WO2018168896A1 - 溶接方法および溶接継手 - Google Patents

溶接方法および溶接継手 Download PDF

Info

Publication number
WO2018168896A1
WO2018168896A1 PCT/JP2018/009876 JP2018009876W WO2018168896A1 WO 2018168896 A1 WO2018168896 A1 WO 2018168896A1 JP 2018009876 W JP2018009876 W JP 2018009876W WO 2018168896 A1 WO2018168896 A1 WO 2018168896A1
Authority
WO
WIPO (PCT)
Prior art keywords
intersection
weld
welding
intersection point
layer
Prior art date
Application number
PCT/JP2018/009876
Other languages
English (en)
French (fr)
Inventor
進 櫻木
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to JP2019506067A priority Critical patent/JP7043485B2/ja
Priority to CN201880005543.9A priority patent/CN110402175B/zh
Publication of WO2018168896A1 publication Critical patent/WO2018168896A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/06Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for positioning the molten material, e.g. confining it to a desired area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters

Definitions

  • the present invention relates to a welding method and a welded joint.
  • a welding technique such as a gas shield metal arc welding method is known.
  • a gas shield metal arc welding method an arc is generated between a wire and two steel plates, this arc becomes a heat source, the wire and the steel plate are melted, and the steel plates are welded together.
  • the shielding gas is supplied around the arc, welding can be performed in a state where the welded portion is isolated from the external environment.
  • Patent Document 1 a process for removing the oxide film is usually performed before the welding process.
  • a welding method comprising: (1) A step of forming a first weld layer between the first member, the second member and the backing plate by the first welding pass,
  • the first member has a first surface
  • the second member has a second surface
  • the backing plate has an upper surface
  • the first member and the second member are disposed such that the first surface and the second surface face or contact the upper surface of the backing plate,
  • the side of the first member intersect at the first surface and the intersection P 1 of the first member, the side of the second member, the second surface and the intersection point P of the second member A process formed to intersect at 2
  • the second weld layer is disposed such that a tip in a depth direction is introduced into the backing plate beyond the straight
  • a welded joint in which the first member, the second member, and the backing plate are joined to each other by the welded portion,
  • the first member has a first surface;
  • the second member has a second surface;
  • the first member and the second member are arranged such that the first surface and the second surface face or contact the upper surface of the backing plate,
  • the weld has a first weld layer and a second weld layer from the side close to the backing plate in the depth direction, When the weld is viewed from a cross section perpendicular to the extending direction of the weld,
  • the first weld layer intersects the first surface of the first member at the intersection point P1 on the first member side, and the second member side of the second member on the second member side.
  • the second weld layer is disposed such that a tip in a depth direction is introduced into the backing plate beyond the straight line L, Said second welding layer, meet at the straight line L and the point of intersection Q 1 and intersection Q 2, the intersection Q 1 is, than the intersection Q 2 located on the side of the first member,
  • the intersection Q 1 is located inside the first welding layer, or coincident with the intersection point P 1
  • the intersection Q 2 are located inside the first welding layer, or coincides with the intersection point P 2, the weld joint is provided.
  • the present invention it is possible to provide a welding method capable of suppressing a large pipe-shaped defect without reducing the work efficiency. Moreover, in this invention, the welded joint by which the big pipe-shaped defect was suppressed significantly can be provided.
  • FIG. 1 is a schematic perspective view of a welded joint according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view along the line AA of the welded joint shown in FIG. 2. It is the figure which showed typically the cross section of the 1st weld layer and its vicinity.
  • a welded joint it is a sectional view showing typically one mode of an improper weld.
  • a welded joint it is a sectional view showing typically one mode of an improper weld.
  • mode of the appropriate welding part In a welded joint, it is sectional drawing which showed typically the one aspect
  • Example 1 it is the photograph which showed an example of the cross section of the to-be-welded location after the 1st welding pass. In Example 1, it is the photograph which showed an example of the cross section of the to-be-welded location after the 2nd welding pass. 4 is a photograph showing an example of a cross section of a welded portion obtained in Example 2.
  • FIG. It is the photograph obtained by cut
  • FIG. 1 schematically shows an example of a conventional welding method.
  • a first steel plate 20, a second steel plate 30, and a backing plate 40 are prepared. Further, these members are arranged in a predetermined relationship.
  • the first steel plate 20 has an inclined end surface 26, and the second steel plate 30 has an inclined end surface 36.
  • the first steel plate 20 and the second steel plate 30 are arranged on the backing plate 40 so that the inclined end surfaces 26 and 36 face each other.
  • the first welding pass is performed between the inclined end surface 26 and the inclined end surface 36.
  • the weld layer 50 as shown in FIG.1 (b) is formed.
  • the weld layer 50 includes a wormhole as shown in FIG. A so-called pipe-like defect 70 may occur.
  • the “pipe-like defect” means an elongated cylindrical cavity defect generated in the weld metal due to gas discharge.
  • Such a pipe-like defect 70 may adversely affect the characteristics of the weld layer 50. For this reason, normally, the process which removes the oxide film which exists in the 1st steel plate 20, the 2nd steel plate 30, and the backing plate 40 is implemented before a welding process.
  • FIG. 2 is a schematic perspective view of a welded joint (hereinafter referred to as “first welded joint”) according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view taken along line AA of the first welded joint shown in FIG.
  • the first welded joint 100 includes a first member 120, a second member 130, a backing plate 140, and a weld 150 between the first member 120 and the second member 130.
  • the first member 120 has a first surface 122 and a second surface 124 that face each other, and an end surface 126 that connects both surfaces.
  • the second member 130 has a third surface 132 and a fourth surface 134 that face each other, and an end surface 136 that connects both surfaces.
  • the weld 150 is not formed on the entire end face 126 and end face 136, and as a result, a part of the end face 126 and end face 136 is visible.
  • the weld 150 may be formed so as to cover the entire end face 126 and end face 136. In this case, the end face 126 and the end face 136 cannot be visually recognized.
  • the first member 120 and the second member 130 are arranged so that both end faces 126 and 136 face each other.
  • the first member 120 and the second member 130 are arranged so that the first surface 122 and the third surface 132 are in the same direction (upward).
  • the backing plate 140 has an upper surface 142.
  • the backing plate 140 is disposed on the lower side of the weld 150 such that the upper surface 142 faces or contacts the second surface 124 of the first member 120 and the fourth surface 134 of the second member 130.
  • first welded joint 100 the first member 120, the second member 130, and the backing plate 140 are joined to each other by the welded portion 150.
  • the weld 150 includes a first weld layer 151 and a second weld layer 152 from the side close to the backing plate 140 in the depth direction (Z direction in FIG. 3).
  • the first weld layer 151 extends in the depth direction beyond the upper surface 142 of the backing plate 140 and to the inside of the backing plate 140.
  • the second weld layer 152 extends in the depth direction beyond the upper surface 142 of the backing plate 140 and to the inside of the backing plate 140.
  • FIG. 4 schematically shows a cross section of the first weld layer 151 and its vicinity.
  • the first weld layer 151 is schematically shown as a state before the second weld layer 152 is formed. Therefore, the first weld layer 151 is the first weld layer 151 shown in FIG. 3. 1 has a cross-sectional form different from that of the weld layer 151. Further, in FIG. 4, the broken lines in the first weld layer 151 indicate the outline of each of the first member 120, the second member 130, and the backing plate 140 before welding. Yes.
  • the horizontal direction (X direction) is referred to as “width direction (welding layer)”, and the vertical direction (Z direction) is referred to as “depth direction (welding layer)”.
  • width direction the right direction is positive, and in the depth direction, the downward direction is positive.
  • the first weld layer 151 is formed to join the first member 120, the second member 130, and the backing plate 140.
  • the first weld layer 151 intersects with the second surface 124 of the first member 120 at the intersection point P 1 on the first member 120 side (left side in FIG. 4), and the upper surface of the backing plate 140. intersect at 142 and the intersection P 3.
  • first weld layer 151 intersects the fourth surface 134 of the second member 130 at the intersection point P2 on the second member 130 side (the right side in FIG. 4), and the upper surface 142 of the backing plate 140. and intersect at an intersection P 4.
  • the second surface 124 of the first member 120 and the upper surface 142 of the backing plate 140, and the fourth surface 134 and the backing plate 140 of the second member 130 are used.
  • first overlapping region (160) the region from the intersection P 2 to the intersection P 4 'of the second intersection region ( 162) ".
  • tip (164) the maximum position in the depth direction (Z direction) is referred to as “tip (164)”.
  • intersection point P 3 the intersection point P 1
  • the pipe-like defect 70 as shown in FIG. 1B described above tends to occur starting from the first intersection region 160 and / or the second intersection region 162.
  • the first welded joint 100 has the following characteristics when the welded portion 150 is viewed from a cross section (XZ plane in FIG. 4) perpendicular to the extending direction of the welded portion: (1) When the straight line L passing through the intersection point P 1 and the intersection point P 2 is drawn, the second weld layer 152 is introduced into the backing plate 140 with the tip in the depth direction exceeding the straight line L.
  • intersection Q 1 is, on the side of the first member than the intersection Q 2
  • the intersection Q 1 is located inside the first weld layer 151, or consistent with the intersection point P 1
  • an intersection Q 2 are located inside the first weld layer 151, or consistent with the intersection point P 2.
  • 5 to 7 show the cross section of the first weld layer that can be formed by the first welding pass and the cross section of the second weld layer that can be formed by the second weld pass.
  • FIGS. 5 to 7 schematically show a cross section of the first weld layer before performing the second welding pass.
  • FIGS. 5 and 6 show an inappropriate weld form
  • FIG. 7 shows an appropriate weld form
  • the first member 120 and the backing plate 140, and the second member 130 and the backing plate 140 are in contact with each other (in order to avoid complication of the drawings). That is, it is shown in a state without a gap.
  • the first weld layer 151 has a first intersecting region 160 and a second intersecting region 162. Note that FIG. 5 for cross-sectional view, these intersection regions 160 and 162, respectively, are shown as the intersection P 1 and the intersection P 2.
  • FIG. 5 schematically shows a pipe-like defect 170 extending from the first intersecting region 160 and the second intersecting region 162.
  • the second weld layer 152A is formed by performing the second weld pass after the formation of the first weld layer 151 by the first weld pass.
  • the second weld layer 152A has a tip 168A.
  • the pipe-like defect 170 included in the first weld layer 151 is left as it is or is not substantially shortened even after the second welding pass. The possibility of remaining is high. As a result, a large pipe-like defect 170 is likely to remain after the welding process is completed.
  • the second weld layer 152B is formed by the second welding pass.
  • First weld layer 151 as described above, corresponding to the first intersection region 160 and the second intersection region 162, respectively, have an intersection point P 1 and the intersection P 2.
  • Second weld layer 152B has a tip 168B.
  • the second welding layer 152B is in the width (X) direction in contact with the second surface 124 and the intersection point to Q 1 first member 120, the intersection and the fourth surface 134 of the second member 130 Q 2 It is formed to touch.
  • the second weld layer 152 B has the tip 168 B in the straight line L in the depth direction. It is formed so as to be introduced into the backing plate 140.
  • the second weld layer 152B satisfies the feature (1) described above.
  • the second weld layer 152B is formed in this way, at least a part of the pipe-like defect 170 existing in the first weld layer 151 can be remelted during the second welding pass. For this reason, after the second welding pass, the pipe-like defect 170 in the first weld layer 151 is shortened, and as a result, there is a high possibility that the pipe-like defect 170 can be removed or reduced.
