WO2018166444A1 - 光刻装置及方法 - Google Patents

光刻装置及方法 Download PDF

Info

Publication number
WO2018166444A1
WO2018166444A1 PCT/CN2018/078829 CN2018078829W WO2018166444A1 WO 2018166444 A1 WO2018166444 A1 WO 2018166444A1 CN 2018078829 W CN2018078829 W CN 2018078829W WO 2018166444 A1 WO2018166444 A1 WO 2018166444A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
exposure
mask
region
adjustment amount
Prior art date
Application number
PCT/CN2018/078829
Other languages
English (en)
French (fr)
Inventor
周畅
杨志勇
马琳琳
Original Assignee
上海微电子装备(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备(集团)股份有限公司 filed Critical 上海微电子装备(集团)股份有限公司
Priority to KR1020197030127A priority Critical patent/KR102370151B1/ko
Priority to US16/494,120 priority patent/US11042099B2/en
Priority to SG11201908476P priority patent/SG11201908476PA/en
Priority to JP2019550794A priority patent/JP6941685B2/ja
Priority to CN201880017103.5A priority patent/CN110419004B/zh
Publication of WO2018166444A1 publication Critical patent/WO2018166444A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70141Illumination system adjustment, e.g. adjustments during exposure or alignment during assembly of illumination system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70475Stitching, i.e. connecting image fields to produce a device field, the field occupied by a device such as a memory chip, processor chip, CCD, flat panel display
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7019Calibration
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7034Leveling

