WO2018173802A1 - 光源装置および投光装置 - Google Patents

光源装置および投光装置 Download PDF

Info

Publication number
WO2018173802A1
WO2018173802A1 PCT/JP2018/009209 JP2018009209W WO2018173802A1 WO 2018173802 A1 WO2018173802 A1 WO 2018173802A1 JP 2018009209 W JP2018009209 W JP 2018009209W WO 2018173802 A1 WO2018173802 A1 WO 2018173802A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
source device
wavelength
drive
Prior art date
Application number
PCT/JP2018/009209
Other languages
English (en)
French (fr)
Inventor
博隆 上野
麻生 淳也
一幸 松村
公博 村上
古賀 稔浩
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019507544A priority Critical patent/JPWO2018173802A1/ja
Publication of WO2018173802A1 publication Critical patent/WO2018173802A1/ja

Links

Images

Definitions

  • the present disclosure relates to a light source device that emits light and a light projecting device using the light source device.
  • a light source device that generates light of a predetermined wavelength by irradiating a wavelength conversion member with light emitted from a laser light source.
  • this light source device for example, light that has been subjected to wavelength conversion by the wavelength conversion member and diffused and light that has been diffused without being subjected to wavelength conversion by the wavelength conversion member are combined to generate light of a predetermined color such as white light. Generated.
  • a light source device is used, for example, as a light source device for a vehicle headlamp.
  • Patent Document 1 describes a vehicular lamp that scans a wavelength conversion member with excitation light using an optical deflector having a mirror portion.
  • the luminous intensity of a partial region of the light conversion member is increased by slowing the reciprocating swing speed of the mirror portion.
  • the luminous intensity of a part of the area required for the vehicle lamp for example, the area near the center
  • a high reflectivity in which a dielectric multilayer film is formed on a glass plate A mirror can be used.
  • the mirror is heavy, so that an inertial force acts on the mirror, and the mirror swing speed is set appropriately. It becomes difficult to slow down.
  • a small and lightweight low reflectance mirror in order to decelerate the rocking
  • An object of the present invention is to provide a light source device that can be used and a light projection device using the same.
  • the first aspect of the present disclosure relates to a light source device.
  • the light source device includes a laser light source, a wavelength conversion member, an optical deflector, and a drive unit.
  • the laser light source emits laser light having a first wavelength.
  • the wavelength conversion member has an incident surface on the optical path of the laser light, converts the first wavelength to a second wavelength different from the first wavelength, and diffuses the laser light to have the second wavelength. Causes diffuse light.
  • the optical deflector scans laser light on the incident surface.
  • the drive unit supplies a drive signal to the optical deflector.
  • the drive unit sets the drive waveform of the drive signal based on the motion characteristics of the movable unit so that the movable unit of the optical deflector realizes a predetermined movement operation.
  • the drive waveform of the drive signal for driving the movable part of the optical deflector has the motion characteristics of the movable part of the optical deflector so that the movable part realizes a predetermined movement operation. Is set based on For this reason, even when a high-weight scanning means such as a high-reflectance mirror is used, the scanning means can be controlled appropriately and with high accuracy.
  • the second aspect of the present disclosure relates to a light projecting device.
  • the light projecting device according to the second aspect includes the light source device according to the first aspect and a projection optical system that projects the light diffused by the wavelength conversion member.
  • the same effect as in the first aspect can be achieved.
  • a high-weight scanning unit such as a high reflectivity mirror is used as a scanning unit for scanning light with respect to the wavelength conversion member.
  • the scanning means can be controlled appropriately and with high accuracy.
  • FIG. 1 is a perspective view illustrating a configuration of a light projecting device according to the first embodiment.
  • FIG. 2 is a cross-sectional view illustrating a configuration of the light projecting device according to the first embodiment.
  • FIG. 3A is a perspective view showing the configuration of the optical deflector according to the first embodiment.
  • FIG. 3B is a cross-sectional perspective view showing the configuration of the optical deflector according to the first embodiment.
  • FIG. 4A is a side view schematically showing the configuration of the wavelength conversion member according to the first embodiment.
  • FIG. 4B is a plan view schematically showing the configuration of the wavelength conversion member according to the first embodiment.
  • FIG. 5 is a circuit block diagram illustrating a main circuit configuration of the light source device according to the first embodiment.
  • FIG. 6A is a graph schematically showing a waveform of a movement profile according to the first embodiment.
  • FIG. 6B is a graph schematically showing a change in the angular velocity of the mirror when the mirror is rotated according to the movement profile according to the first embodiment.
  • FIG. 6C is a graph schematically showing the waveform of the drive profile according to the first embodiment.
  • FIG. 7 is a flowchart showing processing for generating a drive profile according to the first embodiment.
  • FIG. 8A is a flowchart showing a process for generating a drive profile according to the second embodiment.
  • FIG. 8B is a diagram showing the drive profile according to the second embodiment in comparison with the drive profile according to the first embodiment.
  • FIG. 9 is a flowchart showing a drive profile switching process according to the third embodiment.
  • FIG. 10 is a perspective view showing a configuration of an optical deflector according to the fourth embodiment.
  • FIG. 11A is a cross-sectional perspective view showing the configuration of the optical deflector according to the fourth embodiment.
  • FIG. 11B is a cross-sectional perspective view showing the configuration of the optical deflector according to the fourth embodiment.
  • FIG. 12 is a diagram schematically illustrating a scanning state of laser light in the wavelength conversion member according to the fourth embodiment.
  • FIG. 13A is a graph schematically showing a drive signal applied to a coil that rotates the movable part in a direction crossing the scanning line according to the fourth embodiment.
  • FIG. 13B is a diagram schematically illustrating the intensity of light applied to the target area according to the fourth embodiment.
  • FIG. 13C is a diagram schematically illustrating the intensity of light applied to the target area according to the modification of the fourth embodiment.
  • FIG. 13D is a diagram schematically illustrating a scanning state of laser light in the wavelength conversion member according to the modification of the fourth embodiment.
  • FIG. 14A is a diagram schematically illustrating turning on and off the laser light so that a part of a region to be irradiated with light according to another modification is in a light shielding state.
  • FIG. 14B is a diagram schematically illustrating that the timing of turning on and off the laser beam is shifted in the forward path according to another modified example.
  • FIG. 14C is a diagram schematically illustrating that the timing of turning on and off the laser beam is shifted in the return path according to another modified example.
  • the X, Y, and Z axes orthogonal to each other are appended to each drawing.
  • the X-axis direction and the Y-axis direction are the width direction and the depth direction of the light projecting device, respectively, and the Z-axis direction is the height direction of the light projecting device.
  • the positive Z-axis direction is the light projection direction in the light projecting device.
  • FIG. 1 is a perspective view illustrating a configuration of a light projecting device 1 according to the first embodiment.
  • FIG. 2 is a cross-sectional view illustrating a configuration of the light projecting device 1 according to the first embodiment.
  • FIG. 2 shows a cross-sectional view of the light projecting device 1 cut at a central position in the X-axis direction along a plane parallel to the YZ plane.
  • the light projecting device 1 includes a light source device 2 that generates light and a projection optical system 3 that projects the light generated by the light source device 2.
  • the projection optical system 3 includes two lenses 3a and 3b. The light from the light source device 2 is condensed by these lenses 3a and 3b and projected onto the target area. Note that the projection optical system 3 does not necessarily have only two lenses 3a and 3b, and may include other lenses and mirrors, for example. Further, the projection optical system 3 may be configured to condense light from the light source device 2 using a concave mirror.
  • the light source device 2 has a configuration in which various members are installed on the base 11. Specifically, a laser light source 12, a collimator lens 13, an optical deflector 14, and a wavelength conversion member 15 are installed on the base 11 as a configuration for generating projection light.
  • the collimator lens 13 is installed on the base 11 via the holder 16.
  • the laser light source 12 emits laser light in a blue wavelength band (for example, 450 nm) in the positive direction of the Z axis.
  • the laser light source 12 is made of, for example, a semiconductor laser.
  • the wavelength of the laser light emitted from the laser light source 12 can be changed as appropriate. Further, the laser light source 12 does not necessarily have to emit laser light in a single wavelength band.
  • the semiconductor laser may also be used.
  • the collimator lens 13 converts the laser light emitted from the laser light source 12 into parallel light.
  • the collimator lens 13 may be adjusted in position in the optical axis direction so that the laser light emitted from the laser light source 12 can be converged.
  • the optical deflector 14 includes a mirror 17 and changes the traveling direction of the laser light that has passed through the collimator lens 13 by rotating the mirror 17 about the rotation axis L1.
  • the incident surface of the mirror 17 is a plane.
  • the mirror 17 is, for example, a high reflectance mirror in which a dielectric multilayer film is formed on a glass plate. In the neutral position, the mirror 17 is disposed so as to be inclined by a predetermined angle in a direction parallel to the YZ plane with respect to a plane parallel to the XZ plane.
  • the rotation axis L1 of the mirror 17 is parallel to the YZ plane and tilted by a predetermined angle with respect to the Z-axis direction.
  • the configuration of the optical deflector 14 will be described later with reference to FIGS. 3A and 3B.
  • the wavelength conversion member 15 is disposed at a position where the laser beam reflected by the mirror 17 is incident.
  • the wavelength conversion member 15 is a rectangular plate-like member, and is installed on the base 11 so that the incident surface is parallel to the XY plane and the longitudinal direction is parallel to the X axis. As described above, when the mirror 17 rotates about the rotation axis L1, the wavelength conversion member 15 is scanned in the longitudinal direction by the laser light.
  • the wavelength conversion member 15 converts part of the incident laser light into a wavelength different from the blue wavelength band and diffuses it in the Z-axis direction.
  • the other laser light that has not been wavelength-converted is diffused in the Z-axis direction by the wavelength conversion member 15.
  • the light of the two types of wavelengths diffused in this way is combined to generate light of a predetermined color. Light of each wavelength is taken into the projection optical system 3 and projected onto the target area.
  • a part of the laser light is converted into light in the yellow wavelength band by the wavelength conversion member 15.
  • the diffused light in the yellow wavelength band after wavelength conversion and the scattered light in the blue wavelength band that has not been wavelength-converted are combined to generate white light.
  • the wavelength after wavelength conversion may not be a yellow wavelength range, and the color of the light produced
  • the configuration of the wavelength conversion member 15 will be described later with reference to FIGS. 4A and 4B.
  • a circuit board 18 is installed on the lower surface of the base 11.
  • a circuit for controlling the laser light source 12 and the optical deflector 14 is mounted on the circuit board 18.
  • the terminal portion of the circuit board 18 is exposed to the outside on the Y axis positive side of the base 11, and this terminal portion is electrically connected to the optical deflector 14.
  • the circuit board 18 is connected to the outside by a connector 19 mounted on the negative circuit board 18.
  • 3A and 3B are a perspective view and a cross-sectional perspective view showing the configuration of the optical deflector 14, respectively.
  • 3B is a cross-sectional view taken along the line IIIB-IIIB, in which the optical deflector 14 shown in FIG. 3A is cut at the center position in the y-axis direction, in a plane parallel to the xz plane.
  • FIGS. 3A and 3B newly show x-, y-, and z-axes in order to explain the configuration of the optical deflector 14.
  • the x axis is in the same direction as the X axis shown in FIGS. 1 and 2.
  • the x, y, and z axes are obtained by rotating the X, Y, and Z axes shown in FIGS. 1 and 2 around the X axis by a predetermined angle.
  • the y axis corresponds to the short direction of the optical deflector 14, and the z axis corresponds to the height direction of the optical deflector 14.
  • the z-axis negative side is defined as the upper side of the optical deflector 14.
  • the optical deflector 14 is configured to drive the mirror 17 using electromagnetic force.
  • a component for electromagnetic driving is installed in the housing 101.
  • the housing 101 has a rectangular parallelepiped shape that is long in the x-axis direction.
  • a rectangular recess 101a is formed on the upper surface of the housing 101 in plan view.
  • the housing 101 has bosses 101b formed on the upper surfaces of the positive and negative edges of the x-axis. The two bosses 101b are disposed at an intermediate position of the housing 101 in the y-axis direction.
  • the housing 101 is made of a nonmagnetic metal material having high rigidity.
  • a frame-shaped leaf spring 102 is installed on the upper surface of the housing 101.
  • the leaf spring 102 has a frame portion 102a, a support portion 102b, two beam portions 102c, and two holes 102d.
  • Two beam portions 102c are formed so as to extend in parallel to the y-axis direction from the frame portion 102a at an intermediate position in the x-axis direction, and the frame portion 102a and the support portion 102b are connected by these beam portions 102c.
  • the support portion 102b is rectangular in plan view, and two beam portions 102c are connected to the support portion 102b at an intermediate position in the x-axis direction of the support portion 102b.
  • the x-axis positive side hole 102d is circular in plan view, and the x-axis negative side hole 102d is long in the x-axis direction in plan view.
  • the leaf spring 102 is symmetric in the y-axis direction, and is symmetric in the x-axis direction except for the two holes 102d.
  • the leaf spring 102 is integrally formed of a flexible metal material.
  • the two holes 102d are provided at positions corresponding to the two bosses 101b, respectively. With the boss 101b fitted in the hole 102d, the leaf spring 102 is fixed to the upper surface of the housing 101 by the four screws 103.
  • the mirror 17 is fixed to the upper surface of the support portion 102b with an adhesive or the like.
  • the mirror 17 is substantially square in plan view.
  • the axis connecting the two beam portions 102c is the rotation axis L1 of the mirror 17. That is, the two beam portions 102 c are provided along the rotation axis L ⁇ b> 1 of the mirror 17.
  • the pair of beam portions 102c elastically supports the support portion 102b and the mirror 17 from both sides in the y-axis direction along the rotation axis L1.
  • the laser light from the laser light source 12 is incident on the center position of the mirror 17 from an oblique direction with respect to the incident surface of the mirror 17. That is, the laser light from the laser light source 12 enters the mirror 17 so that the rotation axis L1 and the central axis of the laser light intersect.
  • the coil 104 is mounted on the lower surface of the support portion 102b.
  • the coil 104 circulates in a shape with rounded rectangular corners in plan view.
  • the coil 104 is installed on the lower surface of the support portion 102b so that the middle position of the long side coincides with the rotation axis L1.
  • the coil 104, the support portion 102b, and the mirror 17 constitute a movable portion of the optical deflector 14.
  • Two sets of magnets 105 and 106 are arranged so that the x-axis positive side and x-axis negative side portions of the coil 104 are sandwiched in the x-axis direction, respectively.
  • the magnet 105 and the magnet 106 are installed on the yoke 107.
  • the yoke 107 is installed on the bottom surface of the recess 101 a of the housing 101.
  • the magnets 105 and 106 are permanent magnets having a substantially uniform magnetic flux density on the magnetic pole surface.
  • the direction of the magnetic field generated by the x-axis positive magnets 105 and 106 and the direction of the magnetic field generated by the x-axis negative magnets 105 and 106 are the same.
  • the x-axis positive magnet 105 has the north pole facing the coil 104
  • the x-axis negative magnet 105 has the south pole facing the coil 104
  • the x-axis positive magnet 106 has the south pole facing the coil 104
  • the x-axis negative magnet 106 has the north pole opposed to the coil 104.
  • the “neutral position” is the position of the mirror 17 when no drive signal (voltage) is applied to the coil 104.
  • the position of the movable portion when the mirror 17 is in the neutral position is also referred to as the neutral position.
  • FIG. 4A is a side view schematically showing the configuration of the wavelength conversion member 15.
  • the wavelength conversion member 15 has a configuration in which a reflective film 202 and a phosphor layer 203 are laminated on the upper surface of a substrate 201.
  • the substrate 201 is made of, for example, silicon or aluminum nitride ceramic.
  • the reflective film 202 is configured by laminating a first reflective film 202a and a second reflective film 202b.
  • the first reflective film 202a is, for example, a metal film such as Ag, an Ag alloy, or Al.
  • the second reflection film 202b has a function of protecting the first reflection film 202a from oxidation and the like as well as reflection.
  • SiO 2 , ZnO, ZrO 2 , Nb 2 O 5 , Al 2 O 3 , TiO 2 are used.
  • SiN, AlN, or other dielectric material The reflective film 202 does not necessarily need to be composed of the first reflective film 202a and the second reflective film 202b, and may be a single layer or a structure in which three or more layers are laminated.
  • the phosphor layer 203 is formed by fixing phosphor particles 203a with a binder 203b.
  • the phosphor particles 203a emit fluorescence in the yellow wavelength band when irradiated with laser light in the blue wavelength band emitted from the laser light source 12.
  • As the phosphor particles 203a for example, (Y n Gd 1-n ) 3 (Al m Ga 1-m ) 5 O 12 : Ce (0.5 ⁇ n ⁇ 1, 0.5) having an average particle diameter of 1 ⁇ m to 30 ⁇ m. ⁇ m ⁇ 1) is used. Further, a transparent material mainly containing silsesquioxane such as polymethylsilsesquioxane is used as the binder 203b.
  • the phosphor layer 203 is provided with a void 203 c formed near the center of the phosphor layer 203 and a void 203 c formed near the interface between the reflective film 202.