  • the second welding layer 152B is the intersection to Q 1 and the straight line L is the left side of the intersection point P 1 (-X direction), and the intersection Q 2 with the straight line L is also the intersection point P 2 right ( + X direction).
  • intersection Q 1 and intersection Q 2 are both located on the outside of the first weld layer 151, not met feature of the above (2).
  • the intersection Q 1 is a new intersection region 180B, and the intersection Q 2 becomes a new intersection region 182B. That is, there is a high possibility that a new pipe-shaped defect 171 starting from the new intersecting regions 180B and 182B will be generated in the second weld layer 152B.
  • the second weld layer 152C is formed by the second welding pass.
  • First weld layer 151 as described above, corresponding to the first intersection region 160 and the second intersection region 162, respectively, have an intersection point P 1 and the intersection P 2.
  • the second weld layer 152C has a tip 168C.
  • the tip 168C is a straight line L It is formed so as to be introduced into the backing plate 140.
  • the second weld layer 152C satisfies the feature (1) described above.
  • a second welding layer 152C is the intersection to Q 1 and the straight line L is also the intersection point P 1 the right (+ X direction), and the intersection Q 2 between the straight line L, are formed such that the left side (-X direction) than the intersection point P 2.
  • intersection Q 1 and intersection Q 2 are both internal to the first weld layer 151 are filled features of the aforementioned (2).
  • intersection Q 1 and intersection Q 2 it is possible to avoid during the second welding pass, by the intersection Q 1 and intersection Q 2, that new crossing region to the second welding layer 152C occurs. If the intersection point Q 1 and the intersection Q 2 is formed inside the first weld layer 151, a second welding layer 152C is, on the straight line L, the first member 120, second member 130 and the backing plate This is because it does not contact any of 140.
  • the second weld layer 152C is formed so as to satisfy both the above-described features (1) and (2), the pipe-shaped defect 170 existing in the first weld layer 151 is shortened. And the pipe-like defect 170 can be significantly removed or reduced. In addition, the formation of the second weld layer 152C can also prevent a new intersecting region from occurring.
  • the shape of the first member 120 is not particularly limited as long as it is plate-shaped.
  • the first surface 122 and the second surface 124 may have curved surfaces.
  • the thickness of the first member 120 may be in the range of 6 mm to 60 mm, for example.
  • the material of the first member 120 is not particularly limited, but may be a steel material such as carbon steel, for example.
  • first member 120 and the second member 130 may be made of the same material or different materials.
  • the backing plate 140 may be made of the same material as the first member 120 or the second member 130, for example.
  • the backing plate 140 may have a thickness of 6 mm to 22 mm, for example.
  • the weld 150 is composed of a plurality of weld layers.
  • the number of layers is not particularly limited as long as it is 2 or more.
  • the first weld layer 151 is present at the bottom of the weld 150, and forms an interface with each of the first member 120, the second member 130, and the backing plate 140.
  • the first weld layer 151 is formed on the first member 120 side as shown in FIG. , we meet at a second surface 124 and the intersection P 1 of the first member 120, intersects the top surface 142 and the intersection point P 3 of the backing plate 140.
  • the width W 1 (see FIGS. 4 and 7) between the intersection point P 1 and the intersection point P 2 in the first weld layer 151 may be in the range of 3 mm to 20 mm.
  • the intersection when depicting the straight line L passing through P 1 and the intersection point P 2, the second weld layer 152, the intersection Q 1 and the intersection Q of the straight line L 2 are formed so as to be included in the first weld layer 151.
  • the distance between the intersection point P 1 and the point of intersection Q 1 is preferably at 2mm or less, and more preferably 1mm or less.
  • the distance between the intersection point P 2 and the point of intersection Q 2 is preferably at most 2mm or less, and more preferably 1mm or less.
  • the width W 2 (see FIG. 7) between the intersection point Q 1 and the intersection point Q 2 may be in the range of 2 mm to 20 mm.
  • the ratio of the width W 2 to the width W 1 is preferably 70% or more, and more preferably 80% or more.
  • Such a welded portion 150 can be formed, for example, by the method described below.
  • FIG. 8 schematically shows a flow of a welding method according to an embodiment of the present invention.
  • 9 to 11 schematically show one step of the welding method according to one embodiment of the present invention.
  • a welding method according to an embodiment of the present invention (hereinafter referred to as a “first welding method”) (A) a step of placing the first member, the second member and the backing plate at predetermined positions (step S110); (B) forming a first weld layer between the first member, the second member, and the backing plate by the first welding pass (step S120); (C) forming a second weld layer on the first weld layer by the second welding pass (step S130);
  • FIGS. 2 to 4 and FIG. 7 described above are used to represent each member.
  • FIG. 9 schematically shows a state in which the three members are arranged at appropriate positions.
  • the first member 120 has a first surface 122 and a second surface 124 that face each other, and an end surface 126 that connects both surfaces.
  • the second member 130 has a third surface 132 and a fourth surface 134 that face each other, and an end surface 136 that connects both surfaces.
  • the backing plate 140 has an upper surface 142.
  • the first member 120 and the second member 130 are disposed on the backing plate 140 such that both end faces 126 and 136 face each other. At this time, the first member 120 and the second member 130 are arranged such that the first surface 122 and the third surface 132 are in the same direction (upward). In other words, the first member 120 and the second member 130 are arranged such that the second surface 124 and the fourth surface 134 face or contact the upper surface 142 of the backing plate 140.
  • the end surface 126 of the first member 120 and the end surface 136 of the second member 130 are inclined at a predetermined angle. Therefore, when the first member 120 and the second member 130 are appropriately disposed with respect to each other, a V-shaped groove shape having an angle ⁇ is formed by the end surfaces 126 and 136 of both.
  • the angle ⁇ is usually in the range of 30 ° to 90 °.
  • the inclination angles of the end face 126 and the end face 136 are not particularly limited.
  • at least one or at least part of the end surface 126 of the first member 120 and the end surface 136 of the second member 130 does not have an inclination, and may be parallel to the thickness direction of the respective members 120 and 130. good.
  • the end surface 126 and the end surface 136 may have different inclination angles.
  • the minimum distance D (see FIG. 9) between the first member 120 and the second member 130 is, for example, in the range of 0 mm to 20 mm.
  • first surface 122 and the second surface 124 of the first member 120 are not necessarily flat, and they may have curved surfaces. The same applies to the third surface 132 and the fourth surface 134 of the second member 130.
  • FIG. 10 schematically shows a state in which the first weld layer 151 is formed by the first welding pass.
  • the first weld layer 151 is formed at the bottom between the end surface 126 of the first member 120 and the end surface 136 of the second member 130. In addition, the first weld layer 151 is formed such that the tip 164 enters the inside of the backing plate 140.
  • an intersection point where the first weld layer 151 intersects the second surface 124 of the first member 120 on the first member 120 side is defined as P 1. and, on the side of the second member 130, the intersection intersecting the fourth surface 134 of the second member 130 is defined as P 2.
  • the first welding pass may be performed by applying a large current exceeding 500 A between the electrode wire and each of the members 120 and 130 or by applying a smaller current. May be.
  • Step S130 Next, as shown in FIG. 11, the second weld layer 152 is formed on the first weld layer 151 by the second welding pass.
  • the second welding pass is performed by applying a large current exceeding 500 A between the electrode wire and each of the members 120 and 130.
  • the second weld layer 152 has the characteristics as described above.
  • the second weld layer 152 has the depth direction tip 168 introduced into the backing plate 140 beyond the straight line L. Formed as follows.
  • the second weld layer 152 has the intersection point Q 1 inside the first weld layer 151 or coincides with the intersection point P 1, and the intersection point Q 2 is inside the first weld layer 151, or the intersection point It is formed so as to match the P 2.
  • intersection point Q 1 and the intersection point Q 2 are determined as intersections at which the second weld layer 152 intersects the straight line L in the cross section of the second weld layer 152.
  • the intersection point Q 1 is defined as an intersection point closer to the first member 120 than the intersection point Q 2 .
  • third, fourth,... Weld layers may be provided on the second weld layer 152.
  • the weld 150 is formed.
  • the first welded joint 100 in which the first member 120, the second member 130, and the backing plate 140 are joined to each other through the welded portion 150 can be obtained.
  • the first welding method may be performed using any welding technique as long as the above-described characteristics are obtained.
  • the first welding method is a mixed gas of Ar and CO 2 , a gas shield metal arc welding (GMAW) technique using CO 2 gas, a covering arc welding (FCAW) technique, or a submerged arc welding (SAW) technique.
  • GMAW gas shield metal arc welding
  • FCAW covering arc welding
  • SAW submerged arc welding
  • Example 1 Using the first welding method described above, two steel plates and a backing plate were welded together to produce a welded joint.
  • SM490 rolled steel for welded structure
  • the V-shaped groove angle ⁇ formed by the end faces of both steel plates was about 50 °
  • the minimum distance D between the two steel plates was about 5 mm (see FIG. 9).
  • the back plate was made of the same material as the steel plate.
  • the treatment for removing the oxide film was not particularly performed on the two steel plates and the backing plate.
  • a gas shield metal arc welder was used for welding.
  • the shielding gas was a mixed gas of Ar and CO 2 , and a solid wire corresponding to YGW15 (JIS standard) with a diameter of 1.4 mm was used.
  • the number of welding passes was two, and a welded part consisting of two weld layers was formed.
  • a current of less than 500 A was applied between the electrodes.
  • a current exceeding 500 A was applied between the electrodes.
  • FIG. 12 shows an example of a cross section of the welded portion after the first welding pass. Moreover, in FIG. 13, an example of the cross section of the to-be-welded location after a 2nd welding pass is shown.
  • FIG. 12 shows that the first weld layer extends from the side of the two steel plates to the inside of the backing plate. Similarly, it can be seen from FIG. 13 that the tip of the second weld layer reaches the inside of the backing plate in the depth direction.
  • intersection point P 1 , the intersection point P 2 , the intersection point Q 1 , and the intersection point Q 2 were obtained according to the above definition.
  • the intersection point Q 1 and the intersection Q 2 is, it was found to be present within the first weld layer.
  • the distance of the intersection point P 1 and the point of intersection Q 1 is, about 1 mm
  • the distance of an intersection P 2 and the point of intersection Q 2 is was about 0.5 mm
  • the ratio of the width W 2 between the intersection point Q 1 and the intersection point Q 2 to the width W 1 between the intersection point P 1 and the intersection point P 2 was about 70%.
  • Example 2 Using a conventional welding method, two steel plates and a backing plate were welded together to produce a welded joint.
  • Example 2 The same steel plate and backing plate as in Example 1 were used. A gas shield metal arc welder was used for welding. The shielding gas was CO 2 and the same wire as in Example 1 was used.
  • Example 2 a large current exceeding 500 A was applied between the electrode wire and the steel plate to form a welded portion in one welding pass.
  • the weld has a single weld layer.
  • FIG. 14 is a photograph of a cross section of the welded portion observed (captured) from a direction perpendicular to the extending direction.
  • FIG. 15 is a photograph of the welded portion cut along a weld bead and taken by transmission X-ray photography from the side.
  • the upper part corresponds to two steel plates, and the lower part corresponds to a backing plate.
  • FIG. 14 shows that a pipe-like defect has occurred in the intersection region on the left side of the weld layer. Further, it can be seen from FIG. 15 that a large number of pipe-like defects starting from the intersection region are generated in the welded portion.
  • Example 2 it was found that a large number of pipe-like defects were included in the weld.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding In General (AREA)