Definitions

  • the present invention relates to the field of lithography machines, and in particular, to a lithography apparatus and method.
  • the function of the projection scanning lithography machine is to clearly and correctly image the pattern on the reticle on the photoresist-coated substrate.
  • the prior art uses a splicing lens to provide a large size for the large-sized substrate. Field of view, but the splicing lens has many design risks and high costs.
  • a small field of view is required to achieve exposure. Under such conditions, it is not suitable to continue to use a splicing lens that provides a large field of view.
  • the present invention provides a lithographic apparatus comprising two exposure devices and a substrate device, wherein: the substrate device comprises a substrate stage, the substrate stage is for carrying a substrate; The exposure device is symmetrically distributed above the substrate stage along the exposure scanning direction for simultaneously forming two exposure fields on the substrate to expose the substrate in the exposure field.
  • each of the two exposure devices includes an illumination device, a mask table, an objective lens, an alignment device, and a vertical measurement sensor, wherein: the mask table is used to carry a mask plate, The illumination device is located above the mask table, the objective lens is located below the mask table, the alignment device and the vertical measurement sensor are located above the substrate table, and the alignment device is used for A position of the substrate relative to the mask is measured, and the vertical measuring sensor is used to measure a surface shape of the substrate.
  • the alignment device includes a substrate alignment device for measuring a position of the substrate relative to the substrate stage, and a mask alignment device for measuring The position of the mask relative to the substrate stage.
  • the substrate device further includes a plurality of reference plates, each of the exposure devices corresponding to at least one reference plate, the reference plate is provided with a reference plate mark, and the substrate alignment device and the mask are aligned The device measures the position of the reference plate mark on the corresponding reference plate to obtain the position of the substrate and the mask relative to the substrate stage.
  • the mask alignment device is disposed under the corresponding reference plate.
  • the plurality of reference plates include two measurement reference plates corresponding to the two exposure devices, and a calibration reference plate between the two measurement reference plates, the calibration reference plate Having a calibration mark, the substrate alignment device and the mask alignment device in each exposure device are configured to periodically measure the position of the calibration mark to achieve the corresponding substrate alignment device and mask alignment device Calibration of the position of the substrate stage.
  • the substrate includes a plurality of substrate alignment marks, and the substrate alignment device obtains a position of the substrate by measuring a position of the substrate alignment mark.
  • the invention also provides a photolithography method using the above lithographic apparatus, comprising:
  • Step 1 the substrate is placed on the substrate table, two exposure devices are symmetrically disposed above the substrate along the scanning direction;
  • Step 2 measuring an overall shape of the substrate, obtaining a global leveling adjustment amount of the substrate, and performing global leveling of the substrate;
  • Step 3 The substrate alignment device of each of the exposure devices simultaneously performs substrate alignment, and calculates an upper plate error of the substrate according to a positional relationship between the substrate and the substrate table;
  • Step 4 controlling movement of the mask table of the substrate table and/or each of the exposure devices to compensate for an upper plate error of the substrate;
  • Step 5 When exposing each exposure field, the vertical measuring sensor of each exposure device measures the local shape of the substrate in the corresponding exposure field in real time, and controls the corresponding mask table according to the partial shape of the substrate in the exposure field. The motion is such that the optimal focal plane of the exposure coincides with the exposure field on the substrate.
  • step 3 includes:
  • the substrate regions corresponding to the two exposure devices are respectively defined as a substrate first region and a substrate second region, and the substrate table is controlled to move along a scanning direction, and the substrate alignment devices of the two exposure devices respectively measure the same a position of the substrate alignment mark of the first region of the substrate and the second region of the substrate;
  • calculating an upper board error of the substrate includes
  • (X i , Y i ) is the nominal position of the substrate alignment mark
  • dx i , dy i is the difference between the measured position and the nominal position of the substrate alignment mark
  • Mx is the X direction of the substrate
  • Magnification, My is the Y-direction magnification of the substrate
  • non_ortho is the non-orthogonal amount of the substrate.
  • the error of compensating the upper board of the substrate in the step 4 includes:
  • the error of compensating the upper board of the substrate in the step 4 includes:
  • the step 5 includes controlling the mask table movement to compensate for the Z-direction height and the Rx and Ry directions in the partial shape of the substrate in the exposure field, wherein
  • the Z-direction motion value RS.Z set_i of the mask stage is set to
  • the Z-direction motion value RS.Z set_i of the mask table is set to
  • RS.Z ref_i is the Z-direction set value of the mask table moving along the reference object plane during scanning exposure
  • FLS.Z i is the Z-direction height value measured by the vertical measuring sensor in the current sampling period
  • FLS.Z i-1 is the Z-direction height value measured by the vertical measuring sensor in the previous sampling period
  • BF_Die.Z is the Z-direction height value of the optimal focal plane of the exposure
  • N is the magnification of the objective lens.
  • WSF is a filtering parameter
  • the Rx of the mask table is set to the tilt value RS.Rx set_i to
  • the Rx of the mask table is set to the tilt value RS.Rx set_i to
  • RS.Rx ref_i is the Rx tilt setting value of the mask table moving along the reference object plane during scanning exposure
  • FLS.Rx i is the Rx tilt direction measured by the vertical measuring sensor during the current sampling period.
  • FLS.Rx i-1 is the Rx tilt value measured by the vertical measuring sensor in the last sampling period
  • BF_Die.Rx is the Rx tilt value of the optimal focal plane of the exposure
  • the mask stage moves to compensate for the Ry tilt value RS.Ry set_i includes:
  • the Ry of the mask stage is set to the tilt value RS.Ry set_i to
  • the Ry of the mask table is set to the tilt value RS.Ry set_i to
  • RS.Ry ref_i is a Ry tilt setting value of the mask table moving along the reference object plane during scanning exposure
  • FLS.Ry i is a Ry tilt value measured by the vertical measuring sensor during the current sampling period
  • FLS.Ry i-1 is the Ry tilt value measured by the vertical measuring sensor in the last sampling period
  • BF_Die.Ry is the Ry tilt value of the optimal focal plane of the exposure.
  • the mask alignment device of each exposure device simultaneously performs mask alignment to obtain a positional relationship between the mask of each exposure device and the substrate stage.
  • the lithographic apparatus and method provided by the present invention by providing a small field of view in parallel to achieve large-size substrate exposure, not only the design difficulty of the splicing lens is reduced, but also the invention is easy to expand, and can be applied to a larger-sized substrate, and the manufacturing is reduced. The cost increases the process adaptability at the same time.
  • Figure 1 is a schematic structural view of a lithographic apparatus of the present invention
  • Figure 2 is a plan view of a substrate of a lithographic apparatus of the present invention.
  • FIG 3 is a schematic view of a substrate alignment mark of a lithographic apparatus of the present invention.
  • 10-substrate table 11-first illumination device; 12-second illumination device; 21-first mask plate; 22-second mask plate; 31-first mask table; Second mask stage; 41-first objective lens; 42-second objective lens; 51-first substrate alignment device; 52-second substrate alignment device; 61-first vertical measurement sensor; 62-second vertical To the measuring sensor; 7-substrate; 81-first reference plate; 82-second reference plate; 83-third reference plate; 91-first mask alignment device; 92-second mask alignment device.
  • the core idea of the present invention is to provide a lithographic apparatus and method that provides parallel small field of view to achieve exposure of a large-sized substrate while solving the technical problem of local deformation of the substrate during exposure.
  • the lithographic apparatus provided in this embodiment includes two sets of exposure devices, which are respectively a first exposure device and a second exposure device, wherein: as shown in FIGS. 1 and 2, the substrate device includes a substrate stage 10 and a substrate 7.
  • the substrate stage 10 carries the substrate 7, the substrate 7 includes a substrate first region 71 and a substrate second region 72; the first exposure device and the second exposure device are symmetric along the exposure direction of the substrate 7.
  • the first exposure device and the second exposure device respectively correspond to the substrate first region 71 and the substrate second region 72
  • the first exposure device measures the substrate first region 71 and Adjusting the substrate table 10 and its own parameters according to the measurement result
  • the second exposure device measures the substrate second region 72 and adjusts the substrate table 10 and its own parameters according to the measurement result
  • An exposure device and the second exposure device simultaneously expose the substrate first region 71 and the substrate second region 72, respectively.
  • the first region 71 of the substrate is measured by the first exposure device and the parameters of the substrate table 10 and itself are adjusted according to the measurement result
  • the second exposure device Measuring the second region 72 of the substrate and adjusting the parameters of the substrate table 10 and itself according to the measurement result
  • the parameters of the substrate table 10 can be flexibly adjusted, and when the exposure is located
  • the parameters of the first exposure device and the second exposure device are respectively adjusted to compensate for the defects caused by the local undulation and deformation of the substrate in the corresponding exposure field, respectively.
  • the first exposure device and the second exposure device respectively expose the substrate first region 71 and the substrate second region 72 at the same time, which can realize a small field of view operation condition and meet the process requirements of the large-area substrate. , one exposure, reduced process steps, and low cost.
  • the first exposure device includes a first illumination device 11, a first mask 21, a first mask table 31, a first objective lens 41, and a first substrate alignment device. 51.
  • a first vertical measurement sensor 61 and a first mask alignment device 91 wherein: the first mask stage 31 carries the first mask 21, and the first illumination device 11 is located at the first Above the mask 21, the first objective lens 41 is located below the first mask stage 31, and the first substrate alignment device 51 and the first vertical measurement sensor 61 are located on the substrate Above a region 71, the first substrate alignment device 51 is configured to measure a position of the substrate first region 71 relative to the substrate stage 10, and the first vertical measurement sensor 61 is configured to measure the substrate The surface of a region 71 for measuring the position of the first mask 21 relative to the substrate stage 10.
  • two sets of exposure devices are respectively exposed to the two regions on the substrate, which satisfies the requirements of the large-area substrate and the small field of view.
  • the substrate device further includes a reference plate, each set of exposure devices corresponding to at least one reference plate, the reference plate is provided with a reference plate mark, and the reference plate and the substrate table 10 The positional relationship between the two is fixed.
