WO2018181223A1 - 積層体の製造方法、積層体の製造装置および積層体 - Google Patents

積層体の製造方法、積層体の製造装置および積層体 Download PDF

Info

Publication number
WO2018181223A1
WO2018181223A1 PCT/JP2018/012223 JP2018012223W WO2018181223A1 WO 2018181223 A1 WO2018181223 A1 WO 2018181223A1 JP 2018012223 W JP2018012223 W JP 2018012223W WO 2018181223 A1 WO2018181223 A1 WO 2018181223A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal foil
laminate
thermoplastic resin
roll
pressure
Prior art date
Application number
PCT/JP2018/012223
Other languages
English (en)
French (fr)
Inventor
育佳 猪田
裕志 廣川
知弘 大澤
小茂田 含
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2019509836A priority Critical patent/JP7303105B2/ja
Priority to KR1020197028234A priority patent/KR20190127762A/ko
Priority to CN201880022144.3A priority patent/CN110475655B/zh
Publication of WO2018181223A1 publication Critical patent/WO2018181223A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/885External treatment, e.g. by using air rings for cooling tubular films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0046Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by constructional aspects of the apparatus
    • B32B37/0053Constructional details of laminating machines comprising rollers; Constructional features of the rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Definitions

  • the present invention relates to a method for producing a laminate comprising a thermoplastic resin layer and a metal foil, a laminate production apparatus, and a laminate.
  • a flexible laminate in which an insulating layer and a metal layer are laminated is used as a material for a flexible printed circuit board (FPC), for example.
  • FPC flexible printed circuit board
  • a flexible printed circuit board is thin, lightweight, and flexible, and is therefore widely used in various electronic devices such as mobile phones and digital cameras.
  • thermoplastic resin laminated on a metal foil such as a copper foil has high heat resistance.
  • a high heat resistance thermoplastic resin there is one known as a so-called super engineering plastic.
  • super engineering plastics include liquid crystal polymer, polyimide, polyetherimide, polyamideimide, polyarylate, polysulfone, polyethersulfone, polyphenylene sulfide, polyetheretherketone, polyphenylenesulfone and the like.
  • thermoplastic resin When a thermoplastic resin is laminated on a copper foil or the like without an adhesive layer, the melt temperature of the melted high heat resistance thermoplastic resin is high, so that the distortion of the laminate increases. If the laminate has a large strain, uneven thickness, wrinkles, surface irregularities and the like are likely to occur, which often causes problems in manufacturing or product performance. There is also a problem that the adhesion between the high heat-resistant thermoplastic resin and the copper foil is lowered.
  • Patent Document 1 discloses a method of manufacturing a laminate by an extrusion laminating method in which a polyolefin resin is laminated on a base material such as a metal foil without using an adhesive, and manufacturing the surface of the polyolefin resin by ozone treatment. A method is disclosed.
  • Patent Document 2 discloses a method for manufacturing a flexible laminate in which a liquid crystal polymer film and a metal foil are continuously supplied between a pair of endless belts and thermocompression-bonded to form a flexible laminate.
  • Patent Document 1 since the manufacturing method disclosed in Patent Document 1 uses a low melting point polyolefin-based resin, the heating temperature is low and it cannot be applied when laminating a high melting point thermoplastic resin. Further, in the ordinary extrusion laminating method, the temperature difference between the base material and the molten resin is large, and there is a concern that appearance defects such as wrinkles may occur after bonding due to the dimensional change of the base material accompanying a rapid temperature change.
  • Patent Document 2 requires a large amount of heat and is inferior in productivity because the resin is melted and solidified to be bonded by heating and pressing. Moreover, there is a concern that the surface smoothness and the thickness accuracy are inferior.
  • an object of the present invention is a method for producing a laminate comprising a layer made of a highly heat-resistant thermoplastic resin and a metal foil, which has little thickness unevenness, a smooth surface, and excellent appearance and peel strength. And the manufacturing apparatus of the said laminated body is provided. Moreover, the other subject of this invention is providing the laminated body which can be adapted for uses, such as a high heat resistant flexible printed circuit board.
  • the inventors of the present invention prior to laminating the metal foil with a high heat-resistant thermoplastic resin It has been found that the above-mentioned problems can be solved by preheating the foil, laminating the melt-extruded thermoplastic resin on the metal foil, and then quickly pressing it.
  • the present invention has been achieved based on such knowledge.
  • the present invention has the following configuration.
  • the method for producing a laminate of the present invention is a method for producing a laminate comprising a layer made of a thermoplastic resin having a deflection temperature under load of 150 to 350 ° C. according to ASTM D648 and a metal foil.
  • the temperature is set to 150 to 400 ° C.
  • the metal foil is preferably heated to 100 to 300 ° C.
  • the metal foil is preferably heated with a metal roll.
  • the pressure-bonding roll arranged in the preceding stage is a metal roll heated by induction heating.
  • the thickness of the thermoplastic resin layer is preferably 5 to 500 ⁇ m, and the thickness of the metal foil is preferably 2 to 500 ⁇ m.
  • the metal which comprises the said metal foil is either copper, a copper alloy, aluminum, an aluminum alloy, iron, and an iron alloy.
  • the thermoplastic resin is at least one selected from a liquid crystal polymer, polyimide, polyetherimide, polyamideimide, polyarylate, polysulfone, polyethersulfone, polyphenylene sulfide, polyetheretherketone, and polyphenylsulfone. It is preferable to contain.
  • the laminate manufacturing apparatus of the present invention is a laminate manufacturing apparatus comprising a layer made of a thermoplastic resin having a deflection temperature under load of 150 to 350 ° C. according to ASTM D648 and a metal foil.
  • An extruder for supplying a layer made of the thermoplastic resin on the top, and the crimping roll disposed in the previous stage out of the pair of crimping rolls can heat the metal foil. Yes.
  • the preheating means is preferably a metal roll.
  • the pressure-bonding roll arranged in the preceding stage is a metal roll heated by induction heating.
  • the manufacturing apparatus of the laminated body of this invention is equipped with the metal roll which cools the said laminated body.
  • the laminate of the present invention is a laminate comprising a layer made of a thermoplastic resin having a deflection temperature under load of 150 to 350 ° C. according to ASTM D648 and a metal foil, the thermoplastic resin comprising a liquid crystal polymer,
  • the metal constituting the metal foil contains one or more selected from polyimide, polyetherimide, polyamideimide, polyarylate, polysulfone, polyethersulfone, polyphenylene sulfide, polyetheretherketone and polyphenylsulfone.
  • Copper, copper alloy, aluminum, aluminum alloy, iron, iron alloy, the thermoplastic resin layer has a thickness of 5 to 500 ⁇ m
  • the metal foil has a thickness of 2 to 500 ⁇ m.
  • Peeling according to JIS C6481 between the thermoplastic resin layer and the metal foil Degree is 3.0 ⁇ 15.0N / 10mm
  • surface roughness Rz according to JIS B0601 layer of the thermoplastic resin is characterized by a 0.1 ⁇ 10 [mu] m.
  • the method and apparatus for producing a laminate of the present invention is for producing a laminate comprising a layer made of a highly heat-resistant thermoplastic resin and a metal foil, having less thickness unevenness and a smooth surface, A laminate having excellent appearance and peel strength can be manufactured.
  • the laminated body of this invention can be adapted for uses, such as a high heat resistant flexible printed circuit board.
  • the laminate of the first embodiment in which a metal foil is laminated on one surface of a layer made of a thermoplastic resin and the metal foil is laminated on both sides of a layer made of a thermoplastic resin.
  • a laminate of the second embodiment There is a laminate of the second embodiment.
  • FIG. 3 is a cross-sectional view showing the configuration of the laminate according to the first embodiment.
  • the laminate according to the first embodiment includes a layer 60 (hereinafter sometimes referred to as “thermoplastic resin layer”) 60 made of a thermoplastic resin having a deflection temperature under load of 150 to 350 ° C. according to ASTM D648, and the heat.
  • the metal foil 61 is laminated on one surface of the plastic resin layer 60. No other material layer is provided between the thermoplastic resin layer 60 and the metal foil 61.
  • FIG. 4 is a cross-sectional view showing the configuration of the laminate according to the second embodiment.
  • the laminated body of 2nd Embodiment is comprised from the metal foil 63 and the metal foil 64 each laminated
  • Each layer which comprises the laminated body of 1st Embodiment and 2nd Embodiment is demonstrated below.
  • the thermoplastic resin of this embodiment is a highly heat-resistant thermoplastic resin and has a deflection temperature under load according to ASTM D648 of 150 to 350 ° C.
  • the deflection temperature under load according to ASTM D648 (HDT, which may be abbreviated as “load deflection temperature” hereinafter) is a test piece having a length of 127 mm, a width of 12.7 mm, and a thickness of 6.4 mm formed by injection molding. This is the temperature when a load of 1.82 MPa is applied and the value of deflection becomes a predetermined value.
  • thermoplastic resin having a deflection temperature under load of 150 to 350 ° C. a resin known as a so-called super engineering plastic is applicable.
  • liquid crystal polymer LCP
  • polyimide PI
  • polyetherimide PEI
  • polyamideimide PAI
  • PAR polyarylate
  • PSU polysulfone
  • PES polyethersulfone
  • PES polyphenylene sulfide
  • PEEK polyetheretherketone
  • PPSU polyphenylenesulfone
  • the liquid crystal polymer refers to a polymer having a property of being in a liquid crystal state or optically birefringent when melted, and is generally a lyotropic liquid crystal polymer exhibiting liquid crystallinity in a solution state or a thermotropic liquid crystal polymer exhibiting liquid crystallinity when melted.
  • Liquid crystal polymers are classified into type I, type II, and type III depending on the heat distortion temperature, and any type may be used.
  • thermoplastic resins may be homo resins, copolymer resins, or blends of two or more resins. Further, in each thermoplastic resin, various known additives, such as antioxidants, antistatic agents, crystal nucleating agents, inorganic particles, organic particles, viscosity reducers, thermal stabilizers, lubricants, infrared absorbers, An ultraviolet absorber, a dopant for adjusting the refractive index, and the like may be added.
  • additives such as antioxidants, antistatic agents, crystal nucleating agents, inorganic particles, organic particles, viscosity reducers, thermal stabilizers, lubricants, infrared absorbers, An ultraviolet absorber, a dopant for adjusting the refractive index, and the like may be added.
