WO2018179025A1 - 電動機および空気調和装置 - Google Patents

電動機および空気調和装置 Download PDF

Info

Publication number
WO2018179025A1
WO2018179025A1 PCT/JP2017/012232 JP2017012232W WO2018179025A1 WO 2018179025 A1 WO2018179025 A1 WO 2018179025A1 JP 2017012232 W JP2017012232 W JP 2017012232W WO 2018179025 A1 WO2018179025 A1 WO 2018179025A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
electric motor
stator
substrate
magnet
Prior art date
Application number
PCT/JP2017/012232
Other languages
English (en)
French (fr)
Inventor
洋樹 麻生
貴也 下川
諒伍 ▲高▼橋
一真 野本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201780087014.3A priority Critical patent/CN110431734B/zh
Priority to JP2019508328A priority patent/JP6952765B2/ja
Priority to US16/480,712 priority patent/US11451119B2/en
Priority to EP17903292.5A priority patent/EP3605807A4/en
Priority to PCT/JP2017/012232 priority patent/WO2018179025A1/ja
Publication of WO2018179025A1 publication Critical patent/WO2018179025A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • H02K1/30Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • H02K3/345Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/38Windings characterised by the shape, form or construction of the insulation around winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25252Microprocessor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2746Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets arranged with the same polarity, e.g. consequent pole type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/03Machines characterised by the wiring boards, i.e. printed circuit boards or similar structures for connecting the winding terminations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/12Machines characterised by the bobbins for supporting the windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2211/00Specific aspects not provided for in the other groups of this subclass relating to measuring or protective devices or electric components
    • H02K2211/03Machines characterised by circuit boards, e.g. pcb