  • the reference plate in this embodiment includes a first reference plate 81, a second reference plate 82, and a third reference plate 83.
  • the first reference plate 81, the second reference plate 82, and the third reference plate 83 each include two references.
  • the structure of the board mark and the reference board mark may be a structure commonly used in the prior art, and is not particularly limited herein.
  • the reference plate marks on the first to third reference plates 81 to 83 have the same structure.
  • the first substrate alignment device 51 measures a fiducial mark on the first reference plate 81
  • the second substrate alignment device 52 measures a reference plate mark on the second reference plate 82 to obtain the The position of the first substrate alignment device 51 and the second substrate alignment device 52 with respect to the substrate stage 10.
  • the third reference plate 83 is a calibration reference plate, and the reference plate mark on the third reference plate 83 is used to measure the relative positions of the first substrate alignment device 51 and the second substrate alignment device 52. .
  • the first substrate aligning device 51 marks its position by measuring the position of the reference plate mark on the first reference plate 81 and the third reference plate 83, and the second substrate aligning device 52 measures the second reference plate 82 and the third
  • the position of the reference mark on the reference plate 83 marks the position of itself, and since both have a positional relationship with the reference mark on the third reference plate 83, the relative positions of the two are available.
  • the positions of the first to third reference plates 81 to 83 are close to one side edge of the substrate stage 10 and are outside the position where the substrate 7 is placed.
  • the first reference plate 81 and the second reference plate 82 respectively correspond to the substrate first region 71 and the substrate second region 72
  • the third reference plate 83 corresponds to the substrate first region 71.
  • An intermediate position with the second region 72 of the substrate, that is, a third reference plate 83 is located between the first reference plate 81 and the second reference plate 82, and the reference on the third reference plate 83 is periodically measured.
  • the board mark enables alignment of the position of the first substrate alignment device 51 and the second substrate alignment device 52 with respect to the substrate stage 10.
  • the first mask alignment device 91 is disposed under the first reference plate 81 for measuring the position of the mask mark on the first mask 21 relative to the reference mark on the first reference plate 81. And obtaining a position of the first mask 21 relative to the substrate stage 10, the second mask alignment device 92 being disposed under the second reference plate 82 for measuring the second mask The position of the mask mark on the plate 22 relative to the reference mark on the second reference plate 82, thereby obtaining the position of the second mask 22 relative to the substrate stage 10, as shown in FIG.
  • the structure of the mask mark should match the structure of the reference plate mark to achieve alignment. Since the design of the alignment marks is prior art, it is not enumerated here.
  • the substrate 7 further includes a plurality of substrate alignment marks, the first row corresponds to A1 to A8, and the second row corresponds to B1 to B8, and the third row Corresponding to C1 ⁇ C8, and so on D1 ⁇ D8, E1 ⁇ E8, F1 ⁇ F8 and G1 ⁇ G8, for the sake of simplicity and clarity, only A1 ⁇ A8 and B1 ⁇ G1 are marked in the figure, the other points can be analogized obtain.
  • the first substrate alignment device 51 measures a substrate alignment mark on the first region 71 of the substrate
  • the second substrate alignment device 52 measures a substrate alignment mark on the second region 72 of the substrate
  • the above embodiments describe the configuration of the lithographic apparatus in detail.
  • the present invention includes, but is not limited to, the configurations listed in the above embodiments, and any transformation is performed on the basis of the configuration provided by the above embodiments.
  • the contents are all within the scope of protection of the present invention. Those skilled in the art can make the same according to the content of the above embodiments.
  • This embodiment further provides a photolithography method, including:
  • Step 1 the substrate 7 is placed on the substrate stage 10; the first exposure device and the second exposure device are symmetrically distributed along the exposure direction of the substrate 7, so that the first exposure device and the second exposure device are respectively Corresponding to the substrate first region 71 and the substrate second region 72;
  • wz is the global fit face height value (ie, a Z-direction value)
  • wwx is a tilt value of the global fit face with respect to the X-axis
  • wwy is a tilt value of the global fit face with respect to the Y-axis
  • the substrate is aligned with the optimal focal plane as an average of the reference focal planes of the objective lenses 41, 42 in the first exposure device and the second exposure device.
  • Step 3 The first substrate alignment device 51 of the first exposure device and the second substrate alignment device 52 of the second exposure device simultaneously perform substrate alignment to obtain the substrate 7 and the substrate table 10 a positional relationship between the two, and calculating an upper plate error of the substrate 7 according to a positional relationship between the substrate 7 and the substrate stage 10;
  • the step 3 may specifically include: controlling the substrate stage 10 to move along a scanning direction, and the first substrate alignment device 51 measures a position of the substrate alignment mark of the first region 71 of the substrate, the second The substrate alignment device 52 measures the position of the substrate alignment mark of the second region 72 of the substrate;
  • (X i , Y i ) is the nominal position of the substrate alignment mark
  • dx i , dy i are respectively the X, Y-direction positional deviation of the substrate alignment mark, that is, the measurement of the substrate alignment mark
  • Mx is the X-direction magnification of the substrate
  • My is the Y-direction magnification of the substrate
  • non_ortho is the non-orthogonal amount of the substrate.
  • Equation 1 When calculating the offset amount of the first region 71 of the substrate relative to the substrate stage 10, the measurement position and the nominal position of the substrate alignment mark in the first region 71 of the substrate and the magnification value of the first objective lens 41 are substituted into Equation 1, and obtained.
  • Rz, Cx, and Cy are Rz_L, Cx_L, and Cy_L.
  • the measurement position and the nominal position of the substrate alignment mark in the second region 72 of the substrate and the magnification value of the second objective lens 41 are substituted into Equation 1.
  • the obtained Rz, Cx, and Cy are Rz_R, Cx_R, and Cy_R.
  • the rotation adjustment amount RS.Rz_L, the X-direction translation adjustment amount RS.Cx_L, and the X-direction translation adjustment amount RS.Cy_L of the first mask stage 31 corresponding to the first mask stage 31 of the substrate are respectively calculated.
  • Controlling the rotation adjustment amount RS.Rz_R, the X-direction translation adjustment amount RS.Cx_R, and the X-direction translation adjustment amount RS.Cy_R of the second mask stage 32 corresponding to the second region 72 of the substrate The first mask stage 31 and the second mask stage 32 respectively compensate for the offset of the substrate first region 71 and the substrate second region 72 relative to the substrate stage 10 according to the corresponding adjustment amount.
  • step 4 the common error for the substrate first region 71 and the substrate second region 72 with respect to the substrate stage 10 is compensated by adjusting the position of the substrate stage 10, and for the substrate first The non-common error of the region 71 and the substrate second region 72 with respect to the substrate stage 10 is compensated by adjusting the respective mask stage positions.
  • Step 5 When scanning each exposure field, the vertical measuring sensor 61 of the first exposure device measures the partial shape of the first region 71 of the substrate in the exposure field in real time (ie, the first region 71 of the substrate is located in the exposure field) And controlling the first mask table 31 to move according to the measured partial shape of the first region of the substrate, so as to optimize the focal plane of the first exposure device and the first region of the substrate
  • the exposure fields are basically coincident.
  • the vertical measuring sensor 62 of the second exposure device measures the partial shape of the second region 72 of the substrate in the exposure field in real time (ie, the surface shape of the portion of the substrate second region 72 located in the exposure field), and controls the The second mask stage 31 moves according to the measured partial shape of the second region of the substrate, so that the optimal focal plane of the second exposure device substantially coincides with the exposure field on the second region of the substrate.
  • the following describes an example of controlling the Z-direction height and the Rx and Ry inclination in the partial shape of the exposure field on the first region of the substrate by controlling the movement of the first mask stage 31:
  • the movement of the first mask stage 31 to compensate the Z-direction height of the exposure field on the first area of the substrate comprises:
  • RS.Z ref_i is a Z-direction set value of the first mask stage 31 moving along the reference object plane during scanning exposure
  • FLS.Z i is measured by the vertical measuring sensor 61 during the current sampling period.
  • the Z-direction height value, FLS.Z i-1 is the Z-direction height value measured by the vertical measurement sensor 61 in the previous sampling period
  • BF_Die.Z is the Z-direction height value of the optimal focal plane of the exposure
  • N For the magnification of the first objective lens 41, WSF is a filter parameter.
  • the filtering process can be, for example, low-pass filtering, in order to solve the problem that the masking station has insufficient servo bandwidth.
  • the selection of the different filtering processes and the setting of the corresponding filtering parameters WSF are known in the industry and are not specifically developed.
  • Compensating for the Rx tilt value RS.Rx set_i of the exposure field on the substrate by the motion of the first mask stage 31 includes:
  • the Rx tilting value RS.Rx set_i of the first mask stage 31 is set to
  • the Rx of the first mask stage 31 is set to the tilt value RS.Rx set_i to
  • RS.Rx ref_i is the Rx tilt setting value of the mask table moving along the reference object plane during scanning exposure
  • FLS.Rx i is the Rx tilt value measured by the vertical measuring sensor in the current sampling period
  • FLS.Rx i-1 is the Rx tilt value measured by the vertical measuring sensor during the last sampling period
  • BF_Die.Rx is the Rx tilt value of the optimal focal plane of the exposure.
  • the method of the first mask stage 31 moving to compensate for the Ry tilt value of the exposure field on the substrate is similar to the method of the first mask stage 31 moving to compensate the Rx tilt value of the exposure field on the substrate.
  • the Ry-direction tilt value RS.Ry set_i of the exposure field on the substrate is compensated by the motion of the first mask stage 31 to include:
  • the Ry of the first mask stage 31 is set to the tilt value RS.Ry set_i as
  • RS.Ry ref_i is a Ry tilt setting value of the mask table moving along the reference object plane during scanning exposure
  • FLS.Ry i is a Ry tilt value measured by the vertical measuring sensor during the current sampling period
  • FLS.Ry i-1 is the Ry tilt value measured by the vertical measuring sensor in the previous sampling period
  • BF_Die.Ry is the Ry tilt value of the optimal focal plane of the exposure.
  • the manner of controlling the second mask stage 32 is the same as the manner of controlling the first mask stage 31, and details are not described herein again.
  • the difference between this embodiment and the first embodiment is that the method for compensating the upper board error of the substrate 7 in step 4 is different.
  • the embodiment only controls the movement of the first mask stage 31 and the second mask stage 32. Compensating for the offset between the first region 71 of the substrate and the second region 72 of the substrate relative to the substrate substrate 10, specifically:

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

一种光刻装置及方法,光刻装置包括至少两套曝光装置和一套基板装置,其中:基板装置包括一基板台(10)和一基板(7),基板台(10)承载基板(7);至少两套曝光装置沿曝光扫描方向对称分布在基板(7)上方,同时在基板(7)上形成两个曝光场,对曝光场内基板(7)进行曝光。

Description

光刻装置及方法 技术领域
本发明涉及光刻机技术领域,特别涉及一种光刻装置及方法。
背景技术
投影扫描式光刻机的作用是把掩膜版上的图形清晰、正确地成像在涂有光刻胶的基板上,对于大尺寸基板而言,现有技术采用拼接镜头以提供适应大尺寸基板的大视场,但拼接镜头存在诸多设计风险以及高成本。而且,针对特殊工艺,如小面积的掩膜版工况下,需要采用小视场实现曝光,此种工况下并不适合继续采用提供大视场的拼接镜头。
发明内容
本发明的目的在于提供一种光刻装置及方法,以适用于小视场、大基板的工况。
为解决上述技术问题,本发明提供一种光刻装置,包括两个曝光装置和一基板装置,其中:所述基板装置包括一基板台,所述基板台用于承载一基板;所述两个曝光装置沿曝光扫描方向对称分布在所述基板台上方,用于同时在所述基板上形成两个曝光场,对所述曝光场内基板进行曝光。
进一步的,所述两个曝光装置中的每一曝光装置包括照明装置、掩膜台、物镜、对准装置及垂向测量传感器,其中:所述掩膜台用于承载一掩膜版,所述照明装置位于所述掩膜台的上方,所述物镜位于所述掩膜台的下方,所述对准装置和所述垂向测量传感器位于所述基板台上方,所述对准装置用于测量所述基板相对所述掩膜版的位置,所述垂向测量传感器用于测量所述基板的面形。
进一步的,所述对准装置包括基板对准装置和掩膜对准装置,所述基板对准装置用于测量所述基板相对所述基板台的位置,所述掩膜对准装置用于测量所述掩膜版相对所述基板台的位置。
进一步的,所述基板装置还包括多块基准板,每一所述曝光装置对应至少一块基准板,所述基准板上设有基准板标记,所述基板对准装置和所述掩膜对准装置测量对应的基准板上的所述基准板标记的位置以获得所述基板和所述掩膜版相对所述基板台的位置。
进一步的,所述掩膜对准装置设置在对应的基准板下方。
进一步的,所述多块基准板包括与所述两个曝光装置对应的两块测量基准板,以及位于所述两块测量基准板之间的测校基准板,所述测校基准板上设有测校标记,每一曝光装置中的基板对准装置和掩膜对准装置通过定期测量所述测校标记的位置,实现对应的所述基板对准装置、掩膜对准装置相对所述基板台的位置的校准。
进一步的,所述基板包括多个基板对准标记,所述基板对准装置通过测量所述基板对准标记的位置以获得所述基板的位置。
本发明还提供一种采用上述光刻装置的光刻方法,包括:
步骤1、将基板放置于基板台上,将两个曝光装置沿扫描方向对称设置于所述基板的上方;
步骤2、测量所述基板的整体面形,得到所述基板的全局调平调整量,执行基板的全局调平;
步骤3、各所述曝光装置的基板对准装置同时执行基板对准,根据所述基板与所述基板台之间的位置关系计算所述基板的上板误差;
步骤4、控制所述基板台和/或各所述曝光装置的掩膜台运动,以补偿所述基板的上板误差;
步骤5、在曝光每个曝光场时,每一曝光装置的垂向测量传感器实时测量对应曝光场内的基板的局部面形,控制对应的掩膜台根据所述曝光场内的基板局部面形运动,使曝光的最佳焦面与所述基板上曝光场重合。
进一步的,所述步骤2包括:每一曝光装置的垂向测量传感器测量所述基板上测量点的位置(x i,y i,z i),i=1,2,…,n,n为自然数,将所有测量点的位置(x i,y i,z i)代入平面拟合模型z i=wz-wwy·x i+wwx·y i,拟合得到所述基板的全局拟合面,其中wz为所述全局拟合面高度值,wwx为所述全局拟合面的X向倾斜值,wwy为所述全局拟合面的Y向倾斜值,再根据所述基板的全局拟合面与基板对准最佳焦面之间的差值确定所述基板的全局调平调整量。
进一步的,所述基板对准最佳焦面为各曝光装置中物镜的参考焦面的平均值。
进一步的,步骤3包括:
将所述两个曝光装置对应的基板区域分别定义为基板第一区域和基板第二区域,控制所述基板台沿着扫描方向运动,同时所述两个曝光装置的基板对准装置分别测量所述基板第一区域和所述基板第二区域的基板对准标记的位置;
根据所述基板第一区域的基板对准标记的测量位置和名义位置,以及所述基板第二区域的基板对准标记的测量位置和名义位置计算所述基板的上板误差。
进一步的,计算所述基板的上板误差包括
将所述基板第一区域的基板对准标记的测量位置和名义位置代入下述公式计算所述基板第一区域相对所述基板台的偏移量(Rz_L,Cx_L,Cy_L),将所述基板第二区域的基板对准标记的测量位置和名义位置代入下述公式计算所述基板第二区域相对所述基板台的偏移量(Rz_R,Cx_R,Cy_R),Rz_L为所述 基板第一区域相对所述基板台的绕Z轴的旋转量,Cx_L、Cy_L分别为所述基板第一区域相对所述基板台的X、Y向平移量,Rz_R为所述基板第二区域相对所述基板台的绕Z轴的旋转量,Cx_R、Cy_R分别为所述基板第二区域相对所述基板台的X、Y向平移量,所述公式为:
Figure PCTCN2018078829-appb-000001
其中,(X i,Y i)为所述基板对准标记的名义位置,dx i、dy i为所述基板对准标记的测量位置和名义位置的差值,Mx为所述基板的X向倍率,My为所述基板的Y向倍率,non_ortho为所述基板的非正交量。
进一步的,所述步骤4中补偿所述基板的上板误差包括:
先计算所述基板台的绕Z轴的旋转调整量dRz、X向平移调整量dCx及X向平移调整量dCy,控制所述基板台根据计算得到的调整量运动,补偿所述基板第一区域与所述基板第二区域相对所述基板台偏移量的公共部分:
Figure PCTCN2018078829-appb-000002
Figure PCTCN2018078829-appb-000003
Figure PCTCN2018078829-appb-000004
再计算所述基板第一区域对应的掩膜台的绕Z轴的旋转调整量RS.Rz_L、X向平移调整量RS.Cx_L及X向平移调整量RS.Cy_L,和所述基板第二区域对应的掩膜台的绕Z轴的旋转调整量RS.Rz_R、X向平移调整量RS.Cx_R及X向平移调整量RS.Cy_R,控制所述基板第一区域对应的掩膜台和所述基板第二区域对应的掩膜台根据相应的调整量运动,分别补偿所述基板第一区域与所述基板第二区域相对所述基板台偏移量的余量部分:
Figure PCTCN2018078829-appb-000005
Figure PCTCN2018078829-appb-000006
Figure PCTCN2018078829-appb-000007
Figure PCTCN2018078829-appb-000008
Figure PCTCN2018078829-appb-000009
Figure PCTCN2018078829-appb-000010
进一步的,所述步骤4中补偿所述基板的上板误差包括:
计算所述基板第一区域对应的掩膜台的绕Z轴的旋转调整量RS.Rz_L、X向平移调整量RS.Cx_L及X向平移调整量RS.Cy_L,和所述基板第二区域对应的掩膜台的绕Z轴的旋转调整量RS.Rz_R、X向平移调整量RS.Cx_R及X向平移调整量RS.Cy_R,控制所述基板第一区域对应的掩膜台和所述基板第二区域对应的掩膜台根据相应的调整量同时运动,分别补偿所述基板第一区域与所述基板第二区域相对所述基板台的偏移量:
RS.Rz_L=-Rz_L;
RS.Cx_L=-Cx_L;
RS.Cy_L=-Cy_L;
RS.Rz_R=-Rz_R;
RS.Cx_R=-Cx_R;
RS.Cy_R=-Cy_R。
进一步的,所述步骤5包括控制所述掩膜台运动以补偿所述曝光场内的基板的局部面形中的Z向高度和Rx、Ry向倾斜,其中
所述掩膜台运动以补偿所述Z向高度包括:
在每个曝光场曝光起点,所述掩膜台的Z向运动值RS.Z set_i设定为
Figure PCTCN2018078829-appb-000011
扫描过程中,所述掩膜台的Z向运动值RS.Z set_i设定为
Figure PCTCN2018078829-appb-000012
其中为RS.Z ref_i为扫描曝光时所述掩模台沿参考物面运动的Z向设定值,FLS.Z i为所述垂向测量传感器在当前采样周期内测得的Z向高度值,FLS.Z i-1为所述垂向测量传感器在上一采样周期内测得的Z向高度值,BF_Die.Z为曝光的最佳焦面的Z向高度值,N为物镜的倍率,WSF为滤波参数;
所述掩膜台运动以补偿所述Rx向倾斜值RS.Rx set_i包括:
在每个曝光场曝光起点,所述掩膜台的Rx向倾斜值RS.Rx set_i设定为
Figure PCTCN2018078829-appb-000013
扫描过程中,所述掩膜台的Rx向倾斜值RS.Rx set_i设定为
Figure PCTCN2018078829-appb-000014
其中为RS.Rx ref_i为扫描曝光时所述掩模台沿参考物面运动的Rx向倾斜设定值,FLS.Rx i为所述垂向测量传感器在当前采样周期内测得的Rx向倾斜值,FLS.Rx i-1为所述垂向测量传感器在上一采样周期内测得的Rx向倾斜值,BF_Die.Rx为所述曝光的最佳焦面的Rx向倾斜值;