  • the void 203c formed inside the phosphor layer 203 is configured to have a higher density as it is closer to the reflective film 202. With this configuration, it is possible to more efficiently scatter laser light that has entered the inside and extract it from the light source device 2.
  • the void 203c formed near the interface with the reflective film 202 is in contact with the second reflective film 202b, which is a dielectric, it effectively scatters laser light and fluorescence while reducing energy loss due to the metal surface. Can be made.
  • the arrangement of the void 203c as described above is achieved by configuring the wavelength conversion member 15 using a phosphor paste in which phosphor particles 203a made of YAG: Ce and a binder 203b made of polysilsesquioxane are mixed. Can be easily formed. Specifically, the phosphor particles 203a and the second particles are formed on the substrate 201 (reflective film 202) using a phosphor paste obtained by mixing polysilsesquioxane in a binder 203b obtained by dissolving polysilsesquioxane in an organic solvent. . Thereafter, high temperature annealing at about 200 ° C. is performed to vaporize the organic solvent in the paste.
  • the void 203c can be easily formed in the portion close to the substrate 201.
  • the high-density void 203c can be easily formed in the vicinity of the reflective film 202.
  • the phosphor layer 203 further includes a filler 203d for increasing strength and heat resistance.
  • the difference in refractive index between the filler 203d and the binder 203b is also set to be large, similar to the difference in refractive index between the phosphor particles 203a and the binder 203b.
  • the laser light emitted from the laser light source 12 is irradiated to the excitation region R1 shown in FIG. 4A, and is scattered and absorbed on the surface or inside of the phosphor layer 203. At this time, part of the laser light is converted into light in the yellow wavelength band by the phosphor particles 203 a and emitted from the phosphor layer 203. Further, the other part of the laser light is scattered without being converted into light in the yellow wavelength band, and is emitted from the phosphor layer 203 as light in the blue wavelength band. At this time, light in each wavelength band is scattered while propagating through the phosphor layer 203, and thus is emitted from the light emitting region R2 wider than the excitation region R1.
  • the phosphor layer 203 is configured such that the refractive index difference between the binder 203b and the phosphor particle 203a and the refractive index difference between the binder 203b and the filler 203d are both large, thereby scattering light. And propagation of light inside the phosphor layer 203 can be suppressed. As a result, light can be emitted from the light emitting region R2 that is slightly wider than the excitation region R1.
  • a void 203c is further arranged in the phosphor layer 203 to enhance light scattering. As a result, the excitation region R1 and the light emission region R2 can be brought closer to each other.
  • FIG. 4B is a plan view schematically showing the configuration of the wavelength conversion member 15.
  • the wavelength conversion member 15 has a rectangular shape that is long in the X-axis direction in plan view.
  • the wavelength conversion member 15 is scanned in the X-axis direction with a laser beam when the mirror 17 of the optical deflector 14 is rotated.
  • B1 indicates the beam spot of the laser beam.
  • the beam spot B1 reciprocates on the incident surface 15a of the wavelength conversion member 15 in the width W1.
  • the beam spot B1 is illustrated so as to move linearly on the incident surface 15a. However, since the laser beam is actually incident on the incident surface 15a from an oblique direction, the beam spot B1 is It moves on the incident surface 15a along a movement locus that is slightly convex in the axial positive direction.
  • the region of the beam spot B1 on the incident surface 15a corresponds to the excitation region R1 in FIG. 4A. While the beam spot B1 moves on the incident surface 15a of the wavelength conversion member 15, the diffused light in the blue wavelength band and the diffused light in the yellow wavelength band from the light emitting region R2 slightly wider than the region of the beam spot B1 in the positive direction of the Z axis. Radiated.
  • the light of the two wavelength bands thus radiated is taken in by the projection optical system 3 shown in FIGS. 1 and 2 and projected onto the target area. Accordingly, white light obtained by combining light in the blue wavelength band and light in the yellow wavelength band is projected from the light projecting device 1 onto the target area.
  • FIG. 5 is a circuit block diagram showing a main circuit configuration of the light source device 2.
  • the light source device 2 includes a controller 301, a laser drive circuit 302, a mirror drive circuit 303, and an interface 304 as a circuit unit. These circuits are mounted on the circuit board 18 shown in FIGS. A laser light source 12 is further installed on the circuit board 18. The circuit may be configured such that a part or all of each circuit is mounted on a circuit board different from the circuit board 18 and connected to the circuit on the circuit board 18 side with a cable.
  • the controller 301 includes an arithmetic processing circuit such as a CPU (Central Processing Unit) and a memory 301a, and controls each unit according to a predetermined control program stored in the memory 301a.
  • the memory 301a is configured by a ROM, a RAM, a hard disk, and the like.
  • the laser drive circuit 302 drives the laser light source 12 in accordance with a control signal from the controller 301.
  • the mirror drive circuit 303 drives the movable part (mirror 17, support part 102 b, coil 104) of the optical deflector 14 in accordance with a control signal from the controller 301.
  • the interface 304 is an input / output circuit for the controller 301 to transmit / receive signals to / from an external control circuit such as a vehicle-side control circuit.
  • the waveform (drive profile) of the drive signal (voltage) is set based on the motion characteristics (motion equation) of the movable part so that a predetermined reciprocation of the mirror 17 can be realized.
  • the drive profile is stored in advance in the memory 301a.
  • the controller 301 controls the movable part of the optical deflector 14 for each cycle based on the drive profile stored in the memory 301a.
  • FIG. 6A is a graph showing the waveform of the movement profile.
  • the movement profile is information that defines the reciprocating movement of the mirror 17.
  • changes in the rotation angle of the mirror 17 are defined in time series.
  • the vertical axis indicates the rotation angle from the neutral position of the mirror 17 (movable part), and the horizontal axis indicates the elapsed time for one cycle for reciprocating the mirror 17.
  • the moving profile is obtained by smoothing the relationship between the time defined in a straight line and the rotation angle by a simple moving average method.
  • the rotation angle is maximum in the minus direction at time 0 and t2, and the rotation angle is maximum in the plus direction at time t1.
  • the range from 0 to t1 corresponds to the forward path
  • the range from t1 to t2 corresponds to the return path.
  • the slope of the waveform is small near the middle of the range from 0 to t1 and near the middle of the range from t1 to t2.
  • a portion with a small inclination in the movement profile indicates a state in which the rotation speed (angular velocity) of the mirror 17 (movable part) is low. That is, in the movement profile of FIG. 6A, the rotation speed (angular speed) of the mirror 17 (movable part) is small near the middle of the forward path and near the middle of the backward path.
  • FIG. 6B shows a change in the angular velocity of the mirror 17 (movable part) when the mirror 17 is rotated by the movement profile of FIG. 6A.
  • FIG. 6B shows the lighting periods of the laser light source 12 in an overlapping manner.
  • the rotation speed of the mirror 17 is substantially constant at a speed close to zero near the middle of the forward path and near the middle of the return path.
  • the laser light source 12 is turned off for a certain period at the start and end of the forward path and at the start and end of the return path, and is lit in the other periods. In the lighting state, the laser light source 12 emits laser light with a constant intensity.
  • the angular velocity of the mirror 17 is close to 0 near the start and end of the forward path and near the start and end of the return path. During these periods, as shown in FIG. 6B, the laser light source Since 12 is turned off, the generation of light from the wavelength conversion member 15 is suppressed.
  • the amount of light projected from the light projecting device 1 is increased at the center position of the target area. Therefore, when the light projecting device 1 is used for a vehicle headlamp, the illuminance of the central region in the front region of the vehicle can be increased.
  • FIG. 6C shows a profile (drive profile) of a drive signal (voltage) to be applied to the coil 104 when the mirror 17 (movable part) is moved as shown in FIG. 6A.
  • the vertical axis represents the voltage applied to the coil 104
  • the horizontal axis represents the elapsed time for one cycle for reciprocating the mirror 17.
  • the drive profile of FIG. 6C is movable so that the movable parts (mirror 17, support part 102 b, coil 104) of the optical deflector 14 can rotate with the movement profile shown in FIG. 6A as described above. This is generated based on the motion characteristics (motion equation) of the unit and stored in the memory 301a.
  • F is the thrust (N) of the movable part.
  • the movable part includes the coil 104, the support part 102b, and the mirror 17.
  • m is the mass (kg) of the movable part.
  • a is the angular acceleration (rad / s 2 ) of the movable part.
  • c is the viscosity coefficient (Ns / rad) of the movable part.
  • v is the angular velocity (rad / s) of the movable part.
  • k is the spring constant (N / rad) of the beam portion 102c.
  • x is the rotation angle (rad) of the movable part.
  • Kt is a thrust constant (N / V) of the movable part.
  • E is a voltage (V) applied to the coil 104.
  • the drive profile is generated by the controller 301 according to the flowchart shown in FIG. 7 and stored in the memory 301a.
  • the controller 301 generates a drive profile by applying the generation process of FIG. 7 to the movement profile shown in FIG. 6A.
  • each step shown in FIG. 7 may be executed by an external device to generate a drive profile.
  • the drive profile generated by the external device is stored in the memory 301a.
  • E (t) is a voltage applied to the coil 104 at time t.
  • Xt (t) is the rotation angle of the movable part at time t based on the movement profile.
  • X (t) is the current rotation angle of the movable part at time t.
  • F (t) is the thrust of the movable part at time t.
  • a (t) is the angular acceleration of the movable part at time t.
  • D (t) is a driving force applied to the movable part at time t.
  • V (t) is the angular velocity of the movable part at time t.
  • dt is a unit time.
  • the controller 301 acquires the target rotation angle Xt (t) at the time t from the movement profile, and obtains the acquired Xt (t) and the rotation angle X (t) of the movable part at the time t.
  • the value of voltage E (t) is calculated so as to eliminate the difference.
  • the controller 301 acquires E (t) at time t while increasing the value of time t by unit time dt until the movement profile ends one cycle.
  • the controller 301 performs the coiling at time t according to the following equation (11) based on the rotation angle Xt (t) in the movement profile and the current rotation angle X (t).
  • the voltage E (t) applied to 104 is calculated (S11).
  • E (t) G (Xt (t) ⁇ X (t)) (11)
  • the right side of the equation (11) is a function for obtaining a voltage necessary for eliminating the difference between the rotation angle Xt (t) in the movement profile and the current rotation angle X (t).
  • G is a servo gain.
  • G has a coefficient of 1 for open control and an arbitrary coefficient for closed control.
  • the controller 301 calculates the thrust of the movable part at time t according to the following equation (12). F (t) is calculated (S12).
  • D (t) F (t) ⁇ c ⁇ V (t) ⁇ k ⁇ X (t) (13)
  • the controller 301 calculates the angular acceleration A (t) of the movable part at time t according to the following equation (14) based on D (t) calculated in step S13 and the mass m of the movable part. Calculate (S14).
  • the controller 301 calculates the unit from the current time according to the following equation (15) based on A (t) calculated in step S14, the angular velocity V (t) of the movable part, and the unit time dt.
  • the angular velocity V (t + dt) of the movable part at time (t + dt) after elapse of time dt is calculated (S15).
  • V (t + dt) V (t) + A (t) ⁇ dt (15)
  • the controller 301 calculates the unit from the current time according to the following equation (16) based on the current rotation angle X (t), the angular velocity V (t) of the movable part, and the unit time dt.
  • a rotation angle X (t + dt) at a time (t + dt) after elapse of time dt is calculated (S16).
  • the controller 301 sets a value obtained by adding the unit time dt to the value of the time t as a new time t (S17).
  • the unit time dt is, for example, 2.5 ⁇ sec.
  • the controller 301 determines whether or not the process has been completed for one cycle on the movement profile (S18). Specifically, the controller 301 determines whether or not the time t has exceeded the end time of one cycle of the movement profile. If the process has not been completed for one cycle of the movement profile (S18: NO), the controller 301 returns the process to step S11 and performs the processes of steps S11 to S17 again. When the process of one cycle of the movement profile is completed (S18: YES), the controller 301 ends the process shown in FIG.
  • the voltage E (t) to be applied to the coil 104 is acquired every unit time dt.
  • the determination in step S18 is YES
  • the voltage E (t) is acquired with the resolution of the unit time dt for one cycle of the movement profile.
  • a set on the time series of the voltage E (t) acquired in this way becomes the drive profile shown in FIG. 6C.
  • the controller 301 stores the acquired voltage E for one period in the memory 301a as a drive profile.
  • the controller 301 sets the drive profile stored in the memory 301a in the mirror drive circuit 303.
  • the mirror drive circuit 303 applies a drive signal (voltage) to the coil 104 according to the set drive profile.
  • the movable part of the optical deflector 14 is driven in an operation state substantially similar to the movement profile of FIG. 6A.
  • the drive waveform of the drive signal (voltage) for driving the movable part (mirror 17, support part 102b, coil 104) of the optical deflector 14 is the motion characteristic of the movable part of the optical deflector 14 (the motion of equation (1)).
  • the movable part is set to realize a predetermined movement operation (movement profile). Specifically, a drive profile is generated according to the process shown in FIG. 7, and the generated drive profile is stored in the memory 301a. In the actual operation of the light projecting device 1, the movable part is driven based on the drive profile. Thereby, even when a high-weight scanning means such as a high-reflectance mirror is used, the scanning means can be controlled appropriately and with high accuracy.
  • the optical deflector 14 includes a coil 104 and a magnet 105, 106 for driving the movable part, and electromagnetic force generated by applying a drive signal to the coil 104, Move the moving part.
  • the mirror 17 can be smoothly driven even when the highly reflective and heavy mirror 17 is installed on the movable part as described above.
  • the scanning speed of the laser light is close to zero near the center of the scanning width W1 (see FIG. 4B) in each direction of the laser light on the incident surface 15a. It becomes almost constant at the speed.
  • the amount of light generated near the center of the width W1 is effectively increased, and as a result, the amount of light projected from the light projecting device 1 is effectively increased near the center position of the target area. Therefore, when the light projector 1 is used for a vehicle headlamp, it is possible to effectively increase the illuminance particularly in the central region of the front region of the vehicle.
  • the waveform of the drive profile has an asymmetric shape between the forward path and the return path, as shown in FIG. 6C.
  • step S12 shown in FIG. 7 is changed to step S21 shown in FIG. 8A.
  • step S21 the controller 301 calculates the back electromotive force En (t) at time t according to the following equation (21) based on the coefficient Kd defined by the number of coil turns and the magnetic flux.
  • FIG. 8B is a diagram comparing a drive profile generated when the back electromotive voltage is considered and a drive profile generated when the back electromotive voltage is not considered.
  • the dotted line waveform is a drive profile generated in the first embodiment when the back electromotive voltage is not considered.
  • the solid line waveform is a drive profile generated in the second embodiment when the back electromotive voltage is considered.
  • the peak of the drive profile when the counter electromotive voltage is taken into consideration becomes larger than the drive profile when the counter electromotive voltage is not taken into account.
  • the peak of the drive profile when the counter electromotive voltage is taken into consideration is smaller than the drive profile when the counter electromotive voltage is not taken into account.
  • the rotation operation of the movable part can be made closer to the movement profile. Therefore, the mirror 17 can be rotated more accurately by the intended rotation operation, and the light emission amount in the wavelength conversion member 15 can be controlled more precisely.
  • the movable portion (mirror 17) of the optical deflector 14 is rotationally controlled so that the moving speed of the beam spot B1 is constant near zero near the center position of the width W1 shown in FIG. 4B. It was done.
  • the spot illumination control instruction is received from the external control circuit shown in FIG. 5, the moving speed of the beam spot B1 is constant around zero in the range in which the spot illumination is instructed.
  • the movable part (mirror 17) of the optical deflector 14 is controlled to rotate.
  • the spot illumination is a control in which light is projected only in a predetermined range of the light projection range from the light projecting device 1 and light is not projected in other ranges.
  • the controller 301 receives a spot illumination control instruction from the external control circuit, the controller 301 sets a movement profile that matches the designated spot illumination range, and based on the set movement profile, the flowchart of FIG. 7 or 8A. Accordingly, a drive profile for driving the movable part is generated. Then, the controller 301 controls the optical deflector 14 in accordance with the generated spot illumination drive profile.
  • the movement profile for spot illumination may be generated by the controller 301 according to a predetermined algorithm according to the spot illumination range, or may be stored in advance in the memory 301a for each spot illumination range. . In the latter case, the controller 301 reads a movement profile corresponding to the designated spot illumination range from the memory 301a and uses it for generating a drive profile.
  • the drive profile is stored in advance in the memory 301a for each spot illumination range, and the drive profile corresponding to the instructed spot illumination range. May be read from the memory 301a and set as a drive profile during the spot illumination operation.
  • FIG. 9 is a flowchart showing a drive profile switching process according to the third embodiment.
  • the movement profile is stored in advance in the memory 301a for each spot illumination range, and the controller 301 generates a drive profile based on the movement profile.
