WO2019003372A1 - センサマグネット、モータ、及び空気調和機 - Google Patents

センサマグネット、モータ、及び空気調和機 Download PDF

Info

Publication number
WO2019003372A1
WO2019003372A1 PCT/JP2017/023887 JP2017023887W WO2019003372A1 WO 2019003372 A1 WO2019003372 A1 WO 2019003372A1 JP 2017023887 W JP2017023887 W JP 2017023887W WO 2019003372 A1 WO2019003372 A1 WO 2019003372A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
sensor
magnet
pole
pole portion
Prior art date
Application number
PCT/JP2017/023887
Other languages
English (en)
French (fr)
Inventor
貴也 下川
洋樹 麻生
隆徳 渡邉
諒伍 ▲高▼橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/023887 priority Critical patent/WO2019003372A1/ja
Priority to JP2019526055A priority patent/JP6952775B2/ja
Priority to US16/609,236 priority patent/US11342814B2/en
Publication of WO2019003372A1 publication Critical patent/WO2019003372A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2746Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets arranged with the same polarity, e.g. consequent pole type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a sensor magnet, a motor, and an air conditioner.
  • a magnetic sensor for detecting a rotational position of a rotor and a position detection magnet also referred to as a sensor magnet
  • a position detection magnet also referred to as a sensor magnet
  • the detection error of the rotational position of the rotor may become large due to the influence of disturbance or the like. If the detection error of the rotational position of the rotor is large, the motor control can not be performed accurately, and the motor efficiency is reduced.
  • An object of the present invention is to reduce detection errors in a magnetic sensor and to improve the accuracy of motor control.
  • the sensor magnet of the present invention is used with a motor provided with a magnetic sensor that detects the rotational position of the rotor.
  • the sensor magnet has a first magnetic pole part including a magnetic pole of a first polarity and a second magnetic pole part including a magnetic pole of a second polarity.
  • the thickness of the first magnetic pole portion in the direction toward the magnetic sensor is thicker than the thickness of the second magnetic pole portion in the direction toward the magnetic sensor.
  • detection errors in the magnetic sensor can be reduced, and motor control accuracy can be improved.
  • FIG. 1 is a partial cross-sectional view schematically showing a structure of a motor according to Embodiment 1 of the present invention. It is a front view which shows the structure of a motor roughly.
  • FIG. 3 is a cross-sectional view taken along line C3-C3 shown in FIG. 2; It is a figure which shows the relationship of the magnetic field intensity H and the magnetic sensor output value Vout which are each flowed in into two magnetic sensors which have mutually different output characteristics.
  • It is a perspective view which shows the structure of a sensor magnet roughly. It is a figure which shows the change of the magnetic flux amount which flows in into the magnetic sensor at the time of using the sensor magnet which concerns on a comparative example in a motor.
  • FIG. 7 illustrates the change in magnetic flux density from the sensor magnet while the rotor is rotating. It is a figure which shows the relationship between ratio R2 / R1 of largest radius R1 of a main magnet part, and installation radius R2 of a magnetic sensor, and difference D [T] of the north-pole component of a leakage flux and a south pole component. It is a perspective view which shows roughly the structure of the sensor magnet which concerns on the modification 1.
  • FIG. 2 It is a perspective view which shows roughly the structure of the sensor magnet which concerns on the modification 2.
  • FIG. It is a top view which shows roughly the structure of the sensor magnet which concerns on the modification 3.
  • FIG. It is a figure which shows roughly the structure of the air conditioner concerning Embodiment 2 of this invention. It is a figure which shows roughly the main components in the outdoor unit of an air conditioner.
  • Embodiment 1 A motor 1 according to Embodiment 1 of the present invention will be described.
  • the z-axis direction (z-axis) is parallel to the axis A1 of the shaft 23 of the motor 1 (that is, the rotation axis of the rotor 2) (hereinafter referred to as "axial direction").
  • the x-axis direction (x-axis) indicates a direction orthogonal to the z-axis direction (z-axis)
  • the y-axis direction indicates a direction orthogonal to both the z-axis direction and the x-axis direction.
  • FIG. 1 is a partial cross-sectional view schematically showing the structure of a motor 1 according to a first embodiment of the present invention.
  • FIG. 2 is a front view schematically showing the structure of the motor 1.
  • FIG. 3 is a cross-sectional view taken along line C3-C3 shown in FIG.
  • An arrow D1 shown in FIG. 3 indicates a direction along the outer periphery of each of the rotor 2, the main magnet portion 20, and the sensor magnet 8 (hereinafter, referred to as "circumferential direction").
  • the magnetic sensor 5 shown in FIG. 3 indicates the position of the magnetic sensor 5 on the xy plane.
  • the motor 1 includes a rotor 2, a stator 3, a circuit board 4, a magnetic sensor 5 for detecting the rotational position of the rotor 2, a bracket 6, bearings 7a and 7b, and a sensor magnet 8 (also referred to as a position detection magnet). And.
  • the motor 1 is, for example, a permanent magnet synchronous motor.
  • the circuit board 4 is provided on one end side of the stator 3 in the axial direction. Electronic components such as a control circuit and a magnetic sensor 5 are attached to the circuit board 4.
  • the magnetic sensor 5 detects the rotational position of the sensor magnet 8 to detect the rotational position of the rotor 2.
  • the rotor 2 has a sensor magnet 8, a main magnet unit 20, and a shaft 23.
  • the main magnet unit 20 includes a rotor core 21 and at least one permanent magnet 22 fixed to the rotor core 21.
  • the rotation axis of the rotor 2 coincides with the axis A1.
  • the rotor 2 is, for example, a permanent magnet embedded type.
  • the main magnet unit 20 is a consistent pole type. That is, in the present embodiment, the rotor 2 is a consistent pole type rotor.
  • the sensor magnet 8 is fixed to the rotor 2 (specifically, the main magnet unit 20) so as to face the magnetic sensor 5.
  • the sensor magnet 8 is formed in an annular shape.
  • the sensor magnet 8 may be formed in a disk shape.
  • the area between the permanent magnets 22 for example, the magnetic poles functioning as the N pole with respect to the stator 3 adjacent to each other in the circumferential direction is the other magnetic pole (for example, And a pseudo magnetic pole) functioning as an S pole with respect to the stator 3 in a pseudo manner.
  • the rotor 2 is provided inside the stator 3 via an air gap.
  • a bracket 6 is press-fit into the opening on the load side (the load side of the motor 1) of the stator 3.
  • the shaft 23 is inserted into the bearing 7 a, and the bearing 7 a is fixed on the load side of the stator 3.
  • the shaft 23 is inserted into the bearing 7 b, and the bearing 7 b is fixed on the non-load side of the stator 3.
  • the rotor 2 is rotatably supported by bearings 7a and 7b.
  • the central portion of the shaft 23 in the radial direction (hereinafter, also simply referred to as “radial direction”) of the rotor 2 (the rotor core 21) is formed inside the resin portion 24 in the radial direction.
  • the shaft 23 is formed of, for example, a material containing Ni (nickel) or Cr (chromium).
  • the rotor core 21 has at least one magnet insertion hole 21 a and a shaft insertion hole 21 b which is a through hole into which the shaft 23 is inserted.
  • the rotor core 21 has a plurality of magnet insertion holes 21a, and at least one permanent magnet 22 is inserted into each magnet insertion hole 21a.
  • the rotor core 21 may have a bridge portion which is a part of a thin plate (for example, a magnetic steel plate) formed between the magnet insertion hole 21 a and the outer surface (outer edge) of the rotor 2.
  • the bridge portion suppresses the occurrence of leakage flux.
  • the motor 1 may be an SPM (Surface Permanent Magnet) motor.
  • the magnet insertion hole 21 a is not formed in the rotor core 21, and the permanent magnet 22 is attached to the outer surface in the radial direction of the rotor core 21.
  • the motor 1 may be a reactance motor or an induction motor.
  • end plates 25 for fixing the permanent magnet 22 in the axial direction may be attached to both ends of the main magnet portion 20 in the axial direction.
  • resin may be filled on both sides of the magnet insertion hole 21 a in the axial direction instead of the end plate 25.
  • the resin may be formed to cover both sides of the rotor core 21 in the axial direction.
  • the rotor core 21 and the shaft 23 are integrated by a thermoplastic resin such as coking or PBT.
  • the plurality of magnet insertion holes 21a are formed at equal intervals in the circumferential direction.
  • the permanent magnet 22 is, for example, a rare earth magnet having Nd (neodymium) or Sm (samarium) as a main component.
