WO2018168860A1 - 植物賦活剤 - Google Patents

植物賦活剤 Download PDF

Info

Publication number
WO2018168860A1
WO2018168860A1 PCT/JP2018/009763 JP2018009763W WO2018168860A1 WO 2018168860 A1 WO2018168860 A1 WO 2018168860A1 JP 2018009763 W JP2018009763 W JP 2018009763W WO 2018168860 A1 WO2018168860 A1 WO 2018168860A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxo
plant activator
fatty acid
plant
acid
Prior art date
Application number
PCT/JP2018/009763
Other languages
English (en)
French (fr)
Inventor
大野 勝也
偏弘 野原
晃章 横田
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to CN201880018032.0A priority Critical patent/CN110461155B/zh
Priority to US16/493,150 priority patent/US11457627B2/en
Priority to EP24164021.8A priority patent/EP4364572A3/en
Priority to CN202111049393.1A priority patent/CN113729014B/zh
Priority to EP18768081.4A priority patent/EP3597039B1/en
Priority to JP2019506048A priority patent/JP6759448B2/ja
Publication of WO2018168860A1 publication Critical patent/WO2018168860A1/ja
Priority to US17/822,492 priority patent/US20220408728A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/42Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing within the same carbon skeleton a carboxylic group or a thio analogue, or a derivative thereof, and a carbon atom having only two bonds to hetero atoms with at the most one bond to halogen, e.g. keto-carboxylic acids
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P15/00Biocides for specific purposes not provided for in groups A01P1/00 - A01P13/00
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P21/00Plant growth regulators