Definitions

  • the present invention relates to an electric motor and an air conditioner including the electric motor.
  • JP 2014-171320 A (see FIGS. 1 and 5)
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to enable stable rotation control of an electric motor without increasing the size of the electric motor.
  • An electric motor of the present invention includes a rotor having a rotating shaft, a rotor iron core attached to the rotating shaft, and a rotor magnet embedded in the rotor iron core, and on the outer side of the rotor in a radial direction centered on the central axis of the rotating shaft.
  • a stator disposed and surrounding the rotor; a substrate disposed on one side of the stator in the direction of the central axis; and a microcomputer mounted on the substrate.
  • the microcomputer is arranged on the outer side in the radial direction with respect to the rotor magnet.
  • the microcomputer since the microcomputer is arranged radially outside the rotor magnet, the influence of the magnetic flux of the rotor magnet on the microcomputer can be suppressed. Therefore, stable rotation control of the electric motor becomes possible. Further, since it is not necessary to greatly separate the substrate on which the microcomputer is mounted and the rotor in the axial direction, the electric motor can be reduced in size.
  • FIG. 1 is a longitudinal sectional view showing an electric motor according to Embodiment 1.
  • FIG. 3 is a transverse sectional view showing the rotor in the first embodiment.
  • FIG. 3 is a plan view showing a stator in the first embodiment.
  • FIG. 3 is a side view showing the stator in the first embodiment.
  • FIG. 3 is a plan view showing a state where a substrate is attached to the stator in the first embodiment.
  • FIG. 3 is a diagram schematically showing the arrangement of microcomputers on a substrate in the first embodiment.
  • FIG. 3 is a plan view showing a heat sink of the electric motor in the first embodiment.
  • FIG. 6A is a diagram illustrating an example of a change in magnetic flux density detected by the Hall element in the first embodiment, and FIG.
  • FIG. 8B is a diagram illustrating an example of a change in magnetic flux density after correction by a microcomputer.
  • FIG. 6 is a longitudinal sectional view showing an electric motor in a second embodiment.
  • FIG. 6 is a transverse sectional view showing a rotor of an electric motor in a third embodiment.
  • FIG. 10 is a longitudinal sectional view showing an electric motor in a fourth embodiment.
  • 1 is a diagram showing a configuration example of an air conditioner to which the electric motors of Embodiments 1 to 4 are applied.
  • FIG. 1 is a longitudinal sectional view showing an electric motor 1 according to Embodiment 1 of the present invention.
  • the electric motor 1 is an IPM (Interior Permanent Magnet) motor in which a permanent magnet (rotor magnet 23) is embedded in the rotor 20.
  • IPM Interior Permanent Magnet
  • the electric motor 1 includes a rotor 20, a stator 30 provided so as to surround the rotor 20, and a substrate 4 attached to the stator 30.
  • the rotor 20 has a shaft 22 that is a rotating shaft.
  • a central axis of the shaft 22 (that is, an axis extending in the longitudinal direction of the shaft 22 through the radial center of the shaft 22) is defined as a central axis C1.
  • the stator 30 and the substrate 4 are covered with a mold resin portion 35 to constitute the mold stator 3.
  • the direction of the central axis C1 is simply referred to as “axial direction”.
  • the circumferential direction centered on the central axis C1 is simply referred to as “circumferential direction” and is indicated by an arrow R1 in the drawings (FIGS. 2 to 3, 5, 7, and 10).
  • the radial direction of the stator 30 and the rotor 20 with respect to the central axis C1 is simply referred to as “radial direction”.
  • the longitudinal sectional view refers to a sectional view in a plane parallel to the central axis C1
  • the transverse sectional view refers to a sectional view in a plane orthogonal to the central axis C1.
  • the shaft 22 protrudes from the stator 30 to the left side in FIG. 1, and an impeller of a blower fan, for example, is attached to the protruding portion. Therefore, the protruding side (left side in FIG. 1) of the shaft 22 is referred to as “load side”, and the opposite side (right side in FIG. 1) is referred to as “anti-load side”.
  • FIG. 2 is a cross-sectional view showing the rotor 20 of the electric motor 1.
  • the rotor 20 includes a shaft 22 extending along the center axis C1, an annular rotor core 21 centered on the center axis C1, a plurality of rotor magnets (permanent magnets) 23 attached to the rotor core 21, a rotor And a resin portion 25 that supports the iron core 21.
  • the rotor core 21 is composed of a laminated body in which a plurality of electromagnetic steel plates are laminated in the axial direction and fixed by caulking, welding, adhesion, or the like.
  • the rotor iron core 21 has a plurality of magnet insertion holes 21a in the circumferential direction. Although the number of the magnet insertion holes 21a is five here, it is not limited to this.
  • the five magnet insertion holes 21 a are arranged at equal intervals in the circumferential direction in the outer peripheral portion of the rotor core 21. Each magnet insertion hole 21a penetrates the rotor core 21 in the axial direction and has a width in the circumferential direction.
  • a rotor magnet 23 is inserted into each of the five magnet insertion holes 21a.
  • the rotor magnet 23 is a flat plate having a rectangular cross-sectional shape orthogonal to the axial direction.
  • the rotor magnet 23 is a rare earth magnet, more specifically, a neodymium sintered magnet containing Nd (neodymium), Fe (iron), and B (boron).
  • a flux barrier portion 21b which is a gap, is formed at each end of the magnet insertion hole 21a in the circumferential direction.
  • the flux barrier portion 21b suppresses short-circuiting of magnetic flux between adjacent rotor magnets 23 (that is, leakage magnetic flux).
  • the five rotor magnets 23 are arranged with the same magnetic poles (for example, N poles) toward the outer peripheral side of the rotor core 21. Therefore, in the portion located between the adjacent rotor magnets 23 in the rotor iron core 21, a portion where magnetic flux flows in the radial direction is generated. That is, a pseudo magnetic pole 21c (for example, S pole) opposite to the rotor magnet 23 is formed.
  • a pseudo magnetic pole 21c for example, S pole
  • the rotor 20 has ten magnetic poles.
  • the ten magnetic poles of the rotor 20 are arranged at equal intervals in the circumferential direction with a pole pitch of 36 degrees (360 degrees / 10).
  • An electric motor having such a rotor structure is referred to as a continuous pole type.
  • the number of magnetic poles of the rotor 20 is not limited to ten.
  • the outer periphery of the rotor core 21 has a so-called flower circle shape.
  • the outer periphery of the rotor core 21 has the largest outer diameter at the pole centers P1 and P3 (centers in the circumferential direction of the magnetic poles), and the outer diameter becomes smallest at the pole interval P2 (between adjacent magnetic poles). From P1, P3 to P2 between the poles has an arc shape.
  • the pole center P1 is the center of the magnet magnetic pole (that is, the center in the circumferential direction of the rotor magnet 23), and the pole center P3 is the center of the pseudo magnetic pole 21c.
  • the resin portion 25 supports the rotor core 21 with respect to the shaft 22 and is made of a thermoplastic resin such as PBT (polybutylene terephthalate).
  • the resin part 25 includes an inner cylinder part 25a attached to the outer peripheral surface of the shaft 22, an annular outer cylinder part 25c disposed on the radially outer side of the inner cylinder part 25a, an inner cylinder part 25a and an outer cylinder part 25c. And a plurality of (here, 5) ribs 25b.
  • the shaft 22 penetrates the inner cylinder part 25a of the resin part 25.
  • the ribs 25b are arranged at equal intervals in the circumferential direction, and extend radially outward from the inner cylinder part 25a.
  • the formation position of the rib 25 b corresponds to the circumferential center of the rotor magnet 23.
  • a cavity S1 is formed between the ribs 25b adjacent in the circumferential direction.
  • the resin portion 25 is configured to cover both axial end surfaces of the rotor core 21. Thereby, the rotor magnet 23 is prevented from falling off from the magnet insertion hole 21a.
  • a portion of the resin portion 25 that covers one side in the axial direction of the rotor core 21 (more specifically, a side facing the substrate 4 described later) is referred to as an end surface covering portion 25d.
  • An annular sensor magnet (position detection magnet) 26 is attached to the rotor core 21.
  • the sensor magnet 26 is held by a sensor magnet holding portion 25e formed on the end surface covering portion 25d of the resin portion 25. That is, the sensor magnet 26 is held by the resin portion 25 together with the shaft 22 and the rotor iron core 21.
  • the sensor magnet 26 has the same number (10 in this case) of magnetic poles as the rotor magnet 23.
  • the magnetizing direction of the sensor magnet 26 is the axial direction.
  • the magnetic poles of the sensor magnet 26 are arranged at equal intervals in the circumferential direction.
  • the stator 30 is disposed on the radially outer side of the rotor 20 and surrounds the rotor 20.
  • the stator 30 includes an annular stator iron core 31, an insulating part (insulator) 33 attached to the stator iron core 31, and a coil 32 wound around the stator iron core 31 via the insulator 33.
  • FIG. 3 and 4 are a plan view and a side view showing the stator 30.
  • FIG. The stator iron core 31 is composed of a laminated body in which a plurality of electromagnetic steel plates are laminated in the axial direction and fixed by caulking, welding, adhesion, or the like.
  • the stator iron core 31 includes a yoke 31a extending in the circumferential direction and a plurality of teeth 31b extending radially inward (toward the central axis C1) from the yoke 31a.
  • the tip surface on the radially inner side of the teeth 31b faces the outer peripheral surface of the rotor 20 (FIG. 2).
  • the number of teeth 31b is 12 here, it is not limited to this.
  • a coil 32 is wound around the teeth 31b via an insulator 33.
  • the insulator 33 insulates the teeth 31b and the coil 32 from each other.
  • the insulator 33 is formed by, for example, molding a thermoplastic resin such as PBT integrally with the stator core 31 or assembling a pre-molded molded body to the stator core 31.
  • the insulator 33 has an inner peripheral wall 33a (FIG. 6) and an outer peripheral wall 33b (FIG. 4) for supporting the coil 32 from the radially inner side and the outer side in addition to a portion covering the periphery of the tooth 31b.
  • a substrate fixing portion 331 for fixing the substrate 4 is formed on the outer peripheral wall 33 b of the insulator 33.
  • a plurality of substrate fixing portions 331 are arranged along the outer periphery of the insulator 33.
  • the number of substrate fixing parts 331 is four, for example, but is not limited to this.
  • the substrate fixing part 331 has a protrusion 331a and a support part 331b.
  • the protrusion 331a is inserted into a mounting hole 44 (FIG. 5) formed in the substrate 4.
  • the support portion 331b contacts the lower surface of the substrate 4 and supports the substrate 4 in the axial direction.
  • a terminal 32a to which the coil 32 is connected is disposed on the outer peripheral wall 33b of the insulator 33.
  • the coil 32 is formed, for example, by winding a magnet wire around the teeth 31b.
  • the coil 32 is a three-phase winding composed of U-phase, V-phase, and W-phase coils.
  • the coil 32 is connected to a terminal 32a disposed on the insulator 33 by fusing (heat caulking) or soldering.
  • the stator 30 and a substrate 4 to be described later are covered with a mold resin portion 35.
  • the mold resin part 35 is made of a thermosetting resin such as BMC (bulk molding compound), for example.
  • the mold resin portion 35 has a bearing support portion 36 on one side in the axial direction (right side in FIG. 1), and an opening 37 on the other side (left side in FIG. 1).
  • the rotor 20 is inserted into the hollow portion inside the stator 30 through the opening 37.
  • a metal bracket 15 is attached to the opening 37 of the mold resin portion 35.
  • the bracket 15 holds one bearing 17 that supports the shaft 22.
  • a cap 16 for preventing water or the like from entering the bearing 17 is attached to the outside of the bracket 15.
  • the bearing support portion 36 holds the other bearing 18 that supports the shaft 22.
  • the mold resin portion 35 has a plurality of leg portions 39 (FIG. 7) extending radially outward from the outer periphery thereof.
  • the leg 39 has a hole 39a through which a fixing tool such as a screw is inserted when the electric motor 1 is attached to a device such as a blower.
  • a fixing tool such as a screw
  • four leg portions 39 are provided, but the number is not limited to four.
  • FIG. 5 is a plan view showing a state in which the substrate 4 is attached to the stator 30.
  • FIG. 6 is a longitudinal sectional view showing the substrate 4, the stator 30, and the rotor 20.
  • the substrate 4 is disposed on one side in the axial direction with respect to the stator 30. In other words, the substrate 4 is disposed so as to face the stator 30 in the axial direction.
  • the substrate 4 is disposed on the anti-load side (right side in FIG. 1) of the stator 30, but may be disposed on the load side (left side in FIG. 1).
  • the substrate 4 is composed of a printed circuit board, for example.
  • the printed circuit board is obtained by forming a wiring pattern made of a conductor on a plate-like base material having insulating properties, and through holes may be formed as necessary.
  • substrate 4 is hold
  • the mold resin portion 35 is made of, for example, BMC. However, since BMC can be low-pressure molded, deformation of the substrate 4 and the like can be suppressed during molding.
  • the substrate 4 has an inner peripheral edge 4a which is a radially inner edge and an outer peripheral edge 4b which is a radially outer edge. As shown in FIG. 6, the inner peripheral edge 4 a faces the outer peripheral surface of the shaft 22.
  • a plurality of mounting holes 44 are formed along the outer peripheral edge 4 b of the substrate 4 to engage with the protrusions 331 a of the substrate fixing portion 331 described above.
  • Hall elements 42 a, 42 b, 42 c, a drive circuit 41, and a microcomputer 5 are mounted on the substrate 4.
  • the hall elements 42a, 42b, 42c, the drive circuit 41, and the microcomputer 5 are electrically connected to each other through wiring and through holes formed on the substrate 4.
  • the Hall elements 42a, 42b, 42c, the drive circuit 41, and the microcomputer 5 are covered with the above-described mold resin portion 35 together with the substrate 4.
  • Hall elements 42a, 42b, and 42c are disposed on the surface of the substrate 4 on the stator 30 side (the left surface in FIG. 6).
  • the drive circuit 41 and the microcomputer 5 are disposed on the surface of the substrate 4 opposite to the stator 30 (the right surface in FIG. 6).
  • Hall elements 42a, 42b, and 42c each have a Hall IC (Integrated Circuit).
  • the hall elements 42a, 42b, and 42c are arranged along the inner peripheral edge 4a of the substrate 4 and are arranged so as to face the sensor magnet 26 of the rotor 20 in the axial direction.
  • the hall elements 42a, 42b, and 42c are arranged at positions slightly shifted radially outward from the outer peripheral edge of the sensor magnet 26.
  • Hall elements 42a, 42b, 42c detect magnetic flux from the sensor magnet 26 and output detection signals respectively.
  • Hall elements 42a, 42b, and 42c correspond to the U phase, the V phase, and the W phase, respectively.
  • the microcomputer 5 has an arithmetic circuit mounted on one chip, and is also referred to as an arithmetic unit or an arithmetic unit.
  • the microcomputer 5 detects the relative rotational position of the rotor 20 with respect to the stator 30 based on detection signals from the hall elements 42a, 42b, and 42c, and outputs a drive signal based on the detection result to the drive circuit 41. .
  • the drive circuit 41 is a circuit that controls the rotation of the rotor 20.
  • the drive circuit 41 is composed of, for example, a power transistor.
  • the drive circuit 41 includes an inverter circuit, and controls a current supplied to the coil 32 based on a drive signal from the microcomputer 5.
  • the microcomputer 5 has an inner peripheral end 5a closest to the central axis C1 and an outer peripheral end 5b farthest from the central axis C1.
  • the inner peripheral end 5a extends in a direction orthogonal to the radial straight line L passing through the circumferential center 5c, and the outer peripheral end 5b extends in parallel with the inner peripheral end 5a.
  • the present invention is not limited to such a configuration.
  • the microcomputer 5 is disposed radially outside the rotor magnet 23.
  • the radial distance L2 from the central axis C1 to the inner peripheral end 5a of the microcomputer 5 is larger than the radial distance L1 from the central axial C1 to the outer peripheral end of the rotor magnet 23 (L2). > L1).
  • the microcomputer 5 is arranged on the outer side in the radial direction with respect to the rotor magnet 23, the microcomputer 5 is less likely to be affected by the magnetic flux of the rotor magnet 23. Thereby, stable rotation control of the electric motor 1 becomes possible.
  • the microcomputer 5 is arrange
  • a lead wire 43 is wired on the substrate 4.
  • Lead wire 43 includes a power supply lead wire for supplying power to coil 32 of stator 30 and a sensor lead wire for transmitting a detection signal of Hall element 42 to the outside.
  • a lead wire lead-out component 45 protruding outside the mold resin portion 35 is attached to the outer peripheral portion of the substrate 4.
  • the heat sink 6 (FIG. 1) is attached to the side of the stator 30 where the substrate 4 is disposed.
  • the heat sink 6 is made of aluminum, for example.
  • the heat sink 6 radiates heat generated by the coil 32 of the stator 30, the drive circuit 41 on the substrate 4 and the microcomputer 5 to the outside of the electric motor 1.
  • FIG. 7 is a plan view showing the heat sink 6 attached to the mold stator 3.
  • Each heat sink 6 has an annular inner peripheral wall 61 and an outer peripheral wall 62 centered on the central axis C ⁇ b> 1, and a plurality of fins 63 are provided between the inner peripheral wall 61 and the outer peripheral wall 62.
  • the inner peripheral wall 61, the outer peripheral wall 62, and the fin 63 of the heat sink 6 protrude from the mold resin portion 35 in the axial direction.