  • the thickness of the thermoplastic resin layer is 5 to 500 ⁇ m, preferably 10 to 400 ⁇ m.
  • the metal constituting the metal foil of the present embodiment is preferably one of copper, copper alloy, aluminum, aluminum alloy, iron, and iron alloy. These metals and metal alloys are also used in flexible printed boards, and known ones can be used. Examples of the iron alloy include stainless steel.
  • the thickness of the metal foil is 2 to 500 ⁇ m, preferably 3 to 220 ⁇ m.
  • the two metal foils of the second embodiment may have the same thickness or different thicknesses.
  • the surface of the metal foil may be subjected to surface treatment in advance.
  • a known method can be used as the surface treatment method. Specifically, surface roughening treatment, acid / alkali treatment, heat treatment, degreasing treatment, ultraviolet irradiation treatment, corona discharge treatment, plasma treatment, primer (undercoat) treatment and the like can be mentioned.
  • the laminate manufacturing apparatus of the first embodiment for manufacturing the laminate of the first embodiment and the second embodiment for manufacturing the laminate of the second embodiment are provided.
  • Drawing 1 is a mimetic diagram of the manufacture device of the layered product of a 1st embodiment.
  • the laminate manufacturing apparatus 20 according to the first embodiment includes a preheating roll 4 for preheating the metal foil 10, a pair of crimping rolls 5 and 6 for crimping the metal foil 10 and the thermoplastic resin layer, and a thermoplastic resin. And an extruder 1 that supplies the thermoplastic resin onto the metal foil 10 on the pressure-bonding roll 5.
  • the laminate manufacturing apparatus 20 of the first embodiment includes a metal foil roll 3 wound with a metal foil 10, a cooling roll 7, a guide roll 8 and a take-up roll 9 for cooling the thermocompressed laminate 11. ing.
  • the preheating roll 4 is installed in front of the pair of pressure-bonding rolls 5 and 6 and functions as preheating means for preheating the long metal foil 10.
  • preheating means such as a hot air heater, an infrared heater, a contact heating plate, and external induction heating can be used.
  • a heating roll method is preferred as a method of heating a flat and long metal foil to a predetermined temperature in a short time while continuously conveying the metal foil.
  • the heating roll is preferably a metal roll that can be easily heated from the inside.
  • the method for heating the metal roll is not particularly limited, and an electric heater, steam heater, infrared heater, oil heater, induction heater, or the like can be used.
  • the preheating roll 4 has an ability to heat the metal foil 10 to 150 to 400 ° C.
  • the extruder 1 has a die 2 for extruding a molten thermoplastic resin from its tip.
  • the type of the extruder 1 is not particularly limited, and any extruder such as a single-screw extruder, a twin-screw extruder, and a tandem extruder can be used.
  • the die 2 is for extruding a low-viscosity molten thermoplastic resin from its tip into a sheet shape, and is usually a T-die, and is set downward or sideways.
  • the die 2 is installed at a position where a molten thermoplastic resin can be laminated on the metal foil 10 on the pressure-bonding roll 5.
  • the pressure roll 5 is a metal roll that can be easily heated from the inside, and heats the preheated metal foil 10 to a higher temperature.
  • the pressure roll 5 can be set to have a surface temperature of 150 to 400 ° C. Carbon steel or the like is used as the material of the pressure roll 5.
  • the roll surface is preferably plated with nickel, chromium or the like, or coated with Teflon or ceramic.
  • the heating method of the crimping roll 5 is not particularly limited, and an electric heater, a steam heater, an infrared heater, an oil heater, an induction heater, or the like can be used.
  • an induction heater capable of heating the surface temperature to a high temperature of 150 to 400 ° C. in a short time and capable of relatively precise temperature control is preferable. Since the pressure roll 5 is in contact with the metal foil 10 during one rotation and then in contact with the pressure roll 6, the surface temperature of the pressure roll 5 is once lowered. Therefore, the heating means for the pressure roll 6 is preferably an induction heater that can be rapidly heated.
  • the pressure-bonding roll 5 and the pressure-bonding roll 6 are arranged at positions close to each other, and pressure-bond the laminated body 11 composed of the metal foil 10 and the thermoplastic resin layer.
  • the metal foil 10 and the thermoplastic resin layer are heated to about 150 to 400 ° C., and the metal foil and the thermoplastic resin layer are firmly bonded by pressing.
  • the material of the pressure-bonding roll 6 is metal, paper, rubber, resin or the like, but is preferably a metal roll or a rubber roll in order to obtain a uniform adhesive state. When the thickness of the metal foil 10 is relatively small, the pressure-bonding roll 6 can be heated to a predetermined temperature even if it is a rubber roll.
  • the press roll 6 is preferably a metal roll in order to heat to a predetermined temperature.
  • the pressure roll 6 may be one that can be heated from the inside, or one that cannot be heated.
  • the pair of pressure-bonding rolls 5 and 6 is preferably a pressure capable of being 1 to 300 kgf / cm as a pressure for pressure bonding.
  • the laminate 11 that has been crimped by the pair of crimping rolls 5 and 6 is then cooled by the cooling roll 7.
  • the material of the cooling roll 7 is preferably a metal so that the temperature can be easily adjusted.
  • the cooling roll 7 can be heated from the inside so that it can be set to 50 to 200.degree.
  • the cooled laminate 11 is taken up by the take-up roll 9 through the guide roll 8.
  • the distance between the preheating roll 4 and the press roll 5 depends on the transport speed, but the preheated metal foil 10 can be heated to a higher temperature by the press roll 5 without lowering the temperature. It is about 2 to 500 mm.
  • the laminate manufacturing apparatus 20 can continuously manufacture the laminate 11 while transporting the metal foil 10 and the laminate 11 at a transport speed of about 0.5 to 25 m / min.
  • FIG. 2 is a schematic diagram of a laminate manufacturing apparatus according to the second embodiment.
  • the laminate manufacturing apparatus 50 of the second embodiment includes an apparatus for supplying and preheating two metal foils 40 and 43 to be laminated on both surfaces of a thermoplastic resin layer.
  • the two metal foils 40 and 43 may be referred to as a first metal foil 40 and a second metal foil 43, respectively, as necessary.
  • the laminate manufacturing apparatus 50 includes a preheating roll 34 that preheats the first metal foil 40, a preheating roll 42 that preheats the second metal foil 43, and the first metal foil 40 and heat.
  • the laminate manufacturing apparatus 50 of the second embodiment cools the metal foil roll 33 wound with the first metal foil 40, the metal foil roll 41 wound with the second metal foil 43, and the thermocompression-bonded laminate 44.
  • a cooling roll 37, a guide roll 38, and a winding roll 39 are provided.
  • the preheating rolls 34 and 42 of the laminate manufacturing apparatus 50 of the second embodiment have functions equivalent to the preheating roll 4 of the laminate manufacturing apparatus 20 of the first embodiment.
  • the laminated body extruder 31 of 2nd Embodiment has a function equivalent to the extruder 1 of the manufacturing apparatus 20 of the laminated body of 1st Embodiment.
  • the pair of pressure-bonding rolls 35 and 36 of the laminate manufacturing apparatus 50 of the second embodiment has the same function as the pair of pressure-bonding rolls 5 and 6 of the stack manufacturing apparatus 20 of the first embodiment. is there.
  • the cooling roll 37, the guide roll 38, and the winding roll 39 of the laminated body manufacturing apparatus 50 of the second embodiment are respectively the cooling roll 7, the guide roll 8, and the winding of the laminated body manufacturing apparatus 20 of the first embodiment. It has the same function as the take-up roll 9. Therefore, description of each apparatus in the manufacturing apparatus 50 of the laminated body of 2nd Embodiment is abbreviate
  • the first metal foil 40 is supplied onto the preceding pressure roll 35 after preliminary heating.
  • the second metal foil 43 is supplied onto the subsequent pressure roll 36 after preheating. Therefore, the preheating temperature of the 1st metal foil 40 and the 2nd metal foil 43 may be the same temperature, and may differ.
  • the conventional method of manufacturing a laminate by bonding a metal foil and a thermoplastic resin layer is a two-step manufacturing method in which a thermoplastic resin sheet is manufactured in advance and then the metal foil and the thermoplastic resin sheet are bonded together. It is. As a method of bonding the metal foil and the thermoplastic resin sheet, the metal foil and the thermoplastic resin sheet are heated and then pressed and bonded together, or an adhesive layer is provided between the metal foil and the thermoplastic resin sheet. There was a way to match.
  • the extrusion laminating method is a manufacturing method in which a sheet of molten resin extruded from an extruder is directly laminated on a metal foil and then immediately pressed to produce a laminate. According to the extrusion laminating method, a laminate can be continuously produced by directly bonding a thermoplastic resin layer and a metal foil without using an adhesive. Thus, the extrusion laminating method is a one-step manufacturing method and is excellent in productivity.
  • the method for producing a laminate of the present embodiment is a method for producing a laminate comprising a thermoplastic resin layer having a deflection temperature under load of 150 to 350 ° C. and a metal foil by an extrusion laminating method. Then, a first heating step for heating the metal foil, a second heating step for heating the metal foil to a temperature higher than that of the first heating step, and a thermoplastic resin melt-extruded by the extruder on the metal foil. And a laminating step of crimping with a pair of crimping rolls.
  • thermoplastic resin When laminating a metal foil and a high heat-resistant thermoplastic resin by extrusion lamination, preheat the metal foil before laminating the thermoplastic resin to the metal foil, and melt-extruded thermoplastic resin into the metal foil. It is desirable that the metal foil and the thermoplastic resin be heated to substantially the same temperature before the pressure bonding after the layers are laminated.
  • Heating process As described above, when the metal foil is heated to a high temperature at once, lattice-shaped wrinkles are generated due to a difference in linear expansion coefficient. Therefore, in the method for manufacturing a laminate according to the present embodiment, when the metal foil is heated, it is heated in two stages. That is, two heating processes, a first heating process for preheating the metal foil and a second heating process for heating to a higher temperature than the first heating process, are provided.
  • the metal foil is heated to 100 to 300 ° C, preferably 150 to 250 ° C.
  • the second heating step the heating is performed at a temperature higher than that in the first heating step and is 150 to 400 ° C., preferably 180 to 400 ° C.