  • the controller 301 When the controller 301 receives a spot illumination instruction from the external control circuit shown in FIG. 5 (S31: YES), the controller 301 selects a movement profile based on the received spot illumination instruction (S32). As described above, the memory 301a stores a plurality of movement profiles according to the range of spot illumination. Each movement profile is set so that the rotation speed of the movable part is constant near zero in an angle range corresponding to spot illumination.
  • the controller 301 executes a step of generating the drive profile of the first embodiment (see FIG. 7) based on the movement profile selected in step S32, and generates a drive profile (S33). Note that the generation of the drive profile may be performed based on the step of generating the drive profile of the second embodiment.
  • the controller 301 drives the movable part based on the drive profile generated in step S33 (S34).
  • the laser light source 12 is turned on in an angle range corresponding to spot illumination, and the laser light source 12 is turned off in other angle ranges.
  • the controller 301 drives the movable unit based on the generated drive profile until receiving an instruction to end spot illumination from the external control circuit.
  • the controller 301 When the controller 301 receives an instruction to end spot illumination from the external control circuit (S35: YES), the movable portion is based on the original drive profile, that is, the same drive profile as that of the first embodiment stored in the memory 301a in advance. Is driven (S36). Thus, the process related to spot illumination shown in FIG. 9 is completed.
  • the mirror 17 when spot illumination is realized, the mirror 17 is controlled so that the rotational speed of the movable portion is reduced in an angle range corresponding to spot illumination. For this reason, in the scanning range corresponding to the spot illumination on the incident surface 15a of the wavelength conversion member 15, the amount of emitted light can be effectively increased, and the amount of projection light in the spot illumination range on the target area is effectively increased. Can do. Therefore, the target range of spot illumination can be effectively illuminated.
  • the optical deflector 14 is configured to rotate the mirror 17 about one axis.
  • the optical deflector 14 is configured so that the mirror 17 can rotate about two rotation axes orthogonal to each other.
  • the scanning locus of the laser light on the incident surface 15a of the wavelength conversion member 15 is different from that in the first embodiment.
  • a plurality of scanning lines are set on the incident surface 15a of the wavelength converting member 15, and accordingly, the size of the beam spot that scans the incident surface 15a of the wavelength converting member 15 is It is narrowed down compared with one embodiment.
  • Other configurations of the light projecting device 1 and the light source device 2 are the same as those in the first embodiment.
  • the size of the beam spot is narrowed down by adjusting the distance between the laser light source 12 and the collimator lens 13, the numerical aperture of the collimator lens 13, etc., and converging the laser beam by the collimator lens 13. Can do.
  • the reflecting surface of the mirror 17 may be a concave surface so that the laser beam is converged.
  • FIG. 10 is a perspective view showing the configuration of the optical deflector 14 according to the fourth embodiment.
  • FIGS. 11A and 11B are cross-sectional views showing the configuration of the optical deflector 14 according to the fourth embodiment.
  • FIG. 11A a cross-sectional view of XIA-XIA, in which the optical deflector 14 of FIG.
  • FIG. 11B shows a cross-sectional view of the XIB-XIB section obtained by cutting the optical deflector 14 of FIG. 10 at a central position in the x-axis direction by hatching in a plane parallel to the yz plane.
  • FIGS. 10, 11A, and 11B show the same x, y, and z axes as in FIGS. 3A and 3B.
  • the housing 111 has a rectangular parallelepiped shape that is long in the x-axis direction. On the upper surface of the housing 111, a rectangular recess 111a is formed in plan view.
  • the housing 111 is made of a nonmagnetic metal material having high rigidity.
  • a frame-shaped leaf spring 112 is installed on the upper surface of the housing 111.
  • the leaf spring 112 has an outer frame portion 112a, an inner frame portion 112b, two beam portions 112c, a support portion 112d, and two beam portions 112e.
  • Two beam portions 112c are formed so as to extend in parallel to the x-axis direction from the outer frame portion 112a at an intermediate position in the y-axis direction, and the outer frame portion 112a and the inner frame portion 112b are connected by these beam portions 112c.
  • two beam portions 112e are formed so as to extend in parallel to the y-axis direction from the inner frame portion 112b, and the inner frame portion 112b and the support portion 112d are formed by these beam portions 112e. It is connected.
  • the inner frame portion 112b has a contour with rounded rectangular corners in plan view, and two beam portions 112c are connected to the inner frame portion 112b at an intermediate position in the y-axis direction of the inner frame portion 112b.
  • the support portion 112d has a rectangular outline in plan view, and two beam portions 112e are connected to the support portion 112d at an intermediate position in the x-axis direction of the support portion 112d.
  • the leaf spring 112 has a symmetrical shape in the x-axis direction and the y-axis direction.
  • the leaf spring 112 is integrally formed of a flexible metal material.
  • the plate spring 112 is fixed to the upper surface of the housing 111 with four screws 113 in a state where the outer frame portion 112 a is placed on the upper surface of the housing 111.
  • the mirror 17 is fixed to the upper surface of the support portion 112d with an adhesive or the like.
  • the mirror 17 is substantially square in plan view.
  • the axis connecting the two beam portions 112e is the rotation axis L1 of the mirror 17 for scanning the laser beam in the longitudinal direction of the wavelength conversion member 15 as in the first embodiment.
  • the axis connecting the two beam portions 112c becomes the rotation axis L2 of the mirror 17 for changing the scanning line of the laser beam in the wavelength conversion member 15.
  • the laser light from the laser light source 12 enters the center position of the mirror 17. That is, the laser light from the laser light source 12 is incident on the mirror 17 so that the central axis of the laser light passes through the position where the rotation axes L1 and L2 intersect.
  • the coil 114 is attached to the lower surface of the support portion 112d.
  • the coil 114 circulates in a shape with rounded rectangular corners in plan view.
  • the coil 114 is installed on the lower surface of the support portion 112d so that the middle position of the long side coincides with the rotation axis L1.
  • the coil 114, the support part 112d, and the mirror 17 constitute a movable part of the optical deflector 14.
  • Two sets of magnets 115 and 116 are arranged so as to sandwich the coil 114 in the x-axis direction.
  • the magnets 115 and 116 are installed on the yoke 117, and the yoke 117 is installed on the bottom surface of the recess 111 a of the housing 111.
  • the method of setting the magnetic poles of each set of magnets 115 and 116 is the same as that of the magnets 105 and 106 shown in FIGS. 3A and 3B.
  • a coil 118 is attached to the lower surface of the inner frame portion 112b.
  • the coil 118 has the same shape as the inner frame portion 112b in plan view.
  • the coil 118 is installed on the lower surface of the inner frame portion 112b so that the intermediate position of the short side coincides with the rotation axis L2.
  • the magnet 119 is arrange
  • the magnet 119 is a permanent magnet having a substantially uniform magnetic flux density on the magnetic pole surface.
  • the inner frame portion 112b rotates about the rotation axis L2.
  • the inner frame portion 112b is inclined by an angle corresponding to the magnitude of the drive signal. That is, the inner frame portion 112b is inclined from the neutral position shown in FIG. 10 by an angle at which the elastic restoring force generated in the beam portion 112c and the electromagnetic force excited by the coil 118 are balanced.
  • the mirror 17 rotates together with the support portion 112d as the inner frame portion 112b rotates.
  • the support portion 112d rotates about the rotation axis L1 by applying a drive signal (voltage) to the coil 114 as in the configuration of FIGS. 3A and 3B.
  • a drive signal voltage
  • the mirror 17 rotates about the rotation axis L1.
  • the drive signals are independently applied to the coils 114 and 118, whereby the mirror 17 is individually moved about the rotation axes L1 and L2. It can be rotated.
  • FIG. 12 is a diagram schematically showing a scanning state of the laser light in the wavelength conversion member 15.
  • a plurality of scanning lines SL1 are set on the incident surface 15a of the wavelength conversion member 15.
  • five scanning lines SL1 are set on the incident surface 15a.
  • the number of scanning lines SL1 is not limited to this.
  • the beam spot B2 of the laser beam is moved back and forth in the X-axis positive / negative direction from the X-axis negative start position on the uppermost scanning line SL1, and then moved to the X-axis negative start position of the second scanning line SL1. Positioned. During the period when the scanning line SL1 is changed, the laser light source 12 is turned off. Thereafter, the beam spot B2 is reciprocated in the X-axis positive / negative direction along the second-stage scanning line SL1, and then positioned at the start position on the X-axis negative side of the third-stage scanning line SL1. Such movement is repeated up to the fifth scanning line SL1.
  • the beam spot B2 is returned from the fifth-stage scanning line SL1 to the fourth-stage scanning line SL1, and reciprocates along the fourth-stage scanning line SL1. A similar operation is repeated up to the uppermost scanning line SL1. In this way, the beam spot B2 is positioned at the start position on the negative X-axis side of the first-stage scanning line SL1. Thereafter, the same scanning is repeated for the five scanning lines SL1.
  • the pitch P21 of the central three scanning lines SL1 is equal to the pitch P22 of the uppermost and lowermost scanning lines SL1 and the scanning lines SL1 adjacent to these scanning lines SL1. Is set to
  • the laser beam scanning method for the incident surface 15a of the wavelength conversion member 15 is not limited to the above.
  • the wavelength conversion member jumps to the start position of the next scanning line SL1 and scans the next scanning line SL1 in the reverse direction.
  • the 15 incident surfaces 15a may be scanned with laser light. In this case, it is preferable to generate the drive profile individually for each scanning direction.
  • the movement of the beam spot B2 along the scanning line SL1 is performed by rotating the mirror 17 about the rotation axis L1 shown in FIG.
  • the scanning line SL1 is changed by rotating and tilting the mirror 17 about the rotation axis L2 shown in FIG.
  • the optical deflector 14 is controlled by the mirror driving circuit 303 shown in FIG. 5 so that the beam spot B2 scans the incident surface 15a of the wavelength conversion member 15 as described above.
  • FIG. 13A is a graph showing a drive signal (voltage) applied to the coil 118.
  • the beam spot B2 is located on the uppermost scanning line SL1, and from time t12 to t13 and t18 to t19, the beam spot B2 is located on the second scanning line SL1 from the top. At times t13 to t14 and t17 to t18, the beam spot B2 is positioned on the central scanning line SL1, and at times t14 to t15 and t16 to t17, the beam spot B2 is positioned on the second scanning line SL1 from the bottom. At times t15 to t16, the beam spot B2 is positioned on the lowest scanning line SL1.
  • the mirror 17 is positioned at the neutral position shown in FIG. At times t13 to t14 and t17 to t18, the voltage applied to the coil 118 becomes zero.
  • the scanning with respect to each scanning line SL1 is performed according to the driving profile of FIG. 6C, as in the first embodiment.
  • the angular velocity of the movable portion is decelerated in the rotation range near the neutral position, so that the scanning speed of the laser beam near the center of each scanning line SL1 is decelerated. Therefore, the amount of emitted light per unit time is increased near the center of the incident surface 15a of the wavelength conversion member 15.
  • the luminous intensity of the light irradiated to the target area is distributed as shown in FIG. 13B.
  • a white portion indicates a region where the light intensity is high
  • a black portion indicates a region where the light intensity is low.
  • the amount of light generated in the vicinity of the center of the wavelength conversion member 15 can be increased.
  • the wavelength conversion member 15 is scanned along the plurality of scanning lines SL1 with the more narrow beam spot B2, for example, white light is emitted on the light emitting region R2.
  • a region where light emission is stopped and a region where white light is emitted can be set more finely.
  • the white light generated from the light source device 2 is projected onto the target area by the projection optical system 3, the area where the white light projection is stopped or the area where the white light projection is performed on the target area is more Can be set in detail.
  • the white light irradiation region and the non-irradiation region are set more finely according to the position of the oncoming vehicle and the position of the pedestrian. be able to.
  • the pitches P21 and P22 of the scanning line SL1 are the same. However, as shown in FIG. 13D, the pitch P21 on the center side is larger than the pitch P22 on the end side. You may set small. In this way, the light emission amount at the center can be made larger than the light emission amount at the end also in the direction (Y-axis direction) crossing the scanning line SL1.
  • the pitches P21 and P22 of the scanning line SL1 can be adjusted by changing the voltage applied to the coil 118 shown in FIGS. 11A and 11B.
  • a fixed driving profile set in advance is used as in the first embodiment.
  • Different drive profiles may be used.
  • the drive profile of each scan line SL1 is set so that the period during which the moving speed of the beam spot B1 is decelerated in the scan line SL1 on the Y axis positive / negative end side is shorter than that in the center scan line SL1. May be set. In this way, as shown in FIG. 13C, the luminous intensity of the light applied to the target region can be increased in the central circular region.
  • the drive profile in the scanning line SL1 of each stage it is possible to irradiate the target area with various light distribution patterns without reducing the total light amount.
  • the magnet 105 and the magnet 106 are disposed so as to sandwich the coil 104, but the magnets 105 and 106 are not necessarily disposed so as to sandwich the coil 104. Any one of the magnets 105 and 106 may be omitted as long as the magnetic field can be applied with the intensity distribution. Similar changes can be made in the fourth embodiment.
  • the light source device 2 was the structure which uses the reflection type wavelength conversion member 15, the light source device 2 is the structure which uses the transmission type wavelength conversion member 15. There may be.
  • the shape of the leaf springs 102 and 112 is not necessarily limited to the shape shown in the first embodiment and the second embodiment.
  • two screws 103 adjacent in the x-axis direction are used.
  • the region of the frame portion 102a other than the region sandwiched between the regions may be omitted.
  • the shape of the mirror 17 does not necessarily have to be a square in a plan view, and may be a rectangle or a circle in a plan view.
  • the shape of the support portion 102b can also be changed as appropriate.
  • one of the two holes 102d provided with the leaf spring 102 is a long hole, but before both the two holes 102d are long holes and the screw 103 is tightened.
  • the leaf spring 102 may be slightly movable in the longitudinal direction.
  • a configuration may be used in which a screw 103 is tightened after a gap gauge having a desired thickness is inserted to determine the position of the leaf spring 102.
  • the screw 103 may be tightened after the position of the leaf spring 102 is adjusted in the longitudinal direction while the gap between the coil 104 and the magnets 105 and 106 is measured with a measuring device.
  • the reflecting surface of the mirror 17 does not necessarily have to be a flat surface, and may have a concave shape capable of giving a converging action to the laser light.
  • the concave shape may be adjusted so that the shape of the beam spots B1 and B2 on the incident surface 15a of the wavelength conversion member 15 can be formed into a substantially linear shape in the Y-axis direction.
  • a lens for shaping the beam spots B1 and B2 on the incident surface 15a of the wavelength conversion member 15 into a predetermined shape may be attached to the reflection surface of the mirror 17.
  • the type of the phosphor particles 203a included in the phosphor layer 203 of the wavelength conversion member 15 is not necessarily one type.
  • a plurality of types that generate fluorescence with different wavelengths by the laser light from the laser light source 12 are used.
  • Phosphor particles 203 a may be included in the phosphor layer 203.
  • light of a predetermined color is generated by the diffused light of the fluorescence generated from each type of phosphor particles 203a and the diffused light of the laser light that has not been wavelength-converted by the phosphor particles 203a.
  • the drive signal applied to the coils 104 and 118 is a voltage, but is not limited thereto, and may be a current. That is, the drive signal applied to the coils 104 and 118 may be controlled by voltage or current.
  • the optical deflector 14 is an electromagnetic type, but may be a piezoelectric type.
  • the controller 301 generates a drive profile, and the generated drive profile is set in the mirror drive circuit 303 as a drive profile during actual operation.
  • the mirror drive circuit 303 generates and generates a drive profile.
  • the drive profile may be set as a drive profile during actual operation.
  • the light projecting device 1 may turn on and off the laser light at a predetermined timing so that a part of the entire range of the light irradiation region is in a light shielding state.
  • FIG. 14A is a diagram schematically showing the timing of turning on and off the laser light in this case.
  • the laser light is turned off between the times t31 and t32, and as indicated by the left-pointing arrow, the rotation of the mirror 17 in the return path.
  • the laser beam is turned off between times t41 and t42.
  • the control timing shifts in the forward path and the return path as shown in FIGS. 14B and 14C due to factors such as circuit delay. It can happen. That is, as shown in FIG. 14B, in the forward path, the extinguishing timing may be shifted to time t33, and the lighting timing may be shifted to time t34. Similarly, as shown in FIG. 14C, in the return path, the turn-off timing may shift to time t43, and the turn-on timing may shift to time t44.
  • the turn-off and lighting timing when there is a deviation in the turn-off and lighting timing in the forward and return passes, it is preferable to correct the turn-off and lighting timing based on the deviation amount. For example, the timing deviation between turning off and lighting in the forward path and the return path is measured by the measuring device, and the measured timing deviation amount is stored in the memory 301a. Then, the controller 301 controls the laser driving circuit 302 so that the timing shift is eliminated based on the shift amount stored in the memory 301a. As a result, as in FIG. 14A, the turn-off timing can be matched in the forward path and the return path.
  • the light source device and the light projecting device according to the present disclosure scan appropriately and accurately even when a heavy scanning device such as a high reflectivity mirror is used as a scanning device for scanning the wavelength conversion member with light.
  • the means can be controlled.
  • These light source devices and light projecting devices can be used, for example, as a light source device for a vehicle headlamp, and are industrially useful.