  • An annular flange portion 65 (FIG. 1) is formed along each of the inner peripheral wall 61 and the outer peripheral wall 62 of the heat sink 6.
  • the flange portion 65 is a portion that is covered and held by the mold resin portion 35. Since the flange portion 65 of the heat sink 6 is held by the mold resin portion 35, the displacement of the heat sink 6 in the axial direction is prevented, and the falling off from the stator 30 is prevented.
  • the shape of the heat sink 6 is not limited to the shape shown in FIG. 7, and may be any shape that can radiate the heat of the electric motor 1 to the outside.
  • the heat sink 6 is disposed so as to face the drive circuit 41 and the microcomputer 5 on the substrate 4.
  • the heat sink 6 may be disposed so as to be in contact with the microcomputer 5 or the substrate 4. In this way, heat generated by the microcomputer 5 or the like can be effectively radiated to the outside.
  • the mold resin portion 35 is not limited to BMC, and may be made of a thermoplastic resin such as PPS (polyphenylene sulfide). Since PPS has a higher thermal conductivity than BMC, the heat of the stator 30 and the substrate 4 is easily transmitted to the heat sink 6, and the heat dissipation of the electric motor 1 can be improved.
  • PPS polyphenylene sulfide
  • the lead wire 43 is assembled to the substrate 4 on which the drive circuit 41, the hall element 42 and the microcomputer 5 are mounted. Thereafter, the protrusions 331a of the stator 30 are inserted into the mounting holes 44 of the substrate 4 and the tips of the protrusions 331a are thermally welded or ultrasonically welded to fix the substrate 4 to the stator 30. Thereafter, the stator 30, the substrate 4 and the heat sink 6 are integrally formed with a resin such as BMC. Thereby, the molded stator 3 in which the stator 30, the substrate 4, and a part of the heat sink 6 (flange portion 65) are covered with the mold resin portion 35 is obtained. Alternatively, a screw hole or the like may be formed in the stator 30 in advance, and the mold resin portion 35 may be formed, and then the heat sink 6 may be fixed to the stator 30 using a tapping screw or the like.
  • the electric motor 1 is a continuous pole type
  • the rotor 20 has a magnet magnetic pole constituted by the rotor magnet 23 and a pseudo magnetic pole 21 c constituted by the rotor iron core 21.
  • the magnetic fluxes of the rotor magnet 23 and the pseudo magnetic pole 21c are linked to the coil 32 of the stator core 31, and a current that flows through the coil 32 generates torque that rotates the rotor 20.
  • the hall elements 42a, 42b, and 42c detect the magnetic flux of the sensor magnet 26 and output detection signals, respectively.
  • the microcomputer 5 performs arithmetic processing based on the detection signals of the hall elements 42 a, 42 b and 42 c to detect the rotational position of the rotor 20 and outputs a drive signal to the drive circuit 41.
  • the drive circuit 41 controls the current supplied to the coil 32 (U phase, V phase, and W phase) based on the drive signal from the microcomputer 5 and controls the rotation of the rotor 20.
  • the rotor 20 since the rotor 20 includes the magnet magnetic pole and the pseudo magnetic pole 21c, the magnetic flux density distribution is unbalanced (spatial deviation) more easily than the electric motor which is not a continuous pole type.
  • the rotor magnet 23 when the rotor magnet 23 generates a high magnetic flux like a rare earth magnet, the imbalance of the magnetic flux density distribution is significant.
  • the influence of magnetic flux on the microcomputer 5 is detected, the detection accuracy of the rotational position of the rotor 20 by the microcomputer 5 may be reduced, and noise may be generated in the output. As a result, the control of the electric motor 1 becomes unstable, and a malfunction such as stoppage of rotation of the electric motor 1 or change in the number of rotations may occur.
  • the microcomputer 5 since the microcomputer 5 is disposed on the outer side in the radial direction of the rotor magnet 23, it is not easily affected by the magnetic flux of the rotor magnet 23. Therefore, the detection accuracy of the rotational position by the microcomputer 5 can be improved. That is, the malfunction of the electric motor 1 can be suppressed and stable rotation control can be performed.
  • the heat resistance temperature of a general microcomputer 5 is approximately 85 ° C., but the microcomputer 5 is disposed on the side opposite to the stator 30 of the substrate 4, so that heat generated by the current flowing through the coil 32 is transmitted. Hateful.
  • the substrate 4 on which the microcomputer 5 is mounted is covered with the mold resin part 35, the heat of the microcomputer 5 is easily radiated to the outside of the electric motor 1 through the mold resin part 35, and the heat dissipation is improved. .
  • the microcomputer 5 between the teeth 31b of the stator 30 in the circumferential direction, it is possible to make it less susceptible to leakage magnetic flux from the stator 30 (magnetic flux generated by current flowing in the coil 32). Therefore, more stable rotation control of the electric motor 1 can be performed.
  • the detection signal of the Hall element 42 is also affected by the above-described imbalance of the magnetic flux density distribution.
  • the influence of the imbalance of the magnetic flux density distribution peculiar to the continuous pole type is eliminated, and the detection accuracy of the rotational position of the rotor 20 is improved. Can be improved.
  • FIG. 8A is a graph showing an example of a change in magnetic flux density detected by the Hall element 42
  • FIG. 8B is an example of a change in magnetic flux density corrected by the calculation process of the microcomputer 5. It is a graph to show. 8A and 8B, the vertical axis indicates the magnetic flux density, and the horizontal axis indicates the rotation angle of the rotor 20.
  • the magnetic pole boundary (N pole) of the sensor magnet 26 is reached when the magnetic flux density detected by the Hall element 42 is within a range of ⁇ 3 mT (a range in consideration of the hysteresis width). And the S pole) are determined to have passed through the Hall element 42. Therefore, as shown in FIG. 8A, if there is an imbalance in the magnetic flux density distribution, the detection interval of the magnetic pole boundary varies as shown by reference numerals t1 and t2 in FIG. 8A.
  • the influence of the imbalance of magnetic flux density distribution can be eliminated, and the detection accuracy of the rotational position of the rotor 20 can be improved. That is, distortion of the drive current can be suppressed, and noise and vibration of the electric motor 1 can be suppressed.
  • the drive control of the electric motor 1 is not limited to the drive control based on the detection signal of the Hall element 42.
  • the microcomputer 5 can detect the rotational position of the rotor 20 from the induced voltage waveform or the like, and perform drive control (sensorless drive) of the electric motor 1 based on this.
  • the induced voltage can be obtained by arranging a resistor for detecting the current flowing through the coil 32 on the substrate 4 and detecting the current flowing through the resistor.
  • Sensorless driving is advantageous in suppressing noise and vibration of the motor 1 because the motor 1 can be driven without being affected by imbalance in the magnetic flux density distribution. Further, since the Hall element 42 is not necessary, the manufacturing cost of the electric motor 1 can be reduced.
  • the magnetic flux reaching the hall element 42 from the sensor magnet 26 is larger than the magnetic flux reaching the hall element 42 from the rotor magnet 23. Become. Thereby, the influence which the magnetic flux of the rotor magnet 23 has on the Hall element 42 can be suppressed.
  • the continuous pole type electric motor 1 has a large amount of current magnetic flux (magnetic flux generated by the current flowing through the coil 32) passing through the pseudo magnetic pole 21c of the rotor 20, and the vibration of the electric motor 1 due to current harmonics is increased, resulting in noise. May occur.
  • the vibration of the electric motor 1 can be lowered to a level that does not cause an audible problem.
  • the use of the microcomputer 5 arranged as described above has the effect of enabling stable rotation control of the electric motor 1. Remarkably obtained.
  • microcomputer 5 is disposed on the surface of the substrate 4 opposite to the stator 30 side, the influence of heat generated by the coil 32 on the microcomputer 5 can be suppressed.
  • the microcomputer 5 detects the rotational position of the rotor 20 based on the detection signal of the Hall element 42. Can do.
  • the Hall element 42 is disposed on the surface of the substrate 4 on the side of the stator 30, it is easier to detect the magnetic flux from the sensor magnet 26 than the magnetic flux from the rotor magnet 23. Therefore, the magnetic flux detection accuracy by the Hall element 42 can be improved.
  • the microcomputer 5 is disposed between two adjacent teeth 31b of the stator 30 (that is, the first tooth and the second tooth) in the circumferential direction, the leakage of the stator 30 with respect to the microcomputer 5 The influence of magnetic flux can be suppressed.
  • the substrate 4 since the substrate 4 is fixed to the substrate fixing portion 331 formed on the insulator 33 of the stator 30, the substrate 4 can be held in a stable state at a position facing the stator 30.
  • heat sink 6 is disposed on the opposite side of the substrate 4 from the stator 30, heat generated by the microcomputer 5 and the like can be radiated from the heat sink 6 to the outside, and heat dissipation can be improved. .
  • the mold resin portion 35 that covers the stator 30, the substrate 4 and the microcomputer 5 is further provided, the heat generated in the stator 30, the substrate 4 and the microcomputer 5 can be radiated from the mold resin portion 35 to the outside. The heat dissipation can be improved.
  • the drive circuit 41 is disposed on the surface of the substrate 4 opposite to the stator 30, the influence of the magnetic flux of the rotor magnet 23 and the influence of the leakage magnetic flux of the stator 30 on the drive circuit 41 is suppressed, and the electric motor 1. Stable rotation control can be realized.
  • the output waveform of the drive circuit 41 is a sine wave and the carrier frequency is 10 kHz or more, even when the continuous pole type electric motor 1 is used, the vibration of the electric motor 1 due to current harmonics is reduced. be able to.
  • FIG. 9 is a longitudinal sectional view showing the stator 30, the rotor 20, and the substrate 4 in the electric motor according to the second embodiment.
  • the Hall element 42 on the substrate 4 is disposed radially inward from the rotor magnet 23 (FIG. 6).
  • the Hall element 42 is arranged on the radially outer side than the rotor magnet 23.
  • the distance L3 from the central axis C1 to the inner peripheral end of the Hall element 42 is made larger than the distance L1 from the central axial C1 to the outer peripheral end of the rotor magnet 23.
  • the magnetic flux density distribution is unbalanced easily in the axial direction with respect to the rotor magnet 23. Therefore, by disposing the Hall element 42 on the outer side in the radial direction than the rotor magnet 23, it is possible to suppress the influence of the imbalance of the magnetic flux density distribution with respect to the Hall element 42. Therefore, the detection accuracy of the rotational position of the rotor 20 based on the detection signal of the Hall element 42 can be improved.
  • the electric motor of the second embodiment is the same as the electric motor 1 of the first embodiment except for the arrangement of the hall elements 42.
  • the Hall element 42 is disposed radially outside the rotor magnet 23 in the radial direction, the influence of the imbalance of the magnetic flux density distribution on the Hall element 42 can be suppressed. Therefore, the magnetic flux detection accuracy by the Hall element 42 can be improved, and stable rotation control of the electric motor 1 becomes possible.
  • FIG. 10 is a cross-sectional view showing a rotor 20A of the electric motor in the third embodiment.
  • the electric motor 1 of the first embodiment described above is of a continuous pole type, and the rotor 20 has a magnet magnetic pole (rotor magnet 23) and a pseudo magnetic pole 21c (FIG. 2).
  • the electric motor of the third embodiment is not a continuous pole type. That is, as shown in FIG. 10, all the magnetic poles of the rotor 20 ⁇ / b> A are composed of the rotor magnet 23.
  • the rotor core 21 of the rotor 20A has a plurality of magnet insertion holes 21a in the circumferential direction.
  • the number of magnet insertion holes 21a is ten.
  • Ten magnet insertion holes 21 a are arranged at equal intervals in the circumferential direction on the outer peripheral portion of the rotor core 21.
  • a rotor magnet 23 is inserted into each of the ten magnet insertion holes 21a. That is, the rotor 20A has ten magnetic poles, all of which are magnet magnetic poles.
  • the number of magnetic poles (the number of poles) of the rotor 20A is not limited to 10 and is arbitrary.
  • the rotor magnets 23 adjacent to each other in the circumferential direction are arranged with the opposite poles facing the outer peripheral side. That is, if the outer peripheral side of a certain rotor magnet 23 (ie, the first magnet) is an N pole, the outer peripheral side of the rotor magnet 23 (ie, the second magnet) adjacent in the circumferential direction is the S pole.
  • the shape and material of the rotor magnet 23 are as described in the first embodiment.
  • the electric motor of the third embodiment is the same as the electric motor of the first embodiment except for the configuration of the rotor 20A.
  • the magnetic flux density distribution is less likely to be unbalanced as compared with the continuous pole type electric motor. Therefore, stable rotation control of the electric motor 1 can be enabled. Further, since it is not a continuous pole type, vibration due to current harmonics hardly occurs, and noise and vibration of the electric motor 1 can be suppressed.
  • the hall element 42 may be disposed radially outside the rotor magnet 23 in the radial direction.
  • FIG. 11 is a longitudinal sectional view showing an electric motor 1A according to the fourth embodiment.
  • the stator 30, the substrate 4, and the microcomputer 5 are covered with the mold resin portion 35 (FIG. 1).
  • the electric motor 1 ⁇ / b> A does not have the mold resin portion 35 and covers the stator 30, the substrate 4, and the microcomputer 5 with the frame 8.
  • the frame 8 is made of a metal such as aluminum.
  • the frame 8 is divided into a first frame portion 81 and a second frame portion 82 in the axial direction.
  • the first frame part 81 has a cylindrical part 81a having a cylindrical shape centered on the central axis C1.
  • the stator 30 is inserted inside the cylindrical portion 81a.
  • a flange portion 81f is formed at the end of the cylindrical portion 81a on the second frame portion 82 side (right side in the drawing).
  • a wall portion 81b orthogonal to the axial direction is formed at the end of the cylindrical portion 81a opposite to the flange portion 81f (left side in the figure).
  • a bearing holding portion 81c is formed at the radial center portion of the wall portion 81b, and the bearing 17 is held inside the bearing holding portion 81c.
  • the second frame part 82 has a cylindrical part 82a having a cylindrical shape centered on the central axis C1.
  • substrate 4 is arrange
  • a flange portion 82f is formed at the end of the cylindrical portion 82a on the first frame portion 81 side (left side in the figure).
  • a wall portion 82b orthogonal to the axial direction is formed at the end of the cylindrical portion 82a opposite to the flange portion 82f (right side in the figure). The wall 82b faces the substrate 4 in the axial direction.
  • a bearing holding portion 82c is formed in the central portion of the wall portion 82b in the radial direction, and the bearing 17 is held inside the bearing holding portion 82c.
  • a heat sink 6 is attached to the side of the wall 82b opposite to the substrate 4.
  • the wall portion 82b may be brought into contact with the microcomputer 5, and a member for transferring heat may be disposed between the wall portion 82b and the microcomputer 5.
  • the flange portion 81f of the first frame portion 81 and the flange portion 82f of the second frame portion 82 are fixed to each other by adhesion, fastening with screws, or welding.
  • the electric motor 1A of the fourth embodiment is the same as the electric motor of the first embodiment except that a frame 8 is provided instead of the mold resin portion 35.
  • the stator 30, the substrate 4 and the microcomputer 5 are covered with the metal frame 8, so that the heat generated in the coil 32 and the microcomputer 5 is externally transmitted through the frame 8. It is easy to dissipate heat and heat dissipation can be improved. In addition, since the heat sink 6 is attached to the wall portion 82b where the frame 8 faces the substrate 4, the heat dissipation can be further improved.
  • the hall element 42 may be arranged radially outside the rotor magnet 23 as described in the second embodiment, and the consistent as described in the third embodiment.
  • a rotor 20A that does not have a quantum pole structure may be used.
  • the rotors 20 and 20A described in the first to fourth embodiments are provided with the resin portion 25 between the shaft 22 and the rotor core 21, but are not limited to such a configuration.
  • the shaft 22 may be fixed to the shaft hole formed in the rotor core 21 by shrink fitting or caulking.
  • FIG. 12 is a diagram showing a configuration of an air conditioner 90 to which the electric motors 1 and 1A can be applied.
  • the air conditioner 90 includes an outdoor unit 91, an indoor unit 92, and a refrigerant pipe 93 that connects them.
  • the outdoor unit 91 includes a first fan (blower) 95 and a first electric motor 96 that rotates the impeller of the first fan 95.
  • the indoor unit 92 includes a second fan 97 and a second electric motor 98 that rotates the impeller of the second fan 97.
  • FIG. 12 also shows a compressor 99 that compresses the refrigerant in the outdoor unit 91.
  • the electric motors 1 and 1A described in the first to fourth embodiments are applicable to at least one of the first electric motor 96 and the second electric motor 98. As described above, the electric motors 1 and 1A described in the first to fourth embodiments are low in cost and can be stably controlled using the microcomputer 5, thereby reducing the manufacturing cost of the air conditioner 90. Thus, stable operation can be achieved.
  • the electric motors 1 and 1A described in the first to fourth embodiments can be mounted on electric devices other than the air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Motor Or Generator Frames (AREA)
  • Brushless Motors (AREA)