  • the permanent magnet 22 may be a ferrite magnet mainly composed of iron.
  • the permanent magnets 22 in the magnet insertion holes 21 a are radially magnetized, whereby the magnetic flux from the main magnet portion 20 flows into the stator 3.
  • the rotor core 21 is formed, for example, by laminating a plurality of thin plates 211 which are magnetic bodies in the axial direction.
  • the thin plate 211 is, for example, an electromagnetic steel plate.
  • each thin plate 211 has a thickness of, for example, 0.2 mm to 0.5 mm.
  • the rotor core 21 may be a resin core formed by mixing a soft magnetic material and a resin.
  • the stator 3 has a stator core 31, a coil 32 and an insulator 33.
  • the stator 3 is formed in an annular shape.
  • the stator core 31 is formed by laminating a plurality of thin plates, which are magnetic bodies, in the axial direction. For example, it is formed by axially laminating electromagnetic steel sheets containing iron as a main component.
  • the stator core 31 has, for example, a yoke portion formed in an annular shape, and a plurality of teeth portions protruding inward in the radial direction from the yoke portion.
  • the thickness of the magnetic steel sheet is, for example, 0.2 mm to 0.5 mm.
  • the stator core 31 is formed in an annular shape.
  • the coil 32 is formed, for example, by winding a winding (for example, a magnet wire) around the teeth of the stator core 31 via the insulator 33.
  • the coil 32 is insulated by an insulator 33.
  • the windings are mainly composed of copper or aluminum.
  • the insulator 33 is formed of an insulating resin such as polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), liquid crystal polymer (Liquid Crystal Polymer: LCP), and polyethylene terephthalate (PolyEthylene Terephthalate: PET).
  • PBT polybutylene terephthalate
  • PPS polyphenylene sulfide
  • LCP liquid crystal polymer
  • PET polyethylene terephthalate
  • the insulator 33 is integrally formed with the stator core 31.
  • the insulator 33 may be formed separately from the stator core 31. In this case, the insulator 33 is fitted to the stator core 31 after the insulator 33 is formed.
  • the stator core 31, the coil 32, and the insulator 33 are covered with a thermoplastic resin (also referred to as a mold resin) such as PBT and PPS.
  • the stator core 31, the coil 32, and the insulator 33 may be fixed by a cylindrical shell.
  • the cylindrical shell is, for example, mainly composed of iron, and the stator 3 can be covered with the rotor 2 by shrink fitting.
  • the magnetic sensor 5 detects the rotational position of the sensor magnet 8 to detect the rotational position of the rotor 2.
  • a Hall IC for example, a Hall IC, an MR (magnetic resistance) element, a GMR (giant magnetic resistance) element, a magnetic impedance element, or the like is used.
  • the magnetic sensor 5 is fixed at a position (detection position) through which the magnetic flux generated from the sensor magnet 8 passes.
  • the motor control circuit controls the current flowing through the coils of the stator 3 using the detection result of the magnetic sensor 5 (for example, a magnetic pole change point which is the boundary between the N pole and the S pole of the sensor magnet 8). The rotation of the rotor 2 is controlled.
  • the magnetic sensor 5 detects the positions (phases) of the magnetic poles of the sensor magnet 8 and the main magnet unit 20 based on the change of the magnetic field (magnetic field strength) flowing into the magnetic sensor 5. Specifically, the magnetic sensor 5 detects the magnetic flux from the N pole and the magnetic flux toward the S pole of the sensor magnet 8 to change the direction of the magnetic field in the circumferential direction (rotational direction) of the sensor magnet 8 (specifically Specifically, the magnetic pole change point of the sensor magnet 8 is determined. As described later, since the sensor magnet 8 has N poles and S poles alternately arranged in the circumferential direction, the magnetic sensor 5 periodically detects the magnetic pole change point of the sensor magnet 8 to thereby rotate the sensor magnet 8 in the rotational direction. The position (rotational angle and phase of the rotor 2) of each magnetic pole at can be grasped.
  • FIG. 4 shows magnetic field strength H (Hall IC input magnetic field) and magnetic sensor output value V out (Hall IC output) respectively flowing into two magnetic sensors (first and second magnetic sensors) having output characteristics different from each other.
  • the horizontal axis of the graph shown in FIG. 4 indicates the magnetic field strength H (input magnetic field) [N / Wb] (magnetic field strength between the N pole and the S pole) flowing into the first and second magnetic sensors.
  • the vertical axis represents the output signal (specifically, the voltage) V out [V] of the magnetic sensor.
  • the first and second magnetic sensors output, for example, binary values (signals) of the signal V 1 [V] or the signal V 2 [V].
  • the output characteristic of the first magnetic sensor will be described as an example. For example, when the first magnetic sensor detects a magnetic field (magnetic field strength) from the N pole side to the S pole side of the sensor magnet 8, the first magnetic sensor detects the magnetic field from the sensor magnet 8 at the N pole side. , Signal V 1 [V]. When the magnetic field flowing into the first magnetic sensor changes and the first magnetic sensor detects the magnetic field (magnetic field strength H 1 ) on the S pole side from the sensor magnet 8, a signal V 2 [V] is output.
  • the first magnetic sensor detects the magnetic field (magnetic field strength) from the S pole side to the N pole side of the sensor magnet 8
  • the first magnetic sensor detects the magnetic field from the sensor magnet 8 at the S pole side
  • the signal V 2 [V] is output.
  • the magnetic field flowing into the first magnetic sensor changes and the first magnetic sensor detects the magnetic field (magnetic field strength H 2 ) on the N pole side from the sensor magnet 8, it outputs a signal V 1 [V].
  • the output characteristic of the second magnetic sensor will be described.
  • the second magnetic sensor detects a magnetic field (magnetic field strength) from the N pole side to the S pole side of the sensor magnet 8
  • the second magnetic sensor detects the magnetic field from the sensor magnet 8 at the N pole side.
  • Signal V 1 [V] When the magnetic field flowing into the second magnetic sensor changes, and the second magnetic sensor detects the magnetic field (magnetic field strength H ′ 1 ) on the S pole side from the sensor magnet 8, a signal V 2 [V] is output .
  • the second magnetic sensor detects a magnetic field (magnetic field strength) from the S pole side to the N pole side of the sensor magnet 8
  • the second magnetic sensor detects the magnetic field from the sensor magnet 8 at the S pole side
  • the signal V 2 [V] is output.
  • the signal V 1 [V] is output .
  • the output signal of the magnetic sensor may not be instantaneously switched at the timing (magnetic pole change point) at which the direction of the magnetic field flowing into the magnetic sensor is switched.
  • output characteristics e.g., the difference between H '1 and H 1 which may differ, depending on the magnetic sensor 5 to be used, due to the error in the motor control, reduction or motor of the motor efficiency It may cause noise during rotation.
  • FIG. 5 is a perspective view schematically showing the structure of the sensor magnet 8.
  • N shown in FIG. 5 indicates an N pole
  • S indicates an S pole.
  • the sensor magnet 8 is used together with a motor 1 having a magnetic sensor 5 for detecting the rotational position of the rotor 2.
  • the sensor magnet 8 is fixed to one end side of the rotor 2 (specifically, the main magnet portion 20) in the axial direction so as to face the magnetic sensor 5.
  • the sensor magnet 8 has a first magnetic pole part 81 including a magnetic pole of a first polarity, and a second magnetic pole part 82 including a magnetic pole of a second polarity.
  • the magnetic pole of the first polarity is the N pole
  • the magnetic pole of the second polarity is the S pole.
  • the magnetic pole of the first polarity may be a south pole
  • the magnetic pole of the second polarity is a north pole.
  • the first magnetic pole portions 81 and the second magnetic pole portions 82 are alternately arranged in the circumferential direction. The circumferential lengths of the first magnetic pole portion 81 and the second magnetic pole portion 82 are the same.
  • the sensor magnet 8 is axially magnetized so that the magnetic flux (in the present embodiment, the magnetic flux from the first magnetic pole portion 81) flows into the magnetic sensor 5. Thereby, the magnetic sensor 5 can be attached to one end side of the stator 3 in the axial direction so as to face the sensor magnet 8.
  • the number of poles of the sensor magnet 8 is the same as the number of poles of the main magnet unit 20.
  • the sensor magnet 8 is positioned such that the polarity of the sensor magnet 8 matches the polarity of the main magnet portion 20 in the circumferential direction.