所述掩膜台运动以补偿所述Ry向倾斜值RS.Ry set_i包括:
在每个曝光场曝光起点,所述掩膜台的Ry向倾斜值RS.Ry set_i设定为
Figure PCTCN2018078829-appb-000015
扫描过程中,所述掩膜台的Ry向倾斜值RS.Ry set_i设定为
Figure PCTCN2018078829-appb-000016
其中RS.Ry ref_i为扫描曝光时所述掩模台沿参考物面运动的Ry向倾斜设定值,FLS.Ry i为所述垂向测量传感器在当前采样周期内测得的Ry向倾斜值,FLS.Ry i-1为所述垂向测量传感器在上一采样周期内测得的Ry向倾斜值, BF_Die.Ry为所述曝光的最佳焦面的Ry向倾斜值。
进一步的,所述步骤3中还包括各曝光装置的掩膜对准装置同时执行掩膜对准,获得各所述曝光装置的掩膜版与基板台之间的位置关系。
在本发明提供的光刻装置及方法,通过提供并行的小视场以实现大尺寸基板曝光,不仅降低了拼接镜头的设计难度,而且本发明易于扩展,可适用于更大尺寸基板,在降低制造成本的同时提高了工艺适应性。
附图说明
图1是本发明的光刻装置结构示意图;
图2是本发明的光刻装置的基板的俯视图;
图3是本发明的光刻装置的基板对准标记示意图。
图中所示:10-基板台;11-第一照明装置;12-第二照明装置;21-第一掩膜版;22-第二掩膜版;31-第一掩膜台;32-第二掩膜台;41-第一物镜;42-第二物镜;51-第一基板对准装置;52-第二基板对准装置;61-第一垂向测量传感器;62-第二垂向测量传感器;7-基板;81-第一基准板;82-第二基准板;83-第三基准板;91-第一掩膜对准装置;92-第二掩膜对准装置。
具体实施方式
以下结合附图和具体实施例对本发明提出的光刻装置及方法作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
本发明的核心思想在于提供一种光刻装置及方法,提供并行小视场来实现大尺寸基板的曝光,同时解决曝光时基板局部形变的技术问题。
为实现上述思想,本发明提供了一种光刻装置,包括至少两套曝光装置 和一套基板装置,其中:所述基板装置包括一基板台和一基板,所述基板台承载所述基板;所述至少两套曝光装置沿曝光扫描方向对称分布在所述基板上方,同时在所述基板上形成两个曝光场,对所述曝光场内基板进行曝光。
<实施例一>
本实施例提供的光刻装置包括两套曝光装置,分别为第一曝光装置和第二曝光装置,其中:如图1~2所示,所述基板装置包括一基板台10和一基板7,所述基板台10承载所述基板7,所述基板7包括基板第一区域71和基板第二区域72;所述第一曝光装置和所述第二曝光装置沿所述基板7曝光方向呈对称分布,所述第一曝光装置和所述第二曝光装置分别对应所述基板第一区域71和所述基板第二区域72,所述第一曝光装置对所述基板第一区域71进行测量并根据测量结果调整所述基板台10和其自身的参数,所述第二曝光装置对所述基板第二区域72进行测量并根据测量结果调整所述基板台10和其自身的参数,所述第一曝光装置和所述第二曝光装置分别同时对所述基板第一区域71和所述基板第二区域72进行曝光。
在本实施例提供的光刻装置中,通过所述第一曝光装置对所述基板第一区域71进行测量并根据测量结果调整所述基板台10和其自身的参数,所述第二曝光装置对所述基板第二区域72进行测量并根据测量结果调整所述基板台10和其自身的参数,可灵活的调节基板台10、第一曝光装置和第二曝光装置的参数,曝光时当位于曝光场内的基板7出现局部起伏和形变时,适应的分别调整第一曝光装置和第二曝光装置的参数,分别补偿各自对应的曝光场内的基板的局部起伏和形变带来的缺陷,另外,所述第一曝光装置和所述第二曝光装置分别同时对所述基板第一区域71和所述基板第二区域72进行曝光,可实现小视场的工况,满足大面积基板的工艺要求,一次曝光,工艺步骤减少,成本低。
具体的,在所述的光刻装置中,所述第一曝光装置包括第一照明装置11、第一掩膜版21、第一掩膜台31、第一物镜41、第一基板对准装置51、第一垂向测量传感器61和第一掩膜对准装置91,其中:所述第一掩膜台31承载所述第一掩膜版21,所述第一照明装置11位于所述第一掩膜版21的上方,所述第一物镜41位于所述第一掩膜台31的下方,所述第一基板对准装置51和所述第一垂向测量传感器61位于所述基板第一区域71的上方,所述第一基板对准装置51用于测量所述基板第一区域71相对所述基板台10的位置,所述第一垂向测量传感器61用于测量所述基板第一区域71的面形,所述第一掩膜对准装置91用于测量所述第一掩膜版21相对所述基板台10的位置。同样,本实施例中,所述第二曝光装置包括第二照明装置12、第二掩膜版22、第二掩膜台32、第二物镜42、第二基板对准装置52、第二垂向测量传感器62和第二掩膜对准装置92。
由此可知,本实施例中通过两套曝光装置,分别对基板上的两个区域进行曝光,满足了大面积基板和小视场工况的要求。
另外,在所述的光刻装置中,所述基板装置还包括基准板,每套曝光装置对应至少一块基准板,所述基准板上设有基准板标记,所述基准板与基板台10之间的位置关系是固定的。本实施例中所述基准板包括第一基准板81、第二基准板82和第三基准板83,第一基准板81、第二基准板82和第三基准板83上均包括两个基准板标记,基准板标记的结构可以采用现有技术中常用的结构,在此不作特别限定。优选的,第一至第三基准板81~83上的基准板标记采用相同的结构。所述第一基板对准装置51测量所述第一基准板81上的基准标记,所述第二基板对准装置52测量所述第二基准板82上的基准板标记,以分别获得所述第一基板对准装置51、所述第二基板对准装置52相对所述基板台10的位置。
所述第三基准板83为测校基准板,所述第三基准板83上的所述基准板标记用于测量第一基板对准装置51和所述第二基板对准装置52的相对位置。第一基板对准装置51通过测量第一基准板81和第三基准板83上的基准板标记的位置来标记自身的位置,第二基板对准装置52通过测量第二基准板82和第三基准板83上的基准板标记的位置标记自身的位置,由于两者都与第三基准板83上的基准板标记有位置关系,所以两者的相对位置可获得。
结合图1和图2可知,第一至第三基准板81~83的位置靠近基板台10的一侧边缘且处于基板7放置位置以外的区域。所述第一基准板81和所述第二基准板82分别对应于所述基板第一区域71和所述基板第二区域72,所述第三基准板83对应于所述基板第一区域71和所述基板第二区域72的中间位置,即第三基准板83位于所述第一基准板81和所述第二基准板82之间,通过定期测量所述第三基准板83上的基准板标记,可实现对第一基板对准装置51、所述第二基板对准装置52相对所述基板台10位置的校准。
所述第一掩膜对准装置91设置在所述第一基准板81下方,用于测量所述第一掩膜版21上掩膜标记相对所述第一基准板81上基准板标记的位置,进而获得所述第一掩膜版21相对所述基板台10的位置,所述第二掩膜对准装置92设置在所述第二基准板82下方,用于测量所述第二掩膜版22上掩膜标记相对所述第二基准板82上基准板标记的位置,进而获得所述第二掩膜版22相对所述基板台10的位置,如图2所示。本领域技术人员应当知晓,所述掩膜标记的结构应当与基准板标记的结构相匹配,以实现对准。由于对准标记的设计为现有技术,在此不一一列举。
进一步的,如图3所示,在所述的光刻装置中,所述基板7还包括多个基板对准标记,第一行对应A1~A8,第二行对应B1~B8,第三行对应C1~C8,以此类推D1~D8、E1~E8、F1~F8和G1~G8,为了图式简洁清晰,图中只标 出了A1~A8以及B1~G1,其余各点位置可以类推获得。所述第一基板对准装置51测量所述基板第一区域71上的基板对准标记,所述第二基板对准装置52测量所述基板第二区域72上的基板对准标记,计算所述基板第一区域71、基板第二区域72相对于第一基准板81、第二基准板82的位置关系,进而获得所述基板7相对所述基板台10的位置关系。
综上,上述实施例对光刻装置的构型进行了详细说明,当然,本发明包括但不局限于上述实施例中所列举的构型,任何在上述实施例提供的构型基础上进行变换的内容,均属于本发明所保护的范围。本领域技术人员可以根据上述实施例的内容举一反三。
本实施例还提供一种光刻方法,包括:
步骤1、将基板7放置于基板台10上;将第一曝光装置和第二曝光装置沿所述基板7曝光方向呈对称分布设置,使所述第一曝光装置和所述第二曝光装置分别对应所述基板第一区域71和基板第二区域72;
步骤2、所述第一曝光装置的第一垂向测量传感器61对所述基板第一区域71进行测量,所述第二曝光装置的第二垂向测量传感器62对所述基板第二区域72进行测量,并将所有测量点的位置(x i,y i,z i)代入平面拟合模型z i=wz-wwy·x i+wwx·y i,拟合得到所述基板7的全局拟合面,其中wz为所述全局拟合面高度值(即Z向值),wwx为所述全局拟合面关于X轴的倾斜值,wwy为所述全局拟合面关于Y轴的倾斜值,再根据所述基板7的全局拟合面与基板对准最佳焦面之间的差值确定所述基板的全局调平调整量,根据所述基板的全局调平调整量执行所述基板7的全局调平,使得全局调平后的基板7的表面基本与基板对准最佳焦面重合;