Abstract

本発明による溶接方法は、第1の部材、第2の部材および裏あて板の間に第1および第2の溶接層を形成する工程を有する。第1の部材は、第1の表面を有し、第2の部材は、第2の表面を有する。第1および第2の部材は、第1の表面と第2の表面とが、裏あて板と対面するように配置される。第1の溶接層は、第1の部材の第1の表面と交点P1で交わり、第2の部材の第2の表面と交点P2で交わる。交点P1と交点P2とを通る直線Lを描いたとき、第2の溶接層は、先端が直線Lを超える。第2の溶接層は、直線Lと交点Q1および交点Q2で交わり、交点Q1は、第1の溶接層の内部にあり、または交点P1と一致し、交点Q2は、第1の溶接層の内部にあり、または交点P2と一致する。

Description

溶接方法および溶接継手
 本発明は、溶接方法および溶接継手に関する。
 2つの鋼板を相互に接合する技術として、ガスシールドメタルアーク溶接法などの溶接技術が知られている。ガスシールドメタルアーク溶接法では、ワイヤと2つの鋼板との間にアークが発生し、このアークが熱源となり、ワイヤおよび鋼板が溶融され、鋼板同士が溶接される。またこの際に、アークの周囲にシールドガスが供給されるため、被溶接箇所を外部環境から隔離した状態で、溶接を行うことができる。
特開平6-79485号公報
 上記のような溶接技術において、鋼板の溶接箇所に黒皮と呼ばれる酸化皮膜が存在する場合、しばしば、溶接層に溶接欠陥が生じると言う問題が生じ得る。特に、大電流でアーク溶接を実施すると、パイプ状欠陥のような大きな欠陥が生じる可能性が高くなる。
 そこでこのような溶接不具合を防止するため、通常、溶接処理の前には、酸化皮膜を除去するプロセスが実施される(例えば特許文献1)。
 しかしながら、このような酸化皮膜の除去プロセスは、溶接の作業効率を低下させる要因となる。このため、効率的な方法で、健全な溶接を行うことができる技術が要望されている。
 本発明は、このような背景に鑑みなされたものであり、本発明では、作業効率を低下させずに、大きなパイプ状欠陥を抑制することが可能な溶接方法を提供することを目的とする。また、本発明では、大きなパイプ状欠陥が有意に抑制された溶接継手を提供することを目的とする。
 本発明では、溶接方法であって、
 (1)第1回目の溶接パスにより、第1の部材、第2の部材および裏あて板の間に、第1の溶接層を形成する工程であって、
  前記第1の部材は、第1の表面を有し、前記第2の部材は、第2の表面を有し、前記裏あて板は、上面を有し、
  前記第1の部材および前記第2の部材は、前記第1の表面と、前記第2の表面とが、前記裏あて板の前記上面と対面し、または接触するように配置され、
  前記第1の溶接層は、該第1の溶接層の延在方向に対して垂直な断面から見たとき、
  前記第1の部材の側において、該第1の部材の前記第1の表面と交点Pで交わり、前記第2の部材の側において、該第2の部材の前記第2の表面と交点Pで交わるように形成される工程と、
 (2)第2回目の溶接パスにより、前記第1の溶接層の上に第2の溶接層を形成する工程と、
 を有し、
 前記交点Pと前記交点Pとを通る直線Lを描いたとき、
 前記第2の溶接層は、深さ方向の先端が、前記直線Lを超えて前記裏あて板内に導入されるように配置され、
 前記第2の溶接層は、前記直線Lと交点Qおよび交点Qで交わり、前記交点Qは、前記交点Qよりも前記第1の部材の側にあり、
 前記交点Qは、前記第1の溶接層の内部にあり、または前記交点Pと一致し、
 前記交点Qは、前記第1の溶接層の内部にあり、または前記交点Pと一致する、溶接方法が提供される。
 また、本発明では、溶接部によって、第1の部材、第2の部材および裏あて板が相互に接合された溶接継手であって、
 前記第1の部材は、第1の表面を有し、
 前記第2の部材は、第2の表面を有し、
 前記第1の部材および前記第2の部材は、前記第1の表面と前記第2の表面とが、前記裏あて板の上面と対面または接触するように配置されており、
 前記溶接部は、深さ方向において、前記裏あて板に近い側から、第1の溶接層および第2の溶接層を有し、
 前記溶接部を、該溶接部の延在方向に対して垂直な断面から見たとき、
 前記第1の溶接層は、前記第1の部材の側において、該第1の部材の前記第1の表面と交点Pで交わり、前記第2の部材の側において、該第2の部材の前記第2の表面と交点Pで交わり、
 前記交点Pと前記交点Pとを通る直線Lを描いたとき、
 前記第2の溶接層は、深さ方向の先端が、前記直線Lを超えて前記裏あて板内に導入されるように配置され、
 前記第2の溶接層は、前記直線Lと交点Qおよび交点Qで交わり、前記交点Qは、前記交点Qよりも前記第1の部材の側にあり、
 前記交点Qは、前記第1の溶接層の内部にあり、または前記交点Pと一致し、
 前記交点Qは、前記第1の溶接層の内部にあり、または前記交点Pと一致する、溶接継手が提供される。
 本発明では、作業効率を低下させずに、大きなパイプ状欠陥を抑制することが可能な溶接方法を提供することができる。また、本発明では、大きなパイプ状欠陥が有意に抑制された溶接継手を提供することができる。
従来の溶接方法の一例を模式的に示した図である。 本発明の一実施形態による溶接継手の模式的な斜視図である。 図2に示した溶接継手のA-A線に沿った模式的な断面図である。 第1の溶接層およびその近傍の断面を模式的に示した図である。 溶接継手において、不適切な溶接部の一態様を模式的に示した断面図である。 溶接継手において、不適切な溶接部の一態様を模式的に示した断面図である。 溶接継手において、適切な溶接部の一態様を模式的に示した断面図である。 本発明の一実施形態による溶接方法のフローを模式的に示した図である。 本発明の一実施形態による溶接方法の一工程を概略的に示した図である。 本発明の一実施形態による溶接方法の一工程を概略的に示した図である。 本発明の一実施形態による溶接方法の一工程を概略的に示した図である。 例1において、第1の溶接パス後の被溶接箇所の断面の一例を示した写真である。 例1において、第2の溶接パス後の被溶接箇所の断面の一例を示した写真である。 例2において得られた溶接部の断面の一例を示した写真である。 例2において得られた溶接部を、溶接ビードの近傍に沿って切断し、ビード側面から透過X線撮影することにより得られた写真である。
 以下、図面を参照して、本発明の一実施形態について説明する。
 (従来の溶接方法の問題)
 本発明の特徴をより良く理解するため、まず図1を参照して、従来の溶接方法の問題について簡単に説明する。
 図1には、従来の溶接方法の一例を模式的に示す。
 従来の溶接方法を実施する際には、まず、図1(a)に示すように、第1の鋼板20、第2の鋼板30、および裏あて板40が準備される。また、これらの部材が所定の関係で配置される。
 第1の鋼板20は、傾斜端面26を有し、第2の鋼板30は、傾斜端面36を有する。第1の鋼板20および第2の鋼板30は、裏あて板40の上で、それぞれの傾斜端面26、36が相互に対面するように配置される。
 次に、このような配置状態において、傾斜端面26と傾斜端面36の間で、第1回目の溶接パスが実施される。これにより、図1(b)に示すような溶接層50が形成される。
 ここで、第1の鋼板20、第2の鋼板30、および裏あて板40の被溶接箇所、またはその近傍に酸化皮膜が存在すると、溶接層50に、しばしば、欠陥が生じる場合がある。
 特に、溶接の際の入熱エネルギーが大きい場合、例えば500Aを超えるような大電流でアーク溶接を実施した場合、溶接層50の内部には、図1(b)に示すような、ウォームホールと呼ばれるパイプ状欠陥70が発生し得る。ここで、「パイプ状欠陥」とは、ガス放出で溶接金属に発生する細長い筒状の空洞欠陥を意味する。
 このようなパイプ状欠陥70は、溶接層50の特性に悪影響を及ぼすおそれがある。このため、通常、溶接処理の前には、第1の鋼板20、第2の鋼板30、および裏あて板40に存在する酸化皮膜を除去する処理が実施される。
 しかしながら、このような酸化皮膜の除去処理は、溶接の作業効率を低下させる要因となるという問題がある。
 (本発明の一実施形態による溶接継手)
 次に、図2および図3を参照して、本発明の一実施形態による溶接継手について説明する。図2には、本発明の一実施形態による溶接継手(以下、「第1の溶接継手」という)の模式的な斜視図を示す。また、図3には、図2に示した第1の溶接継手のA-A線に沿った、模式的な断面図を示す。
 図2に示すように、第1の溶接継手100は、第1の部材120、第2の部材130、裏あて板140、および第1の部材120と第2の部材130の間の溶接部150を有する。