Abstract

電動機は、回転軸と、回転軸に取り付けられたロータ鉄心と、ロータ鉄心に埋め込まれたロータマグネットとを有するロータと、回転軸の中心軸線を中心とする径方向においてロータの外側に配置され、ロータを囲むステータと、当該中心軸線の方向において、ステータの一方の側に配置された基板と、基板に搭載されたマイクロコンピュータとを備える。マイクロコンピュータは、ロータマグネットに対して当該径方向の外側に配置されている。

Description

電動機および空気調和装置
 本発明は、電動機、および電動機を備えた空気調和装置に関する。
 従来より、ロータに永久磁石を埋め込んだ永久磁石埋め込み型の電動機が広く用いられている。また、永久磁石埋め込み型の電動機において、ロータの回転位置を検出するため、ロータの回転軸の一端にセンサマグネットを取り付け、このセンサマグネットに対向するように、磁気センサを搭載した基板を配置したものが提案されている(例えば、特許文献1参照)。
特開2014-171320号公報(図1および図5参照)
 しかしながら、上述した電動機では、磁気センサに対するロータの永久磁石の磁束の影響を抑制するため、磁気センサを搭載した基板とロータとを軸方向に離間させて配置している。そのため、電動機が大型化するという問題がある。
 また、電動機に、回転制御のための演算を行うマイクロコンピュータを取り付けることも考えられるが、永久磁石の磁束の影響がマイクロコンピュータに及ぶと、電動機の回転の停止あるいは回転数の変化といった誤動作が生じる可能性がある。
 本発明は、上記の課題を解決するためになされたものであり、電動機を大型化することなく、電動機の安定した回転制御を可能にすることを目的とする。
 本発明の電動機は、回転軸と、回転軸に取り付けられたロータ鉄心と、ロータ鉄心に埋め込まれたロータマグネットとを有するロータと、回転軸の中心軸線を中心とする径方向においてロータの外側に配置され、ロータを囲むステータと、当該中心軸線の方向において、ステータの一方の側に配置された基板と、基板に搭載されたマイクロコンピュータとを備える。マイクロコンピュータは、ロータマグネットに対して当該径方向の外側に配置されている。
 本発明では、マイクロコンピュータがロータマグネットよりも径方向の外側に配置されているため、マイクロコンピュータに対するロータマグネットの磁束の影響を抑制することができる。そのため、電動機の安定した回転制御が可能になる。また、マイクロコンピュータを搭載した基板とロータとを軸方向に大きく離間させる必要がないため、電動機の小型化が可能になる。
実施の形態1における電動機を示す縦断面図である。 実施の形態1におけるロータを示す横断面図である。 実施の形態1におけるステータを示す平面図である。 実施の形態1におけるステータを示す側面図である。 実施の形態1におけるステータに基板を取り付けた状態を示す平面図である。 実施の形態1における基板のマイクロコンピュータの配置を模式的に示す図である。 実施の形態1における電動機のヒートシンクを示す平面図である。 実施の形態1におけるホール素子によって検出された磁束密度の変化の一例を示す図(A)およびマイクロコンピュータによる補正後の磁束密度の変化の一例を示す図(B)である。 実施の形態2における電動機を示す縦断面図である。 実施の形態3における電動機のロータを示す横断面図である。 実施の形態4における電動機を示す縦断面図である。 実施の形態1~4の電動機が適用される空気調和装置の構成例を示す図である。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。
実施の形態1.
<電動機1の構成>
 図1は、本発明の実施の形態1における電動機1を示す縦断面図である。電動機1は、ロータ20に永久磁石(ロータマグネット23)を埋め込んだ、IPM(Interior Permanent Magnet)モータである。
 電動機1は、ロータ20と、ロータ20を囲むように設けられたステータ30と、ステータ30に取り付けられた基板4とを備える。ロータ20は、回転軸であるシャフト22を有している。シャフト22の中心軸線(すなわちシャフト22の径方向中心を通ってシャフト22の長手方向に延在する軸線)を、中心軸線C1とする。ステータ30および基板4は、モールド樹脂部35によって覆われ、モールドステータ3を構成している。
 以下の説明では、中心軸線C1の方向を、単に「軸方向」と称する。また、中心軸線C1を中心とする周方向を、単に「周方向」と称し、図面(図2~3,5,7,10)に矢印R1で示す。中心軸線C1に対するステータ30およびロータ20の半径方向を、単に「径方向」と称する。また、縦断面図とは、中心軸線C1に平行な面における断面図を言い、横断面図とは、中心軸線C1に直交する面における断面図を言う。
 シャフト22は、ステータ30から図1における左側に突出しており、その突出部には、例えば送風ファンの羽根車が取り付けられる。そのため、シャフト22の突出側(図1における左側)を「負荷側」と称し、反対側(図1における右側)を「反負荷側」と称する。
<ロータ20の構成>
 図2は、電動機1のロータ20を示す横断面図である。ロータ20は、中心軸線C1に沿って延在するシャフト22と、中心軸線C1を中心とする環状のロータ鉄心21と、ロータ鉄心21に取り付けられた複数のロータマグネット(永久磁石)23と、ロータ鉄心21を支持する樹脂部25とを有する。
 ロータ鉄心21は、複数の電磁鋼板を軸方向に積層し、かしめ、溶接、接着等により固定した積層体で構成される。ロータ鉄心21は、周方向に複数の磁石挿入孔21aを有する。磁石挿入孔21aの数は、ここでは5個であるが、これに限定されるものではない。5個の磁石挿入孔21aは、ロータ鉄心21の外周部分に、周方向に等間隔で配置されている。各磁石挿入孔21aは、ロータ鉄心21を軸方向に貫通し、周方向に幅を有する。
 5個の磁石挿入孔21aには、ロータマグネット23がそれぞれ挿入されている。ロータマグネット23は、軸方向に直交する断面形状が矩形の平板状である。ロータマグネット23は、希土類磁石であり、より具体的には、Nd(ネオジム)、Fe(鉄)およびB(ホウ素)を含むネオジム焼結磁石である。
 磁石挿入孔21aの周方向の両端には、空隙であるフラックスバリア部21bがそれぞれ形成されている。フラックスバリア部21bは、隣り合うロータマグネット23の間の磁束の短絡(すなわち漏れ磁束)を抑制するものである。
 5個のロータマグネット23は、互いに同一の磁極(例えばN極)をロータ鉄心21の外周側に向けて配置されている。そのため、ロータ鉄心21において隣り合うロータマグネット23の間に位置する部分には、径方向に磁束が流れる部分が生じる。すなわち、ロータマグネット23とは反対の疑似磁極21c(例えばS極)が形成される。
 すなわち、ロータ20には、5個の磁石磁極(ロータマグネット23)と、5個の疑似磁極21cとが周方向に交互に配列される。従って、ロータ20は、10個の磁極を有する。ロータ20の10個の磁極は、極ピッチを36度(360度/10)として、周方向に等間隔に配置される。このようなロータ構造を有する電動機は、コンシクエントポール型と称される。なお、ロータ20の磁極数は、10に限定されるものではない。
 ロータ鉄心21の外周は、いわゆる花丸形状を有する。言い換えると、ロータ鉄心21の外周は、極中心P1,P3(各磁極の周方向の中心)で外径が最大となり、極間P2(隣り合う磁極の間)で外径が最小となり、極中心P1,P3から極間P2までが弧状となる形状を有する。ここでは、極中心P1は磁石磁極の中心(すなわちロータマグネット23の周方向中心)であり、極中心P3は疑似磁極21cの中心である。
 樹脂部25は、シャフト22に対してロータ鉄心21を支持するものであり、PBT(ポリブチレンテレフタレート)等の熱可塑性樹脂で構成される。樹脂部25は、シャフト22の外周面に取り付けられた内筒部25aと、内筒部25aの径方向外側に配置された環状の外筒部25cと、内筒部25aと外筒部25cとを連結する複数(ここでは5個)のリブ25bとを備えている。
 樹脂部25の内筒部25aには、シャフト22が貫通している。リブ25bは、周方向に等間隔で配置され、内筒部25aから径方向外側に放射状に延在している。リブ25bの形成位置は、ロータマグネット23の周方向中心に対応している。周方向に隣り合うリブ25b間には、空洞部S1が形成される。
 図1に示すように、樹脂部25は、ロータ鉄心21の軸方向両端面も覆うように構成されている。これにより、ロータマグネット23の磁石挿入孔21aからの脱落を防止する。樹脂部25のうち、ロータ鉄心21の軸方向の一方の側(より具体的には、後述する基板4に対向する側)を覆う部分を、端面被覆部25dと称する。
 ロータ鉄心21には、環状のセンサマグネット(位置検出用マグネット)26が取り付けられている。センサマグネット26は、樹脂部25の端面被覆部25dに形成されたセンサマグネット保持部25eによって保持されている。すなわち、センサマグネット26は、シャフト22およびロータ鉄心21と共に、樹脂部25によって保持されている。センサマグネット26は、ロータマグネット23と同数(ここでは10個)の磁極を有する。センサマグネット26の着磁方向は軸方向である。また、センサマグネット26の磁極は、周方向に等間隔で配置されている。
<ステータ30の構成>
 ステータ30は、ロータ20の径方向外側に配置され、ロータ20を囲んでいる。ステータ30は、環状のステータ鉄心31と、ステータ鉄心31に取り付けられた絶縁部(インシュレータ)33と、インシュレータ33を介してステータ鉄心31に巻き付けられたコイル32とを有する。
 図3および図4は、ステータ30を示す平面図および側面図である。ステータ鉄心31は、複数枚の電磁鋼板を軸方向に積層し、かしめ、溶接、接着等により固定した積層体で構成される。また、ステータ鉄心31は、周方向に延在するヨーク31aと、ヨーク31aから径方向内側に(中心軸線C1に向かって)延在する複数のティース31bとを有する。ティース31bの径方向内側の先端面は、ロータ20(図2)の外周面に対向する。ティース31bの数は、ここでは12個であるが、これに限定されるものではない。
 ティース31bには、インシュレータ33を介して、コイル32が巻き付けられる。インシュレータ33は、ティース31bとコイル32とを互いに絶縁するものである。インシュレータ33は、例えばPBT等の熱可塑性樹脂をステータ鉄心31と一体に成形し、あるいは予め成形した成形体をステータ鉄心31に組み付けることで形成される。
 インシュレータ33は、ティース31bの周囲を覆う部分に加えて、コイル32を径方向内側と外側から支える内周壁33a(図6)および外周壁33b(図4)とを有する。インシュレータ33の外周壁33bには、基板4を固定する基板固定部331が形成されている。ここでは、インシュレータ33の外周に沿って複数の基板固定部331が配置されている。基板固定部331の数は、例えば4個であるが、これに限定されるものではない。
 基板固定部331は、突起331aと支持部331bとを有する。突起331aは、基板4に形成された取付け穴44(図5)に挿入される。支持部331bは、基板4の下面に当接し、基板4を軸方向に支持する。また、インシュレータ33の外周壁33bには、コイル32が接続される端子32aが配設されている。
 コイル32は、例えばマグネットワイヤをティース31bに巻き付けることによって形成される。コイル32は、U相、V相およびW相のコイルで構成された三相の巻線である。コイル32は、インシュレータ33上に配設された端子32aに、ヒュージング(熱かしめ)または半田等によって接続されている。
 図1に示すように、ステータ30および後述する基板4は、モールド樹脂部35によって覆われている。モールド樹脂部35は、例えば、BMC(バルクモールディングコンパウンド)等の熱硬化性樹脂で構成される。モールド樹脂部35は、軸方向の一方の側(図1の右側)に軸受支持部36を有し、他方の側(図1の左側)に開口部37を有する。ロータ20は、開口部37からステータ30の内側の中空部分に挿入される。
 モールド樹脂部35の開口部37には、金属製のブラケット15が取り付けられている。このブラケット15には、シャフト22を支持する一方の軸受17が保持される。また、ブラケット15の外側には、軸受17への水等の侵入を防止するためのキャップ16が取り付けられている。軸受支持部36には、シャフト22を支持するもう一方の軸受18が保持される。
 また、モールド樹脂部35は、その外周から径方向外側に延在する複数の脚部39(図7)を有する。脚部39は、電動機1を送風機等の装置に取り付ける際に、ネジ等の固定具を挿通する穴部39aを有する。ここでは4個の脚部39が設けられているが、4個に限定されるものではない。
<基板4の構成>