Definitions

  • the present invention relates to a plant activator.
  • Patent Document 1 describes a flower bud formation inducer containing an ⁇ -ketol unsaturated fatty acid as an active ingredient.
  • Patent Document 2 describes a plant activator containing a ketol fatty acid having 4 to 24 carbon atoms as an active ingredient.
  • Patent Document 3 describes a plant growth regulator containing an ⁇ -ketol fatty acid derivative as an active ingredient.
  • These resistance inducers are salicylic acid analogs, and activate the salicylic acid pathway in plants in the induction of systemic acquired resistance by salicylic acid analogs in which pathogenic bacteria and viruses become elicitors.
  • Validamycin is a control agent that suppresses bacterial growth by depleting the energy source of pathogenic bacteria by inhibiting the activity of trehalose-degrading enzyme, but it has been reported to show induction of systemic acquired resistance against bacterial wilt disease. ing.
  • fatty acid oxides including lipid peroxides exhibit antibacterial action.
  • 13-oxo-9,11-octadecadienoic acid which is an oxo fatty acid derived from tomato, regulates the expression of various genes related to lipid metabolism, PPAR ⁇ (peroxisome proliferator activated receptor ⁇ subtype) It has a potent agonistic activity to activate, and has been reported to improve lipid metabolism abnormalities such as hypertriglyceridemia and fatty liver.
  • PPAR ⁇ peroxisome proliferator activated receptor ⁇ subtype
  • An object of the present invention is to provide a plant activator with low soil contamination and toxicity and excellent resistance-inducing effect.
  • the present invention has the following formula: HOOC- (R 1 ) —C ⁇ C—C ( ⁇ O) —R 2 (I) (Where R 1 is a linear or branched alkyl group having 6 to 12 carbon atoms and may contain one or more double bonds, R 2 is an alkyl group having 2 to 8 carbon atoms and may contain one or more branches and / or double bonds)
  • R 1 is a linear or branched alkyl group having 6 to 12 carbon atoms and may contain one or more double bonds
  • R 2 is an alkyl group having 2 to 8 carbon atoms and may contain one or more branches and / or double bonds
  • the present invention relates to a plant activator comprising an oxo fatty acid derivative having the structural formula or a salt or ester thereof as an active ingredient.
  • a plant activator is preferred wherein the oxo fatty acid derivative is an oxo fatty acid derivative in which the alkyl group of R 1 of the oxo fatty acid derivative has 8 to 10 carbon atoms and the alkyl group of R 2 has 4 to 6 carbon atoms. .
  • the oxo fatty acid derivative is an oxo fatty acid derivative containing a double bond in which R 1 of the oxo fatty acid derivative forms a conjugated double bond with a double bond between the ⁇ and ⁇ carbons of the carbonyl group in formula (I). Plant activators are preferred.
  • the oxo fatty acid derivative is preferably a plant activator in which R 1 of the oxo fatty acid derivative is an alkyl group having 9 carbon atoms and R 2 is an alkyl group having 5 carbon atoms.
  • a plant activator in which the oxo fatty acid derivative is (9Z, 11E) -13-oxo-9,11-octadecadienoic acid or a salt thereof is preferable.
  • a plant activator in which the oxo fatty acid derivative is (9Z, 11E) -13-oxo-9,11-octadecadienoic acid is preferred.
  • the plant activator is preferably a plant activator further comprising 12-oxo-phytodienoic acid or a salt thereof.
  • the plant activator is a plant activator further comprising a surfactant and / or a diluent or a carrier.
  • a plant activator having a concentration of the oxo fatty acid derivative or salt or ester thereof of 0.012 to 0.12 g / l (liter) is preferred.
  • a plant activator in which the concentration of the 12-oxo-phytodienoic acid or a salt thereof is 0.012 to 0.12 g / l is preferable.
  • the plant activator is a plant activator used as a spray or immersion agent for contact with plant foliage or roots, or a soil irrigation agent.
  • the plant activator is a plant activator used for cruciferous plants.
  • the plant activator of the present invention is easily decomposed in the environment, it has low soil contamination and toxicity, and has an excellent resistance inducing effect.
  • the plant activator of the present invention is an oxo fatty acid derivative, which has the following formula: HOOC- (R 1 ) —C ⁇ C—C ( ⁇ O) —R 2 (I) (Where R 1 is a linear or branched alkyl group having 6 to 12 carbon atoms and may contain one or more double bonds, R 2 is an alkyl group having 2 to 8 carbon atoms and may contain one or more branches and / or double bonds)
  • An oxo fatty acid derivative having the following structural formula, or a salt or ester thereof is included as an active ingredient.
  • the present invention also relates to a plant activator comprising as an active ingredient a compound of formula (I) comprising all geometric isomers and stereoisomers or a salt or ester thereof.
  • Plant activation in the present invention means to adjust the plant growth activity to some form to activate or maintain, including growth promotion (expansion of foliage, growth promotion of tuber tuber root, etc.) It is a concept that includes a plant growth regulating action such as anti-aging, inducing and imparting resistance to dormancy, and resistance to plant stress.
  • resistance can be induced in a plant by bringing the plant activator of the present invention into contact with a part of the foliage or root of the plant. Since the increase in the expression level of the resistance genes PR1 and PR2 is confirmed in the plant body by inoculating the plant activator of the present invention, the plant activator of the present invention exhibits systemic resistance through the salicylic acid pathway. It is thought to be guiding.
  • the plant activator of the present invention By using the plant activator of the present invention, the development of organs and substance generation related to resistance to pests can be promoted in plants.
  • the resistance inducing effect of the plant activator of the present invention is very high, and as a result, an excellent plant disease suppressing effect can be brought about.
  • Oxo fatty acids are rare fatty acids known to be produced as intermediates in unsaturated fatty acid metabolism.
  • 13-oxo-9,11-octadecadienoic acid used as an example of an oxo fatty acid derivative in the present invention is one of metabolites obtained by oxidative metabolism of linoleic acid.
  • Linoleic acid is a lipid peroxide (hydroperoxyoctadecadienoic acid (HPODE)) either enzymatically by lipoxygenase, one of the linoleic acid-metabolizing enzymes, or non-enzymatically by oxidation by free radicals produced by oxidative stress.
  • HPODE hydroperoxyoctadecadienoic acid
  • This lipid peroxide HPODE is converted into hydroxyoctadecadienoic acid (HODE) by peroxidase or the like.
  • Oxooctadecadienoic acid is produced from hydroxyoctadecadienoic acid (HODE) by hydroxy fatty acid dehydrogenase or the like.
  • Oxooctadecadienoic acid is also produced via epoxyoctadecadienoic acid by the action of allene oxide synthase followed by fatty acid hydroperoxide lyase on lipid peroxide HPODE.
  • Linoleic acid is converted to linolenic acid by fatty acid desaturase.
  • Linolenic acid is converted into lipid peroxide (hydroperoxyoctadecatrienoic acid (HPOTE)) by lipoxygenase, and this lipid peroxide HPOTE is epoxy octane which is allene oxide by the action of allene oxide synthase and then allene oxide cyclase. Via decatrienoic acid, it is converted to the jasmonic acid precursor 12 / 10-oxo-phytodienoic acid (12 / 10-OPDA). From the epoxy octadecatrienoic acid, ketol fatty acids are also produced by lipoxygenase. Lipid peroxide HPOTE is also converted by the reductase to conjugated oxidized lipid hydroxyoctadecatrienoic acid (HOTE).
  • HPOTE hydroperoxyoctadecatrienoic acid
  • the high effect of resistance-induced expression as the plant activator of the present invention uses is the aforementioned lipid peroxide (HPODE, HPOTE) or conjugated lipid oxide (HOTE) instead of oxo fatty acid. It is not obtained if there is.
  • the lipid peroxide (13-HPODE) which is a precursor of 13-oxo-9,11-octadecadienoic acid, does not have a resistance-inducing effect like the plant activator of the present invention, the present invention
  • the excellent resistance-inducing effect of the plant activator is considered to be specific to oxo fatty acids.
  • the jasmonic acid precursor 12 / 10-OPDA which has been known as a compound that induces the expression of the resistance gene of the jasmonic acid pathway, is reported as a compound that induces the expression of the resistance gene of the salicylic acid pathway involved in systemic resistance.
  • the conjugated oxidized lipid HOTE and ketol fatty acid that are used are all fatty acid analogues synthesized from linolenic acid produced from linoleic acid as described above.