进一步地,所述基板对准最佳焦面为所述第一曝光装置和所述第二曝光装置中物镜41、42的参考焦面的平均值。
步骤3、所述第一曝光装置的第一基板对准装置51和所述第二曝光装置的第二基板对准装置52同时执行基板对准,获得所述基板7与所述基板台10之间的位置关系,并根据所述基板7与所述基板台10之间的位置关系计算所述基板7的上板误差;
所述步骤3可具体包括:控制所述基板台10沿着扫描方向运动,同时所述第一基板对准装置51测量所述基板第一区域71的基板对准标记的位置,所述第二基板对准装置52测量所述基板第二区域72的基板对准标记的位置;
将所述基板第一区域71的基板对准标记的测量位置和名义位置代入下述式1计算所述基板第一区域71相对所述基板台10的偏移量(Rz_L,Cx_L,Cy_L),将所述基板第二区域72的基板对准标记的测量位置和名义位置代入下述式1计算所述基板第二区域72相对所述基板台10的偏移量(Rz_R,Cx_R,Cy_R),其中,Rz_L为所述基板第一区域71(图中左侧区域)相对所述基板台10的绕Z轴的旋转量,Cx_L、Cy_L分别为所述基板第一区域71相对所述基板台10的X、Y向平移量,Rz_R为所述基板第二区域72(图中右侧区域)相对所述基板台10的绕Z轴的旋转量,Cx_R、Cy_R分别为所述基板第二区域72相对所述基板台10的X、Y向平移量。
Figure PCTCN2018078829-appb-000017
其中,(X i,Y i)为所述基板对准标记的名义位置,dx i、dy i分别为所述基板对准标记的X、Y向位置偏差,即所述基板对准标记的测量位置(步骤1中测得的x i)和名义位置X i的差值,Mx为基板的X向倍率,My为所述基板的Y向倍率,non_ortho为所述基板的非正交量。计算基板第一区域71相对所述基板台10的偏移量时,将基板第一区域71内的基板对准标记的测量位置和名义位置以及第一物镜41的倍率值代入式1,求得的Rz,Cx,Cy即为Rz_L,Cx_L,Cy_L。同理,计算基板第二区域72相对所述基板台10的偏移量时,将基板 第二区域72内的基板对准标记的测量位置和名义位置以及第二物镜41的倍率值代入式1,求得的Rz,Cx,Cy即为Rz_R,Cx_R,Cy_R。
所述步骤3中还包括所述第一曝光装置的第一掩膜对准装置91和所述第二曝光装置的第二掩膜对准装置92同时执行掩膜对准,分别获得所述第一曝光装置的第一掩膜版21与基板台10之间的位置关系以及所述第二曝光装置的第二掩膜版22与基板台10之间的位置关系。
步骤4、控制所述基板台10、第一掩膜台31及第二掩膜台32运动,以补偿所述基板7的上板误差,具体为:
先根据以下公式计算所述基板台10的绕Z轴的旋转调整量dRz、X向平移调整量dCx及X向平移调整量dCy,控制所述基板台10根据计算得到的调整量运动,补偿所述基板第一区域71与所述基板第二区域72相对所述基板台10的偏移量的公共部分:
Figure PCTCN2018078829-appb-000018
Figure PCTCN2018078829-appb-000019
Figure PCTCN2018078829-appb-000020
再根据以下公式分别计算所述基板第一区域71对应的第一掩膜台31的绕Z轴的旋转调整量RS.Rz_L、X向平移调整量RS.Cx_L及X向平移调整量RS.Cy_L,和所述基板第二区域72对应的第二掩膜台32的绕Z轴的旋转调整量RS.Rz_R、X向平移调整量RS.Cx_R及X向平移调整量RS.Cy_R,控制所述第一掩膜台31和所述第二掩膜台32根据相应的调整量运动,分别补偿所述基板第一区域71与所述基板第二区域72相对所述基板台10的偏移量的余量部分:
Figure PCTCN2018078829-appb-000021
Figure PCTCN2018078829-appb-000022
Figure PCTCN2018078829-appb-000023
Figure PCTCN2018078829-appb-000024
Figure PCTCN2018078829-appb-000025
Figure PCTCN2018078829-appb-000026
也就是说,在步骤4中,对于基板第一区域71与所述基板第二区域72相对所述基板台10的公共误差,是通过调整基板台10的位置来进行补偿,而对于基板第一区域71与所述基板第二区域72相对所述基板台10的非公共误差,是通过调整各自的掩膜台位置来实现补偿。
步骤5、在扫描曝光每个曝光场时,所述第一曝光装置的垂向测量传感器61实时测量曝光场内的基板第一区域71的局部面形(即基板第一区域71位于曝光场中的部分的面形),并控制所述第一掩膜台31根据测量得到的基板第一区域局部面形进行运动,以使第一曝光装置的最佳焦面与所述基板第一区域上的曝光场基本重合。同时,所述第二曝光装置的垂向测量传感器62实时测量曝光场内的基板第二区域72的局部面形(即基板第二区域72位于曝光场中的部分的面形),并控制所述第二掩膜台31根据测量得到的基板第二区域局部面形进行运动,以使第二曝光装置的最佳焦面与所述基板第二区域上的曝光场基本重合。
下述以控制所述第一掩膜台31运动补偿所述基板第一区域上曝光场的局部面形中的Z向高度和Rx、Ry向倾斜为例进行说明:
所述第一掩膜台31运动补偿所述基板第一区域上曝光场的Z向高度包括:
S1:在每个曝光场曝光起点,将所述第一掩膜台31的Z向运动值RS.Z set_i设定为
Figure PCTCN2018078829-appb-000027
S2:扫描过程中,将所述第一掩膜台31的Z向运动值RS.Z set_i设定为
Figure PCTCN2018078829-appb-000028
其中为RS.Z ref_i为扫描曝光时所述第一掩膜台31沿参考物面运动的Z向设定值,FLS.Z i为所述垂向测量传感器61在当前采样周期内测得的Z向高度值,FLS.Z i-1为所述垂向测量传感器61在上一采样周期内测得的Z向高度值,BF_Die.Z为曝光的最佳焦面的Z向高度值,N为第一物镜41的倍率,WSF为滤波参数。此处,滤波过程例如可以采用低通滤波,目的是解决掩膜台伺服带宽不够的问题。关于不同滤波过程的选择以及相应滤波参数WSF的设定均为业界已知,故不具体展开。
通过所述第一掩膜台31的运动补偿所述基板上曝光场的Rx向倾斜值RS.Rx set_i包括:
K1:在每个曝光场曝光起点,所述第一掩膜台31的Rx向倾斜值RS.Rx set_i设定为
Figure PCTCN2018078829-appb-000029
K2:扫描过程中,所述第一掩膜台31的Rx向倾斜值RS.Rx set_i设定为
Figure PCTCN2018078829-appb-000030
其中RS.Rx ref_i为扫描曝光时所述掩模台沿参考物面运动的Rx向倾斜设定值,FLS.Rx i为所述垂向测量传感器在当前采样周期内测得的Rx向倾斜值,FLS.Rx i-1为所述垂向测量传感器在上一采样周期内测得的Rx向倾斜值,BF_Die.Rx为所述曝光的最佳焦面的Rx向倾斜值。
所述第一掩膜台31运动补偿所述基板上曝光场的Ry向倾斜值的方法与所述第一掩膜台31运动补偿所述基板上曝光场的Rx向倾斜值的方法类似。具体的,通过所述第一掩膜台31的运动补偿所述基板上曝光场的Ry向倾斜值RS.Ry set_i包括:
K1':在每个曝光场曝光起点,所述第一掩膜台31的Ry向倾斜值RS.Ry set_i设定为
Figure PCTCN2018078829-appb-000031
K2':扫描过程中,所述第一掩膜台31的Ry向倾斜值RS.Ry set_i设定为
Figure PCTCN2018078829-appb-000032
其中RS.Ry ref_i为扫描曝光时所述掩模台沿参考物面运动的Ry向倾斜设定值,FLS.Ry i为所述垂向测量传感器在当前采样周期内测得的Ry向倾斜值,FLS.Ry i-1为所述垂向测量传感器在上一采样周期内测得的Ry向倾斜值,BF_Die.Ry为所述曝光的最佳焦面的Ry向倾斜值。
控制所述第二掩膜台32的方式与控制所述第一掩膜台31的方式一致,在此不再赘述。
关于掩膜垂向控制的更详细的介绍也可参考发明人的另一件中国专利申请201710154051.3“一种用于光刻机的垂向控制方法”,其全部内容通过引用并入本文。
实施例二
本实施例与实施例一的区别在于,在步骤4中补偿所述基板7的上板误差的方法不同,本实施例仅控制所述第一掩膜台31及第二掩膜台32运动以补偿所述基板第一区域71与所述基板第二区域72相对所述基板台10的偏移量,具体为:
计算第一掩膜台31的绕Z轴的旋转调整量RS.Rz_L、X向平移调整量RS.Cx_L及Y向平移调整量RS.Cy_L,和所述第二掩膜台32的绕Z轴的旋转调整量RS.Rz_R、X向平移调整量RS.Cx_R及Y向平移调整量RS.Cy_R,控制所述第一掩膜台31和所述第二掩膜台32根据相应的调整量运动,分别补偿所述基板第一区域71与所述基板第二区域72相对所述基板台10的偏移量:
RS.Rz_L=-Rz_L;
RS.Cx_L=-Cx_L;
RS.Cy_L=-Cy_L;
RS.Rz_R=-Rz_R;
RS.Cx_R=-Cx_R;
RS.Cy_R=-Cy_R。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (16)