 図5は、ステータ30に基板4を取り付けた状態を示す平面図である。図6は、基板4とステータ30とロータ20とを示す縦断面図である。基板4は、ステータ30に対して軸方向の一方の側に配置されている。言い換えると、基板4は、ステータ30に軸方向に対向するように配置されている。なお、ここでは、基板4がステータ30の反負荷側(図1の右側)に配置されているが、負荷側(図1の左側)に配置されていてもよい。
 基板4は、例えば、プリント基板で構成されている。プリント基板は、絶縁性を有する板状の基材に、導体からなる配線パターンを形成したものであり、必要に応じてスルーホールを形成してもよい。また、基板4は、上記の通り、モールド樹脂部35(図1)によってステータ30と一体に保持されている。モールド樹脂部35は、例えばBMCで構成されているが、BMCは低圧成形が可能であるため、モールド成形時に基板4などの変形を抑制することができる。
 基板4は、径方向内側の端縁である内周縁4aと、径方向外側の端縁である外周縁4bとを有する。内周縁4aは、図6に示すように、シャフト22の外周面に対向する。基板4の外周縁4bに沿って、上述した基板固定部331の突起331aに係合する複数の取付け穴44が形成されている。
 図5に示すように、基板4には、ホール素子42a,42b,42cと、駆動回路41と、マイクロコンピュータ5とが搭載されている。ホール素子42a,42b,42cと、駆動回路41と、マイクロコンピュータ5とは、基板4に形成された配線およびスルーホールによって互いに電気的に接続されている。また、これらホール素子42a,42b,42c、駆動回路41およびマイクロコンピュータ5は、基板4と共に、上述したモールド樹脂部35によって覆われている。
 ホール素子42a,42b,42c(まとめてホール素子42と称する)は、基板4のステータ30側の面(図6における左側の面)に配置されている。一方、駆動回路41およびマイクロコンピュータ5は、基板4のステータ30とは反対側の面(図6における右側の面)に配置されている。
 ホール素子42a,42b,42cは、それぞれ、ホールIC(Integrated Circuit)を有する。ホール素子42a,42b,42cは、基板4の内周縁4aに沿って配置され、ロータ20のセンサマグネット26に軸方向に対向するように配置されている。また、ホール素子42a,42b,42cは、センサマグネット26の外周縁よりも僅かに径方向外側にシフトした位置に配置されている。
 ホール素子42a,42b,42cは、センサマグネット26からの磁束を検出し、それぞれ検出信号を出力する。ホール素子42a,42b,42cは、それぞれ、U相、V相およびW相に対応している。
 マイクロコンピュータ5は、演算回路を1つのチップに実装したものであり、演算部または演算装置とも称する。マイクロコンピュータ5は、ホール素子42a,42b,42cからの検出信号に基づき、ステータ30に対するロータ20の相対的な回転位置を演算処理によって検出し、検出結果に基づく駆動信号を駆動回路41に出力する。
 駆動回路41は、ロータ20の回転を制御する回路である。駆動回路41は、例えばパワートランジスタで構成される。駆動回路41は、インバータ回路を含み、マイクロコンピュータ5からの駆動信号に基づいてコイル32への供給電流を制御する。
 マイクロコンピュータ5は、中心軸線C1に最も近い内周側端部5aと、中心軸線C1から最も遠い外周側端部5bとを有する。内周側端部5aは、その周方向中心5cを通る径方向の直線Lに対して直交する方向に延在し、外周側端部5bは内周側端部5aと平行に延在していることが望ましいが、このような構成に限定されるものではない。
 図6に示すように、マイクロコンピュータ5は、ロータマグネット23に対して径方向外側に配置されている。言い換えると、中心軸線C1からマイクロコンピュータ5の内周側端部5aまでの径方向の距離L2は、中心軸線C1からロータマグネット23の外周側端部までの径方向の距離L1よりも大きい(L2>L1)。
 このように、マイクロコンピュータ5がロータマグネット23に対して径方向外側に配置されているため、マイクロコンピュータ5にロータマグネット23の磁束の影響が及びにくくなる。これにより、電動機1の安定した回転制御が可能になる。
 また、マイクロコンピュータ5は、周方向において、ステータ30の複数のティース31bのうち、周方向に隣り合う2つのティース31b(第1のティース31bおよび第2のティース31bと称する)の間に配置されていることが望ましい。このような配置により、マイクロコンピュータ5に対するロータマグネット23の磁束の影響がさらに抑制される。
 基板4には、リード線43が配線されている。リード線43は、ステータ30のコイル32に電力を供給するための電源リード線と、ホール素子42の検出信号を外部に伝達するためのセンサリード線とを含む。リード線43を電動機1の外部に引き出すため、基板4の外周部には、モールド樹脂部35の外部に突出するリード線口出し部品45が取り付けられている。
 ステータ30の基板4が配置された側には、ヒートシンク6(図1)が取り付けられている。ヒートシンク6は、例えば、アルミニウムによって構成される。ヒートシンク6は、ステータ30のコイル32、基板4上の駆動回路41およびマイクロコンピュータ5で発生した熱を、電動機1の外部に放熱するものである。
 図7は、モールドステータ3に取り付けられたヒートシンク6を示す平面図である。ヒートシンク6は、いずれも中心軸線C1を中心とする環状の内周壁61と外周壁62とを有し、これら内周壁61と外周壁62との間に複数のフィン63を有している。ヒートシンク6の内周壁61、外周壁62およびフィン63は、モールド樹脂部35から軸方向に突出している。
 ヒートシンク6の内周壁61および外周壁62のそれぞれに沿って、環状のフランジ部65(図1)が形成されている。このフランジ部65は、モールド樹脂部35に覆われて保持される部分である。ヒートシンク6のフランジ部65がモールド樹脂部35に保持されるため、ヒートシンク6の軸方向の位置ずれが防止され、またステータ30からの脱落が防止される。なお、ヒートシンク6の形状は、図7に示した形状に限定されるものではなく、電動機1の熱を外部に放熱できる形状であればよい。
 ヒートシンク6は、図1に示すように、基板4上の駆動回路41およびマイクロコンピュータ5に対向するように配置されている。ヒートシンク6は、マイクロコンピュータ5または基板4に接触するように配置してもよく、このようにすれば、マイクロコンピュータ5等で発生した熱を効果的に外部に放熱することができる。
 なお、モールド樹脂部35は、BMCに限らず、PPS(ポリフェニレンスルファイド)等の熱可塑性樹脂で構成してもよい。PPSは、BMCに比べて熱伝導率が高いため、ステータ30および基板4の熱がヒートシンク6に伝わりやすく、電動機1の放熱性を向上することができる。
 モールドステータ3の製造時には、駆動回路41、ホール素子42およびマイクロコンピュータ5を実装した基板4に、リード線43を組み付ける。その後、基板4の取付け穴44にステータ30の突起331aを挿通し、突起331aの先端を熱溶着または超音波溶着等することにより、基板4をステータ30に固定する。その後、ステータ30と基板4とヒートシンク6とをBMC等の樹脂で一体に成形する。これにより、ステータ30と基板4とヒートシンク6の一部(フランジ部65)とがモールド樹脂部35で覆われたモールドステータ3が得られる。なお、ステータ30に予めねじ止め用の穴等を形成しておき、モールド樹脂部35を形成した後に、タッピングねじ等を用いてヒートシンク6をステータ30に固定してもよい。
<電動機の作用>
 上記の通り、電動機1はコンシクエントポール型であり、ロータ20は、ロータマグネット23で構成される磁石磁極と、ロータ鉄心21で構成される疑似磁極21cとを有する。ロータマグネット23および疑似磁極21cの磁束は、ステータ鉄心31のコイル32に鎖交し、コイル32に電流を流すことにより、ロータ20を回転させるトルクが発生する。
 ロータ20の回転に伴い、ホール素子42a,42b,42cが、センサマグネット26の磁束を検出し、それぞれ検出信号を出力する。マイクロコンピュータ5は、ホール素子42a,42b,42cの検出信号に基づいて演算処理を行ってロータ20の回転位置を検出し、駆動回路41に駆動信号を出力する。駆動回路41は、マイクロコンピュータ5からの駆動信号に基づき、コイル32(U相、V相およびW相)への供給電流を制御し、ロータ20の回転を制御する。
 この電動機1では、ロータ20が磁石磁極と疑似磁極21cとを有するため、コンシクエントポール型でない電動機と比較して、磁束密度分布のアンバランス(空間的な偏り)が生じやすい。特に、ロータマグネット23が希土類磁石のように高い磁束を発生する場合には、磁束密度分布のアンバランスが顕著である。
 マイクロコンピュータ5に磁束の影響が及ぶと、マイクロコンピュータ5によるロータ20の回転位置の検出精度が低下し、出力にノイズが生じる可能性がある。その結果、電動機1の制御が不安定になり、電動機1の回転の停止あるいは回転数の変化といった誤動作が生じる可能性がある。
 しかしながら、この実施の形態1では、マイクロコンピュータ5が、ロータマグネット23の径方向外側に配置されているため、ロータマグネット23の磁束の影響を受けにくい。そのため、マイクロコンピュータ5による回転位置の検出精度を向上することができる。すなわち、電動機1の誤動作を抑制し、安定した回転制御を行うことができる。
 また、一般的なマイクロコンピュータ5の耐熱温度は概ね85℃であるが、マイクロコンピュータ5は基板4のステータ30とは反対側に配置されているため、コイル32を流れる電流によって発生する熱が伝わりにくい。
 また、マイクロコンピュータ5を搭載した基板4が、モールド樹脂部35で覆われているため、マイクロコンピュータ5の熱がモールド樹脂部35を介して電動機1の外部に放熱されやすく、放熱性が向上する。
 また、マイクロコンピュータ5を、周方向においてステータ30のティース31b間に配置することにより、ステータ30からの漏れ磁束(コイル32に流れる電流によって発生する磁束)の影響を受けにくくすることができる。そのため、電動機1のより安定した回転制御を行うことができる。
 また、ロータマグネット23の磁束はホール素子42にも及ぶため、ホール素子42の検出信号も上述した磁束密度分布のアンバランスの影響を受ける。しかしながら、マイクロコンピュータ5の演算処理により、ホール素子42の検出信号を補正することにより、コンシクエントポール型に特有の磁束密度分布のアンバランスの影響を解消し、ロータ20の回転位置の検出精度を向上することができる。
 図8(A)は、ホール素子42によって検出された磁束密度の変化の一例を示すグラフであり、図8(B)は、マイクロコンピュータ5の演算処理によって補正された磁束密度の変化の一例を示すグラフである。図8(A)および(B)のいずれにおいても、縦軸は磁束密度を示し、横軸はロータ20の回転角度を示す。
 ロータ20の回転位置を検出する際には、ホール素子42で検出された磁束密度が±3mTの範囲(ヒステリシス幅を考慮した範囲)内になった時点で、センサマグネット26の磁極境界(N極とS極との境界)がホール素子42を通過したと判断する。そのため、図8(A)に示すように、磁束密度分布のアンバランスがあると、磁極境界の検出間隔が、図8(A)に符号t1,t2で示すようにばらつく結果となる。
 そこで、図8(B)に示すように、マイクロコンピュータ5により、ホール素子42によって検出された磁束密度を、磁極境界の検出間隔が一定(すなわちt1=t2)となるように補正する。これにより、磁束密度分布のアンバランスの影響を解消し、ロータ20の回転位置の検出精度を向上することができる。すなわち、駆動電流の歪を抑制し、電動機1の騒音および振動を抑制することができる。
 なお、電動機1の駆動制御は、ホール素子42の検出信号に基づく駆動制御に限定されるものではない。例えば、マイクロコンピュータ5が誘起電圧波形などからロータ20の回転位置を検出し、これに基づいて電動機1の駆動制御(センサレス駆動)を行うこともできる。誘起電圧は、基板4にコイル32に流れる電流を検出するための抵抗を配設し、この抵抗に流れる電流を検出することで求めることができる。
 センサレス駆動であれば、磁束密度分布のアンバランスの影響を受けずに電動機1を駆動することができるため、電動機1の騒音および振動を抑制する上で有利である。また、ホール素子42が不要になるため、電動機1の製造コストを低減することができる。
 但し、ホール素子42を用いて電動機1を駆動制御する場合、コイル32に電流が流れていない状態でも、ロータ20の回転位置を検出できるというメリットがある。そのため、例えば、例えば送風機の羽根が風を受けてロータ20が回転している状態(フリーラン状態)から、電動機1を起動して回転制御を行うことが容易になる。
 また、センサマグネット26は、軸方向においてロータ20の基板4側に配置されているため、センサマグネット26からホール素子42に達する磁束が、ロータマグネット23からホール素子42に達する磁束と比較して大きくなる。これにより、ロータマグネット23の磁束がホール素子42に与える影響を抑制することができる。