  • the thickness T1 of the first magnetic pole portion 81 in the direction toward the magnetic sensor 5 is thicker than the thickness T2 of the second magnetic pole portion 82 in the direction toward the magnetic sensor 5. That is, the sensor magnet 8 satisfies T2 / T1 ⁇ 1.
  • the thickness T1 of the first magnetic pole portion 81 in the direction parallel to the axis A1 (that is, the rotation axis of the rotor 2) is thicker than the thickness T2 of the second magnetic pole portion 82 in the direction parallel to the axis A1. In this case, it is desirable that the sensor magnet 8 satisfy T2 / T1 ⁇ 0.7.
  • the shortest distance from the first magnetic pole portion 81 to the magnetic sensor 5 is shorter than the shortest distance from the second magnetic pole portion 82 to the magnetic sensor 5 Too short.
  • the amount of magnetic flux from the sensor magnet 8 increases or decreases according to the thickness of the magnetic pole portion. Furthermore, the amount of magnetic flux flowing into the magnetic sensor 5 is proportional to the square of the distance from the magnetic pole portion to the magnetic sensor 5. Therefore, the amount of magnetic flux from the sensor magnet 8 can be adjusted by changing the thicknesses T1 and T2 of the magnetic pole portion. Furthermore, the amount of magnetic flux flowing into the magnetic sensor 5 can be adjusted by adjusting the shortest distance from the magnetic pole part to the magnetic sensor 5.
  • the sensor magnet 8 is formed of a permanent magnet, specifically, a bonded magnet. That is, the first magnetic pole part 81 and the second magnetic pole part 82 are permanent magnets, specifically, bond magnets. This makes it easy to manufacture the sensor magnet 8 having a complicated shape. For example, manufacture of a sensor magnet satisfying T2 / T1 ⁇ 1 as described above is facilitated.
  • FIG. 6 is a diagram showing changes in the amount of magnetic flux flowing into the magnetic sensor 5 (that is, the amount of magnetic flux detected by the magnetic sensor 5) when the sensor magnet according to the comparative example is used in the motor 1 instead of the sensor magnet 8. It is.
  • the shortest distance from the N pole of the sensor magnet according to the comparative example to the magnetic sensor 5 and the shortest distance from the S pole to the magnetic sensor 5 are the same.
  • F1 shown in FIG. 6 indicates the amount of magnetic flux flowing into the magnetic sensor 5
  • f2 indicates the amount of magnetic flux flowing into the magnetic sensor 5 from the sensor magnet (that is, the amount of magnetic flux excluding the disturbance).
  • F3 indicate disturbances flowing into the magnetic sensor 5.
  • the disturbance is, for example, a magnetic flux other than the magnetic flux from the sensor magnet, such as the magnetic flux from the main magnet unit 20 and the magnetic flux from the stator 3.
  • P1 shown in FIG. 6 indicates a magnetic pole change point (a position at which the S pole is switched to the N pole) detected by the magnetic sensor 5.
  • P2 shown in FIG. 6 indicates a magnetic pole change point (a position where the N pole is switched to the S pole) detected by the magnetic sensor 5.
  • A1 shown in FIG. 6 indicates a rotation angle from the magnetic pole change point P2 to the magnetic pole change point P1
  • a2 indicates a rotational angle from the magnetic pole change point P1 to the magnetic pole change point P2.
  • the section indicated by a1 is a section in which the south pole side of the sensor magnet passes through the magnetic sensor 5
  • the section indicated by a2 is a section in which the north pole side of the sensor magnet passes through the magnetic sensor 5 .
  • the magnetic sensor 5 detects the magnetic pole change points at the magnetic pole change points P1 and P2, detects the S pole side in the section a1, and detects the N pole side in the section a2.
  • a1 is larger than a2. That is, in the sensor magnet according to the comparative example, the section in which the S pole side is detected is long, and the section in which the N pole side is detected is short. Therefore, in the comparative example, a detection error occurs. In this case, errors in motor control may cause a reduction in motor efficiency or noise during motor rotation.
  • FIG. 7 is a diagram showing changes in the amount of magnetic flux flowing into the magnetic sensor 5 (that is, the amount of magnetic flux detected by the magnetic sensor 5) when the sensor magnet 8 according to the present embodiment is used in the motor 1.
  • f1 represents the amount of magnetic flux flowing into the magnetic sensor 5
  • f2 represents the amount of magnetic flux flowing into the magnetic sensor 5 from the sensor magnet 8 (i.e., the amount of magnetic flux excluding disturbance)
  • f 3 indicates a disturbance flowing into the magnetic sensor 5.
  • the disturbance is, for example, a magnetic flux other than the magnetic flux from the sensor magnet 8 such as the magnetic flux from the main magnet unit 20 and the magnetic flux from the stator 3.
  • P1 shown in FIG. 7 indicates a magnetic pole change point (a position where the S pole is switched to the N pole) detected by the magnetic sensor 5.
  • P2 shown in FIG. 7 indicates a magnetic pole change point (a position where the N pole is switched to the S pole) detected by the magnetic sensor 5.
  • a1 is approximately equal to a2. That is, in sensor magnet 8 according to the present embodiment, the section in which the S pole side is detected and the section in which the N pole side is detected are substantially equal to each other, and magnetic pole change points P1 and P2 are detected at substantially equal intervals. . Therefore, in the present embodiment, the detection error is reduced as compared to the comparative example.
  • the sensor magnet 8 according to the present embodiment satisfies T1> T2.
  • the amount of magnetic flux on the side of the first magnetic pole portion 81 (the amount of magnetic flux from the N pole in this embodiment) is on the side of the second magnetic pole portion 82 (the amount of magnetic flux from the S pole in this embodiment) More than the amount of magnetic flux of Therefore, the magnetic flux from the first magnetic pole portion 81 easily flows into the magnetic sensor 5, and the rotation angle of the section a2 is larger than that of the comparative example.
  • the rotation angle of the section a1 is smaller than that of the comparative example.
  • the balance between the magnetic flux amount on the N pole side and the magnetic flux amount on the S pole side with respect to the magnetic sensor 5 is improved, and detection errors in the magnetic sensor 5 can be reduced. This can improve the accuracy of motor control.
  • FIG. 8 is a diagram showing the relationship between the erroneous detection angle [deg] detected by the magnetic sensor 5 and T2 / T1.
  • the erroneous detection angle means an actual magnetic pole change point in the sensor magnet 8 and a rotation angle [deg] detected as a magnetic pole change point by the magnetic sensor 5 (ie, the magnetic pole change points P1 and P2 shown in FIGS. 6 and 7).
  • the false detection angle can be reduced, and when the sensor magnet 8 satisfies T2 / T1 ⁇ 1, the false detection angle allows for less trouble in motor control.
  • the error can be suppressed to 15 [deg] or less.
  • the erroneous detection angle can be suppressed to 10 [deg] or less, and more accurate motor control becomes possible. As a result, the motor efficiency can be further enhanced.
  • the false detection angle can be reduced as T2 / T1 becomes smaller, so by adjusting T2 / T1 according to the characteristics of the magnetic sensor 5 or the influence of the disturbance, etc.
  • the positions of the magnetic pole change points P1 and P2 detected by the magnetic sensor 5 can be adjusted to desired positions.
  • the first magnetic pole portion 81 and the second magnetic pole portion 82 are bond magnets. This makes it easy to manufacture the sensor magnet 8 having a complicated shape. For example, in the case where the first magnetic pole part 81 and the second magnetic pole part 82 are sintered magnets, it is difficult to manufacture the sensor magnet 8 satisfying T2 / T1. If the first magnetic pole part 81 and the second magnetic pole part 82 are separately manufactured and adhered to each other, the erroneous detection angle may be increased. On the other hand, in the present embodiment, since the first magnetic pole portion 81 and the second magnetic pole portion 82 are bond magnets, the first magnetic pole portion 81 and the second magnetic pole portion 82 are easily formed integrally. It becomes easy to form the magnetic pole parts having different thicknesses.
  • FIG. 9 is a diagram showing a change in magnetic flux density from the sensor magnet 8 while the rotor 2 is rotating.
  • the magnetic flux density on the + side shown in FIG. 9 indicates the N pole component
  • the magnetic flux density on the ⁇ side indicates the S pole component.
  • the rotor 2 is a consistent pole type rotor.