  • the temperature difference between the first heating step and the second heating step is preferably about 30 to 200 ° C.
  • the first heating step is performed by a metal roll as the preheating means described above.
  • a 2nd heating process is performed by the press roll arrange
  • the thermoplastic resin melt-extruded by the extruder is supplied onto the metal foil on the pressure roll. After that, the metal foil and the thermoplastic resin, or the metal foil and the thermoplastic resin and the metal foil are quickly crimped by a pair of crimping rolls, so that the metal foil and the thermoplastic resin layer, or the metal foil and the thermoplastic resin layer and the metal foil. Is a laminate that adheres firmly to each other.
  • the metal foil immediately before the pressure bonding is heated to a temperature substantially equal to that of the thermoplastic resin supplied onto the metal foil.
  • the metal foil and the thermoplastic resin are firmly bonded at the interface by press-bonding the metal foil and the thermoplastic resin at a substantially equal temperature.
  • the temperature of the metal foil at the time of pressure bonding is lower by 50 ° C. or more than the temperature of the thermoplastic resin, the adhesion becomes insufficient and the peel strength is lowered.
  • thermoplastic resin As the high heat resistance thermoplastic resin, a thermoplastic resin having a deflection temperature under load of 150 to 350 ° C. is used. Therefore, in order to increase the adhesive strength between the metal foil and the thermoplastic resin during pressure bonding, the thermoplastic resin is preferably heated to a temperature 50 to 300 ° C. higher than the deflection temperature under load during pressure bonding. .
  • the laminate is cooled in a cooling step.
  • a cooling roll is used to cool the laminate.
  • a metal roll set to 50 to 200 ° C., preferably 50 to 180 ° C. is used as the cooling roll.
  • the cooled laminated body is wound up with a winding roll, and becomes a roll of a laminated body.
  • the laminate 11 can be produced by the laminate production method described above.
  • the metal foil 10 is fed out from the metal foil roll 3, and the metal foil 10 is preheated by the preheating roll 4 (first heating step). Thereafter, the metal foil 10 is heated to a temperature higher than that of the first heating step by the pressing roller 5 disposed in the previous stage among the pair of pressing rollers 5 and 6 (second heating step).
  • a molten thermoplastic resin is supplied from the extruder 1 onto the metal foil 10 on the pressure roll 5.
  • the metal foil 10 and the thermoplastic resin are pressure-bonded to form the laminate 11 (lamination step).
  • the laminate 11 is cooled by the cooling roll 7 (cooling process), passed through the guide roll 8, and taken up by the take-up roll 9 (winding process).
  • the laminate 44 can be manufactured by the above-described laminate manufacturing method. Specifically, the first metal foil 40 is fed out from the metal foil roll 33, and the metal foil 40 is preheated by the preheating roll 34. On the other hand, the second metal foil 43 is fed from the metal foil roll 41, and the metal foil 43 is preheated by the preheating roll 42 (first heating step). Thereafter, the first metal foil 40 is heated to a temperature higher than that of the first heating step by the pressing roller 35 disposed in the previous stage among the pair of pressing rollers 35 and 36 (second heating step). Next, the molten thermoplastic resin is supplied from the extruder 31 onto the first metal foil 40 on the pressure roll 35.
  • the first metal foil 40, the thermoplastic resin, and the second metal foil 43 are pressure-bonded to form a laminate 44 (lamination step).
  • the laminated body 44 is cooled by the cooling roll 37 (cooling process), passed through the guide roll 38, and taken up by the winding roll 39 (winding process).
  • the laminated body which has been described above is derived from the manufacturing method and has some characteristics described below.
  • the peel strength between the laminate metal foil and the thermoplastic resin layer is high. Specifically, the peel strength according to JIS C6481 between the thermoplastic resin layer and the metal foil is 3.0 to 15.0 N / 10 mm. Here, the peel strength is measured according to the 180 ° direction peel method described in JIS C6471. The peel strength is preferably 5 to 15 N / 10 mm.
  • the surface of the thermoplastic resin layer of the laminate is smooth.
  • the surface roughness Rz of the thermoplastic resin layer according to JIS B0601 is 0.1 to 10 ⁇ m.
  • the surface roughness Rz is preferably 0.1 to 5 ⁇ m.
  • the laminate has the following characteristics. (1) No wrinkles, undulations, surface irregularities and excellent appearance. (2) The thickness is uniform and the thickness unevenness is small. (3) Even a laminate having a relatively large thickness can be manufactured. (4) Low dielectric constant and dielectric loss tangent.
  • inventions of the laminate of this embodiment include a highly heat-resistant flexible printed circuit board, a solar panel substrate, a multilayer board in which a plurality of laminated bodies are stacked, and a high-frequency wiring board.
  • it is suitable for millimeter wave flexible printed circuit boards for automobiles.
  • Thermoplastic resin Liquid crystal polymer (LCP): UENO LCP A-5000 manufactured by Ueno Pharmaceutical Co., Ltd. (deflection temperature under load: 180 ° C.)
  • Polyethersulfone (PES): Ultrason E1010 manufactured by BASF (load deflection temperature: 196 ° C)
  • Polyetheretherketone (PEEK): KETAPIRE KT-820 manufactured by Solvay (deflection temperature under load: 157 ° C)
  • Metal foil Copper foil A 3EC-M3S-HTE (thickness: 12 ⁇ m) manufactured by Mitsui Kinzoku Co., width 550 mm, length 200 m
  • Copper foil B MLS-G (thickness: 210 ⁇ m), Mitsui Kinzoku Co., Ltd., width 550 mm, length 100 m
  • Example 1 A laminate 11 of a liquid crystal polymer and a metal foil 10 (copper foil A) was produced using the laminate production apparatus 20 shown in FIG.
  • a specific method for manufacturing the laminate 11 is as follows.
  • the dried liquid crystal polymer was put into a ⁇ 40 mm single screw extruder 1 and extruded from a die (T die, 550 mm width) 2 heated to 290 ° C. at a discharge rate of 20 kg / h.
  • the metal foil 10 was preheated to 150 ° C. with the preheating roll 4, and then heated with the pressure bonding roll 5 of the previous stage whose surface temperature was set to 250 ° C.
  • the liquid crystal polymer extruded from the die 2 and the heated metal foil 10 were pressure-bonded by the pressure-bonding roll 5 and the pressure-bonding roll 6, and then cooled by the cooling roll 7 heated to 160 ° C. and wound up.
  • the thickness of the thermoplastic resin layer was 50 micrometers, and the average thickness was 62 micrometers.
  • the surface temperature of the preheated metal foil 10 was measured using a portable thermometer (DP-700) manufactured by Rika Kogyo.
  • Example 2 A laminate 11 was produced in the same manner as in Example 1 except that the copper foil B (thickness: 210 ⁇ m) was used as the metal foil 10 and the temperature conditions shown in Table 1 were changed.
  • the obtained laminate 11 had a thermoplastic resin layer thickness of 102 ⁇ m and an average thickness of 312 ⁇ m.
  • Example 3 A laminate 11 was produced in the same manner as in Example 1 except that the thermoplastic resin was polyether sulfone and the temperature conditions shown in Table 1 were changed. As for the obtained laminated body 11, the thickness of the thermoplastic resin layer was 51 micrometers, and average thickness was 63 micrometers.
  • Example 4 A laminate 11 was produced in the same manner as in Example 1 except that the thermoplastic resin was polyether ether ketone and the temperature conditions shown in Table 1 were changed. As for the obtained laminated body 11, the thickness of the thermoplastic resin layer was 50 micrometers, and the average thickness was 62 micrometers.
  • thermoplastic resin layer 50 micrometers
  • average thickness 62 micrometers.
  • thermoplastic resin layer was 51 micrometers, and average thickness was 63 micrometers.
  • the obtained laminate was evaluated according to the method described below. The evaluation results are shown in Table 1.
  • the thickness of the laminated body was measured using a micrometer manufactured by Mitutoyo Corporation in accordance with JIS C6471. The measurement was performed at 3 locations in the MD direction at intervals of 1 m and 5 locations at intervals of 10 cm in the TD direction, and the average value of the measured values at 15 locations was defined as the average thickness.
  • the thickness unevenness was used as an index by calculating a ratio (%) obtained by dividing the difference between the maximum value and the minimum value of the measured thickness by the average thickness. When the thickness unevenness was less than 3%, it was judged excellent when it was 3-5%, and when it was more than 5%, it was judged as impossible.
  • the surface roughness of the thermoplastic resin layer of the laminate was measured using a laser microscope (VK-X110) manufactured by KEYENCE in accordance with JIS B0601. Rz was measured arbitrarily at 10 locations, and the average value of 10 Rz was defined as the average surface roughness (Rz). When the average surface roughness (Rz) was 5 ⁇ m or less, it was judged to be excellent when it exceeded 5 ⁇ m and 10 ⁇ m or less, and when it exceeded 10 ⁇ m, it was judged as impossible.
  • the peel strength between the thermoplastic resin layer and the metal foil of the laminate was measured using a tensile tester (STROGRAPE VE10) manufactured by Toyo Seiki Co., Ltd. in accordance with the 180 ° direction peel method described in JIS C6471. The measurement was performed by peeling the metal foil of the laminate in the 180 ° direction at a speed of 50 mm / min.
  • the peel strength was 5N / 10 mm or more, it was judged to be excellent when it was 3N / 10 mm or more and less than 5N / 10 mm, and when it was less than 3N / 10 mm, it was judged as impossible.
  • Example 5 The first metal foil 40 (copper foil A) was laminated on one surface of the liquid crystal polymer and the second metal foil 43 (copper foil A) was laminated on the other surface using the laminate manufacturing apparatus 50 shown in FIG. A laminate 44 was produced.
  • a specific method for manufacturing the laminate 44 is as follows. The dried liquid crystal polymer was put into a ⁇ 40 mm single screw extruder 31 and extruded from a die (T die, 550 mm width) 32 heated to 290 ° C. at a discharge rate of 20 kg / h. On the other hand, the first metal foil 40 was preheated to 150 ° C. by the preheating roll 34 and then heated by the pressure bonding roll 35 of the previous stage whose surface temperature was set to 250 ° C.
  • the second metal foil 43 was preheated to 150 ° C. by the preheating roll 42.
  • the liquid crystal polymer extruded from the die 32 and the heated metal foils 40 and 43 were pressure-bonded by the pressure-bonding roll 35 and the pressure-bonding roll 36, and then cooled and wound up by the cooling roll 37 heated to 160 ° C.
  • the obtained laminate 44 had a thermoplastic resin layer thickness of 50 ⁇ m and an average thickness of 74 ⁇ m. Note that the surface temperatures of the preheated first metal foil 40 and second metal foil 43 were measured using a portable thermometer (DP-700) manufactured by Rika Kogyo Co., Ltd.
  • Example 5 had good performance in the appearance, thickness unevenness, average surface roughness, and peel strength of the laminate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