 また、コンシクエントポール型の電動機1は、ロータ20の疑似磁極21cを通過する電流磁束(コイル32に流れる電流によって発生する磁束)が多く、電流高調波による電動機1の振動が大きくなり、騒音を発生する可能性がある。駆動回路41の出力波形を正弦波とし、キャリア周波数を10kHz以上とすることにより、電動機1の振動を聴覚的に問題にならないレベルまで低下させることができる。
<実施の形態の効果>
 以上説明したように、本発明の実施の形態1では、マイクロコンピュータ5が、ロータマグネット23に対して径方向の外側に配置されているため、マイクロコンピュータ5に対するロータマグネット23の磁束の影響を抑制することができる。そのため、電動機1の誤動作を抑制し、安定した回転制御を行うことができる。
 特に、磁束密度分布のアンバランスが発生しやすいコンシクエントポール型の電動機1では、上記のように配置したマイクロコンピュータ5を用いることにより、電動機1の安定した回転制御を可能にするという効果がより顕著に得られる。
 また、マイクロコンピュータ5が、基板4のステータ30側とは反対側の面に配置されているため、マイクロコンピュータ5に対するコイル32で発生した熱の影響を抑制することができる。
 また、基板4に、ロータ20のセンサマグネット26からの磁束を検出するホール素子42が搭載されているため、ホール素子42の検出信号に基づいてマイクロコンピュータ5がロータ20の回転位置を検出することができる。
 また、ホール素子42が、基板4のステータ30側の面に配置されているため、ロータマグネット23からの磁束と比較して、センサマグネット26からの磁束を検出しやすい。そのため、ホール素子42による磁束の検出精度を向上することができる。
 また、マイクロコンピュータ5が、周方向において、ステータ30の隣り合う2つのティース31b(すなわち、第1のティースおよび第2のティース)の間に配置されているため、マイクロコンピュータ5に対するステータ30の漏れ磁束の影響を抑制することができる。
 また、基板4が、ステータ30のインシュレータ33に形成された基板固定部331に固定されるため、基板4をステータ30に対向した位置で、安定した状態で保持することができる。
 また、基板4のステータ30とは反対の側にヒートシンク6が配置されているため、マイクロコンピュータ5等で発生した熱をヒートシンク6から外部に放熱することができ、放熱性を向上することができる。
 また、ステータ30、基板4およびマイクロコンピュータ5を覆うモールド樹脂部35をさらに備えるため、ステータ30、基板4およびマイクロコンピュータ5で発生した熱を、モールド樹脂部35から外部に放熱することができ、放熱性を向上することができる。
 また、駆動回路41が、基板4のステータ30とは反対側の面に配置されているため、駆動回路41に対するロータマグネット23の磁束の影響およびステータ30の漏れ磁束の影響を抑制し、電動機1の安定した回転制御を実現することができる。
 また、駆動回路41の出力波形は正弦波であり、キャリア周波数が10kHz以上であるため、コンシクエントポール型の電動機1を用いた場合であっても、電流高調波による電動機1の振動を低下させることができる。
実施の形態2.
 次に、本発明の実施の形態2について説明する。図9は、実施の形態2の電動機におけるステータ30とロータ20と基板4とを示す縦断面図である。上述した実施の形態1では、基板4上のホール素子42が、ロータマグネット23よりも径方向内側に配置されていた(図6)。
 これに対し、実施の形態2では、ホール素子42が、ロータマグネット23よりも径方向外側に配置されている。言い換えると、中心軸線C1からホール素子42の内周側端部までの距離L3を、中心軸線C1からロータマグネット23の外周側端部までの距離L1よりも大きくしている。
 コンシクエントポール型の電動機1では、磁束密度分布のアンバランスが、ロータマグネット23に対して軸方向に生じやすい。そのため、ホール素子42をロータマグネット23よりも径方向外側に配置することで、ホール素子42に対する磁束密度分布のアンバランスの影響を抑制することができる。そのため、ホール素子42の検出信号に基づくロータ20の回転位置の検出精度を向上することができる。
 実施の形態2の電動機は、ホール素子42の配置を除き、実施の形態1の電動機1と同様である。
 この実施の形態2では、ホール素子42が径方向においてロータマグネット23よりも径方向外側に配置されているため、ホール素子42に対する磁束密度分布のアンバランスの影響を抑制することができる。そのため、ホール素子42による磁束の検出精度を向上することができ、電動機1の安定した回転制御が可能になる。
実施の形態3.
 次に、本発明の実施の形態3について説明する。図10は、実施の形態3における電動機のロータ20Aを示す横断面図である。上述した実施の形態1の電動機1はコンシクエントポール型であり、ロータ20が磁石磁極(ロータマグネット23)と疑似磁極21cとを有していた(図2)。
 これに対し、この実施の形態3の電動機は、コンシクエントポール型ではない。すなわち、図10に示すように、ロータ20Aの全ての磁極がロータマグネット23で構成されている。
 より具体的には、ロータ20Aのロータ鉄心21は、周方向に複数の磁石挿入孔21aを有する。磁石挿入孔21aの数は、ここでは10個である。10個の磁石挿入孔21aは、ロータ鉄心21の外周部に、周方向に等間隔に配置されている。10個の磁石挿入孔21aには、ロータマグネット23がそれぞれ挿入されている。すなわち、ロータ20Aは、10個の磁極を有し、その全てが磁石磁極である。なお、ロータ20Aの磁極の数(極数)は10に限らず、任意である。
 周方向に隣り合うロータマグネット23は、互いに反対の極を外周側に向けて配置されている。すなわち、あるロータマグネット23(すなわち第1のマグネット)の外周側がN極であれば、周方向に隣接するロータマグネット23(すなわち第2のマグネット)の外周側はS極である。ロータマグネット23の形状および材質は、実施の形態1で説明したとおりである。
 実施の形態3の電動機は、ロータ20Aの構成を除き、実施の形態1の電動機と同様である。
 この実施の形態3の電動機は、ロータ20Aの全ての磁極がロータマグネット23で構成されているため、コンシクエントポール型の電動機と比較して磁束密度分布のアンバランスが生じにくい。そのため、電動機1の安定した回転制御を可能にすることができる。また、コンシクエントポール型でないため、電流高調波による振動が生じにくく、電動機1の騒音および振動を抑制することができる。
 なお、この実施の形態3の電動機において、実施の形態2で説明したように、ホール素子42を径方向においてロータマグネット23よりも径方向外側に配置してもよい。
実施の形態4.
 次に、本発明の実施の形態4について説明する。図11は、実施の形態4における電動機1Aを示す縦断面図である。上述した実施の形態1の電動機1では、ステータ30、基板4およびマイクロコンピュータ5がモールド樹脂部35によって覆われていた(図1)。
 これに対し、実施の形態4の電動機1Aは、図11に示すように、モールド樹脂部35を有さず、フレーム8により、ステータ30、基板4およびマイクロコンピュータ5を覆っている。フレーム8は、例えばアルミニウム等の金属で形成されている。
 フレーム8は、軸方向に、第1フレーム部81と第2フレーム部82とに分割されている。第1フレーム部81は、中心軸線C1を中心とする円筒状の円筒部81aを有する。円筒部81aの内側には、ステータ30が挿入されている。円筒部81aの第2フレーム部82側(図中右側)の端部には、フランジ部81fが形成されている。円筒部81aのフランジ部81fとは反対側(図中左側)の端部には、軸方向に直交する壁部81bが形成されている。壁部81bの径方向の中央部には軸受保持部81cが形成されており、軸受保持部81cの内側には、軸受17が保持されている。
 第2フレーム部82は、中心軸線C1を中心とする円筒状の円筒部82aを有する。円筒部82aの内側の空間には、基板4が配置されている。円筒部82aの第1フレーム部81側(図中左側)の端部には、フランジ部82fが形成されている。円筒部82aのフランジ部82fとは反対側(図中右側)の端部には、軸方向に直交する壁部82bが形成されている。壁部82bは、軸方向において基板4に対向している。壁部82bの径方向の中央部には軸受保持部82cが形成されており、軸受保持部82cの内側には、軸受17が保持されている。
 壁部82bの基板4と反対の側には、ヒートシンク6が取り付けられている。壁部82bは、マイクロコンピュータ5に接触させてもよく、また、壁部82bとマイクロコンピュータ5との間に熱を伝達する部材を配設してもよい。
 第1フレーム部81のフランジ部81fと、第2フレーム部82のフランジ部82fとは、接着、ネジによる締結、または溶接によって互いに固定されている。
 実施の形態4の電動機1Aは、モールド樹脂部35の代わりにフレーム8を設けた点を除き、実施の形態1の電動機と同様である。
 この実施の形態4の電動機1Aは、金属製のフレーム8によってステータ30、基板4およびマイクロコンピュータ5を覆っているため、コイル32およびマイクロコンピュータ5等で発生した熱がフレーム8を経由して外部に放熱されやすく、放熱性を向上することができる。また、フレーム8が基板4に対向する壁部82bにヒートシンク6が取り付けられているため、放熱性をさらに向上することができる。
 なお、この実施の形態4の電動機1Aにおいて、実施の形態2で説明したようにホール素子42をロータマグネット23よりも径方向外側に配置してもよく、実施の形態3で説明したようにコンシクエントポール構造でないロータ20Aを用いてもよい。
 なお、実施の形態1~4で説明したロータ20,20Aは、シャフト22とロータ鉄心21との間に樹脂部25を設けていたが、このような構成に限定されるものではない。例えば、ロータ鉄心21に形成したシャフト孔に、シャフト22を焼嵌めまたはコーキング等によって固定したものであってもよい。
<空気調和装置>
 次に、実施の形態1~4で説明した電動機1,1Aが適用可能な空気調和装置の構成例について説明する。図12は、電動機1,1Aが適用可能な空気調和装置90の構成を示す図である。
 空気調和装置90は、室外機91と、室内機92と、これらを接続する冷媒配管93とを備える。室外機91は、第1のファン(送風機)95と、第1のファン95の羽根車を回転させる第1の電動機96とを備える。室内機92は、第2のファン97と、第2のファン97の羽根車を回転させる第2の電動機98とを備える。なお、図12には、室外機91において冷媒を圧縮する圧縮機99も示されている。
 第1の電動機96および第2の電動機98の少なくとも一方には、実施の形態1~4で説明した電動機1,1Aが適用可能である。上記の通り、実施の形態1~4で説明した電動機1,1Aは、低コストであり、且つマイクロコンピュータ5を用いた安定した回転制御が可能であるため、空気調和装置90の製造コストを低減し、安定した運転を可能にすることができる。
 なお、実施の形態1~4で説明した電動機1,1Aは、空気調和装置以外の電気機器に搭載することもできる。
 以上、本発明の望ましい実施の形態について具体的に説明したが、本発明は上記の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、各種の改良または変形を行なうことができる。
 1,1A 電動機、 3 モールドステータ、 20,20A ロータ、 21 ロータ鉄心、 21a 磁石挿入孔、 21b フラックスバリア部、 21c 疑似磁極、 22 シャフト、 23 ロータマグネット、 25 樹脂部、 25a 内筒部、 25b リブ、 25c 外筒部、 25d 端面被覆部、 25e センサマグネット保持部、 25f 端面被覆部、 26 センサマグネット、 30 ステータ、 31 ステータ鉄心、 31a ヨーク、 31b ティース、 32 コイル、 32a 端子、 33 インシュレータ、 33a 内周壁、 33b 外周壁、 331 基板固定部、 331a 突起、 331b 支持部、 35 モールド樹脂部(樹脂部)、 4 基板、 4a 内周縁、 4b 外周縁、 41 駆動回路、 42,42a,42b,42c ホール素子、 43 リード線、 44 取付け穴、 45 リード線口出し部品、 5 マイクロコンピュータ、 5a 内周側端部、 5b 外周側端部、 6 ヒートシンク、 61 内周壁、 62 外周壁、 63 フィン、 65 フランジ部、 8 フレーム、 81 第1フレーム部、 81a 円筒部、 82 第2フレーム部、 82a 円筒部、 82b 壁部、 15 ブラケット、 16 キャップ、 17,18 軸受、 90 空気調和装置、 91 室外機、 92 室内機、 93 冷媒配管、 95 第1のファン、 96 第1の電動機、 97 第2のファン、 98 第2の電動機、 99 圧縮機。 
 
