en) 2020-02-06
EP3604640A4 (en) 2021-01-13
KR20190129962A (ko) 2019-11-20
KR102548885B1 (ko) 2023-06-28

Similar Documents

Publication Publication Date Title
WO2018181258A1 (ja) チタン酸金属塩繊維の製造方法
JP5745765B2 (ja) 酸化ジルコニウム及びその製造方法
Zeng et al. Microstructure and dielectric properties of SrTiO3 ceramics by controlled growth of silica shells on SrTiO3 nanoparticles
WO2006129844A1 (ja) セラミック繊維及びその製造方法
CN103526337B (zh) 一种合成钛酸锶钡纳米管的方法
JPWO2014077176A1 (ja) 被覆チタン酸バリウム微粒子及びその製造方法
CN102691105A (zh) 一种六脚结构钙钛矿钛酸钡单晶纳米颗粒的制备方法
Liu et al. Preparation and dielectric properties of X9R core–shell BaTiO3 ceramics coated by BiAlO3–BaTiO3
CN102515754A (zh) 氧化镧掺杂改性的锆钛酸钡钙陶瓷及其制备方法
Wu et al. Effect of introducing Sr2+/Hf4+ on phase structures, bandgaps, and energy storage performance in Bi0. 47Na0. 47Ba0. 06TiO3-based ferroelectric ceramic
Zhong et al. Structure and energy storage properties of (1-x) Ba0. 98Li0. 02TiO3 based ceramics with xBi (Mg1/2Sn1/2) O3 addition
CN101891466B (zh) 一种板状钛酸钡纳米粉体的制备方法
JP4995489B2 (ja) 金属酸化物繊維およびその製造方法
CN103449520A (zh) 一种棒状五氧化二铌模板晶粒及其制备方法
WO2021024833A1 (ja) チタン酸バリウム繊維、およびそれを含む樹脂組成物並びに高分子複合圧電体、およびチタン酸バリウム繊維の製造方法
JP6486518B2 (ja) リチウムイオン二次電池用負極活物質の製造方法
CN114213122B (zh) 压电陶瓷材料及其制备方法
JP7460955B2 (ja) チタン酸バリウム繊維、およびそれを含む樹脂組成物並びに高分子複合圧電体、およびチタン酸バリウム繊維の製造方法
JP2764111B2 (ja) ペロブスカイト系セラミック粉末の製造方法
CN101269974B (zh) 用于制备织构层状结构的钙钛矿系陶瓷纳米粉体合成方法
WO2021059782A1 (ja) 樹脂組成物、および高分子複合圧電体
KR100953187B1 (ko) 티탄산 바륨 나노입자 및 그의 제조 방법
Kamnoy et al. Preparation and characterization of (Ba0. 85Ca0. 15)(Zr0. 1Ti0. 9) O3 ceramics by a BaTiO3 seed-induced method
CN111646795B (zh) 一种高居里点压电材料及其制备方法
JP4145210B2 (ja) 導電性酸化物短繊維の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197030702

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018776003

Country of ref document: EP

Effective date: 20191030