 第1の部材120は、相互に対向する第1の表面122および第2の表面124と、両表面をつなぐ端面126とを有する。また、第2の部材130は、相互に対向する第3の表面132および第4の表面134と、両表面をつなぐ端面136とを有する。
 なお、図2に示した例では、溶接部150は、端面126および端面136の全面に形成されておらず、その結果、端面126および端面136の一部が視認される。
 しかしながら、これとは異なり、溶接部150は、端面126および端面136の全面を覆うように形成されても良い。この場合、端面126および端面136を視認することはできない。
 第1の溶接継手100において、第1の部材120および第2の部材130は、両端面126および136が相互に対面するように配置される。また、第1の部材120および第2の部材130は、第1の表面122および第3の表面132が同じ向き(上向き)となるように配置される。
 裏あて板140は、上面142を有する。裏あて板140は、溶接部150の下側に、上面142が第1の部材120の第2の表面124および第2の部材130の第4の表面134と対向、または接触するように配置される。
 第1の溶接継手100において、第1の部材120、第2の部材130、および裏あて板140は、溶接部150により相互に接合されている。
 図3に示すように、溶接部150は、深さ方向(図3のZ方向)において、裏あて板140に近い側から、第1の溶接層151、および第2の溶接層152を有する。第1の溶接層151は、裏あて板140の上面142を超え、裏あて板140の内方にまで、深さ方向に延伸している。同様に、第2の溶接層152は、裏あて板140の上面142を超え、裏あて板140の内方にまで、深さ方向に延伸している。
 ここで、以降の記載を容易にするため、図4を参照して、第1の溶接継手100における溶接部150、特に第1の溶接層151の各部分の名称について説明する。
 図4には、第1の溶接層151およびその近傍の断面を模式的に示す。
 なお、図4では、第1の溶接層151が第2の溶接層152を形成する前の状態として模式的に示されており、従って、第1の溶接層151は、図3に示した第1の溶接層151とは異なる断面形態を有する。また、図4において、第1の溶接層151内の破線は、第1の部材120、第2の部材130、および裏あて板140のそれぞれの、溶接施工前の概略的な輪郭線を示している。
 図4において、水平方向(X方向)を「(溶接層の)幅方向」と称し、鉛直方向(Z方向)を「(溶接層の)深さ方向」と称する。幅方向は右向きを正とし、深さ方向は下向きを正とする。
 図4に示すように、第1の溶接層151は、第1の部材120、第2の部材130、および裏あて板140のそれぞれの部材を接合するように形成される。
 その結果、第1の溶接層151は、第1の部材120の側(図4の左側)において、第1の部材120の第2の表面124と交点Pで交わり、裏あて板140の上面142と交点Pで交わる。
 また、第1の溶接層151は、第2の部材130の側(図4の右側)において、第2の部材130の第4の表面134と交点Pで交わり、裏あて板140の上面142と交点Pで交わる。
 なお、図4に示した例では、第1の部材120の第2の表面124と裏あて板140の上面142との間、および第2の部材130の第4の表面134と裏あて板140の上面142との間には、隙間が存在している。しかしながら、別の形態として、第1の部材120の第2の表面124と裏あて板140の上面142、および第2の部材130の第4の表面134と裏あて板140の上面142が接触している場合もあり得る。その場合、交点P=交点Pとなり、交点P=交点Pとなる。
 第1の溶接層151において、交点Pから交点Pまでの領域を「第1の交差領域(160)」と称し、交点Pから交点Pまでの領域を「第2の交差領域(162)」と称する。また、第1の溶接層151において、深さ方向(Z方向)の最大位置を「先端(164)」と称する。
 なお、交点P=交点Pの場合、第1の交差領域160は、図4のような断面から見たとき、点状となる。ただし、その場合でも、第1の交差領域160は、奥行き方向(紙面に垂直な方向)に延在する。交点P=交点Pの場合も同様である。
 前述の図1(b)に示したようなパイプ状欠陥70は、第1の交差領域160および/または第2の交差領域162を起点として生じる傾向にある。
 ここで、第1の溶接継手100は、溶接部150を、該溶接部の延在方向に対して垂直な断面(図4におけるXZ平面)から見たとき、以下の特徴を有する:
 (1)交点Pと交点Pとを通る直線Lを描いたとき、第2の溶接層152は、深さ方向の先端が、直線Lを超えて裏あて板140内に導入されるように配置される;および
 (2)第2の溶接層152は、前記直線Lと交点Qおよび交点Qで交わり、交点Qは、前記交点Qよりも前記第1の部材の側にあり、交点Qは、第1の溶接層151の内部にあり、または交点Pと一致し、交点Qは、第1の溶接層151の内部にあり、または交点Pと一致する。
 以下、図5~図7を参照して、これらの特徴の効果について説明する。
 図5~図7には、第1の溶接パスにより形成され得る第1の溶接層の断面と、第2の溶接パスにより形成され得る第2の溶接層の断面とを重ね合わせて示す。
 なお、実際には、第2の溶接パスにより第1の溶接層の一部は溶融するため、第2の溶接パス後に第1の溶接層の形状は変化する。従って、図5~図7には、第2の溶接パスを実施する前の第1の溶接層の断面が模式的に示されている。
 特に、図5および図6には、不適切な溶接部の形態が示されており、図7には、適切な溶接部の形態が示されている。
 また、図5~図7においては、図面が複雑になることを避けるため、第1の部材120と裏あて板140、および第2の部材130と裏あて板140は、相互に接触した状態(すなわち隙間のない状態)で示されている。
 まず、図5を参照すると、第1の溶接層151は、第1の交差領域160および第2の交差領域162を有する。なお、図5は断面図のため、これらの交差領域160、162は、それぞれ、交点Pおよび交点Pとして示されている。
 前述のように、パイプ状欠陥は、第1の交差領域160および/または第2の交差領域162を起点として生じる傾向にある。このため、図5には、第1の交差領域160および第2の交差領域162から延伸するパイプ状欠陥170が、模式的に示されている。
 第2の溶接層152Aは、第1の溶接パスによる第1の溶接層151の形成後に、第2の溶接パスを実施することにより形成される。第2の溶接層152Aは、先端168Aを有する。
 ここで、図5に示した例では、交点Pおよび交点Pを通る直線Lを描いたとき、第2の溶接層152Aの先端168Aは、直線Lまで達していない。すなわち、前述の(1)の特徴は満たされていない。
 このような態様で、第2の溶接層152Aを形成した場合、第2の溶接パス後にも、第1の溶接層151に含まれるパイプ状欠陥170が、そのまま、またはほとんど短縮化されずに、残存する可能性が高くなる。その結果、溶接プロセスの完了後に、大きなパイプ状欠陥170が残留してしまう可能性が高くなる。
 次に、図6を参照すると、この例では、第1の溶接層151の形成後に、第2の溶接パスにより第2の溶接層152Bが形成される。
 第1の溶接層151は、前述のように、第1の交差領域160および第2の交差領域162に対応する、それぞれ、交点Pおよび交点Pを有する。
 第2の溶接層152Bは、先端168Bを有する。また、第2の溶接層152Bは、幅(X)方向において、第1の部材120の第2の表面124と交点Qで接し、第2の部材130の第4の表面134と交点Qで接するように形成される。
 図6に示した例では、第1の溶接層151の交点Pと交点Pを通る直線Lを描いたとき、第2の溶接層152Bは、深さ方向において、先端168Bが直線Lを超え、裏あて板140内に導入されるように形成されている。
 すなわち、第2の溶接層152Bは、前述の(1)の特徴を満たしている。
 第2の溶接層152Bをこのように形成した場合、第2の溶接パスの際に、第1の溶接層151に存在するパイプ状欠陥170の少なくとも一部を再溶融させることができる。このため、第2の溶接パスの後に、第1の溶接層151内のパイプ状欠陥170が短縮化され、その結果、パイプ状欠陥170を除去または低減できる可能性が高くなる。
 しかしながら、第2の溶接層152Bは、前記直線Lとの交点Qが、交点Pよりも左側(-X方向)となり、前記直線Lとの交点Qが、交点Pよりも右側(+X方向)となるように形成されている。