  • 13-oxo-9,11-octadecadienoic acid used in the present invention is produced directly from linoleic acid without passing through linolenic acid.
  • the resistance-inducing effect by 13-oxo-9,11-octadecadienoic acid in the present invention is obtained for the first time as a result of targeting a novel metabolic pathway of linoleic acid for better resistance induction. It is a thing.
  • 13-Oxo-9,11-octadecadienoic acid used in the present invention is a naturally occurring metabolite obtained by metabolism of linoleic acid. That is, it is considered that the plant activator of the present invention using a naturally occurring metabolite is in line with the metabolic pathway of the plant, and its functional expression is easy. Moreover, since it is thought that the decomposition
  • the plant activator of the present invention induces systemic resistance to plants through the salicylic acid pathway and suppresses plant diseases.
  • the plant activator of the present invention may be used in combination with other resistance inducers.
  • the plant activator of the present invention can be applied to plants in the presence of a jasmonic acid precursor 12 / 10-OPDA that induces expression of a resistance gene of the jasmonic acid pathway. Both the salicylic acid pathway and the jasmonic acid pathway are activated in a complementary fashion, and even higher resistance can be induced in plants.
  • resistance inducers such as a jasmonic acid precursor may be used in combination with the oxo fatty acid derivative of the present invention or a salt or ester thereof at a concentration similar to that of the oxo fatty acid derivative of the present invention or a salt or ester thereof. Can be used.
  • the plant activator of the present invention may contain a compatible surfactant and / or diluent or carrier suitable for use as a plant activator, if necessary.
  • the diluent may improve the dispersibility of, for example, 13-oxo-9,11-octadecadienoic acid or a salt or ester thereof.
  • a surfactant such as a dispersion aid or a wetting agent may be contained.
  • These additive components are not particularly limited as long as they are agriculturally acceptable drugs.
  • surfactants, diluents and carriers components usually used in agricultural chemical preparations and the like may further be contained.
  • the oxo fatty acid derivative or a salt or ester thereof can be used at a concentration of 0.12 g / l or less.
  • concentration of the oxo fatty acid derivative or salt or ester thereof depends on the plant species to be applied and the state thereof, but if the concentration exceeds 0.12 g / l, it may cause phytotoxicity to plants.
  • concentration of an oxo fatty acid derivative or its salt or ester is not specifically limited, 0.012 g / l or more is preferable.
  • the concentration of the oxo fatty acid derivative or a salt or ester thereof is preferably 0.012 to 0.12 g / l.
  • the plant activator of the present invention only needs to contain an oxo fatty acid derivative or a salt or ester thereof, and the origin thereof is not particularly limited.
  • the oxo fatty acid derivative such as 13-oxo-9,11-octadecadienoic acid or a salt or ester thereof according to the present invention may be obtained by chemical synthesis, for example, or may be produced using a microorganism or derived from a microorganism. Those obtained by allowing the enzyme of the above to act on a substrate such as a fatty acid may be used.
  • 13-oxo-9,11-octadecadienoic acid has a high fat solubility, it is practically easy to add water to make it water-soluble by adding a salt.
  • a salt to be used an ammonium salt or a metal salt is generally used, and as the metal salt, a salt that generates a monovalent metal ion is desirable, and among them, a lithium salt, a sodium salt, and a potassium salt are particularly desirable.
  • the plant activator of the present invention only needs to contain an oxo fatty acid derivative at a desired concentration.
  • 13-oxo-9,11-octadecadienoic acid produced using a microorganism is used as the oxo fatty acid derivative.
  • a mixture containing 13-oxo-9,11-octadecadienoic acid may be used in the plant activator.
  • a biosurfactant secreted by microorganisms is contained in the mixture, there is a possibility that the dispersibility of the plant activator of the present invention may be improved without including the above-described additive components.
  • the oxo fatty acid derivative itself is insoluble, it may be emulsified with a biosurfactant and dispersed in water.
  • the plant activator of the present invention can be applied to plants by any method. For example, it can be used as a spray or soaking agent that contacts plant foliage or roots or as a soil irrigation agent. In applied plants, the plant activator of the present invention induces systemic resistance to plants through the salicylic acid pathway and suppresses plant diseases. Furthermore, for example, 13-oxo-9,11-octadecadienoic acid is a naturally occurring fatty acid oxide, so that the environmental load of the plant activator of the present invention is low and phytotoxicity to the plant to be applied. The plant activator of the present invention is excellent also in that it is almost absent.
  • the plant to which the plant activator of the present invention can be applied is not particularly limited and can be favorably used for plants in general. Examples thereof include cruciferous plants.
  • Example 1 Evaluation of Resistance Gene Expression As Example 1, a 0.15% dipotassium hydrogen carbonate aqueous solution containing 0.012% 13-oxo-9,11-octadecadienoic acid was prepared. As the 13-oxo-9,11-octadecadienoic acid, (9Z, 11E) -13-oxo-9,11-octadecadienoic acid (13-oxoODA, manufactured by Cayman Chemical Co.) was used.
  • 13-oxo-9,11-octadecadienoic acid (9Z, 11E) -13-oxo-9,11-octadecadienoic acid (13-oxoODA, manufactured by Cayman Chemical Co.) was used.
  • Example 2 Evaluation of Resistance Gene Expression As Example 2, a 0.15% dipotassium hydrogen phosphate aqueous solution containing 0.012% 13-oxo-9,11-octadecadienoic acid was prepared. As the 13-oxo-9,11-octadecadienoic acid, (9Z, 11E) -13-oxo-9,11-octadecadienoic acid (13-oxoODA, manufactured by Cayman Chemical Co.) was used.
  • 13-oxo-9,11-octadecadienoic acid (9Z, 11E) -13-oxo-9,11-octadecadienoic acid (13-oxoODA, manufactured by Cayman Chemical Co.) was used.
  • Example 1 Each aqueous solution obtained in Example 1 and Example 2 was irrigated only into the roots (underground) of soil-cultivated Arabidopsis thaliana.
  • RNA was extracted from each Arabidopsis treated with each aqueous solution 24 hours after treatment and untreated Arabidopsis as a control to prepare cDNA from RNA, and the expression levels of resistance genes PR1, PR2, and PDF1.2 were converted to real-time PCR. I investigated. The gene expression level was standardized by the expression level of the housekeeping gene. The results are shown in FIG. 1 (Example 1) and FIG. 2 (Example 2).
  • 13-oxoODA can express the genes PR1 and PR2 (salicylic acid metabolic system) that are remarkably responsible for resistance to pathogenic bacteria compared to other substances.
  • 12-OPDA expressed the gene PDF1.2 (jasmonic acid metabolic system) that controls pest resistance compared to other substances.
  • Example 3 Combined Effect on Resistance Gene Expression (9Z, 11E) -13-Oxo-9,11-octadecadienoic acid (13-oxoODA, manufactured by Cayman Chemical) and fatty acid analog 12-OPDA (12- A 0.15% dipotassium hydrogen carbonate aqueous solution containing 0.012% each of oxo-phytodienoic acid (manufactured by Cayman Chemical Company) was prepared.
  • Example 4 Combined Effect on Resistance Gene Expression (9Z, 11E) -13-Oxo-9,11-octadecadienoic acid (13-oxoODA, manufactured by Cayman Chemical) and fatty acid analog 12-OPDA (12- 0.15% dipotassium hydrogen phosphate aqueous solution containing 0.012% of oxo-phytodienoic acid (manufactured by Cayman Chemical Co., Ltd.) was prepared.
  • composition in which both 13-oxoODA and 12-OPDA were mixed could simultaneously express PR1 and PDF1.2. It is presumed that the composition in which both are mixed can activate the salicylic acid metabolic system and the jasmonic acid metabolic system in a complementary manner. Since a series of aqueous solutions evaluated in Examples 1 to 4 were tested by adding potassium salts to increase the water solubility of 13-oxoODA and 12-OPDA, some of these compositions It can be seen that it exists as a potassium salt.
  • the plant activator of the present invention is a plant activator having low soil contamination and toxicity and excellent resistance-inducing effect.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Botany (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Cultivation Of Plants (AREA)