厚さムラが少なく、表面が平滑であり、外観や引きはがし強度に優れた、高耐熱性の熱可塑性樹脂からなる層と金属箔とからなる積層体の製造方法、当該積層体の製造装置および高耐熱性フレキシブルプリント基板等に適合し得る積層体を提供する。 金属箔を加熱する第1の加熱工程と、一対の圧着ロールのうち、前段に配置された圧着ロールによって、金属箔を第1の加熱工程よりも高温に加熱する第2の加熱工程と、押出機によって溶融押出しされた高耐熱性の熱可塑性樹脂を金属箔上に供給し、一対の圧着ロールによって圧着する積層工程とを備え、第2の加熱工程において、前段に配置された圧着ロールの表面温度を150~400℃に設定することを特徴とする積層体の製造方法である。また当該製造方法を行うための製造装置、当該製造方法によって製造された積層体である。

Description

積層体の製造方法、積層体の製造装置および積層体
 本発明は、熱可塑性樹脂層と金属箔とからなる積層体の製造方法、積層体の製造装置および積層体に関する。
 絶縁層と金属層が積層されたフレキシブル積層体は、例えば、フレキシブルプリント基板(FPC)の材料として使われる。フレキシブルプリント基板は、薄く、軽量で、柔軟性があることから、携帯電話機、デジタルカメラを初めとした各種電子機器に多く使用されている。
 近年、各種電子機器の小型化による回路の高集積化およびフレキシブルプリント基板の実装で使用されるはんだの鉛フリー化に伴い、フレキシブルプリント基板に対する耐熱性向上の要求はより強いものとなっている。
 フレキシブルプリント基板の耐熱性向上を図るためには、銅箔等の金属箔に積層される熱可塑性樹脂からなる層が高耐熱性を有していることが必要となる。高耐熱性の熱可塑性樹脂としては、いわゆるスーパーエンプラ(スーパーエンジニアリングプラスチック)として知られているものがある。スーパーエンプラの具体例としては、液晶ポリマー、ポリイミド、ポリエーテルイミド、ポリアミドイミド、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリフェニレンサルフォン等がある。
 熱可塑性樹脂を銅箔等の上に接着層を介さずに積層するときに、溶融した高耐熱性の熱可塑性樹脂の溶融温度が高いので、積層体の歪みが増大する。積層体の歪みが大きいと、厚さムラ、シワ、表面の凹凸等が発生し易くなるため、製造上または製品性能上問題となることが多い。また、高耐熱性の熱可塑性樹脂と銅箔等との密着性が低下するといった問題も存在する。
 こうした問題を解消するために、従来から積層体の製造技術が種々開示されている。例えば、特許文献1には、金属箔等の基材に接着剤を介さずにポリオレフィン系樹脂を積層する押出ラミネート法による積層体の製造方法であって、ポリオレフィン系樹脂の表面をオゾン処理する製造方法が開示されている。
 特許文献2には、一対のエンドレスベルトの間に液晶ポリマーフィルムと金属箔を連続的に供給し、熱圧着させてフレキシブル積層板を形成するフレキシブル積層板の製造方法が開示されている。
特許第4428157号公報 特開2016-129949公報
 しかし、特許文献1に開示された製造方法は、低融点のポリオレフィン系樹脂を用いるものであるため、加熱温度が低く、高融点の熱可塑性樹脂を積層するときには適用することができない。また、通常の押出ラミネート法では、基材と溶融樹脂の温度差が大きく、急激な温度変化に伴う基材の寸法変化によって、貼り合わせ後にシワ等の外観不良が発生する懸念がある。
 また、特許文献2に開示された製造方法は、樹脂が溶融固化してから加熱・加圧して貼り合わせるため、多くの熱量が必要となり、生産性にも劣るものである。また、表面平滑性や厚さ精度に劣る懸念がある。
 本発明は、以上のような状況に鑑みてなされたものである。すなわち、本発明の課題は、厚さムラが少なく、表面が平滑であり、外観や引きはがし強度に優れた、高耐熱性の熱可塑性樹脂からなる層と金属箔とからなる積層体の製造方法および当該積層体の製造装置を提供することである。また、本発明の他の課題は、高耐熱性のフレキシブルプリント基板等の用途に適合し得る積層体を提供することである。
 本発明者らは、高耐熱性の熱可塑性樹脂からなる層と金属箔とからなる積層体を押出ラミネート法により製造する方法において、金属箔に高耐熱性の熱可塑性樹脂を積層する前に金属箔を予備加熱すること、溶融押出しされた熱可塑性樹脂を金属箔に積層した後すばやく圧着させること等によって、上記課題を解消し得ることを見出した。本発明はこのような知見を基に到達することができたものである。本発明は、以下のような構成を有している。
(1)本発明の積層体の製造方法は、ASTM D648による荷重たわみ温度が150~350℃である熱可塑性樹脂からなる層と金属箔とからなる積層体の製造方法であって、前記金属箔を加熱する第1の加熱工程と、一対の圧着ロールのうち、前段に配置された圧着ロールによって、前記金属箔を第1の加熱工程よりも高温に加熱する第2の加熱工程と、押出機によって溶融押出しされた前記熱可塑性樹脂を前記金属箔上に供給し、前記一対の圧着ロールによって圧着する積層工程とを備え、前記第2の加熱工程において、前記前段に配置された圧着ロールの表面温度を150~400℃に設定することを特徴としている。
(2)前記第1の加熱工程では、前記金属箔を100~300℃まで加熱することが好ましい。
(3)前記第1の加熱工程では、金属ロールによって前記金属箔を加熱することが好ましい。
(4)前記前段に配置された圧着ロールが、誘導加熱によって加熱される金属ロールであることが好ましい。
(5)前記積層工程後に、50~200℃に設定された金属ロールを用いて、前記積層体を冷却する冷却工程を備えることが好ましい。
(6)前記熱可塑性樹脂からなる層の厚さが5~500μmであり、前記金属箔の厚さが2~500μmであることが好ましい。
(7)前記金属箔を構成する金属は、銅、銅合金、アルミニウム、アルミニウム合金、鉄、鉄合金のいずれかであることが好ましい。
(8)前記熱可塑性樹脂は、液晶ポリマー、ポリイミド、ポリエーテルイミド、ポリアミドイミド、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトンおよびポリフェニルサルフォンから選ばれた1つ以上を含有することが好ましい。
(9)本発明の積層体の製造装置は、ASTM D648による荷重たわみ温度が150~350℃である熱可塑性樹脂からなる層と金属箔とからなる積層体の製造装置であって、前記金属箔を予備加熱する予備加熱手段と、前記金属箔と前記熱可塑性樹脂からなる層とを圧着する一対の圧着ロールと、前記熱可塑性樹脂を溶融押出しして、前記一対の圧着ロール上の前記金属箔上に前記熱可塑性樹脂からなる層を供給する押出機とを備え、前記一対の圧着ロールのうち、前段に配置された圧着ロールは、前記金属箔を加熱することが可能であることを特徴としている。
(10)前記予備加熱手段は、金属ロールであることが好ましい。
(11)前記前段に配置された圧着ロールは、誘導加熱によって加熱される金属ロールであることが好ましい。
(12)本発明の積層体の製造装置は、前記積層体を冷却する金属ロールを備えることが好ましい。
(13)本発明の積層体は、ASTM D648による荷重たわみ温度が150~350℃である熱可塑性樹脂からなる層と金属箔とからなる積層体であって、前記熱可塑性樹脂は、液晶ポリマー、ポリイミド、ポリエーテルイミド、ポリアミドイミド、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトンおよびポリフェニルサルフォンから選ばれた1つ以上を含有し、前記金属箔を構成する金属が、銅、銅合金、アルミニウム、アルミニウム合金、鉄、鉄合金のいずれかであり、前記熱可塑性樹脂からなる層の厚さが5~500μmであり、前記金属箔の厚さが2~500μmであり、前記熱可塑性樹脂からなる層と前記金属箔とのJIS C6481による引きはがし強度が3.0~15.0N/10mmであり、前記熱可塑性樹脂からなる層のJIS B0601による表面粗さRzが0.1~10μmであることを特徴としている。
 本発明の積層体の製造方法および製造装置は、高耐熱性の熱可塑性樹脂からなる層と金属箔とからなる積層体を製造するものであり、厚さムラが少なく、表面が平滑であり、外観や引きはがし強度に優れた積層体を製造することができる。また、本発明の積層体は、高耐熱性のフレキシブルプリント基板等の用途に適合し得るものである。
第1実施形態の積層体の製造装置の模式図である。 第2実施形態の積層体の製造装置の模式図である。 第1実施形態の積層体の構成を示す断面図である。 第2実施形態の積層体の構成を示す断面図である。
 以下、本発明の実施形態を詳細に説明する。ただし、本発明の技術的範囲は、以下に説明する具体例としての実施形態に限定されるわけではない。
<積層体>
 積層体の実施形態には、熱可塑性樹脂からなる層の一方の面に金属箔を積層した第1実施形態の積層体と、熱可塑性樹脂からなる層の両方の面に金属箔を積層した第2実施形態の積層体とがある。
(第1実施形態の積層体)
 図3は、第1実施形態の積層体の構成を示す断面図である。第1実施形態の積層体は、ASTM D648による荷重たわみ温度が150~350℃である熱可塑性樹脂からなる層(以下、「熱可塑性樹脂層」と記載することがある。)60と、当該熱可塑性樹脂層60の一方の面に積層された金属箔61とから構成されている。熱可塑性樹脂層60と金属箔61との間には、他の材料の層は設けられていない。
(第2実施形態の積層体)
 図4は、第2実施形態の積層体の構成を示す断面図である。第2実施形態の積層体は、熱可塑性樹脂層62と、当該熱可塑性樹脂層60の両方の面にそれぞれ積層された金属箔63と金属箔64とから構成されている。熱可塑性樹脂層62と金属箔63との間、および熱可塑性樹脂層62と金属箔64との間には、いずれも他の材料の層は設けられていない。第1実施形態と第2実施形態の積層体を構成する各層について以下説明する。
(熱可塑性樹脂層)
 本実施形態の熱可塑性樹脂は、高耐熱性の熱可塑性樹脂であり、ASTM D648による荷重たわみ温度が150~350℃のものである。ASTM D648による荷重たわみ温度(HDT、以下「荷重たわみ温度」と略記することがある。)とは、射出成形によって成形した長さ127mm、幅12.7mm、厚さ6.4mmの試験片に、1.82MPaの荷重を与え、たわみの値が所定の大きさになったときの温度である。
 荷重たわみ温度が150~350℃の熱可塑性樹脂としては、いわゆるスーパーエンプラとして知られている樹脂が該当する。具体的には、液晶ポリマー(LCP)、ポリイミド(PI)、ポリエーテルイミド(PEI)、ポリアミドイミド(PAI)、ポリアリレート(PAR)、ポリサルフォン(PSU)、ポリエーテルサルフォン(PES)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンサルフォン(PPSU)等を挙げることができる。これらの高耐熱性熱可塑性樹脂から選ばれた1つ以上を含有していることが好ましい。
 これらの高耐熱性熱可塑性樹脂は、荷重たわみ温度が上記の範囲内にあるのであれば、特に限定されるものではなく、前記名称に該当する公知の樹脂を使用することができる。ここで、液晶ポリマーとは、溶融時に液晶状態あるいは光学的に複屈折する性質を有するポリマーを指し、一般に溶液状態で液晶性を示すリオトロピック液晶ポリマーや溶融時に液晶性を示すサーモトロピック液晶ポリマーである。液晶ポリマーは、熱変形温度によって、I型・II型・III型と分類され、いずれの型であっても構わない。