 すなわち、第2の溶接層152Bにおいて、交点Qおよび交点Qは、いずれも第1の溶接層151の外部にあり、前述の(2)の特徴は満たされていない。
 このような態様では、第2の溶接パスの際に、交点Qが新たな交差領域180Bとなり、交点Qが新たな交差領域182Bとなってしまう。すなわち、第2の溶接層152Bの中に、新たな交差領域180Bおよび182Bを起点とした、新たなパイプ状欠陥171が生じる可能性が高くなってしまう。
 一方、図7を参照すると、この例では、第1の溶接層151の形成後に、第2の溶接パスにより第2の溶接層152Cが形成される。
 第1の溶接層151は、前述のように、第1の交差領域160および第2の交差領域162に対応する、それぞれ、交点Pおよび交点Pを有する。
 第2の溶接層152Cは、先端168Cを有する。
 ここで、図7に示した例では、前述のように交点Pおよび交点Pを通る直線Lを描いたとき、第2の溶接層152Cは、深さ方向において、先端168Cが直線Lを超え、裏あて板140内に導入されるように形成されている。
 すなわち、第2の溶接層152Cは、前述の(1)の特徴を満たしている。
 この場合、第2の溶接パスの際に、第1の溶接層151に存在するパイプ状欠陥170の少なくとも一部を再溶融させることができる。このため、第2の溶接パスの後に、第1の溶接層151内のパイプ状欠陥170が短縮化され、その結果、パイプ状欠陥170を除去または低減できる可能性が高くなる。
 また、図7に示した例では、第2の溶接層152Cは、前記直線Lとの交点Qが、交点Pよりも右側(+X方向)となり、前記直線Lとの交点Qが、交点Pよりも左側(-X方向)となるように形成されている。
 すなわち、第2の溶接層152Cにおいて、交点Qおよび交点Qは、いずれも第1の溶接層151の内部にあり、前述の(2)の特徴が満たされている。
 このような態様では、第2の溶接パスの際に、交点Qおよび交点Qによって、第2の溶接層152Cに新たな交差領域が生じることを回避することができる。交点Qおよび交点Qが第1の溶接層151の内部に形成された場合、第2の溶接層152Cは、直線L上では、第1の部材120、第2の部材130および裏あて板140のいずれとも接触しないためである。
 従って、図7に示したような態様では、第2の溶接層152C内に、新たな交差領域を起点とした新たなパイプ状欠陥が生じることは生じ難い。
 このように、前述の(1)および(2)の特徴をともに満たすように第2の溶接層152Cを形成した場合、第1の溶接層151内に存在するパイプ状欠陥170を短縮化することが可能となり、パイプ状欠陥170を有意に除去または低減することができる。また、第2の溶接層152Cの形成により、新たな交差領域が生じることも回避することができる。
 従って、前述の(1)および(2)の特徴をともに有する第1の溶接継手100では、大きなパイプ状欠陥を有意に抑制することが可能となる。
 (本発明の一実施形態による溶接継手に含まれる各部材)
 次に、本発明の一実施形態による溶接継手に含まれる各部材の特徴および構成等について、より詳しく説明する。
 なお、ここでは、明確化のため、各部材を表す際に、図2~図4および図7に示した参照符号を使用する。
 (第1の部材120および第2の部材130)
 第1の部材120の形状は、板状である限り、特に限られない。例えば、第1の部材120において、第1の表面122および第2の表面124は、曲面を有しても良い。第1の部材120の厚さは、例えば、6mm~60mmの範囲であっても良い。
 また、第1の部材120の材料は、特に限られないが、例えば、炭素鋼などの鋼材であっても良い。
 第2の部材130についても、同様のことが言える。なお、第1の部材120と第2の部材130は、同一の材料であっても、異なる材料であっても良い。
 (裏あて板140)
 裏あて板140は、例えば、第1の部材120または第2の部材130と同じ材料で構成されても良い。
 裏あて板140は、例えば、6mm~22mmの厚さを有しても良い。
 (溶接部150)
 溶接部150は、複数の溶接層で構成される。層の数は、2以上であれば、特に限られない。
 第1の溶接層151は、溶接部150の最も底部に存在し、第1の部材120、第2の部材130、および裏あて板140のそれぞれの部材と界面を形成する。
 より具体的には、溶接部150を延在方向に対して垂直な断面から見たとき、第1の溶接層151は、前述の図4に示したように、第1の部材120の側において、第1の部材120の第2の表面124と交点Pで交わり、裏あて板140の上面142と交点Pで交わる。また、第1の溶接層151は、第2の部材130の側において、第2の部材130の第4の表面134と交点Pで交わり、裏あて板140の上面142と交点Pで交わる。
 第1の溶接層151における交点Pと交点Pの間の幅W(図4および図7参照)は、3mm~20mmの範囲であっても良い。
 また、第2の溶接層152に関しては、前述のように、交点Pと交点Pを通る直線Lを描いたとき、第2の溶接層152は、直線Lとの交点Qおよび交点Qが、いずれも第1の溶接層151の内部に含まれるように形成される。
 ここで、交点Pと交点Qの間の距離は、2mm以下であることが好ましく、1mm以下であることがより好ましい。同様に、交点Pと交点Qの間の距離は、2mm以下であることが好ましく、1mm以下であることがより好ましい。
 また、交点Qと交点Qの間の幅W(図7参照)は、2mm~20mmの範囲であっても良い。特に、幅Wに対する幅Wの割合は、70%以上であることが好ましく、80%以上であることがより好ましい。
 このような溶接部150は、例えば、以降に示す方法により形成することができる。
 (本発明の一実施形態による溶接方法)
 次に、図8~図11を参照して、本発明の一実施形態による溶接方法について説明する。
 図8には、本発明の一実施形態による溶接方法のフローを模式的に示す。また、図9~図11には、本発明の一実施形態による溶接方法の一工程を概略的に示す。
 図8に示すように、本発明の一実施形態による溶接方法(以下、「第1の溶接方法」と称する)は、
 (a)第1の部材、第2の部材および裏あて板を所定の位置に配置する工程(工程S110)と、
 (b)第1回目の溶接パスにより、第1の部材、第2の部材および裏あて板の間に、第1の溶接層を形成する工程(工程S120)と、
 (c)第2回目の溶接パスにより、第1の溶接層の上に第2の溶接層を形成する工程(工程S130)と、
 を有する。
 以下、図9~図11を参照して、各工程について説明する。
 なお、ここでは、一例として、前述のような第1の溶接継手100を製造する場合の溶接方法について説明する。従って、各部材を表す際には、前述の図2~図4および図7で使用した参照符号を使用する。
 (工程S110)
 まず、第1の部材120、第2の部材130および裏あて板140が準備され、3者が適正な相対位置に配置される。
 図9には、3つの部材が適正位置に配置された様子を模式的に示す。
 図9に示すように、第1の部材120は、相互に対向する第1の表面122および第2の表面124と、両表面をつなぐ端面126とを有する。また、第2の部材130は、相互に対向する第3の表面132および第4の表面134と、両表面をつなぐ端面136とを有する。裏あて板140は、上面142を有する。
 第1の部材120および第2の部材130は、両端面126および136が相互に対面するようにして、裏あて板140上に配置される。この際には、第1の部材120および第2の部材130は、第1の表面122および第3の表面132が同じ向き(上向き)となるように配置される。換言すれば、第1の部材120および第2の部材130は、第2の表面124および第4の表面134が、裏あて板140の上面142と対向、または接触するように配置される。
 なお、図3に示した例では、第1の部材120の端面126および第2の部材130の端面136は、所定の角度に傾斜されている。そのため、第1の部材120と第2の部材130を相互に対して適正に配置した場合、両者の端面126、136により、角度θのV型の開先形状が形成される。角度θは、通常、30゜~90゜の範囲である。
 ただし、これは単なる一例であって、端面126および端面136の傾斜角度は、特に限られない。例えば、第1の部材120の端面126および第2の部材130の端面136の少なくとも一方、あるいは少なくとも一部は傾斜をもたず、それぞれの部材120、130の厚さ方向に平行であっても良い。また、端面126および端面136は、それぞれ異なる傾斜角度を有していても構わない。