Abstract

土壌汚染や毒性が低く、抵抗性誘導効果に優れた植物賦活剤を提供することを目的とする。式:HOOC-(R1)-C=C-C(=O)-R2(I)(式中、R1:直鎖または分岐の、炭素数6~12のアルキル基であって、1つまたはそれ以上の二重結合を含んでいてもよく、R2:炭素数2~8のアルキル基であって、1つまたはそれ以上の分岐および/または二重結合を含んでいてもよい)の構造式を有するオキソ脂肪酸誘導体、またはその塩もしくはエステルを有効成分として含むことを特徴とする植物賦活剤。

Description

植物賦活剤
 本発明は、植物賦活剤に関する。
 古くから、植物の成長促進を目的とし、温度条件や日照条件の最適化や施肥などの対策が行われてきた。しかし、これらの対策には限界がある。例えば、施肥に用いる肥料の量を多くしても一定以上の成長促進効果は期待できないばかりか、肥料を多く与えすぎると、かえって植物成長の障害となり、ひいては土壌を汚染してしまう恐れがある。
 そこで、前記の対策に加え、成長促進、休眠抑制、ストレス抑制等の植物成長調節作用を有する植物賦活剤を用いて植物を賦活させる方法が報告されている。例えば、特許文献1には、α-ケトール不飽和脂肪酸を有効成分とする花芽形成誘導剤が記載されている。特許文献2には、炭素原子数が4~24のケトール脂肪酸を有効成分とする植物賦活剤が記載されている。特許文献3には、α-ケトール脂肪酸誘導体を有効成分とする植物成長調整剤が記載されている。
 一方、植物の病害虫防除は化学合成農薬に大きく依存しているが、農薬使用量の削減が土壌汚染や人への健康被害の観点から望まれている。また、過多の農薬散布による薬剤耐性菌の発生も問題となっている。そこで、直接的な抗菌活性は示さずに、植物の病害抵抗性を誘導する抵抗性誘導剤の使用が知られている。例えば、プロペナゾール、イソチアニル、アシベンゾラルSメチル(ASM)、3’-クロロ-4,4’-ジメチル-1,2,3-チアジアゾール-5-カルボキサニリド(チアジニル)などが病害抵抗性誘導剤として製品化されている。これらの抵抗性誘導剤は、サリチル酸類縁体であり、病原菌やウイルスがエリシターとなるサリチル酸類縁体による全身獲得抵抗性の誘導における植物体内のサリチル酸経路を活性化する。また、バリダマイシンは、トレハロース分解酵素の活性阻害により病原菌のエネルギー源を枯渇させて細菌の増殖を抑制する防除剤であるが、青枯れ病菌に対し、全身獲得抵抗性の誘導を示すことが報告されている。
特開平9-295908公報 特開2001-131006号公報 国際公開第2011/034027号
 特許文献1~3に記載のケトール脂肪酸を用いた植物賦活剤による効果は充分ではない。また、従来の抵抗性誘導剤は、化学合成されたものであり、毒性が極めて高いという問題がある。さらに、バリダマイシンはナス科植物の青枯れ病に対して有効とされているが、トマトに対しては薬害が生じるので使用できないという問題がある。その他の合成抵抗性誘導剤も薬害を引き起こしやすい傾向があり、さらには、抵抗性遺伝子の発現や抵抗性の付与も充分でない。環境負荷が低く、抵抗性誘導発現を含む賦活作用に優れる植物賦活剤が求められている。
 過酸化脂質をはじめ脂肪酸酸化物が抗菌作用を示すことは知られている。また、トマト由来のオキソ脂肪酸である13-オキソ-9,11-オクタデカジエン酸が、脂質代謝に関連する種々の遺伝子の発現を制御する転写因子PPARα(ペルオキシソーム増殖薬活性化受容体αサブタイブ)を活性化する強力なアゴニスト活性を有しており、高中性脂肪血症などの脂質代謝異常や脂肪肝を改善する可能性が報告されている。しかしながら、オキソ脂肪酸に植物賦活剤としての効果があることは知られていない。
 本発明は、土壌汚染や毒性が低く、抵抗性誘導効果に優れた植物賦活剤を提供することを目的とする。
 本発明は、以下の式:
HOOC-(R1)-C=C-C(=O)-R2      (I)
(式中、
1:直鎖または分岐の、炭素数6~12のアルキル基であって、1つまたはそれ以上の二重結合を含んでいてもよく、
2:炭素数2~8のアルキル基であって、1つまたはそれ以上の分岐および/または二重結合を含んでいてもよい)
の構造式を有するオキソ脂肪酸誘導体またはその塩もしくはエステルを有効成分として含むことを特徴とする植物賦活剤に関する。
 前記オキソ脂肪酸誘導体が、前記オキソ脂肪酸誘導体のR1のアルキル基の炭素数が8~10であり、R2のアルキル基の炭素数が4~6であるオキソ脂肪酸誘導体である植物賦活剤が好ましい。
 前記オキソ脂肪酸誘導体が、前記オキソ脂肪酸誘導体のR1が式(I)におけるカルボニル基のαおよびβ炭素の間の二重結合と共役二重結合を形成する二重結合を含むオキソ脂肪酸誘導体である植物賦活剤が好ましい。
 前記オキソ脂肪酸誘導体が、前記オキソ脂肪酸誘導体のR1が、炭素数9のアルキル基であり、R2が、炭素数5のアルキル基であるオキソ脂肪酸誘導体である植物賦活剤が好ましい。
 前記オキソ脂肪酸誘導体が、(9Z,11E)-13-オキソ-9,11-オクタデカジエン酸またはその塩である植物賦活剤が好ましい。
 前記オキソ脂肪酸誘導体が、(9Z,11E)-13-オキソ-9,11-オクタデカジエン酸である植物賦活剤が好ましい。
 前記植物賦活剤が、12-オキソ-フィトジエン酸またはその塩をさらに含む植物賦活剤であることが好ましい。
 前記植物賦活剤が、界面活性剤および/または希釈剤もしくは担体をさらに含む植物賦活剤であることが好ましい。
 前記オキソ脂肪酸誘導体またはその塩もしくはエステルの濃度が、0.012~0.12g/l(リットル)である植物賦活剤が好ましい。
 前記12-オキソ-フィトジエン酸またはその塩の濃度が、0.012~0.12g/lである植物賦活剤が好ましい。
 前記植物賦活剤が、植物の茎葉もしくは根に接触させる噴霧剤もしくは浸漬用薬剤、または、土壌灌注用薬剤として用いられる植物賦活剤であることが好ましい。
 前記植物賦活剤が、アブラナ科植物に対して使用される植物賦活剤であることが好ましい。
 本発明の植物賦活剤は、環境中での分解が容易であるため土壌汚染や毒性が低く、かつ優れた抵抗性誘導効果を有する。
抵抗性遺伝子の発現量を示すグラフである 抵抗性遺伝子の発現量を示すグラフである。
植物賦活剤
 本発明の植物賦活剤は、オキソ脂肪酸誘導体であって、以下の式:
HOOC-(R1)-C=C-C(=O)-R2      (I)
(式中、
1:直鎖または分岐の、炭素数6~12のアルキル基であって、1つまたはそれ以上の二重結合を含んでいてもよく、
2:炭素数2~8のアルキル基であって、1つまたはそれ以上の分岐および/または二重結合を含んでいてもよい)
の構造式を有するオキソ脂肪酸誘導体、またはその塩もしくはエステルを有効成分として含むことを特徴とする。本発明はまた、すべての幾何異性体および立体異性体を含む式(I)の化合物またはその塩もしくはエステルを有効成分として含む植物賦活剤に関する。
 本発明における「植物賦活」とは、何らかの形で植物の成長活動を活性化または維持するように調整することを意味するものであり、成長促進(茎葉の拡大、塊茎塊根の成長促進等を包含する概念である)、休眠抑制、植物のストレスに対する抵抗性を誘導、付与し、抗老化等の植物成長調節作用を包含する概念である。例えば、本発明の植物賦活剤を植物の茎葉または根の一部に接触させることで、植物に抵抗性を誘導することができる。本発明の植物賦活剤を接種することにより、植物体内において抵抗性遺伝子であるPR1およびPR2の発現量の増加が確認されることから、本発明の植物賦活剤はサリチル酸系経路によって全身抵抗性を誘導していると考えられる。本発明の植物賦活剤を用いることによって、植物において、病害虫への抵抗性に関わる器官の発達や物質生成が促進され得る。本発明の植物賦活剤の抵抗性誘導効果は非常に高く、この結果、優れた植物病害抑制効果をもたらすことができる。