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

波長変換部材に対して光を走査させるための走査手段として高反射率ミラー等の高重量の走査手段が用いられる場合も、適正かつ高精度に走査手段を制御することが可能な光源装置およびそれを備えた投光装置を提供する。レーザ光源と、波長変換部材と、光偏向器と、駆動部と、を備える。レーザ光源は、第1の波長を有するレーザ光を出射する。波長変換部材は、レーザ光の光路上に入射面を有し、第1の波長を第1の波長とは異なる第2の波長に変換し、かつレーザ光を拡散させて第2の波長を有する拡散光を生じせしめる。光偏向器は、レーザ光を、入射面上において走査させる。駆動部は、光偏向器に駆動信号を供給する。ここで、駆動部は、光偏向器の可動部が所定の移動動作を実現するように、可動部の運動特性に基づいて、駆動信号の駆動波形を設定する。

Description

光源装置および投光装置
 本開示は、光を発する光源装置およびそれを用いた投光装置に関する。
 従来、レーザ光源から出射された光を波長変換部材に照射することにより所定波長の光を生成する光源装置が知られている。この光源装置では、たとえば、波長変換部材により波長変換されて拡散された光と、波長変換部材により波長変換されずに拡散された光とが合成されて、白色光等、所定の色の光が生成される。このような光源装置が、たとえば、車両用前照灯の光源装置として利用されている。
 以下の特許文献1には、ミラー部を備えた光偏向器を用いて励起用の光で波長変換部材を走査する車両用灯具が記載されている。この車両用灯具では、ミラー部の往復揺動の速度を遅くすることにより、光変換部材の一部の領域の光度が高められる。これにより、車両用灯具に求められる一部の領域(たとえば、中央付近の領域)の光度が相対的に高い光度分布を形成することができる。
特開2015-153645号公報
 蛍光体を用いた光源装置では、より高光度の光を生成するために、波長変換部材を光で走査するためのミラーとして、たとえば、ガラス板に誘電体多層膜が形成された高反射率のミラーが用いられ得る。これに対し、上記特許文献1の構成では、光偏向器のミラー部として高反射率のミラーを用いると、ミラーの重量が大きいため、ミラーに慣性力が働いて、ミラーの揺動速度を適正に減速させることが困難となる。このため、上記特許文献1の構成では、ミラー部の揺動速度を適正に減速させるために、小型軽量の低反射率のミラーを用いざるを得ないものと想定され得る。
 しかし、低反射率のミラーは反射膜の耐光性が低いため、より高光度の光を生成するために高出力かつ高密度の光をミラーに入射させると、ミラーの反射膜が破壊されることが起こり得る。このため、低反射率のミラーを用いる場合は、光度を高めるための方法として、高出力かつ高密度の光をミラーに入射させる方法を用いることができない。したがって、上記特許文献1の構成では、光源装置の高出力化の要請に応えることが困難であった。
 かかる課題に鑑み、本開示は、波長変換部材に対して光を走査させるための走査手段として高反射率ミラー等の高重量の走査手段が用いられる場合も、適正かつ高精度に走査手段を制御することが可能な光源装置およびそれを用いた投光装置を提供することを目的とする。
 本開示の第1の態様は、光源装置に関する。第1の態様に係る光源装置は、レーザ光源と、波長変換部材と、光偏向器と、駆動部と、を備える。レーザ光源は、第1の波長を有するレーザ光を出射する。波長変換部材は、レーザ光の光路上に入射面を有し、第1の波長を第1の波長とは異なる第2の波長に変換し、かつレーザ光を拡散させて第2の波長を有する拡散光を生じせしめる。光偏向器は、レーザ光を、入射面上において走査させる。駆動部は、光偏向器に駆動信号を供給する。ここで、駆動部は、光偏向器の可動部が所定の移動動作を実現するように、可動部の運動特性に基づいて、駆動信号の駆動波形を設定する。
 本態様に係る光源装置によれば、光偏向器の可動部を駆動するための駆動信号の駆動波形が、可動部が所定の移動動作を実現するように、光偏向器の可動部の運動特性に基づいて設定される。このため、高反射率のミラー等、高重量の走査手段が用いられる場合も、適正かつ高精度に走査手段を制御することができる。
 本開示の第2の態様は、投光装置に関する。第2の態様に係る投光装置は、第1の態様に係る光源装置と、波長変換部材により拡散された光を投射する投射光学系と、を備える。
 本態様に係る投光装置によれば、第1の態様と同様の効果が奏され得る。
 以上のとおり、本開示に係る光源装置および投光装置によれば、波長変換部材に対して光を走査させるための走査手段として高反射率ミラー等の高重量の走査手段が用いられる場合も、適正かつ高精度に走査手段を制御することができる。
 本開示にかかる発明の効果ないし意義は、以下に示す実施の形態の説明により更に明らかとなろう。ただし、以下に示す実施の形態は、あくまでも、本開示にかかる発明を実施化する際の一つの例示であって、本開示は、以下の実施の形態に記載されたものに何ら制限されるものではない。
図1は、第1実施形態に係る投光装置の構成を示す斜視図である。 図2は、第1実施形態に係る投光装置の構成を示す断面図である。 図3Aは、第1実施形態に係る光偏向器の構成を示す斜視図である。 図3Bは、第1実施形態に係る光偏向器の構成を示す断面斜視図である。 図4Aは、第1実施形態に係る波長変換部材の構成を模式的に示す側面図である。 図4Bは、第1実施形態に係る波長変換部材の構成を模式的に示す平面図である。 図5は、第1実施形態に係る光源装置の主たる回路構成を示す回路ブロック図である。 図6Aは、第1実施形態に係る移動プロファイルの波形を模式的に示すグラフである。 図6Bは、第1実施形態に係る移動プロファイルに従ってミラーが回動される場合のミラーの角速度の変化を模式的に示すグラフである。 図6Cは、第1実施形態に係る駆動プロファイルの波形を模式的に示すグラフである。 図7は、第1実施形態に係る駆動プロファイルを生成する処理を示すフローチャートである。 図8Aは、第2実施形態に係る駆動プロファイルを生成する処理を示すフローチャートである。 図8Bは、第2実施形態に係る駆動プロファイルを第1実施形態に係る駆動プロファイルと比較して示す図である。 図9は、第3実施形態に係る駆動プロファイルの切替処理を示すフローチャートである。 図10は、第4実施形態に係る光偏向器の構成を示す斜視図である。 図11Aは、第4実施形態に係る光偏向器の構成を示す断面斜視図である。 図11Bは、第4実施形態に係る光偏向器の構成を示す断面斜視図である。 図12は、第4実施形態に係る波長変換部材におけるレーザ光の走査状態を模式的に示す図である。 図13Aは、第4実施形態に係る走査ラインに横切る方向に可動部を回動させるコイルに印加する駆動信号を模式的に示すグラフである。 図13Bは、第4実施形態に係る目標領域に照射される光の強度を模式的に示す図である。 図13Cは、第4実施形態の変更例に係る目標領域に照射される光の強度を模式的に示す図である。 図13Dは、第4実施形態の変更例に係る波長変換部材におけるレーザ光の走査状態を模式的に示す図である。 図14Aは、その他の変更例に係る光を照射させる領域の一部が遮光状態となるようレーザ光を点灯および消灯させることを模式的に示す図である。 図14Bは、その他の変更例に係る往路においてレーザ光の点灯および消灯のタイミングがずれることを模式的に示す図である。 図14Cは、その他の変更例に係る復路においてレーザ光の点灯および消灯のタイミングがずれることを模式的に示す図である。
 以下、本開示の実施形態について、図を参照して説明する。便宜上、各図には互いに直交するX、Y、Z軸が付記されている。X軸方向およびY軸方向は、それぞれ、投光装置の幅方向および奥行き方向であり、Z軸方向は投光装置の高さ方向である。Z軸正方向が、投光装置における光の投射方向である。
 <第1実施形態>
 図1は、第1実施形態に係る投光装置1の構成を示す斜視図である。図2は、第1実施形態に係る投光装置1の構成を示す断面図である。図2には、Y-Z平面に平行な平面で投光装置1をX軸方向の中央位置において切断した断面図が示されている。
 図1および図2を参照して、投光装置1は、光を生成する光源装置2と、光源装置2により生成された光を投射するための投射光学系3とを備えている。投射光学系3は、2つのレンズ3a、3bを備え、これらレンズ3a、3bによって光源装置2からの光を集光して目標領域へと投射する。なお、投射光学系3は、必ずしも2つのレンズ3a、3bのみから構成されなくともよく、たとえば、他のレンズやミラーを備えていてもよい。また、投射光学系3は、凹面ミラーによって光源装置2からの光を集光する構成であってもよい。
 光源装置2は、ベース11に、各種部材が設置された構成となっている。具体的には、投射用の光を生成するための構成として、レーザ光源12と、コリメータレンズ13と、光偏向器14と、波長変換部材15がベース11に設置されている。コリメータレンズ13は、ホルダ16を介してベース11に設置されている。
 レーザ光源12は、青色波長帯(たとえば、450nm)のレーザ光をZ軸正方向に出射する。レーザ光源12は、たとえば、半導体レーザからなっている。レーザ光源12から出射されるレーザ光の波長は、適宜変更可能である。また、レーザ光源12は、必ずしも単一波長帯のレーザ光を出射するものでなくともよく、たとえば、複数のモードを持ったマルチモードレーザや1つのパッケージに複数の発光素子がマウントされたマルチエミッタの半導体レーザであってもよい。
 コリメータレンズ13は、レーザ光源12から出射されたレーザ光を平行光に変換する。コリメータレンズ13は、レーザ光源12から出射されたレーザ光を収束させ得るように、光軸方向の位置が調整されてもよい。
 光偏向器14は、ミラー17を備え、ミラー17を回動軸L1について回動させることにより、コリメータレンズ13を通過したレーザ光の進行方向を変化させる。ミラー17の入射面は平面である。ミラー17は、たとえば、ガラス板に誘電体多層膜を形成した高反射率のミラーである。ミラー17は、中立位置において、X-Z平面に平行な面に対して、Y-Z平面に平行な方向に所定角度だけ傾くように配置される。ミラー17の回動軸L1は、Y-Z平面に平行で、且つ、Z軸方向に対して所定角度だけ傾いている。光偏向器14の構成は、追って、図3Aおよび図3Bを参照して説明する。
 波長変換部材15は、ミラー17によって反射されたレーザ光が入射する位置に配置されている。波長変換部材15は、長方形形状の板状の部材であり、入射面がX-Y平面に平行となり、且つ、長手方向がX軸に平行となるように、ベース11に設置されている。上記のように、ミラー17が回動軸L1について回動することにより、波長変換部材15は、レーザ光によって長手方向に走査される。
 波長変換部材15は、入射したレーザ光の一部を、青色波長帯とは異なる波長に変換して、Z軸方向に拡散させる。波長変換されなかった他のレーザ光は、波長変換部材15によってZ軸方向に拡散される。こうして拡散された2種類の波長の光が合成されて、所定の色の光が生成される。各波長の光は、投射光学系3に取り込まれて、目標領域に投射される。
 第1実施形態では、波長変換部材15によって、レーザ光の一部が、黄色波長帯の光に変換される。波長変換後の黄色波長帯の拡散光と、波長変換されなかった青色波長帯の散乱光とが合成されて、白色の光が生成される。なお、波長変換後の波長は黄色波長帯でなくてもよく、生成される光の色は、白以外の色であってもよい。波長変換部材15の構成は、追って、図4Aおよび図4Bを参照して説明する。
 ベース11の下面には、回路基板18が設置されている。この回路基板18に、レーザ光源12および光偏向器14を制御するための回路が実装されている。図1に示すように、回路基板18の端子部が、ベース11のY軸正側において、外部に露出しており、この端子部が光偏向器14と電気的に接続され、ベース11のY軸負側の回路基板18に実装されているコネクタ19によって回路基板18が外部と接続される。
 図3Aおよび図3Bは、それぞれ、光偏向器14の構成を示す斜視図および断面斜視図である。図3Bには、x-z平面に平行な平面で、図3Aに示す光偏向器14をy軸方向の中央位置において切断したIIIB-IIIB断面図がハッチングにて示されている。
 なお、便宜上、図3Aおよび図3Bには、光偏向器14の構成を説明するために、新たにx、y、z軸が示されている。このうち、x軸は、図1および図2に示したX軸と同一方向である。x、y、z軸は、図1および図2に示したX、Y、Z軸を、X軸周りに、所定の角度だけ回転させたものである。y軸は、光偏向器14の短手方向に対応し、z軸は、光偏向器14の高さ方向に対応する。ここでは、便宜上、z軸負側を光偏向器14の上側と定義する。
 図3Aおよび図3Bを参照して、光偏向器14は、電磁力を利用してミラー17を駆動する構成となっている。ハウジング101に、電磁駆動のための構成部材が設置されている。
 ハウジング101は、x軸方向に長い直方体形状を有する。ハウジング101の上面には、平面視において長方形の凹部101aが形成されている。また、ハウジング101には、x軸正負の縁の上面に、それぞれ、ボス101bが形成されている。2つのボス101bは、ハウジング101のy軸方向の中間位置に配置されている。ハウジング101は、剛性が高い非磁性の金属材料からなっている。
 ハウジング101の上面に、枠状の板バネ102が設置される。板バネ102は、枠部102aと、支持部102bと、2つの梁部102cと、2つの孔102dとを有する。
 x軸方向の中間位置において、枠部102aからy軸方向に平行に延びるように、2つの梁部102cが形成され、これら梁部102cによって、枠部102aと支持部102bとが連結されている。支持部102bは、平面視において長方形であり、支持部102bのx軸方向の中間位置において、2つの梁部102cが支持部102bに繋がっている。x軸正側の孔102dは、ボス101bと同様、平面視において円形で、x軸負側の孔102dは、平面視においてx軸方向に長い形状である。板バネ102は、y軸方向に対称な形状であり、また、2つの孔102dを除いてx軸方向に対称な形状である。板バネ102は、可撓性の金属材料により一体形成されている。
 2つの孔102dは、それぞれ、2つのボス101bに対応する位置に設けられている。孔102dにボス101bが嵌められた状態で、4つのネジ103により、板バネ102がハウジング101の上面に固定される。支持部102bの上面にミラー17が接着剤等によって固定される。ミラー17は、平面視において略正方形である。2つの梁部102cを繋いだ軸が、ミラー17の回動軸L1となる。すなわち、2つの梁部102cは、ミラー17の回動軸L1に沿うように設けられている。一対の梁部102cは、回動軸L1に沿ってy軸方向の両側から支持部102bおよびミラー17を弾性支持している。
 なお、レーザ光源12からのレーザ光は、ミラー17の入射面に対して斜め方向から、ミラー17の中央位置に入射する。すなわち、回動軸L1とレーザ光の中心軸とが交差するように、レーザ光源12からのレーザ光が、ミラー17に入射する。
 支持部102bの下面にコイル104が装着される。コイル104は、平面視において長方形の角が丸められた形状に周回している。コイル104は、長辺の中間位置が回動軸L1に一致するように、支持部102bの下面に設置される。コイル104、支持部102bおよびミラー17が、光偏向器14の可動部を構成する。