  • the leakage flux as disturbance from the main magnet unit 20 to the magnetic sensor 5 is generated from one of the magnetic poles (in the present embodiment, the N pole). Therefore, as shown in FIG. 9, an imbalance occurs between the N pole component and the S pole component of the magnetic flux.
  • the positions of the magnetic pole change points P1 and P2 detected by the magnetic sensor 5 can be adjusted to desired positions, so this unbalance can be made. It can be eliminated. That is, by adjusting T2 / T1 so as to eliminate this unbalance, the false detection angle can be reduced and motor control is improved. As a result, motor efficiency can be enhanced.
  • the maximum radius R1 is a radius passing through the magnetic pole part where the permanent magnet 22 is disposed (FIG. 3).
  • the installation radius R2 is the distance from the axis A1 to the magnetic sensor 5 (FIG. 3).
  • FIG. 11 is a perspective view schematically showing the structure of a sensor magnet 8a according to a first modification.
  • the sensor magnet 8a has a first magnetic pole portion 81a including a magnetic pole of a first polarity, and a second magnetic pole portion 82a including a magnetic pole of a second polarity.
  • the first magnetic pole portion 81a corresponds to the first magnetic pole portion 81 of the sensor magnet 8 according to the first embodiment
  • the second magnetic pole portion 82a corresponds to the second magnetic pole of the sensor magnet 8 according to the first embodiment. This corresponds to the part 82.
  • the structure of the first magnetic pole portion 81a is different from the structure of the first magnetic pole portion 81 of the sensor magnet 8 according to the first embodiment, and the other structure in the sensor magnet 8a is the sensor It is the same as the magnet 8.
  • the broken line shown in FIG. 11 indicates the boundary between the first magnetic pole portion 81a and the second magnetic pole portion 82a.
  • the first magnetic pole portion 81a has a first portion 811 which is a permanent magnet and a second portion 812 which is a soft magnetic material.
  • the second portion 812 is provided on the surface of the first portion 811 (the surface facing the magnetic sensor 5).
  • the sensor magnet 8a according to the first modification has the same effect as the sensor magnet 8 according to the first embodiment.
  • the permeance coefficient can be increased by attaching the second portion 812 which is a soft magnetic material to the surface of the first portion 811 which is a permanent magnet.
  • the amount of magnetic flux from the first magnetic pole portion 81a increases more than the amount of magnetic flux from the second magnetic pole portion 82a. That is, by using the second portion 812, the positions of the magnetic pole change points P 1 and P 2 detected by the magnetic sensor 5 can be adjusted to desired positions according to the characteristics of the magnetic sensor 5 or the influence of disturbance. .
  • FIG. 12 is a perspective view schematically showing the structure of a sensor magnet 8b according to a second modification.
  • the sensor magnet 8b has a first magnetic pole portion 81b including a magnetic pole of a first polarity and a second magnetic pole portion 82b including a magnetic pole of a second polarity.
  • the first magnetic pole portion 81 b corresponds to the first magnetic pole portion 81 of the sensor magnet 8 according to the first embodiment
  • the second magnetic pole portion 82 b corresponds to the second magnetic pole of the sensor magnet 8 according to the first embodiment. This corresponds to the part 82.
  • the structure of the first magnetic pole portion 81b is different from the structure of the first magnetic pole portion 81 of the sensor magnet 8 according to the first embodiment, and the other structure in the sensor magnet 8b is the sensor It is the same as the magnet 8.
  • the first magnetic pole portion 81 b has a recess 813 formed on the surface facing the magnetic sensor 5.
  • the recess 813 may be formed on the surface of the second magnetic pole portion 82b.
  • the depression 813 may be formed at a position where the strength of the sensor magnet 8 b can be maintained, and may be formed at a position other than the position facing the magnetic sensor 5.
  • the recess 813 is formed, for example, at the center of the magnetic pole (in the present embodiment, the center of the N pole). Since the magnetic sensor 5 detects a magnetic pole change point, even if the depression 813 is formed at the center of the magnetic pole, the detection result of the magnetic sensor 5 is not disturbed.
  • the recess 813 may be a through hole.
  • the sensor magnet 8 b according to the second modification has the same effect as the sensor magnet 8 according to the first embodiment.
  • the material of the sensor magnet 8b (that is, the material of the permanent magnet) can be reduced by forming the depression 813 on the surface of the first magnetic pole part 81b. Thereby, the cost of the sensor magnet 8b can be reduced, and the weight reduction of the sensor magnet 8b can be realized.
  • FIG. 13 is a plan view schematically showing the structure of a sensor magnet 8c according to a third modification.
  • the sensor magnet 8c has a first magnetic pole portion 81c including a magnetic pole of a first polarity, and a second magnetic pole portion 82c including a magnetic pole of a second polarity.
  • the first magnetic pole portion 81c corresponds to the first magnetic pole portion 81 of the sensor magnet 8 according to the first embodiment
  • the second magnetic pole portion 82c corresponds to the second magnetic pole of the sensor magnet 8 according to the first embodiment. This corresponds to the part 82.
  • the sensor magnet 8 according to the first embodiment is axially magnetized
  • the sensor magnet 8c according to the third modification is radially magnetized.
  • the other structure of the sensor magnet 8c is the same as that of the sensor magnet 8.
  • the thickness T1 of the first magnetic pole portion 81c and the thickness T2 of the second magnetic pole portion 82c are thicknesses in the radial direction. Also in this case, the sensor magnet 8c satisfies T2 / T1 ⁇ 1. Furthermore, as described in the first embodiment, it is desirable that the sensor magnet 8c satisfy T2 / T1 ⁇ 0.7.
  • the sensor magnet 8c according to the third modification has the same effect as the sensor magnet 8 according to the first embodiment.
  • FIG. 14 is a diagram schematically showing a configuration of the air conditioner 10 according to Embodiment 2 of the present invention.
  • FIG. 15 is a diagram schematically showing main components in the outdoor unit 13 of the air conditioner 10. As shown in FIG.
  • An air conditioner 10 according to Embodiment 2 includes an indoor unit 11, a refrigerant pipe 12, and an outdoor unit 13 connected to the indoor unit 11 by the refrigerant pipe 12.
  • the indoor unit 11 includes a motor 11a and a blower 11b (also referred to as an indoor unit blower).
  • the outdoor unit 13 includes a motor 13a, a fan 13b as a blower (also referred to as an outdoor unit blower), a compressor 13c, and a heat exchanger (not shown).
  • the compressor 13c includes a motor 13d (for example, the motor 1 of the first embodiment), a compression mechanism 13e (for example, a refrigerant circuit) driven by the motor 13d, and a housing 13f accommodating the motor 13d and the compression mechanism 13e.
  • a motor 13d for example, the motor 1 of the first embodiment
  • a compression mechanism 13e for example, a refrigerant circuit driven by the motor 13d
  • a housing 13f accommodating the motor 13d and the compression mechanism 13e.
  • At least one of the indoor unit 11 and the outdoor unit 13 has the motor 1 described in the first embodiment.
  • the motor 1 described in the first embodiment is applied to at least one of the motors 11a and 13a as a drive source of the blower.
  • the motor 1 described in the first embodiment may be used as the motor 13d of the compressor 13c.
  • the air conditioner 10 can perform, for example, an operation such as a cooling operation in which cold air is blown from the indoor unit 11 or a heating operation in which warm air is blown.
  • the motor 11a is a drive source for driving the blower 11b.
  • the blower 11b can blow the adjusted air.
  • the motor 13a is a drive source for driving the fan 13b.
  • the motor 13a is fixed to the housing of the outdoor unit 13 by, for example, a screw.
  • the shaft of the motor 13a is connected to the fan 13b.
  • the fan 13b is rotated by the drive of the motor 13a.
  • the motor 1 described in the first embodiment is applied to at least one of the motors 11a and 13a, so the same effect as the effect described in the first embodiment can be obtained. can get.
  • the compressor 13c and the air conditioner 10 with good operation efficiency can be provided.
  • the motor 1 described in the first embodiment can be mounted on an apparatus having a drive source, such as a ventilation fan, a home appliance, or a machine tool, in addition to the air conditioner 10.
  • a drive source such as a ventilation fan, a home appliance, or a machine tool, in addition to the air conditioner 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