 オキソ脂肪酸は、不飽和脂肪酸代謝の中間体として生成されることが知られている希少脂肪酸である。本発明においてオキソ脂肪酸誘導体の一例として用いられる13-オキソ-9,11-オクタデカジエン酸は、リノール酸の酸化的代謝によって得られる代謝物の一つである。リノール酸は、リノール酸代謝酵素の一つであるリポキシゲナーゼにより酵素的に、または酸化ストレスにより産生されるフリーラジカルによる酸化によって非酵素的に、過酸化脂質(ヒドロペルオキシオクタデカジエン酸(HPODE))へと変換され、この過酸化脂質HPODEは、ペルオキシダーゼなどによってヒドロキシオクタデカジエン酸(HODE)へと変換される。ヒドロキシオクタデカジエン酸(HODE)から、ヒドロキシ脂肪酸デヒドロゲナーゼなどによってオキソオクタデカジエン酸が生成する。オキソオクタデカジエン酸はまた、過酸化脂質HPODEへの、アレンオキシドシンターゼ、次いで脂肪酸ヒドロペルオキシドリアーゼの作用により、エポキシオクタデカジエン酸を経ることによっても生成される。
 リノール酸は、一方、脂肪酸デサチュラーゼによりリノレン酸へと変換される。リノレン酸は、リポキシゲナーゼにより過酸化脂質(ヒドロペルオキシオクタデカトリエン酸(HPOTE))へと変換され、この過酸化脂質HPOTEは、アレンオキシドシンターゼ、次いでアレンオキシドシクラーゼの作用により、アレンオキシドであるエポキシオクタデカトリエン酸を経て、ジャスモン酸前駆体である12/10-オキソ-フィトジエン酸(12/10-OPDA)へと変換される。エポキシオクタデカトリエン酸からは、リポキシゲナーゼによりケトール脂肪酸も生成される。過酸化脂質HPOTEはまた、還元酵素により、共役酸化脂質であるヒドロキシオクタデカトリエン酸(HOTE)にも変換される。
 後述されるように、本発明の植物賦活剤が有するような抵抗性誘導発現の高い効果は、オキソ脂肪酸の代わりに、前述の過酸化脂質(HPODE、HPOTE)や共役酸化脂質(HOTE)を用いた場合には得られない。特に、13-オキソ-9,11-オクタデカジエン酸の前駆物質である過酸化脂質(13-HPODE)に本発明の植物賦活剤のような抵抗性誘導効果が見られないことから、本発明の植物賦活剤による優れた抵抗性誘導効果は、オキソ脂肪酸に特異的なものであると考えられる。
 さらに、ジャスモン酸経路の抵抗性遺伝子の発現を誘導する化合物として従来知られているジャスモン酸前駆体12/10-OPDA、全身抵抗性に関わるサリチル酸経路の抵抗性遺伝子の発現を誘導する化合物として報告されている共役酸化脂質HOTE、およびケトール脂肪酸は、前述のように、全て、リノール酸から生成されるリノレン酸から合成される脂肪酸類縁物質である。一方、本発明において使用される13-オキソ-9,11-オクタデカジエン酸は、リノール酸から直接、リノレン酸を経ることなく生成されるものである。すなわち、本発明における13-オキソ-9,11-オクタデカジエン酸による抵抗性誘導効果は、より優れた抵抗性の誘導のためにリノール酸の新規の代謝経路をターゲットとした結果、初めて得られたものである。
 本発明において使用される13-オキソ-9,11-オクタデカジエン酸は、リノール酸の代謝によって得られる、天然に存在する代謝物である。すなわち、天然に存在する代謝物を使用する本発明の植物賦活剤は、植物の代謝経路に沿ったものであり、機能発現が容易であると考えられる。また、植物への施用後の環境中での分解も容易であると考えられるため、土壌汚染の可能性や毒性は低い。
 本発明の植物賦活剤は、サリチル酸経路により植物に全身抵抗性を誘導し、植物病害を抑制する。また、本発明の植物賦活剤は、他の抵抗性誘導剤と併用されて用いられてもよい。例えば、本発明の植物賦活剤は、ジャスモン酸経路の抵抗性遺伝子の発現を誘導するジャスモン酸前駆体12/10-OPDAとの共存下で、植物に施用され得る。サリチル酸経路およびジャスモン酸経路の両方が相互補完的に活性化されて、さらに高い抵抗性が植物に誘導され得る。ジャスモン酸前駆体などの他の抵抗性誘導剤は、例えば、本発明のオキソ脂肪酸誘導体またはその塩もしくはエステルの濃度と同程度の濃度で、本発明のオキソ脂肪酸誘導体またはその塩もしくはエステルと併用して用いられ得る。
 本発明の植物賦活剤には、必要に応じて、植物賦活剤に使用するのに適した相溶性の界面活性剤および/または希釈剤もしくは担体が含有されていてもよい。例えば、希釈剤により、例えば13-オキソ-9,11-オクタデカジエン酸またはその塩もしくはエステルの分散性が向上する場合がある。また、本発明で使用されるオキソ脂肪酸誘導体の希釈剤への溶解性や分散性を向上させるために、例えば分散助剤や湿潤剤などの界面活性剤などが含有されていてもよい。これらの添加成分としては、農業上容認可能な薬剤であれば特に限定されない。また、界面活性剤や希釈剤、担体以外の、農薬製剤などに通常用いられる成分がさらに含有されていてもよい。
 本発明において、オキソ脂肪酸誘導体またはその塩もしくはエステルは、0.12g/l以下の濃度で用いられ得る。オキソ脂肪酸誘導体またはその塩もしくはエステルの好ましい濃度は、施用される植物種とその状態に依存するが、濃度が0.12g/lを超える場合は、植物にとっての薬害を生じる恐れがある。オキソ脂肪酸誘導体またはその塩もしくはエステルの濃度の下限は特に限定されないが、0.012g/l以上が好ましい。本発明において、好ましくは、オキソ脂肪酸誘導体またはその塩もしくはエステルの濃度は、0.012~0.12g/lである。
 本発明の植物賦活剤には、オキソ脂肪酸誘導体またはその塩もしくはエステルが含まれていればよく、それらの由来などは特に限定されるものではない。本発明の13-オキソ-9,11-オクタデカジエン酸などのオキソ脂肪酸誘導体またはその塩もしくはエステルは例えば化学合成によって得られるものでもよく、また、例えば微生物を用いて製造されるものや微生物由来の酵素を脂肪酸などの基質に作用させて得られるものなどであってもよい。特に13-オキソ-9,11-オクタデカジエン酸は脂溶性が強いため、実用上は、塩を添加しアルカリ性にして水溶性を付与することが取り扱い上容易である。用いる塩としてはアンモニウム塩、金属塩が一般的であり、金属塩としては1価の金属イオンを生成するものが望ましく、中でもリチウム塩、ナトリウム塩、カリウム塩が特に望ましい。本発明の植物賦活剤には所望の濃度のオキソ脂肪酸誘導体が含まれていればよく、例えばオキソ脂肪酸誘導体として、微生物を用いて製造される13-オキソ-9,11-オクタデカジエン酸が使用される場合、13-オキソ-9,11-オクタデカジエン酸を含有する混合物が植物賦活剤に使用されてもよい。微生物によって分泌されたバイオサーファクタントなどが混合物中に含まれている場合、前述したような添加成分を含有させなくても、本発明の植物賦活剤の分散性を向上させる可能性がある。オキソ脂肪酸誘導体自体が不溶性である場合に、バイオサーファクタントにより乳化して水に分散させることができる場合がある。