 コイル104のx軸正側およびx軸負側の部分をそれぞれx軸方向に挟むように、磁石105および磁石106の組が2つ配置される。磁石105と磁石106は、ヨーク107に設置される。ヨーク107は、ハウジング101の凹部101aの底面に設置される。磁石105、106は、磁極面における磁束密度が略均一の永久磁石である。
 x軸正側の磁石105、106によって生じる磁界の向きと、x軸負側の磁石105、106によって生じる磁界の向きは、同じである。たとえば、x軸正側の磁石105は、N極がコイル104に対向し、x軸負側の磁石105は、S極がコイル104に対向する。また、x軸正側の磁石106は、S極がコイル104に対向し、x軸負側の磁石106は、N極がコイル104に対向する。このように磁極(磁界の向き)を調整することにより、コイル104に駆動信号(電圧)が印加されると、コイル104に電流が流れ、回動軸L1周りの駆動力がコイル104に励起される。これにより、ミラー17が、回動軸L1を軸として回動し、中立位置に対して傾く。
 なお、「中立位置」とは、コイル104に駆動信号(電圧)が印加されていない場合のミラー17の位置のことであり、第1実施形態の構成では、図3Aのように、支持部102bおよびミラー17が、回動軸L1について何れの方向にも回動しておらず、x-y平面に平行な状態にあるときのミラー17の位置をいう。以下では、便宜上、ミラー17が中立位置にあるときの可動部の位置も中立位置と称する。
 図4Aは、波長変換部材15の構成を模式的に示す側面図である。
 波長変換部材15は、基板201の上面に、反射膜202と、蛍光体層203とを積層した構成となっている。
 基板201は、たとえば、シリコンや窒化アルミニウムセラミックなどからなっている。
 反射膜202は、第1の反射膜202aと第2の反射膜202bとが積層されて構成されている。第1の反射膜202aは、たとえば、Ag、Ag合金、Alなどの金属膜である。第2の反射膜202bは、反射とともに第1の反射膜202aを酸化などから保護する機能をも有し、たとえば、SiO、ZnO、ZrO、Nb、Al、TiO、SiN、AlNなど誘電体の1つまたは複数の層からなっている。反射膜202は、必ずしも、第1の反射膜202aおよび第2の反射膜202bから構成されなくともよく、単層または3つ以上の層が積層された構成であってもよい。
 蛍光体層203は、蛍光体粒子203aをバインダ203bで固定することにより形成される。蛍光体粒子203aは、レーザ光源12から出射された青色波長帯のレーザ光が照射されることによって黄色波長帯の蛍光を発する。蛍光体粒子203aとして、たとえば、平均粒子径が1μm~30μmの(YGd1-n(AlGa1-m12:Ce(0.5≦n≦1、0.5≦m≦1)が用いられる。また、バインダ203bとして、ポリメチルシルセスキオキサンなどのシルセスキオキサンを主に含む透明材料が用いられる。
 さらに、蛍光体層203の内部に、ボイド203cを設けることが好ましい。第1実施形態では、蛍光体層203の中央付近に形成されたボイド203cと、反射膜202との界面付近に形成されたボイド203cが蛍光体層203に設けられる。
 ここで、蛍光体層203の内部に形成されたボイド203cは、反射膜202に近いほど密度が高くなるように構成される。この構成により、内部に侵入したレーザ光をより効率的に散乱させて、光源装置2から取り出すことができる。また、反射膜202との界面付近に形成されたボイド203cは、誘電体である第2の反射膜202bと接するため、金属表面によるエネルギーロスを低減しつつ、効果的にレーザ光と蛍光を散乱させることができる。
 上記のようなボイド203cの配置は、YAG:Ceからなる蛍光体粒子203aと、ポリシルセスキオキサンからなるバインダ203bとを混合した、蛍光体ペーストを用いて波長変換部材15を構成することで容易に形成できる。具体的には、蛍光体粒子203aと第2粒子とを、ポリシルセスキオキサンを有機溶剤に溶かしたバインダ203bに混合した蛍光体ペーストを用いて基板201(反射膜202)上に成膜する。その後、200℃程度の高温アニールを行うことで、ペースト中の有機溶剤を気化させる。このとき、波長変換部材15の基板201に近い部分から気化した有機溶剤は保持されやすいため、基板201に近い部分では、ボイド203cが容易に形成され得る。このような製造方法により、容易に反射膜202の近傍に高い密度のボイド203cを形成することができる。
 なお、蛍光体層203には、さらに、強度および耐熱性を高めるためのフィラー203dが含まれる。フィラー203dとバインダ203bとの屈折率差も、蛍光体粒子203aとバインダ203bとの屈折率差と同様、大きく設定される。
 レーザ光源12から出射されたレーザ光は、図4Aに示す励起領域R1に照射され、蛍光体層203の表面または内部で、散乱、吸収される。このとき、レーザ光の一部は、蛍光体粒子203aにより黄色波長帯の光に変換されて、蛍光体層203から放射される。また、レーザ光の他の一部は、黄色波長帯の光に変換されずに散乱されて青色波長帯の光のまま蛍光体層203から放射される。このとき、各波長帯の光は、蛍光体層203内を伝搬しながら散乱されるため、励起領域R1よりも広い発光領域R2から放射される。
 なお、上記のようにバインダ203bと蛍光体粒子203aの屈折率差、および、バインダ203bとフィラー203dの屈折率差が何れも大きくなるように蛍光体層203が構成されることにより、光を散乱し易くでき、また、光の蛍光体層203内部での伝搬を抑制することができる。この結果、励起領域R1よりも微小に広い発光領域R2から光を放射させることができる。また、第1実施形態では、さらに、蛍光体層203にボイド203cを配置して、光の散乱を増強させている。この結果、さらに励起領域R1と発光領域R2とを近づけることができる。
 図4Bは、波長変換部材15の構成を模式的に示す平面図である。
 波長変換部材15は、平面視において、X軸方向に長い長方形の形状を有する。波長変換部材15は、光偏向器14のミラー17が回動されることにより、レーザ光でX軸方向に走査される。図4Bにおいて、B1は、レーザ光のビームスポットを示している。ビームスポットB1は、波長変換部材15の入射面15aを幅W1において往復移動する。
 なお、図4Bでは、ビームスポットB1が入射面15a上を直線状に移動するように図示されているが、実際は、斜め方向からレーザ光が入射面15aに入射するため、ビームスポットB1は、Y軸正方向に凸にやや湾曲した移動軌跡で、入射面15a上を移動する。
 入射面15a上におけるビームスポットB1の領域は、図4Aの励起領域R1に対応する。波長変換部材15の入射面15aをビームスポットB1が移動する間に、ビームスポットB1の領域よりもやや広い発光領域R2から青色波長帯の拡散光と黄色波長帯の拡散光がZ軸正方向に放射される。
 こうして放射された2つの波長帯の光が、図1および図2に示した投射光学系3により取り込まれ、目標領域に投射される。これにより、青色波長帯の光と黄色波長帯の光が合成された白色の光が、投光装置1から目標領域に投射される。
 図5は、光源装置2の主たる回路構成を示す回路ブロック図である。
 図5に示すように、光源装置2は、回路部の構成として、コントローラ301と、レーザ駆動回路302と、ミラー駆動回路303と、インタフェース304と、を備えている。これらの回路は、図1、2に示した回路基板18に実装されている。回路基板18には、さらにレーザ光源12も設置されている。なお、上記各回路の一部または全部が回路基板18とは別の回路基板に実装され、回路基板18側の回路とケーブルで接続された構成であってもよい。
 コントローラ301は、CPU(Central Processing Unit)等の演算処理回路と、メモリ301aとを備え、メモリ301aに記憶された所定の制御プログラムに従って各部を制御する。メモリ301aは、ROM、RAM、ハードディスクなどにより構成される。
 レーザ駆動回路302は、コントローラ301からの制御信号に従って、レーザ光源12を駆動する。ミラー駆動回路303は、コントローラ301からの制御信号に従って、光偏向器14の可動部(ミラー17、支持部102b、コイル104)を駆動する。インタフェース304は、たとえば、車両側の制御回路等、外部制御回路との間でコントローラ301が信号の送受信を行うための入出力回路である。
 なお、本実施形態では、ミラー17が中立位置付近の範囲を回動するときにミラー17の回動速度がゼロ付近で一定となるように、コイル104に印加される駆動信号(電圧)の波形が調整されている。具体的には、予め規定されたミラー17の1周期の往復動作が実現され得るように、可動部の運動特性(運動方程式)に基づいて、駆動信号(電圧)の波形(駆動プロファイル)が設定されている。駆動プロファイルは、予めメモリ301aに記憶される。実動作時において、コントローラ301は、メモリ301aに記憶された駆動プロファイルに基づいて、1周期ごとに、光偏向器14の可動部を制御する。
 図6A~図6Cを参照して、移動プロファイルに基づく駆動プロファイルの生成について説明する。
 図6Aは、移動プロファイルの波形を示すグラフである。移動プロファイルとは、ミラー17の往復移動の動作を規定する情報のことである。ここでは、ミラー17の回動角度の変化が時系列に規定されている。
 図6Aにおいて、縦軸はミラー17(可動部)の中立位置からの回動角度を示し、横軸はミラー17を往復移動させるための一周期分の経過時間を示している。移動プロファイルは、直線状に規定された時間と回動角度との関係を、単純移動平均法によって平滑化したものである。
 図6Aに示す移動プロファイルでは、時刻が0、t2のときに回動角度がマイナス方向に最大となり、時刻t1のときに回動角度がプラス方向に最大となっている。時刻が0~t1の範囲は往路に対応し、時刻がt1~t2の範囲は復路に対応する。時刻が0からt2に至る1周期のうち、0~t1の範囲の中間付近およびt1~t2の範囲の中間付近で、波形の傾きが小さくなっている。移動プロファイルにおいて傾きの小さい部分は、ミラー17(可動部)の回動速度(角速度)が小さい状態を示している。すなわち、図6Aの移動プロファイルでは、往路の中間付近と復路の中間付近で、ミラー17(可動部)の回動速度(角速度)が小さくなっている。
 図6Bは、図6Aの移動プロファイルでミラー17が回動した場合のミラー17(可動部)の角速度の変化を示している。便宜上、図6Bには、レーザ光源12の点灯期間が重ねて示されている。
 図6Bに示すように、ミラー17(可動部)の回動速度は、往路の中間付近と復路の中間付近において、ゼロに近い速度で略一定となっている。また、レーザ光源12は、往路の始端および終端と、復路の始端および終端とにおいて、一定期間だけ消灯状態とされ、その他の期間においては点灯状態とされる。点灯状態において、レーザ光源12は、一定の強度でレーザ光を出射する。
 このように、ミラー17(可動部)を回動制御することにより、ミラー17(可動部)の回動角度が0°付近、すなわち、ミラー17(可動部)が中立位置付近にあるときに、ミラー17(可動部)の回動速度が極めて遅くなる。このため、波長変換部材15の中央付近で生じる単位時間当たりの光の光量(光度)が高められる。
 なお、往路の始端付近および終端付近と、復路の始端付近および終端付近においても、ミラー17(可動部)の角速度が0付近となるが、これらの期間は、図6Bに示すように、レーザ光源12が消灯されるため、波長変換部材15から光が生じることが抑制される。
 このように、波長変換部材15の中央付近で生じる光の光量が高められることにより、投光装置1から投射される光は、目標領域の中央位置において光量が高められる。よって、投光装置1が車両用の前照灯に用いられる場合は、車両の前方領域のうち、特に中央の領域の照度が高められ得る。
 図6Cは、図6Aのようにミラー17(可動部)を移動させる場合に、コイル104に印加されるべき駆動信号(電圧)のプロファイル(駆動プロファイル)を示している。図6Cにおいて、縦軸はコイル104に印加される電圧を示し、横軸はミラー17を往復移動させるための一周期分の経過時間を示している。
 図6Cの駆動プロファイルは、上記のように、光偏向器14の可動部(ミラー17、支持部102b、コイル104)が、図6Aに示した移動プロファイルで回動動作を行い得るように、可動部の運動特性(運動方程式)に基づいて生成され、メモリ301aに記憶される。
 以下に、移動プロファイルに基づいて駆動プロファイルを生成する工程について説明する。
 駆動プロファイルを生成する工程では、以下に示す運動方程式(1)が用いられる。
   F=m・a+c・v+k・x=Kt・E …(1)
  上記式(1)において、Fは、可動部の推力(N)である。可動部は、上述したように、コイル104、支持部102bおよびミラー17により構成される。mは、可動部の質量(kg)である。aは、可動部の角加速度(rad/s)である。cは、可動部の粘性係数(Ns/rad)である。vは、可動部の角速度(rad/s)である。kは、梁部102cのバネ定数(N/rad)である。xは、可動部の回動角度(rad)である。Ktは、可動部の推力定数(N/V)である。Eは、コイル104に印加される電圧(V)である。
 駆動プロファイルは、図7に示すフローチャートに従ってコントローラ301により生成され、メモリ301aに記憶される。コントローラ301は、図6Aに示す移動プロファイルに図7の生成工程を適用して駆動プロファイルを生成する。
 なお、図7に示す各ステップが外部装置によって実行されて駆動プロファイルが生成されてもよい。この場合、外部装置により生成された駆動プロファイルがメモリ301aに記憶される。
 以下の説明において、E(t)は、時刻tにおいてコイル104に印加される電圧である。Xt(t)は、移動プロファイルに基づく時刻tにおける可動部の回動角度である。X(t)は、時刻tにおける可動部の現在の回動角度である。F(t)は、時刻tにおける可動部の推力である。A(t)は、時刻tにおける可動部の角加速度である。D(t)は、時刻tにおける可動部に付与される駆動力である。V(t)は、時刻tにおける可動部の角速度である。dtは、単位時間である。
 コントローラ301は、初期値としてt=0、X(0)=-Xmax、V(0)=0を設定する。ここで、-Xmaxは、図6Aの移動プロファイルにおいて、時刻t=0のときの回動角度である。コントローラ301は、時刻tのときの目標の回動角度Xt(t)を移動プロファイルから取得し、取得したXt(t)と、時刻tのときの可動部の回動角度X(t)との差分を解消するように、電圧E(t)の値を算出する。コントローラ301は、移動プロファイルが一周期終了するまで時刻tの値を単位時間dtずつ増加させながら、時刻tにおけるE(t)を取得する。
 図7に示すように、コントローラ301は、移動プロファイルにおける回動角度Xt(t)と、現在の回動角度X(t)とに基づいて、以下に示す式(11)に従って、時刻tにおいてコイル104に印加する電圧E(t)を算出する(S11)。
  E(t)=G(Xt(t)-X(t)) …(11)