 これらの熱可塑性樹脂は、ホモ樹脂であっても、共重合樹脂であってもよく、2種類以上の樹脂のブレンドであってもよい。また、各熱可塑性樹脂中には、公知の各種添加剤、例えば、酸化防止剤、帯電防止剤、結晶核剤、無機粒子、有機粒子、減粘剤、熱安定剤、滑剤、赤外線吸収剤、紫外線吸収剤、屈折率調整のためのドープ剤などが添加されていてもよい。
 熱可塑性樹脂層の厚さは、5~500μmであり、好ましくは10~400μmである。
(金属箔)
 本実施形態の金属箔を構成する金属は、銅、銅合金、アルミニウム、アルミニウム合金、鉄、鉄合金のいずれかであることが好ましい。これらの金属および金属合金は、フレキシブルプリント基板においても使用されるものであり、公知のものを使用することができる。鉄合金としては、ステンレス鋼等がある。
 金属箔の厚さは、2~500μmであり、好ましくは3~220μmである。第2実施形態の2枚の金属箔は、厚さが同一であってもよいし、異なっていてもよい。
 金属箔と熱可塑性樹脂層との密着性(引きはがし強度)を向上させるために、金属箔の表面に予め表面処理を施してもよい。表面処理法としては、公知の方法を用いることができる。具体的には粗面化処理、酸・アルカリ処理、加熱処理、脱脂処理、紫外線照射処理、コロナ放電処理、プラズマ処理、プライマー(下塗り剤)処理等を挙げることができる。
<積層体の製造装置>
 積層体の製造装置の実施形態には、第1実施形態の積層体を製造するための第1実施形態の積層体の製造装置と、第2実施形態の積層体を製造するための第2実施形態の積層体の製造装置とがある。
(第1実施形態の積層体の製造装置)
 図1は、第1実施形態の積層体の製造装置の模式図である。第1実施形態の積層体の製造装置20は、金属箔10を予備加熱する予備加熱ロール4と、金属箔10と熱可塑性樹脂層とを圧着する一対の圧着ロール5、6と、熱可塑性樹脂を溶融押出しして、圧着ロール5上の金属箔10上に熱可塑性樹脂を供給する押出機1とを備えている。また、第1実施形態の積層体の製造装置20は、金属箔10を巻いた金属箔ロール3、加熱圧着された積層体11を冷却する冷却ロール7、ガイドロール8および巻取りロール9を備えている。
 予備加熱ロール4は、一対の圧着ロール5、6の手前に設置されており、長尺の金属箔10を予備加熱する予備加熱手段として機能する。予備加熱ロール4に代えて、あるいは予備加熱ロール4と併用して、熱風ヒーター、赤外線ヒーター、接触加熱板、外部誘導加熱等の予備加熱手段を使用することができる。フラットで長尺の金属箔を連続して搬送しつつ、所定の温度に短時間で加熱する方式としては、加熱ロール方式が好ましい。加熱ロールとしては、内部から加熱することが容易な金属ロールが好ましい。金属ロールの加熱方法は特に限定されず、電気加熱ヒーター、スチーム加熱ヒーター、赤外線加熱ヒーター、オイル加熱ヒーター、誘導加熱ヒーター等を使用することができる。予備加熱ロール4は、金属箔10を150~400℃まで加熱することが可能な能力を有している。
 押出機1は、その先端から溶融された熱可塑性樹脂を押出すダイ2を有している。押出機1の形式は特に限定されず、単軸押出機、二軸押出機、タンデム押出機等のいずれの押出機も使用することができる。ダイ2は、その先端から低粘度の溶融された熱可塑性樹脂をシート状に押し出すものであり、通常はTダイであり、下向きもしくは横向きに設置される。ダイ2は、圧着ロール5上にある金属箔10の上に溶融した熱可塑性樹脂を積層することができる位置に設置される。
 一対の圧着ロール5、6のうち、前段に配置された圧着ロール5は、予備加熱ロール4と圧着ロール6との間に設置されており、後段に配置された圧着ロール6は、圧着ロール5と冷却ロール7との間に設置されている。圧着ロール5は、内部から加熱することが容易な金属ロールであり、予備加熱された金属箔10をさらに高温に加熱する。圧着ロール5は、表面温度を150~400℃に設定することが可能である。圧着ロール5の材質としては、炭素鋼等が使用される。またロール表面はニッケルやクロム等でめっきされているか、テフロン、セラミックなどでコーティングされていることが好ましい。
 圧着ロール5の加熱方法は特に限定されず、電気加熱ヒーター、スチーム加熱ヒーター、赤外線加熱ヒーター、オイル加熱ヒーター、誘導加熱ヒーター等を使用することができる。これらの中では、短時間で表面温度を150~400℃という高温にまで加熱することが可能であり、比較的精密に温度制御することが可能な誘導加熱ヒーターが好ましい。圧着ロール5は、1回転する間に、金属箔10と接し、その後圧着ロール6と接するため、圧着ロール5の表面温度は一旦低下する。そのため、圧着ロール6の加熱手段としては、急速に加熱することが可能な誘導加熱ヒーターが好ましい。
 圧着ロール5と圧着ロール6は、互いに近接した位置に配置されており、金属箔10と熱可塑性樹脂層とからなる積層体11を圧着する。金属箔10および熱可塑性樹脂層は150~400℃程度に加熱されており、圧着することによって、金属箔と熱可塑性樹脂層とを強固に接着させる。圧着ロール6の材質は、金属、紙、ゴム、樹脂等であるが、均一な接着状態にすることから金属ロールもしくはゴムロールであることが好ましい。金属箔10の厚さが比較的小さいときは、圧着ロール6はゴムロールであっても所定の温度に加熱することが可能である。しかし、金属箔10の厚さが比較的大きいときは、所定の温度に加熱するために、圧着ロール6は金属ロールであることが好ましい。圧着ロール6は内部から加熱できるものであってもよいし、加熱できないものであってもよい。一対の圧着ロール5、6は、圧着するときの圧力として1~300kgf/cmにすることが可能であるものが好ましい。
 一対の圧着ロール5、6によって圧着された積層体11は、その後、冷却ロール7によって冷却される。冷却ロール7の材質は、温度調整が容易にできるように金属であることが好ましい。また、冷却ロール7は、50~200℃に設定することが可能なように、内部から加熱できるものである。冷却された積層体11は、ガイドロール8を経て、巻取りロール9によって巻き取られる。
 予備加熱ロール4と圧着ロール5との間の距離は、搬送速度にも依るが、予備加熱された金属箔10が温度低下しないで、圧着ロール5によってさらに高温に加熱することができるように、2~500mm程度である。
 積層体の製造装置20は、金属箔10および積層体11を0.5~25m/分程度の搬送速度で搬送しつつ、積層体11を連続して製造することができる。
(第2実施形態の積層体の製造装置)
 図2は、第2実施形態の積層体の製造装置の模式図である。第2実施形態の積層体の製造装置50は、熱可塑性樹脂層の両方の面に積層する2枚の金属箔40、43を供給し、予備加熱する装置を備えている。2枚の金属箔40、43を、以下必要に応じてそれぞれ、第1金属箔40、第2金属箔43と記載することがある。
 第2実施形態の積層体の製造装置50は、第1金属箔40を予備加熱する予備加熱ロール34と、第2金属箔43を予備加熱する予備加熱ロール42と、第1金属箔40と熱可塑性樹脂層と第2金属箔43とを圧着する一対の圧着ロール35、36と、熱可塑性樹脂を溶融押出しして、圧着ロール35上の第1金属箔40上に熱可塑性樹脂を供給する押出機31とを備えている。また、第2実施形態の積層体の製造装置50は、第1金属箔40を巻いた金属箔ロール33、第2金属箔43を巻いた金属箔ロール41、加熱圧着された積層体44を冷却する冷却ロール37、ガイドロール38および巻取りロール39を備えている。
 第2実施形態の積層体の製造装置50の予備加熱ロール34、42はそれぞれ、第1実施形態の積層体の製造装置20の予備加熱ロール4と同等の機能を有するものである。また、第2実施形態の積層体の押出機31は、第1実施形態の積層体の製造装置20の押出機1と同等の機能を有するものである。また、第2実施形態の積層体の製造装置50の一対の圧着ロール35、36は、第1実施形態の積層体の製造装置20の一対の圧着ロール5、6と同等の機能を有するものである。また、第2実施形態の積層体の製造装置50の冷却ロール37、ガイドロール38、巻取りロール39は、それぞれ第1実施形態の積層体の製造装置20の冷却ロール7、ガイドロール8、巻取りロール9と同等の機能を有するものである。したがって、第2実施形態の積層体の製造装置50における個々の装置の説明は省略する。
 第2実施形態の積層体の製造装置50では、第1金属箔40は、予備加熱後に前段の圧着ロール35上に供給される。一方、第2金属箔43は、予備加熱後に後段の圧着ロール36上に供給される。そのため、第1金属箔40と第2金属箔43の予備加熱温度は同一の温度でもよいし、異なっていてもよい。
<積層体の製造方法>
 金属箔と熱可塑性樹脂層とを貼り合わせて積層体を製造する従来の方法は、予め熱可塑性樹脂シートを製造し、その後、金属箔と熱可塑性樹脂シートとを貼り合わせるという2工程の製造方法である。金属箔と熱可塑性樹脂シートとを貼り合わせる方法としては、金属箔と熱可塑性樹脂シートを加熱した後に圧着して貼り合わせたり、金属箔と熱可塑性樹脂シートとの間に接着層を設けて貼り合わせるという方法があった。
 そこで、従来の製造方法を、金属箔と高耐熱性の熱可塑性樹脂とを貼り合わせるときに適用できるかどうかを検討した。すると、高耐熱性の熱可塑性樹脂シートを高温に加熱したときに、高い内部応力が発生すること、貼り合わせ時にシワが発生し易く取扱いが難しいことが判明した。また、金属箔を一気に高温に加熱すると、線膨張係数の違いによって格子状のシワが発生すること、シワ対策として縦方向に張力をかけつつ加熱しても、縦方向にシワが発生することが判明した。
 また、従来の製造方法は、2工程を要するものであるため、生産性に劣り、加熱・冷却を繰り返すことによるエネルギーコストも比較的大きなものであった。
 そこで、本発明者らは、金属箔と高耐熱性の熱可塑性樹脂とを貼り合わせて積層体を製造するために、いわゆる押出ラミネート法を用いることを検討した。押出ラミネート法は、押出機から押し出された溶融樹脂のシートを金属箔上に直接積層し、その後直ちに圧着して積層体を製造する製造方法である。押出ラミネート法によれば、接着剤を用いることなく、熱可塑性樹脂層と金属箔とを直接貼り合わせて、積層体を連続的に製造することができる。このように、押出ラミネート法は、1工程の製造方法であり、生産性にも優れている。
 本実施形態の積層体の製造方法は、荷重たわみ温度が150~350℃である熱可塑性樹脂層と金属箔とからなる積層体を押出ラミネート法によって製造する方法である。そして、金属箔を加熱する第1の加熱工程と、前記金属箔を第1の加熱工程よりも高温に加熱する第2の加熱工程と、押出機によって溶融押出しされた熱可塑性樹脂を金属箔上に供給し、一対の圧着ロールによって圧着する積層工程とを備えている。
 押出ラミネート法により金属箔と高耐熱性の熱可塑性樹脂とを貼り合わせるときは、金属箔に熱可塑性樹脂を積層する前に金属箔を予備加熱すること、溶融押出しされた熱可塑性樹脂を金属箔に積層した後すばやく圧着させること、圧着する前に金属箔と熱可塑性樹脂とをほぼ同等の温度に加熱しておくことが望ましい。
(加熱工程)
 金属箔は、前記したように、一気に高温に加熱すると、線膨張係数の違いによって格子状のシワが発生する。そこで、本実施形態の積層体の製造方法では、金属箔を加熱するに際して、2段階に分けて加熱することとした。すなわち、金属箔を予備加熱する第1の加熱工程と、第1の加熱工程よりも高温に加熱する第2の加熱工程の2つの加熱工程を設けることとした。第1の加熱工程では、金属箔を100~300℃まで、好ましくは150~250℃まで加熱する。その後、第2の加熱工程では、第1の加熱工程よりも高温であって、150~400℃まで、好ましくは180~400℃まで加熱する。このように2段階に分けて加熱することによって、金属箔にシワが発生することを防止することが可能である。第1の加熱工程と第2の加熱工程との温度差は30~200℃程度であることが好ましい。