 本発明の植物賦活剤は、任意の方法で植物に施用することができる。例えば、植物の茎葉もしくは根に接触させる噴霧剤もしくは浸漬用薬剤、または、土壌灌注用薬剤として使用され得る。施用された植物において、本発明の植物賦活剤は、サリチル酸経路により植物に全身抵抗性を誘導し、植物病害を抑制する。さらに、例えば13-オキソ-9,11-オクタデカジエン酸などは、天然に存在する脂肪酸酸化物であるため、本発明の植物賦活剤の環境負荷は低く、かつ、施用される植物への薬害もほとんどないという点においても、本発明の植物賦活剤は優れている。
 本発明の植物賦活剤を施用することのできる植物は、特に限定されるものではなく、植物一般に対して良好に用いることができるが、例えば、アブラナ科の植物が挙げられる。
 本発明を実施例に基づいて説明するが、本発明は実施例のみに限定されるものではない。
実施例1 抵抗性遺伝子発現の評価
 実施例1として、0.012%の13-オキソ-9,11-オクタデカジエン酸を含む0.15%炭酸水素二カリウム水溶液を調製した。なお、13-オキソ-9,11-オクタデカジエン酸としては、(9Z,11E)-13-オキソ-9,11-オクタデカジエン酸(13-oxoODA、ケイマンケミカル社製)を用いた。比較例として、0.012%の脂肪酸類縁物質である13-HPODE((9Z,11E)-13-ヒドロペルオキシ-9,11-オクタデカジエン酸、ケイマンケミカル社製)、9-HPODE((10Z,12E)-9-ヒドロペルオキシ-10,12-オクタデカジエン酸、ケイマンケミカル社製)、9-HPOTE((10E,12Z,15Z)-9-ヒドロペルオキシ-10,12,15-オクタデカトリエン酸、ケイマンケミカル社製)、9-HOTE((10E,12Z,15Z)-9-ヒドロキシ-10,12,15-オクタデカトリエン酸、ケイマンケミカル社製)、13-HPOTE((9Z,11E,15Z)-13-ヒドロペルオキシ-9,11,15-オクタデカトリエン酸、ケイマンケミカル社製)、13-HOTE((9Z,11E,15Z)-13-ヒドロキシ-9,11,15-オクタデカトリエン酸、ケイマンケミカル社製)および12-OPDA(12-オキソ-フィトジエン酸、ケイマンケミカル社製)、ならびに、0.012%のα-ケトール脂肪酸をそれぞれ含む0.15%炭酸水素二カリウム水溶液をそれぞれ調製した。なお、α-ケトール脂肪酸水溶液は、次のような合成手段で合成した。
 大豆由来リポキシダーゼ(シグマアルドリッチ社製)10mgを、リノール酸1g、リン酸二水素カリウム0.15gおよび蒸留水100mlからなるリノール酸懸濁液へ加えて1昼夜攪拌し、過酸化脂質1を生成させた。なお、過酸化脂質の生成は、TLC(展開溶媒クロロホルム:エタノール=20:1、硫酸発色)による標準物質との比較、およびOD234nmの上昇により確認した。また、過酸化脂質1の主要成分が13-HPODE((9Z,11E)-13-(ヒドロペルオキシ)-9,11-オクタデカジエン酸)であることをNMRにより確認した。
 得られた過酸化物質1にアレンオキシドシンターゼ(シグマアルドリッチ社製)0.1mgを加えて1昼夜攪拌することで、炭素原子数が18のα-ケトール脂肪酸を得た。その後、氷冷下希塩酸を添加して反応液のpHを3.0とすることで酵素反応を停止させた。そしてpHを6.5に調整してα-ケトール脂肪酸水溶液とした。
実施例2 抵抗性遺伝子発現の評価
 実施例2として、0.012%の13-オキソ-9,11-オクタデカジエン酸を含む0.15%リン酸水素二カリウム水溶液を調製した。なお、13-オキソ-9,11-オクタデカジエン酸としては、(9Z,11E)-13-オキソ-9,11-オクタデカジエン酸(13-oxoODA、ケイマンケミカル社製)を用いた。比較例として、0.012%の脂肪酸類縁物質である13-HPODE((9Z,11E)-13-ヒドロペルオキシ-9,11-オクタデカジエン酸、ケイマンケミカル社製)、9-HPODE((10Z,12E)-9-ヒドロペルオキシ-10,12-オクタデカジエン酸、ケイマンケミカル社製)、9-HPOTE((10E,12Z,15Z)-9-ヒドロペルオキシ-10,12,15-オクタデカトリエン酸、ケイマンケミカル社製)、9-HOTE((10E,12Z,15Z)-9-ヒドロキシ-10,12,15-オクタデカトリエン酸、ケイマンケミカル社製)、13-HPOTE((9Z,11E,15Z)-13-ヒドロペルオキシ-9,11,15-オクタデカトリエン酸、ケイマンケミカル社製)、13-HOTE((9Z,11E,15Z)-13-ヒドロキシ-9,11,15-オクタデカトリエン酸、ケイマンケミカル社製)および12-OPDA(12-オキソ-フィトジエン酸、ケイマンケミカル社製)、ならびに、0.012%のα-ケトール脂肪酸をそれぞれ含む0.15%リン酸水素二カリウム水溶液をそれぞれ調製した。なお、α-ケトール脂肪酸水溶液は、実施例1と同様の合成手段で合成した。
 実施例1および実施例2で得られた各水溶液を、土耕栽培のシロイヌナズナの根(地下部)のみに灌注処理した。処理から24時間後に各水溶液で処理した各シロイヌナズナおよび対照として無処理のシロイヌナズナからRNAを抽出してRNAからcDNAを調製し、抵抗性遺伝子PR1、PR2、およびPDF1.2の発現量をリアルタイムPCRにて調べた。なお、遺伝子発現量はハウスキーピング遺伝子の発現量で標準化した。結果を図1(実施例1)および図2(実施例2)に示す。
 図1および図2によれば、13-oxoODAは、他の物質に比べて、顕著に、病原菌に対する抵抗性を司る遺伝子PR1およびPR2(サリチル酸代謝系)を発現させることができることがわかる。一方、12-OPDAは、他の物質に比べて害虫に対する抵抗性を司る遺伝子PDF1.2(ジャスモン酸代謝系)を発現させていた。
実施例3 抵抗性遺伝子発現における併用効果
 (9Z,11E)-13-オキソ-9,11-オクタデカジエン酸(13-oxoODA、ケイマンケミカル社製)と脂肪酸類縁物質である12-OPDA(12-オキソ-フィトジエン酸、ケイマンケミカル社製)とをそれぞれ0.012%含む、0.15%炭酸水素二カリウム水溶液を調製した。
実施例4 抵抗性遺伝子発現における併用効果
 (9Z,11E)-13-オキソ-9,11-オクタデカジエン酸(13-oxoODA、ケイマンケミカル社製)と脂肪酸類縁物質である12-OPDA(12-オキソ-フィトジエン酸、ケイマンケミカル社製)とをそれぞれ0.012%含む、0.15%リン酸水素二カリウム水溶液を調製した。
 調製した水溶液を用いて、実施例1および2と同様にシロイヌナズナを処理し、RNAを抽出してRNAからcDNAを調製した。抵抗性遺伝子PR1、PR2、およびPDF1.2の発現量を実施例1および2と同様に調べた。結果が図1(実施例3)および図2(実施例4)に示されている。
 13-oxoODAと12-OPDAの両者を混合した組成物は、PR1およびPDF1.2を同時に発現させることができた。両者を混合した組成物は、サリチル酸代謝系およびジャスモン酸代謝系を相互補完的に活性化させることができると推測される。なお実施例1~4にて評価した一連の水溶液には13-oxoODAと12-OPDAとの水溶性を増すためカリウム塩を添加して試験をしていることから、一部の組成はこれらのカリウム塩として存在していることがわかる。
 上記の結果より、本発明の植物賦活剤が、土壌汚染や毒性が低く、抵抗性誘導効果に優れた植物賦活剤であることがわかる。