  ここで、式(11)の右辺は、移動プロファイルにおける回動角度Xt(t)と、現在の回動角度X(t)との差分を解消するために必要な電圧を求めるための関数であって、Gはサーボゲインである。Gは、オープン制御の場合は係数が1となり、クローズド制御の場合は、任意の係数となる。
 続いて、コントローラ301は、ステップS11で算出したE(t)と、光偏向器14の可動部の推力定数Ktとに基づいて、以下に示す式(12)に従って、時刻tにおける可動部の推力F(t)を算出する(S12)。
  F(t)=Kt・E(t) …(12)
  続いて、コントローラ301は、すなわち、ステップS12で算出したF(t)と、可動部の粘性係数cと、可動部の角速度V(t)と、梁部102cのバネ定数kと、現在の回動角度X(t)とに基づいて、上記式(1)の運動方程式により導出される以下の式(13)に従って、時刻tにおける可動部に対する駆動力D(t)を算出する(S13)。
   D(t)=F(t)-c・V(t)-k・X(t) …(13)
 続いて、コントローラ301は、ステップS13で算出したD(t)と、可動部の質量mとに基づいて、以下に示す式(14)に従って、時刻tにおける可動部の角加速度A(t)を算出する(S14)。
   A(t)=D(t)/m …(14)
 続いて、コントローラ301は、ステップS14で算出したA(t)と、可動部の角速度V(t)と、単位時間dtとに基づいて、以下に示す式(15)に従って、現在の時刻から単位時間dtか経過した後の時刻(t+dt)における可動部の角速度V(t+dt)を算出する(S15)。
   V(t+dt)=V(t)+A(t)・dt …(15)
  続いて、コントローラ301は、現在の回動角度X(t)と、可動部の角速度V(t)と、単位時間dtとに基づいて、以下に示す式(16)に従って、現在の時刻から単位時間dtか経過した後の時刻(t+dt)における回動角度X(t+dt)を算出する(S16)。
   X(t+dt)=X(t)+V(t)・dt …(16)
 なお、ステップS15、16でそれぞれ算出された角速度V(t+dt)および回動角度X(t+dt)は、それぞれ、ステップS18でNOと判定されてステップS11に戻ったときの現在の角速度V(t)および現在の回動角度X(t)として用いられる。
 続いて、コントローラ301は、時刻tの値に単位時間dtを加算した値を、新たな時刻tとする(S17)。なお、単位時間dtは、たとえば、2.5μ秒とされる。
 続いて、コントローラ301は、移動プロファイル上の1周期について処理が終了したか否かを判定する(S18)。具体的には、コントローラ301は、時刻tが、移動プロファイルの1周期の終了時刻を超えたか否かを判定する。移動プロファイルの1周期について処理が終了していない場合(S18:NO)、コントローラ301は、処理をステップS11に戻して、ステップS11~S17の処理を再度行う。移動プロファイルの1周期の処理が終了した場合(S18:YES)、コントローラ301は、図7に示す処理を終了する。
 こうして、単位時間dtごとに、コイル104に印加されるべき電圧E(t)が取得される。ステップS18の判定がYESになると、1周期の移動プロファイルについて、単位時間dtの分解能で電圧E(t)が取得される。こうして取得された電圧E(t)の時系列上の集合が、図6Cに示す駆動プロファイルとなる。コントローラ301は、取得した1周期分の電圧Eを駆動プロファイルとしてメモリ301aに記憶する。
 実動作時において、コントローラ301は、メモリ301aに記憶した駆動プロファイルをミラー駆動回路303に設定する。ミラー駆動回路303は、設定した駆動プロファイルに従って、コイル104に駆動信号(電圧)を印加する。これにより、光偏向器14の可動部が、図6Aの移動プロファイルと略同様の動作状態で駆動される。
 <実施形態の効果>
 第1実施形態によれば、以下の効果が奏され得る。
 光偏向器14の可動部(ミラー17、支持部102b、コイル104)を駆動するための駆動信号(電圧)の駆動波形が、光偏向器14の可動部の運動特性(式(1)の運動方程式)に基づいて、可動部が所定の移動動作(移動プロファイル)を実現するように設定される。具体的には、図7に示す工程に従って駆動プロファイルが生成され、生成された駆動プロファイルがメモリ301aに記憶される。そして、投光装置1の実動作時には、駆動プロファイルに基づいて可動部が駆動される。これにより、高反射率のミラー等、高重量の走査手段が用いられる場合も、適正かつ高精度に走査手段を制御することができる。
 図3Aおよび図3Bに示したように、光偏向器14は、可動部を駆動するためのコイル104と磁石105、106とを備え、コイル104に駆動信号を印加することにより生じる電磁力により、可動部を移動させる。このように電磁力により可動部を駆動することにより、上記のように高反射率かつ高重量のミラー17が可動部に設置された場合も、円滑にミラー17を駆動することができる。
 駆動信号の駆動プロファイルが図6Cに示すように設定されると、入射面15a上におけるレーザ光の各方向に走査幅W1(図4B参照)の中央付近において、レーザ光の走査速度がゼロに近い速度で略一定となる。これにより、幅W1の中央付近で生じる光の光量が効果的に高められ、結果、投光装置1から投射される光の光量は、目標領域の中央位置付近において効果的に高められる。よって、投光装置1が車両用の前照灯に用いられる場合、車両の前方領域のうち、特に中央の領域の照度を効果的に高めることができる。
 なお、上記のように可動部の運動特性(運動方程式)に基づいて駆動プロファイルを生成すると、駆動プロファイルの波形は、図6Cに示すように、往路と復路で非対称な形状となる。このように駆動プロファイルを非対称に設定することにより、ミラー17の回動動作を図6Aに示した目標の移動プロファイルに近付けることができる。よって、ミラー17を所期の回動動作に従って円滑かつ精度良く回動させることができる。
 <第2実施形態>
 上記第1実施形態では、可動部とともにコイル104が回動する際に、電磁誘導によって、コイル104に逆起電圧が生じる。この逆起電圧のために、実際は、図7のステップS12における可動部の推力F(t)が減少する。よって、推力F(t)をより正確に算出して駆動プロファイルの精度を高めるためには、コイル104に生じる逆起電圧を考慮して駆動プロファイルを生成する必要がある。
 そこで、第2実施形態では、コイル104に生じる逆起電圧をさらに考慮して、駆動プロファイルが生成される。具体的には、図7に示すステップS12が、図8Aに示すステップS21に変更される。ステップS21において、コントローラ301は、コイル巻数と磁束によって定義される係数Kdに基づいて、以下に示す式(21)に従って、時刻tにおける逆起電圧En(t)を算出する。なお、時刻t=0のときの逆起電圧の初期値En(0)は、0とされる。
   En(t)=Kd・V(t) …(21)
 そして、コントローラ301は、上記式により算出した逆起電圧En(t)と、S11で算出したE(t)と、光偏向器14の可動部の推力定数Ktとに基づいて、以下に示す式(22)に従って、時刻tにおける可動部の推力F(t)を算出する(S21)。
   F(t)=Kt・(E(t)-En(t)) …(22)
  図8Bは、逆起電圧を考慮した場合に生成される駆動プロファイルと、逆起電圧を考慮しない場合に生成される駆動プロファイルとを比較する図である。点線の波形は、逆起電圧を考慮しない場合、すなわち、第1実施形態において生成される駆動プロファイルである。実線の波形は、逆起電圧を考慮した場合、すなわち、第2実施形態において生成される駆動プロファイルである。
 図8Bに示すように、可動部を加速させるフェーズでは、逆起電圧を考慮した場合の駆動プロファイルのピークが、逆起電圧を考慮しない場合の駆動プロファイルに比べて大きくなる。他方、可動部を減速させるフェーズでは、逆起電圧を考慮した場合の駆動プロファイルのピークが、逆起電圧を考慮しない場合の駆動プロファイルに比べて小さくなる。
 第2実施形態によれば、駆動プロファイルが逆起電圧を考慮して生成されるため、可動部の回動動作を移動プロファイルにさらに近付けることができる。よって、ミラー17を所期の回動動作でより精度よく回動させることができ、波長変換部材15における発光量の制御をより緻密に行うことができる。
 <第3実施形態>
 上記第1実施形態では、図4Bに示した幅W1の中央位置付近においてビームスポットB1の移動速度がゼロ付近で一定となるように、光偏向器14の可動部(ミラー17)が回動制御された。これに対し、第3実施形態では、図5に示した外部制御回路からスポット照明の制御指示を受信した場合に、スポット照明を指示された範囲においてビームスポットB1の移動速度がゼロ付近で一定となるように、光偏向器14の可動部(ミラー17)が回動制御される。
 ここで、スポット照明とは、投光装置1からの光の投射範囲のうち所定の範囲のみにおいて光を投射させ、その他の範囲では光を投射させない制御のことである。コントローラ301は、外部制御回路からスポット照明の制御指示を受信した場合に、指示されたスポット照明の範囲に整合する移動プロファイルを設定し、設定した移動プロファイルに基づいて、図7または図8Aのフローチャートに従って、可動部を駆動するための駆動プロファイルを生成する。そして、コントローラ301は、生成したスポット照明用の駆動プロファイルに従って、光偏向器14を制御する。
 なお、スポット照明用の移動プロファイルは、スポット照明の範囲に応じてコントローラ301が所定のアルゴリズムに従って生成してもよく、あるいは、スポット照明の範囲ごとに、予め、メモリ301aに記憶されていてもよい。後者の場合、コントローラ301は、指示されたスポット照明の範囲に対応する移動プロファイルをメモリ301aから読み出して、駆動プロファイルの生成に用いる。
 なお、このようにコントローラ301が駆動プロファイルを生成する方法に代えて、スポット照明の範囲ごとに、予め、駆動プロファイルをメモリ301aに記憶しておき、指示されたスポット照明の範囲に対応する駆動プロファイルをメモリ301aから読み出して、スポット照明動作時の駆動プロファイルとして設定するようにしてもよい。
 図9は、第3実施形態の駆動プロファイルの切替処理を示すフローチャートである。ここでは、予め、スポット照明の範囲ごとに、移動プロファイルがメモリ301aに記憶され、移動プロファイルに基づいてコントローラ301が駆動プロファイルを生成することが想定されている。
 コントローラ301は、図5に示す外部制御回路からスポット照明の指示を受信すると(S31:YES)、受信したスポット照明の指示に基づいて移動プロファイルを選択する(S32)。上記のようにメモリ301aには、スポット照明の範囲に応じて、複数の移動プロファイルが記憶されている。各移動プロファイルは、それぞれ、スポット照明に対応する角度範囲において、可動部の回動速度がゼロ付近で一定となるように設定されている。
 続いて、コントローラ301は、ステップS32で選択した移動プロファイルに基づいて、上記第1実施形態の駆動プロファイルを生成する工程(図7参照)を実行し、駆動プロファイルを生成する(S33)。なお、駆動プロファイルの生成は、上記第2実施形態の駆動プロファイルを生成する工程に基づいて行われてもよい。
 続いて、コントローラ301は、ステップS33で生成した駆動プロファイルに基づいて、可動部を駆動する(S34)。この場合、スポット照明に対応する角度範囲において、レーザ光源12が点灯され、それ以外の角度範囲において、レーザ光源12は消灯される。コントローラ301は、外部制御回路からスポット照明の終了指示を受信するまで、生成した駆動プロファイルに基づいて可動部を駆動する。
 コントローラ301は、外部制御回路からスポット照明の終了指示を受信すると(S35:YES)、元の駆動プロファイル、すなわち、あらかじめメモリ301aに記憶された第1実施形態と同様の駆動プロファイルに基づいて可動部を駆動する(S36)。こうして、図9に示すスポット照明に関する工程が終了する。
 第3実施形態の構成によれば、スポット照明を実現する際に、スポット照明に対応する角度範囲において可動部の回動速度が小さくなるようにミラー17が制御される。このため、波長変換部材15の入射面15a上のスポット照明に対応する走査範囲において、発光光量を効果的に高めることができ、目標領域上のスポット照明の範囲における投射光量を効果的に高めることができる。よって、スポット照明の対象範囲を効果的に照明することができる。
 <第4実施形態>
 上記第1実施形態では、光偏向器14が、ミラー17を1軸で回動させる構成であった。これに対し、第4実施形態では、ミラー17が互いに直交する2つの回動軸について回動可能なように、光偏向器14が構成されている。
 第4実施形態では、ミラー17が2軸駆動可能であるため、波長変換部材15の入射面15aにおけるレーザ光の走査軌跡が第1実施形態と異なっている。第4実施形態では、後述のように、波長変換部材15の入射面15aに複数の走査ラインが設定され、これに伴い、波長変換部材15の入射面15aを走査するビームスポットのサイズが、第1実施形態に比べて絞られている。投光装置1および光源装置2のその他の構成は、上記第1実施形態と同様である。
 なお、ビームスポットのサイズは、レーザ光源12とコリメータレンズ13との間の距離や、コリメータレンズ13の開口数等を調整して、コリメータレンズ13によりレーザ光を収束させることにより、より小さく絞ることができる。この他、ミラー17の反射面を凹面形状として、レーザ光を収束させるようにしてもよい。
 図10は、第4実施形態に係る光偏向器14の構成を示す斜視図である。また、図11Aおよび図11Bは、それぞれ、第4実施形態に係る光偏向器14の構成を示す断面図である。図11Aには、x-z平面に平行な平面で図10の光偏向器14をy軸方向の中央位置において切断したXIA-XIA断面図がハッチングにて示されている。図11Bには、y-z平面に平行な平面で図10の光偏向器14をx軸方向の中央位置において切断したXIB-XIB断面図がハッチングにて示されている。図10および図11A、図11Bには、図3A、図3Bと同様のx、y、z軸が示されている。
 図10および図11A、図11Bを参照して、ハウジング111は、x軸方向に長い直方体形状を有する。ハウジング111の上面には、平面視において長方形の凹部111aが形成されている。ハウジング111は、剛性が高い非磁性の金属材料からなっている。
 ハウジング111の上面に、枠状の板バネ112が設置される。板バネ112は、外枠部112aと、内枠部112bと、2つの梁部112cと、支持部112dと、2つの梁部112eとを有する。y軸方向の中間位置において、外枠部112aからx軸方向に平行に延びるように、2つの梁部112cが形成され、これら梁部112cによって、外枠部112aと内枠部112bとが連結されている。また、x軸方向の中間位置において、内枠部112bからy軸方向に平行に延びるように、2つの梁部112eが形成され、これら梁部112eによって、内枠部112bと支持部112dとが連結されている。
 内枠部112bは、平面視において長方形の角が丸められた輪郭を有し、内枠部112bのy軸方向の中間位置において、2つの梁部112cが内枠部112bに繋がっている。また、支持部112dは、平面視において長方形の輪郭を有し、支持部112dのx軸方向の中間位置において、2つの梁部112eが支持部112dに繋がっている。板バネ112は、x軸方向およびy軸方向に対称な形状である。板バネ112は、可撓性の金属材料により一体形成されている。