 本実施形態では、第1の加熱工程は、前記した予備加熱手段としての金属ロールによって行われる。また、第2の加熱工程は、一対の圧着ロールのうち、前段に配置された圧着ロールによって行われる。第2の加熱工程を圧着ロールによって行うことによって、別途加熱装置を設けることが不要となり、製造装置をコンパクトにすることが可能となる。
(積層工程)
 積層工程では、押出機によって溶融押出しされた熱可塑性樹脂が圧着ロール上の金属箔上に供給される。その後、金属箔と熱可塑性樹脂、または金属箔と熱可塑性樹脂と金属箔を一対の圧着ロールによってすばやく圧着することによって、金属箔と熱可塑性樹脂層、または金属箔と熱可塑性樹脂層と金属箔とが強固に密着した積層体となる。
 金属箔と高耐熱性の熱可塑性樹脂とを貼り合わせるとき、圧着する直前の金属箔は、金属箔上に供給される熱可塑性樹脂とほぼ同等の温度に加熱しておくことが好ましい。金属箔と熱可塑性樹脂とをほぼ同等の温度にした状態で圧着することによって、金属箔と熱可塑性樹脂とが界面で強固に接着する。圧着時の金属箔の温度が、熱可塑性樹脂の温度よりも50℃以上低いと、接着は不十分となり、引きはがし強度が低下する。
 高耐熱性の熱可塑性樹脂としては、荷重たわみ温度が150~350℃である熱可塑性樹脂を用いる。そのため、圧着時の金属箔と熱可塑性樹脂との接着強度を高いものとするためには、熱可塑性樹脂は圧着時に、荷重たわみ温度よりも50~300℃高い温度に加熱しておくことが好ましい。
(冷却工程)
 次に、積層体は、冷却工程で冷却される。本実施形態では、積層体を冷却するために冷却ロールが使用される。冷却ロールとしては、50~200℃に、好ましくは50~180℃に設定された金属ロールが用いられる。
(巻取り工程)
 その後、冷却された積層体は、巻取りロールによって巻き取られて、積層体のロールとなる。
 図1の積層体の製造装置20を使用すると、上記の積層体の製造方法によって、積層体11を製造することができる。金属箔ロール3から金属箔10が繰り出され、予備加熱ロール4によって金属箔10は予備加熱される(第1の加熱工程)。その後、一対の圧着ロール5、6のうち、前段に配置された圧着ロール5によって金属箔10は第1の加熱工程よりも高温に加熱される(第2の加熱工程)。圧着ロール5上の金属箔10上に、押出機1から溶融した熱可塑性樹脂が供給される。その後すぐに金属箔10と熱可塑性樹脂とは圧着されて、積層体11が形成される(積層工程)。その後、積層体11は冷却ロール7によって冷却され(冷却工程)、ガイドロール8を経て、巻取りロール9によって巻き取られる(巻取り工程)。
 図2の積層体の製造装置50を使用すると、上記の積層体の製造方法によって、積層体44を製造することができる。具体的には、金属箔ロール33から第1金属箔40が繰り出され、予備加熱ロール34によって金属箔40は予備加熱される。一方、金属箔ロール41から第2金属箔43が繰り出され、予備加熱ロール42によって金属箔43は予備加熱される(第1の加熱工程)。その後、一対の圧着ロール35、36のうち、前段に配置された圧着ロール35によって第1金属箔40は第1の加熱工程よりも高温に加熱される(第2の加熱工程)。次に、圧着ロール35上の第1金属箔40上に、押出機31から溶融した熱可塑性樹脂が供給される。その後すぐに第1金属箔40と熱可塑性樹脂と第2金属箔43は圧着されて、積層体44が形成される(積層工程)。その後、積層体44は冷却ロール37によって冷却され(冷却工程)、ガイドロール38を経て、巻取りロール39によって巻き取られる(巻取り工程)。
(積層体の特徴)
 以上説明してきた積層体には、その製造方法に由来して、以下に説明するいくつかの特徴を有するものとなっている。
 積層体の金属箔と熱可塑性樹脂層との引きはがし強度が高いものである。具体的には、熱可塑性樹脂層と金属箔とのJIS C6481による引きはがし強度が3.0~15.0N/10mmである。ここで、引きはがし強度は、JIS C6471に記載の180°方向引きはがし方法に準拠して測定される。引きはがし強度は、好ましくは5~15N/10mmである。
 また、積層体の熱可塑性樹脂層の表面が平滑である。具体的には、熱可塑性樹脂層のJIS B0601による表面粗さRzが0.1~10μmである。表面粗さRzは、好ましくは0.1~5μmである。
 さらに、積層体は以下のような特徴を有している。
(1)シワ、波打ち、表面の凹凸がなく、外観に優れている。
(2)厚さが均一であり、厚さムラが少ない。
(3)比較的厚さの大きい積層体であっても製造することができる。
(4)誘電率および誘電正接が低い。
 本実施形態の積層体の用途としては、高耐熱性のフレキシブルプリント基板、ソーラーパネル基板、積層体を複数重ね合わせた多層基板、高周波用配線基板等がある。特に、自動車向けミリ波用のフレキシブルプリント基板等に適性を有している。
 以下に実施例と比較例を用いて、本発明の実施の形態をさらに具体的に説明するが、本発明はこれらの例に限定されるものではない。
 実施例および比較例に用いた材料は以下のとおりである。
(1)熱可塑性樹脂
 液晶ポリマー(LCP):上野製薬社製UENO LCP A-5000(荷重たわみ温度:180℃)
 ポリエーテルサルフォン(PES):BASF社製Ultrason E1010(荷重たわみ温度:196℃)
 ポリエーテルエーテルケトン(PEEK):SOLVAY社製KETASPIRE KT-820(荷重たわみ温度:157℃)
(2)金属箔
 銅箔A:三井金属社製3EC-M3S-HTE(厚さ:12μm)、幅550mm、長さ200m
 銅箔B:三井金属社製MLS-G(厚さ:210μm)、幅550mm、長さ100m
[実施例1]
 図1に示す積層体の製造装置20を用いて、液晶ポリマーと金属箔10(銅箔A)との積層体11を製造した。具体的な積層体11の製造方法は以下の通りである。
 乾燥した液晶ポリマーをφ40mm単軸押出機1に投入し、290℃に加熱されたダイ(Tダイ、550mm幅)2から吐出量20kg/hで押出した。一方、金属箔10は予備加熱ロール4で150℃に予備加熱した後、表面温度を250℃に設定した前段の圧着ロール5で加熱した。ダイ2から押出された液晶ポリマーと加熱された金属箔10は圧着ロール5と圧着ロール6とで圧着され、その後、160℃に加熱された冷却ロール7で冷却され、巻き取られた。得られた積層体11は、熱可塑性樹脂層の厚さが50μm、平均厚さが62μmであった。なお、予備加熱された金属箔10の表面温度は、理化工業社製携帯型温度計(DP-700)を用いて測定した。
[実施例2]
 金属箔10として銅箔B(厚さ210μm)を用い、表1に記載の温度条件に変更した以外は実施例1と同様にして積層体11を製造した。得られた積層体11は、熱可塑性樹脂層の厚さが102μm、平均厚さが312μmであった。
[実施例3]
 熱可塑性樹脂をポリエーテルサルフォンとし、表1に記載の温度条件に変更した以外は実施例1と同様にして積層体11を製造した。得られた積層体11は、熱可塑性樹脂層の厚さが51μm、平均厚さが63μmであった。
[実施例4]
 熱可塑性樹脂をポリエーテルエーテルケトンとし、表1に記載の温度条件に変更した以外は実施例1と同様にして積層体11を製造した。得られた積層体11は、熱可塑性樹脂層の厚さが50μm、平均厚さが62μmであった。
[比較例1]
 表1に記載の温度条件に変更した以外は実施例1と同様にして積層体11を製造した。得られた積層体11は、熱可塑性樹脂層の厚さが50μm、平均厚さが62μmであった。
[比較例2]
 予備加熱ロール4によって予備加熱を行わなかった以外は、実施例1と同様にして積層体11を製造した。得られた積層体11は、熱可塑性樹脂層の厚さが51μm、平均厚さが63μmであった。
 得られた積層体を以下に記載の方法に従って評価した。評価結果を表1に示した。
(積層体の外観)
 積層体の両面を目視で観察し、以下の基準で判断した。
  ×:積層体の両面に凹凸があるもの
  △:積層体の片面に凹凸があるもの
  ○:積層体の表面に凹凸が無いもの
(平均厚さ、厚さムラ)
 積層体の厚さを、JIS C6471に準拠して、ミツトヨ社製マイクロメータを用いて測定した。測定は、MD方向に1m間隔に3箇所、TD方向に10cm間隔に5箇所を測定し、計15箇所の測定値の平均値を平均厚さとした。厚さムラは、測定した厚さの最大値と最小値の差を平均厚さで除した比率(%)を求めて指標とした。厚さムラが3%未満のとき優、3~5%のとき良、5%を超えるとき不可と判定した。
(平均表面粗さ)
 積層体の熱可塑性樹脂層の表面粗さを、JIS B0601に準拠して、KEYENCE社製レーザー顕微鏡(VK-X110)を用いて測定した。Rzを任意に10箇所で測定し、10箇所のRzの平均値を平均表面粗さ(Rz)とした。平均表面粗さ(Rz)が5μm以下のとき優、5μmを超え10μm以下のとき良、10μmを超えるとき不可とと判定した。
(引きはがし強度)
 積層体の熱可塑性樹脂層と金属箔との引きはがし強度を、JIS C6471に記載の180°方向引きはがし方法に準拠して、東洋精機社製引張試験機(STROGRAPH VE10)を用いて測定した。積層体の金属箔を50mm/minの速度で180°方向に引きはがして測定した。引きはがし強度が、5N/10mm以上のとき優、3N/10mm以上5N/10mm未満のとき良、3N/10mm未満のとき不可と判定した。
Figure JPOXMLDOC01-appb-T000001
 表1の評価結果から、実施例1~4はいずれも、積層体の外観、厚さムラ、平均表面粗さ、引きはがし強度において良好な性能を有していた。比較例1は、積層時の圧着ロールの表面温度が150℃未満であるため、引きはがし強度が低いものであった。比較例2は、積層する前に金属箔を予備加熱することをしなかったため、積層体の全面にシワが発生し、積層体の外観と厚さムラに劣るものであった。
[実施例5]
 図2に示す積層体の製造装置50を用いて、液晶ポリマーの一方の面に第1金属箔40(銅箔A)を、他方の面に第2金属箔43(銅箔A)を積層した積層体44を製造した。具体的な積層体44の製造方法は以下の通りである。
 乾燥した液晶ポリマーをφ40mm単軸押出機31に投入し、290℃に加熱されたダイ(Tダイ、550mm幅)32から吐出量20kg/hで押出した。一方、第1金属箔40は予備加熱ロール34で150℃に予備加熱した後、表面温度を250℃に設定した前段の圧着ロール35で加熱した。更に、第2金属箔43は予備加熱ロール42で150℃に予備加熱した。ダイ32から押出された液晶ポリマーと加熱された金属箔40、43は圧着ロール35と圧着ロール36とで圧着され、その後、160℃に加熱された冷却ロール37で冷却され、巻き取られた。得られた積層体44は、熱可塑性樹脂層の厚さが50μm、平均厚さが74μmであった。なお、予備加熱された第1金属箔40および第2金属箔43の表面温度は、理化工業社製携帯型温度計(DP-700)を用いて測定した。
Figure JPOXMLDOC01-appb-T000002
 表2の評価結果から、実施例5は、積層体の外観、厚さムラ、平均表面粗さ、引きはがし強度において良好な性能を有していた。
 1、31  押出機
 2、32  ダイ
 3、33、41  金属箔ロール
 4、34、42  予備加熱ロール
 5、35  圧着ロール(前段)
 6、36  圧着ロール(後段)
 7、37  冷却ロール
 8、38  ガイドロール
 9、39  巻取りロール
 10、40、43 金属箔
 11、44 積層体
 20、50 積層体の製造装置
 60、62 熱可塑性樹脂層
 61、63、64 金属箔