Claims (12)

  1. 以下の式:
    HOOC-(R1)-C=C-C(=O)-R2      (I)
    (式中、
    1:直鎖または分岐の、炭素数6~12のアルキル基であって、1つまたはそれ以上の二重結合を含んでいてもよく、
    2:炭素数2~8のアルキル基であって、1つまたはそれ以上の分岐および/または二重結合を含んでいてもよい)
    の構造式を有するオキソ脂肪酸誘導体またはその塩もしくはエステルを有効成分として含むことを特徴とする植物賦活剤。
  2. 請求項1記載の植物賦活剤であって、前記オキソ脂肪酸誘導体の、
    1のアルキル基の炭素数が8~10であり、
    2のアルキル基の炭素数が4~6である。
  3. 請求項1または2記載の植物賦活剤であって、前記オキソ脂肪酸誘導体の、
    1が、式(I)におけるカルボニル基のαおよびβ炭素の間の二重結合と共役二重結合を形成する二重結合を含む。
  4. 請求項3記載の植物賦活剤であって、前記オキソ脂肪酸誘導体の、
    1が、炭素数9のアルキル基であり、
    2が、炭素数5のアルキル基である。
  5. 請求項4記載の植物賦活剤であって、前記オキソ脂肪酸誘導体が、(9Z、11E)-13-オキソ-9,11-オクタデカジエン酸またはその塩である。
  6. 請求項5記載の植物賦活剤であって、前記オキソ脂肪酸誘導体が、(9Z、11E)-13-オキソ-9,11-オクタデカジエン酸である。
  7. 12-オキソ-フィトジエン酸またはその塩をさらに含む請求項1~6のいずれか1項に記載の植物賦活剤。
  8. 界面活性剤および/または希釈剤もしくは担体をさらに含む請求項1~7のいずれか1項に記載の植物賦活剤。
  9. 前記オキソ脂肪酸誘導体またはその塩もしくはエステルの濃度が、0.012~0.12g/lである請求項1~8のいずれか1項に記載の植物賦活剤。
  10. 前記12-オキソ-フィトジエン酸またはその塩の濃度が、0.012~0.12g/lである請求項7記載の植物賦活剤。
  11. 植物の茎葉もしくは根に接触させる噴霧剤もしくは浸漬用薬剤、または、土壌灌注用薬剤として用いられる請求項1~10のいずれか1項に記載の植物賦活剤。
  12. 前記植物賦活剤は、アブラナ科植物に対して使用される請求項1~11のいずれか1項に記載の植物賦活剤。
PCT/JP2018/009763 2017-03-14 2018-03-13 植物賦活剤 WO2018168860A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201880018032.0A CN110461155B (zh) 2017-03-14 2018-03-13 植物活化剂
US16/493,150 US11457627B2 (en) 2017-03-14 2018-03-13 Plant activator
EP24164021.8A EP4364572A3 (en) 2018-03-13 Plant activator
CN202111049393.1A CN113729014B (zh) 2017-03-14 2018-03-13 植物活化剂的用途
EP18768081.4A EP3597039B1 (en) 2017-03-14 2018-03-13 Plant activator
JP2019506048A JP6759448B2 (ja) 2017-03-14 2018-03-13 植物賦活剤
US17/822,492 US20220408728A1 (en) 2017-03-14 2022-08-26 Plant activator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017048722 2017-03-14
JP2017-048722 2017-03-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/493,150 A-371-Of-International US11457627B2 (en) 2017-03-14 2018-03-13 Plant activator
US17/822,492 Division US20220408728A1 (en) 2017-03-14 2022-08-26 Plant activator

Publications (1)

Publication Number Publication Date
WO2018168860A1 true WO2018168860A1 (ja) 2018-09-20

Family

ID=63522409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009763 WO2018168860A1 (ja) 2017-03-14 2018-03-13 植物賦活剤

Country Status (5)

Country Link
US (2) US11457627B2 (ja)
EP (1) EP3597039B1 (ja)
JP (4) JP6759448B2 (ja)
CN (2) CN110461155B (ja)
WO (1) WO2018168860A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054630A1 (ja) * 2018-09-10 2020-03-19 イビデン株式会社 植物の機能性成分増加剤
JP2021095384A (ja) * 2019-12-16 2021-06-24 イビデン株式会社 植物賦活剤
JP2022007761A (ja) * 2020-06-26 2022-01-13 イビデン株式会社 植物賦活剤
WO2022255419A1 (ja) 2021-06-02 2022-12-08 イビデン株式会社 粉末状植物賦活剤
JP7429572B2 (ja) 2019-12-16 2024-02-08 イビデン株式会社 植物賦活剤
JP7453817B2 (ja) 2019-12-25 2024-03-21 イビデン株式会社 植物賦活剤
JP7453815B2 (ja) 2019-12-20 2024-03-21 イビデン株式会社 植物賦活剤
JP7453816B2 (ja) 2019-12-25 2024-03-21 イビデン株式会社 植物賦活剤
JP7481134B2 (ja) 2019-12-20 2024-05-10 イビデン株式会社 植物賦活剤