 外枠部112aをハウジング111の上面に載せた状態で、4つのネジ113により、板バネ112がハウジング111の上面に固定される。支持部112dの上面にミラー17が接着剤等によって固定される。ミラー17は、平面視において略正方形である。2つの梁部112eを繋いだ軸が、上記第1実施形態と同様、レーザ光を波長変換部材15の長手方向に走査させるための、ミラー17の回動軸L1となる。また、2つの梁部112cを繋いだ軸が、波長変換部材15におけるレーザ光の走査ラインを変更するための、ミラー17の回動軸L2となる。
 なお、上記第1実施形態と同様、レーザ光源12からのレーザ光は、ミラー17の中央位置に入射する。すなわち、回動軸L1、L2が交わる位置をレーザ光の中心軸が貫くように、レーザ光源12からのレーザ光が、ミラー17に入射する。
 支持部112dの下面にコイル114が装着される。コイル114は、平面視において長方形の角が丸められた形状に周回している。コイル114は、長辺の中間位置が回動軸L1に一致するように、支持部112dの下面に設置される。コイル114、支持部112dおよびミラー17が、光偏向器14の可動部を構成する。
 コイル114をx軸方向に挟むように、磁石115および磁石116の組が2つ配置される。磁石115と磁石116は、ヨーク117に設置され、ヨーク117が、ハウジング111の凹部111aの底面に設置されている。各組の磁石115および磁石116の磁極の設定方法は、図3Aおよび図3Bに示した磁石105および磁石106と同様である。
 さらに、内枠部112bの下面にコイル118が装着される。コイル118は、平面視において内枠部112bと同様の形状である。コイル118は、短辺の中間位置が回動軸L2に一致するように、内枠部112bの下面に設置される。
 コイル118に対して、y軸正側とy軸負側に、それぞれ、磁石119が配置される。これら磁石119は、ヨーク117に設置されている。また、これら2つの磁石119は、コイル118に対向する磁極が互いに異なるように、ヨーク117に設置されている。磁石119は、磁極面における磁束密度が略均一の永久磁石である。
 このように2つの磁石119の磁極を調整することにより、コイル118に駆動信号(電圧)が印加されると、コイル118に電流が流れ、回動軸L2について内枠部112bが回動し、駆動信号の大きさに応じた角度だけ、内枠部112bが傾く。すなわち、内枠部112bは、梁部112cに生じる弾性復帰力とコイル118に励起された電磁力とが釣り合う角度だけ図10に示した中立位置から傾く。このとき、内枠部112bの回動に伴って、支持部112dとともにミラー17が回動する。
 支持部112dは、図3Aおよび図3Bの構成と同様、コイル114に駆動信号(電圧)を印加することにより、回動軸L1を軸として回動する。支持部112dの回動に伴い、ミラー17が回動軸L1を軸として回動する。このように、第4実施形態の光偏向器14によれば、コイル114、118にそれぞれ独立して駆動信号(電圧)を印加することにより、ミラー17を、回動軸L1、L2について個別に回動させることができる。
 図12は、波長変換部材15におけるレーザ光の走査状態を模式的に示す図である。
 図12に示すように、第4実施形態では、波長変換部材15の入射面15aに複数の走査ラインSL1が設定される。図12の例では、5つの走査ラインSL1が、入射面15aに設定されている。ただし、走査ラインSL1の数は、これに限られるものではない。
 レーザ光のビームスポットB2は、最上段の走査ラインSL1をX軸負側の開始位置からX軸正負の方向に往復移動した後、2段目の走査ラインSL1のX軸負側の開始位置に位置付けられる。走査ラインSL1が変更される期間は、レーザ光源12が消灯される。その後、ビームスポットB2は、2段目の走査ラインSL1をX軸正負方向に往復移動した後、3段目の走査ラインSL1のX軸負側の開始位置に位置付けられる。このような移動が5段目の走査ラインSL1まで繰り返される。
 さらに、ビームスポットB2は、5段目の走査ラインSL1から4段目の走査ラインSL1へと戻され、4段目の走査ラインSL1を往復移動する。同様の動作が、最上段の走査ラインSL1まで繰り返される。こうして、ビームスポットB2が、1段目の走査ラインSL1のX軸負側の開始位置に位置付けられる。以下、5つの走査ラインSL1について同様の走査が繰り返される。
 図12に示すように、本実施形態では、中央の3つの走査ラインSL1のピッチP21と、最上段および最下段の走査ラインSL1とこれら走査ラインSL1に隣接する走査ラインSL1とのピッチP22が同一に設定されている。
 なお、波長変換部材15の入射面15aに対するレーザ光の走査方法は、上記に限られるものではない。たとえば、ビームスポットB2が、各々の走査ラインSL1を一方向に移動した後、次の走査ラインSL1の開始位置へとジャンプし、次の走査ラインSL1を逆方向に走査するように、波長変換部材15の入射面15aがレーザ光で走査される構成であってもよい。この場合、駆動プロファイルは、走査方向ごとに個別に生成することが好ましい。
 走査ラインSL1に沿ったビームスポットB2の移動は、図10に示した回動軸L1についてミラー17を回動させることにより行われる。走査ラインSL1の変更は、図10に示した回動軸L2についてミラー17を回動させて傾けることにより行われる。光偏向器14は、図5に示したミラー駆動回路303によって、ビームスポットB2が上記のように波長変換部材15の入射面15aを走査するように制御される。
 図13Aは、コイル118に印加する駆動信号(電圧)を示すグラフである。
 時刻t11~t12において、ビームスポットB2が最上段の走査ラインSL1に位置し、時刻t12~t13、t18~t19において、ビームスポットB2が上から2段目の走査ラインSL1に位置する。また、時刻t13~t14、t17~t18において、ビームスポットB2が中央の走査ラインSL1に位置し、時刻t14~t15、t16~t17において、ビームスポットB2が下から2段目の走査ラインSL1に位置し、時刻t15~t16において、ビームスポットB2が最下段の走査ラインSL1に位置する。時刻t13~t14の中間タイミングおよび時刻t17~18の中間タイミングで、ミラー17が図10に示す中立位置に位置付けられる。時刻t13~t14、t17~t18において、コイル118に印加する電圧が0となる。
 各々の走査ラインSL1に対する走査は、第1実施形態と同様、図6Cの駆動プロファイルに従って行われる。これにより、中立位置付近の回動範囲において可動部の角速度が減速されるため、各々の走査ラインSL1の中央付近におけるレーザ光の走査速度が減速する。よって、波長変換部材15の入射面15aの中央付近において単位時間当たりの発光光量が高められる。これにより、目標領域に照射される光の光度は、図13Bに示すように分布する。図13Bに示す模式図おいて、白い部分は光の光度が高い領域を示し、黒い部分は光の光度が弱い領域を示している。このように、第4実施形態の構成においても、波長変換部材15の中央付近において生じる光の光量を高めることができる。
 また、第4実施形態の構成によれば、より絞られたビームスポットB2で、波長変換部材15が複数の走査ラインSL1に沿って走査されるため、たとえば、発光領域R2上において、白色光の発光を停止させる領域や、白色光の発光を生じさせる領域を、より細かく設定できる。このため、光源装置2から生じた白色光を投射光学系3で目標領域に投射する場合に、目標領域上において、白色光の投射を停止させる領域や、白色光の投射を行う領域を、より細かく設定できる。よって、たとえば、投光装置1が車両の前照灯に組み込まれた場合には、対向車の位置や歩行者の位置に応じて、より細かく、白色光の照射領域および非照射領域を設定することができる。
 なお、第4実施形態では、図12に示すように、走査ラインSL1のピッチP21、P22が同一とされたが、図13Dに示すように、中央側のピッチP21を端側のピッチP22よりも小さく設定してもよい。こうすると、走査ラインSL1を横切る方向(Y軸方向)においても、中央の発光光量を端部の発光光量よりも大きくすることができる。走査ラインSL1のピッチP21、P22は、図11A、図11Bに示したコイル118に印加する電圧を変更することにより調整できる。
 また、第4実施形態では、回動軸L1についてミラー17を回動するために、上記第1実施形態と同様、あらかじめ設定された固定の駆動プロファイルが用いられたが、走査ラインSL1ごとに、互いに異なる駆動プロファイルが用いられてもよい。この場合、たとえば、Y軸正負の端部側の走査ラインSL1においてビームスポットB1の移動速度を減速させる期間が、中央の走査ラインSL1に比べて短くなるように、各々の走査ラインSL1の駆動プロファイルを設定してもよい。こうすると、図13Cに示すように、目標領域に照射される光の光度を、中央の円形の領域において高めることができる。このように、各段の走査ラインSL1における駆動プロファイルを変更させることにより、全光量を低下させることなく、様々な配光パターンで、目標領域に光を照射することができる。
 <その他の変更例>
 以上、本発明の実施形態について説明したが、本発明は上記実施の形態に何らの制限を受けるものではない。
 たとえば、上記第1実施形態では、コイル104を挟むようにして磁石105と磁石106が配置されたが、必ずしも、コイル104を挟むように磁石105、106が配置されなくてもよく、コイル104に所望の強度分布で磁界を付与できれば、磁石105、106の何れか一方が省略されてもよい。第4実施形態においても、同様の変更が可能である。
 また、上記第1実施形態および第2実施形態では、光源装置2が、反射型の波長変換部材15を用いる構成であったが、光源装置2は、透過型の波長変換部材15を用いる構成であってもよい。
 また、板バネ102、112の形状は、必ずしも、上記第1実施形態および第2実施形態に示した形状に限られるものではなく、たとえば、図3Aにおいて、x軸方向に隣り合う2つのネジ103で挟まれた領域以外の枠部102aの領域が省略されてもよい。
 また、ミラー17の形状は、必ずしも、平面視において正方形でなくともよく、平面視において長方形または円形であってもよい。支持部102bの形状も、適宜変更可能である。
 上記第1実施形態では、図3Aに示すように、板バネ102の設けられた2つの孔102dの一方を長孔としたが、2つの孔102dの両方を長孔として、ネジ103を締める前に、板バネ102が長手方向に僅かに移動可能であってもよい。この場合、所望の厚みを有する隙間ゲージを差し込んで板バネ102の位置を確定してから、ネジ103を締める構成であってもよい。あるいは、コイル104と磁石105、106とのギャップを測定装置で測定しながら長手方向に板バネ102を位置調整して位置を決めてから、ネジ103を締める構成であってもよい。
 また、ミラー17の反射面は、必ずしも、平面でなくてもよく、レーザ光に収束作用を付与し得る凹面形状であってもよい。この場合、凹面形状は、波長変換部材15の入射面15a上のビームスポットB1、B2の形状をY軸方向に略線状の形状に成形し得るように調整されてもよい。あるいは、ミラー17の反射面に、波長変換部材15の入射面15a上のビームスポットB1、B2の形状を所定の形状に成形するためのレンズが装着されてもよい。
 また、波長変換部材15の蛍光体層203に含まれる蛍光体粒子203aの種類は、必ずしも1種類でなくてもよく、たとえば、レーザ光源12からのレーザ光によって互いに異なる波長の蛍光を生じる複数種類の蛍光体粒子203aが蛍光体層203に含まれてもよい。この場合、各種類の蛍光体粒子203aから生じた蛍光の拡散光と、これら蛍光体粒子203aによって波長変換されなかったレーザ光の拡散光とによって、所定の色の光が生成される。
 上記実施形態では、コイル104、118に印加する駆動信号は電圧であったが、これに限らず、電流であってもよい。すなわち、コイル104、118に印加する駆動信号は、電圧で制御してもよく、電流で制御してもよい。また、上記実施形態では、光偏向器14が、電磁式であったが、圧電式であってもよい。
 上記実施形態では、コントローラ301が駆動プロファイルを生成し、生成された駆動プロファイルを、実動作時の駆動プロファイルとしてミラー駆動回路303に設定したが、ミラー駆動回路303が駆動プロファイルを生成し、生成した駆動プロファイルを、実動作時の駆動プロファイルとして設定してもよい。
 上記実施形態において、投光装置1は、光を照射させる領域の全範囲のうち一部が遮光状態となるよう、所定のタイミングでレーザ光を点灯および消灯させてもよい。
 図14Aは、この場合のレーザ光の点灯および消灯のタイミングを模式的に示す図である。図14Aにおいて、右向きの矢印で示すように、往路におけるミラー17の回動の際に、時刻t31~t32の間はレーザ光が消灯され、左向きの矢印で示すように、復路におけるミラー17の回動の際に、時刻t41~t42の間はレーザ光が消灯される。これにより、往路において消灯されるタイミングと復路において消灯されるタイミングとが一致し、図14Aに示すように、白抜きで示す所定の領域において遮光状態となる。
 なお、図14Aのように往路および復路でそれぞれ消光および点灯のタイミングが設定される場合に、回路遅延等の要因によって、図14Bおよび図14Cに示すように、往路および復路で制御タイミングにずれが生じることが起こり得る。すなわち、図14Bに示すように、往路において、消灯タイミングが時刻t33にずれ、点灯タイミングが時刻t34にずれる場合がある。同様に、図14Cに示すように、復路において、消灯タイミングが時刻t43にずれ、点灯タイミングが時刻t44にずれる場合がある。
 このように、往路および復路において消灯および点灯のタイミングにずれが生じる場合には、ずれ量をもとに、消灯および点灯のタイミングを補正するようにするとよい。たとえば、往路および復路における消灯および点灯のタイミングずれを測定装置で測定し、測定したタイミングずれ量をメモリ301aに記憶させる。そして、コントローラ301は、メモリ301aに記憶されたずれ量に基づいて、タイミングずれが解消されるように、レーザ駆動回路302を制御する。これにより、図14Aと同様に、往路および復路において、消灯されるタイミングを一致させることができる。
 この他、本開示の実施の形態は、請求の範囲請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。
 本開示に係る光源装置および投光装置は、波長変換部材に対して光を走査させるための走査手段として高反射率ミラー等の高重量の走査手段が用いられる場合も、適正かつ高精度に走査手段を制御することができる。これらの光源装置および投光装置は、たとえば、車両用前照灯の光源装置に利用することができ、産業上有用である。
 1 投光装置
 2 光源装置
 3 投射光学系
 12 レーザ光源
 14 光偏向器
 15 波長変換部材
 17 ミラー
 102b、112d 支持部
 104、114、118 コイル
 105、106、115、116、119 磁石
 303 ミラー駆動回路(駆動部)
 SL1 走査ライン
 P21、P22 ピッチ