 
 

Claims (19)

  1.  回転軸と、前記回転軸に取り付けられたロータ鉄心と、前記ロータ鉄心に埋め込まれたロータマグネットとを有するロータと、
     前記回転軸の中心軸線を中心とする径方向において前記ロータの外側に配置され、前記ロータを囲むステータと、
     前記中心軸線の方向において、前記ステータの一方の側に配置された基板と、
     前記基板に搭載されたマイクロコンピュータと
     を備え、
     前記マイクロコンピュータは、前記ロータマグネットに対して前記径方向の外側に配置されている
     電動機。
  2.  前記マイクロコンピュータは、前記基板の前記ステータとは反対側の面に配置されている
     請求項1に記載の電動機。
  3.  前記ロータは、前記ロータマグネットによって形成される磁石磁極と、前記ロータ鉄心によって形成される疑似磁極とを有する
     請求項1または2に記載の電動機。
  4.  前記ロータは、前記ロータマグネットとしての第1のマグネットと、前記第1のマグネットとは逆極性の磁極を形成する第2のマグネットとを有する
     請求項1または2に記載の電動機。
  5.  前記基板に搭載され、前記ロータからの磁束を検出するホール素子をさらに備える
     請求項1から4までの何れか1項に記載の電動機。
  6.  前記マイクロコンピュータは、前記ホール素子の検出結果に基づいて、前記ロータの回転位置を検出する演算処理を行う
     請求項5に記載の電動機。
  7.  前記ホール素子は、前記基板の前記ステータと同じ側の面に配置されている
     請求項5または6に記載の電動機。
  8.  前記ホール素子は、前記ロータマグネットに対して前記径方向の外側に配置されている
     請求項5から7までの何れか1項に記載の電動機。
  9.  前記ロータに取り付けられ、前記基板に前記中心軸線の方向に対向するセンサマグネットをさらに備える
     請求項5から8までの何れか1項に記載の電動機。
  10.  前記ステータは、前記中心軸線を中心とする周方向に延在するヨークと、前記ヨークから前記中心軸線に向かって延在し且つ前記周方向に隣り合う第1のティースおよび第2のティースとを有し、
     前記マイクロコンピュータは、前記周方向において、前記第1のティースと前記第2のティースとの間に配置されている
     請求項1から9までの何れか1項に記載の電動機。
  11.  前記ステータは、ステータ鉄心と、前記ステータ鉄心に配置されたインシュレータとを有し、
     前記インシュレータは、前記基板を取り付ける基板固定部を有する
     請求項1から10までの何れか1項に記載の電動機。
  12.  前記基板の前記ステータとは反対の側に配置されたヒートシンクをさらに備える
     請求項1から11までの何れか1項に記載の電動機。
  13.  前記ステータ、前記基板および前記マイクロコンピュータを覆うモールド樹脂部をさらに備える
     請求項1から12までの何れか1項に記載の電動機。
  14.  前記ステータ、前記基板および前記マイクロコンピュータを覆う、金属で構成されたフレームをさらに備える
     請求項1から12までの何れか1項に記載の電動機。
  15.  前記基板に搭載され、前記ロータの回転を制御する駆動回路をさらに備える
     請求項1から14までの何れか1項に記載の電動機。
  16.  前記駆動回路は、前記基板の前記ステータとは反対側の面に配置されている
     請求項15に記載の電動機。
  17.  前記駆動回路の出力波形は正弦波であり、キャリア周波数が10kHz以上である
     請求項15または16に記載の電動機。
  18.  前記回転軸と前記ロータ鉄心との間に、前記ロータ鉄心を支持する樹脂部をさらに備える
     請求項1から17までの何れか1項に記載の電動機。
  19.  室外機と、室内機と、前記室外機と前記室内機とを連結する冷媒配管とを備え、
     前記室外機および前記室内機の少なくとも一方は、送風機を備え、
     前記送風機は、羽根と、前記羽根を回転させる電動機とを備え、
     前記電動機は、
     回転軸と、前記回転軸に取り付けられたロータ鉄心と、前記ロータ鉄心に埋め込まれたロータマグネットとを有するロータと、
     前記回転軸の中心軸線を中心とする径方向において前記ロータの外側に配置され、前記ロータを囲むステータと、
     前記中心軸線の方向において、前記ステータの一方の側に配置された基板と、
     前記基板に搭載されたマイクロコンピュータと
     を備え、
     前記マイクロコンピュータは、前記ロータマグネットに対して前記径方向の外側に配置されている
     空気調和装置。
PCT/JP2017/012232 2017-03-27 2017-03-27 電動機および空気調和装置 WO2018179025A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780087014.3A CN110431734B (zh) 2017-03-27 2017-03-27 电动机和空调装置
JP2019508328A JP6952765B2 (ja) 2017-03-27 2017-03-27 電動機および空気調和装置
US16/480,712 US11451119B2 (en) 2017-03-27 2017-03-27 Motor with a board having microcomputer and drive circuit, and air conditioning apparatus having the motor
EP17903292.5A EP3605807A4 (en) 2017-03-27 2017-03-27 ELECTRIC MOTOR AND AIR CONDITIONING DEVICE
PCT/JP2017/012232 WO2018179025A1 (ja) 2017-03-27 2017-03-27 電動機および空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/012232 WO2018179025A1 (ja) 2017-03-27 2017-03-27 電動機および空気調和装置

Publications (1)

Publication Number Publication Date
WO2018179025A1 true WO2018179025A1 (ja) 2018-10-04

Family

ID=63674467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012232 WO2018179025A1 (ja) 2017-03-27 2017-03-27 電動機および空気調和装置

Country Status (5)

Country Link
US (1) US11451119B2 (ja)
EP (1) EP3605807A4 (ja)
JP (1) JP6952765B2 (ja)
CN (1) CN110431734B (ja)
WO (1) WO2018179025A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213601A1 (ja) * 2019-04-19 2020-10-22 三菱電機株式会社 モータ、送風機、空気調和装置およびモータの製造方法
CN113169598A (zh) * 2018-12-20 2021-07-23 三菱电机株式会社 转子、电动机、送风机、空调装置及转子的制造方法
WO2021171554A1 (ja) * 2020-02-28 2021-09-02 三菱電機株式会社 電動機、送風機および空気調和装置
WO2021171443A1 (ja) 2020-02-26 2021-09-02 三菱電機株式会社 送風機および空気調和装置
WO2021171471A1 (ja) 2020-02-27 2021-09-02 三菱電機株式会社 室外機および空気調和装置
WO2021171437A1 (ja) 2020-02-26 2021-09-02 三菱電機株式会社 室外機および空気調和装置
JPWO2021171426A1 (ja) * 2020-02-26 2021-09-02
US20220224192A1 (en) * 2019-05-02 2022-07-14 Festool Gmbh Drive motor with an insulating housing
CN115842430A (zh) * 2023-03-01 2023-03-24 广州市瑞宝电器有限公司 一种抗高强度冲击的外转子直流无刷电机