  1. 一种光刻装置,其特征在于,包括两个曝光装置和一基板装置,其中:
    所述基板装置包括一基板台,所述基板台用于承载一基板;
    所述两个曝光装置沿曝光扫描方向对称分布在所述基板台上方,用于同时在所述基板上形成两个曝光场,对所述曝光场内基板进行曝光。
  2. 如权利要求1所述的光刻装置,其特征在于,所述两个曝光装置中的每一曝光装置包括照明装置、掩膜台、物镜、对准装置及垂向测量传感器,其中:
    所述掩膜台用于承载一掩膜版,所述照明装置位于所述掩膜台的上方,所述物镜位于所述掩膜台的下方,所述对准装置和所述垂向测量传感器位于所述基板台上方,所述对准装置用于测量所述基板相对所述掩膜版的位置,所述垂向测量传感器用于测量所述基板的面形。
  3. 如权利要求2所述的光刻装置,其特征在于,所述对准装置包括基板对准装置和掩膜对准装置,所述基板对准装置用于测量所述基板相对所述基板台的位置,所述掩膜对准装置用于测量所述掩膜版相对所述基板台的位置。
  4. 如权利要求3所述的光刻装置,其特征在于,所述基板装置还包括多块基准板,每一所述曝光装置对应至少一块基准板,所述基准板上设有基准板标记,所述基板对准装置和所述掩膜对准装置测量对应的基准板上的所述基准板标记的位置以获得所述基板和所述掩膜版相对所述基板台的位置。
  5. 如权利要求4所述的光刻装置,其特征在于,所述掩膜对准装置设置在对应的基准板下方。
  6. 如权利要求4所述的光刻装置,其特征在于,所述多块基准板包括与所述两个曝光装置对应的两块测量基准板,以及位于所述两块测量基准板之 间的测校基准板,所述测校基准板上设有测校标记,每一曝光装置中的基板对准装置和掩膜对准装置通过定期测量所述测校标记的位置,实现对应的所述基板对准装置、掩膜对准装置相对所述基板台的位置的校准。
  7. 如权利要求3所述的光刻装置,其特征在于,所述基板包括多个基板对准标记,所述基板对准装置通过测量所述基板对准标记的位置以获得所述基板的位置。
  8. 一种采用权利要求1所述光刻装置的光刻方法,其特征在于,所述光刻方法包括:
    步骤1、将基板放置于基板台上,将两个曝光装置沿扫描方向对称设置于所述基板的上方;
    步骤2、测量所述基板的整体面形,得到所述基板的全局调平调整量,执行基板的全局调平;
    步骤3、各所述曝光装置的基板对准装置同时执行基板对准,根据所述基板与所述基板台之间的位置关系计算所述基板的上板误差;
    步骤4、控制所述基板台和/或各所述曝光装置的掩膜台运动,以补偿所述基板的上板误差;
    步骤5、在曝光每个曝光场时,每一曝光装置的垂向测量传感器实时测量对应曝光场内的基板的局部面形,控制对应的掩膜台根据所述曝光场内的基板局部面形运动,使曝光的最佳焦面与所述基板上曝光场重合。
  9. 如权利要求8所述的光刻方法,其特征在于,所述步骤2包括:每一曝光装置的垂向测量传感器测量所述基板上测量点的位置(x i,y i,z i),i=1,2,…,n,n为自然数,将所有测量点的位置(x i,y i,z i)代入平面拟合模型z i=wz-wwy·x i+wwx·y i,拟合得到所述基板的全局拟合面,其中wz为所述全局拟合面高度值,wwx为所述全局拟合面的X向倾斜值,wwy为所述全局 拟合面的Y向倾斜值,再根据所述基板的全局拟合面与基板对准最佳焦面之间的差值确定所述基板的全局调平调整量。
  10. 如权利要求9所述的光刻方法,其特征在于,所述基板对准最佳焦面为各曝光装置中物镜的参考焦面的平均值。
  11. 如权利要求8所述的光刻方法,其特征在于,步骤3包括:
    将所述两个曝光装置对应的基板区域分别定义为基板第一区域和基板第二区域,控制所述基板台沿着扫描方向运动,同时所述两个曝光装置的基板对准装置分别测量所述基板第一区域和所述基板第二区域的基板对准标记的位置;
    根据所述基板第一区域的基板对准标记的测量位置和名义位置,以及所述基板第二区域的基板对准标记的测量位置和名义位置计算所述基板的上板误差。
  12. 如权利要求11所述的光刻方法,其特征在于,计算所述基板的上板误差包括
    将所述基板第一区域的基板对准标记的测量位置和名义位置代入下述公式计算所述基板第一区域相对所述基板台的偏移量(Rz_L,Cx_L,Cy_L),将所述基板第二区域的基板对准标记的测量位置和名义位置代入下述公式计算所述基板第二区域相对所述基板台的偏移量(Rz_R,Cx_R,Cy_R),Rz_L为所述基板第一区域相对所述基板台的绕Z轴的旋转量,Cx_L、Cy_L分别为所述基板第一区域相对所述基板台的X、Y向平移量,Rz_R为所述基板第二区域相对所述基板台的绕Z轴的旋转量,Cx_R、Cy_R分别为所述基板第二区域相对所述基板台的X、Y向平移量,所述公式为:
    Figure PCTCN2018078829-appb-100001
    其中,(X i,Y i)为所述基板对准标记的名义位置,dx i、dy i为所述基板对准 标记的测量位置和名义位置的差值,Mx为所述基板的X向倍率,My为所述基板的Y向倍率,non_ortho为所述基板的非正交量。
  13. 如权利要求12所述的光刻方法,其特征在于,所述步骤4中补偿所述基板的上板误差包括:
    先计算所述基板台的绕Z轴的旋转调整量dRz、X向平移调整量dCx及X向平移调整量dCy,控制所述基板台根据计算得到的调整量运动,补偿所述基板第一区域与所述基板第二区域相对所述基板台偏移量的公共部分:
    Figure PCTCN2018078829-appb-100002
    Figure PCTCN2018078829-appb-100003
    Figure PCTCN2018078829-appb-100004
    再计算所述基板第一区域对应的掩膜台的绕Z轴的旋转调整量RS.Rz_L、X向平移调整量RS.Cx_L及X向平移调整量RS.Cy_L,和所述基板第二区域对应的掩膜台的绕Z轴的旋转调整量RS.Rz_R、X向平移调整量RS.Cx_R及X向平移调整量RS.Cy_R,控制所述基板第一区域对应的掩膜台和所述基板第二区域对应的掩膜台根据相应的调整量运动,分别补偿所述基板第一区域与所述基板第二区域相对所述基板台偏移量的余量部分:
    Figure PCTCN2018078829-appb-100005
    Figure PCTCN2018078829-appb-100006
    Figure PCTCN2018078829-appb-100007
    Figure PCTCN2018078829-appb-100008
    Figure PCTCN2018078829-appb-100009
    Figure PCTCN2018078829-appb-100010
  14. 如权利要求12所述的光刻方法,其特征在于,所述步骤4中补偿所述基板的上板误差包括:
    计算所述基板第一区域对应的掩膜台的绕Z轴的旋转调整量RS.Rz_L、X向平移调整量RS.Cx_L及X向平移调整量RS.Cy_L,和所述基板第二区域对应的掩膜台的绕Z轴的旋转调整量RS.Rz_R、X向平移调整量RS.Cx_R及X向平移调整量RS.Cy_R,控制所述基板第一区域对应的掩膜台和所述基板第二区域对应的掩膜台根据相应的调整量同时运动,分别补偿所述基板第一区域与所述基板第二区域相对所述基板台的偏移量:
    RS.Rz_L=-Rz_L;
    RS.Cx_L=-Cx_L;
    RS.Cy_L=-Cy_L;
    RS.Rz_R=-Rz_R;
    RS.Cx_R=-Cx_R;
    RS.Cy_R=-Cy_R。
  15. 如权利要求8所述的光刻方法,其特征在于,所述步骤5包括控制所述掩膜台运动以补偿所述曝光场内的基板的局部面形中的Z向高度和Rx、Ry向倾斜,其中
    所述掩膜台运动以补偿所述Z向高度包括:
    在每个曝光场曝光起点,所述掩膜台的Z向运动值RS.Z set_i设定为
    Figure PCTCN2018078829-appb-100011
    扫描过程中,所述掩膜台的Z向运动值RS.Z set_i设定为
    Figure PCTCN2018078829-appb-100012
    其中为RS.Z ref_i为扫描曝光时所述掩模台沿参考物面运动的Z向设定值,FLS.Z i为所述垂向测量传感器在当前采样周期内测得的Z向高度值,FLS.Z i-1为所述垂向测量传感器在上一采样周期内测得的Z向高度值,BF_Die.Z为曝光的最佳焦面的Z向高度值,N为物镜的倍率,WSF为滤波参数;
    所述掩膜台运动以补偿所述Rx向倾斜值RS.Rx set_i包括:
    在每个曝光场曝光起点,所述掩膜台的Rx向倾斜值RS.Rx set_i设定为
    Figure PCTCN2018078829-appb-100013
    扫描过程中,所述掩膜台的Rx向倾斜值RS.Rx set_i设定为
    Figure PCTCN2018078829-appb-100014
    其中为RS.Rx ref_i为扫描曝光时所述掩模台沿参考物面运动的Rx向倾斜设定值,FLS.Rx i为所述垂向测量传感器在当前采样周期内测得的Rx向倾斜值,FLS.Rx i-1为所述垂向测量传感器在上一采样周期内测得的Rx向倾斜值,BF_Die.Rx为所述曝光的最佳焦面的Rx向倾斜值;
    所述掩膜台运动以补偿所述Ry向倾斜值RS.Ry set_i包括:
    在每个曝光场曝光起点,所述掩膜台的Ry向倾斜值RS.Ry set_i设定为
    Figure PCTCN2018078829-appb-100015
    扫描过程中,所述掩膜台的Ry向倾斜值RS.Ry set_i设定为
    Figure PCTCN2018078829-appb-100016
    其中RS.Ry ref_i为扫描曝光时所述掩模台沿参考物面运动的Ry向倾斜设定值,FLS.Ry i为所述垂向测量传感器在当前采样周期内测得的Ry向倾斜值,FLS.Ry i-1为所述垂向测量传感器在上一采样周期内测得的Ry向倾斜值,BF_Die.Ry为所述曝光的最佳焦面的Ry向倾斜值。
  16. 如权利要求8所述的光刻方法,其特征在于,所述步骤3中还包括 各曝光装置的掩膜对准装置同时执行掩膜对准,获得各所述曝光装置的掩膜版与基板台之间的位置关系。
PCT/CN2018/078829 2017-03-15 2018-03-13 光刻装置及方法 WO2018166444A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197030127A KR102370151B1 (ko) 2017-03-15 2018-03-13 포토에칭 장치 및 방법
US16/494,120 US11042099B2 (en) 2017-03-15 2018-03-13 Photoetching apparatus and method
SG11201908476P SG11201908476PA (en) 2017-03-15 2018-03-13 Photoetching apparatus and method
JP2019550794A JP6941685B2 (ja) 2017-03-15 2018-03-13 フォトエッチング装置及び方法
CN201880017103.5A CN110419004B (zh) 2017-03-15 2018-03-13 光刻装置及方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710154356.4A CN107966881B (zh) 2017-03-15 2017-03-15 光刻装置及方法
CN201710154356.4 2017-03-15