センサマグネット(8)は、第1の極性の磁極を含む第1の磁極部(81)と、第2の極性の磁極を含む第2の磁極部(82)とを有する。磁気センサ(5)に向かう方向における第1の磁極部(81)の厚み(T1)は、磁気センサ(5)に向かう方向における第2の磁極部(82)の厚み(T2)よりも厚い。

Description

センサマグネット、モータ、及び空気調和機
 本発明は、センサマグネット、モータ、及び空気調和機に関する。
 一般に、モータにおいて、ロータの回転位置を検出するための磁気センサと、位置検出用マグネット(センサマグネットともいう)とが用いられている(例えば、特許文献1参照)。
特開2003-52159号公報
 従来の位置検出用マグネットでは、N極部分の形状とS極部分との形状が互いに同一であるため、外乱などの影響によってロータの回転位置の検出誤差が大きくなることがある。ロータの回転位置の検出誤差が大きい場合、モータ制御を精度良く行うことができず、モータ効率が低下するという問題がある。
 本発明の目的は、磁気センサにおける検出誤差を低減し、モータ制御の精度を改善することである。
 本発明のセンサマグネットは、ロータの回転位置を検出する磁気センサを備えたモータと共に用いられる。前記センサマグネットは、第1の極性の磁極を含む第1の磁極部と、第2の極性の磁極を含む第2の磁極部とを有する。前記磁気センサに向かう方向における前記第1の磁極部の厚みは、前記磁気センサに向かう方向における前記第2の磁極部の厚みよりも厚い。
 本発明によれば、磁気センサにおける検出誤差を低減し、モータ制御の精度を改善することができる。
本発明の実施の形態1に係るモータの構造を概略的に示す部分断面図である。 モータの構造を概略的に示す正面図である。 図2に示される線C3-C3に沿った断面図である。 互いに異なる出力特性を持つ2つの磁気センサにそれぞれ流入される磁界強度Hと磁気センサ出力値Voutとの関係を示す図である。 センサマグネットの構造を概略的に示す斜視図である。 比較例に係るセンサマグネットをモータにおいて用いた場合の磁気センサに流入する磁束量の変化を示す図である。 本実施の形態に係るセンサマグネットをモータにおいて用いた場合の磁気センサに流入する磁束量の変化を示す図である。 磁気センサによって検出される誤検出角度[deg]とT2/T1との関係を示す図である。 ロータが回転している間のセンサマグネットからの磁束密度の変化を示す図である。 メインマグネット部の最大半径R1と磁気センサの設置半径R2との比R2/R1と、漏れ磁束のN極成分とS極成分との差分D[T]との関係を示す図である。 変形例1に係るセンサマグネットの構造を概略的に示す斜視図である。 変形例2に係るセンサマグネットの構造を概略的に示す斜視図である。 変形例3に係るセンサマグネットの構造を概略的に示す平面図である。 本発明の実施の形態2に係る空気調和機の構成を概略的に示す図である。 空気調和機の室外機内の主要な構成要素を概略的に示す図である。
実施の形態1.
 本発明の実施の形態1に係るモータ1について説明する。
 各図に示されるxyz直交座標系において、z軸方向(z軸)は、モータ1のシャフト23の軸線A1(すなわち、ロータ2の回転軸)と平行な方向(以下「軸方向」という。)を示し、x軸方向(x軸)は、z軸方向(z軸)に直交する方向を示し、y軸方向は、z軸方向及びx軸方向の両方に直交する方向を示す。
 図1は、本発明の実施の形態1に係るモータ1の構造を概略的に示す部分断面図である。
 図2は、モータ1の構造を概略的に示す正面図である。
 図3は、図2に示される線C3-C3に沿った断面図である。図3に示される矢印D1は、ロータ2、メインマグネット部20、及びセンサマグネット8の各々の外周に沿った方向(以下「周方向」という)を示す。図3に示される磁気センサ5は、xy平面上における磁気センサ5の位置を示す。
 モータ1は、ロータ2と、ステータ3と、回路基板4と、ロータ2の回転位置を検出する磁気センサ5と、ブラケット6と、ベアリング7a及び7bと、センサマグネット8(位置検出用マグネットともいう)とを有する。モータ1は、例えば、永久磁石同期モータである。
 回路基板4は、軸方向におけるステータ3の一端側に備えられている。回路基板4には、制御回路及び磁気センサ5などの電子部品が取り付けられている。磁気センサ5は、センサマグネット8の回転位置を検出することにより、ロータ2の回転位置を検出する。
 ロータ2は、センサマグネット8と、メインマグネット部20と、シャフト23とを有する。メインマグネット部20は、ロータコア21と、ロータコア21に固定された少なくとも1つの永久磁石22とを有する。ロータ2の回転軸は、軸線A1と一致する。ロータ2は、例えば、永久磁石埋め込み型である。
 メインマグネット部20は、コンシクエントポール型である。すなわち、本実施の形態では、ロータ2は、コンシクエントポール型ロータである。
 センサマグネット8は、磁気センサ5に面するように、ロータ2(具体的には、メインマグネット部20)に固定されている。本実施の形態では、センサマグネット8は、環状に形成されている。センサマグネット8は、円盤状に形成されていてもよい。
 本実施の形態で用いられるコンシクエントポール型のロータ2では、周方向において互いに隣接する永久磁石22(例えば、ステータ3に対してN極として機能する磁極)間の領域が、他方の磁極(例えば、ステータ3に対してS極として機能する疑似磁極)を疑似的に形成する。
 ロータ2は、エアギャップを介してステータ3の内側に備えられている。ステータ3の負荷側(モータ1の負荷側)の開口部にはブラケット6が圧入されている。ベアリング7aには、シャフト23が挿入されており、ベアリング7aはステータ3の負荷側において固定されている。同様に、ベアリング7bには、シャフト23が挿入されており、ベアリング7bはステータ3の反負荷側において固定されている。ロータ2は、ベアリング7a及び7bによって回転可能に支持されている。
 ロータ2(ロータコア21)の径方向(以下、単に「径方向」ともいう)におけるシャフト23の中央部は、径方向における樹脂部24の内側に形成されている。シャフト23は、例えば、Ni(ニッケル)又はCr(クロム)などを含む材料で形成されている。
 ロータコア21の構造について説明する。
 ロータコア21は、少なくとも1つの磁石挿入孔21aと、シャフト23が挿入される貫通孔であるシャフト挿入孔21bとを有する。本実施の形態では、ロータコア21は、複数の磁石挿入孔21aを有し、各磁石挿入孔21aには、少なくとも1つの永久磁石22が挿入されている。
 ロータコア21は、磁石挿入孔21aとロータ2の外側表面(外縁)との間に形成された薄板(例えば、電磁鋼板)の一部であるブリッジ部を有してもよい。このブリッジ部は、漏れ磁束の発生を抑制する。
 ただし、モータ1は、SPM(Surface Permanent Magnet)モータでもよい。この場合、ロータコア21には、磁石挿入孔21aが形成されておらず、ロータコア21の径方向における外側表面に永久磁石22が取り付けられる。さらに、モータ1は、リアクタンスモータ又は誘導モータでもよい。
 図1に示されるように、メインマグネット部20の軸方向における両端には、永久磁石22を軸方向において固定するための端板25が取り付けられていてもよい。永久磁石22を軸方向において固定するため、端板25の代わりに、軸方向における磁石挿入孔21aの両側に樹脂を充填してもよい。この場合、この樹脂が軸方向におけるロータコア21の両側を覆うように形成されていてもよい。
 ロータコア21とシャフト23とは、コーキング又はPBTなどの熱可塑性樹脂で一体化される。
 複数の磁石挿入孔21aは、周方向に等間隔で形成されている。永久磁石22は、例えば、Nd(ネオジム)又はSm(サマリウム)を主成分とする希土類磁石である。永久磁石22は、鉄を主成分とするフェライト磁石でもよい。磁石挿入孔21a内の永久磁石22は、径方向に磁化されており、これによりメインマグネット部20からの磁束は、ステータ3に流入する。
 図2に示されるように、ロータコア21は、例えば、磁性体である複数の薄板211を軸方向に積層することにより形成されている。薄板211は、例えば、電磁鋼板である。この場合、各薄板211は、例えば、0.2mmから0.5mmの厚みを持つ。ロータコア21は、軟磁性材料と樹脂とを混ぜて構成された樹脂鉄心でもよい。
 図1に示されるように、ステータ3は、ステータコア31と、コイル32と、インシュレータ33とを有する。ステータ3は環状に形成されている。
 ステータコア31は、磁性体である複数の薄板を軸方向に積層することにより形成されている。例えば、鉄を主成分とする電磁鋼板を軸方向に積層することにより形成されている。ステータコア31は、例えば、環状に形成されたヨーク部と、ヨーク部から径方向内側に向けて突出する複数のティース部とを有する。電磁鋼板の厚さは、例えば、0.2mmから0.5mmである。ステータコア31は、環状に形成されている。
 コイル32は、例えば、インシュレータ33を介してステータコア31のティース部に巻線(例えば、マグネットワイヤ)を巻回することにより形成されている。コイル32は、インシュレータ33によって絶縁されている。巻線は、銅又はアルミニウムを主成分として構成されている。
 インシュレータ33は、ポリブチレンテレフタレート(PolyButyleneTerephthalate:PBT)、ポリフェニレンサルファイド(PolyPhenylene Sulfide:PPS)、液晶ポリマー(Liquid Crystal Polymer:LCP)、及びポリエチレンテレフタレート(PolyEthylene Terephthalate:PET)などの絶縁性樹脂で形成されている。例えば、インシュレータ33は、ステータコア31と一体的に成形される。ただし、ステータコア31とは別にインシュレータ33が成形されてもよい。この場合、インシュレータ33が成形された後に、インシュレータ33がステータコア31に嵌められる。
 本実施の形態では、ステータコア31、コイル32、及びインシュレータ33は、PBT及びPPSなどの熱可塑性樹脂(モールド樹脂ともいう)によって覆われている。ステータコア31、コイル32、及びインシュレータ33は、円筒状シェルによって固定されてもよい。この場合、円筒状シェルは、例えば、鉄が主成分であり、焼き嵌めによって、ステータ3をロータ2と共に覆うことができる。
 磁気センサ5は、センサマグネット8の回転位置を検出することにより、ロータ2の回転位置を検出する。磁気センサ5には、例えば、ホールIC、MR(磁気抵抗)素子、GMR(巨大磁気抵抗)素子、又は磁気インピーダンス素子などが用いられる。磁気センサ5は、センサマグネット8から発生する磁束が通る位置(検出位置)に固定されている。モータ制御回路は、磁気センサ5による検出結果(例えば、センサマグネット8のN極とS極との間の境界である磁極変更点)を用いてステータ3のコイルに流れる電流を制御することにより、ロータ2の回転を制御する。