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110461155B (zh) * 2017-03-14 2021-11-16 揖斐电株式会社 植物活化剂
WO2022074176A1 (en) * 2020-10-08 2022-04-14 Université de Liège Method for eliciting at least one defense mechanism in plants against plant pests and plant diseases
CN114885633B (zh) * 2022-06-20 2023-03-24 河南科技大学 一种促进花生种子低温胁迫下发芽的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09295908A (ja) 1996-03-04 1997-11-18 Shiseido Co Ltd 花芽形成誘導剤及び花芽形成誘導用キット
JP2001131006A (ja) 1999-08-23 2001-05-15 Shiseido Co Ltd 植物賦活剤
WO2006057446A1 (ja) * 2004-11-25 2006-06-01 Shiseido Company, Ltd. α-ケトール不飽和脂肪酸誘導体及びそれを利用する植物成長調整剤
WO2011034027A1 (ja) 2009-09-16 2011-03-24 株式会社資生堂 植物成長調整剤
WO2014088002A1 (ja) * 2012-12-03 2014-06-12 キッコーマン株式会社 ケトオクタデカジエン酸の製造方法
WO2018047918A1 (ja) * 2016-09-08 2018-03-15 イビデン株式会社 植物賦活剤および植物賦活剤の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE262278T1 (de) 1999-08-23 2004-04-15 Shiseido Co Ltd Potenzierungsmittel für pflanzen
JP5144540B2 (ja) * 2006-12-27 2013-02-13 国立大学法人 東京医科歯科大学 血小板産生促進因子及びその利用
CN110461155B (zh) * 2017-03-14 2021-11-16 揖斐电株式会社 植物活化剂

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09295908A (ja) 1996-03-04 1997-11-18 Shiseido Co Ltd 花芽形成誘導剤及び花芽形成誘導用キット
JP2001131006A (ja) 1999-08-23 2001-05-15 Shiseido Co Ltd 植物賦活剤
WO2006057446A1 (ja) * 2004-11-25 2006-06-01 Shiseido Company, Ltd. α-ケトール不飽和脂肪酸誘導体及びそれを利用する植物成長調整剤
WO2011034027A1 (ja) 2009-09-16 2011-03-24 株式会社資生堂 植物成長調整剤
WO2014088002A1 (ja) * 2012-12-03 2014-06-12 キッコーマン株式会社 ケトオクタデカジエン酸の製造方法
WO2018047918A1 (ja) * 2016-09-08 2018-03-15 イビデン株式会社 植物賦活剤および植物賦活剤の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OHNO, KATSUYA: "Approach of Plant Responses to Plant Disease Control by Bacterial Metabolites of Fatty Acid (BMFA) (1)-(4)", LECTURE ABSTRACTS OF 2017 ANNUAL MEETING OF THE JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY AND AGROCHEMISTRY, 5 March 2017 (2017-03-05), pages 3J32p07 - 3J32p10, XP009516438, ISSN: 2186-7976 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054630A1 (ja) * 2018-09-10 2020-03-19 イビデン株式会社 植物の機能性成分増加剤
JP2020203928A (ja) * 2018-09-10 2020-12-24 イビデン株式会社 植物の機能性成分増加剤
JP7260515B2 (ja) 2018-09-10 2023-04-18 イビデン株式会社 植物の機能性成分増加剤
JP2021095384A (ja) * 2019-12-16 2021-06-24 イビデン株式会社 植物賦活剤
JP7404076B2 (ja) 2019-12-16 2023-12-25 イビデン株式会社 植物賦活剤
JP7429572B2 (ja) 2019-12-16 2024-02-08 イビデン株式会社 植物賦活剤
JP7453815B2 (ja) 2019-12-20 2024-03-21 イビデン株式会社 植物賦活剤
JP7481134B2 (ja) 2019-12-20 2024-05-10 イビデン株式会社 植物賦活剤
JP7453817B2 (ja) 2019-12-25 2024-03-21 イビデン株式会社 植物賦活剤
JP7453816B2 (ja) 2019-12-25 2024-03-21 イビデン株式会社 植物賦活剤
JP2022007761A (ja) * 2020-06-26 2022-01-13 イビデン株式会社 植物賦活剤
WO2022255419A1 (ja) 2021-06-02 2022-12-08 イビデン株式会社 粉末状植物賦活剤

Also Published As

Publication number Publication date
CN113729014B (zh) 2023-04-11
JP6759448B2 (ja) 2020-09-23
JP2020176137A (ja) 2020-10-29
EP3597039C0 (en) 2024-05-01
CN113729014A (zh) 2021-12-03
EP4364572A2 (en) 2024-05-08
JP7260688B2 (ja) 2023-04-18
EP3597039A4 (en) 2020-09-23
US11457627B2 (en) 2022-10-04
EP3597039A1 (en) 2020-01-22
JPWO2018168860A1 (ja) 2020-01-16
JP2023076681A (ja) 2023-06-01
CN110461155A (zh) 2019-11-15
EP3597039B1 (en) 2024-05-01
US20220408728A1 (en) 2022-12-29
US20210282398A1 (en) 2021-09-16
JP2022066547A (ja) 2022-04-28
CN110461155B (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
JP7260688B2 (ja) 植物賦活剤
US6635286B2 (en) Peroxy acid treatment to control pathogenic organisms on growing plants
JP4763128B2 (ja) 生長する植物上の病原性生物を抑制するためのペルオキシ酸処理
JPWO2018047918A1 (ja) 植物賦活剤および植物賦活剤の製造方法
JP2024063239A (ja) 植物賦活剤
JP7429572B2 (ja) 植物賦活剤
JP7354382B2 (ja) トマト果実の成長促進剤およびトマト果実中の機能性成分含有量向上剤、ならびに、トマト果実の成長促進剤およびトマト果実中の機能性成分含有量向上剤の製造方法
TR201804712T1 (tr) Diasil veya diaril üre ve en az bir metal kompleksi içeren bir sinerjistik tarımsal formül kullanılarak bitkilerdeki etilenin yönetimi.
EA013226B1 (ru) Гербицидные смеси
WO2022118312A1 (en) Method and composition for water treatment
JP7404076B2 (ja) 植物賦活剤
JP7481134B2 (ja) 植物賦活剤
EP3952651A1 (fr) Utilisation de derives de benzoxepine a titre d'herbicide
WO2022234663A1 (ja) 植物賦活剤
JP2013116855A (ja) ラテックス増産剤及びラテックス増産方法
JP2021095399A (ja) 植物賦活剤
JP2024091096A (ja) イネ科植物のための成長促進剤
JP2024053087A (ja) 植物賦活剤
JP2023120075A (ja) 植物の肥料成分吸収促進剤およびそれを含む植物用肥料
EP4364572A3 (en) Plant activator
JPWO2018168581A1 (ja) 害虫忌避剤および害虫忌避剤の製造方法
JPH06505754A (ja) ジメルカプト−置換ジニトリルの抗微生物剤としての組成物および使用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506048

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018768081

Country of ref document: EP

Effective date: 20191014