Publications (1)

Publication Number Publication Date
WO2018166444A1 true WO2018166444A1 (zh) 2018-09-20

Family

ID=61997383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078829 WO2018166444A1 (zh) 2017-03-15 2018-03-13 光刻装置及方法

Country Status (7)

Country Link
US (1) US11042099B2 (zh)
JP (1) JP6941685B2 (zh)
KR (1) KR102370151B1 (zh)
CN (2) CN107966881B (zh)
SG (1) SG11201908476PA (zh)
TW (1) TWI654484B (zh)
WO (1) WO2018166444A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134650A (ja) * 2019-02-18 2020-08-31 キヤノン株式会社 露光システム、および、物品製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111123667B (zh) * 2018-10-31 2021-09-24 上海微电子装备(集团)股份有限公司 光刻装置、光刻装置的垂向控制方法及曝光方法
JP7458950B2 (ja) * 2020-09-23 2024-04-01 株式会社Screenホールディングス 描画システム
CN114236976A (zh) * 2021-12-28 2022-03-25 杭州新诺微电子有限公司 一种双台面ldi系统的曝光方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005092137A (ja) * 2003-09-19 2005-04-07 Nikon Corp 露光装置及び露光方法
CN101303533A (zh) * 2008-06-24 2008-11-12 上海微电子装备有限公司 用于光刻设备的对准系统、对准方法及增强型对准标记
CN103197506A (zh) * 2012-01-10 2013-07-10 上海微电子装备有限公司 一种采用镜像硅片台的光刻机
CN104136969A (zh) * 2012-03-02 2014-11-05 株式会社V技术 三维液晶显示装置的制造装置以及制造方法
CN104412152A (zh) * 2012-07-05 2015-03-11 株式会社V技术 光取向曝光方法及光取向曝光装置
CN105320399A (zh) * 2014-06-05 2016-02-10 恩耐激光技术有限公司 激光图案化偏斜校正

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769680A (en) * 1987-10-22 1988-09-06 Mrs Technology, Inc. Apparatus and method for making large area electronic devices, such as flat panel displays and the like, using correlated, aligned dual optical systems
JPH01305520A (ja) * 1988-06-03 1989-12-08 Sharp Corp ウエハの露光処理における焦点位置の最適化方法
US5729331A (en) 1993-06-30 1998-03-17 Nikon Corporation Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
JP3770959B2 (ja) * 1996-05-10 2006-04-26 株式会社半導体エネルギー研究所 投影型ステッパ露光装置およびそれを用いた露光方法
JP2001168003A (ja) 1999-12-06 2001-06-22 Olympus Optical Co Ltd 露光装置
JP2001255139A (ja) * 2000-03-08 2001-09-21 Nikon Corp 制御系の制御性評価方法及び露光装置並びに基板のフラットネス計測方法
JP2001296667A (ja) 2000-04-14 2001-10-26 Nikon Corp 走査露光方法および走査型露光装置並びにマスク
JP4617616B2 (ja) * 2001-07-11 2011-01-26 株式会社ニコン 露光装置及び露光方法
JP4211272B2 (ja) * 2002-04-12 2009-01-21 株式会社ニコン 露光装置及び露光方法
JP4218418B2 (ja) 2003-05-23 2009-02-04 ウシオ電機株式会社 帯状ワークの両面投影露光装置
US7242456B2 (en) * 2004-05-26 2007-07-10 Asml Holdings N.V. System and method utilizing a lithography tool having modular illumination, pattern generator, and projection optics portions
JP2006313866A (ja) * 2005-05-09 2006-11-16 Canon Inc 露光装置及び方法
CN100526994C (zh) * 2007-08-20 2009-08-12 上海微电子装备有限公司 透射对准标记组合及光刻装置的对准方法
TWI502283B (zh) * 2009-04-03 2015-10-01 尼康股份有限公司 曝光裝置、曝光方法及元件製造方法
CN102968000A (zh) 2012-11-21 2013-03-13 京东方科技集团股份有限公司 一种双面制程方法及曝光装置
KR101791123B1 (ko) 2013-05-07 2017-10-27 에이에스엠엘 네델란즈 비.브이. 정렬 센서, 리소그래피 장치 및 정렬 방법
CN104166312B (zh) * 2013-05-17 2016-08-24 上海微电子装备有限公司 一种多光源大视场拼接照明系统
JP6519109B2 (ja) * 2014-07-17 2019-05-29 株式会社ニコン 露光方法及び装置、並びにデバイス製造方法
CN105527795B (zh) * 2014-09-28 2018-09-18 上海微电子装备(集团)股份有限公司 曝光装置及离焦倾斜误差补偿方法
CN106154759B (zh) * 2015-04-15 2018-08-24 上海微电子装备(集团)股份有限公司 一种可校正物料起伏的光刻装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005092137A (ja) * 2003-09-19 2005-04-07 Nikon Corp 露光装置及び露光方法
CN101303533A (zh) * 2008-06-24 2008-11-12 上海微电子装备有限公司 用于光刻设备的对准系统、对准方法及增强型对准标记
CN103197506A (zh) * 2012-01-10 2013-07-10 上海微电子装备有限公司 一种采用镜像硅片台的光刻机
CN104136969A (zh) * 2012-03-02 2014-11-05 株式会社V技术 三维液晶显示装置的制造装置以及制造方法
CN104412152A (zh) * 2012-07-05 2015-03-11 株式会社V技术 光取向曝光方法及光取向曝光装置
CN105320399A (zh) * 2014-06-05 2016-02-10 恩耐激光技术有限公司 激光图案化偏斜校正

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134650A (ja) * 2019-02-18 2020-08-31 キヤノン株式会社 露光システム、および、物品製造方法
JP7265827B2 (ja) 2019-02-18 2023-04-27 キヤノン株式会社 露光システム、および、物品製造方法

Also Published As

Publication number Publication date
JP6941685B2 (ja) 2021-09-29
TWI654484B (zh) 2019-03-21
US20200257207A1 (en) 2020-08-13
KR102370151B1 (ko) 2022-03-04
CN107966881A (zh) 2018-04-27
KR20190125475A (ko) 2019-11-06
CN110419004A (zh) 2019-11-05
JP2020511691A (ja) 2020-04-16
US11042099B2 (en) 2021-06-22
CN110419004B (zh) 2020-10-27
CN107966881B (zh) 2018-11-23
TW201837601A (zh) 2018-10-16
SG11201908476PA (en) 2019-10-30

Similar Documents

Publication Publication Date Title
WO2018166444A1 (zh) 光刻装置及方法
JP6794538B2 (ja) 光学式測定装置及び方法
US9348240B2 (en) Mask pattern alignment method and system
CN109870883A (zh) 一种用于直写式曝光机的标定板的位置补偿方法
CN107976870B (zh) 一种运动台定位误差补偿装置及补偿方法
WO2018166462A1 (zh) 一种用于光刻机的垂向控制方法
WO2018059359A1 (zh) 一种光学测量装置和方法
CN106154759B (zh) 一种可校正物料起伏的光刻装置及方法
US4623257A (en) Alignment marks for fine-line device fabrication
CN115857281A (zh) 一种接近接触式曝光装置
JP6774269B2 (ja) 計測方法、計測装置、露光装置及び物品の製造方法
WO2021219007A1 (zh) 基于暗场莫尔条纹对准检测与控制的超分辨光刻装置
JP3068785B2 (ja) 投影露光装置、または投影露光方法、及びその投影露光方法を用いたデバイス製造方法、及びそのデバイス製造方法により製造されたデバイス
JPH0715876B2 (ja) 露光方法及びフォトリソグラフィ装置
KR102333943B1 (ko) 노광장치, 스테이지 교정 시스템, 및 스테이지 교정방법
JPH01283927A (ja) 縮小投影露光装置
JPH118184A (ja) 半導体装置の製造方法および半導体製造装置
JPH055368B2 (zh)
CN110356836A (zh) 一种圆形件的传送翻转载具
JPH0584664B2 (zh)
JPS6376425A (ja) 投影露光装置の位置合せ装置
JPH04225213A (ja) 投影露光装置、投影露光方法、及び回路製造方法
CN117742087A (zh) 一种双次曝光方法
JP2003115432A (ja) 荷電ビーム露光方法及び荷電ビーム露光装置
JPH02230713A (ja) 位置合わせ光学系の焦点調整制御方式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18766775

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550794

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197030127

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18766775

Country of ref document: EP

Kind code of ref document: A1