 磁気センサ5は、磁気センサ5に流入される磁界(磁界強度)の変化に基づいて、センサマグネット8及びメインマグネット部20の磁極の位置(位相)を検出する。具体的には、磁気センサ5は、センサマグネット8のN極からの磁束及びS極に向かう磁束を検出することにより、センサマグネット8の周方向(回転方向)において磁界の向きが変わるタイミング(具体的には、センサマグネット8の磁極変更点)を判別する。センサマグネット8は、後述するように、周方向にN極及びS極が交互に配列されているので、磁気センサ5が、センサマグネット8の磁極変更点を周期的に検出することにより、回転方向における各磁極の位置(ロータ2の回転角及び位相)が把握可能である。
 図4は、互いに異なる出力特性を持つ2つの磁気センサ(第1及び第2の磁気センサ)にそれぞれ流入される磁界強度H(ホールIC入力磁界)と磁気センサ出力値Vout(ホールIC出力)との関係を示す図である。図4に示されるグラフの横軸は、第1及び第2の磁気センサに流入される磁界強度H(入力磁界)[N/Wb](N極とS極との間の磁界強度)を示し、縦軸は、磁気センサの出力信号(具体的には、電圧)Vout[V]を示す。
 図4に示されるように、第1及び第2の磁気センサは、例えば、信号V[V]又は信号V[V]の二値(信号)を出力する。一例として、第1の磁気センサの出力特性について説明する。例えば、第1の磁気センサがセンサマグネット8のN極側からS極側に向けて磁界(磁界強度)を検出する場合、第1の磁気センサがセンサマグネット8からN極側の磁界を検出すると、信号V[V]を出力する。第1の磁気センサに流入される磁界が変化して、第1の磁気センサがセンサマグネット8からS極側の磁界(磁界強度H)を検出すると、信号V[V]を出力する。同様に、第1の磁気センサがセンサマグネット8のS極側からN極側に向けて磁界(磁界強度)を検出する場合、第1の磁気センサがセンサマグネット8からS極側の磁界を検出すると、信号V[V]を出力する。第1の磁気センサに流入される磁界が変化して、第1の磁気センサがセンサマグネット8からN極側の磁界(磁界強度H)を検出すると、信号V[V]を出力する。
 他の例として、第2の磁気センサの出力特性について説明する。例えば、第2の磁気センサがセンサマグネット8のN極側からS極側に向けて磁界(磁界強度)を検出する場合、第2の磁気センサがセンサマグネット8からN極側の磁界を検出すると、信号V[V]を出力する。第2の磁気センサに流入される磁界が変化して、第2の磁気センサがセンサマグネット8からS極側の磁界(磁界強度H´)を検出すると、信号V[V]を出力する。同様に、第2の磁気センサがセンサマグネット8のS極側からN極側に向けて磁界(磁界強度)を検出する場合、第2の磁気センサがセンサマグネット8からS極側の磁界を検出すると、信号V[V]を出力する。第2の磁気センサに流入される磁界が変化して、第2の磁気センサがセンサマグネット8からN極側の磁界(磁界強度H´)を検出すると、信号V[V]を出力する。
 したがって、図4に示されるように、磁気センサの出力信号は、磁気センサに流入する磁界の向きが切り替わったタイミング(磁極変更点)において瞬時に切り替わらない場合がある。さらに、磁気センサの固体によって、出力特性(例えば、H´とHとの差)が異なる場合があるため、使用する磁気センサ5によっては、モータ制御の誤差による、モータ効率の低下又はモータ回転時の騒音を引き起こす場合がある。
 次に、センサマグネット8の構造について詳細に説明する。
 図5は、センサマグネット8の構造を概略的に示す斜視図である。図5に示される「N」はN極を示し、「S」はS極を示す。
 センサマグネット8は、ロータ2の回転位置を検出する磁気センサ5を有するモータ1と共に用いられる。センサマグネット8は、磁気センサ5に面するように、軸方向におけるロータ2(具体的には、メインマグネット部20)の一端側に固定されている。
 センサマグネット8は、第1の極性の磁極を含む第1の磁極部81と、第2の極性の磁極を含む第2の磁極部82とを有する。本実施の形態では、第1の極性の磁極はN極であり、第2の極性の磁極はS極である。ただし、第1の極性の磁極がS極でもよく、この場合、第2の極性の磁極はN極である。第1の磁極部81及び第2の磁極部82は周方向において交互に配列されている。第1の磁極部81及び第2の磁極部82の周方向における長さは互いに同じである。
 センサマグネット8は、磁束(本実施の形態では、第1の磁極部81からの磁束)が磁気センサ5に流入するように、軸方向に磁化されている。これにより、磁気センサ5を、センサマグネット8と面するように、軸方向におけるステータ3の一端側に取り付けることができる。
 センサマグネット8の極数は、メインマグネット部20の極数と同一である。センサマグネット8は、センサマグネット8の極性がメインマグネット部20の極性と周方向において一致するように位置決めされている。
 磁気センサ5に向かう方向における第1の磁極部81の厚みT1は、磁気センサ5に向かう方向における第2の磁極部82の厚みT2よりも厚い。すなわち、センサマグネット8は、T2/T1<1を満たす。言い換えると、軸線A1(すなわち、ロータ2の回転軸)と平行な方向における第1の磁極部81の厚みT1は、軸線A1と平行な方向における第2の磁極部82の厚みT2よりも厚い。この場合、センサマグネット8は、T2/T1≦0.7を満たすことが望ましい。
 上述のように、センサマグネット8は、T2/T1<1を満たすので、第1の磁極部81から磁気センサ5までの最短距離は、第2の磁極部82から磁気センサ5までの最短距離よりも短い。センサマグネット8からの磁束量は、磁極部の厚み応じて増加又は減少する。さらに、磁気センサ5に流入する磁束量は、磁極部から磁気センサ5までの距離の2乗に比例する。したがって、磁極部の厚みT1及びT2を変化させることにより、センサマグネット8からの磁束量を調整することができる。さらに、磁極部から磁気センサ5までの最短距離を調整することにより、磁気センサ5に流入する磁束量を調整することができる。
 本実施の形態では、センサマグネット8は、永久磁石、具体的には、ボンド磁石で形成されている。すなわち、第1の磁極部81及び第2の磁極部82は、永久磁石、具体的には、ボンド磁石である。これにより、複雑な形状を持つセンサマグネット8を製造することが容易になる。例えば、上述のようなT2/T1<1を満たすセンサマグネットの製造が容易になる。
 図6は、センサマグネット8の代わりに比較例に係るセンサマグネットをモータ1において用いた場合の磁気センサ5に流入する磁束量(すなわち、磁気センサ5によって検出される磁束量)の変化を示す図である。
 比較例に係るセンサマグネットは、T1=T2を満たす形状を持つ。比較例に係るセンサマグネットのN極から磁気センサ5までの最短距離及びS極から磁気センサ5までの最短距離は互いに同一である。
 図6に示されるf1は、磁気センサ5に流入する磁束量を示し、f2は、磁気センサ5に流入する磁束のうちのセンサマグネットからの磁束量(すなわち、外乱を除いた磁束量)を示し、f3は、磁気センサ5に流入する外乱を示す。外乱は、例えば、メインマグネット部20からの磁束及びステータ3からの磁束などのセンサマグネットからの磁束以外の磁束である。図6に示されるP1は、磁気センサ5が検出する磁極変更点(S極からN極へ切り替わる位置)を示す。図6に示されるP2は、磁気センサ5が検出する磁極変更点(N極からS極へ切り替わる位置)を示す。
 図6に示されるa1は、磁極変更点P2から磁極変更点P1までの回転角度を示し、a2は、磁極変更点P1から磁極変更点P2までの回転角度を示す。具体的には、a1で示される区間は、センサマグネットのS極側が磁気センサ5を通過する区間であり、a2で示される区間は、センサマグネットのN極側が磁気センサ5を通過する区間である。この場合、磁気センサ5は、磁極変更点P1及びP2で磁極変更点を検出し、区間a1でS極側を検出し、区間a2でN極側を検出する。
 比較例では、図6に示されるように、a1がa2よりも大きい。すなわち、比較例に係るセンサマグネットでは、S極側が検出される区間が長く、N極側が検出される区間が短い。したがって、比較例では、検出誤差が生じている。この場合、モータ制御の誤差による、モータ効率の低下又はモータ回転中の騒音を引き起こす場合がある。
 図7は、本実施の形態に係るセンサマグネット8をモータ1において用いた場合の磁気センサ5に流入する磁束量(すなわち、磁気センサ5によって検出される磁束量)の変化を示す図である。
 図7に示されるf1は、磁気センサ5に流入する磁束量を示し、f2は、磁気センサ5に流入する磁束のうちのセンサマグネット8からの磁束量(すなわち、外乱を除いた磁束量)を示し、f3は、磁気センサ5に流入する外乱を示す。外乱は、例えば、メインマグネット部20からの磁束及びステータ3からの磁束などのセンサマグネット8からの磁束以外の磁束である。図7に示されるP1は、磁気センサ5が検出する磁極変更点(S極からN極へ切り替わる位置)を示す。図7に示されるP2は、磁気センサ5が検出する磁極変更点(N極からS極へ切り替わる位置)を示す。
 本実施の形態では、図7に示されるように、a1がa2にほぼ等しい。すなわち、本実施の形態に係るセンサマグネット8では、S極側が検出される区間と、N極側が検出される区間とが互いにほぼ等しく、磁極変更点P1及びP2が互いにほぼ等しい間隔で検出される。したがって、本実施の形態では、比較例に比べて、検出誤差が低減されている。
 本実施の形態に係るセンサマグネット8は、T1>T2を満たす。これにより、第1の磁極部81側の磁束量(本実施の形態では、N極からの磁束量)が、第2の磁極部82(本実施の形態では、S極からの磁束量)側の磁束量よりも増える。したがって、磁気センサ5に第1の磁極部81からの磁束が流入しやすくなり、比較例に比べて区間a2の回転角度が大きくなる。これに対し、比較例に比べて区間a1の回転角度が小さくなる。その結果、比較例に比べて、磁気センサ5に対するN極側の磁束量及びS極側の磁束量のバランスが改善され、磁気センサ5における検出誤差を低減することができる。これにより、モータ制御の精度を改善することができる。
 図8は、磁気センサ5によって検出される誤検出角度[deg]とT2/T1との関係を示す図である。誤検出角度とは、センサマグネット8における実際の磁極変更点と、磁気センサ5によって磁極変更点として検出される回転角度[deg](すなわち、図6及び図7に示される磁極変更点P1及びP2に相当)との差である。
 図8に示されるように、T2/T1が小さくなるほど、誤検出角度を低減することができ、センサマグネット8がT2/T1<1を満たすとき、誤検出角度を、モータ制御に支障が少ない許容誤差である15[deg]以下に抑えることができる。