 また、第1の部材120と第2の部材130の間の最小間隔D(図9参照)は、例えば、0mm~20mmの範囲である。
 前述のように、第1の部材120の第1の表面122および第2の表面124は、必ずしも平面である必要はなく、これらは曲面を有しても良い。第2の部材130の第3の表面132および第4の表面134についても同様である。
 (工程S120)
 次に、ワイヤ等の溶加材を用いたアーク溶接が実施される。その結果、第1回目の溶接パスにより、第1の部材120、第2の部材130、および裏あて板140の間に、第1の溶接層151が形成される。
 図10には、第1回目の溶接パスにより、第1の溶接層151が形成された様子を模式的に示す。
 図10に示すように、第1の溶接層151は、第1の部材120の端面126と第2の部材130の端面136との間の、底部に形成される。また、第1の溶接層151は、先端164が、裏あて板140の内部まで進入するように形成される。
 前述のように、第1の溶接層151の断面において、第1の溶接層151が第1の部材120の側において、第1の部材120の第2の表面124と交わる交点をPと規定し、第2の部材130の側において、第2の部材130の第4の表面134と交わる交点をPと規定する。
 なお、第1回目の溶接パスは、電極ワイヤと各部材120、130との間に、500Aを超えるような大電流を印加して実施されても良く、あるいはより小さな電流を印加して実施されても良い。
 (工程S130)
 次に、図11に示すように、第2回目の溶接パスにより、第1の溶接層151の上に第2の溶接層152が形成される。
 通常、第2回目の溶接パスは、電極ワイヤと各部材120、130との間に、500Aを超えるような大電流を印加して実施される。
 ここで、第2の溶接層152は、前述のような特徴を有する。
 すなわち、交点Pと交点Pとを通る直線Lを描いたとき、第2の溶接層152は、深さ方向の先端168が、直線Lを超えて裏あて板140の内部に導入されるように形成される。
 また、第2の溶接層152は、交点Qが第1の溶接層151の内部にあり、または交点Pと一致し、交点Qが第1の溶接層151の内部にあり、または交点Pと一致するように形成される。
 なお、前述のように、交点Qおよび交点Qは、第2の溶接層152の断面において、第2の溶接層152が直線Lと交差する交点として定められる。ここで、交点Qは、交点Qよりも第1の部材120に近い側の交点として規定される。
 必要な場合、第2の溶接層152の上に、第3、第4…の溶接層を設置しても良い。
 以上の工程により、溶接部150が形成される。また、溶接部150を介して、第1の部材120、第2の部材130、および裏あて板140が相互に接合された、第1の溶接継手100を得ることができる。
 このような第1の溶接方法では、(工程S130)における第2の溶接パスの際に、第1の溶接層151に存在し得るパイプ状欠陥170の少なくとも一部を再溶融させることができる。このため、第2の溶接パスの後に、第1の溶接層151内のパイプ状欠陥170を除去または低減させることができる。
 また、第1の溶接方法では、第2の溶接パスにより第2の溶接層152を形成する際に、交点QおよびQにおいて、新たな交差領域が生じることを回避することができる。
 従って、第1の溶接方法では、たとえ第1の部材120、第2の部材130、および/または裏あて板140の被溶接箇所に酸化皮膜が存在していたとしても、大きなパイプ状欠陥を有意に抑制することが可能となる。
 またこれにより、第1の溶接方法では、第1の部材120、第2の部材130、および裏あて板140に存在する酸化皮膜を除去する工程を実施する必要がなくなり、作業効率を高めることが可能となる。
 なお、上記第1の溶接方法は、前述のような特徴が得られる限り、いかなる溶接技術を用いて実施されても良い。
 例えば、第1の溶接方法は、ArとCOの混合ガスや、COガスを用いたガスシールドメタルアーク溶接(GMAW)技術、被覆アーク溶接(FCAW)技術、またはサブマージアーク溶接(SAW)技術等のアーク溶接方法を用いて実施されても良い。
 次に、本発明の実施例について説明する。
 (例1)
 前述の第1の溶接方法を用いて、2枚の鋼板および裏あて板を相互に溶接し、溶接継手を製造した。
 2枚の鋼板には、厚さが約12mmのSM490(溶接構造用圧延鋼材)を使用した。両鋼板の端面で構成されるV型の開先角度θは、約50゜であり、両鋼板の間の最小間隔Dは、約5mmであった(図9参照)。
 裏あて板には、鋼板と同じ材料のものを使用した。
 なお、2枚の鋼板および裏あて板に対して、特に酸化皮膜を除去する処理は実施しなかった。
 また、溶接には、ガスシールドメタルアーク溶接機を使用した。シールドガスはArとCOの混合ガスとし、ワイヤには、直径が1.4mmのYGW15(JIS規格)相当のソリッドワイヤを使用した。
 溶接パスの回数は2回とし、2層の溶接層からなる溶接部を形成した。第1回目の溶接パスでは、電極間に500A未満の電流を印加した。これに対して、第2回目の溶接パスでは、電極間に500Aを超える電流を印加した。
 得られた溶接継手を検査したところ、溶接部は健全な状態であり、2枚の鋼板および裏あて板は、適正に接合されていることが確認された。また、溶接部には、パイプ状欠陥は認められなかった。
 図12には、第1の溶接パス後の被溶接箇所の断面の一例を示す。また、図13には、第2の溶接パス後の被溶接箇所の断面の一例を示す。
 図12から、第1の溶接層は、2枚の鋼板の側から、裏あて板の内部まで延在していることがわかる。同様に、図13から、第2の溶接層は、深さ方向において、先端が、裏あて板の内部まで達していることがわかる。
 図13から、前述の定義に従って、交点P、交点P、交点Q、および交点Qを求めた。その結果、交点Qおよび交点Qは、いずれも第1の溶接層の内部に存在することがわかった。
 なお、交点Pと交点Qの距離は、約1mmであり、交点Pと交点Qの距離は、約0.5mmであった。また、交点Pと交点Pの間の幅Wに対する、交点Qと交点Qの間の幅Wの割合は、約70%であった。
 (例2)
 従来の溶接方法を用いて、2枚の鋼板および裏あて板を相互に溶接し、溶接継手を製造した。
 2枚の鋼板および裏あて板には、例1と同じものを使用した。また、溶接には、ガスシールドメタルアーク溶接機を使用した。シールドガスはCOとし、ワイヤには例1と同様のものを使用した。
 なお、この例2では、電極ワイヤと鋼板の間に500Aを超える大きな電流を印加して、1回の溶接パスで溶接部を形成した。従って、溶接部は、単一の溶接層を有する。
 図14および15には、得られた溶接部の一例を示す。
 図14は、溶接部を延伸方向に対して垂直な方向から観察(撮影)した断面の写真である。また、図15は、溶接部を溶接ビードに沿って切断し、側面から透過X線撮影した写真である。図15において、上側部分は、2枚の鋼板に対応し、下側部分は、裏あて板に対応する。
 図14から、溶接層の左側の交差領域に、パイプ状欠陥が生じていることがわかる。また、図15から、溶接部には、交差領域を起点とする、多数のパイプ状欠陥が生じていることがわかる。
 このように、例2では、溶接部内に多数のパイプ状欠陥が含まれることがわかった。
 以上のことから、第1の溶接層の上に、第2の溶接層を前述の(1)および(2)の特徴を満たすように形成することにより、溶接部に発生し得るパイプ状欠陥を、有意に抑制できることが確認された。
 本願は、2017年3月15日に出願した日本国特許出願2017-050152号に基づく優先権を主張するものであり、同日本国出願の全内容を本願に参照により援用する。
 20   第1の鋼板
 26   傾斜端面
 30   第2の鋼板
 36   傾斜端面
 40   裏あて板
 50   溶接層
 70   パイプ状欠陥
 100  第1の溶接継手
 120  第1の部材
 122  第1の表面
 124  第2の表面
 126  端面
 130  第2の部材
 132  第3の表面
 134  第4の表面
 136  端面
 140  裏あて板
 142  上面
 150  溶接部
 151  第1の溶接層
 152、152A、152B、152C 第2の溶接層
 160  第1の交差領域
 162  第2の交差領域
 164  第1の溶接層の先端
 168、168A、168B、168C 第2の溶接層の先端
 170  パイプ状欠陥
 171  新たなパイプ状欠陥
 180B 新たな交差領域
 182B 新たな交差領域