Claims (13)

  1.  ASTM D648による荷重たわみ温度が150~350℃である熱可塑性樹脂からなる層と金属箔とからなる積層体の製造方法であって、
     前記金属箔を加熱する第1の加熱工程と、
     一対の圧着ロールのうち、前段に配置された圧着ロールによって、前記金属箔を第1の加熱工程よりも高温に加熱する第2の加熱工程と、
     押出機によって溶融押出しされた前記熱可塑性樹脂を前記金属箔上に供給し、前記一対の圧着ロールによって圧着する積層工程とを備え、
     前記第2の加熱工程において、前記前段に配置された圧着ロールの表面温度を150~400℃に設定することを特徴とする積層体の製造方法。
  2.  前記第1の加熱工程で、前記金属箔を100~300℃まで加熱することを特徴とする請求項1に記載の積層体の製造方法。
  3.  前記第1の加熱工程で、金属ロールによって前記金属箔を加熱することを特徴とする請求項1または請求項2に記載の積層体の製造方法。
  4.  前記前段に配置された圧着ロールが、誘導加熱によって加熱される金属ロールであることを特徴とする請求項1~3のいずれか1項に記載の積層体の製造方法。
  5.  前記積層工程後に、50~200℃に設定された金属ロールを用いて、前記積層体を冷却する冷却工程を備えることを特徴とする請求項1~4のいずれか1項に記載の積層体の製造方法。
  6.  前記熱可塑性樹脂からなる層の厚さが5~500μmであり、前記金属箔の厚さが2~500μmであることを特徴とする請求項1~5のいずれか1項に記載の積層体の製造方法。
  7.  前記金属箔を構成する金属が、銅、銅合金、アルミニウム、アルミニウム合金、鉄、鉄合金のいずれかであることを特徴とする請求項1~6のいずれか1項に記載の積層体の製造方法。
  8.  前記熱可塑性樹脂が、液晶ポリマー、ポリイミド、ポリエーテルイミド、ポリアミドイミド、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトンおよびポリフェニルサルフォンから選ばれた1つ以上を含有することを特徴とする請求項1~7のいずれか1項に記載の積層体の製造方法。
  9.  ASTM D648による荷重たわみ温度が150~350℃である熱可塑性樹脂からなる層と金属箔とからなる積層体の製造装置であって、
     前記金属箔を予備加熱する予備加熱手段と、
     前記金属箔と前記熱可塑性樹脂からなる層とを圧着する一対の圧着ロールと、
     前記熱可塑性樹脂を溶融押出しして、前記一対の圧着ロール上の前記金属箔上に前記熱可塑性樹脂からなる層を供給する押出機とを備え、
     前記一対の圧着ロールのうち、前段に配置された圧着ロールは、前記金属箔を加熱することが可能であることを特徴とする積層体の製造装置。
  10.  前記予備加熱手段が、金属ロールであることを特徴とする請求項9に記載の積層体の製造装置。
  11.  前記前段に配置された圧着ロールが、誘導加熱によって加熱される金属ロールであることを特徴とする請求項9または請求項10に記載の積層体の製造装置。
  12.  前記積層体を冷却する金属ロールを備えることを特徴とする請求項9~11のいずれか1項に記載の積層体の製造装置。
  13.  ASTM D648による荷重たわみ温度が150~350℃である熱可塑性樹脂からなる層と金属箔とからなる積層体であって、
     前記熱可塑性樹脂は、液晶ポリマー、ポリイミド、ポリエーテルイミド、ポリアミドイミド、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトンおよびポリフェニルサルフォンから選ばれた1つ以上を含有し、
     前記金属箔を構成する金属が、銅、銅合金、アルミニウム、アルミニウム合金、鉄、鉄合金のいずれかであり、
     前記熱可塑性樹脂からなる層の厚さが5~500μmであり、前記金属箔の厚さが2~500μmであり、
     前記熱可塑性樹脂からなる層と前記金属箔とのJIS C6481による引きはがし強度が3.0~15.0N/10mmであり、
     前記熱可塑性樹脂からなる層のJIS B0601による表面粗さRzが0.1~10μmであることを特徴とする積層体。
PCT/JP2018/012223 2017-03-28 2018-03-26 積層体の製造方法、積層体の製造装置および積層体 WO2018181223A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019509836A JP7303105B2 (ja) 2017-03-28 2018-03-26 積層体の製造方法、積層体の製造装置および積層体
KR1020197028234A KR20190127762A (ko) 2017-03-28 2018-03-26 적층체의 제조 방법, 적층체의 제조 장치 및 적층체
CN201880022144.3A CN110475655B (zh) 2017-03-28 2018-03-26 层叠体的制造方法以及层叠体的制造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-062111 2017-03-28
JP2017062111 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018181223A1 true WO2018181223A1 (ja) 2018-10-04

Family

ID=63676115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012223 WO2018181223A1 (ja) 2017-03-28 2018-03-26 積層体の製造方法、積層体の製造装置および積層体

Country Status (5)