 さらに、センサマグネット8がT2/T1≦0.7を満たすとき、誤検出角度を10[deg]以下に抑えることができ、より正確なモータ制御が可能となる。その結果、モータ効率をより高めることができる。
 さらに、図8に示されるように、T2/T1が小さくなるほど、誤検出角度を低減することができるので、磁気センサ5の特性又は外乱の影響などに応じて、T2/T1を調整することにより、磁気センサ5によって検出される磁極変更点P1及びP2の位置を望ましい位置に調整することができる。
 第1の磁極部81及び第2の磁極部82はボンド磁石である。これにより、複雑な形状を持つセンサマグネット8を製造することが容易になる。例えば、第1の磁極部81及び第2の磁極部82が焼結磁石である場合、T2/T1を満たすセンサマグネット8の製造が難しい。第1の磁極部81と第2の磁極部82とを別々に製造し、これらを互いに接着すると、誤検出角度が大きくなる場合がある。これに対し、本実施の形態では、第1の磁極部81及び第2の磁極部82はボンド磁石であるので、第1の磁極部81及び第2の磁極部82を容易に一体的に形成することができ、互いに異なる厚みを持つ磁極部を形成することが容易になる。
 図9は、ロータ2が回転している間のセンサマグネット8からの磁束密度の変化を示す図である。図9に示される+側の磁束密度はN極成分を示し、-側の磁束密度はS極成分を示す。
 本実施の形態では、ロータ2は、コンシクエントポール型ロータである。この場合、メインマグネット部20から磁気センサ5へ向かう外乱としての漏れ磁束は、一方の磁極(本実施の形態では、N極)から生じる。したがって、図9に示されるように、磁束のN極成分とS極成分との間でアンバランスが生じる。本実施の形態では、上述のように、T2/T1を調整することにより、磁気センサ5によって検出される磁極変更点P1及びP2の位置を望ましい位置に調整することができるので、このアンバランスを解消することができる。すなわち、このアンバランスが解消されるように、T2/T1を調整することにより、誤検出角度を低減することができ、モータ制御が改善される。その結果、モータ効率を高めることができる。
 図10は、メインマグネット部20の最大半径R1(図3)と磁気センサ5の設置半径R2(図3)との比R2/R1と、メインマグネット部20からの漏れ磁束のN極成分とS極成分との差分D[T](D=N極成分-S極成分)との関係を示す図である。最大半径R1は、永久磁石22が配置された磁極部を通る半径である(図3)。設置半径R2とは、軸線A1から磁気センサ5までの距離である(図3)。
 図10に示されるように、R2/R1が0.95以下であるとき、S極成分が増加する。すなわち、メインマグネット部20からの磁束のN極成分とS極成分との間でアンバランスが生じる。したがって、R2/R1が0.95以下であるとき、T2/T1<1を満たす構造を持つセンサマグネット8を用いることにより、磁束のアンバランスを解消することができる。一方、R2/R1が0.95よりも大きいとき、N極成分が増加する。この場合、T1/T2<1を満たす構造を持つセンサマグネット8を用いれば磁束のアンバランスを解消することができる。
変形例1.
 図11は、変形例1に係るセンサマグネット8aの構造を概略的に示す斜視図である。
 センサマグネット8aは、第1の極性の磁極を含む第1の磁極部81aと、第2の極性の磁極を含む第2の磁極部82aとを有する。第1の磁極部81aは、実施の形態1に係るセンサマグネット8の第1の磁極部81に相当し、第2の磁極部82aは、実施の形態1に係るセンサマグネット8の第2の磁極部82に相当する。変形例1に係るセンサマグネット8aでは、第1の磁極部81aの構造が実施の形態1に係るセンサマグネット8の第1の磁極部81の構造と異なり、センサマグネット8aにおけるその他の構造は、センサマグネット8と同じである。
 図11に示される破線は、第1の磁極部81aと第2の磁極部82aとの間の境界を示す。
 第1の磁極部81aは、永久磁石である第1の部分811と、軟磁性材料である第2の部分812とを有する。第2の部分812は、第1の部分811の表面(磁気センサ5に面する表面)に備えられている。
 変形例1に係るセンサマグネット8aは、実施の形態1に係るセンサマグネット8と同じ効果を有する。
 さらに、永久磁石である第1の部分811の表面に軟磁性材料である第2の部分812を取り付けることにより、パーミアンス係数を大きくすることができる。これにより、第1の磁極部81aからの磁束量が第2の磁極部82aからの磁束量よりも増加する。すなわち、第2の部分812を用いることにより、磁気センサ5の特性又は外乱の影響などに応じて、磁気センサ5によって検出される磁極変更点P1及びP2の位置を望ましい位置に調整することができる。
変形例2.
 図12は、変形例2に係るセンサマグネット8bの構造を概略的に示す斜視図である。
 センサマグネット8bは、第1の極性の磁極を含む第1の磁極部81bと、第2の極性の磁極を含む第2の磁極部82bとを有する。第1の磁極部81bは、実施の形態1に係るセンサマグネット8の第1の磁極部81に相当し、第2の磁極部82bは、実施の形態1に係るセンサマグネット8の第2の磁極部82に相当する。変形例2に係るセンサマグネット8bでは、第1の磁極部81bの構造が実施の形態1に係るセンサマグネット8の第1の磁極部81の構造と異なり、センサマグネット8bにおけるその他の構造は、センサマグネット8と同じである。
 第1の磁極部81bは、磁気センサ5に面する表面に形成された窪み813を有する。窪み813は、第2の磁極部82bの表面に形成されていてもよい。窪み813は、センサマグネット8bの強度を維持できる位置に形成されていればよく、磁気センサ5に面する位置以外の位置に形成されていてもよい。
 窪み813は、例えば、磁極中心(本実施の形態では、N極の中心)に形成される。磁気センサ5は、磁極変更点を検出するので、窪み813が磁極中心に形成されていても、磁気センサ5の検出結果に支障がない。窪み813は、貫通孔でもよい。
 変形例2に係るセンサマグネット8bは、実施の形態1に係るセンサマグネット8と同じ効果を有する。
 さらに、第1の磁極部81bの表面に窪み813を形成することにより、センサマグネット8bの材料(すなわち、永久磁石の材料)を削減することができる。これにより、センサマグネット8bのコストを削減することができ、センサマグネット8bの軽量化を実現することができる。
 変形例3.
 図13は、変形例3に係るセンサマグネット8cの構造を概略的に示す平面図である。
 センサマグネット8cは、第1の極性の磁極を含む第1の磁極部81cと、第2の極性の磁極を含む第2の磁極部82cとを有する。第1の磁極部81cは、実施の形態1に係るセンサマグネット8の第1の磁極部81に相当し、第2の磁極部82cは、実施の形態1に係るセンサマグネット8の第2の磁極部82に相当する。実施の形態1に係るセンサマグネット8は軸方向に磁化されているのに対し、変形例3に係るセンサマグネット8cは径方向に磁化されている。センサマグネット8cにおけるその他の構造は、センサマグネット8と同じである。
 変形例3に係るセンサマグネット8cでは、第1の磁極部81cの厚みT1及び第2の磁極部82cの厚みT2は径方向における厚みである。この場合においても、センサマグネット8cは、T2/T1<1を満たす。さらに、実施の形態1で説明したように、センサマグネット8cは、T2/T1≦0.7を満たすことが望ましい。
 変形例3に係るセンサマグネット8cは、実施の形態1に係るセンサマグネット8と同じ効果を有する。
実施の形態2.
 本発明の実施の形態2に係る空気調和機10について説明する。
 図14は、本発明の実施の形態2に係る空気調和機10の構成を概略的に示す図である。
 図15は、空気調和機10の室外機13内の主要な構成要素を概略的に示す図である。
 実施の形態2に係る空気調和機10は、室内機11と、冷媒配管12と、冷媒配管12によって室内機11と接続された室外機13とを備える。
 室内機11は、モータ11aと、送風機11b(室内機用送風機ともいう)とを有する。室外機13は、モータ13aと、送風機(室外機用送風機ともいう)としてのファン13bと、圧縮機13cと、熱交換器(図示しない)とを有する。圧縮機13cは、モータ13d(例えば、実施の形態1のモータ1)と、モータ13dによって駆動される圧縮機構13e(例えば、冷媒回路)と、モータ13d及び圧縮機構13eを収容するハウジング13fとを有する。
 実施の形態2に係る空気調和機10において、室内機11及び室外機13の少なくとも一つは、実施の形態1で説明したモータ1を有する。具体的には、送風機の駆動源として、モータ11a及び13aの少なくとも一方に、実施の形態1で説明したモータ1が適用される。さらに、圧縮機13cのモータ13dとして、実施の形態1で説明したモータ1を用いてもよい。
 空気調和機10は、例えば、室内機11から冷たい空気を送風する冷房運転、又は温かい空気を送風する暖房運転等の運転を行うことができる。室内機11において、モータ11aは、送風機11bを駆動するための駆動源である。送風機11bは、調整された空気を送風することができる。
 図15に示されるように、室外機13において、モータ13aは、ファン13bを駆動するための駆動源である。モータ13aは、例えば、ねじによって室外機13の筐体に固定されている。モータ13aのシャフトは、ファン13bと連結されている。モータ13aの駆動によってファン13bが回転する。
 実施の形態2に係る空気調和機10によれば、モータ11a及び13aの少なくとも一方に、実施の形態1で説明したモータ1が適用されるので、実施の形態1で説明した効果と同じ効果が得られる。
 さらに、実施の形態2によれば、運転効率が良い圧縮機13c及び空気調和機10を提供することができる。
 実施の形態1で説明したモータ1は、空気調和機10以外に、換気扇、家電機器、又は工作機など、駆動源を有する機器に搭載できる。
 以上に説明した各実施の形態における特徴及び各変形例における特徴は、互いに適宜組み合わせることができる。
 1 モータ、 2 ロータ、 3 ステータ、 4 回路基板、 5 磁気センサ、 6 ブラケット、 7a,7b ベアリング、 8,8a,8b,8c センサマグネット、 10 空気調和機、 11 室内機、 11a モータ、 11b 送風機、 12 冷媒配管、 13 室外機、 13a モータ、 13b ファン、 13c 圧縮機、 13d モータ、 20 メインマグネット部、 21 ロータコア、 21a 磁石挿入孔、 21b シャフト挿入孔、 22 永久磁石、 23 シャフト、 31 ステータコア、 32 コイル、 33 インシュレータ、 81,81a,81b,81c 第1の磁極部、 82,82a,82b,82c 第2の磁極部、 211 薄板。