Claims (6)

  1.  溶接方法であって、
     (1)第1回目の溶接パスにより、第1の部材、第2の部材および裏あて板の間に、第1の溶接層を形成する工程であって、
      前記第1の部材は、第1の表面を有し、前記第2の部材は、第2の表面を有し、前記裏あて板は、上面を有し、
      前記第1の部材および前記第2の部材は、前記第1の表面と、前記第2の表面とが、前記裏あて板の前記上面と対面し、または接触するように配置され、
      前記第1の溶接層は、該第1の溶接層の延在方向に対して垂直な断面から見たとき、
      前記第1の部材の側において、該第1の部材の前記第1の表面と交点Pで交わり、前記第2の部材の側において、該第2の部材の前記第2の表面と交点Pで交わるように形成される工程と、
     (2)第2回目の溶接パスにより、前記第1の溶接層の上に第2の溶接層を形成する工程と、
     を有し、
     前記交点Pと前記交点Pとを通る直線Lを描いたとき、
     前記第2の溶接層は、深さ方向の先端が、前記直線Lを超えて前記裏あて板内に導入されるように配置され、
     前記第2の溶接層は、前記直線Lと交点Qおよび交点Qで交わり、前記交点Qは、前記交点Qよりも前記第1の部材の側にあり、
     前記交点Qは、前記第1の溶接層の内部にあり、または前記交点Pと一致し、
     前記交点Qは、前記第1の溶接層の内部にあり、または前記交点Pと一致する、溶接方法。
  2.  交点Pと交点Qの距離は2mm以下であり、および/または
     交点Pと交点Qの距離は2mm以下である、請求項1に記載の溶接方法。
  3.  交点Pから交点Pまでの幅Wに対する交点Qから交点Qまで幅Wの割合(W/W)は、70%以上である、請求項1に記載の溶接方法。
  4.  溶接部によって、第1の部材、第2の部材および裏あて板が相互に接合された溶接継手であって、
     前記第1の部材は、第1の表面を有し、
     前記第2の部材は、第2の表面を有し、
     前記第1の部材および前記第2の部材は、前記第1の表面と前記第2の表面とが、前記裏あて板の上面と対面または接触するように配置されており、
     前記溶接部は、深さ方向において、前記裏あて板に近い側から、第1の溶接層および第2の溶接層を有し、
     前記溶接部を、該溶接部の延在方向に対して垂直な断面から見たとき、
     前記第1の溶接層は、前記第1の部材の側において、該第1の部材の前記第1の表面と交点Pで交わり、前記第2の部材の側において、該第2の部材の前記第2の表面と交点Pで交わり、
     前記交点Pと前記交点Pとを通る直線Lを描いたとき、
     前記第2の溶接層は、深さ方向の先端が、前記直線Lを超えて前記裏あて板内に導入されるように配置され、
     前記第2の溶接層は、前記直線Lと交点Qおよび交点Qで交わり、前記交点Qは、前記交点Qよりも前記第1の部材の側にあり、
     前記交点Qは、前記第1の溶接層の内部にあり、または前記交点Pと一致し、
     前記交点Qは、前記第1の溶接層の内部にあり、または前記交点Pと一致する、溶接継手。
  5.  交点Pと交点Qの距離は2mm以下であり、および/または
     交点Pと交点Qの距離は2mm以下である、請求項4に記載の溶接継手。
  6.  交点Pから交点Pまでの幅Wに対する交点Qから交点Qまで幅Wの割合(W/W)は、70%以上である、請求項4に記載の溶接継手。
PCT/JP2018/009876 2017-03-15 2018-03-14 溶接方法および溶接継手 WO2018168896A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019506067A JP7043485B2 (ja) 2017-03-15 2018-03-14 溶接方法および溶接継手
CN201880005543.9A CN110402175B (zh) 2017-03-15 2018-03-14 焊接方法及焊接接头