Claims (9)

  1.  第1の波長を有するレーザ光を出射するレーザ光源と、
     前記レーザ光の光路上に入射面を有し、前記第1の波長を、前記第1の波長とは異なる第2の波長に変換し、かつ前記レーザ光を拡散させて前記第2の波長を有する拡散光を生じせしめる波長変換部材と、
     前記レーザ光を前記入射面上において走査させる光偏向器と、
     前記光偏向器に駆動信号を供給する駆動部と、を備え、
     前記駆動部は、前記光偏向器の可動部が所定の移動動作を実現するように、前記可動部の運動特性に基づいて、前記駆動信号の駆動波形を設定する、
    ことを特徴とする光源装置。
  2.  第1の波長を有するレーザ光を出射するレーザ光源と、
     前記レーザ光の光路上に入射面を有し、前記第1の波長を、前記第1の波長とは異なる第2の波長に変換し、かつ前記レーザ光を拡散させて前記第2の波長を有する拡散光を生じせしめる波長変換部材と、
     前記レーザ光を前記波長変換部材の入射面上において少なくとも1次元に走査させる光偏向器と、
     前記光偏向器に駆動信号を供給する駆動部と、を備え、
     前記駆動部は、前記光偏向器の可動部が所定の移動動作を実現するように、前記可動部の運動特性に基づいて、往路と復路とで非対称な波形に、前記駆動信号の駆動波形を設定し、往復移動するよう前記光偏向器を駆動する、
    ことを特徴とする光源装置。
  3.  請求項1または2に記載の光源装置において、
     前記光偏向器は、前記可動部を駆動するためのコイルと磁石とを備え、前記コイルに前記駆動信号を印加することにより生じる電磁力により、前記可動部を移動させる、
    ことを特徴とする光源装置。
  4.  請求項3に記載の光源装置において、
     前記駆動部は、前記可動部の前記運動特性と、駆動時に前記コイルに生じる逆起電圧とに基づいて、前記駆動信号の駆動波形を設定する、
    ことを特徴とする光源装置。
  5.  請求項1から4の何れか一項に記載の光源装置において、
     前記駆動部は、前記レーザ光が前記入射面上を一方向に走査する走査幅の中央付近において、前記レーザ光の走査速度がゼロに近い速度で一定となるように、前記駆動信号の駆動波形を設定する、
    ことを特徴とする光源装置。
  6.  請求項5に記載の光源装置において、
     前記駆動部は、前記走査幅内の所定範囲のみにおいて前記レーザ光を生じさせる制御指示を前記光源装置が外部から受信した場合、前記所定範囲において、前記レーザ光の走査速度がゼロに近い速度で一定となるように、前記駆動信号の駆動波形を再設定する、
    ことを特徴とする光源装置。
  7.  請求項1から6の何れか一項に記載の光源装置において、
     前記光偏向器は、前記レーザ光を前記入射面上において2次元に走査させることが可能に構成され、
     前記駆動部は、前記入射面に一方向に並ぶように設定された複数の走査ラインに沿って前記レーザ光を走査させるように、前記光偏向器を駆動する、
    ことを特徴とする光源装置。
  8.  請求項7に記載の光源装置において、
     前記駆動部は、前記走査ラインの間隔が、中央であるほど小さくなるように前記光偏向器を駆動する、
    ことを特徴とする光源装置。
  9.  請求項1から8の何れか一項に記載の光源装置と、
     前記拡散光を投射する投射光学系と、を備える、
    ことを特徴とする投光装置。
PCT/JP2018/009209 2017-03-23 2018-03-09 光源装置および投光装置 WO2018173802A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019507544A JPWO2018173802A1 (ja) 2017-03-23 2018-03-09 光源装置および投光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017058046 2017-03-23
JP2017-058046 2017-03-23

Publications (1)

Publication Number Publication Date
WO2018173802A1 true WO2018173802A1 (ja) 2018-09-27

Family

ID=63586046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009209 WO2018173802A1 (ja) 2017-03-23 2018-03-09 光源装置および投光装置

Country Status (2)

Country Link
JP (1) JPWO2018173802A1 (ja)
WO (1) WO2018173802A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009223246A (ja) * 2008-03-19 2009-10-01 Hitachi Ltd ミラー駆動方法ならびにそれを用いた表示装置
JP2012078515A (ja) * 2010-09-30 2012-04-19 Mitsubishi Heavy Ind Ltd 共振反射装置、それを用いる光学式ガス分析装置、画像スキャナ、及び、共振反射装置の制御方法
JP2014029858A (ja) * 2012-07-27 2014-02-13 Valeo Vision 自動車用の適応照明システム
JP2015153645A (ja) * 2014-02-17 2015-08-24 スタンレー電気株式会社 車両用灯具
JP2015184591A (ja) * 2014-03-25 2015-10-22 スタンレー電気株式会社 光スキャナ及び車両用前照灯装置
WO2016157765A1 (ja) * 2015-03-31 2016-10-06 パナソニックIpマネジメント株式会社 照明装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009223246A (ja) * 2008-03-19 2009-10-01 Hitachi Ltd ミラー駆動方法ならびにそれを用いた表示装置
JP2012078515A (ja) * 2010-09-30 2012-04-19 Mitsubishi Heavy Ind Ltd 共振反射装置、それを用いる光学式ガス分析装置、画像スキャナ、及び、共振反射装置の制御方法
JP2014029858A (ja) * 2012-07-27 2014-02-13 Valeo Vision 自動車用の適応照明システム
JP2015153645A (ja) * 2014-02-17 2015-08-24 スタンレー電気株式会社 車両用灯具
JP2015184591A (ja) * 2014-03-25 2015-10-22 スタンレー電気株式会社 光スキャナ及び車両用前照灯装置
WO2016157765A1 (ja) * 2015-03-31 2016-10-06 パナソニックIpマネジメント株式会社 照明装置

Also Published As

Publication number Publication date
JPWO2018173802A1 (ja) 2020-01-23

Similar Documents

Publication Publication Date Title
CN109416166B (zh) 发光装置以及照明装置
CN105698087B (zh) 照明模块和设置有该模块的前照灯
JP5656290B2 (ja) 半導体発光装置
WO2017104167A1 (ja) 照明装置及び車両用前照灯
JP6356454B2 (ja) 光スキャナ及び車両用前照灯装置
JP2019160624A (ja) 光源装置および投光装置
JP2013232390A (ja) 発光装置、投光器、および車両用前照灯
JP6659392B2 (ja) 照明装置
US20190120462A1 (en) Light emission device and illumination device
JP6684602B2 (ja) 光走査装置
JP6033586B2 (ja) 照明装置および車両用前照灯
JP7117510B2 (ja) 光源装置および投光装置
JP2016046072A (ja) 照明装置及び車両用前照灯
JP6499313B2 (ja) 自動車用の照明装置
WO2018173802A1 (ja) 光源装置および投光装置
JP7065267B2 (ja) 光源装置および投光装置
JP7029608B2 (ja) 光源装置および投光装置
JP2020087574A (ja) 光源装置および投光装置
JP6998523B2 (ja) 光源装置および投光装置
JPWO2019044374A1 (ja) 光源装置および投光装置
WO2018150814A1 (ja) 光源装置および投光装置
JP2019056742A (ja) 光源装置および投光装置
JP2019046749A (ja) 光源装置および投光装置
JPWO2019049589A1 (ja) 光源装置および投光装置
JP2020202150A (ja) 車両用前照灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772660

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507544

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18772660

Country of ref document: EP

Kind code of ref document: A1