Claims (10)

  1.  ロータの回転位置を検出する磁気センサを備えたモータと共に用いられるセンサマグネットであって、
     第1の極性の磁極を含む第1の磁極部と、
     第2の極性の磁極を含む第2の磁極部と
     を有し、
     前記磁気センサに向かう方向における前記第1の磁極部の厚みが、前記磁気センサに向かう方向における前記第2の磁極部の厚みよりも厚い
     センサマグネット。
  2.  前記第1の磁極部から前記磁気センサまでの最短距離は、前記第2の磁極部から前記磁気センサまでの最短距離よりも短い請求項1に記載のセンサマグネット。
  3.  前記第1の磁極部及び前記第2の磁極部はボンド磁石である請求項1又は2に記載のセンサマグネット。
  4.  前記第1の磁極部は、
     永久磁石である第1の部分と、
     前記第1の部分の表面に備えられ、軟磁性材料である第2の部分と
     を有する請求項1又は2に記載のセンサマグネット。
  5.  前記第1の磁極部は、前記磁気センサに面する表面に形成された窪みを有する請求項1から4のいずれか1項に記載のセンサマグネット。
  6.  前記第1の磁極部の前記厚みをT1とし、前記第2の磁極部の前記厚みをT2としたとき、T2/T1≦0.7を満たす請求項1から5のいずれか1項に記載のセンサマグネット。
  7.  前記第1の磁極部及び前記第2の磁極部は、径方向に磁化されている請求項1から6のいずれか1項に記載のセンサマグネット。
  8.  ステータと、
     前記ステータの内側に備えられたロータと、
     前記ロータの回転位置を検出する磁気センサと
     を備え、
     前記ロータは、
     メインマグネット部と、
     前記磁気センサに面するように前記メインマグネット部に固定されたセンサマグネットと
     を有し、
     前記センサマグネットは、
     第1の極性の磁極を含む第1の磁極部と、
     第2の極性の磁極を含む第2の磁極部と
     を有し、
     前記磁気センサに向かう方向における前記第1の磁極部の厚みが、前記磁気センサに向かう方向における前記第2の磁極部の厚みよりも厚い
     モータ。
  9.  前記メインマグネット部は、
     ロータコアと、
     前記ロータコアに固定された永久磁石と
     を有し、
     前記メインマグネット部はコンシクエントポール型である
     請求項8に記載のモータ。
  10.  室内機と、
     前記室内機に接続された室外機と
     を備え、
     前記室内機及び前記室外機の少なくとも1つはモータを有し、
     前記モータは、
     ステータと、
     前記ステータの内側に備えられたロータと、
     前記ロータの回転位置を検出する磁気センサと
     を備え、
     前記ロータは、
     メインマグネット部と、
     前記磁気センサに面するように前記メインマグネット部に固定されたセンサマグネットと
     を有し、
     前記センサマグネットは、
     第1の極性の磁極を含む第1の磁極部と、
     第2の極性の磁極を含む第2の磁極部と
     を有し、
     前記磁気センサに向かう方向における前記第1の磁極部の厚みが、前記磁気センサに向かう方向における前記第2の磁極部の厚みよりも厚い
     空気調和機。
PCT/JP2017/023887 2017-06-29 2017-06-29 センサマグネット、モータ、及び空気調和機 WO2019003372A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/023887 WO2019003372A1 (ja) 2017-06-29 2017-06-29 センサマグネット、モータ、及び空気調和機
JP2019526055A JP6952775B2 (ja) 2017-06-29 2017-06-29 センサマグネット、モータ、及び空気調和機
US16/609,236 US11342814B2 (en) 2017-06-29 2017-06-29 Sensor magnet, motor, and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/023887 WO2019003372A1 (ja) 2017-06-29 2017-06-29 センサマグネット、モータ、及び空気調和機

Publications (1)

Publication Number Publication Date
WO2019003372A1 true WO2019003372A1 (ja) 2019-01-03

Family

ID=64741261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023887 WO2019003372A1 (ja) 2017-06-29 2017-06-29 センサマグネット、モータ、及び空気調和機

Country Status (3)

Country Link
US (1) US11342814B2 (ja)
JP (1) JP6952775B2 (ja)
WO (1) WO2019003372A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021186818A1 (ja) * 2020-03-18 2021-09-23 日本電産株式会社 センサマグネット、ロータ、モータ
JPWO2020183523A1 (ja) * 2019-03-08 2021-10-14 三菱電機株式会社 モータ、ファン、および空気調和機

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110431734B (zh) * 2017-03-27 2022-09-16 三菱电机株式会社 电动机和空调装置
JP6952775B2 (ja) * 2017-06-29 2021-10-20 三菱電機株式会社 センサマグネット、モータ、及び空気調和機
US20200119599A1 (en) * 2017-07-28 2020-04-16 Panasonic Intellectual Property Management Co., Ltd. Motor, fan, and refrigerator
JP7090740B2 (ja) * 2018-12-20 2022-06-24 三菱電機株式会社 回転子、電動機、送風機、空気調和装置および回転子の製造方法
DE102021204177A1 (de) 2021-04-27 2022-10-27 Continental Automotive Technologies GmbH Rotoranordnung und Motoranordnung
KR20230090608A (ko) * 2021-12-15 2023-06-22 엘지이노텍 주식회사 모터

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5576534U (ja) * 1978-11-17 1980-05-27
JPH07123677A (ja) * 1993-10-20 1995-05-12 Sankyo Seiki Mfg Co Ltd ブラシレスモータ
JP2006317336A (ja) * 2005-05-13 2006-11-24 Mitsubishi Electric Corp 永久磁石式回転センサ
JP2009194944A (ja) * 2008-02-12 2009-08-27 Mitsubishi Electric Corp 電動機の回転子及び電動機及び空気調和機
JP2012135177A (ja) * 2010-12-24 2012-07-12 Asmo Co Ltd モータ
JP2013238485A (ja) * 2012-05-15 2013-11-28 Asahi Kasei Electronics Co Ltd エンコーダ及びそれを用いたアクチュエータ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4083324B2 (ja) * 1998-11-19 2008-04-30 ヤマハモーターエレクトロニクス株式会社 回転電気機器
JP2001339889A (ja) * 2000-05-26 2001-12-07 Alps Electric Co Ltd スピンドルモータのロータおよびインデックス信号出力装置とそれらを備えたfdd装置
JP3768846B2 (ja) 2001-08-06 2006-04-19 三菱電機株式会社 電動機の回転子組立及び送風機及び空気調和機
JP2004227696A (ja) 2003-01-23 2004-08-12 Funai Electric Co Ltd ドラムモータおよびアウタロータ型モータ
JP2005168264A (ja) 2003-12-05 2005-06-23 Asmo Co Ltd ブラシレスモータ
JP2007252097A (ja) 2006-03-16 2007-09-27 Mitsuba Corp ブラシレスモータ
US8975799B2 (en) * 2009-08-12 2015-03-10 Shenzhen A&E Servo Motor Technology Co., Ltd. Broad-pole type square-wave three-phase brushless permanent magnet direct current motor and assembling method thereof
JP5629875B2 (ja) * 2010-08-17 2014-11-26 日本電産株式会社 モータ
JP5741960B2 (ja) * 2012-10-19 2015-07-01 株式会社デンソー 回転子およびそれを用いた回転電機
US11005350B2 (en) 2015-09-18 2021-05-11 Mitsubishi Electric Corporation Permanent-magnet synchronous motor, method for manufacturing permanent-magnet synchronous motor, and air conditioner
JP6671460B2 (ja) * 2016-04-01 2020-03-25 三菱電機株式会社 センサマグネット、回転子、電動機、及び空気調和機
US10056808B2 (en) * 2016-11-20 2018-08-21 Michael Pozmantir Brushless DC motor incorporating single pole double throw magnetic switch
JP2018117429A (ja) * 2017-01-17 2018-07-26 東京パーツ工業株式会社 ブラシレスモータ
JP6952775B2 (ja) * 2017-06-29 2021-10-20 三菱電機株式会社 センサマグネット、モータ、及び空気調和機
JP2019018498A (ja) 2017-07-20 2019-02-07 セイコーエプソン株式会社 キャリッジおよび記録装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5576534U (ja) * 1978-11-17 1980-05-27
JPH07123677A (ja) * 1993-10-20 1995-05-12 Sankyo Seiki Mfg Co Ltd ブラシレスモータ
JP2006317336A (ja) * 2005-05-13 2006-11-24 Mitsubishi Electric Corp 永久磁石式回転センサ
JP2009194944A (ja) * 2008-02-12 2009-08-27 Mitsubishi Electric Corp 電動機の回転子及び電動機及び空気調和機
JP2012135177A (ja) * 2010-12-24 2012-07-12 Asmo Co Ltd モータ
JP2013238485A (ja) * 2012-05-15 2013-11-28 Asahi Kasei Electronics Co Ltd エンコーダ及びそれを用いたアクチュエータ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020183523A1 (ja) * 2019-03-08 2021-10-14 三菱電機株式会社 モータ、ファン、および空気調和機
JP7098047B2 (ja) 2019-03-08 2022-07-08 三菱電機株式会社 モータ、ファン、および空気調和機
WO2021186818A1 (ja) * 2020-03-18 2021-09-23 日本電産株式会社 センサマグネット、ロータ、モータ

Also Published As

Publication number Publication date
JP6952775B2 (ja) 2021-10-20
US11342814B2 (en) 2022-05-24
JPWO2019003372A1 (ja) 2019-11-07
US20200336046A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
JP6952775B2 (ja) センサマグネット、モータ、及び空気調和機
JP6873250B2 (ja) コンシクエントポール型ロータ、電動機、圧縮機、送風機、及び空気調和機
JP6964672B2 (ja) ロータ、電動機、送風機および空気調和装置
JP6448810B2 (ja) ロータ、永久磁石同期モータ、永久磁石同期モータの製造方法、および空気調和機
AU2018453979B2 (en) Rotor, electric motor, fan, air conditioner, and method for manufacturing rotor
JP6615375B2 (ja) 電動機および空気調和装置
US11070112B2 (en) Sensor magnet, rotor, electric motor, and air conditioner
JP7098047B2 (ja) モータ、ファン、および空気調和機
JP7026805B2 (ja) ステータ、モータ、ファン、及び空気調和機並びにステータの製造方法
WO2023073757A1 (ja) ロータ、電動機、送風機および空気調和装置
JPWO2020026408A1 (ja) モータ、ファン、空気調和装置、及びモータの製造方法
CN115039320A (zh) 转子、电动机、送风机以及空调装置
JP2007244169A (ja) モータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915758

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526055

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17915758

Country of ref document: EP

Kind code of ref document: A1