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017050152 2017-03-15
JP2017-050152 2017-03-15

Publications (1)

Publication Number Publication Date
WO2018168896A1 true WO2018168896A1 (ja) 2018-09-20

Family

ID=63522581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009876 WO2018168896A1 (ja) 2017-03-15 2018-03-14 溶接方法および溶接継手

Country Status (3)

Country Link
JP (1) JP7043485B2 (ja)
CN (1) CN110402175B (ja)
WO (1) WO2018168896A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08276273A (ja) * 1995-04-05 1996-10-22 Nippon Steel Corp クラッド鋼の突合せ溶接方法
JPH11239879A (ja) * 1997-12-24 1999-09-07 Kawasaki Steel Corp 極厚鋼板の多層サブマージアーク溶接方法および極厚溶接部材
JP2016030283A (ja) * 2014-07-29 2016-03-07 岩谷産業株式会社 金属部材およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180377A (ja) * 1987-01-23 1988-07-25 Hitachi Ltd 溶接継手の製法
JPH11147175A (ja) * 1997-11-11 1999-06-02 Ishikawajima Harima Heavy Ind Co Ltd ガスシールドアーク溶接方法
CN100450692C (zh) * 2006-08-25 2009-01-14 中国核工业第二三建设公司 大厚壁管道窄间隙全位置自动焊接方法及其制造的管道
CN101972884B (zh) * 2010-09-09 2012-04-18 中广核工程有限公司 核岛主管道自动焊焊接方法
CN104191072A (zh) * 2014-08-14 2014-12-10 梧州市旺捷机械制造有限公司 不锈钢复合板的焊接方法
CN106270965B (zh) * 2016-04-15 2018-09-25 中国石油大学(华东) 一种x80级管线钢环形焊缝的焊接工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08276273A (ja) * 1995-04-05 1996-10-22 Nippon Steel Corp クラッド鋼の突合せ溶接方法
JPH11239879A (ja) * 1997-12-24 1999-09-07 Kawasaki Steel Corp 極厚鋼板の多層サブマージアーク溶接方法および極厚溶接部材
JP2016030283A (ja) * 2014-07-29 2016-03-07 岩谷産業株式会社 金属部材およびその製造方法

Also Published As

Publication number Publication date
CN110402175A (zh) 2019-11-01
JP7043485B2 (ja) 2022-03-29
JPWO2018168896A1 (ja) 2020-01-16
CN110402175B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
JP5236566B2 (ja) 固定鋼管の円周溶接方法
WO2018176696A1 (zh) 一种厚板立对接焊接方法
JP5869972B2 (ja) レーザ・アーク複合溶接法
JP6025620B2 (ja) サブマージアーク溶接方法、当該サブマージアーク溶接方法を用いる鋼管を製造する方法、溶接継手、及び当該溶接継手を有する鋼管
CN112296494B (zh) 一种不等厚度拼板的焊剂铜衬垫法埋弧焊方法
JP4952892B2 (ja) 極厚鋼板の溶接方法
WO2019182081A1 (ja) 鋼板のガスシールドアーク溶接方法
WO2014024365A1 (ja) サブマージアーク溶接方法ならびにその溶接方法によって形成される溶接継手およびその溶接継手を有する鋼管
RU2583971C2 (ru) Способ дуговой сварки под флюсом для стальной пластины
WO2018168896A1 (ja) 溶接方法および溶接継手
JP7126080B1 (ja) ガスシールドアーク溶接方法、溶接継手および溶接継手の製造方法
JP2005238262A (ja) 薄板鋼板の栓溶接方法
JPH0871755A (ja) アルミニウム合金部材の突合せ片側溶接方法
WO2017099004A1 (ja) 突合せ溶接方法
JPH067934A (ja) 二重管の管端シール溶接方法
JP6787800B2 (ja) 片面サブマージアーク溶接方法
US7371994B2 (en) Buried arc welding of integrally backed square butt joints
JPH0985447A (ja) ボックス柱角継手のサブマージアーク溶接施工方法
JP5672697B2 (ja) 鋼材のサブマージアーク溶接方法
JP2021020243A (ja) ボックス型鋼構造物の溶接方法
JPH07266039A (ja) 鋼管の円周自動溶接方法
JP5829425B2 (ja) 重ね継手用の板状部材
JP5483553B2 (ja) レーザ・アーク複合溶接法
WO2022196540A1 (ja) ガスシールドアーク溶接方法、溶接継手および溶接継手の製造方法
JP7434931B2 (ja) リップ形成方法および溶接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767792

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506067

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18767792

Country of ref document: EP

Kind code of ref document: A1