Country Link
JP (1) JP7303105B2 (ja)
KR (1) KR20190127762A (ja)
CN (1) CN110475655B (ja)
TW (1) TW201836857A (ja)
WO (1) WO2018181223A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153391A1 (ja) * 2019-01-25 2020-07-30 デンカ株式会社 両面金属張積層体とその製造方法、絶縁フィルムおよび電子回路基板
JP2021004330A (ja) * 2019-06-27 2021-01-14 デンカ株式会社 Lcptダイ押出未延伸フィルム、並びにこれを用いたフレキシブル積層体及びその製造方法
JP2021098837A (ja) * 2019-12-23 2021-07-01 長春人造樹脂廠股▲分▼有限公司 液晶ポリマーフィルム及び該液晶ポリマーフィルムを含む積層体

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4067433B1 (en) * 2019-11-29 2024-07-17 Denka Company Limited Method for producing lcp film for circuit boards, and lcp film for circuit boards melt extruded from t-die
CN111231254B (zh) * 2020-01-15 2022-08-02 上海联净电子科技有限公司 覆铜板生产装置及生产方法
CN111251692A (zh) * 2020-01-21 2020-06-09 上海联净电子科技有限公司 一种高频高速lcp覆铜板的生产工艺及设备
JP7182030B2 (ja) * 2020-03-24 2022-12-01 株式会社クラレ 金属張積層体の製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06297576A (ja) * 1993-04-14 1994-10-25 Nippon Steel Corp ラミネート金属板の製造方法
JPH10138315A (ja) * 1996-11-11 1998-05-26 Kishimoto Akira 両面樹脂被覆金属ラミネート材の製法
JPH10329270A (ja) * 1997-05-29 1998-12-15 Sumitomo Chem Co Ltd 積層材料及び該材料から形成されるプリント配線用基板
JP2001121647A (ja) * 1999-10-29 2001-05-08 Toyo Seikan Kaisha Ltd 押出ラミネート材の製造方法
US20030152788A1 (en) * 2002-02-14 2003-08-14 Velliky James E. Polymer-coated metal strip and method of production
WO2006137571A1 (ja) * 2005-06-21 2006-12-28 Jfe Steel Corporation ラミネート金属板の製造方法
JP2007030337A (ja) * 2005-07-27 2007-02-08 Hitachi Engineering & Services Co Ltd 金属箔樹脂フィルム積層板製造装置
JP2016107505A (ja) * 2014-12-05 2016-06-20 株式会社クラレ 片面金属張積層板およびその製造方法
WO2016136897A1 (ja) * 2015-02-26 2016-09-01 宇部興産株式会社 銅張積層板の製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3592725A (en) * 1965-12-29 1971-07-13 Kokusaku Pulp Ind Co Ltd Composite sheet of a thermoplastic synthetic resin film with solid particles partially embedded in the surface of the film
JPS57203545A (en) * 1981-06-09 1982-12-13 Taiyo Seiko Kk Surface treated metallic plate
JP2620122B2 (ja) * 1988-08-10 1997-06-11 新日本製鐵株式会社 ラミネート金属板製造装置
JP3046172B2 (ja) * 1993-03-05 2000-05-29 新日本製鐵株式会社 ラミネート金属板の製造方法及び装置
GB9306140D0 (en) * 1993-03-25 1993-05-19 Metal Box Plc Process & apparatus for producing laminated materials
JP3071604B2 (ja) * 1993-03-31 2000-07-31 新日本製鐵株式会社 ラミネート金属板の製造方法
JPH106447A (ja) * 1996-06-19 1998-01-13 Showa Denko Kk 積層体およびその製造方法
TW492996B (en) * 1997-03-19 2002-07-01 Sumitomo Chemical Co Laminate of liquid crystal polyester resin composition
JPH10286905A (ja) * 1997-04-16 1998-10-27 Kobe Steel Ltd 密封性が優れた容器用キャップ及びその製造方法
NL1006109C2 (nl) * 1997-05-22 1998-11-25 Hoogovens Staal Bv Werkwijze voor met thermoplastisch bekledingsmateriaal bekleden van een metallisch substraat.
JP4428157B2 (ja) 2004-07-01 2010-03-10 東ソー株式会社 積層体の製造方法
EP1790469A1 (en) * 2005-11-29 2007-05-30 Impress Group B.V. Method for treating a laminate and the laminate obtainable by the method
CN201342826Y (zh) * 2009-01-16 2009-11-11 松扬电子材料(昆山)有限公司 热滚压合设备
JP2011148192A (ja) * 2010-01-21 2011-08-04 Jx Nippon Mining & Metals Corp 銅張積層板の製造方法、それに用いる銅箔、及び銅張積層板のラミネート装置。
JP5520778B2 (ja) * 2010-10-29 2014-06-11 住友化学株式会社 押出樹脂板の製造方法
JP6316733B2 (ja) 2014-11-17 2018-04-25 上野製薬株式会社 積層体
JP6518445B2 (ja) 2015-01-13 2019-05-22 宇部エクシモ株式会社 フレキシブル積層板、及びフレキシブル積層板の製造方法
JP6474261B2 (ja) 2015-01-22 2019-02-27 上野製薬株式会社 積層体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06297576A (ja) * 1993-04-14 1994-10-25 Nippon Steel Corp ラミネート金属板の製造方法
JPH10138315A (ja) * 1996-11-11 1998-05-26 Kishimoto Akira 両面樹脂被覆金属ラミネート材の製法
JPH10329270A (ja) * 1997-05-29 1998-12-15 Sumitomo Chem Co Ltd 積層材料及び該材料から形成されるプリント配線用基板
JP2001121647A (ja) * 1999-10-29 2001-05-08 Toyo Seikan Kaisha Ltd 押出ラミネート材の製造方法
US20030152788A1 (en) * 2002-02-14 2003-08-14 Velliky James E. Polymer-coated metal strip and method of production
WO2006137571A1 (ja) * 2005-06-21 2006-12-28 Jfe Steel Corporation ラミネート金属板の製造方法
JP2007030337A (ja) * 2005-07-27 2007-02-08 Hitachi Engineering & Services Co Ltd 金属箔樹脂フィルム積層板製造装置
JP2016107505A (ja) * 2014-12-05 2016-06-20 株式会社クラレ 片面金属張積層板およびその製造方法
WO2016136897A1 (ja) * 2015-02-26 2016-09-01 宇部興産株式会社 銅張積層板の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153391A1 (ja) * 2019-01-25 2020-07-30 デンカ株式会社 両面金属張積層体とその製造方法、絶縁フィルムおよび電子回路基板
JP2021004330A (ja) * 2019-06-27 2021-01-14 デンカ株式会社 Lcptダイ押出未延伸フィルム、並びにこれを用いたフレキシブル積層体及びその製造方法
JP2021098837A (ja) * 2019-12-23 2021-07-01 長春人造樹脂廠股▲分▼有限公司 液晶ポリマーフィルム及び該液晶ポリマーフィルムを含む積層体
US11608410B2 (en) 2019-12-23 2023-03-21 Chang Chun Plastics Co., Ltd. Liquid crystal polymer film and laminate comprising the same
JP7312152B2 (ja) 2019-12-23 2023-07-20 長春人造樹脂廠股▲分▼有限公司 液晶ポリマーフィルム及び該液晶ポリマーフィルムを含む積層体
US11840602B2 (en) 2019-12-23 2023-12-12 Chang Chun Plastics Co., Ltd. Laminate, circuit board, and liquid crystal polymer film applied to the same
US11926698B2 (en) 2019-12-23 2024-03-12 Chang Chun Plastics Co., Ltd. Liquid crystal polymer film and laminate comprising the same
US11945907B2 (en) 2019-12-23 2024-04-02 Chang Chun Plastics Co., Ltd. Liquid crystal polymer film and laminate comprising the same

Also Published As

Publication number Publication date
TW201836857A (zh) 2018-10-16
CN110475655A (zh) 2019-11-19
CN110475655B (zh) 2022-08-16
KR20190127762A (ko) 2019-11-13
JP7303105B2 (ja) 2023-07-04
JPWO2018181223A1 (ja) 2020-04-16

Similar Documents

Publication Publication Date Title
WO2018181223A1 (ja) 積層体の製造方法、積層体の製造装置および積層体
TWI616328B (zh) 熱塑性液晶聚合物薄膜及使用其之積層體及電路基板、積層體之製造方法、以及熱塑性液晶聚合物薄膜之製造方法
CN107530979B (zh) 覆金属层压板的制造方法及用该制造方法制造的覆金属层压板
JP6871910B2 (ja) 金属張積層板の製造方法および金属張積層板
KR100724046B1 (ko) 적층판의 제조방법 및 제조장치
JP4866853B2 (ja) 熱可塑性液晶ポリマーフィルムで被覆した配線基板の製造方法
JP5119401B2 (ja) 熱可塑性ポリイミド層を有するフレキシブル積層板及びその製造方法
JP2017024265A (ja) 絶縁性フィルム、絶縁性フィルムの製造方法、および金属張積層板の製造方法
KR20180117659A (ko) 금속 클래드 적층판 및 그 제조방법
JP2009172996A (ja) フレキシブル銅張積層板及びその製造方法
CN112839812A (zh) 覆金属层压板以及用于制造覆金属层压板的方法
JP2024071437A (ja) 絶縁フィルム、両面金属張積層体および電子回路基板
EP1568471B1 (en) Heat-resistant flexible laminated board manufacturing method
WO2021006258A1 (ja) 長尺フィルム、長尺フィルムの製造方法、長尺積層体の製造方法及び長尺積層体
TW201733797A (zh) 銅箔、覆銅積層板、以及可撓性印刷基板及電子機器
WO2005063467A1 (ja) フレキシブル積層板の製造方法
JP7424601B2 (ja) 積層体、樹脂フィルム、及び積層体の製造方法
CN112714691B (zh) 覆金属层叠体的制造方法
JP4389627B2 (ja) フレキシブル金属積層板の製造方法
WO2020255871A1 (ja) 金属張積層体の製造方法
JP2009262534A (ja) 金属箔積層フィルムの製造方法
JP2006240117A (ja) 耐熱性フレキシブル金属積層板の製造方法
JP6123463B2 (ja) 金属積層板の製造方法
JP2002361744A (ja) 耐熱性フレキシブル積層板の製造方法
JP2023098521A (ja) 積層体及び積層体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777984

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509836

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197028234

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777984

Country of ref document: EP

Kind code of ref document: A1