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6952765B2 (ja) * 2017-03-27 2021-10-20 三菱電機株式会社 電動機および空気調和装置
CN115940571A (zh) * 2023-02-20 2023-04-07 北京瑶光高科科技有限公司 一种推送液态金属的柱式弧形电磁泵

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787696A (ja) * 1993-09-17 1995-03-31 Shibaura Eng Works Co Ltd モ−ルド電動機
JPH08223877A (ja) * 1995-02-07 1996-08-30 Matsushita Electric Ind Co Ltd インバータ駆動の電動機
JP2002349137A (ja) * 2001-05-22 2002-12-04 Keihin Corp 車両用パワースライドドアの制御装置
JP4159493B2 (ja) * 2004-03-09 2008-10-01 三菱電機株式会社 電動機の回転子及び電動機及び空気調和機及び冷蔵庫及び換気扇
JP2010263697A (ja) * 2009-05-07 2010-11-18 Denso Corp 電動機
JP4649990B2 (ja) * 2005-01-05 2011-03-16 ブラザー工業株式会社 通信装置
JP2013090501A (ja) * 2011-10-20 2013-05-13 Asmo Co Ltd モータ
JP5361942B2 (ja) * 2011-05-19 2013-12-04 三菱電機株式会社 磁石埋め込み型回転子、電動機、圧縮機、空気調和機、および、電気自動車
JP2014052848A (ja) * 2012-09-07 2014-03-20 Seiko Epson Corp フィスカルプリンター
JP2014171320A (ja) 2013-03-04 2014-09-18 Denso Corp 回転電機

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1982405B1 (de) 2006-02-01 2009-07-08 Brose Fahrzeugteile GmbH & Co. KG Motoreinheit
JP4986657B2 (ja) * 2007-03-09 2012-07-25 パナソニック株式会社 ブラシレスモータ
JP2012110213A (ja) * 2010-10-25 2012-06-07 Asmo Co Ltd モータ
IN2014CN02465A (ja) * 2011-09-12 2015-08-07 Mitsubishi Electric Corp
EP2629404B1 (en) * 2011-12-22 2018-09-12 Panasonic Corporation Motor control unit and brushless motor
JP2013169136A (ja) * 2012-01-17 2013-08-29 Asmo Co Ltd 駆動装置
WO2014033833A1 (ja) * 2012-08-28 2014-03-06 三菱電機株式会社 電動式駆動装置および電動式駆動装置の製造方法
JP5787184B2 (ja) * 2012-12-05 2015-09-30 株式会社デンソー 回転子、および、これを用いた回転電機
KR102023509B1 (ko) * 2012-12-14 2019-09-20 엘지이노텍 주식회사 모터 및 그의 센싱 마그네트
JP6099552B2 (ja) * 2013-12-16 2017-03-22 三菱電機株式会社 電動機の製造方法
DE112015006036B4 (de) 2015-01-23 2023-09-28 Mitsubishi Electric Corporation Motorantriebs-steuerungseinrichtung für eine elektrische servolenkung
JP6711159B2 (ja) * 2015-07-21 2020-06-17 株式会社デンソー モータ
US11456632B2 (en) * 2016-07-15 2022-09-27 Mitsubishi Electric Corporation Consequent-pole type rotor, electric motor, air conditioner, and method for manufacturing consequent-pole type rotor
CN110326190B (zh) * 2017-03-03 2022-08-19 三菱电机株式会社 转子、电动机、压缩机及送风机
JP6952765B2 (ja) * 2017-03-27 2021-10-20 三菱電機株式会社 電動機および空気調和装置
WO2018189881A1 (ja) * 2017-04-14 2018-10-18 三菱電機株式会社 ロータ、電動機および空気調和装置
WO2019003372A1 (ja) * 2017-06-29 2019-01-03 三菱電機株式会社 センサマグネット、モータ、及び空気調和機
AU2017431234B2 (en) * 2017-09-05 2021-09-09 Mitsubishi Electric Corporation Consequent pole-type motor, electric motor, compressor, air blower, and air conditioner
EP4358369A2 (en) * 2018-06-27 2024-04-24 Mitsubishi Electric Corporation Motor, fan, and air conditioner

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787696A (ja) * 1993-09-17 1995-03-31 Shibaura Eng Works Co Ltd モ−ルド電動機
JPH08223877A (ja) * 1995-02-07 1996-08-30 Matsushita Electric Ind Co Ltd インバータ駆動の電動機
JP2002349137A (ja) * 2001-05-22 2002-12-04 Keihin Corp 車両用パワースライドドアの制御装置
JP4159493B2 (ja) * 2004-03-09 2008-10-01 三菱電機株式会社 電動機の回転子及び電動機及び空気調和機及び冷蔵庫及び換気扇
JP4649990B2 (ja) * 2005-01-05 2011-03-16 ブラザー工業株式会社 通信装置
JP2010263697A (ja) * 2009-05-07 2010-11-18 Denso Corp 電動機
JP5361942B2 (ja) * 2011-05-19 2013-12-04 三菱電機株式会社 磁石埋め込み型回転子、電動機、圧縮機、空気調和機、および、電気自動車
JP2013090501A (ja) * 2011-10-20 2013-05-13 Asmo Co Ltd モータ
JP2014052848A (ja) * 2012-09-07 2014-03-20 Seiko Epson Corp フィスカルプリンター
JP2014171320A (ja) 2013-03-04 2014-09-18 Denso Corp 回転電機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3605807A4

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113169598A (zh) * 2018-12-20 2021-07-23 三菱电机株式会社 转子、电动机、送风机、空调装置及转子的制造方法
CN113169598B (zh) * 2018-12-20 2023-12-05 三菱电机株式会社 转子、电动机、送风机、空调装置及转子的制造方法
JPWO2020213601A1 (ja) * 2019-04-19 2021-11-04 三菱電機株式会社 モータ、送風機、空気調和装置およびモータの製造方法
WO2020213149A1 (ja) * 2019-04-19 2020-10-22 三菱電機株式会社 モータ、送風機、空気調和装置およびモータの製造方法
JP7183401B2 (ja) 2019-04-19 2022-12-05 三菱電機株式会社 モータ、送風機、空気調和装置およびモータの製造方法
WO2020213601A1 (ja) * 2019-04-19 2020-10-22 三菱電機株式会社 モータ、送風機、空気調和装置およびモータの製造方法
US20220224192A1 (en) * 2019-05-02 2022-07-14 Festool Gmbh Drive motor with an insulating housing
WO2021171443A1 (ja) 2020-02-26 2021-09-02 三菱電機株式会社 送風機および空気調和装置
JPWO2021171437A1 (ja) * 2020-02-26 2021-09-02
JPWO2021171426A1 (ja) * 2020-02-26 2021-09-02
WO2021171426A1 (ja) 2020-02-26 2021-09-02 三菱電機株式会社 電動機、送風機および空気調和装置
WO2021171437A1 (ja) 2020-02-26 2021-09-02 三菱電機株式会社 室外機および空気調和装置
AU2020431090B2 (en) * 2020-02-26 2023-08-03 Mitsubishi Electric Corporation Outdoor unit and air conditioner
EP4318901A2 (en) 2020-02-26 2024-02-07 Mitsubishi Electric Corporation Outdoor unit and air-conditioning device
JP7386965B2 (ja) 2020-02-26 2023-11-27 三菱電機株式会社 電動機、送風機および空気調和装置
JPWO2021171471A1 (ja) * 2020-02-27 2021-09-02
WO2021171471A1 (ja) 2020-02-27 2021-09-02 三菱電機株式会社 室外機および空気調和装置
AU2020431701B2 (en) * 2020-02-27 2023-11-30 Mitsubishi Electric Corporation Outdoor Unit and Air Conditioner
JP7374293B2 (ja) 2020-02-27 2023-11-06 三菱電機株式会社 室外機および空気調和装置
JPWO2021171554A1 (ja) * 2020-02-28 2021-09-02
AU2020430965B2 (en) * 2020-02-28 2023-04-27 Mitsubishi Electric Corporation Electric motor, fan, and air conditioner
JP7258214B2 (ja) 2020-02-28 2023-04-14 三菱電機株式会社 電動機、送風機および空気調和装置
WO2021171554A1 (ja) * 2020-02-28 2021-09-02 三菱電機株式会社 電動機、送風機および空気調和装置
CN115842430B (zh) * 2023-03-01 2023-04-18 广州市瑞宝电器有限公司 一种抗高强度冲击的外转子直流无刷电机
CN115842430A (zh) * 2023-03-01 2023-03-24 广州市瑞宝电器有限公司 一种抗高强度冲击的外转子直流无刷电机

Also Published As

Publication number Publication date
US20200028415A1 (en) 2020-01-23
US11451119B2 (en) 2022-09-20
JP6952765B2 (ja) 2021-10-20
EP3605807A4 (en) 2020-03-25
JPWO2018179025A1 (ja) 2019-11-07
CN110431734B (zh) 2022-09-16
EP3605807A1 (en) 2020-02-05
CN110431734A (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
WO2018179025A1 (ja) 電動機および空気調和装置
US11394260B2 (en) Rotor, motor, fan, and air conditioning apparatus
US9537367B2 (en) Driving device
JP5942967B2 (ja) 駆動装置
JP7038819B2 (ja) 電動機、送風機および空気調和装置
CN110178289B (zh) 转子、电动机、空调装置及转子的制造方法
JPWO2020003341A1 (ja) ロータ、電動機、送風機および空気調和装置
US11289960B2 (en) Motor and brushless wiper motor
WO2022019074A1 (ja) 電動機
JPWO2022019074A5 (ja)
WO2011111187A1 (ja) 電動機の回転子及び電動機及び空気調和機及び電動機の回転子の製造方法
JP2012019580A (ja) 電動機の回転子及び電動機及び電動機の回転子の製造方法及び空気調和機
US11962229B2 (en) Motor, fan, air conditioner, and manufacturing method of motor
JP5005063B2 (ja) 電動機の回転子及び電動機及び電動機の回転子の製造方法及び空気調和機
US20150171688A1 (en) Vehicle brushless ac generator
JP5042246B2 (ja) 電動機の回転子及び電動機及び電動機の回転子の製造方法及び空気調和機
JP2013090481A (ja) 回転電機およびそれを用いた空気調和装置
JP2012060772A (ja) 電動機の回転子及び電動機及び空気調和機及び電動機の回転子の製造方法
JP6727450B2 (ja) 電動機、及び電動機を備えた空気調和機
JP7185048B2 (ja) 電動機、送風機および空気調和装置
WO2022180708A1 (ja) ステータ、電動機、及び空気調和機
JP7012878B2 (ja) 回転子、電動機、送風機、空気調和装置および回転子の製造方法
JPWO2020026403A1 (ja) ロータ、モータ、ファン、空気調和装置、及びロータの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903292

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508328

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017903292

Country of ref document: EP

Effective date: 20191028